

Value/Cost Analysis of Modularity Improvements

Citation for published version (APA):
Rawshan, L. (2022). Value/Cost Analysis of Modularity Improvements. Technische Universiteit Eindhoven.

Document status and date:
Published: 04/10/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/b9d61472-784a-46e7-a6a0-fe79ccbeba6c

EngD SOFTWARE TECHNOLOGY

EngD THESIS REPORT

Value/Cost Analysis of Modularity Improvements

Lamisha Rawshan
September 2022
Department of Mathematics & Computer Science

Value/Cost Analysis of Modularity Improvements

Lamisha Rawshan

October 2022

Eindhoven University of Technology

Stan Ackermans Institiute – Software Technology

EngD Report: 2022/067

Confidentiality Status:

Public

Partners

ASML Netherlands B.V. Eindhoven University of Technology

Steering

Group

Tom Verhoeff

Remko van der Vossen

William van Houtum

Yanja Dajsuren

Date October 2022

Composition of the Thesis Evaluation Committee:

Chair: Prof.dr. M.G.J. van den Brand

Members: Dr.ir. Tom Verhoeff

 Ir. Remko van der Vossen

 Ing. William van Houtum

 Dr.ir. Martijn van der Horst

 Dr. Kees Huizing

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402743908

Partnership This project was supported by Eindhoven University of Technology and ASML

Published by Eindhoven University of Technology

EngD-report 2022/067

Preferred

reference

 L. Rawshan, Value/Cost Analysis of Modularity Improvements. Eindhoven Uni-

versity of Technology, EngD Report, 2022/67, October 2022

Abstract ASML's lithography machines are used in the process of manufacturing integrated

circuits. These machines are driven by complex software components. The TWIN-

SCAN software architects want to make the software more modular to improve

the maintainability and extendibility of source code. A good refactoring plan is

needed to improve the modularity. But existing tools are not sufficient to provide

enough decisions to begin refactoring. The project's main goal is to develop a tool

called MoVACA that will produce useful output for the TWINSCAN software

architects and developers for making refactoring decisions to improve modularity.

This report describes the motivation and process of developing MoVACA.

Keywords EngD, TU Eindhoven, ASML, Modular Design, Software Dependencies, Tech-

nical Debt, Data-Visualization

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Eindhoven University

of Technology and ASML. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the Eindhoven University of Technology

and ASML and shall not be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Eindhoven University of Technology makes

no warranty, representation or undertaking whether expressed or implied, nor does

it assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular en-

dorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2022. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, mod-

ified, or redistributed in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording, or by any information storage or retrieval sys-

tem, without the prior written permission of the Eindhoven University of Technol-

ogy and ASML.

Eindhoven University of Technology

i

Foreword
Ever since the start of ASML in 1984, we have developed embedded software, software to be used in

real-time, running highly automated equipment, our lithography machines. The embedded software

supports the lithography machine in delivering speed and quality in producing chips with ever-increas-

ing performance.

Software modularity has serious attention within ASML. Together with the increasing product portfolio

and increasing demand in new features we need to keep our software maintainable. Software modularity

is wanted for maintainable software, also we prefer commonality, share software modules over different

product configurations. To get the features implemented many new hires start each month and more

outsourcing is done, software modularity also plays an important role here.

With the assignment, we wanted to get more insights in which order to do software modularity improve-

ments, also taking the effort on maintaining the modularity technical debt into account.

Due to the COVID situation, Lamisha has to do her assignment partly from home, in which it was harder

to get the connection with ASML. As a project manager I joined the weekly project meetings in which

she was well-prepared, so we could efficiently do the meetings remotely. It was good to see how she

approached modularity, starting from literature, selecting metrics, and visualizing them in a tool.

The assignment gave ASML some good insights how to approach and depict modularity.

I am glad that Lamisha has decided to start at ASML’s Metrology from the beginning of 2023.

Thanks, Lamisha!

Veldhoven, Sept 21 2022

William van Houtum

Software Platform Architect

TWINSCAN - Modularity at ASML

Eindhoven University of Technology

ii

Eindhoven University of Technology

iii

Preface
This report serves as the documentation for the development process and product of the project carried

out by me as the partial fulfillment of the requirements for the Engineering Doctorate (EngD) in the

Software Technology program. EngD is a two-year doctorate-level program provided by the Eindhoven

University of Technology under the banner of 4TU.School for Technological Design, Stan Ackermans

Institute.

This project took place in the Software Platform Architecture group of ASML Netherlands B.V. The

goal of this project is to develop a tool that analyzes the source code of the TWINSCAN software and

generates tabular and graphical reports for four metrics that relate to the modularity of source code and

how this modularity evolves over time.

This report is primarily intended for readers with a technical background interested in modularity and

software architecture. Nevertheless, this report may also interest the audience with a non-technical

background. Readers who are interested in the non-technical parts of the report should read the first

four chapters. Those who are interested in technical details should read Chapters 5 to 7. The project

management methodology applied to this project is presented in Chapter 8. Chapter 10 presents a ret-

rospective of the project, reflecting upon the entire project experience. It also revisited the design op-

portunities identified in the early phases of the project.

Lamisha Rawshan

September 2022

Eindhoven University of Technology

iv

Eindhoven University of Technology

v

Acknowledgements
The last ten months at ASML Netherlands B.V. have been simply incredible. This project would not

have been possible without the support of several people. To begin with, I would like to thank William

van Houtum for giving me this opportunity. I want to thank him for his continuous support throughout

the project.

I want to thank Remko van der Vossen, my supervisor at ASML, for his continuous support, knowledge,

guidance, and expertise that I needed during the project, without which I could not have achieved the

results and deliverables. Apart from my supervisors from ASML, I would like to thank Bram

Schoenmakers for his assistance as needed.

I want to thank my university supervisor, Tom Verhoeff, for his constructive feedback and encourage-

ment throughout the project. His critical thinking and ideas encouraged me to explore the project from

a different view. I sincerely appreciate his exhaustive review of this report. Without his continuous

assistance, this project would not have been a success.

I want to express my gratitude to Yanja Dajsuren for the opportunity to be part of the EngD program. I

want to thank Yanja, Desiree van Oorschot, and all of the coaches for their encouragement and support

over the last two years, which has allowed me to grow professionally and personally. In addition, I

would like to thank my colleagues, the Software Technology Trainees of 2020, for our two years of

teamwork, support, and friendship.

Lastly, I would like to thank my parents, whose love and guidance are with me in whatever I pursue.

Most importantly, I am grateful to my husband for his continuous support, patience, and inspiration. I

would also like to thank my daughter for providing me with a source of strength, happiness, and drive

to succeed.

Lamisha Rawshan

September 2022

Eindhoven University of Technology

vi

Eindhoven University of Technology

vii

Executive Summary
ASML is the global leader in providing photolithography systems for the semi-conductors’ industry to

produce integrated circuits. The TWINSCAN software controls the lithography machine. The software

has a large code base with millions of lines written in several programming languages. As the software

grows, the architects encounter many unwanted dependencies, reducing the code's easy maintainability

and extendibility. Hence, the architects think the current codebase's modularity needs to be improved.

Technical debt needs to be identified to improve modularity. Ward Cunningham [1] first used the term

technical debt in 1992. It describes how code quality is sacrificed to satisfy short-term goals. The result

of the technical debt is code that is more expensive to maintain than usual.

This project aims to identify the technical debt at the architectural level. In addition, there should be a

rank to prioritize the debt based on maintenance costs. Therefore, tool support is needed to visualize

and prioritize the debt of the TWINSCAN software to help the architects.

To address the goal of the project, we researched the existing modularity tool and selected four metrics

(hotspot, change coupling, complexity trends, and hotspot rank) from the book "Software Design X-

ray" [2] based on the data available. Applying these four metrics helps to show the technical debt of the

system using metadata of the source code (such as-change frequencies, lines of code, and release data)

from the version control system. We developed a tool, MoVACA, to present these four metrics in graph-

ical and tabular format for user-specified scopes. We verified and validated the design and implemen-

tation of the tool against the requirements. To enable the extendibility of the tool, we designed the tool

in a way that a new TWINSCAN-specific metric can be introduced.

Finally, we delivered the project successfully. The tool provided significant output to identify and pri-

oritize the technical debt of the TWINSCAN software. We discovered some future opportunities during

the development of the tool. Using the issue tracker system data will add more meaningful results to the

tool and can be served as future work.

Eindhoven University of Technology

viii

Eindhoven University of Technology

ix

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures ... xi

List of Tables ... xii

1. Introduction ... 1

1.1 ASML .. 1

1.2 TWINSCAN ... 1

1.3 Project Context ... 1

1.4 Report Organization ... 2

2. Domain Analysis .. 3

2.1 TWINSCAN Software Organization ... 3

2.2 Dependencies in TWINSCAN ... 4

2.3 Modularity in TWINSCAN .. 4

2.4 Modularity Assessment Tool ... 4

3. Problem Analysis ... 6

3.1 Project Scope and Goal .. 6

3.2 Modularity Cost Analysis ... 6
3.2.1. Hotspot ... 7
3.2.2. Complexity Trends .. 7
3.2.3. Change Coupling ... 8
3.2.4. Hotspot Rank ... 9

4. Requirements Elicitation ... 10

4.1 Introduction .. 10

4.2 Use Case ... 10

4.3 MoSCoW ... 10
4.3.1. Project Requirements ... 11
4.3.2. Product Requirement ... 12

5. System Architecture and Design .. 15

5.1 High-Level Architecture ... 15

5.2 The 4+1 View Model of Architecture ... 16

5.3 Logical View ... 16

Eindhoven University of Technology

x

5.4 Process View .. 19

5.5 Development View .. 20

5.6 Deployment View .. 21

6. Implementation .. 23

6.1 Overview ... 23

6.2 Technology Choice ... 23

6.3 Modularity Cost Analysis Tool ... 24

7. Verification & Validation .. 27

7.1 Validation ... 27

7.2 Verification ... 27
7.2.1. Unit test .. 27
7.2.2. Code coverage ... 28
7.2.3. Coding convention ... 29

8. Project Management ... 31

8.1 Work-Breakdown Structure (WBS) ... 31

8.2 Project Planning and Scheduling ... 31

8.3 Project Risk Analysis .. 32

8.4 Communication .. 33
8.4.1. Weekly update meetings .. 34
8.4.2. Project steering group meetings ... 34
8.4.3. On-demand meetings ... 34

9. Conclusions ... 35

9.1 Results .. 35

9.2 Recommendations and Future Work .. 35
9.2.1. Future Work ... 35
9.2.2. Recommendation ... 36

10. Project Retrospective ... 37

10.1 Introduction .. 37

Glossary ... 39

Bibliography .. 41

A. Stakeholder Analysis .. 43

A.1 Stakeholder Identification ... 43

A.2 Stakeholder Interests ... 43

B. TWINSCAN Software FCs Dependencies ... 45

About the Author .. 46

Eindhoven University of Technology

xi

List of Figures
Figure 1 TWINSCAN software organization ... 3
Figure 2 Formula of calculating modularity score .. 5
Figure 3 Hotspot diagram ... 7
Figure 4 Compelxity trends .. 8
Figure 5 Change coupling diagram ... 8
Figure 6 Use case diagram of MoVACA .. 10
Figure 7 System context diagram.. 15
Figure 8 Class diagram metric calculator ... 17
Figure 9 Class diagram metric calculator ... 17
Figure 10 Class diagram data formatter .. 18
Figure 11 Class diagram for change coupling ... 18
Figure 12 Sequence diagram for admin user .. 19
Figure 13 Sequence diagram for TWINSCAN developers/architects .. 20
Figure 14 System component diagram.. 21
Figure 15 System deployment diagram .. 22
Figure 16 Modularity cost analysis tool main page .. 24
Figure 17 Packages of MoVACA ... 25
Figure 18 Code snippet of coupling generator class ... 25
Figure 19 Algorithm for counting coupling .. 26
Figure 20 Log file ... 26
Figure 21 Test cases for the Data Formatter component .. 28
Figure 22 Code coverage result of MoVACA .. 28
Figure 23 UML class diagram for extending a new metric .. 30
Figure 24 Work-breakdown structure ... 31
Figure 25 Project timeline ... 32
Figure 26 Stakeholder analysis matrix .. 43
Figure 27 Essential FC dependencies of production ... 45

Eindhoven University of Technology

xii

List of Tables
Table 1 TWINSCAN modularity KPI .. 5
Table 2 Project requirements .. 11
Table 3 Product requirements ... 12
Table 4 Existing sample test cases for MoVACA .. 27
Table 5 Project risks .. 32
Table 6 Main stakeholders’ interest and involvement .. 44
Table 7 Additional stakeholders’ interest and involvement .. 44

Eindhoven University of Technology

1

1.Introduction

This chapter provides a general introduction to the project by describing the context and domain in

which it was carried out. The chapter concludes with an overview of the structure of this project.

1.1 ASML

In 1984, Philips and Advanced Semiconductor Materials International (ASMI) founded ASM Lithog-

raphy (ASML) [3]. The vision of ASML is a world where affordable microelectronics improve the

quality of life. ASML strives to achieve this vision by designing, developing, integrating, marketing,

and servicing advanced systems for the semiconductor industry.

ASML is the world leader in Lithography machines, and these are complex machines used for the most

critical step in semiconductor manufacturing (such as-memory chips and processors). Some of the major

customers include Intel, TSMC, and Samsung. ASML is headquartered in Veldhoven, The Netherlands,

and is spread across various locations over the world. The company manufactures three types of lithog-

raphy systems [4].

• Ultra-Violet (UV)

• Deep Ultra-Violet (DUV)

• Extreme Ultra-Violet (EUV)

Software is a key component of ASML’s lithographic machines. Therefore, the lithography machines

combine high-tech hardware and advanced software. The software contributes to innovations and im-

provements in the process of chip production.

1.2 TWINSCAN

The lithography systems are sophisticated technologies used to manufacture integrated circuits and

microchips. Lithography refers to a series of procedures in producing integrated circuits in which one

of the circuit layouts is scanned (printed) onto a microchip. The lithography method is enabled by

ASML TWINSCAN machines, which expose light to the wafer and create structures.

The TWINSCAN machines must operate extremely precisely to ensure the chips function correctly. As

a result, ASML machines rely primarily on complicated software split into functional clusters, each of

which has one or more components. Each functional cluster's components are developed and maintained

by a separate team of software developers.

1.3 Project Context

The project focuses on TWINSCAN software, running on the Lithography Scanners. TWINSCAN soft-

ware has grown rapidly over the past years. This complex software consists of several tens of millions

of lines of code [5]. Updates, bug fixes, and new functionalities are continuously developed and tested

before being released to the customer.

TWINSCAN software architects know there are a lot of unwanted dependencies between the modules.

As the software has grown, the software architects have realized that they are introducing technical debt

to fulfill deadlines. Technical debt is a term used to describe work in a software system that makes

tradeoffs in the long term to meet urgent short-term needs [6].

Eindhoven University of Technology

2

First, technical debt needs to be addressed to remove it. The software architects have already taken the

initiative to identify technical debt that will help TWINSCAN software developers, software architects,

and managers to know the status of the code. They are migrating from the legacy to the modular soft-

ware archive [7]. To help better refactoring, ASML is using different kinds of tooling. One of the tools

is known as the Modularity Index Tooling (MDI) [8], which provides the modularity score and depend-

encies between the modules.

To improve modularizing the large code base, the architects need to estimate the budget as the refactor-

ing costs are concrete and immediate. In contrast, the benefits of refactoring are long-term [9]. There-

fore, it is difficult for the architects to make correct decisions regarding refactoring needs that cost time

and effort. To realize such a large plan, software developers and architects require a tool to make in-

formed decisions on which modularity improvements to prioritize.

The project aims to develop a tool that I will refer to as MoVACA to measure the technical debt to

uncover limitations at the architecture level (e.g., violations of the modularity principle) and rank the

identified debt based on their impact and the amount of work needed to fix them.

1.4 Report Organization

This report aims to provide a thorough technical overview of this ten-month project. Chapter 1 is a

generic introduction to the project, the company, and the problem. Chapter 2 focuses on domain anal-

ysis, while Chapter 3 provides a more in-depth problem analysis. Chapter 4 contains the result of the

requirement analysis.

Then, Chapter 5 describes the design architecture for modeling the tool. Chapter 6 discusses the im-

plementation of the tool. The process of validation and verification of the new design is discussed in

Chapter 7.

Finally, Chapter 8 presents the project management process, including project planning and risk man-

agement. Chapter 9 contains the conclusions and future recommendations. Chapter 10 concludes the

report with a project retrospective. Appendix A discusses the stakeholders’ interests and goals.

Eindhoven University of Technology

3

2.Domain Analysis

Before going into the problem analysis, it is essential to know where the problem is located. This chapter

aims to provide an overview of the project domain. This chapter describes the organization (Section

2.1) and the modularity of the TWINSCAN software (Section 2.3). Finally, it represents the existing

modularity assessment technique (Section 2.4) related to this project.

2.1 TWINSCAN Software Organization

To manage the rising complexity of the machines' hardware and software, ASML uses a divide-and-

conquer technique. A system is divided into smaller subsystems utilizing this technique, which are small

enough to be designed, tested, and delivered individually by a group of engineers before being assem-

bled.

• System Functions (SFs): The TWINSCAN machine’s functionality is decomposed into several

SFs.

• Functional Clusters (FCs): Each SF has one or more FCs, either logical system functions or sup-

port facilities for system functions.

• Building Blocks (BBs): An FC is divided into one or more BBs, known as the unit of change

management.

• Software Components (CCs): Each BB is also subdivided into ASML CCs, which are atomic

software design units assigned to development teams. A CC can correspond with a specific part of

the machine or play a general-purpose role (e.g., Error Logger). A component's source code and

configuration parameters are unique to it.

Figure 1 depicts the machine's software breakdown. This architectural decomposition makes the testing

and integrating software that runs on the computer easier.

Figure 1 TWINSCAN software organization

Eindhoven University of Technology

4

2.2 Dependencies in TWINSCAN

Within the ASML software organization, interfaces exposed by one FC also become interfaces exposed

to other FCs. That causes interdependencies between the FCs. There are two types of dependencies for

the software.

• Desired dependencies: These are the software's essential dependencies. Appendix B con-

tains the essential FC dependencies of the software.

• Undesired dependencies: These includes dependencies that are in the source code but not in

the desired architecture. These dependencies are mainly introduced to fulfill the short-term

goal.

2.3 Modularity in TWINSCAN

Modularity, reusability, analyzability, modifiability, and testability are all aspects of maintainability in

ISO25010:2011 software quality standard [10]. Modularity is the degree to which a system or com-

puter program is made of separate components, so changing one has minimal impact on others [11].

Modifying one module can have a cascading effect, causing other modules in the system to stop work-

ing correctly. ASML priorities for modular software are listed below:

1. Reuse of software across products and releases

2. Independent development of modules’ lifecycle

3. IP Protection

4. Reduce regression risk for customers

5. Increase in innovation speed of tools

TWINSCAN software is developed in mainly [8] C, C++, and Python. TWINSCAN software contains

a complex structure that has many undesired dependencies. The main motivation for modularity in

TWINSCAN software is to decompose the software into modules or assemblies with clear and stable

interfaces and minimum dependencies to do independent development and verification

An assembly is a collection of building blocks with its release cycle and branches. Modularity in TWIN-

SCAN software is improved by introducing Distributed Assembly Integration (DAI). DAI introduces

centralized to distributed assembly archives that allow only essential coupling with other assemblies.

TWINSCAN engineers can reuse modules with an independent life cycle across releases.

2.4 Modularity Assessment Tool

Improving the software's modularity will provide independently evolving modules, efficient reuse, and

maintainability. Researchers have used many ways to assess the modularity of software systems over

the years [12]. They used the modules' degree of coherence and connectivity to determine modularity.

TWINSCAN software engineers developed MDI to assess the independence of current modules in

2017. The goal of assessing the modularity of the software is to know how well the containers are

modularized.

TWINSCAN software uses its own modularity Key Performance Indicators (KPI) [13] to assess the

modularity of its software. The KPIs are listed in Table 1. The locality of change KPI has more impact

than the other KPIs. For each KPI in the table, a minimum and a maximum value are (manually) estab-

lished. Each result is normalized to a value from 0 (worst score) to 10 (best score).

Eindhoven University of Technology

5

Table 1 TWINSCAN modularity KPI

Property Metric Weight

Interface Quality Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling provided + required symbols 15%

Deviation from referential module

Dependencies

15%

Testability Configuration space (prov. + req. parameters) 10%

Shareability missing symbols in other releases 10%

Locality of Change single module streams 20%

The modularity assessment tool generates a modularity score for each module by analyzing the release

data. The modularity scores of the components are calculated using the formula in Figure 2. The mod-

ularity scores do not say what causes a low score. Therefore, more investigation is needed to know from

where the refactoring can be started.

Figure 2 Formula of calculating modularity score

Modularity Index of module A= (∑ 𝑚(𝑉𝑎𝑙𝑢𝑒) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚)𝑚∈Metrics) ∗ 𝐶(𝐴𝑠𝑖𝑧𝑒)

Eindhoven University of Technology

6

3.Problem Analysis
The purpose of this chapter is to provide general information and an introduction to the problem this

project explores. The project context is briefly discussed in the introduction. Section 3.1 addresses the

scope of the project and the goals that need to be addressed, and Section 3.2 explains the metrics to be

addressed for the project.

3.1 Project Scope and Goal

TWINSCAN software architects desire to modularize their software. TWINSCAN software platform

architects proposed a modular reference architecture, discussed in Appendix A.

TWINSCAN software engineers monitor the health of the program code using TIOBE TICS [14] and

other static code analysis tools (such as- PyLint). Among them, the Modularity Analysis Tool (Section

2.3) is used to manage the dependencies between the modules. At the component level, the tool indicates

both desired and undesirable dependencies between modules, but to start refactoring, the architects need

to address the dependencies inside and outside the module. Moreover, the existing tool does not priori-

tize undesirable dependencies. It is therefore challenging to determine which dependencies require more

attention.

In TWINSCAN software, the undesired dependencies result in a steep increase of complexity, ineffi-

cient development, and slowing down tools running on it [15] . The code in TWINSCAN requires ad-

ditional maintenance expenses. Technical debt refers to code that costs more to maintain than it should.

The company does this by paying interest [16]. The TWINSCAN software architects are concerned

with avoiding future technical debt.

To begin refactoring, the architects need a clearer picture of the system. The software architects believe

that the health of the modularity should be measured and improved by a well-defined refactoring plan.

Therefore, the software architects agreed that extra tool support is required for the software architects

and developers.

The main company motivation for this project is to have a system that gives a complete picture of the

code with maintenance problems in the system and gives fast feedback to the software developers and

architects of the deliveries on the architectural level. Although there are commercially available tools

on the market that perform the generic static code analysis, none of them can detect code with high

maintenance effort.

Moreover, during the project scope meetings with the company stakeholders, we found that the archi-

tects want to

• Measure the technical debt to uncover limitations at a user-specified level

• Generate a rank to prioritize modularity improvement

• Visualize technical debt using the diagram

However, the answer to the above points cannot be provided directly. Therefore, we decided to compute

more concrete metrics discussed in Section 3.2.

3.2 Modularity Cost Analysis

Refactoring complex code is a risky and costly process. It must be ensured that the development time

is utilized effectively. System change history over the dimension of time is needed to start improving a

large amount of code. However, the time dimension is not present in the code itself. The version control

Eindhoven University of Technology

7

system allows us to access that system evolution data. We chose behavioral code analysis for this project

to identify and prioritize technical debt using time dimension data from the version control system. To

achieve our project goal, we chose the following four metrics from the book [2].

3.2.1. Hotspot

A hotspot is a complex piece of code that developers frequently work with [17]. Hotspot analysis is the

suggested first step in exploring a codebase because it identifies the code where most of the develop-

ment time is spent. Hotspots are determined by combining the followings:

• Estimating the frequency of changes to each file as a substitute for the interest rate

• Counting lines of code to determine the complexity of the code

Figure 3 shows an example of the hotspot diagram. The hotspot of a system is represented by a map

where each filled circle represents a file. The circle’s size and color vary with the number of lines of

code and the change frequencies, respectively.

Figure 3 Hotspot diagram

3.2.2. Complexity Trends

We must evaluate the hotspots after identifying them. These hotspots are analyzed by the complexity

trend [18]. The complexity trend defines how difficult it is for a human to understand the code. The

trend is determined by retrieving each previous version of a hotspot and calculating the amount of code

in each previous revision. The complexity (or lines of code for our analysis) and comments are used to

calculate the complexity trends.

The complexity trends of a system are represented by a line graph where the two lines of the graph

represent the number of changed lines and the comments for each version. An example of a complexity

diagram is shown in Figure 4. The diagram shows the change of line and comments of version for three

consecutive years.

Eindhoven University of Technology

8

Figure 4 Compelxity trends

3.2.3. Change Coupling

Change coupling refers to files changing together over time [19]. By examining the change patterns,

change coupling can reveal hidden dependencies between groups of files. It provides an effective

method for iteratively enhancing our system design based on feedback from how we work with the

code. The change coupling is determined by analyzing release data to identify files that have changed

within the same commit.

An example of the change coupling diagram is shown in Figure 5. The change coupling is represented

by a chord diagram where each chord represents a change relation between two files. The chord size

varies with the number of files that change together.

Figure 5 Change coupling diagram

Eindhoven University of Technology

9

3.2.4. Hotspot Rank

The hotspot rank indicates which files are quickly moving up the hotspot ranking [20]. To determine

the hotspot rank, we need to conduct two calculations to find rising hotspots. A hotspot analysis based

on the current state of the code and another hotspot analysis based on the previous state of the code is

computed. The analysis will be illustrated using a tabular format where the first column contains the

file name, followed by the rank of the two different time frames. It reveals the files that are rapidly

changing over time.

In this chapter, the metrics that are needed to fulfill the stakeholders’ needs are described. The concrete

requirements to show the metrics are presented in Chapter 5.

Eindhoven University of Technology

10

4.Requirements Elicitation

4.1 Introduction

The goal of this chapter is to describe the requirements that have been identified for this project. The

requirements are categorized into two major parts: project requirements and product requirements. The

requirements were defined by analyzing the problem and discussing it with stakeholders. This chapter

contains a primary use case and the requirements.

4.2 Use Case

A use case describes potential interactions between a system and its users. MoVACA has two primary

categories of actors. TWINSCAN software architects and developers. In the context of this project, an

architect or designer of the TWINSCAN software will use the tool to observe the metrics described in

Section 3.2 at different levels. They will make decisions on refactoring to see the metrics. The version

control actor is responsible for providing historical data for the analysis.

Figure 6 shows the potential actions that a user can perform. MoVACA has four primary use cases: the

hotspot, the complexity trend, the change coupling diagram, and the rank of refactoring cost.

Figure 6 Use case diagram of MoVACA

4.3 MoSCoW

In this project, the MoSCoW [21] method is used to prioritize the elicited set of requirements. The word

MoSCoW is an abbreviation of four terms, each of which defines different priorities. They are:

• Must have (M): The requirements under this category must be included in the final delivery.

• Should have (S): The requirements under this category are suggested to include in the project.

Eindhoven University of Technology

11

• Could have (C): The requirements under this category could be satisfied depending on the project's

timeline

• Won't have(W): The requirements under this category will not be addressed in the project scope.

4.3.1. Project Requirements

This subsection lists the set of project requirements. The project requirements were developed by ana-

lyzing the domain, investigating the modularity tool, and studying existing literature. Table 2 illustrates

the list of requirements obtained from the interests and priorities of stakeholders. Each project require-

ment is described in detail, including motivation and a verification method.

Table 2 Project requirements

ID Description, Motivation, and Verification Priority

Req-1 Description

The backend of the system shall be implemented in the Python (Python -3.7) programming

language

Motivation

The backend is targeted to be implemented using OOP languages such as C++, Java, and Py-

thon. Python is the target for this project as the existing modularity tool is built using Python

and is a standard at ASML

Verification

This requirement will be tested by a source code inspection and running the code using Python

Must

Req-2 Description

The Python implementation of the tool shall follow the Python coding standard of ASML.

Motivation

The implementation shall follow the ASML coding standard to be consistent with the existing

code

Verification

This requirement will be verified by using the TICS tool that checks the compliance of the

code with the coding standard

Must

Req-3 Description

The front end of the system shall be a web interface (supports Microsoft Edge, Google

Chrome, Mozilla Firefox browser) to present the tool's features.

Motivation

The user does not have to install any additional software to use the tool.

Verification

This requirement will be verified by running the code.

Must

Req-4 Description

The web interface of the implementation shall use JavaScript (Version-ES2015) to visualize

generated diagrams.

Motivation

JavaScript is needed to add interactivity and data visualization to the web page.

Verification

Must

Eindhoven University of Technology

12

This requirement will be tested by code inspection and running the source code.

Req-5 Description

The implementation of the tool shall use Pytest automatically by Continuous Integration (CI)

to write and execute test code.

Motivation

The developed tool will be tested to fulfill the requirements.

Verification

This requirement can be verified by source code inspection.

Must

Req-6 Description

All the deliverables (source code, test code, and documentation) shall be under version control

in a Git repository.

Motivation

This requirement is needed to capture the delivery history and keep the change.

Verification

This requirement can verify by reviewing all the deliverables of the Git by the date.

Must

Req-7 Description

The system should follow an agile development process with two weeks sprint that starts with

story selection with the customer.

Motivation

The deliverables can be accessible to the stakeholder in the development phase so the customer

can give more feedback.

Verification

The stakeholders will review all the deliverables iteratively.

Must

4.3.2. Product Requirement

This subsection describes the product requirements of the tool. The product requirements were assessed

using ISO standard 25010 [22], a quality model. This model identifies which features should be con-

sidered when evaluating the system's quality attributes. Table 3 presents these requirements with prior-

ity, aspect, and motivation.

Table 3 Product requirements

ID Priority Attribute Description and Motivation

PR-1 Must Functional Description

The tool shall be able to visualize architectural hotspots [18] in

user-specified level-file levels, component levels, and building

block levels for a user-defined timeframe

Motivation

The user can quickly view the whole codebase where the compli-

cated code exists.

PR-2 Must Functional Description

Eindhoven University of Technology

13

The tool shall visualize the complexity trends [18] of a selected

hotspot (components or files) using a line graph for a user-speci-

fied timeframe.

Motivation

This requirement is needed to see the complexity of a hotspot over

time.

PR-3 Must Functional Description

The tool shall detect change coupling [18] between files by ana-

lyzing revision history.

Motivation

This requirement will uncover the hidden relationship between

files by analyzing the changing pattern.

PR-4 Must Functional Description

The tool shall rank the detected hotspot.

Motivation

This requirement is needed to determine which part of the building

block can be refactored fast.

PR-5 Must Functional Description

The tool shall separate files of a building block into four major

categories - makefiles, scope files, machine-generated files, imple-

mentation files.

Motivation

This requirement gives the opportunities to filter out less essential

files.

PR-6 Could Functional Description

The tool shall extract metadata from ClearCase based on file ex-

tension.

Motivation

This requirement allows filtering files based on needs.

PR-7 Should Functional Description

The tool shall save generated diagrams and results (file format is

to be determined).

Motivation

This requirement is needed to use and compare the result in the

future.

PR-8 Must Compatibility Description

The tool must be able to extract and process historical data from

ClearCase.

Motivation

The historical data from ClearCase is needed to measure architec-

tural hotspots and rank the refactoring cost.

PR-9 Could Compatibility Description

The tool shall be able to extract data from Git

Eindhoven University of Technology

14

Motivation

To be prepared for future development environment (GreenHouse

Github) and development teams working in Break-out-archive

(BOA)

PR-10 Must Usability Description

The generated diagrams shall contain the timeframe, file scope,

and type of analysis.

Motivation

The diagram needs to be self-descriptive for the general user

PR-11 Could Maintainability Description

The tool's implementation shall be extensible to add a new visual-

ization and metric.

Motivation

A new visualization or metric can be introduced soon.

PR-12 Must Reliability Description

The tool's implementation shall write log messages to a file when

an exception occurs.

Motivation

This requirement is needed to analyze and understand the excep-

tion.

PR-13 N/a Security The security requirement is not considered for this project

Eindhoven University of Technology

15

5.System Architecture and Design

After the requirements elicitation process, the next step was to formulate the system architecture as a

solution direction toward the project objectives. In this chapter, we discuss the system architecture, the

rationale behind the design decisions, and alternative design ideas. The system architecture and design

are constructed based on the system requirements of Chapter 4.

Section 5.1 includes the high-level architecture of the system. Section 5.2 contains the 4+1 view model

of architecture (Kruchten, 1995), which is used in this chapter to describe the design and architecture

of the system. We explain how we covered the use cases (i.e., the +1 view) in Section 4.2 and the other

four views in Sections 5.3 to 5.6.

5.1 High-Level Architecture

In this section, we describe the high-level architecture of the system, which clarifies the context before

going to the detailed architecture. The system context diagram in Figure 7 is used to show the system’s

high-level architecture. The Version Control System and Release Portal are the two external interfaces

the tool access.

Figure 7 System context diagram

Database: Holds data retrieved from the version control system. The database is needed to get good

performance.

Data Formatter: Reads and formats data from the version control system. Later, the data is stored in

the database.

Eindhoven University of Technology

16

Metric calculator: Retrieves data from the database and release portal. Later, it calculates the four

metrics described in Section 3.2.

Diagram Generator: Visualizes the diagrams using values from the metric calculator.

5.2 The 4+1 View Model of Architecture

Kruchten [23] first proposed the 4+1 view model of architecture, which is a model for describing the

architecture of software-intensive systems based on multiple views:

Logical View: The class diagram of the design is represented by the logical view

Process View: The process view captures the design's synchronization and concurrency features.

Development View: The software's static organization in its development environment is described

by the development view.

Deployment View: The distributed nature of the software and its mapping to the hardware are described

by the deployment view.

These four views can be used to structure the description of the architecture and the decisions made,

and a fifth view can be created by selecting a few use cases or scenarios to serve as examples.

5.3 Logical View

This section describes the logical view of the MoVACA. It contains four modules. Figure 8 is the high-

level class diagram for the system. The design uses strategy pattern to select the metric at runtime. The

MetricCalculator class is responsible for passing the requests from view to different concrete classes.

Every concrete class has a specific responsibility to deal with user requests. The HotspotRank, Com-

plexityTrends, and Hotspot are the concrete metrics that use the DataConnection class to create and

return the database connection.

Eindhoven University of Technology

17

Figure 8 Class diagram metric calculator

The ChangeCoupling class uses the release data connection. Hence, the release data connection can be

passed with the DataConnection abstract class, so the structure and behavior of all the concrete classes

will be similar. DataConnection object can be given to the MetricCalculator abstract class. An updated

class diagram is shown in Figure 9.

Figure 9 Class diagram metric calculator

Eindhoven University of Technology

18

The class diagram for the DataFormatter component is shown in Figure 10. The ChangeInfo class is

responsible for calculating the version list of paths using the VersionList class. The LatestQbl class

returns the latest recommended Qualified Baseline (QBL) from ClearCase (CC). ListOfContainer class

returns the list of functional clusters, building blocks, and components from CC. Version-

sChangedAmount class is responsible for calculating the number of inserted lines, deleted lines, lines

of code, and single-line comments of versions using the abstract class VersionInfo. This approach is

known as the strategy method design pattern. The ChangeInfo class is responsible for gathering all data

from the ClearCase and inserting this data using QueryRunner. QueryRunner will use DatabaseCon-

nection class to insert the data into the database.

Figure 10 Class diagram data formatter

The class diagram for the change coupling is shown in Figure 11. In the class diagram, each of the

classes has a specific responsibility to handle the client’s request. The view class deals with the request

to see change coupling from the users. This request is dispatched to the CouplingFactory class and this

class delegates the coupling generator task to the concrete classes responsible for calculating the cou-

pling values dynamically using the Coupling generator abstract class. This design approach is com-

monly known as the factory design pattern.

Figure 11 Class diagram for change coupling

Eindhoven University of Technology

19

5.4 Process View

The process view includes the UML sequence diagram of the change coupling. Sequence diagrams

are used to illustrate how classes behave and interact to accomplish a specific use case functionality. It

is often easier to understand the dynamic behavior of a given system's use case processes by the se-

quence diagram. The Figure 12 shows the sequence diagram for the admin user. Initialization would

start from the admin. The sequence is broken into steps and listed below.

• The admin requested the DataFormatter module to update data.

• The DataFormatter checks whether the data from the database is the latest or not.

• If the database contains the latest updated data, dataformatter returns a response to the user. If

it doesn't contain updated data, the dataformatter will go to ClearCase. It retrieves data and

saves it to the database.

Figure 12 Sequence diagram for admin user

Eindhoven University of Technology

20

Figure 13 Sequence diagram for TWINSCAN developers/architects

The sequence diagram is for use TWINSCAN software architects or developers. The sequence is bro-

ken into several steps

• The TWINSCAN software architect and developer will request the GUI of the modularity

analysis

• The user sends this request to the metric calculator

• The metric calculator requests data from the database and release portal and gets the response

• The metric calculator returns the response to the client.

5.5 Development View

The development view depicts a system from a programmer's viewpoint and is focused on software

management. It describes system components using a UML Component diagram. The Package diagram

is one of the UML diagrams used to depict the development view.

A visual representation of the relationship between various components is shown in Figure 14. The Data

formatter component retrieves data from ClearCase and uses the database to store the data. Hotspot,

Hotspot Rank, and Complexity Diagram use the data from the database. Complexity Trends depends

on the hotspot to get the file name to calculate the trends. Change coupling uses release data to generate

the coupling values.

Eindhoven University of Technology

21

Figure 14 System component diagram

5.6 Deployment View

Figure 15 presents a visual overview of the deployment of various entities in the system. It shows us

the different components of the system. The server is where the Python execution environment and the

web interface reside within the ASML network. The server needs to start first by running the base

python file. Then, the user can send HTTP request different metric calculator. The server interacts with

two external entities—the Release Portal and ClearCase. Information regarding the file changes is re-

trieved from the ClearCase and release portal, which is then preprocessed and stored in the database.

All data in the database can be visualized and embedded within the web interface presented to the user

upon request.

Eindhoven University of Technology

22

Figure 15 System deployment diagram

Eindhoven University of Technology

23

6.Implementation
We explain our system architecture and design in Chapter 6. This chapter describes the implementation

of MoVACA following the design of the previous chapter.

In Section 6.1, we report the overview, including the development environment and structure of the

solutions. Afterward, in Section 6.2, we explain the choices for selecting tools and technologies to de-

velop this project. Finally, in Section 6.3, we describe the output of the modularity cost analysis tool.

6.1 Overview

We used Python 3.7 to develop the modularity cost analysis tool. The implementation was done in the

ASML Linux Virtual Development Infrastructure (VDI) to access the ClearCase data. ASML Bitbucket

was used as a version control system for tracking changes. We used PyCharm 2021.3 (Professional

Edition) as our IDE.

6.2 Technology Choice

The project was developed according to the architecture explained in Chapter 5. This selection was

made during the architecture phase. This section explains the choices for selecting tools and technolo-

gies to develop this project. In addition, high-level design decisions are listed at the end of the section.

Technology Choice 1: Use of Flask

Rationale:

• Flask is a micro-framework [24] and is generally easier to use to get started building applications.

• Flask provides full flexibility to change the modules of a project. Developers can add more function-

ality to Flask because of the expandable nature of the framework.

• Flask is easy to learn.

Discarded Alternatives:

Django: Django is harder to learn and use. Hence, the learning curve is steeper. It is feature packed. It

does not provide flexibility for dynamically changing projects.

Technology Choice 2: Use of SQLite for storing data

Rationale:

• SQLite is a self-contained, serverless database [25]. It is also an embedded database because the da-

tabase engine is integrated within the program.

• SQLite stores data in a single file, making it efficient to transfer

• It uses most of the standard SQL syntax, making it easy to use

Discarded Alternatives:

MySQL and Oracle: MySQL and Oracle require a server to run. These databases need to compress

into a single file before transferring. Additionally, MySQL is not fully supported within ASML. It

would add additional costs for maintenance, backup, and recovery of databases. Given these factors,

SQLite is preferred over MySQL and Oracle.

Eindhoven University of Technology

24

Technology Choice 3: Use of D3 for graph visualization

Rationale:

• D3 provides the user with rich and easy interaction with the visualization in the web interface

[26]. It provides several modules that help people to add interactivity, such as zooming, pan-

ning, and brushing.

• Rather than providing full components, D3 gives data-driven helper functions to create those

components. Hence, the types of charts generated by D3 are not predefined.

• D3 is a JavaScript library that provides an easy bridge between the power of SVG (Scalable

Vector Graphics) in the browser and the JavaScript applications.

Discarded Alternatives:

Chart.js: Charts.js generates a small number of charts. It uses html5 canvas tag, which is pixel based.

By considering these factors, we prefer to use D3 to visualize the diagram.

Implementation Decisions:

After discussing with the stakeholders, the following high-level design decisions were made:

• Release data is not stored in the database: Release data will be accessed from the release por-

tal instead of ClearCase to calculate the change coupling. The rationale behind this decision is

that accessing the release stream directly from ClearCase needs more effort and time.

• Managing rename of files: When the file scope is changed in ClearCase, the file path also

changes. MoVACA does not track the renaming of files path. It retrieves data from the latest

recommended baseline.

6.3 Modularity Cost Analysis Tool

TWINSCAN software developers and architects will interact with MoVACA through a graphical

user interface web browser.

Figure 16 shows the initial page of the tool.

Figure 16 Modularity cost analysis tool main page

For testability purposes, we implemented our tool in four modules. The modules are

• Data Formatter

• Hotspot

• Hotspot ranking

• Change Coupling

Figure 17 shows the implemented modules of MoVACA. The implementation was done using Python

3.7 and SQLite 3 for the backend and HTML, CSS, and JavaScript for the front end. Flask Blueprint

Eindhoven University of Technology

25

[27] is used to create application components and supports common patterns within applications. The

frontend files are stored in the templates folder.

Figure 17 Packages of MoVACA

The strategy design pattern discussed in Figure 8 will pass user requests to the hotspot, change coupling,

and hotspot rank metrics. The dataformatter module reads data from ClearCase and stores it in the

SQLite database. The hotspot, hotspot ranking, and complexity diagram read data from the database for

a user-specified time frame and sent JSON requests to the user.

Figure 18 Code snippet of coupling generator class

The change coupling module gets user requests with specific scopes and granularity. The change cou-

pling's scope and granularity are implemented using the factory design pattern discussed in Figure 11.

Figure 18 shows the code snippet of the abstract class for the factory design pattern. The class contains

two functions. calculate_stream_coupling function takes the release stream from the release portal and

returns a dictionary with commit ID as keys and file changed on that commit as values. The count_cou-

pled_pair takes the dictionary as an input and returns the coupling between files. Figure 19 shows the

algorithm for counting coupled pairs of files.

Eindhoven University of Technology

26

Figure 19 Algorithm for counting coupling

A log file for the project is implemented. In Section 4.3, requirement PR-12 describes the need for

logging. Logging is used to understand the frequency of exceptions and errors as well as to speed up

the process of identifying them when they happen. Figure 20 is an example of the log lines captured

during the development.

Figure 20 Log file

Eindhoven University of Technology

27

7.Verification & Validation

This chapter explains the process of verification and validation used in this project, as well as the result

of the process, to guarantee that MoVACA is working well. As a result, the verification and validation

processes were employed to ensure that the tool implementation met the project's requirements.

7.1 Validation

Validation is primarily an external process that evaluates whether the developed system meets the stake-

holder's needs. In the context of this project, the verification process was carried out by the EngD trainee

and the project steering group. For verification, the following procedure was used in this project. This

project followed an incremental tool development process. Multiple recurring meetings were held

throughout the project to ensure that the process and created products were aligned with the require-

ments and the formulated requirements were correct. In addition, the system's requirements and the

implementation of the tool were discussed during the monthly PSG meetings to ensure that the project

was on track and the implemented system was built according to the agreed specifications.

7.2 Verification

Verification is usually an internal process of evaluating the correctness of the system. To verify the

components discussed in Section 5.5, we performed the unit tests, checked the ASML coding standard

using PyLint, and measured the code coverage of the system by the unit tests.

7.2.1. Unit test

A unit test is a piece of automated code that calls a unit of work in the system and then verifies a single

test about that unit of behavior [28]. A unit can be a class's function or method. We developed test cases

for every component. Some of these test cases for the system are listed in Table 4.

Table 4 Existing sample test cases for MoVACA

Test case number Test case

Test_case_1 Test if a given path of a file is valid

Test_case_2 Test if the total number of functional clus-

ters is correct

Test_case_3 Test if the 11nc for a building block is cor-

rect

Test_case_4 Test if the list of building blocks for a given

functional cluster is valid

Test_case_5 Test if the LOC of a given file is correct

Test_case_6 Test if a given stream is valid

Test_case_7 Test if a given date is valid

Test_case_8 Test if a given path of a file is cleaned

Test_case_9 Test that the components from a file path is

correct

Test_case_10 Test if two files are from the same building

block

Eindhoven University of Technology

28

We used the unittest module to perform unit testing for the python code. Unittest is the built-in python

module to write automated tests for applications [29]. Figure 21 contains the result of the unit test cases

for the Data Formatter component.

 Figure 21 Test cases for the Data Formatter component

We used similar data [30] to test our JavaScript code. We used file connection to connect JSON files

from the front end and tested the generated visualizations.

7.2.2. Code coverage

Code coverage is a measure to express how well a system's source code is tested. Coverage uses differ-

ent methods (such as branch coverage, statement coverage, and decision coverage) to measure test ef-

ficiency. Programs with high test coverage indicate more source code has been executed during testing

and are less likely to contain undetected software bugs than programs with low test coverage. For meas-

uring code coverage, we use the Python library 'coverage.py.' It showed the percentage of the source

code tested by the unit test cases. Due to limited time, the tests cover only the main features of the tool.

The coverage report is shown in Figure 22. It shows that the system achieved 70% of code coverage.

Figure 22 Code coverage result of MoVACA

Eindhoven University of Technology

29

7.2.3. Coding convention

We used PyLint to check the python coding style's consistency throughout the system. PyLint is a tool

that evaluates Python code for errors, attempts to enforce coding standards, and detects undesirable

code smells. PyLint's default code style is similar to PEP 0008. A Pylint-based scope check is performed

on the Python code at compile time.

PyLint produces different levels of messages. ASML has its own PyLint rules defined. The PyLint

messages from the community version are mapped to the ASML version of the PyLint messages. ASML

uses the TICS framework to check the code quality. The PyLint messages are also mapped to the TICS

level.

To check the coding standard of MoVACA, we used the ASML PyLint rules for the components of the

tool. The PyLint score for hotspot, hotspot ranking, change coupling, and data formatter component

were 7.10, 7.07, 7.07, and 7.86, respectively.

Extendibility quality

The validation process of the extendibility of MoVACA will be discussed in this section. This is per-

formed using a qualitative method. When a new metric is introduced, the developers only need to im-

plement the specific metric. The steps are listed below:

• First, the new metric needs to register to the blueprint using an app.py file.

• A folder with the name of the metric needs to be created inside the project.

• We used the strategy pattern to pass user requests for the four metrics. The class diagram is

discussed in Figure 9. The diagram in

• Figure 23 explains the way to introduce a new metric to the pattern. The diagram assumes a

new metric, MetricFive, like the hotspot diagram and hotspot ranking, and a new data con-

nection DataConFour, like the DatabaseCon and the ReleasePortalCon. The diagram shows

that the code extendibility to add a new feature is achieved by the tool.

Eindhoven University of Technology

30

Figure 23 UML class diagram for extending a new metric

Eindhoven University of Technology

31

8.Project Management
One of the essential aspects of project success is project management. The primary purpose of project

management is to set up the project's roadmap and strategies for dealing with challenges and risks.

Therefore, fulfilling the project's goal will be more manageable within the restrictions.

The project management process followed in this project is explained in this chapter. Every EngD ST

project is technically and organizationally challenging. The project uses an iterative approach. The it-

erative approach gave us the flexibility to demonstrate the prototype to the product owner, get valuable

feedback, and be flexibly. The rest of the chapter is structured as follows. Subsection 8.1 presents the

work breakdown structure; Subsection 8.2 shows the project timeline; Subsection 0 describes the risks.

In this chapter, we report project management and planning of this project. First, we describe how we

managed the project. Second, we show the risk table with an explanation.

8.1 Work-Breakdown Structure (WBS)

In this section, the Work-Breakdown Structure of the project is discussed. The project is divided

into five major categories: planning and management, research, design & Implementation, validation,

and project closure. Figure 24 shows the detailed activities conducted in each category.

Figure 24 Work-breakdown structure

8.2 Project Planning and Scheduling

At the beginning of the project, there were some questions about the project requirements. We came up

with the initial plan to start the project and after each PSG meeting, we refined it until it was more

concrete.

A project timeline is created at the initial stage of the project, and it is updated to ensure that all activities

are on track. This timeline helps evaluate project progress and see the influence of one activity on others.

Microsoft Project is used to create the Gantt chart. Figure 25 shows a high-level overview of the activ-

ities involved and the estimated time allocated for each task. Project Initiation, Domain Analysis, Re-

search, Implementation, Validation, and Documentation are the five essential tasks.

Project

Planning and
Management

Project planing

Risk management

Domain analysis

Requirement
elicitation

Research

Research on the
existing tool

Research for
estimating cost/value

of rework

Design and
Implementaion

Implmentation of
collecting data

Implementation of
visualizing diagram

Validation and
varification

Unit test

Integration test

Project Closure

Documentation

Presentation

Eindhoven University of Technology

32

Figure 25 Project timeline

8.3 Project Risk Analysis

The risk management process starts by identifying an initial set of risks at the beginning of the project.

Each identified risk was assigned a severity and probability score. During the execution of the project,

the initial set of risks was updated by adding newly identified risks and adjusting previously identified

ones when they became obsolete. This section discusses the identified risks, their impact, and the miti-

gation plan. Table 5 Project risks present the list of the risks.

Table 5 Project risks

Risk
Id

Description Impact Effect Mitigation Plan

1 Requirement change or
adding extra features
and tools

High Documentation and op-
eration phase will have
limited time.

• Make the SMART re-

quirements with iden-

tifiers and priorities

• Frequently review the

requirements

Eindhoven University of Technology

33

2 Miscommunication with
Stakeholders

High Misunderstanding of the
project goals that result
in a delayed and ineffi-
cient
development process

• Frequent communica-
tion with Stakeholders

• Confirm important de-
cisions with stakehold-
ers

3 High priority require-
ments cannot be satis-
fied

High Might result in an incom-
plete solution

• Raise the issue as early
as possible, discuss
with stakeholder for a
possible workaround

• Manage the stakehold-
ers' expectations

4 Lack of domain
knowledge

Me-
dium

Change in deliverables,
delay in the project com-
pletion

• Pre-study and taking
Online courses

• Trying to build a net-
work of experts to ask
for help

5 Selecting improper ma-
trix/method that cannot
satisfy the requirements

High Slow down development • Conducting compre-
hensive research and
feasibility study

• Keeping stakeholders
in an early feedback
loop with a regular
demo on achievements
or challenges

6 Main Stakeholders' ill-
ness (such as
COVID)

Me-
dium

Depending on the role,
could lead to the project
delay for a different pe-
riod

• Try to find some alter-
natives for asking ques-
tions and help

• Taking necessary
measures stated by the
government

7 Data need to predict

cost is not available

High Might result in an incom-

plete solution

• Try to make relation
between data to gen-
erate new data

• Keep stakeholders up-
dated about data insuf-
ficiency

8 Limited data available to

predict technical debts

High Might depict partial re-

sult

• Keep stakeholders up-
dated

8.4 Communication

Establishing a clear and regular communication channel is essential to avoid misunderstandings and

promote early input to monitor and manage the project's progress and direction. Most of the meetings

held during the project's execution fell into one of three categories: weekly update meetings, monthly

update meetings, and other meetings called on-demand meetings.

Eindhoven University of Technology

34

8.4.1. Weekly update meetings

The weekly update meetings were set up at the start of the project every week. The EngD trainee con-

ducted a separate meeting with ASML supervisors and the TU/e supervisor. These meetings aimed to

demonstrate incremental and minor updates about the project’s progress to the major stakeholders.

These updates included the tasks completed in the previous week, any blocking issues, and plans for

the upcoming week. Weekly meetings ensured that the project was on track and allowed to spot any

misunderstanding as early as possible.

8.4.2. Project steering group meetings

Project Steering Group (PSG) meetings were held every month with ASML and TU/e supervisors. The

primary purpose of these meetings was to encourage feedback from the stakeholders. Typically, these

meetings started with a demonstration where the trainee explained the significant updates implemented

since the previous PSG meeting. A high-level plan for the coming month was also discussed towards

the end of these meetings.

8.4.3. On-demand meetings

In addition to the regular weekly and monthly meetings, several other meetings were held during the

project. Although these meetings were not periodic and were mainly scheduled as needed, they played

an essential role in communicating with key stakeholders and understanding the project context.

Eindhoven University of Technology

35

9. Conclusions

This chapter focuses on the project's findings, elaborating on the achieved results and adding value to

the stakeholders. It also covers the recommendations for future work.

9.1 Results

This section describes the result achieved based on the requirements listed in Chapter 4. The project's

main goal is to develop a tool that will visualize the architectural debt in tabular and graphical formats.

To meet the project's purpose, we developed MoVACA for the TWINSCAN software developers and

architects that will visualize the refactoring target of a system.

 MoVACA requires detailed information about the time dimension and change history data of the

TWINSCAN software to detect architectural debt. Therefore, we invested most of the development time

interacting with ClearCase and the release portal to get the change history for the files in the system.

To visualize architectural debt of different scopes, we chose four metrics-hotspot, change coupling,

complexity trends, and hotspot diagram based on the available data. MoVACA clearly shows how the

source code changes for a specific period. It should help the architects and developers of TWINSCAN

software to get the overall view to make a better design decision.

This report shows that the prototype of the tool meets all the must-have and could-have requirements

except PR-5 and PR-9 from the requirements listed in Chapter 4. However, the should-have product

requirements are left for future work. We tested the main use cases and verified the code quality using

the ASML Python coding standard.

We divided the architecture of the tool into components. The tool is designed in a way that it can be

extended to add a metric. All the source code, test cases, and documentation are stored in the Git repos-

itory to allow easy project delivery.

9.2 Recommendations and Future Work

During the development of the project, we identified future possibilities, improvements, and features

that were not implemented due to the time limit. The ideas for the recommendations and future works

are listed below.

9.2.1. Future Work

• The MoVACA tool calculates the complexity trends at file levels. But the complexity trends

at the function level can reveal more insights into trends. Information related to the lines of

code of a function and the commit number will reveal more about a trend. The function level

change history can be tracked using cyclometric complexity.

• TWINSCAN uses the TIOBE TICS tool for accessing code quality. The developed tool can

be integrated with the TICS tool to get more insights at the code and architecture levels.

• MoVACA doesn’t track the renaming of scopes. It retrieves source code metadata from the

latest recommended baseline. All the files are migrated to the destination scope when a scope

is changed. Hence, we cannot get previous metadata of the source code. The renaming of

scopes can be tracked to get the change history of files.

Eindhoven University of Technology

36

9.2.2. Recommendation

• Many research works [9], [2] suggest using social data to rank the refactoring of a system.

The issue tracking system can obtain the development effort for each module. It will provide a

complete picture of the module in terms of cost and effort. It is recommended for ASML to

manage issue tracker data in a way that it can extract for future analysis.

• MoVACA extracts metadata of source code from ClearCase. However, ClearCase does not

provide an easy way to extract source code metadata. Hence it is recommended that ASML

adopt a better VCS policy to capture more detailed meta-data systematically to see how their

software evolves.

Eindhoven University of Technology

37

10. Project Retrospective

This chapter concludes the report with a reflection on the project from the author’s perspective.

10.1 Introduction

My ten-month journey was challenging, but it was also full of opportunities to learn from domain ex-

perts. With this project, I experienced a new domain and a number of challenges. These challenges

provided numerous opportunities to improve my personal and professional skills.

The first challenge was to understand the domain and context of the problem. I spent the first three

months on domain study and finding ASML-compliant computation platforms and technology through

different trainings. Thus, I have gathered sufficient experience in the relevant technologies quickly.

Another challenge was to select the type of code analysis for the project. At the beginning of the project,

it was not clear how to achieve the goal. To know the refactoring target, which data is needed, and

whether it is possible to get the data. Hence, I went through several kinds of literature and a book to

make a clear decision [2].

One of the most challenging parts was to define the requirements because I needed to examine a legacy

source code of existing software to understand the improvement points. I implemented the hotspot met-

ric to determine the available data and develop the requirements. In the beginning, the requirements

were vague. I refined more concrete requirements with the suggestions and feedback from the supervi-

sors and domain experts.

Furthermore, the project was heavily dependent on version control data. Most of the data related to the

project reside in ClearCase. I didn’t have prior knowledge about ClearCase. I had to dedicate a substan-

tial amount of time finding a way of retrieving data from ClearCase.

Throughout the design and implementation phase, I applied design patterns to make an extensible and

maintainable solution. Therefore, the design was changed iteratively then; accordingly, implementation

also incrementally improved.

In this project, I have gained valuable experience in process management. The project was a personal

project, so I was the project designer and the project manager. I have gained a lot of experience in

organizational skills such as planning the project, creating the communication plan, managing risk, and

taking initiatives.

However, there are a few things I could have done better. Documenting source code from the beginning

of the implementation is one of the lessons that I learned. From the beginning of the implementation, I

wasn’t concerned about making my code comply with the PyLint coding standard and adding unit tests,

even if it was related to managing the process of my project. Hence, it was more work for me to docu-

ment the source code at the end.

I have gained a lot of experience managing projects and balancing the workload. Overall, I have had a

challenging and beneficial experience with this project.

Eindhoven University of Technology

39

Glossary

EngD Engineering Doctorate

MoVACA Modularity Values Cost Analysis

TICS Code quality measurements tool

UML Unified Modeling Languages

LOC Line of Code

GUI Graphical User Interface

JSON JavaScript Object Notation

KPI Key Performance Indicator

TU/e Eindhoven University of Technology

PSG Project Steering Group

Eindhoven University of Technology

41

Bibliography

[1] W. Cunningham, "The WyCash portfolio management system.," ACM SIGPLAN OOPS

Messenger, 4(2), 29-30., 1992.

[2] A. Tornhill, Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis.

Pragmatic Bookshelf, 2018.

[3] "ASML history," [Online]. Available: https://www.asml.com/en/company/about-asml/history..

[Accessed 20 07 2022].

[4] "ASML products," [Online]. Available: https://www.asml.com/en/products.. [Accessed 20 07

2022].

[5] "Tiobe TICS Viewer," [Online]. Available: https://tics-scanner.asml.com/tiobeweb/TICS/.

[6] A. V. J. &. K. T. Nugroho, An empirical model of technical debt and interest, ACM, 2011.

[7] W. v. Houtum, "Software modularity Past-Future," [Online]. Available:

https://asml.sharepoint.com/:p:/r/sites/SMART-

program/_layouts/15/Doc.aspx?sourcedoc=%7B901846A2-431B-4A7D-97D9-

0BC237257802%7D&file=Software%20modularity%20Past%20-

%20Future.pptx&wdLOR=c71317051-6D0C-46A0-B181-

5338B8AC5330&action=edit&mobileredirect=true.

[8] B. Schoenmakers, "Modularity Index - ASML Technology Wiki," ASML, [Online]. Available:

https://techwiki.asml.com/index.php/Modularity_Index.

[9] R. C. Y. M. R. F. Q. X. L. H. S. .. &. S. A. Kazman, A case study in locating the architectural

roots of technical debt, IEEE/ACM 37th IEEE International Conference on Software Engineering

(Vol. 2, pp. 179-188). IEEE., 2015.

[10] "Systems and Software Engineering: Systems and Software Quality Requirements and Evaluation

(SQuaRE): System and Software Quality Models. ISO.," in International Organization for

Standardization, & Technical Committee ISO/IEC JTC 1, Information technology. Subcommittee

SC 7, Software and systems engineering, 2011.

[11] C. Y. C. K. B. &. C. K. B. Baldwin, „Design rules: The power of modularity (Vol. 1). MIT press.,”

2000.

[12] Y. e. a. DAJSUREN, "Simulink models are also software: Modularity assessment.," In:

Proceedings of the 9th international ACM Sigsoft conference on Quality of software

architectures., 2013.

[13] B. Schoenmakers, "PSA Modularity Index-D000466131-01," [Online]. Available: https://tc-

eu.asml.com:3000/#/com.siemens.splm.clientfx.tcui.xrt.showObject?uid=1IoxTIbsQS4FxA.

[14] "Tiobe TICS," [Online]. Available: https://www.tiobe.com/tics/tics-framework/. [Accessed 20 07

2022].

[15] W. v. Houtum, "PSA SMART Modularity Roadmap-D001185115-01," [Online]. Available:

https://tc-eu.asml.com:3000/#/downloadFile?uid=3mwJw46pQS4FxA. [Accessed 20 09 2022].

[16] A. Alliance, "Introduction to the Technical Debt Concept," [Online]. Available:

https://www.agilealliance.org/introduction-to-the-technical-debt-concept. [Accessed 16 09

2022].

[17] A. Tornhill, "Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis.

Pragmatic Bookshelf.," p. 19, 2018.

[18] A. Tornhill, "Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis.,"

Pragmatic Bookshelf, 2018, p. 25.

[19] A. Tornhill, "Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis.

Pragmatic Bookshelf.," p. 35, 2018.

Eindhoven University of Technology

42

[20] A. Tornhill, "Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis.

Pragmatic Bookshelf.," p. 196, 2018.

[21] Agile Business Consortium, 2022. [Online]. Available:

https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation..

[22] "ISO/IEC 25010," [Online]. Available: https://iso25000.com/index.php/en/iso-25000-

standards/iso-25010. [Accessed 22 09 2022].

[23] P. B. Kruchten, The 4+ 1 view model of architecture, IEEE software 12.6, 1995.

[24] "Flask Web Development," [Online]. Available: https://flask.palletsprojects.com/en/2.2.x/.

[Accessed 22 09 2022].

[25] "SQLite," [Online]. Available: https://www.sqlite.org/index.html. [Accessed 22 09 2022].

[26] "Data-Driven Documents," [Online]. Available: https://d3js.org/. [Accessed 22 09 2022].

[27] "Modular Applications with Blueprints," [Online]. Available:

https://flask.palletsprojects.com/en/1.1.x/blueprints/. [Accessed 19 09 2022].

[28] P. Hamill, Unit test frameworks: tools for high-quality software development., O'Reilly Media,

Inc., 2004.

[29] "Unit testing framework," [Online]. Available: https://docs.python.org/3/library/unittest.html.

[30] M. Bostock, "Zoomable Circle Packing," [Online]. Available:

https://observablehq.com/@d3/zoomable-circle-packing.

[31] S. De Mascia, "Project psychology: using psychological models and techniques to create a

successful project. Routledge," 2016.

[32] "System and software quality models. Standard, International Organization for Standardization,"

Systems and software engineering Systems and software Quality Requirements and Evaluation

(SQuaRE), 2011.

[33] R. G. D. H. S. &. K. M. A. Benkoczi, "A design structure matrix approach for measuring co-

change-modularity of software products," in 15th International Conference on Mining Software

Repositories (MSR), 2018.

[34] H. J. M. &. K. J. Gall, "CVS release history data for detecting logical couplings," in In Sixth

International Workshop on Principles of Software Evolution.Proceedings., 2003.

[35] R. L. O. I. S. R. S. &. K. R. J. Nord, "Architectural dependency analysis to understand rework

costs for safety-critical systems.," in In Companion Proceedings of the 36th International

Conference on Software Engineering, 2014.

[36] R. S. N. R. L. &. O. I. Sangwan, "Architectural Dependency Analysis: Addressing the Elephant

in the Room.," Computer, 54(3), pp. 73-78., 2021.

Eindhoven University of Technology

43

A. Stakeholder Analysis

Stakeholder analysis helps to understand the concerns and requirements of the main stakeholders in the

project [31]. This chapter illustrates the detailed interests and involvements of the stakeholders in the

project. The ASML and the Eindhoven University of Technology are the parties involved, and each of

them has specific interests in the project. The following section identifies the stakeholders and presents

each party in detail.

A.1 Stakeholder Identification

A stakeholder matrix identifies the project stakeholders and determines the activities required to match

their interests with their goals. Power and interest are the two central variables of the matrix. This matrix

organizes stakeholders into a 2x2 grid based on their power, interest, and level of involvement in the

project. The stakeholder matrix for this project is shown in Figure 26.

Figure 26 Stakeholder analysis matrix

A.2 Stakeholder Interests

This section describes the identified stakeholders' interests and involvement. Based on the expertise and

interest, the involvement level of the stakeholders is different. ASML is the owner and initiator of the

project. This project's outcome may provide additional value to the company. The stakeholder interest

represents the source of knowledge, requirements, and expectations for this work.

Eindhoven University of Technology

44

Table 6 Main stakeholders’ interest and involvement

Name Role Interest Involvement

Tom Verhoeff TU/e Supervisor • Monitor the project progress and

provide feedback.

• Guide the trainee with technical

and non-technical skills through-

out the project.

• Ensure quality of the graduation

report.

• Evaluate the final deliverables

• Weekly meetings

and monthly PSG

meetings through-

out the project du-

ration

Remko Van

der Vossen

ASML Supervi-

sor
• Evaluate the progress and pro-

vide feedback.

• Provide information regarding

the needs and requirements of

the project.

• Ensure quality of the project re-

sult

• Evaluate the final deliverables

• Weekly meetings

and monthly PSG

meetings through-

out the project du-

ration

William Van

Houtam

Project Manager • Support the project by providing

the necessary information on the

ASML domain

• Evaluate the progress and pro-

vide feedback

• Evaluate the final deliverables

• Weekly meetings

and monthly PSG

meetings through-

out the project du-

ration

Lamisha Raw-

shan

EngD Software

Technology

Trainee

• Successful and timely comple-

tion of the EngD graduation pro-

ject

• Design and develop a system

that fulfills customer require-

ments

• Gather experience in software

design, architecture, communica-

tion, and project management

• Throughout the

project

The Engineering Doctorate (EngD) in Software Technology is conducted and assessed by the Eindho-

ven University of Technology as an educational program. Table 1 shows the interest and involvement

of the main stakeholders of the project. The additional stakeholders’ interests are listed in Table 2.

Table 7 Additional stakeholders’ interest and involvement

Name Role Interest

Yanja Dajsuren EngD ST Pro-

gram director
• Quality of the project result

• Successful graduation of the trainee

Henk Kant Group Leader • Ensure successful collaboration with TU/e

• Provide necessary access required for the project

All architects of the

TWINSCAN soft-

ware

Software

Architect

Team

• Evaluate and use the project result

Eindhoven University of Technology

45

B. TWINSCAN Software FCs Dependencies

The essential dependencies between the FCs are divided based on two modes of operation. The modes

are production and CPD. The essential FC dependencies for the production are shown in Figure 27. The

essential FC dependencies for the CPD are shown in Figure 27.

Figure 27 Essential FC dependencies of production

Eindhoven University of Technology

46

About the Author

Lamisha Rawshan received her Bachelor’s and Master's degrees in

Software Engineering from University of Dhaka, Bangladesh in 2014

and 2016, respectively. Her Master’s thesis was titled "Time-Waved

Monitoring and Emergent Self Adaption of Software Components in

Open Source Cloud". In this project, she worked on cloud monitoring

problem and proposed a self-adaptation solution for open source cloud.

After graduation, she worked as a lecturer at Daffodil International

University, Bangladesh for four years. She published research papers

on cloud computing during this period. Her interests are in Software

Architecture & System Design, Cloud Computing and Data Science.

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	Value/Cost Analysis of Modularity Improvements
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 ASML
	1.2 TWINSCAN
	1.3 Project Context
	1.4 Report Organization

	2. Domain Analysis
	2.1 TWINSCAN Software Organization
	2.2 Dependencies in TWINSCAN
	2.3 Modularity in TWINSCAN
	2.4 Modularity Assessment Tool

	3. Problem Analysis
	3.1 Project Scope and Goal
	3.2 Modularity Cost Analysis
	3.2.1. Hotspot
	3.2.2. Complexity Trends
	3.2.3. Change Coupling
	3.2.4. Hotspot Rank

	4. Requirements Elicitation
	4.1 Introduction
	4.2 Use Case
	4.3 MoSCoW
	4.3.1. Project Requirements
	4.3.2. Product Requirement

	5. System Architecture and Design
	5.1 High-Level Architecture
	5.2 The 4+1 View Model of Architecture
	5.3 Logical View
	5.4 Process View
	5.5 Development View
	5.6 Deployment View

	6. Implementation
	6.1 Overview
	6.2 Technology Choice
	6.3 Modularity Cost Analysis Tool

	7. Verification & Validation
	7.1 Validation
	7.2 Verification
	7.2.1. Unit test
	7.2.2. Code coverage
	7.2.3. Coding convention

	8. Project Management
	8.1 Work-Breakdown Structure (WBS)
	8.2 Project Planning and Scheduling
	8.3 Project Risk Analysis
	8.4 Communication
	8.4.1. Weekly update meetings
	8.4.2. Project steering group meetings
	8.4.3. On-demand meetings

	9. Conclusions
	9.1 Results
	9.2 Recommendations and Future Work
	9.2.1. Future Work
	9.2.2. Recommendation

	10. Project Retrospective
	10.1 Introduction

	Glossary
	Bibliography
	A. Stakeholder Analysis
	A.1 Stakeholder Identification
	A.2 Stakeholder Interests

	B. TWINSCAN Software FCs Dependencies
	About the Author

