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1. INTRODUCTION 

The skin is the largest organ of the human 

body and performs essential biological 

functions such as protection, regulation, and 

sensation. It protects from UV rays and 

harnesses nutrients from the sun while also 

receiving its heat. The outer layer of the skin, 

shown in Figure 1.1, is called the epidermis 

and, together with skin hair and lesions, is the 

focus of this dissertation. Since the epidermis 

is the external part of the body, we can easily 

collect data such as photos and scans from it 

by means of external devices such as 

cameras and scanners. This raw skin data can 

then be analyzed by looking at the local 

distribution of skin artefacts to deduce 

information and relationships that can guide 

the decision-making process and facilitate the 

work of, for example, a dermatologist. On the 

other hand, skin data can be used to 

parametrize the global geometry and texture of the skin surface. Parametrization and 

analysis can enable other downstream applications such as body part surface 

estimation, body size and shape estimation, and animation of virtual characters. 

Historically, these applications were often driven by human labor and expertise, for 

instance, body measures taken by a tailor for custom garments or doctors inspecting 

a suspicious skin lesion. Nowadays, the advancement in Artificial Intelligence and 

Computer Vision enables telemedicine applications where human observations are 

complemented and enhanced by technologies such as deep Artificial neural 

networks (ANNs) – a digital learning system inspired by the way biological neurons 

function and communicate. Convolutional neural networks (CNNs) – a popular 

version of ANNs for processing images – were first introduced in 1989 by Yan LeCun 

to recognize handwritten digits collected from the U.S. postal service [1]. In 2012, 

CNNs reached human and super-human performance in various vision tasks [2] 

such as classifying and detecting objects in natural images. Recently, in 2019, CNNs 

reached dermatologists’ performance in classifying images of suspicious skin lesions 

[3]. Similarly, the rise of modern 3D scanning technologies allowed the accurate 

acquisition of the skin surface over the complete human body used to build high 

resolution data-driven models of the human body and face outer shape [4], [5]. 

Thanks to these new advances it is now possible to automate and enrich the 

collection, analysis, and parametrization of the skin reducing the need for repetitive 

and tedious human work while enabling new technologies. This can potentially 

improve millions of people’s lives by impacting various industries including the 

medical and personal care ones.  

 
Figure 1.1. Example of the human skin. It is 
composed of three layers called epidermis, 
dermis, and hypodermis. Skin artefacts like 
hair and lesions are often visible by naked 
human eye in the epidermis.     
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Consider applications such as shaver trimming the complex beard style, a surgical 

arm performing a skin cut or a photo epilation device removing skin hairs on a body 

part. In the above examples, the smart functioning of the device requires its 

localization while displacing it over body parts and skin spots. When addressing the 

skin localization, one can first consider global body shape parameters, while the 

features classification and recognition would be carried on by models operating 

mostly on local skin texture. A common framework to describe this problem is the 

Simultaneous Localization and Mapping (SLAM) of a device navigating an unseen 

environment [6]. This typical scenario involves a robot that, deployed in a new 

environment, needs to figure out his relative position with respect to the map which 

also needs to be constructed by him while exploring the environment (hence called 

simultaneous). While not directly covered in this work, we consider of interests SLAM 

since it is a natural way to combine the different scales and tasks. Similarly, shape 

and texture can be combined in the same model to analyze how particular skin 

artefacts, like skin lesions, evolve by mapping, localizing, and retrieving them [7]. 

However, SLAM applications are only an ideal end goal. The current research 

presented in this work focuses more on downstream applications, such as detecting 

local skin features like hair and lesions or global analysis of skin surface areas and 

body measurements. In the following section, we introduce the relevant background 

and challenges in computer vision applied to the skin. 

1.1. BACKGROUND AND CHALLENGES 

The localization of a device operating on top of the skin mentioned in the previous 

section is one major motivation underlying the need to capture multiscale skin 

variations – skin data (signals, photos, scans, …) under various settings (light 

variations, perspective distortions, resolution, …). This skin data is used to explore 

the recent developments in deep learning and shape modeling to advance the 

analysis and parametrization of the outer body skin. Figure 1.2 maps the main areas 

touched by this work by applying computer vision tasks (right) to skin shape and 

 
Figure 1.2 presents the concepts explored in this work of research, mapping the computer vision research 
field to the parametrization and analysis of the skin. From left to center, the skin is analyzed and 
parametrized as local texture when considering relatively small 2D skin patched, or global shape, when 
considering the appearance and distribution of a whole 3D body part. From right to center, the computer 
vision is divided into possible tasks, which are mapped and applied to the relative skin surface or patch. 
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texture (left). The main computer vision tasks considered are counting, classification, 

generation and measurements. We applied counting, classification and generation 

to local skin patches presenting skin hairs and skin lesions. The underlying data are 

images when referring to local skin patches without incorporating the skin surface’s 

geometry and shape. Instead, we consider methods for estimating measurements 

and generative models on the shape and global geometry of the face and full body.  

In the following sections, we introduce the four primary computer vision archetypal 

tasks: measurements, counting, classification, and generation. 

While presenting the tasks, we highlight some common challenges in applying the 

computer vision tasks to the skin domain. Skin images statistics and distribution are 

different from natural images. Their textures offer challenges with the 3D structure 

which reflect light in many directions causing difficulties in various areas of computer 

vision: it is more challenging for a camera to auto-focus or for an AI algorithm to 

collect skin features. An example of skin patches collected from the left hand of the 

author is shown in Figure 1.3: skin appearance varies significantly by collecting 

images of the same patch in different dates, locations, or camera orientations. The 

patches show some parts of the images that are out of focus where one can see hair 

blurred is some versions of the patch. Similarly, the light conditions affect the skin 

color, and the perspective distortions affect the scale of the skin features of the skin 

patch. In the following sections, we will introduce all computer vision tasks using the 

same elements and blocks presented in Figure 1.2. We will start with the global skin 

shape and its measurements and then local skin patches analysis using the 

counting, classification, and generation tasks. 

MEASUREMENTS 

In several applications it is often required to estimate and 

parametrize skin surfaces. For example, this is motivated by the 

fact that collecting body shapes and size measurements is often 

a complex task and prone to errors. It is challenging to define a 

proper set of instructions to follow by a person trying to measure 

body size accurately. While it can be easy to collect a person’s 

height with accuracy already, other measurements like the torso 

circumference could present obstacles – what is the torso, and 

 
Figure 1.3. Sample skin patch from the author left hand in different locations and dates. 
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what anatomical reference can we use to define the height of the circumference? 

What if we want to measure more complex areas such as the calf area to estimate 

the total number of skin hair or the dosage of a particular local anesthetic?  

One possible solution lies in inferring complex sizes from easy ones by building a 

statistical model. One can, for example, regress the torso circumference from age, 

weight, and height input variables. Wang et al. [8] find the optimal formula to regress 

Body Surface Area from weight and height. However, such simple models are 

difficult to generalize to the surface areas of particular body parts or “shape 

measurements”, when a specific (medical) product is interfacing with the body and 

therefore the product shape should be complementary to the body shape. Shape 

modeling is a methodology aimed at converting a group of similar instances into a 

common representation to have a better way of computing shape statistics and 

understanding the variability and characteristic of the instances – which, in this case, 

are 3D heads and bodies. A general procedure consists of first collecting a raw 

representation of the instances. The raw representation can be an image, a 3D scan 

or any other signal representing the instance shape and position in space. Then, a 

single template mesh geometry is used to represent and register the raw scans 

reaching a more manageable and common representation. The raw signal may 

contain artifacts or missing data such as spikes and holes or other imperfections 

which are not native to the instances but are usually caused by the acquisition 

method, obstructions or poses as shown in the top row of Figure 1.4. A linear space 

of bodies’ shapes is obtained by registration of a common template mesh to all 

subjects such that each template vertex is registered to a specific location on the 

body therefore creating a meaningful correspondence across all subjects. We can 

now, for example, apply a pattern of colors in the template and propagate it instantly 

to all instances – an example is shown in Figure 1.5 where a three colored texture 

pattern is propagated from the template on the left to the three scans on the right. 

Next, a relevant path to follow is to encode all vertex positions of registered template 

in a few parameters by reducing the dimensionality of the linear space using 

techniques like Principal Component Analysis. With the parameters, we will then be 

able to control meaningful measurements like height and circumference of the body. 

 
Figure 1.4 shows in the top row present 3 raw scans 
acquired with a 3D scanner. The bottom row shows 
a common template mesh registered to the raw 
scans.  

 
Figure 1.5. Example of the template mesh with a 
texture pattern on the left. On the right, three 
registered scans with the texture propagated from 
the template. 



5 

 

The are many challenges in modeling the distribution of shapes representing the 

same instance, e.g., skin shape of a human. When the input class shape is complex 

the challenges rank up exponentially. Similarly, for our own case of human’s skin 

surface areas’ measurements, body regions like hands and finger, nostrils, or ears 

require particular care. Another important aspect of consideration is the difficulty in 

acquiring high resolution data. Acquiring complex and large shapes may be costly 

and not always possible, imagine the case of a patient lying in bed. Hence a common 

research issue is to build proper datasets or make use of the power of skin statistical 

shape modelling without the need to collect expensive 3D scans. Another related 

complexity is the naturally soft and flexible tissue which deform and bend – different 

body poses result in different body shapes for the same subject identity. It is often 

the case that one wants a measurement that is not dependent on body pose. 

Similarly, another relevant task is identifying a subject no matter the body pose and 

its tissue deformation.  

COUNTING 

The main objective of the counting task is to estimate the total 

number of an instance or object template in an image. Various 

real-world applications require robust automated counting 

schemes: estimating the number of people in crowds for 

surveillance and safety reasons [9], counting cells in a skin 

patches or biopsies for supporting medical diagnosis and 

detecting animals in their natural habitat for wildlife preservation [10].  

Note that contrary to the measurements task or the generation task, in the counting 

task one does not need to model the full instance of the template, but it might be 

enough to recognize a single discriminating feature. In fact, counting requires 

mapping an input image to the number of instances, and this can be done without 

learning the full ranges or distributions of the instances. When designing a people’s 

counter scheme, one may build an algorithm that recognizes only one identifying 

feature (for example the face proportions or a body part detector) while not 

understanding what a “person” in the whole means. This can result in a perfect 

people counter while not being able to recognize the full body but only a body part. 

Similarly, a classifier can discriminate people versus animals just by looking at their 

limps’ geometry. 

Counting is often coupled with other features detection algorithms: in crowd 

estimation, for example, often shape models are used as a building block for the 

detection and tracking of bodies. In the past, general algorithms have been 

implemented to detect any object instance robustly when presented in different 

orientation or resolution. They learn to recognize unique features at different scales 

like the seminal Scale Invariant Feature Transform [11], [12]. 

However, the instances’ appearance can hide many challenges: they can be partially 

hidden or confused in the background, intersect other instances, present complex 

color variations depending on the environment or, by nature, be represented by a 

multitude of colors. For example, it might not always be easy to spot whether two or 

many bodies intersect making the feature detection prone to errors and counting task 
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challenging. In our work, we count 

instances of skin hair that, while 

intuitively simple to detect since low-

degree splines can approximate them, 

they present challenges due to their lack 

of distinct and unique features. Even 

when the skin patch picture presents 

good settings, like in the example of 

Figure 1.6. where there are little 

variations in light conditions and 

perspective distortions, distinguishing 

and counting hair in crowded skin 

patches is complex for humans as well 

for traditional computer vision 

approaches.  

CLASSIFICATION 

In computer vision, classification has the objective of producing a 

label representing the belonging of an object to a group, class, or 

label. A classifier is a function that maps an object to a label. For 

example, a melanoma classifier will produce a score representing 

the probability of a melanoma’s presence in the skin image or an 

email spam detector will produce a (binary) label categorizing the 

email into spam or inbox. Usually, classification tasks in computer vision are driven 

by a dataset in which we have images coupled with ground truth labels. The labels 

are used to steer the AI algorithm by tweaking its parameters according to the known 

label. A common algorithm in neural networks to update the parameters is the 

backpropagation, also called backprop [13]. 

The classification is non-binary when multiple classes are possible. An example 

presented in this thesis is the International Skin Imaging Collaboration (ISIC) 

Classification Challenge Dataset [14]. The input images contain a skin lesion as the 

main subject and a label representing the associated diagnosis, as presented in 

Figure 1.7. Classic classification datasets usually address common objects in natural 

images. Medical and personal care datasets of images often present additional 

hurdles. A major one is the lack of big data sets, since collecting samples from 

patients is more difficult than natural images that can be for example downloaded 

from social networks or the web. In fact, data connected to the skin might be personal 

 
Figure 1.7. Examples of skin lesions and their labels from the ISIC 2020 challenge. From left to rights 
examples of lesions and their ground truth labels. 

 
Figure 1.6. Example of a crowded skin patch where 
it is hard to discriminate and count hair despite the 
good light conditions and the absence of perspective 
distortion. 
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or connected to health sensitive data. The pictures might present unique identifying 

features like tattoos or birthmarks while 3D faces are by nature connected to the 

subject’s identity. Another related hurdle is the underrepresentation or unbalances 

of the dataset: diseases or lesions are often underrepresented due to their low 

prevalence or importance in the healthcare community, or, due to biases such as 

skin color.  

A possible solution to the imbalance of the dataset could be to enrich the former with 

realistic augmentations or to create synthetic samples for the classification task. 

However, it is crucial to understand which augmentations are possible and whether 

the presence of noise in the image reduces the performance of the classifier. 

Classification algorithms are also important for other computer vision tasks. For 

example, in the generation task presented in the following section, a classification 

algorithm may be crucial to benchmark its performances in the generation of 

synthetic instances. 

GENERATION 

Generative models are used for various exciting applications 

including super-resolution [15], neural style transfer [16], audio-

video facial synthesis [17], and text to speech synthesis [18]. The 

common aim is to generate novel data that are also statistically 

indistinguishable from the original input dataset to mimic. It is 

usually more challenging than counting and classification also 

from an intuitive human perspective as introduced in the previous 

section on counting. In fact, it is not enough or interesting if the 

synthesis replicates the input data since the novelty and 

usefulness are missing. Hence a requirement is that generated 

samples are “sufficiently” different from the originals. The opposite 

also must hold that the new sample, while different from originals, must also belong 

to the same instance class. This, being difficult to define also heuristically, makes it 

always challenging to measure appropriately with a quantitative measure. Several 

research works have been proposing and analyzing different metrics for generative 

models on images and 3D data while not yet producing a definitive and stable one. 

In 2015 an analysis of several metrics is presented in Theis et al. [19], outlaying the 

need to evaluate generative models on the intended downstream applications. For 

example, when creating novel skin lesions to augment a dataset used for 

classification, one might want to evaluate the classifier performance using the 

synthetic data (e.g., in the application the data was created for) rather than 

evaluating the new data quality itself directly. These new ideas are captured in the 

Classification Accuracy Score metric presented in Suman et al. [20], which aimed at 

improving common and popular generative metrics such as the Inception Score [21] 

or Fréchet Inception Distance [22]. 

Particular attention must be taken in preprocessing the data and selecting the 

appropriate generative when considering the skin domain. Apart from the similar 

challenges presented in counting and classification here, the problem is usually 

amplified by the nature of the complex task. For example, while counting under 
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different lighting conditions may be difficult, the generation may fail without first 

normalizing the different conditions.  

1.2. RESEARCH QUESTIONS AND CONTRIBUTIONS 

In this work, we consider the use of 3D human body and face shape models to 

enable and enhance skin measurement applications. Skin shape modeling is 

relevant for several fields such as healthcare, cognitive science [23], [24], online 

shopping [25], [26], clothing [27] and virtual reality [28], [29]. For example in 

healthcare, the knowledge of 3D body shape measurements can help in the 

assessment of the Psoriasis Area and Severity Index (PASI) [30], dosing 

chemotherapy according to the Body Surface Area (BSA) [31] or estimating a burned 

body part [32]. However, many applications of such technology lack precision in 

estimation [33]–[35] and accurate body shape prediction would help the dosage of a 

particular drug. The prediction of (less accurate) 3D models from anthropometric 

measurements – body measures which are easy to collect and not invasive like age, 

gender, waist circumference, height etc. – can be considered as a lower cost 

alternative to full body 3D scanning and processing involving the recognition and 

processing of different body parts. 

One of the obstacles in the efficient processing of full body 3D models is the high 

volume of data. The cost and volume of the data required can be drastically reduced 

by learning a statistical representation of the human shape space. Only sparse data, 

combined with the learned space, are needed to reconstruct a full body scan instead 

of a dense representation. Hence the first research question we considered is 

How accurately can one estimate skin shape                               
from anthropometric measurements? 

and our contribution to define a methodology to systematically answer such 

questions for any body part. The foundation for our research is the seminal work of 

A. Blanz and Vetter [4]. They defined how to learn a statistical shape space of the 

face and then used measurements and semantic descriptors to modify the face 

appearance. Successively, Allan et al. [5], replicated the work for full bodies. Many 

other works improved such models by increasing the number of parameters in the 

model, including dynamic models and learning soft tissue deformation. We follow 

current state-of-the-art to build two parametric models for a full body and 3D heads 

considering a dataset containing more than 4000 high-resolution scans from various 

nationalities [36], [37]. Then we construct predictive statistical models to retrieve 

estimations of skin surfaces given a set of anthropometric measurements. The 

lowest full body surface estimation reaches 13mm when the input are 12 standard 

measurements including age, gender, height and weight and face shape. 

As the main application, we used this methodology to estimate the number of laser 

flashes when epilating with a Laser Hair Removal (LHR) device (see Figure 1.8) 

which depends on the surface area of a body part. The LHR technological base has 
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been built by Anderson and Parrish’s principle 

of selective photo thermolysis [38], [39]. In [40], 

Grossman et al., were the first to use it for 

photo-epilation and, since its approval in the 

Food and Drug Administration (FDA), has been 

growing its popularity due to its safe, fast and 

effective use for hair removal [41], [42]. 

Body hair is one of the main features of the 

skin. Their function is to facilitate heat 

regulation and protection against rash, but 

nowadays, people are much more interested in 

removing them for beauty reasons. Many commercial solutions to the hair removal 

problem are available. However, the use of LHR is not restricted to qualified 

personnel, e.g., a dermatologist, and anyone can benefit from it in the comfort of a 

private home. Our goal is to make hair removal devices, like shavers or LHR, more 

efficient by automating and enhancing them with smart algorithms. The effectiveness 

of the LHR device needs to be proven for many reasons such as the FDA approval 

of new model versions, getting market shares or improving an older model. Classical 

experimental variables range from device settings like light temperature, device 

orientation, type of device heads to subject conditions like skin color, skin area 

surface and user engagement. A primary evaluation metric common to many 

different experiments, is the number of hairs removed by the device. The hair 

counting is usually done by visual inspection and visual hair count, which is a long 

and tedious manual work. Hence, we narrow down the research question:  

Can a computer vision based automatic hair counter               
replace the human annotator? 

Deep learning is state-of-the-art for object counting in various applications such as 

agriculture [43]; microbiology [44], [45]; security [46], [47]; and wild life conservation 

[48]. Concerning healthcare object counting is fundamental in microbiology when 

considering the count of total number of cells [44], [45]. However, most of the 

previous literature on hair count does not rely on machine learning [49] [50], [51] [52] 

and, while being good in a controlled image acquisition environment, they suffer from 

different light conditions, perspective distortions and a slight change in the acquiring 

device implies the need for re-tuning the numerous parameters of the computer 

vision algorithm.  

Hence, our analysis focuses on counting hair in an end-to-end fashion to streamline 

and reduce the costs of the numerous studies carried on the personal care device 

since it is motivated by the lack of fully automated systems to count skin hair. The 

contribution of our work is as follows: we collected a dataset of skin patches, 

including more than 4000 images from more than 100 volunteers; propose to adopt 

a deep learning based automated hair counting algorithm, and; we investigate 

several deep learning architectures to perform end-to-end hair counting. Finally, we 

show that the adaptation of a segmentation network outperforms other architectures 

and shows the emergence of a segmentation behavior by only regressing the total 

 
Figure 1.8. Laser Hair Removal Process 
from left to right. The hair bulb is burnt with 
light emitted from the personal care device. 



10 

 

hair count. Our best end-to-end network can count skin hair with relatively low error 

of ~6 hair out of the ~55 in the images, hence, the expert human annotator is still to 

be preferred. Nevertheless, the automatic method is sufficient for the automatic 

evaluation of the LHR. 

Building on top of the learned knowledge in the skin hair domain, we consider how 

the presence of skin hair may affect the diagnosis of skin lesions. There are various 

lesion types, and many recent research efforts try to collect huge datasets and 

classify them with Deep Learning. Comprehensive microscopic databases include 

around 30 thousand samples, limiting the richness of patterns that can be presented 

to machine learning. An example is the International Skin Imaging Collaboration 

(ISIC) challenge where the number of images submitted to the participants has 

increased steadily over the past 5 years. Their goal is to reduce mortality for skin 

cancer, see Figure 1.9, since it affects more than three million people only in the US. 

Usually, the screening and diagnosis of melanomas are primarily carried by clinical 

visual inspection and biopsy if necessary. However, there is an urge to deploy such 

results in the real-world scale to automate and facilitate this procedure with image-

based screening [53] to lessen the burden of Dermatologists and satisfy the unmet 

request for screening of younger population. In fact, the prevalence of this type of 

cancer in the population is the highest compared to other types. To support an early 

diagnosis, effective and computationally efficient models can be deployed on 

smartphone devices to enable a first level of patient-driven screening. In this setting, 

the models have to deal with much less controlled conditions than in a laboratory 

environment. One objective is to understand and provide suggestion on whether to 

shave or not prior to acquiring skin pictures. Hence, we investigate the effect that a 

varying amount of skin hair have on the classification accuracy of deep learning 

classifiers and define the following research question: 

Does and how hair affect skin lesion diagnosis in deep learning 
classifiers? 

Our contribution is twofold: we first present an approach for the segmentation of hairs 

in existing skin image patches and second, we analyze how the segmented hair 

 
Figure 1.9. Example of Melanoma evolution over time from left to right. Early diagnosis is important at 
early stages to prevent the spread of it to other regions of the body and provide the right and timely 
treatment options 
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influence deep learning skin lesion classifiers. The segmentation approach gives us 

realistic hair patterns that test for the robustness of skin lesions classifiers. Our 

second contribution is a set of image augmentation strategies, based on our first 

contribution, that form a testing pipeline for the robustness of skin lesions classifiers 

on skin hair presence. The results show that the presence of hair in skin images has 

little effect on the prediction of skin lesions.  Quantitatively, the trained neural network 

with and without hair presence reached the same accuracy when classifying skin 

cancer versus nevi. 

One clear challenge to achieve great prediction accuracy for the research is the lack 

of big data since collecting real samples is time-consuming and difficult, for example 

considering rare diseases. Another challenge is the fairness of the AI systems 

concerning underrepresented populations. Hence, we address the following 

connected research question 

Can we model the distribution of skin lesion images and generate 
realistic looking synthetic examples with deep learning? 

Another prominent area of deep learning research investigates the use of generative 

models. In the past years, we witnessed fast and significant improvement of 

generative models. The growth in popularity is related to the visually appealing 

results and the continually increasing computational power commonly available. The 

state-of-the-art models are called Generative Adversarial Networks (GANs) [54], and 

they rely on two competing architectures, one generating images starting from noise, 

the other trying to distinguish synthetic from real samples. The synthetic samples are 

difficult to spot compared to the original data even from a careful human inspector 

[55]. Recently, a different approach has proven similar results to GANs on image 

generation tasks. This approach use an autoencoder Vector Quantized Variational 

Autoencoder (VQ-VAE-2) [56] in combination with an autoregressive model called 

PixelSNAIL [57]. Key advantages of this approach are the explainability of the 

features and the potential for integrating advanced augmentation techniques.  

Our contribution is to apply this novel approach in the field of skin lesions generation 

to augment and increase the number of images in the lesions’ datasets. This offers 

benefits like the possibility to directly modify a certain local part of an input lesion 

without affecting its global structure. The quantitative results are promising but still 

show that the synthetic data is not good enough to improve on downstream tasks 

like classifying the diagnosis of a skin lesion. 

We have considered various powerful Deep learning Models to analyze and 

synthetize skin texture. However, returning to our starting point, we are also 

interested in the synthetic full 3D skin. In fact, one major research challenge is the 

lack of high-resolution datasets of 3D scans due to the cost of acquisition and the 

lack of freely available big databases. Therefore, we wonder how to generate 3D 

realistic scans. The current state-of-the-art offers various directions to tackle such 

complex problems. Traditionally the generation of random 3D meshes is achieved 

by sampling using PCA decomposition. In fact, it is sufficient to sample the PCA 

scores as independent random variables assuming the orthogonality of the PCA 
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basis vectors. While the PCA analysis assumes that the marginal coefficient 

distributions are close to Gaussian, it is more reasonable to follow a data-driven 

approach and sample from the empirical distributions of each coefficient. While this 

approach is easy to implement and fast not all combinations of PCA scores result in 

a natural human shape. Hence, we tackle the following research question 

Can we generate realistic 3D skin shape                                         
exploiting the power of deep generative models? 

Modern approaches rely on generative methods which could work with original high-

dimensional vertex data. The current state-of-the-art advances in the field of 

geometric deep learning [58] try to use the power of CNNs by adapting them to work 

on meshes [59], [60]. Graph convolutions, however, restrict the resolution, and 

therefore, the accuracy of the 3D template.  

Another prominent research direction is the idea of storing the 3D information into a 

2D regular representation. One common definition of such idea uses UV maps, and 

provides bijective mapping from the 3D mesh triangles to their images on the texture 

image. For example, the UV maps for the face model can be created by warping of 

the 3D templates with a regular grid of the facial surface, see for example Booth et 

al. [61] for a list of possible optimal implementations. The body unwrapping is more 

complex and often requires tailored solution including multiple mappings for different 

body parts. 

In our work, we borrow this alternative approach. We first consider a simpler case of 

the human facial surface using a 3D template with a CNN-friendly mesh and then a 

general case of the complete human body that cannot be naturally unwrapped into 

a 2D. Once we have 2D representations of 3D template, we can apply CNNs to 

generate new 3D shapes. We then rely on the same technique used for skin lesion 

generation applied to address the previous research question. Our main 

contributions are: (i) a new non-bijective way of creating the 2D representation of 3D 

template by using multi-view projections, and (ii) the generation of realistic high-

resolution 3D scans by reducing the problem to 2D representations. Moreover, we 

demonstrate that our approach outperforms PCA-based sampling via quantitative 

and qualitative analysis of the synthetic scans by demonstrating that the synthetic 

scans are closer to the empirical distributions of the real test scans. 

1.3. THESIS OUTLINE 

In summary, the dissertation applies and innovate computer vision algorithms to 

parametrize global skin shape and local skin texture. It is organized as follows: 

• In Chapter 2 we build 3D parametric body models and infer surface areas 

given anthropometric measurements like arm length, waist circumference, 

or age. The statistical models show that we can infer large surfaces (e.g., 

upper body one) with less than 1cm error with relatively few measurements. 

• As shown in Chapter 3, artificial neural networks are used to automatically 

count skin hair in tiny skin patches. While the count is not optimal – human 
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annotator is still to be preferred – the average error of 6 skin hair is sufficient 

for many applications. 

• In the following Chapter 4, we investigate how skin hair influences the 

prediction of skin lesions diagnosis made by deep learning classifiers. We 

show that epilation prior to image acquisition is unnecessary since hair 

presence does not hamper lesion classification performances.  

• Then, in Chapter 5, we exploit recent advances in generative models using 

variational autoencoders to model the distribution of skin lesion images and 

generate synthetic ones. 

• In Chapter 6 and 7, we move back to 3D shapes by merging the two 

computer vision field to reach high resolution, deep generative shape 

models, for faces and bodies. 

• Finally, in Chapter 8 we discuss future research directions and conclude the 

body of the dissertation by elaborating on the results achieved. 

1.4. RESEARCH OUTPUT 

Our research led to the following publications: 

1. Gallucci, A., Znamenskiy, D. & Petkovic, M. Prediction of 3D Body Parts 

from Face Shape and Anthropometric Measurements. J. Image Graph. 8, 

(2020). 

2. Gallucci, A., Znamenskiy, D., Pezzotti, N. & Petkovic, M. Hair counting with 

deep learning. in 2020 International Conference on Biomedical Innovations 

and Applications (BIA) 5–9 (2020). 

3. Gallucci, A., Znamenskiy, D., Pezzotti, N. & Petkovic, M. Don’t Tear Your 

Hair Out: Analysis of the Impact of Skin Hair on the Diagnosis of Microscopic 

Skin Lesions. in Artificial Intelligence for Healthcare Applications. Lecture 

Notes in Computer Science Series (LNCS) (2021). 

4. Gallucci, A., Pezzotti, N., Znamenskiy, D. & Petkovic, M. A latent space 

exploration for microscopic skin lesion augmentations with VQ-VAE-2 and 

PixelSNAIL. in SPIE Medical Imaging Proceedings (2021). 

5. Gallucci, A., Znamenskiy, D., Pezzotti, N. & Petkovic, M. Generating High-

Resolution 3D Faces Using VQ-VAE-2 with PixelSNAIL Networks. in 

International Conference on Image Analysis and Processing 228–239 

(2022).  

6. Gallucci, A., Znamenskiy, D., Long, Y., Pezzotti, N. & Petkovic, M. 

Generating high-resolution 3D faces and bodies using VQ-VAE-2 with 

PixelSNAIL networks on 2D representations. Journal of MDPI Sensors  

Special Issue on Computer Vision in Human Analysis: From Face and Body 

to Clothes (currently under submission). 

 

Other publications not directly presented in the current work are: 

1. Valev, H., Gallucci, A., Leufkens, T., Westerink, J. & Sas, C. Applying 

Delaunay Triangulation Augmentation for Deep Learning Facial Expression 

Generation and Recognition. in Pattern Recognition. ICPR International 
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Workshops and Challenges 730–740 (Springer International Publishing, 

2021). 

2. Zicari, R. V et al. Co-Design of a Trustworthy AI System in Healthcare: Deep 

Learning Based Skin Lesion Classifier. Front. Hum. Dyn. 3, 40 (2021). 

3. Zicari, R. V et al. On Assessing Trustworthy AI in Healthcare. Machine 

Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency 

Calls. Front. Hum. Dyn. 3, 30 (2021). 

4. Zicari, R. V et al. How to Assess Trustworthy AI in Practice. (2022) 

doi:10.48550/ARXIV.2206.09887. 

5. Allahabadi, H. et al. Assessing Trustworthy AI in times of COVID-19. Deep 

Learning for predicting a multi-regional score conveying the degree of lung 

compromise in COVID-19 patients. IEEE Trans. Technol. Soc. (2022). 

 

Another patent application not directly presented in the current work is: 

1. Znamenskiy, D., Heinrich, A., Gallucci, A., Ciuhu, C., Zeitouny, M., 

Kooijman, G.. Estimating A Surface Area And/or Volume Of A Body Or A 

Body Part Of A Subject (Issue WO 2020/234339 A1; Issue EP 3742397 A1). 
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2. SKIN PARAMETRIZATION AND PREDICTION  

“When we are no longer able to change a situation,  

we are challenged to change ourselves.” 

― Viktor E. Frankl, Man's Search for Meaning 

 

While 3D body models have been vastly studied in the last decade, acquiring 

accurate models from the sparse information about the subject and few 

computational resources is still a main open challenge. In this chapter, we propose 

a methodology for finding the most relevant anthropometric measurements and 

facial shape features for the prediction of the shape of an arbitrary segmented body 

part. For the evaluation, we selected 12 features that are easy to obtain or measure 

including age, gender, weight and height; and augmented them with shape 

parameters extracted from 3D facial scans. For each subset of features, with and 

without facial parameters, we predicted the shape of 5 segmented body parts using 

linear and non-linear regression models. The results show that the modeling 

approach is effective and giving sub cm reconstruction accuracy. Moreover, adding 

face shape features always significantly improves the prediction. 

This chapter is based on the paper Prediction of 3D Body Parts from Face Shape 

and Anthropometric Measurements authored jointly with Dmitry Znamenskiy, and 

Milan Petkovic, which was published in Journal of Image and Graphics in September 

2020. 
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2.1. INTRODUCTION 

The use of 3D human body shape has the potential of changing the way we interact 

with the world in a wide variety of ways. Applications of this technology have been 

proved helpful in several fields such as healthcare, cognitive science [23], [24], 

online shopping [25], [26],clothing [27] and virtual reality [28], [29]. For example, in 

the healthcare domain, the knowledge of 3D body shape can help in the assessment 

of the Psoriasis Area and Severity Index (PASI) [30], dosing chemotherapy 

according to the Body Surface Area (BSA) [31] or estimating a burned body part [32]. 

 
Figure 2.1. Facial shape features and measurements computed from the registered body meshes: height, 
upper body height, leg and arm length, the perimeters for waist, hips, arm, leg quadriceps and neck.  
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All this application lack precision in estimation [33]–[35] and accurate body shape 

prediction would help the dosage of a particular drug. The prediction of (a less 

accurate) 3D models from available metadata and body measurements can be 

considered as a lower cost alternative to full body 3D scanning and processing 

involving the recognition and processing of different body parts. Note that different 

practical applications can require 3D shapes and measurements with different 

precisions.  Moreover, the obtaining of less accurate 3D body models computed from 

the available measurements can be used as a pre-processing tool for accurate 

registration of 3D models to raw scans. 

One of the obstacles in the efficient processing of full body 3D models is the high 

volume of data. Cost and volume of the data required can be drastically reduced by 

learning a statistical representation of the human shape space, as described in [62], 

[63]. Only sparse data, combined with the learned space, are needed to reconstruct 

a full body scan instead of a dense representation. In the next section, we give an 

overview considering the prior art which relates and predicts the representation of 

the 3D body in the shape applications can require the prediction of 3D body shape 

using the least possible number of metadata and low-cost body measurements. 

Thus, in this chapter, we address the following points we consider novel: first, we 

evaluate the predictive power of different combinations of features and study how 

the error drops when their number increases. Second, we consider facial 3D scan 

as a lower-cost and less-obtrusive alternative to a full body 3D scan. We analyze the 

improvement of the body shape prediction when the metadata and the 

measurements are augmented with features extracted from the facial 3D scans. 

Third, we apply the above analysis to body parts, which can be arbitrarily segmented 

on the body. 

In our analysis, we considered 12 features that can be relatively easily and reliably 

collected from a subject: gender, age, weight, and nine measurements shown in 

Figure 2.1 (most of the figures were generated using MeshLab [64]). Note that we 

have considered these features as an example, and others can be taken into account 

depending on the application and the data available. We apply our methodology for 

the prediction of five example body shapes, shown as segmentation masks in Figure 

2.2. We selected those five due to possible applications in healthcare and personal 

care. For each body part, we assessed how well it can be predicted given each 

possible subset of the measurements. For each subset of features, we considered 

how much the prediction accuracy improves when adding to the feature set the 

features describing the facial geometry, i.e. coefficients in the facial shape space 

introduced in [4]. 

The rest of the chapter is organized as follows. Section 2.2 introduce the literature 

related to body shape analysis and modeling. Subsequently, in Section 2.3, we 

describe our approach: the registration of the database's population adopting a 

common template model, the encoding into a parametric shape space using 

Principal Component Analysis (PCA) and the prediction model used to link face and 

body shapes. In the last part of the section, we introduce the error measure used for 

the evaluation of the prediction. The results, presented in Section 2.4, demonstrate 
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that face shape has a positive correlation with different body parts including hips, 

waist, breast and legs. In the conclusion section, we summarize our view on the 3D 

body shape prediction from sparse meta-data and the face, and we elaborate on 

future applications and directions of our work. 

2.2. RELATED WORK 

Many works have created models that correlate a body statistical shape space to 

other features, descriptors or meta-information but none of them define a strategy to 

find the optimal features and none include in the prediction another shape space (in 

our case the face).  

Blanz and Vetter [4] defined how to learn a statistical shape space of the face and 

then used measurements and semantic descriptors to modify the face appearance. 

In [62], [63], Allen et al. were the first to employ the paradigm explained by [4] on 3D 

body scans. The authors paved the way for the application of this new method in 

exploring and studying human shape space. They first registered 250 scans, from 

dataset [36], solving an optimization problem that minimizes sparse markers' 

distance, vertices' distance and smoothness of the transformation. Then they 

learned a linear function mapping anthropometric measurements to the shape 

coefficient. In [65], [66], Seo et al. defined a model that can be modified or generated 

using only anthropometric measurements. They used radial basis interpolation to 

reconstruct the relationship between sizing parameters to shape space. Hasler et al. 

[67] includes in the registration phase the high level semantic parameters  allowing 

the generation of realistic body meshes. Wuhrer and Shu [68] generated realist body 

shape fitting anthropometric measurements using non-linear optimization. Tsoli et 

al. [69] built a model to predict measurements from 3D scans. More recently in [70], 

[71], Hill et al. defined a linguistic space using common body words like fat, rounded 

or skinny. They first used Amazon Mechanical Turk to link descriptors and body 

shape by rating photographs. Streuber et al. [72] similarly used crowdsourcing to 

 
Figure 2.2. The body parts, also called segmentation masks, with segmented area highlighted in black. 
We refer to them as a) full body mask without arms, b) waistband, c) hips band, d) legs mask and e) 
breasts mask. The fraction of the segmented vertices with respect to the whole body are 0.78, 0.05, 0.08, 
0.26, 0.02 respectively. 



19 

 

define verbal descriptors and to demonstrate that they are sufficient for retrieving a 

realistic 3D scans. While previous works find a relationship between body 

measurements/characteristics and body shapes, they do not define a strategy to find 

the optimal subset of them for a specific body part. Moreover, they do not use facial 

features and/or another shape space as predictor.  

Other works explored the correlation between face shape and textures to body 

parameters: Windhager et al. [73] linked facial features of young Caucasian females 

to body fat proportion using geometric morphometrics. Similarly, Mayer et al. [74] 

retrieved high-resolution face images and registered them using geometric 

morphometric. However, their experiments do not use the parametric modeling of 

the human body shape but they predicted a positive correlation between body mass 

index and waist-to-hip ratio with facial shape and texture. A similar approach to our 

work is presented in [75] where the authors model the difference between real and 

virtual measurements and fit a more advanced model with kinematic skeleton. 

However, they use a linear model for the mapping between features and body shape 

relying on very specific and not very accurate body measurements. They used VR 

controllers for collection adding the weight, probably because is a very strong 

predictor. Moreover, they selected the features based on their acquisition accuracy 

rather than their predictive power as presented in our work.  

Multiple techniques are available to retrieve a 3d representation of a person from 

different sources (images, depth cameras, sparse markers, silhouettes, etc…). For 

example, Balan et al. [76] reconstructed the parametric shape model [77] using 

multiple images while more recent works [78]–[81]  leverages only a single image 

and convolutional neural networks.  

2.3. METHOD 

We developed two parametric models, following the method explained in [4], [62], 

one for the body and one for the face shape. The face model was derived using more 

than 3000 3D scans, including the Size China Dataset [82]1. The parametric body 

model was derived using more than 4000 full body scans standing in a frontal tree 

position as shown in Figure 2.3a. The scans were taken mainly from the CAESAR 

dataset [36]. 

In the following subsections, we describe the registration of the template meshes 

into 3D scans, the encoding of the registered models into the selected parameters. 

Then, we introduce the non-linear prediction model used to find the best subset of 

features for each segmented body part and, finally, the error measure used to 

evaluate the experiments. 

 

 

1All other scans were collected at Philips 
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REGISTRATION 

In order to register every face and full body mesh, we employed state-of-the-art non-

rigid registration techniques [83]–[85]. We used a template mesh with about 𝑁𝑃 ≈
 53000 vertices for the body, see Figure 2.3a, and another template mesh with about 

𝑁𝑄 ≈  23000 vertices for the face, see Figure 2.3b. Both template models were then 

used to register the full body scans dataset. We assessed the quality of the 

registration via visual inspection and other measures outlined in the survey [83]. For 

about 𝑁 ≈  3750 full body scans both registrations have shown low fit error (below 

0.5mm Root Mean Squared Error (RMSE), as surfaces distance, for the registration 

of the facial mesh and below 1.0mm RMSE for the full body). 

Registration led to the following representation of each participant as the two 

morphed template meshes. Let 𝑣𝑖,𝑗 ∈ ℝ3be the full body morphed coordinates of 

vertex 𝑗 ∈ 𝑁𝑃 at participant 𝑖 ∈ 𝑁. Furthermore, we can write the morphed 

coordinates of all vertices of scan 𝑖 ∈ 𝑁 as a single flattened vector, stacking all 

vertices' coordinates together, as 

 𝒑𝑖
𝑟 = (𝒗𝑖,1

𝑟 , 𝒗𝑖,2
𝑟 , … , 𝒗𝑖,𝑁𝑃

𝑟 ) ∈ ℝ3𝑁𝑃 , (1) 

and collecting all participants into a rectangular matrix we have  

 𝑃𝑟 = (𝒑1
𝑟; 𝒑2

𝑟; … ; 𝒑𝑁
𝑟 )′ ∈ ℝ𝑁×3𝑁𝑃 (2) 

 
Figure 2.3. (a) Body template mesh standing in tree position and containing 𝑁𝑃 ≈ 53000 vertices. (b) Face 
template mesh containing 𝑁𝑄 ≈ 23000 vertices. 
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In the same manner the definition of the face representation is  

𝑄𝑟 = (𝒒1
𝑟; 𝒒2

𝑟; … ; 𝒒𝑁
𝑟 )′ ∈ ℝ𝑁×3𝑁𝑄 . 

PARAMETRIC SPACES 

The registered meshes were parametrized with Principal Component Analysis (PCA) 

transformation, using 200 eigenvectors for the body and 180 eigenvectors for the 

face. The PCA transformation can be written in matrix form as  

 𝑃𝑟 = 𝑃̅𝑟 + 𝑌𝐷′ + 𝐸𝑟 (3) 

where 𝑃̅𝑟 ∈ ℝ𝑁×3𝑁𝑃 is the matrix of 𝑁 times repeated average mesh coordinates  

 𝒑̅ = (𝑝̅1𝑥
, 𝑝̅1𝑦

, … , 𝑝̅𝑁𝑃𝑧
 ) ∈ ℝ3𝑁 , 

     𝑝̅𝑗𝑥
=

∑ 𝑃𝑟(𝑖, 𝑗𝑥)𝑖

𝑁𝑃

, 
(4) 

𝐷 ∈ ℝ3𝑁𝑃×200 is the reduced eigenvectors matrix, composed of the 200 `principal` 

eigenvectors (i.e. eigenvectors with highest eigenvalues) of the covariance matrix 
(𝑃𝑟 − 𝑃̅𝑟)′(𝑃𝑟 − 𝑃̅𝑟), 𝑌 ∈ ℝ𝑁×200 is the reduced matrix of PCA coefficients, and 𝐸𝑟 ∈
ℝ3𝑁𝑃 is the residual error, i.e.  

 𝑃𝑟 ≈ 𝑃 = 𝑃𝑟̅ + 𝑌𝐷′ (5) 

The transformation (5) gives a compact representation of 53000×3-dimensional 

vectors of vertex coordinates 𝑃𝑟 with the 200-dimensional PCA coefficient vectors 𝑌. 

In the same way, we apply the PCA transformation to the registered facial meshes: 

 𝑄𝑟 ≈ 𝑄 = 𝑄𝑟
̅̅ ̅ + 𝑋𝑄𝐷𝑄

′  (6) 

where 𝑄̅𝑟 ∈ ℝ𝑁×3𝑁𝑄 is the matrix of 𝑁 times repeated average mesh coordinates, 

𝐷𝑄consists of the 180 `principal` eigenvectors of the covariance matrix 
(𝑄𝑟 − 𝑄̅𝑟)′(𝑄𝑟 − 𝑄̅𝑟), and 𝑋𝑄 ∈ ℝ𝑁×200 are the facial PCA coefficients. The results of 

the encoding for both models is shown in Figure 2.4. The residual error between 𝑃𝑟 

and 𝑃, computed using equation (14) and explained in Section Fitness Measures, is 

less than 2.5 mm. Similarly, the residual error for the face is less than 0.3 mm. 

PREDICTION MODEL 

In this section, we describe how the body shape coefficients 𝑌 are predicted using 

the subject's features, denoted as 𝑋𝐹 ∈ ℝ𝑁×(𝑁𝐹+1), (where `+1` corresponds to free 

term in the regression model) and the face shape space 𝑋𝑄. As subject features, we 

have considered reported weight, age, gender, and body measurements extracted 

from the registered meshes such as body height, arm length, waist circumference. 

This set was augmented by including their interactions up to 𝑑 = 3-rd degree. Thus, 
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considering in total 𝑁𝐹 personal features, the expanded set corresponds to the terms 

of the polynomial with degree 𝑑 build from them. This holds for all features except 

the ones with lower interactions allowed, like gender. In the following, we denote the 

augmented set of features by 𝑋𝐺 ∈ ℝ𝑁×(𝑁𝐺+1), where the reader can derive the 

general formula for 𝑁𝐺 using basic combinatorial techniques [86] as 

 𝑁𝐺 = (
𝑁𝐹 + 𝑑

𝑑
) − 1 (7) 

which, in the case when the (binary) gender feature is included, becomes 

 𝑁𝐺 = (
𝑁𝐹 + 𝑑

𝑑
) − 1 − (𝑁𝐹 + 1) (8) 

Equations (7)(8) are given for completeness but are not needed to understand the 

rest of the chapter or run algorithms which can simply count the combinations. To 

facilitate the notation, we include the constant term in both 𝑋𝐹 and 𝑋𝐺, but it is not 

counted in 𝑁𝐹 and 𝑁𝐺 . 

Then, we performed multi-linear regression for the body coefficients 𝑌  

 𝑌 = 𝑋𝐵 + 𝜀 (9) 

with four settings of the independent variable 𝑋, with and without interactions and 

with and without face coefficients: 

 (𝑎)     𝑋 = 𝑋𝐹 ∈ ℝ𝑁×(𝑁𝐹+1) 

(𝑏)     𝑋 = 𝑋𝐺 ∈ ℝ𝑁×(𝑁𝐺+1) 

(𝑐)     𝑋 = [𝑋𝐹 , 𝑋𝑄] ∈ ℝ𝑁×(𝑁𝐹+1+𝑁𝑄) 

(𝑑)     𝑋 = [𝑋𝐺 , 𝑋𝑄] ∈ ℝ𝑁×(𝑁𝐺+1+𝑁𝑄) 

(10) 

Next, we evaluated the predictions of specific body parts, using the segmentation 

masks shown in Figure 2.2. The arms were excluded from the segmentation masks 

 

   (a) Body shape coefficients   (b) Face shape coefficients 

Figure 2.4. The significance of the encoding, i.e., the standard deviation of the PCA coefficients for the 
body (a) and for the face (b). The decision to use 200 principal components for the body and 180 for the 
face was a heuristic decision seeking a compromise between the requirements to represent all shape 
spaces adequately and to not encode noise. The standard deviation of the last PCA body shape 
component is 0.18mm and for the face it is 0.025mm. 
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deliberately since subjects had visible variability in the arm positions and for lack of 

a pose model. To improve the prediction for each body part, instead of solving the 

basic regression (9), we solved the weighted versions as shown below. Let 𝐼𝑚 ∈
ℝ3𝑁𝑃×3𝑁𝑃 be the diagonal matrix of mask 𝑚, where 𝐼𝑚(𝑗, 𝑗) = 1 if and only if the vertex 

is part of the segmentation mask. Recall 𝑃 = 𝑃𝑟̅ + 𝑌𝐷′ (equation (5) and note that for 

each body part 𝑚 we want to have 𝐼𝑚𝑃 accurately predicted. Then, assuming the 

regression model 𝑌 = 𝑋𝐵, we get 

 𝑃𝑟̅𝐼𝑚 + 𝑌𝐷′𝐼𝑚 = 𝑃𝑟̅𝐼𝑚 + 𝑋𝐵𝐷′𝐼𝑚 + 𝜀𝐷′𝐼𝑚 

𝑌𝐷′𝐼𝑚 = 𝑋𝐵𝐷′𝐼𝑚 + 𝜀𝐷′𝐼𝑚 

𝑌𝐷′𝐼𝑚𝐷 = 𝑋𝐵𝐷′𝐼𝑚𝐷 + 𝜀𝐷′𝐼𝑚𝐷 

𝑌Σ𝑚 = 𝑋𝐵Σ𝑚 + 𝜀Σ𝑚 

(11) 

where Σ𝑚 = 𝐷′𝐼𝑚𝐷 ∈ ℝ200×200. The least mean square estimate of 𝐵 in the above 

equation is  

 𝐵̂𝑚 = ((𝑋′𝑋)−1𝑋′𝑌Σ𝑚)Σ𝑚
−1 (12) 

for each mask 𝑚. 

FITNESS MEASURES 

For each model and mask, we performed a leave-one-out cross validation on the 𝑁 

participants. In other words, the estimation of 𝐵̂ has been carried out every time, 

leaving out the participant to predict. Once computed the predicted body coefficients 

𝑌̂ we need to convert back, decode, using the PCA transformation (5) to reach the 

predicted vertices 𝑃̂ as 

 𝑃̂ = 𝑃̅𝑟 + 𝑌̂𝐷′ = 𝑃̅𝑟 + 𝑋𝐵̂𝐷′ (13) 

To evaluate the prediction, we first aligned the predicted 𝑃̂(𝑖, : ) to the original 

coordinates ∀𝑖 ∈ [1, 𝑁]with weighted Procrustes [87], and then we computed the 

vertex-wise RMSE over all participants for each vertex 𝑣𝑖𝑗 versus its predicted 

position 𝑣̂𝑖𝑗 

 

𝐸𝑗 = √
1

𝑁
∑‖𝒗̂𝑖,𝑗 − 𝒗𝑖,𝑗‖

2

2
𝑁

𝑖=1

 (14) 

Since comparing the distribution of the vertices errors on the surface is beyond the 

scope of the research, as a final measure of fitness for the masks, we used the mean 

absolute error for all vertices: 

 
𝐸 =

1

𝑁𝑃

∑ |𝐸𝑗|

𝑁𝑃

𝑗=1

 (15) 

Unlike other works, which used mainly point-to-surface distance, the above error 

measure also penalizes misplacement of the body part points on the surface and 

therefore can be considered more accurate. 
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2.4. RESULTS  

We evaluated 2 groups of 

features, listed in Table 

2.1, with 12 features in 

total. The first group is 

composed of reported 

gender, age and weight 

(without clothes), all 

acquired in [11].  The 

second group includes 

parametric 

measurements that were 

computed from the 

registered body meshes: 

the height computed as 

head to floor; upper body 

height as head to the 

highest touchable point of 

the pelvis; arm length as the distance between acromion (shoulder) to the distal end 

of the middle finger; leg length from crotch to floor; the perimeters for waist as the 

midpoint between the lower margin of the last palpable rib and the top of the iliac 

crest; hips circumference it is performed at the most prominent point, on the major 

trochanters, and at the level of the maximum relief of the gluteal muscles; arm 

circumference taken from 

the midpoint of the total 

length of the arm, between 

acromion and olecranon; leg 

quadriceps circumference 

taken from the midpoint of 

the total length of the thigh; 

neck circumference taken 

from the midpoint of the total 

length of the neck. The 

covariance matrix of all the 

features is presented in 

Table 2.2. 

We assessed the importance 

of each feature by 

performing a search over all 

possible combinations of the 

set 𝑋𝐹 resulting in 212 =
4096 possible subset of 

features. We consider the 

empty subset as the error 

compared to the average of 

Table 2.1. Features’ definition where CQ stands for CAESAR 
Questionnaire and PM for Parametric Measurement 

Name Type Mean Source 

Gender Male[1] or Female[2] 1.53 ± 0.5 CQ 

Age Years 38.00 ± 12.59 CQ 

Weight Kg 74.56 ± 18.09 CQ 

Height Y-length [mm] 1701.38 ± 100.78 PM 

Waist Circumference [mm] 889.83 ± 150.45 PM 

Arm Circumference [mm] 306.00 ± 43.45 PM 

Hip Circumference [mm] 1037.99 ± 106.07 PM 

Leg Circumference [mm] 614.94 ± 67.91 PM 

Neck Circumference [mm] 364.09 ± 43.33 PM 

Leg Y-distance [mm] 764.41 ± 55.67 PM 

Arm distance [mm] 557.64 ± 40.59 PM 

Upper Body Y-distance [mm] 750.72 ± 42.90 PM 

 

Table 2.2. Features’ correlation matrix 
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the population. For each subset, we compared four different feature 

designs 𝑋𝐹 , 𝑋𝐺 , [𝑋𝐹 , 𝑋𝑄], [𝑋𝐺 , 𝑋𝑄]. The maximum number of features reached by 

models without the face is 𝑁𝐺 minus all combinations of the gender. In our example, 

the maximum number of features is 𝑁𝐹 = 12 and all combinations of gender from 

second order are 𝑁𝐹 + 1 hence using equation (8) we have that the maximum 

number of regressors, when using interactions is 𝑁𝐺 = 441. Considering instead the 

example with age, gender, weight and height, where 𝑁𝐹 = 4 we have 𝑁𝐺 = 29. In the 

following, we present the errors for the full body mask without arms and next the 

errors for all the remaining four body parts. 

FULL BODY MASK WITHOUT ARMS 

Table 2.3 shows for each cardinality of 𝑋𝐹 the best model for 𝑋 = 𝑋𝐺  and the error 

using the other three input matrices. The most accurate single feature is the height 

with 𝐸 = 20.89mm, because it is a major indicator of body size. The only feature that 

actually outperforms height is the body volume. However, we excluded it from the 

analysis since, it is a very uncommon measurement to be taken in a real-life 

scenario. Note that height alone is giving a smaller error than using weight and face 

shape combined. The best combination of two features is the height and the weight, 

resulting in 17.93mm residual error. The minimal error is achieved using all 12 

features, and it is 13.92mm for 𝑋𝐺 and 13.00mm for [𝑋𝐺 , 𝑋𝑄]. The average error 

reduction for those 12 best models is 1.33mm, and the average effect of adding the 

face coefficients 𝑋𝑄 is the drop of the error with 8.12%. We think that adding new 

measurements will only affect the error minimally because of the small variability of 

different subjects' pose. In fact, the pose cannot be predicted from the 

measurements, and we believe that the addition of pose normalization methods 

would result in lower errors. 

In order to evaluate the significance of adding the face shape, we considered the 

model with 𝑋 =  [𝑋𝑄 , 𝑋𝐺] where 𝑋𝐺 is augmented from 𝑋𝐹 = [age, gender, weight, 

height]. This model has an error of 15.91mm, which is better than the error of the 

model with 𝑁𝐹 = 4 best predictors without face. Hence the face shape can replace 

Table 2.3. Error 𝐸 for full body without arms using 𝑋𝐺 best features 

𝑁𝐹 𝑁𝐺 𝑋𝐹 [𝑋𝐹 , 𝑋𝑄] 𝑋𝐺 [𝑋𝐺 , 𝑋𝑄] Features 

0 0 36.70 ± 10.69 36.70 ± 10.69 36.70 ± 10.69 36.70 ±  10.69 Avg distance 

1 3 20.92 ± 5.36 17.46 ± 3.52 20.89 ±  5.35 17.45 ± 3.52 Height 

2 9 18.11 ± 3.20 16.29 ± 2.64 17.93 ±  3.14 16.21 ±  2.60 Weight, Height 

3 19 17.00 ± 3.20 15.28 ± 2.70 16.75 ±  3.13 15.15 ± 2.64 Weight, Height, LegL 

4 34 16.31 ± 2.80 14.95 ± 2.47 16.00 ±  2.69 14.73 ±  2.38 Height, WaistC, HipC, LegL 

5 55 15.91 ± 2.66 14.65 ± 2.35 15.56 ±  2.57 14.37±  2.28 Height, WaistC, HipC, LegL, UBodyH 

6 83 15.69 ± 2.67 14.51 ± 2.37 15.22 ±  2.55 14.13 ± 2.29 Height, WaistC, HipC, LegL, UBodyH, LegC 

7 119 15.56 ± 2.61 14.46 ± 2.34 15.02 ±  2.51 13.98 ±  2.25 Row 6 + Age 

8 164 15.50 ± 2.60 14.42 ± 2.34 14.80 ±  2.47 13.81 ± 2.23 Row 7 + Weight 

12 441 15.35 ± 2.54 14.32 ± 2.30 13.92 ± 2.28 13.00 ±  2.07 All 12 features 

4 29 17.41 ± 2.91 16.15 ± 2.65 17.11 ±  2.79 15.91 ± 2.54 Age, Gender, Weight, Height 
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detailed parametric measurements. Thus, for example, the face coefficients 

combined with age, gender and weight features give lower error than the prediction 

using waist, hip circumference and leg length features. In Figure 2.5 all possible 

subsets, excluding the empty one, visually demonstrate that the face has a 

significant positive contribution to the prediction. In fact, the average error drop, when 

extending 𝑋𝐺 to [𝑋𝐺 , 𝑋𝑄], is 0.98mm or 9.72%. On opposite, the more features are 

considered the bigger the effect of adding interactions between them adding of 

interactions, as one can see in the Table 2.4 to Table 2.7, when comparing columns 

𝑋𝐹 to 𝑋𝐺. 

ADDITIONAL FOUR MASKS  

An interesting observation is that, while height is coming first for the body, it is not 

the case for hips and waist band prediction, where weight gives a better accuracy 

among the single feature predictors. As expected, the circumferences are now 

playing a much more significant role in the specific masks compared to the full body 

mask. This is shown in Table 2.4 to Table 2.7. 

 
Figure 2.5. Full body mask with all 4095 models sorted according to the error of X = XG. The minimum 
error of 13mm is achieved using all 12 features plus the face coefficients. 
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For both the waist and hips masks, the best performing feature is the hip 

circumference, registering an error of 12.59mm and 11.70mm respectively. The 

lowest error reached using all features for the waist mask is 8.59mm whereas the 

hip mask achieved a minimum error of 8.00mm. For the breast mask, the best single 

feature is the waist circumference that reaches an error of 9.30mm, and as foreseen, 

gender plays an important role as well. For this mask the lowest error, achieved 

using all features, is 6.50mm. Finally, analyzing the error registered in the leg mask, 

it can be noticed that the leg length plays the most crucial role, reaching an error of 

13.94mm. It is followed by the leg circumference and the height. The minimum error 

achieved in this mask, using all the features, is 10.12mm. 

Overall, the face improves the most the hips band where the reduction for the best 

12 models is 10.45% (0.99mm). For the waist mask the average reduction is 9.71% 

(0.98mm) and for the full body, described in Section A, the drop is 8.12% (1.33mm). 

Finally, the reduction for the legs is 7.32% (0.84mm) and the face achieves the least 

Table 2.4. Error 𝐸 for waistband using 𝑋𝐺 best features 

𝑁𝐹 𝑁𝐺 𝑋𝐹 [𝑋𝐹 , 𝑋𝑄] 𝑋𝐺 [𝑋𝐺 , 𝑋𝑄] Features 

0 0 22.64 ± 3.66 22.64 ± 3.66 22.64 ± 3.66 22.64 ± 3.66 Avg distance 

1 3 12.68 ± 2.34 10.51 ± 1.53 12.59 ± 2.32 10.44 ± 1.51 HipC 

2 9 11.21 ± 1.08 9.59 ± 0.96 11.00 ± 1.05 9.47 ± 0.94 WaistC, HipC 

3 15 10.63 ± 1.20 9.48 ± 0.92 10.37 ± 1.19 9.29 ± 0.97 Gender, WaistC, HipC 

4 29 10.41 ± 1.11 9.38 ± 0.95 10.04 ± 1.08 9.11 ± 0.93 Gender, WaistC, HipC, LegC 

5 49 10.29 ± 1.08 9.29 ± 0.92 9.87 ± 1.06 8.96 ± 0.90 Gender, WaistC, HipC, LegC, UBodyH 

6 83 10.21 ± 1.08 9.20 ± 0.87 9.65 ± 0.98 8.78 ± 0.86 WaistC, HipC, LegC, UBodyH, Height, LegL 

Gender 7 119 10.06 ± 1.05 9.13 ± 0.89 9.44 ± 0.98 8.65 ± 0.85 Row 6 + Age 

8 155 10.00 ± 1.05 9.11 ± 0.88 9.25 ± 1.01 8.50 ± 0.87 Row 7 + Gender 

12 441 9.92 ± 1.02 9.05 ± 0.87 8.59 ± 0.94 7.93 ± 0.82 All 12 features 

4 29 12.06 ± 1.30 10.96 ± 1.13 11.54 ± 1.32 10.47 ± 1.14 Age, Gender, Weight, Height 

 

Table 2.5. Error 𝐸 for hips band using 𝑋𝐺 best features 

𝑁𝐹 𝑁𝐺 𝑋𝐹 [𝑋𝐹 , 𝑋𝑄] 𝑋𝐺 [𝑋𝐺 , 𝑋𝑄] Features 

0 0 20.42 ± 3.01 20.42 ± 3.01 20.42 ± 3.01 20.42 ± 3.01 Avg distance 

1 3 11.76 ± 2.67 9.59 ± 1.63 11.70 ± 2.66 9.51 ± 1.61 HipC 

2 9 10.76 ± 1.88 9.22 ± 1.52 10.58 ± 1.79 9.09 ± 1.47 HipC, NeckC 

3 19 10.29 ± 1.80 8.92 ± 1.46 9.94 ± 1.78 8.69 ± 1.40 WaistC, HipC, LegC 

4 29 9.88 ± 1.62 8.80 ± 1.42 9.48 ± 1.52 8.50 ± 1.34 Gender, WaistC, HipC, LegC 

5 55 9.70 ± 1.56 8.69 ± 1.37 9.25 ± 1.47 8.34 ± 1.29 Height, WaistC, HipC, LegC, LegL 

6 83 9.44 ± 1.47 8.50 ± 1.27 8.88 ±1.36 8.06 ± 1.20 Height, WaistC, HipC, LegC, LegL, UBodyH 

7 119 9.32 ± 1.44 8.44 ± 1.26 8.73 ± 1.34 7.95 ± 1.18 Row 6 + Age 

8 164 9.28 ± 1.44 8.42 ± 1.25 8.59 ± 1.31 7.85 ± 1.16 Row 7 + Weight 

12 441 9.19 ± 1.41 8.37 ± 1.24 8.00 ± 1.21 7.33 ± 1.09 All 12 features 

4 29 11.66 ± 1.55 10.59 ± 1.36 11.17 ± 1.52 10.12 ± 1.33 Age, Gender, Weight, Height 
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reduction in the breasts area with 7.14% (0.54mm). Thus, we can deduce that the 

face is more relevant in predicting hips and waists compared to the legs and breasts. 

2.5. DISCUSSION AND CONCLUSION 

In this chapter, we showed how to couple two high-resolution parametric spaces of 

body and face with metadata and low-cost measurements. Initially, we predicted the 

body shape parameters using anthropometric measurements. In addition, we 

included the face shape parameters to our predictive model leading to the conclusion 

that they always improve the prediction. Moreover, we focused our analysis only on 

surface body parts as related to our applications; However, the same methodology 

and results can be presented for surface-area-to-volume estimations. 

As far as our analysis is concerned, additional research could lead to the increase 

of the accuracy of our predictions. In the future, it would be helpful to include a 

skeleton model to factor out the pose, as shown in [88]. This, in turn, will prevent 

Table 2.6. Error 𝐸 for breasts using 𝑋𝐺 best features 

𝑁𝐹 𝑁𝐺 𝑋𝐹 𝑋𝐹 , 𝑋𝑄 𝑋𝐺 𝑋𝐺 , 𝑋𝑄 Features 

0 0 13.77 ± 4.24 13.77 ± 4.24 13.77 ± 4.24 13.77 ± 4.24 Avg distance 

1 3 9.38 ± 2.54 7.45 ± 1.70 9.30 ± 2.52 7.44 ± 1.69 WaistC 

2 6 7.73 ± 1.72 7.15 ± 1.58 7.64 ± 1.66 7.07 ± 1.53 Gender, WaistC 

3 15 7.55 ± 1.66 7.03 ± 1.55 7.42 ± 1.60 6.93 ± 1.49 Gender, Weight, WaistC 

4 29 7.47 ± 1.64 6.96 ± 1.53 7.27 ± 1.55 6.81 ± 1.46 Gender, Weight, WaistC, UBodyH 

5 49 7.42 ± 1.64 6.94 ± 1.52 7.18 ± 1.53 6.73 ± 1.45 Age, Gender, Weight, WaistC, UBodyH 

6 76 7.39 ± 1.64 6.91 ± 1.52 7.10 ± 1.52 6.68 ± 1.43 Gender, Weight, Height, WaistC, LegC, LegL 

7 111 7.36 ± 1.63 6.90 ± 1.51 7.01 ± 1.50 6.61 ± 1.42 Row 6 + Age 

8 155 7.34 ± 1.63 6.89 ± 1.51 6.92 ± 1.48 6.54 ± 1.40 Row 7+ UBodyH 

12 441 7.29 ± 1.60 6.85 ± 1.50 6.50 ± 1.38 6.15 ± 1.30 All 12 features 

4 29 7.83 ± 1.81 7.27 ± 1.67 7.57 ± 1.69 7.07 ± 1.58 Age, Gender, Weight, Height 

 

Table 2.7. Error 𝐸 for legs using 𝑋𝐺 best features 

𝑁𝐹 𝑁𝐺 𝑋𝐹 𝑋𝐹 , 𝑋𝑄 𝑋𝐺 𝑋𝐺 , 𝑋𝑄 Features 

0 0 19.52 ± 4.96 19.52 ± 4.96 19.52 ± 4.96 19.52 ± 4.96 Avg distance 

1 3 13.99 ± 2.27 11.91 ± 1.78 13.94 ± 2.25 11.89 ± 1.78 LegL 

2 9 12.14 ± 1.46 10.89 ± 1.26 12.07 ± 1.45 10.83 ± 1.25 LegC, LegL 

3 19 11.65 ± 1.39 10.78 ± 1.25 11.54 ± 1.37 10.68 ± 1.22 Height, LegC, LegL 

4 34 11.51 ± 1.35 10.69 ± 1.22 11.37 ± 1.31 10.55 ± 1.20 Height, HipC, LegC, LegL 

5 55 11.40 ± 1.29 10.61 ± 1.20 11.15 ± 1.26 10.42 ± 1.18 Height, WaistC, HipC, LegC, LegL 

6 83 11.31 ± 1.28 10.57 ± 1.19 11.00 ± 1.24 10.31 ± 1.16 Height, WaistC, HipC, LegC, LegL, UBodyH 

7 119 11.25 ± 1.27 10.54 ± 1.19 10.86 ± 1.24 10.20 ± 1.16 Row 6 + Weight 

8 164 11.21 ± 1.27 10.52 ± 1.20 10.72 ± 1.22 10.08 ± 1.15 Row 6 + Age, ArmC 

12 441 11.13 ± 1.27 10.47 ± 1.19 10.12 ± 1.15 9.53 ± 1.09 All 12 features 

4 29 12.88 ± 1.60 11.99 ± 1.44 12.70 ± 1.55 11.84 ± 1.40 Age, Gender, Weight, Height 
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information loss in the PCA encoding due to factors affecting the pose (e.g. the 

position of arms and legs). The regression model can be enhanced using 

regularizing techniques. We believe that Lasso [89] is the best to set the tail 

components of the face to zero when needed. We avoided presenting those 

regularizations since it is beyond the scope of this chapter. A further direction of 

research is the prediction of the face components out of images of the face. This 

way, one could predict the body shape coefficients using pictures instead of the 3D 

shape. A possible path to follow is extracting landmarks after aligning and then 

extrapolating 3D shapes. Suitable techniques to follow this approach are explained 

in [90], [91]. 

An interesting application of the procedure described in this chapter could lie in 

correlating other body parts to one another. In principle, any body part could be 

registered and encoded via PCA. As an example, the investigation of the relationship 

of foot features on the back has been studied via Geometric Morphometric in [92], 

[93]. They correlated foot shape with anthropometric measurements like height, 

Body Mass Index (BMI) and gender. Their work can be enriched by registering belly, 

hips or back areas and then by studying the effect on the back with our approach. 

Although, several studies have been conducted using BMI as a base factor, body 

shape coefficients have the potential of conveying more information and thus 

improving the prediction. 
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3. HAIR COUNTING WITH DEEP LEARNING 

“Ignoring isn’t the same as ignorance,  

you have to work at it.” 

—Margaret Atwood, The Handmaid's Tale 

 

We present a set of deep learning models aimed at solving the hair counting problem 

in human skin images. All the models are end-to-end, providing a mapping from the 

input image to a single scalar corresponding to the number of hair. The list of models 

corresponds to the most common deep learning architectures that worked over-time 

in various applications, where some of the networks were adapted to output the hair 

count. Results show that autoencoder architectures with skip connections work best 

for such end-to-end counting task, hinting at increased performance when multi-task 

learning is used. With the results presented, we speculate on the possibility to 

remove human annotator from the tedious task of manual counting of skin hair. 

This chapter is based on the paper Hair counting with deep learning authored jointly 

with Dmitry Znamenskiy, Nicola Pezzotti and Milan Petkovic, which was published 

in International Conference on Biomedical Innovations and Applications 

Proceedings 2020. 
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3.1. INTRODUCTION 

Anderson and Parrish’s principle of selective photo thermolysis [38], [39], build the 

technological base underlying the LHR (laser hair removal). In [40], Grossman et al., 

were the first to use it for photo-epilation and, since its approval, in the Food and 

Drug Administration (FDA) has been increasingly growing its popularity due to safe, 

fast and effective method for hair removal [41], [42]. The LHR devices effectiveness 

needs to be proven for many reasons such as, mention above, the FDA approval, to 

get market shares or improve an older model. Classical experimental variables are 

ranging from device settings like light temperature, device orientation, type of device 

heads to subject conditions like skin color, skin area surface and user engagement. 

A primary evaluation metric is the number of hair removed by the device. The hair 

counting is usually done by visual inspection and visual hair count, which is a long 

and tedious manual work. Object counting is relevant also when counting hair for 

applications related to skin beauty, dermatology and trichology [94]. In this chapter, 

we present several solutions for the replacement of the manual counting, with an 

automated deep learning counting system, and we review the most common end-to-

end architectures adapted for counting. Deep learning is state-of-the-art for object 

counting in various applications such as agriculture [43]; microbiology [44], [45]; 

security [46], [47]; and wild life conservation [48].  

In Philips, we collected a dataset of skin patches, including more than 4000 images 

from more than 100 volunteers. Each image, skin patch, is captured in various 

 
Figure 3.1. Example of hairs to count. The image is captured using a DSLR camera with a special 
attachment controlling the illumination and the distance to the skin patch. 
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sessions, usually four, using a DSLR camera with a special attachment controlling 

illumination and distance. A sample image is illustrated on Figure 3.1. Note that, 

since the effect of the photo epilation is not immediate, for better monitoring the 

experiment, the area of interest on the skin is shaved to optimize device performance 

[40], [95]. Therefore, a fraction of the collected pictures contains trimmed hair. A 

sizeable investment in time and resources was spent to manually count the skin hair 

in the above dataset. We believe that, by adopting an automatic system for statistical 

evaluation of hair removal devices, the FDA approval will be facilitated and 

streamlined.  

To summarize, the contribution of our work is as follows: we propose to adopt a deep 

learning based automated hair counting algorithm, and we investigate several deep 

learning architectures to perform end-to-end hair counting. Finally, we show that the 

adaptation of a segmentation network does not only outperforms other architectures 

but shows the emergence of a segmentation behavior by only regressing the total 

hair count, hinting at the potential of adopting a multi-task learning approach. 

3.2. RELATED WORK 

The overview below describes prior-art object counting methods, which we will 

group, based on the type of used annotations: a) annotation free and unsupervised 

learning methods, b) dense annotation by segmenting each hair, c) point 

annotations, d) weak image annotation with the total count of hair. 

Most of the earlier literature on hair counting and segmentation does not rely on 

machine learning. Thus Vallotton and Thomas [49] developed an approach for 

measuring body hair. They iteratively merge small line segments to account for curly 

variations. They only addressed cases in which the hair is darker than the skin, 

though their algorithm can be easily modified to predict the opposite. In [50], [51], 

Shih and Lin proposed an annotation free approach to count hair. The authors mainly 

used traditional computer vision techniques to detect lines. This approach, while 

good in a controlled image acquisition environment, suffers from different light 

conditions and perspective distortions. Besides, a slight change in the acquiring 

device implies the need for re-tuning the numerous parameters of the computer 

vision algorithm. Lim et al. [52], developed an automatic hair counting system to 

evaluate laser hair removal. They also validated their performance in clinical trials. 

They collected images from the thighs of five volunteers with Fitzpatrick skin type III-

IV. Their percentage error was <5% in each subject.  

The second group of the prior art use the finest image annotations where each hair 

is segmented in the image. While this is the most labor-consuming type of 

annotation, the segmentation of hair does not directly imply the count. Multiple hair, 

or object, could intersect and multiple instances of them rely on only one region, and 

for example, active contour will fail to count correctly. While this is not true when 

using instance segmentation. Multiple ways were presented with one very popular 

being the Mask R-CNN instance detector [96]. 

The third group of prior art apply supervised learning algorithm to the point 

annotation, recording a location 𝑑 ∈ ℝ2 in the image for each object to be counted 
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[97], [98]. Thus in [99], the authors propose an interactive annotation system to count 

object in which the user is requested to place a dot on top of each object. A big sub-

group leverage the point annotations generating a continuous density [44]. In these 

methods, a density map (also referred as a proximity map, or heatmap) around each 

dot is generated using gaussian with center the dot or a ball with linear decay from 

each dot [100]. This will rephrase the problem to estimate the density map, and then 

retrieve the count integrating the density. Those last categories allow multitask 

learning where counting and segmentation can be combined. For example, in [48], 

Arteta et al. uses an FCN to count dot-annotated penguins in combination to 

segment the foreground, estimate a density map and uncertainty map. In [45], Falk 

et al. developed a tool to count, segment and measures cells with U-net. 

Finally, we consider the prior art, which utilizes the weak image annotation where for 

each image 𝑥 only the total count of hair 𝑦 is recorded, which further reduces the 

annotation burden in comparison to the point annotation. A classical approach of 

using the above annotation in a supervised learning algorithm would be the detection 

of image features, for example, using a Gaussian pyramid, followed by the 

regression of the count 𝑦 from the feature values. Recently, the feature detection 

part is replaced with an end-to-end artificial neural network, often a fully convolution 

one [101]. In this chapter, we consider the application of the different neural networks 

that transform the input image into the total count. Methods and architectures, used 

to regress the total count 𝑦, are presented in Section 3.3, and the experimental setup 

is described in Section 3.4.  

3.3. METHODS 

We selected five widely known models architectures to count hair with four of them 

which primary task is object classification: lenet-5 [102], vgg16 [103], resnet50 [104] 

and densenet121 [105]; and one, U-net, introduced to solve biomedical 

segmentation tasks [106]. 

We selected those models because of their success and popularity across different 

domains and applications. We adapted the classification to predict one scalar 

count—one class instead of e.g. 1000 class for the image net challenge—with a final 

Rectified Linear Unit activation (to keep the prediction strictly positive). We adapted 

the segmentation architecture using a global sum final [107]. We did not fine-tune 

the models, but every model was trained from scratch as specified in the optimizer 

section. Note that the models developed for classification are often used for 

regressing a single value, while the segmentation networks are hardly used for this 

task. 

The Poisson Negative Log Likelihood is the loss most commonly applied used for 

object counting tasks: 

𝐿(𝑦, 𝑦̂) =
1

𝑁
∑(𝑦𝑝̂ − 𝑦𝑝log𝑦𝑝̂)

𝑁

𝑝=0
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where 𝑦, 𝑦̂ are respectively the ground truth and predicted count. A relatively early 

example using such loss and relative neural network can be found in Fallah et al. 

[108]. Moreover, we used mean absolute error  

𝑀𝐴𝐸(𝑦, 𝑦̂) =
1

𝑁
∑ |𝑦𝑝̂ − 𝑦𝑝|

𝑁

𝑝=0

 

and the Median and Mean Percentage Error  

𝑀𝑒𝑎𝑛𝐴𝑃𝐸(𝑦, 𝑦̂) =
1

𝑁
∑

|𝑦𝑝̂ − 𝑦𝑝|

𝑦𝑝

𝑁

𝑝=0

 

as the metrics used to benchmark the experiments. 

Adam [109] was used with: fixed 𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜖 = 10−8; three different 

learning rates 𝑙𝑟 were 0.01, 0.001, 0.0001; 1000 epochs and minibatches of size 16. 

We did not use early stopping or weight decay. All the networks were trained on a 

GPU Nvidia Tesla v100 with 16GB. As a framework, we opted for PyTorch [110] due 

to its simplicity to find and tailor model architectures.  

We augmented the input data in different ways: A) no augmentations, B) random 

vertical and horizontal flips, C) random color jitter using PyTorch function 

ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1)), D) rotation by 

and random degrees, E) random scaling between 0.8 and 1.2, F) all the previous in 

the cascade. All the augmentations are performed during training, with the input 

image being transformed before the forward propagation. Hence, each input image 

is augmented a number of times equal to the number of epochs. 

3.4. EXPERIMENTAL SETUP 

We have analyzed a Philips dataset consisting of 4358 skin images which were 

collected from the different body parts of subjects varying in skin color and skin type. 

Various human annotators produced a single count 𝑦 ∈ ℕ+ for each image 𝑥 ∈ ℝ𝑝 

using the original resolution (4288, 2842) pixels. Figure 3.2 shows the distribution of 

the label value over the number of images present in the dataset. The labels y, 

representing the number of hair in the picture, where collected at Philips during 

multiple years and studies. Every 

annotator was first trained and 

evaluated by an expert supervisor. 

The annotator was required to 

annotate a test set—composed of 

n=30 examples—and accepted to 

perform further annotations only if 

her results were acceptable (<5% 

difference of what the supervisor 

counted). The annotator was 

provided with a special predefined 

hair-counting setup (image 

resolution, desk setting, etc…) in 

 
Figure 3.2. Distribution of hair count. The average is 
54.5581 +- 51.2338 with a maximum of 389 hair and zero 
as minimum. 
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order to have a similar look and feel across different sessions. The areas considered 

in the study are the upper lip, the armpit, the bikini area and the leg. These are 

common anatomical areas of interest for a skin beauty device such as the LHR. 

For 85 images, the counting time  𝑡  was recorded. By applying a simple regression, 

we observe that the time follows this rule 

𝑡 = 1.03 + 0.02𝑐 

which we used to compute an estimate counting time of 9412 minutes for the whole 

dataset. Given that an annotator could not concentrate more than 2 hours per day 

on the counting, 9412 minutes would turn into 78 annotation days which could be 

potentially saved with an automatic counting solution. 

Experimentally we found that removing of the image frame, occupying 52% of the 

image area as shown in Figure 3.3, improves the results. Therefore, we decided to 

crop out the image frame using the following pre-processing algorithm. We used the 

Resnet18 architecture to regress the corner positions where the training data was 

obtained using traditional computer vision techniques. Thus we first did identify the 

corners 𝐵 = [𝑏1; 𝑏2; 𝑏3; 𝑏4] ∈ 𝑅4,2 using method [111] and then removed the outliers 

detected with unsupervised clustering, i.e. using method [112] with four centroids. In 

this way, we achieve a well-defined training image without the reference frame. 

Having the frame corners detected, we aligned the images on the corner with Kabsch 

[113] towards the mean of the corners and cropped the area containing the skin hair. 

After the frame removal we reduced the resolution of the image to (224, 224) and 

normalized the image channels with means [0.4725, 0.4375, 0.3773] and standard 

deviations [0.2593, 0.2407, 0.2187] for the deep learning training and inference. 

3.5. RESULTS 

In this section, we present the results 

obtained with the experimental setup 

described above. We divided the 

dataset into train, validation and test set 

with relative proportions of 90%, 5% 

and 5%. To guide the model selection 

for each architecture, we did an 

exhaustive search for the best learning 

Table 3.1. Best result for each architecture 

Model MAE 
Mean 

APE 

Median 

APE 

U-net 6.42 22% 12% 

Vgg16 7.70 26% 15% 

Resnet50 7.72 29% 15% 

Denset121 8.51 31% 15% 

Lenet5 10.89 51% 21% 

 

 
Figure 3.3. Data preprocessing pipeline. The skin patch is collected with a reference frame that is later 
removed before feeding it to the training loop. 
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rate and augmentation strategy (A, B, C, 

D, F) according to the lowest validation 

error. We then report the results for the 

test set which we found similar to the 

validation one. 

No matter which architecture the best 

strategy is always F, all the 

augmentation in cascade, thus probably 

a wider range of distortions can be 

applied to increase performance. 

Another hint in this direction is the fact 

that any degree rotation (D), apart from 

being the second best, outperform (B) in 

every run. On another side, the color 

augmentation (C) performed worse than 

no augmentation (A) in almost every run 

and therefore must be excluded in 

further experiments. 

While U-net always converged with the 

worst test MAE being 10.87 notably also 

densent121 always did, with a worst 

MAE 14.13, compared to the other 

“classification” architectures lenet5, 

vgg16 and resnet50. The best learning 

rate oscillates between 0.001 and 

0.0001 without a big results difference. 

Table 3.1 below shows the result for 

each architecture corresponding the 

best learning rate (which is either 

0.001 or 0.0001) and the best strategy 

(which is always F). See also that the best performing architecture is U-net with the 

hyperparameters, according to the validation set, 𝑙𝑟 = 0.001 and strategy F. Figure 

3.4 shows the predicted versus actual count for the best model as well as the 

regression between them. The MAE is 6.99, and the MAPE mean and median are 

24% and 12% respectively, which is worse compared to U-net. 

 
Figure 3.4. Scatter plot of predicted versus true 
count for the best model. In red, the regression line 
with coefficient of determination R2 = 0.9578. 

 
Figure 3.5. Scatter plot for each architecture. The 
ensemble does not improve the model and there is 
no apparent correlation between human and 
multiple machines. 
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3.6. DISCUSSION AND CONCLUSION 

Figure 3.5 shows that none of considered methods can replace the qualified human 

annotator, (which would require the counting Mean APE errors of less than 5%), 

mainly due to errors on the images with low hair count. Note however, that for the 

practical task that we are proposing, i.e., streamlining the evaluation process of hair 

removal devices, the error is close to what is achieved by a human, while greatly 

reducing the cost by automating the process. Moreover, as noted in the results 

section, the best outcome is achieved by implementing all augmentations in cascade 

(e.g., strategy F). Hence, we believe that further augmentation optimization might 

increase performance and, hopefully, narrow the gap compared to human 

performance. Further, optimization and analysis of the color augmentation ranges, 

 
Figure 3.6. Left top: input image; left bottom: the luminance channel of the input image with enhanced 
visibility of hair; right top: the activation of the last u-net layer before summation; right bottom: the 
visualization of the activation superimposed as color overlay over the enhanced luminance channel of the 
input image. 
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for example by removing or reducing hue variations, might be beneficial since the 

current one is even lower than the baseline without augmentations. 

A new research direction is found by investigating the heat maps generated by the 

last U-net layer, see Figure 3.6, which in our architecture has only one feature map. 

Observe that while the network was trained with the total hair count, the heat map 

shows that the network identifies and contours individual hair. We observe that the 

neuron activation on the contour of each hair fluctuates and does not sum up to one, 

as it should be for if an accurate hair count is to be achieved in the summation layer. 

In recent years, multi-task learning provided increased performance in several 

applications by training for different objectives. Therefore, we believe it is worth to 

investigate how to combine different tasks, e.g., hair detection, with our counting 

problem. 
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4. HAIR IMPACT ON SKIN LESIONS DIAGNOSIS 

“Intelligence and education that hasn't been  

tempered by human affection  

isn't worth a damn.” 

― Daniel Keyes, Flowers for Algernon 

 

Recent work on the classification of microscopic skin lesions does not consider how 

the presence of skin hair may affect diagnosis. In this work, we investigate how deep-

learning models can handle a varying amount of skin hair during their predictions. 

We present an automated processing pipeline that tests the performance of the 

classification model. We conclude that, under realistic conditions, modern day 

classification models are robust to the presence of skin hair and we investigate three 

architectural choices (Resnet50, InceptionV3, Densenet121) that make them so. 

  

This chapter is based on the paper Don’t Tear Your Hair Out: Analysis of the Impact 

of Skin Hair on the Diagnosis of Microscopic Skin Lesions. authored jointly with 

Dmitry Znamenskiy, Nicola Pezzotti and Milan Petkovic, which was published in 

ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in 

Computer Science, vol 12661. 
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4.1. INTRODUCTION 

Skin cancer is the most common cancer in the U.S. [114], and, the number of treated 

adults has increased over time, from 3.4 million in the 2002-2006 period to 4.9 million 

in the 2007-2011 period [115]. Usually, screening and diagnosis are primarily carried 

by clinical visual inspection and, if necessary, by biopsy. There is an urge to 

automate and facilitate this procedure with image-based screening since early 

detection is crucial for treatment options [53]. Deep convolutional neural networks 

(CNN) have demonstrated great potential for solving various vision tasks [2] and 

recently reached dermatologists performance in suspicious skin lesions 

classification [3]. To support early diagnosis, effective and computationally efficient 

models can be deployed on smartphone devices to enable a first level of patient-

driven screening. In this setting, the models have to deal with much less controlled 

conditions than in a laboratory environment. In this chapter we investigate the effect 

that a varying amount of skin hair have on the classification accuracy of deep 

learning classifiers. We present an automated testing pipeline that, while currently 

focused on testing for the impact of skin hair, we plan to extend to other type of 

unforeseen circumstances, e.g., different camera models, light conditions and 

resolutions. 

To perform such analysis, we first segment skin hair in images depicting small skin 

patches. These patches often contain skin lesions and we evaluate whether the 

learned segmentation helps to improve the robustness of the skin lesion 

classification. This work is motivated by the need to create and validate a screening 

approach that does not require removing skin hair. If feasible, such an approach has 

several 

 benefits in a professional healthcare setting, it can improve patient comfort, save 

time in the screening procedure, and improve diagnosis since the presence of hair 

can help differentiate skin lesions [116]. Moreover, it can allow the development of a 

first round of user-driven screening on, for example, smartphone devices. 

The contribution of this chapter is twofold; we first present an approach for the 

segmentation of hairs in existing skin image patches. This segmentation approach 

gives us realistic hair patterns that can be used to test for the robustness of skin 

lesions classifiers. Our second contribution is a set of image augmentation 

strategies, based on our first contribution, that form a testing pipeline for the 

robustness of skin lesions classifiers. More specifically, for the first contribution we 

have developed an algorithm for the hair segmentation based on the state-of-the-art 

architecture for biomedical segmentation U-NET [106]. Since we needed data for 

training, which was difficult to find in open source datasets, we contributed to the 

enrichment of the public benchmark dataset HAM10000 [117] by annotating skin 

hair. Figure 4.1 shows eight examples out of 75 annotated images, now published 
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at https://doi.org/10.4121/uuid:9ed94e25-8b74-4807-b84a-2c54ec9d96f0. Note that 

the resolution of each image is of 600x450 pixels, highlighting the challenge of such 

a manual segmentation and the benefit that our segmentation network can provide 

to the research community. 

As second contribution, we evaluate a new testing pipeline, relying on realistic image 

augmentations strategies, see Figure 4.2, for the skin condition classification task. 

We first consider a basic augmentation strategy with small rotation, sheer and 

scaling. Our main contribution, however, is to build on top of our segmentation 

approach, by adding realistic hair obtained from different skin images. In this 

approach, hereinafter referred to as “virtual hair transplantation”, we tested the 

addition of hair patterns in different positions, orientations and color. We test our 

method on the binary classification task of nevi versus melanoma with respectively 

4522 and 12875 images taken from the datasets HAM10000 [117], BCN20000 [118] 

and MSK [119]. 

4.2. RELATED WORK FOR HAIR DETECTION 

Multiple techniques are available to check and find hair on the human body. Most of 

them are relatively old, relying on the manual counting and traditional image 

processing techniques. The manual counting by visual inspection with a naked eye 

 
Figure 4.1. Eight skin hair annotation samples, each showing the original image (upper half) and the 
annotated version (lower half). 
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or lens is the oldest, but still in use in many professional practices. The accuracy of 

this technique is naturally susceptible to loss of the instant local attention by the 

expert, which is influenced by tiredness, random gaze trajectory, and other 

psychophysical factors. Second, there are automatic systems present on the market 

like Chowis [120]. While Chowis mention the use of AI, they do not disclose the 

actual methods used in the products. 

Other approaches relying on the traditional image processing have been used in the 

prior art to provide hair segmentation. Hoffmann [121] presents an automated 

system to detect hair loss and hair thinning conditions. Vallotton and Thomas [49] 

developed an approach for measuring body hair. They iteratively merge small line 

segments to account for curly variations. They only addressed cases in which the 

hairs are darker than the skin, though their algorithm can be easily modified to predict 

the opposite. In [50], [51], Shih and Lin proposed an unsupervised approach to count 

hair. The authors mainly used traditional computer vision techniques to detect lines. 

This approach, while good in a controlled image acquisition environment, suffers 

from different light conditions and perspective distortions. Besides, a slight change 

in the acquiring device implies the need for re-tuning the numerous parameters of 

the computer vision algorithm. Lim et al. [52], developed an automatic hair counting 

system to evaluate laser hair removal. They also validated their performance in 

 
Figure 4.2. Top left is the input hair image. Top center the segmentation of hair. Top right an input image 
to be classified as nevi or melanoma. The bottom row shows the hair with their original color, transplanting 
hair with random pattern color and finally masking flat squares of equal area. We excluded scaling, sheer 
and rotation for visualization purposes.  
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clinical trials. They collected images from the thighs of five volunteers with Fitzpatrick 

skin type III-IV. Their percentage error was <5% in each subject.  

All the mentioned techniques may work on a dataset, but they are not easily 

generalizable and not easy to replicate, for example, when considering different skin 

types or hair colour. Since we were not aware of prior art on the use of neural 

networks for hair detection, we experimented with U-NET architecture which is 

widely used for biomedical image segmentation [122]. We did not try any other 

segmentation techniques or architecture since U-NET provided good hair 

segmentation sufficient for the virtual “hair transplantation” augmentation. Note that 

several hair segmentation techniques based on deep learning exist but are not 

focused on segmenting the individual hair but rather on the segmentation and color 

detection from frontal face pictures. 

4.3. METHODS 

In this section, we define the methodologies for the hair segmentation problem and 

for the skin lesion augmentations used to solve the binary lesion classification task. 

HAIR SEGMENTATION 

We have randomly selected 75 images to annotate from dataset [117] where we 

have first deleted all duplicates lesions. The implementation and definition of U-NET 

are taken from [123]. For the training of the network, we used the popular dice loss 

[124] (which is equal to 1 – dice coefficient) where we included a ‘smooth’ 

normalization parameter S = 0.0001 in the definition of the dice coefficient DSC, as 

presented in [125]: 

dice loss (A, B) = 1 − 𝐷𝑆𝐶 = 1 −
2|𝐴 ∩ 𝐵| + 𝑆

|𝐴| + |𝐵| + 𝑆
, 

where A is the binary ground truth annotation and B is the binarized prediction. We 

used the Jaccard index as the primary measure to evaluate the performance of 

similarity between binary label A and predicted segmentation map B: 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
. 

For each training strategy, the last transformation in the data generator is a spatial 

reduction with random crops of 128x128, which also removes, in the case of rotated 

images, the black margins. The input resolution of each image for this task is 

600x450. After training, we generate the hair segmentation mask y for all skin lesions 

x in the combined datasets D. 

AUGMENTATIONS 

Using the hair segmentation mask, the hair can be copy-pasted from one image to 

another. Later, we make use of this mask in our testing pipeline to add hair from 

another image in the classification mask. Given an image x in the dataset D, we 

defined four different augmentation strategies to test for the skin lesion classification 

task. 
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The first strategy A is simply the identity or no augmentation, where the input image 

remains the same. The second is the basic augmentation strategy, denoted in the 

following by F where the input image x is randomly rotated by an angle 𝜃 ∈
[−20, +20], scaled by a factor between 0.8 and 1.2 and undergo a shear transform 

with parameter (0.05, 0.05). The three later strategies always add to F. Strategy H 

adds the transform that transplants hairs from image 𝑥𝐻 with the corresponding hair 

mask 𝑦𝐻, where the image uniformly sampled from the dataset D. We define the 

strategy J as replacing 𝑥𝐻 with 𝑥𝑅 an image of the same size containing only random 

pixels. Finally, we define strategy K which adds, after augmentation F, a square 

containing random pixels with the size 𝑒 = 𝑠𝑞𝑟𝑡(∑ 𝑦𝐻) where 𝑦𝐻 is the hair 

segmentation mask of randomly chosen images from dataset D, so that the area of 

the square equals the total area of the segmentation mask. The above 

transformations can be notated as: 

𝐴: 𝑥 = 𝑥 

𝐹: 𝑥 = 𝐹(𝑥) 

𝐻: 𝑥 = 𝐹(𝑥(1 − 𝑦𝐻) + 𝑥𝐻𝑦𝐻) 

𝐽: 𝑥 = 𝐹(𝑥(1 − 𝑦𝐻) + 𝑥𝑅𝑦𝐻) 

𝐾: 𝑥 = 𝐹(𝑥(1 − 𝑦𝐾) + 𝑥𝑅𝑦𝐾) 

where 𝑥𝑅 is the image consisting of the random pixel values of the same size as x, 

and all multiplications are considered pixel-wise. We have to note that before 

applying the transplantation, we rotate the input image 𝑥𝐻(𝑥𝑅) by random 𝜃 ∈
[−180, +180] to get the rotation augmentation. One can see that the hair 

augmentation strategy ‘H’, when compared to J and K, is a smooth and soft way to 

perform a natural augmentation of the skin background in the skin lesion dataset. 

Moreover, this makes the prediction more robust to hair presence, as we will see 

below. The average area covered by hair is low and that less than 10% of images 

are covered by more than 5% of hair.  

SKIN LESION CLASSIFICATION 

As network architecture, we selected the state of the art Resnet50 [104] (achieves 

dermatologist level performance in 

[126]), InceptionV3 [127] (achieves 

dermatologist level performance in [6]), 

and Densenet [105] (best performing 

according to [128]). All the network are 

pre-trained on ImageNet [129] and fine-

tuned for the skin lesion classification 

task.  For the training with strategy H, in 

the augmentation phase as a hair 

source, we considered all input images. 

Figure 4.3 shows the distribution of the 

relative hair density in the test set. The 

hot pixels sum per image is computed as 

the sum of the segmentation before 

applying the binary threshold. We can 

 
Figure 4.3. Average distribution of hot pixels 
highlighting hair in the ten-fold train, validation, and 
test set (images with resolution 224x224). On the y-
axis the number of images and on the x-axis the 
number of hot pixels. Both axes are in log scale. 
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see that the average area covered by hair is low and that less than 10% of images 

are covered by more than 5% of hair.  

We train all the networks for 100 epochs using the Adam optimizer [109] and learning 

rate 1e-4. For each combination of strategy and architecture, we randomly split D in 

train, validation and test set with each containing respectively 80%, 10%, and 10% 

of the images. We repeat all procedure 10 times to reach the final test set error. 

4.4. RESULTS 

In this section, we present the results for the two described problems: the preliminary 

task of hair segmentation and the evaluation of skin classification when applying the 

different augmentation techniques. 

HAIR SEGMENTATION 

Due to the limited dataset size, 75 annotated images, the hair segmentation task 

was relatively fast to accomplish but still resulting in a sufficient basis for the added 

augmentations. The parameters used for training are learning rate 0.01, epochs 500, 

batch size 8. The test set includes 12 images, and the resolution for testing is the 

original one. The trained U-NET achieves Jaccard value 0.51 with a discrete recall 

of 0.66 and accuracy 0.98. Therefore, the visual inspection, see Figure 4.4, offers 

promising results as a starting point to carry on the following skin classification 

analysis using hair augmentation. Cross-validation and a bigger dataset would be a 

possible next step to consolidate the hair segmentation results. 

SKIN LESION CLASSIFICATION 

The results presented in Table 4.1, overall shows the hair augmentation H does not 

essentially improve the performance of the models. Table 4.1 presents the average 

accuracy of ten repetitions of the experiment as introduced in the relative method 

section. In particular, H is not underperforming compared to the base F and the other 

color and shape pattern J, K. But when considering Densenet121 we see that H, J 

and K have positive regularization effect since they improve the accuracy compared 

to the baseline F. Apart from this difference, all three models show similar 

accuracies, with Resnet50 behind by only 1%. 

Table 4.1. Test set accuracy metrics for the three different architectures and the four different 
augmentations plus no augmentation A. The standard deviation is the result of 10 iterations of the 
experiment. The total number of images in the set is 1740 with 516 average hot hair pixels. 

 Resnet50 InceptionV3 Densenet121 

A 0.886 ± 0.006 0.902 ± 0.009 0.905 ± 0.008 

F 0.916 ± 0.010 0.926 ± 0.006 0.918 ± 0.008 

H 0.916 ± 0.009 0.923 ± 0.007 0.922 ± 0.007 

J 0.915 ± 0.009 0.922 ± 0.007 0.924 ± 0.008 

K 0.917 ± 0.006 0.922 ± 0.005 0.923 ± 0.009 

 



48 

 

 

 
Figure 4.4. Examples of images with relative predicted hair. On top the label and the number of hot pixels 
in the 224x224 resized version of the input image. 
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In Table 4.2, Table 4.3, we present the accuracy when considering only images with 

moderate and densely crowded skin hair presence. We believe that the increase in 

overall accuracy across compared to Table 4.1 is random. Even though the standard 

deviation increases, due to the lower number of images selected, the overall 

accuracy does not decrease when augmenting the images. 

4.5. CONCLUSIONS AND FUTURE WORK 

The results show that the presence of hair in skin images has little effect on the 

prediction of skin lesions. A practical consequence of this discovery can lead towards 

improving patient comfort and efficiency of screening, while opening the door to the 

investigation of a first-level screening performed by the user on mobile devices. We 

also show that the problem of hair segmentation on the skin images can be solved 

easily and robustly with deep learning. 

For future work, we suggest to consider for the virtual ‘hair transplantation’ only 

images with sufficient hair density and consider improving the quality of the hair 

inpainting with skin color normalization which can reduce the visibility of the 

generated artefacts, or consider inpainting techniques based on the Generative 

Adversarial Networks, see [16], [130]. Finally, the proposed augmentation strategy 

of virtual ‘hair transplantation’ can be evaluated versus a more straightforward 

strategy where the real hairs are replaced with the random line patterns of the same 

area. 

  

Table 4.2. Same as Table 4.1 but considering only moderate to densely crowded hair images. Only 
images containing minimum 1500 hot hair pixels (average 3412 ± 79) with 153 images in total. 

 Resnet50 InceptionV3 Densenet121 

A 0.895 ± 0.018  0.902 ± 0.016 0.916 ± 0.016 

F 0.924 ± 0.009 0.932 ± 0.011 0.933 ± 0.019 

H 0.927 ± 0.009 0.927 ± 0.012 0.930 ± 0.019 

J 0.922 ± 0.017 0.926 ± 0.024 0.933 ± 0.015 

K 0.930 ± 0.014 0.930 ± 0.017 0.935 ± 0.011 

 

Table 4.3. Same as Table 4.1 but considering only densely crowded hair images. Only images containing 
minimum 4000 hot hair pixels (average is 6011 ± 240) with 42 images in total. 

 Resnet50 InceptionV3 Densenet121 

A 0.920 ± 0.026 0.905 ± 0.024 0.932 ± 0.028 

F 0.937 ± 0.035 0.956 ± 0.031 0.941 ± 0.027 

H 0.951 ± 0.029 0.936 ± 0.030 0.940 ± 0.033 

J 0.931 ± 0.028 0.923 ± 0.040 0.939 ± 0.030 

K 0.941 ± 0.026 0.931 ± 0.035 0.936 ± 0.038 
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5. SKIN LESION GENERATION  

“Every person must choose  

how much truth he can stand.” 

—Yalom, I. (2005). When Nietzsche Wept. 

 

Skin cancer affects more than 3 million people only in the US. Comprehensive 

microscopic databases include around 30 thousand samples, limiting the richness of 

patterns that can be presented to machine learning. To this end, generative models 

such as GANs have been proposed for creating realistic synthetic images but, 

despite their popularity, they are often difficult to train and control. Recently an 

autoregressive approach based on a quantized autoencoder showed state of the art 

performances while being simple to train and provide synthetic data generation 

opportunities. In the first part of this chapter, we evaluate the training of VQ-VAE-2 

with different latent space configuration. In the second part, we show how to use a 

learned prior over the latent space with PixelSNAIL to generate and modify skin 

lesions. We show how this process can be used for powerful data augmentation and 

visualization for skin health, evaluating it on a downstream application that classifies 

malignant lesions. 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper A latent space exploration for microscopic skin 

lesion augmentations with VQ-VAE-2 and PixelSNAIL authored jointly with Nicola 

Pezzotti, Dmitry Znamenskiy and Milan Petkovic, which was published in SPIE 

Medical Imaging Proceedings 2021. 
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5.1. INTRODUCTION 

Skin cancer is the most common cancer in the U.S. [114], and, the number of treated 

adults has increased over time, from 3.4 million in the 2002-2006 period to 4.9 million 

in the 2007-2011 period [115]. Usually, screening and diagnosis are primarily carried 

by clinical visual inspection and biopsy if necessary. There is an urge to automate 

and facilitate this procedure with image-based screening since early detection is 

crucial for treatment options [53]. Many state of the art Convolutional Neural Network 

(CNN) models performed on par, or better, compare to dermatologists: in 2017, 

Esteva et al. [126], trained a CNN that performed on par with 21 dermatologists and 

in 2019, Brinker et al. [3], [131], shows that Resnet50 [104] outperformed 136 of 157 

dermatologists. However, core research is still needed to reach a fully automated 

diagnostic system which addresses the ethical and technical hurdles of deploying 

such models in the real world. A challenge is the lack of data since collecting real 

samples is time-consuming and difficult, for example, considering rare diseases. 

Another challenge is the fairness of the AI systems concerning underrepresented 

populations. Two common biases are the skin type—skin lesions datasets are 

skewed towards light skin types—and body location acquisition—most lesions come 

from easy to collect places such as limbs or torso and few from less conformable 

areas. While there are many reasons for the nature of such biases, some of them 

difficult to solve by simply collecting more data, it is possible to hamper their effect 

by creating synthetic examples covering the underrepresented class. 

In the past years, generative models have improved very fast and significantly. The 

growth in popularity is related to the visually appealing results and the continually 

increasing computational power commonly available. The synthetic samples are 

difficult to spot compared to the original data even from a careful human inspector 

[55]. The state of the art models are called Generative Adversarial Networks (GANs) 

[54], and they rely on two competing architectures, one generating images starting 

from noise, the other trying to distinguish synthetic from real samples. The mapping 

from a noise vector to the sample coupled with the adversarial training produces very 

realistic images [132], but it is often challenging to train and control afterwards. 

 
Figure 5.1. Synthetic skin lesions that do not exist in the real world. The lesions are generated in the latent 
space of a two-layer VQ-VAE-2 autoencoder. The codes are sampled from top left to bottom right using 
an autoregressive model. First, the top codes are generated, then the bottom ones conditioned on the 
top. Then, VQ-VAE-2 decoder reconstructs the image from the latent codes, which represent embedding 
quantizing vectors.  
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Recently, a different approach has proven similar results to GANs on image 

generation tasks. This approach, use an autoencoder Vector Quantized Variational 

Autoencoder (VQ-VAE-2) [56] in combination with an autoregressive model called 

PixelSNAIL [57], and it is able to generate high resolution realistic pictures as shown 

in Figure 5.1. The autoencoder finds a compact quantized representation of the input 

data using stacked VQ-VAE [133] and represents an input image with a lower 

resolution map of codes. Since this representation is given at lower resolution, these 

codes represent different image patterns and, in the case of the hierarchical 

implementation, patterns at different scales. VQ-VAE-2 relies on feedforward 

networks, thus easy to train and, according to [56], it does not suffer that much from 

the common pitfalls of GANs, such as the mode collapse or lacking full support over 

the input distribution [134]. Moreover, it easily allows for the explainability of the 

generative model, as each code in the latent space can be seen as a self-supervised 

label extracted by the model. An example of a single layer autoencoder is presented 

in Figure 5.2, where the input image is encoded and quantized into discrete codes. 

Once learned the quantized latent representation, the PixelSNAIL autoregressive 

model is used to learn the prior distribution over the discrete latent codes and to 

generate new realistic images. Key advantages of this approach are the 

explainability of the features and the potential for integrating advanced augmentation 

techniques. Figure 5.3 shows the input to the VQVAE-2 model, and the 

corresponding codes in the two hierarchical levels (here color-coded with a 

randomized palette). 

In this chapter, we apply the VQ-VAE-2 architecture to generate novel skin lesions, 

with and without the autoregressive model, to augment and increase the number of 

images in the lesions’ datasets. While VQ-VAE-2  model has been proven to perform 

well in different domains like ImageNet [135], as shown in the ML community by A. 

D’Amour et al. [136] it is often a challenge to replicate ML pipelines in different 

domains, especially for medical images. This is one reason we present an 

exploration of the latent space generated and the behavior and hurdles we faced 

selecting the right latent space dimensions. For example, once trained with the 

original double-layer configuration, we report the top latent space’s collapse leading 

to a one-layer autoencoder. 

 
Figure 5.2. Encoding and quantizing a single image with a single layer vector quantizing autoencoder. 
The image is first encoded with a fully convolutional encoder into 𝐷 latent maps and then quantized using 
𝐾 quantizing vectors. 
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5.2. RELATED WORK 

Several papers investigated the use of generative models in the context of skin 

lesions applications. In 2019, Ghorbani et al. [137] used Pix2Pix GAN to synthetize 

skin condition. Style transfer generative was used to enhance lesion segmentation 

[138] and other versions of GANs, such as LAPGAN, DDGAN, PPGAN has been 

tried in [139][140]. While all these examples provide visually appealing results, they 

suffer from the classical problems of GANs mentioned above. Another similar report 

of data augmentation [141] tried to hamper this using Self-Attention and PPGAN. In 

this chapter we investigate applications of autoregressive models, in combination 

with quantization based autoencoders. We moreover investigate how promising is to 

use such methods to augment skin lesion datasets. 

5.3. VQ-VAE-2 AND PIXELSNAIL APPROACH 

This section introduces another generative approach used in the following three 

chapters and not based on GANs. We present a basis for the approach by showing 

the VQ-VAE and VQ-VAE-2 setups and then we introduce the autoregressive 

models focusing on PixelSNAIL. In the last part of this section, we present other 

works which employ generative models, such as GANs, to create novel skin lesions. 

VECTOR QUANTIZED VARIATIONAL AUTOENCODER 

The VQ-VAE model is introduced by van den Oord et al. [133] and it builds on top of 

the Variational AutoEncoder (VAE) [142], [143] by generalizing ideas from classical 

image compression methods like jpeg. Given a dataset of observations 

{𝐱(1), 𝐱(2), … , 𝐱(𝑁)}, the goal of a VAE is to learn, without supervision, a lower 

dimensional representation in terms of latent variables 𝐳. It is composed by an 

encoder 𝐸, which map the input image into latent variables, and a decoder, which 

reconstruct the image from the compressed representation. In other words, the 

 
Figure 5.3. Left a model with latent space dimension (𝐾 = 256, 𝐷 = 8); Right a model with latent space 
dimension (𝐾 = 512, 𝐷 = 64),  and the corresponding discrete embeddings, for 2 different images. Each 
row is a different image. The first column is the input image, the second the VQ-VAE-2 reconstruction. 
The third column presents the top encoding and the fourth the bottom encoding. Each colour in the third 
and fourth column represents a different integer code. The encoder quantizes each pixel, of 𝐷 = 8 
dimensional feature map, into one out of 𝐾 = 256 codewords. The model on the right presents a single 
color in the top space since the top hierarchy is collapsed.  
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decoder network models the joint distribution 𝑝(𝐱|𝐳)𝑝(𝐳) while the encoder models 

the posterior distribution 𝑞(𝐳|𝐱). 

In the VQ-VAE framework the prior distribution is based on 𝐾 prototype latent vectors 

{𝒆(1), 𝒆(2), … , 𝒆(𝐾)} of dimension 𝐷 which quantize the latent maps 𝐸(𝐱), generated by 

the encoder. There are exactly 𝐾 different latent vectors to choose from, so each 

pixel on the latent maps is represented with the nearest quantizing vector, as shown 

in Figure 5.2. In Razavi et al. [56] the VQ-VAE-2 is presented, which is the upgrade 

of the VQ-VAE to include multiple hierarchical layers which provide different quantize 

codebooks at different hierarchies. An example with two-level is presented in the top 

part of Figure 5.4 where the processing flow of the autoencoder is depicted in a 

flowchart style from left to right. The image is encoded in quantized latent maps for 

the top and bottom levels. The decoder then reconstructs the image using the latent 

maps conditioning the higher levels, which have smaller resolution, to the bottom 

ones. In the original setup the input 24 bit image with resolution 256x256 was 

reduced to 64x64 bottom map and 32x32 top map with 𝐾 = 512 = 29 different 

quantizing vectors of dimension 𝐷 = 64. In [56] the authors present two layer 

network trained on ImageNet [129], and three layer network trained on FFHQ [144], 

for generating high-resolution photo-realistic facial images. In order to solve large 

scale dependencies, which are usually difficult to capture by the autoregressive 

decoder, Fauw et al. [145] successfully explored the possibility to use many layers 

encoder. While in another research work, Williams et al. [146] used Hierarchical 

Quantized Autoencoders for image compression purposes. 

 
Figure 5.4. Method’s flowchart. The input image is feed the VQ-VAE-2 autoencoder. The PixelSNAIL later 
learns a prior over the latent space, sample novel synthetics codes, decode them into the new geometric 
images, and, subsequently, to 3D scans. 
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In our experiments we focus on a two layers hierarchy with input resolution of 

256 × 256 and relative latent maps of dimension 64 × 64 and 32 × 32. We also call 

the relative quantized vector indices, or codebook, as 𝒄𝐵 ∈ {0, 𝐾}64×64 and 𝒄𝑇 ∈
{0, 𝐾}32×32 as shown in Figure 5.3. We first answer the question of which 𝐾, 𝐷 are 

better in our small dataset and then we perform a data augmentation and test the 

impact on the classification task of predicting malignant melanomas. 

AUTOREGRESSIVE MODELS AND PIXELSNAIL 

Besides the analysis of the resulting latent space, we investigated the generative 

capabilities of the autoregressive model, PixelCNN [147] with self-attention [148], 

called PixelSNAIL [57]. In this setup the autoregressive model can efficiently model 

the prior distribution of the latent codes, creating photo-realistic synthetic images. 

The idea behind the PixelCNN model is to learn the conditional distribution of the 

given sequence of random variables. When applied on the latent space, the latent 

codes of the whole image are sorted from top left to bottom right to predict the next 

code value, which is a discrete probability distribution over the K codes, in an 

autoregressive fashion. In our example, the autoregressive model learns the join 

distributions of the latent codes on the top layer and then the distribution of the 

bottom codes conditioned on the top codes. There are different options to generate 

new samples once the two models are trained. The main approach is to perform a 

sampling of the top space 𝒄𝑇 trained on specific image class label, and then sample 

the bottom space trained on the same label, while conditioning it on the sampled top 

codes. Figure 5.4 in the bottom part shows that two models are fitted, one for the top 

and one for the bottom space, for later sampling and decoding new synthetic images. 

An example of this approach is shown in Figure 5.1 where the two autoregressive 

models are trained on K=256, D=8 with all other hyperparameters equals to the 

original implementation in [11]. 

 
Figure 5.5. synthetic images generated by training the autoregressive model only on 4922 melanomas 
on the left and training only on 17685 nevi on the right. 



57 

 

5.4. DATASET, MATERIAL AND METHODS 

In this chapter, we investigate the behavior of VQ-VAE-2 in combination with 

PixelSNAIL, applied to the skin lesion 

datasets 2020SIIM-ISIC [14], 

HAM10000 [117], BCN20000 [118] and 

MSK [119]. The analysis includes an 

extensive exploration of the impact of 

the model hyperparameters, as well as 

experiments to adopt the model as a 

way to augment the data for 

downstream tasks. For our 

experiments, we merge all datasets 

and then remove all duplicates images 

by using an EfficientNet pretrained 

model2. The total number of images 

includes 52302 benign and 4922 malign images (57224 in total). We split the dataset, 

stratified according to patient, into train (45718) and validation (11506) set to 

evaluate the reconstruction of images unseen by the network during training. We 

derive our PyTorch [110] implementation of the VQ-VAE-2 and PixelSNAIL from an 

openly available project3. Since we were not able to find or implement the class 

conditional sampling suggested in [11] we simply train one autoregressive model for 

nevi and another for melanoma, while keeping the “true class conditional sampling”, 

with one PixelSNAIL model, for a future work. We present some examples of 

generated samples in Figure 5.5, where on the left we used the model trained only 

on melanomas while on the right it was trained only on nevi. The training images 

were obtained by cropping the center squared region and by scaling them to fit the 

256x256 resolution used in our model. 

PRIOR LATENT SPACE DIMENSION 

In the original setup, the hyperparameters 𝐾 = 512 and 𝐷 = 64 were used for both 

hierarchical layers trained on ImageNet [129], and the three layer model, trained on 

FFHQ [144]. Our first research question is what the best configuration of (𝐾, 𝐷) is for 

the latent space, given that we now consider a much smaller dataset with respect to 

the two mentioned above. To understand the impact of the hyperparameters on the 

dataset, we did not use data augmentation techniques and worked solely on training 

data as-is. In our simulations we experimented in reducing the number of vectors 𝐾 

without decreasing the quality of the reconstructed image, in particular, considering 

that the autoregressive approach is noticeably slow when sampling new images 

[149], making it hardly scalable for real world applications. This analysis is motivated 

 

 
2https://www.kaggle.com/shonenkov/merge-external-data; https://www.kaggle.com/shonenkov/dbscan-

clustering-check-marking 
3https://github.com/rosinality/vq-vae-2-pytorch 

Table 5.1. Report of three different experiments with 
𝐾 = 512. Each row is a different model trained with 
the same exact hyperparameters. The two rows are 
the latent space dimensions 𝐾 and 𝐷. |unique(𝒄𝑇)|, 
|unique(𝒄𝐵)| | represent the number of, top and 
bottom, codes used for encoding the whole dataset 
while |unique(𝒄𝑇, 𝒄𝐵)| are the cooccurrences of used 
codes. The metrics are the mean squared error for 
validation set. 

𝐾 𝐷 |𝒄𝑇| |𝒄𝐵| |(𝒄𝑇, 𝒄𝐵)| MSE 

512 32 1 512 512 0.0025 

512 64 8 512 4095 0.0030 

512 64 1 512 140 0.0040 

 

https://www.kaggle.com/shonenkov/merge-external-data
https://www.kaggle.com/shonenkov/dbscan-clustering-check-marking
https://www.kaggle.com/shonenkov/dbscan-clustering-check-marking
https://github.com/rosinality/vq-vae-2-pytorch
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by the observation that some 

instances of the network, trained 

on the natural skin lesion images, 

resulted in a collapse to a single 

layer autoencoder. This is shown 

in the right part of Figure 5.3, 

where the reader can see that the 

top quantized map degenerates 

to a single code when we used 

the original configuration 𝐾 =
512 and 𝐷 = 64. We believe that, 

when reducing 𝐾, we also reduce 

the risk of the code collapse at 

the top layer which in turn allows 

for a higher number of code 

combinations on the top and bottom layers and, therefore, a better sampling and 

performance of the autoregressive models. This behavior is also confirmed by Table 

5.1 where each row is a trained model and the columns are: the number K of latent 

vectors, the dimension D of each vector, the number of effectively used vectors in 

the top hierarchy |unique(𝒄𝑇)|, the number of effectively used vectors in the bottom 

hierarchy |unique(𝒄𝐵)|, the number of cooccurrences of vectors in the top and bottom 

space |unique(𝒄𝑇 , 𝒄𝐵)|, and lastly the mean squared error for the validation set. It 

can be seen that, even if the top layer collapses in the model of the first row, it has 

a competitive MSE for the reconstructed image. We believe this is due to the tradeoff 

between a large latent space and the relatively small dataset compared to ImageNet. 

In other words, with some probability the method encodes images without taking 

advantage of the hierarchical model. Once this is established, we can refrain to use 

high values of 𝐾 and 𝐷 together and gain training and inference speed, which we 

need for the computationally demanding PixelSNAIL. A benefit for the community 

using this approach would be to find the optimal latent space dimension, according 

to their required use, in order to increase throughput speed when coming to the 

generation part.  

To understand better the models, it is relevant to visualize its latent space 

expression. For example, one can directly spot the richness of patterns (Figure 5.3 

– left), or vice-versa the collapse of one hierarchy, see (Figure 5.3 – right). It is 

observed that, sometimes, the model extracts semantic regions, acting as a loosely 

defined segmentation model. This effect would be particularly interesting when 

clustering similar codes pattern after training or even during the training phase 

applying mask to objects of interest. In the following section, we explore the potential 

of code replacement in the latent representation for the generation of augmented, 

but realistic, training samples. While the top latent space, which undergo 8x 

compression of the image into 𝐷 latent maps tends to encode low frequency 

information there is not always a clear boundary between it and the bottom space. 

In fact, as presented in the previous section, sometimes the information is encoded 

only in the bottom space and other instead use only a part of the top space. A 

 
Figure 5.6. (𝐾 = 4, 𝐷 = 8) — Discrete embeddings for 2 
different images. Each row is a different image. The first 
column is the input image, the second the autoencoder 
reconstruction. The third column presents the top encoding 
and the fourth the bottom encoding. Each colour in the third 
and fourth column represents a different integer code.  
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possible way to visualize the codes is by color-coding the input space, but with 256 

colors is very difficult that any pattern emerges simply looking at those. A different 

situation arises when considering very small 𝐾. For this reason, we trained also a 

very small set of VQ-VAE-2 with 𝐾 = 4. While such models do not provide high 

resolution reconstruction, they are still deeply helpful to test the model behaviors. In 

Figure 5.3 and Figure 5.6 respectively the latent space of three models is visualized. 

When using a small number of quantizing vectors, it is easier to visualize directly 

emerging patterns in the code space. Direct manipulation of the codes in the latent 

space as a way for creating and modifying lesions is possible. However, it is not the 

desired approach since complex relationships that arise in the pixel domain due to 

the interaction of the codes in the latent maps. Intuitively, the codes have an 

overlapping receptive field in the underlying images. Therefore, the code resulting 

image patches are not given solely by the corresponding latent codes, but by the 

interaction between the neighboring ones. In the next section, we provide evidence 

of this behavior, we present several examples of manipulations of the latent codes 

and demonstrate that, by using specific manipulations of the codes based on the 

autoregressive models, it can be used for data augmentations. 

DATA AUGMENTATION  

In this section, we present various techniques to augment the dataset using the VQ-

VAE-2 and manipulations of its latent space. The power of having multiple layers in 

the VQ-VAE-2 architecture, is that one can modify an image by manipulating the 

latent codes only in one layer, for example the bottom one, retaining the top layer 

which usually encodes global structure information. Without learning any prior over 

the latent space one can already compose novel images by “mixing” codes from 

different images at the cost of losing spatial consistencies. This idea is similar to the 

pseudo-labeling [150], where to generate new labels and augment the dataset 

multiple images part are mixed together. An example of  mixing skin lesion is 

presented by Perez et al. [128], where after learning a segmentation model, they mix 

foreground and background of different lesions. Here, instead of mixing codes based 

on regions, as shown in [151], we mix them by hierarchy of the learned VQ-VAE-2. 

This procedure can be achieved in many ways even without the autoregressive 

model. Given one input image (𝐜T, 𝒄𝐵) we replace the bottom codes before 

reconstruction given another image with the same label, i.e. malignant melanomas 

or benign lesions. In Figure 5.7 an example of mixing top and bottom codes is 
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presented without considering the actual ground truth label. In the first row, the top 

code image is selected to be mixed with the second row, which is the source for the 

bottom codes. In the third row the mix of the first two rows shows that the global 

structure is mostly retained from the top source for example looking at the black 

circular box or the lesion geometry. On the contrary, the high frequencies patterns, 

like skin hair, are taken from the bottom source image. We highlight such behavior 

in the second to last bottom row (rng_btm) of the figure where the bottom codes are 

resampled randomly creating a noisy pattern but maintaining the global structure of 

the input source top image. On the other side, when the top codes are resampled 

 
Figure 5.7. Examples of augmentations by mixing latent codes for the 𝐾 = 256, 𝐷 = 8 model. The top row 
represents the input image used to generate the top codes, while the second presents the one used for 
the bottom code. The third row presents the reconstruction obtained when the two codes are mixed. The 
bottom row is used for comparison and is created by randomly sampling the bottom codes, showing that 
a random replacement of the codes is not a viable solution and highlighting the relevance of the interplay 
between neighboring codes. 
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randomly, as presented in the last row (rng_top) of the figure, the global structure is 

partially lost while it is easy to see the hair like patterns. It is clear by looking at the 

bottom two rows that this approach destroys the information and makes the resulting 

image not useful for any realistic task, but it provides a baseline behavior to compare 

other augmentations and to understand how much information is lost and which is 

most relevant for example when classifying lesions. 

Another approach is to resample the bottom space by using the autoregressive 

model. Given an encoded image one can use the real top 𝐜T while sampling a new 

bottom encoding 𝒄𝐵
𝑛𝑒𝑤 and decoding using the original decoder network. This will 

lead to the same global low frequency structure while updating high frequencies 

encoded in the bottom space. An example of such behavior is presented in Figure 

5.8, where two images augmented by resampling multiple times the bottom latent 

codes without conditioning on the diagnosis. While we expected a more unstable 

behavior, the change in skin tone does not ruin the quality of the image from an 

inexperienced human observer perspective. Also, to be observed is that the skin 

tone is consistent over the whole image for each resampling. This means that the 

model can represent very long relationships between pixels as also pointed out by 

 
Figure 5.8. The same image, which original version can be seen in Figure 5.7, is modified by resampling 
the bottom codes. From the top row to the bottom row the temperature parameter goes from 1.0 to 0.7. 
The temperature flattens out the probability distribution before sampling according to a multinomial 
distribution. A lower temperature allows for more out of distribution, less realistic, samples.  

 
Figure 5.9. The images, which original version can be seen in Figure 5.7, are modified by resampling the 
bottom codes 𝒄𝐵 using an autoregressive model trained only on Nevi. 
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the original authors of the VQ-VAE-2 paper. The difference in each row lies in the 

temperature parameter, which flatten out the estimated probability distribution before 

sampling dividing the PixelSNAIL decoder’s output by it before applying Softmax and 

sampling according to a multinomial distribution. While in  Figure 5.8 we considered 

the diagnosis, and the pictures seems to have wide variety on the chrominance, 

when using models trained only on one particular diagnosis the pattern changes 

considerably. For example, when using the ABCD rule [152], a commonly used but 

easy to learn tool to judge lesions according to Asymmetry, Border, Colour and 

Diameter, multiple changing colors are usually features of Melanomas while a 

uniform color is characteristic of Nevi. In fact, in Figure 5.9 the model train only on 

nevi try to resample the bottom codes to match nevi-like global appearance by giving 

a uniform skin lesion color. On the contrary, in Figure 5.10 the model, trained only 

on Melanomas, prefers darker and changing colors as characteristic of Melanomas. 

While we appreciate this model behavior, we don’t expect that it is what 

dermatologists want to see but simply observations of a particular dataset coupled 

with an augmentation technique. Finally, the completely synthetic images when 

training autoregressive model on a subset of the input data, 4922 melanoma and 

17685 nevi, are shown respectively in Figure 5.5 left and right. We can see that the 

nevi seem to be sharper in details, and this can be due to the differences in the 

limited number of samples. Future work can increase the number of images or 

augment them prior to fitting the autoregressive models. 

In the next section, we present preliminary results in which we use augmented data 

to enrich the training for a downstream task like the classification of skin lesions 

malignancy.  

 
Figure 5.10. The images, which original version can be seen in Figure 5.7, are modified by resampling 
the bottom codes 𝒄𝐵 using an autoregressive model trained only on Melanomas.  
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5.5. EXPERIMENTS AND QUANTITATIVE EVALUATION 

In this section we report quantitative 

experiments for the respective 

methods presented above. We first 

present several results obtained by 

training various VQ-VAE-2 by changing 

the number of quantizing vectors and 

the number of latent codes. We begin 

by showing that K cannot drop much 

lower than 256 without impacting the 

MSE metric for the reconstruction. At 

the same time, it is difficult to spot big 

differences by human eyes even when 

considering only 64 latent quantizing 

vectors. We then show the results 

when the augmentations proposed in 

the previous section are used to train a 

downstream classification task. The 

experiments show that the 

performance of the model is impacted 

by the use of the synthetic images, 

hinting at the limitations of the 

approach. However, by showing that 

the impact on the performance is 

limited, we demonstrate the potential in 

the limited-data regime, where 

synthetically labeled data can be beneficial.  

PRIOR LATENT SPACE DIMENSION 

First, we explore the training of VQ-VAE-2. A first relevant question is which 

configuration of the latent space to select according to target dataset and its use. It 

is not clear a priori if one wants to use a single layer, two or even three hierarchical 

layers and what are the pros and cons of such a choice. Moreover, one can increase 

and decrease the latent dimensions by fixing the number of layers or the number of 

filters. The objective is to find the optimal values of 𝐾 and 𝐷 such that the model is 

not yet collapsing and giving a visible improvement in MSE. A similar exploration 

with smaller 𝐾, 2 or 4 codework, but with different objectives is carried on in [22] 

where the authors benchmark different lossy compression proposing a new scheme 

of Hierarchical Quantized Autoencoders.  

The results of this training phase are presented in Table 5.2. Note that we trained 

twice the same configuration with 64 latent maps and in one model there was full 

collapse of the top space while in the other full use. Another relevant result is that, 

while there is no clear order between 𝐷, it seems easier for the model to learn with 

a small 𝐷 (= 2, 8). The model trained with 𝐾 = 128 were performing worst in terms 

of metrics and visual inspection compared to 𝐾 = 256, reaching the maximum valid 

Table 5.2. Report of different experiments K and D. 
Each row is a different model trained with the same 
exact hyperparameters but K and D. |unique(𝒄𝑇)|, 
|unique(𝒄𝐵)| | represent the number of, top and 
bottom, codes used for encoding the whole dataset 
while |unique(𝒄𝑇, 𝒄𝐵)| are the cooccurrences of used 
codes. The metrics are the MSE for validation set. 

𝐾 𝐷 |𝒄𝑇| |𝒄𝐵| |(𝒄𝑇, 𝒄𝐵)| MSE 

256 8 256 256 64605 0.0024 

512 32 1 512 512 0.0028 

256 64 256 256 64687 0.0029 

512 8 1 512 512 0.0029 

128 8 128 128 16370 0.0030 

512 64 8 512 4095 0.0030 

256 32 47 256 10664 0.0031 

256 64 1 256 256 0.0034 

512 64 1 140 140 0.0040 

128 64 1 128 128 0.0042 

128 32 13 96 1248 0.0047 

128 64 9 128 1152 0.0055 

4 8 4 4 16 0.0137 

4 32 2 4 8 0.0174 

4 64 4 4 16 0.0175 

4 64 2 4 8 0.0198 
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score of 0.0026.  We report here also very small configurations since we will display 

such models for visualization purposes and, therefore, understanding the behavior 

of the model in this extreme case. To compute the co-occurrences in column 

|unique(𝒄𝑇 , 𝒄𝐵)| we simply up-sampled 𝒄𝑇 to have the same resolution as 𝒄𝐵, using 

a nearest neighbor interpolation.  

By inspecting the reconstruction in Figure 5.11, we observe that also when using 

small number of quantizing vectors, e.g. 𝐾 = 16, it is difficult to observe big artifacts 

and only when reducing markedly the number of quantizing vectors, e.g. 𝐾 = 4, the 

quality is distorted for this 256 × 256 resolution. On the contrary, the model is able 

to find the relevant features even when using few latent maps. Both the visual 

inspection and the results support this hypothesis; hence, we resolve to select 𝐷 =
8 latent maps and 𝐾 = 256 quantizing vectors as a latent space to fit the 

autoregressive model. 

DATA AUGMENTATIONS   

For the following section we only consider the model with K=256, D=8, we investigate 

how the model can be used for augmenting and manipulating the data. The model 

was chosen as a good tradeoff between training stability and richness of 

representation. 

In order to evaluate the results, we trained a fast, yet powerful, EfficientNet [153] 

model pretrained on ImageNet to use it as a scoring function for the augmentations. 

Similarly to Classification Accuracy Score (CAS) [20] we train the classifier replacing 

the real dataset with the generated samples and compare the results with the 

 
Figure 5.11. Comparison of VQVAE trained with different of latent codes K. All the rows show the 
reconstructed image ISIC_0068279.jpg. The visual quality of the reconstruction degrades very slowly, 
and big artefacts are clear only when using very small K. 
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reconstructed version, passing through the 

autoencoder. The difference between real 

and reconstructed is what is lost in the lossy 

compression. Using such approach for 

scoring proves the quality of the samples 

directly in a relevant task avoiding the 

perplexities generated by other metrics. To 

facilitate and speed up the analysis, 

particularly when considering the cost of 

training PixelSNAIL for the generating of new 

images, we consider only Nevi (17685) and 

Melanoma (4922). We train the model for 50 

epochs with ADAM [109] and learning rate 

0.001. Prior to the training phase we split the 

dataset into train (80%) and test (20%) 

stratified according to patient. We use, as validation metric, the Area Under the 

Curve instead of the accuracy as it is also used as the primary metric in the ISIC2020 

challenge. 

The results, presented in Table 5.3, shows that there is a loss in performance when 

no real data is used. More specifically, we observe a small difference of 0.14 points 

between “real” data and “reconstruction”, same images passed through the 

autoencoder. This shows that, although some reduction in performance is 

unavoidable due to the introduced domain shift, this is minimal and can open up new 

applications where data is synthetically generated. 

When the top and bottom codes are mixed, we see a further drop in performance 

compared to the reconstructed and real images. The performances of the 

autoregressive models are lower, and completely “synthetic” images reaches 0.798 

AUC, while resampling only low frequencies “resample(𝒄𝐵)” achieves 0.759 AUC. 

The latter, while for human eye seems to produce realistic samples, it performs 

poorly since it is similar to randomly replacing the bottom codes. The worst result 

occurs when replacing top codes with random ones hinting that the model takes 

decisions more on high-frequency details rather than global structures. 

5.6. DISCUSSION AND CONCLUSIONS 

There are still many hurdles in generating and controlling high resolution medical 

images. Overcoming these issues can provide several benefits for training machine 

learning models, especially when limited labeled training data is available.  In this 

chapter we presented VQ-VAE-2 as an alternative to GANs in the context of skin 

lesion analysis. We provided an exploration of the hyperparameter settings, as well 

as novel ways to augment the data based on the VQ-VAE-2 model and the 

manipulation of the latent space, including the use of an autoregressive model. We 

also showed that the generated images are not competitive on a downstream task, 

hinting a limitation of the methods driven by the inability to capture fine grained 

structures in the images and an introduced domain shift. 

Table 5.3. Metrics when replacing input 
dataset with Reconstruction of autoencoder, 
mixing images with same diagnosis, random 
bottom, synthetic novel images with 
autoregressive decoder matching diagnosis, 
resampled bottom codes according to 
diagnosis, random top codes. 

Training set AUC 

real 0.934 

reconstruction 0.920 

mixing 0.893 

synthetic 0.798 

resample(𝒄𝐵) 0.759 

rand(𝒄𝐵) 0.752 

rand(𝒄𝑇) 0.698 
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Several further research directions can be investigated in the future. We believe one 

interesting direction is to exploit the hierarchical structure of the autoencoder directly 

to separate patterns. By this, we suggest constraining a quantization only on a 

particular region of the image, for example, using a segmentation network. In this 

way the augmentation process will be streamlined and facilitated by selecting and 

sampling only relevant features for each layer. Moreover, an interesting direction is 

to modify the loss function used for training, for example by encoding the 

downstream task directly into the autoencoder training. Finally, we would like the 

integration of semantic information directly into the training of the model, for example 

by using unsupervised segmentation models.  

To conclude, we explored the use of VQ-VAE-2 to generate skin lesions, performing 

a detailed analysis of the resulting latent space and performing an extensive 

hyperparameter analysis. Then, we investigated how an autoregressive model, 

called PixelSNAIL, can be used to generate synthetics lesions. We presented 

several possibilities to create these synthetic skin lesions and we evaluated them by 

training a classifier on real data. The qualitative results prove the methods effective 

for microscopic skin lesions generation while being relatively easy to train and 

control. The quantitative results prove the work is promising but cannot outperform, 

or perform similarly, to classifiers training on real data. However, we believe that our 

investigation provides relevant information to devise methods to train machine 

learning model for skin lesions in the low-data regime.  
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6. 3D FACES GENERATION 

“The attempt to escape from pain,  

is what creates more pain.” 

― Gabor Maté 

 

The realistic generation of synthetic 3D faces is an open challenge due to the 

complexity of the geometry and the lack of large and diverse publicly available 

datasets. Generative models based on convolutional neural networks (CNNs) have 

recently demonstrated great ability to produce novel synthetic high-resolution 

images indistinguishable from the original pictures by an expert human observer. 

However, applying them to non-grid-like data like 3D meshes presents many 

challenges. In our work, we overcome the challenges by first reducing the face mesh 

to a 2D regular image representation and then exploiting one prominent state-of-the-

art generative approach. The approach uses a Vector Quantized Variational 

Autoencoder VQ-VAE-2 to learn a latent discrete representation of the 2D images. 

Then, the 3D synthesis is achieved by fitting the latent space and sampling it with an 

autoregressive model, PixelSNAIL. The quantitative and qualitative evaluation 

demonstrate that synthetic faces generated with our method are statistically closer 

to the real faces when compared to a classical synthesis approach based on 

Principal Component Analysis (PCA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper Generating High-Resolution 3D Faces Using VQ-

VAE-2 with PixelSNAIL Networks authored jointly with Dmitry Znamenskiy, Nicola 

Pezzotti and Milan Petkovic, which was published in Image Analysis and Processing. 

ICIAP 2022 Workshops 228–239. 
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6.1. INTRODUCTION 

In the last two decades, the applications of virtual 3D models have risen 

exponentially. Two factors behind the rise are the growth in computational power 

and the economic benefit derived by simulating physical phenomena employing 3D 

models. Today, 3D face models serve many fields including animation of faces 

[154]–[156], recognition of expression [157], and face recognition [158]. For 

example, realistic faces generation is important for crowd generation in virtual reality 

environments [159]. However, the applications are often limited since face data 

contains privacy and sensitive information that reduces or blocks data sharing and 

aggregation from multiple sources. This poses a limitation to the generation of 

realistic 3D faces which can be used in several contexts. 

To overcome such limitations, we propose to replace the original dataset with a 

synthetic replica and present a compelling solution to the generation of synthetic 3D 

faces using a machine learning approach. As a first step, we follow the seminal work 

of Blanz and Vetter [4] and register a common reference 3D template into every scan 

bringing all raw scans in full correspondence with a common parametrization. The 

parametrization is insufficient to generate synthetic scans since the registered 

template has thousands of highly correlated vertices. Generation methods should 

consider this correlation by finding a low-dimensional decorrelated surface 

representation. Thus, Blanz and Vetter [4] reduced the vertex coordinates to a small 

number of decorrelated scores with a data-driven approach using Principal 

Component Analysis (PCA). Sampling new scans with PCA is then straightforward; 

however, interpolating in the reduced PCA subspace will not always result in natural 

human shapes due to the linear nature of the method. To overcome the drawbacks 

of PCA and similar linear methods, deep generative models based on Convolutional 

Neural Networks (CNNs) are employed to capture more complex non-linear 

interactions in the data. The current state of the state of the art advances in the field 

 
Figure 6.1. Method’s flowchart. The registered 3D scans are first converted into a regular 2D image to 
feed the VQ-VAE-2 autoencoder. The PixelSNAIL later learns a prior over the latent space, sample novel 
synthetics codes, decode them into the new geometric images, and, subsequently, to 3D scans. 
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of geometric deep learning [58] leverage the power of CNNs by adapting them to 

work on meshes [59], [60]. Graph convolutions, however, restrict the resolution, and 

therefore, the accuracy and amount of surface details of the 3D template. 

By choosing the 3D mesh template with vertices connected as a 2D grid, our 

approach processes 3D meshes as 2D images. This makes the 3D2D mapping 

straightforward,  enables 2D image synthesis methods, and avoids the challenges 

of graph convolutions [160]. Figure 6.1 shows schematically the solution we adopted, 

which is defined by two phases: in the first phase, see the top part of the figure, the 

method learns a discrete latent image representation given by a two layer quantized 

variational autoencoder VQ-VAE-2 [56]; then, in a later stage shown in the bottom of 

the figure, a powerful autoregressive network PixelCNN [147], [161] with self-

attention [148], called as PixelSNAIL[162] is used to fit the latent space and sample 

from it. By employing such a novel pipeline, we empirically found that our method 

gives more natural 3D shapes compared to the PCA-based one. Due to the high 

variability of plausible 3D human shapes, the subjective evaluation is not enough to 

properly assess the quality and diversity of the generated face. A major challenge is 

defining a proper surrogate measure that evaluate how “human” is a 3D scan. In the 

literature, two metrics are commonly used to evaluate 3D scans: specificity [163] 

measures how close a scan is to the (training) set and diversity [164] measures the 

difference between a pairs of scans. In our work, instead of reporting a single number 

generated by such metrics, we compare their empirical distributions of the 

synthesized scans versus a test set of real faces. This allows us to measure the 

realism and diversity of the generated faces in terms of a previously unseen test 

dataset. The remaining chapter content is structured as follows: the next section 

gives an overview of the prior art, section 6.3 describes the approach for the 

synthetic generation, in the fourth section, we present the experiments and the 

relative quantitative evaluation. Lastly, we conclude and give acknowledgments. 

6.2. RELATED WORKS 

In the following, we present various approaches to synthetic head generation. Many 

works of research still rely on linear models [165] or multilinear models [166] due to 

their simplicity and due to the expansion of 3D Morphable Models [167]. Tran et al. 

[168] proposed a robust CNN-based approach to regress the PCA scores from 

pictures for face recognition and discrimination. In another work, the multilinear 

models are used to transfer facial expression and have the ability to animate faces 

[166]. While being simple and easy to train, they do not consider the input geometry. 

Additionally, a review of current methods regressing and sampling PCA scores is 

beyond the scope of chapter. 
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3D TO 2D REPRESENTATIONS 
Many 2D representation methods originate from the solution of the rendering 

problem which relies on so called UV maps to map 2D texture image on a 3D object. 

The UV maps, by definition, provide a bijective mapping from the 3D mesh triangles 

to their images on the texture image. In 2002, Gu et al. [169] showed how to optimally 

cut a surface and sample it over a regular 2D square grid generating the so-called 

geometry image. The problem might be more straightforward for a face geometry 

since the UV maps can be created by warping of the 3D templates with a regular 

grid. Booth et al. [61] presented a list of possible optimal implementations. Figure 

6.2 shows the selected regular template geometry for this paper on the left, the 

geometry image derived from the grid and a test texture on the middle, and the 

texture rendered on the template on the right. As shown in the picture, the main 

drawbacks of such methods are the artifacts around the cuts or borders. However, 

in this example, such artifacts do not conflict with our requirements for an accurate 

face model and not a full-head one. 

3D FACE GENERATION WITH GANS 
The most common generative models employ Generative Adversarial Networks 

(GANs) [130]. Abrevaya et al. [164], investigated the use of Wasserstein GAN [170] 

to generate novel 3D faces with the ability to control and modify their expression. 

However, in our work, we directly map the input surface into a geometry image since 

we believe their fully connected generator cannot efficiently handle the complexity of 

the shapes. Slossber et al. [171] and the extension work in Shamai et al. [172], 

similarly to our work, converted the 3D into a 2D regular representation through non-

rigid registration techniques. In Moschoglou et al. [173], the template was mapped 

using a cylindrical unwrapping as introduced by Booth and Zafeiriou [61]. While using 

 
Figure 6.2. Template. The face template on the left has a regular (triangular) mesh grid – for visualization 
purposes the template is half rendered surfaces and half mesh. On the middle top column, the so-called 
128×128 geometry image for the facial template, which is naturally derived from the regular structures of 
the template mesh, and a test texture to visualize the smoothness of the UV map. On the right the test 
visualization with example of boundary artifacts of the UV map. 
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similar concepts, our work does not use adversarial training, a key difference that 

makes our method easier to train and less affected by the so-called mode collapse 

which affects GAN architectures. 

3D FACE GENERATION WITH AUTOENCODERS 

Apart from generative GANs models, recently, many works have overcome the linear 

modeling limitations by using VAEs [142]. For example, Bagautdinov et al. [174] 

modeled the face using a multiscale approach for different frequencies of details. 

Fernandez Abrevaya et al. [175] exploited the power of CNN-based encoder by 

coupling it with a multilinear decoder. In Li, K. et al. [176], a multi-column graph 

convolutional networks is designed to synthesize 3D surfaces. They first applied a 

spectral decomposition of the meshes and then trained multiple columns of graph 

convolutional networks. While these methods are similar to our approach, they also 

differ as no one uses the quantized autoencoder with an autoregressive network. 

Moreover, they do not convert the data into 2D geometry images but directly feed 

the registered 3D scans. 

6.3. METHODS 

The definition and registration of the face template are out of the scope of the current 

chapter. Conceptually, we have followed the method explained in Blanz and Vetter 

[4] [6] and have morphed all scans by means of non-rigid registration methods [83], 

[177]. A more detailed description of our parametric models is reported in Chapter 2. 

Since the face template already has a grid structure of 128 × 128 vertexes, we apply 

a vertex-based normalization to map the range of input values into interval [0, 1], and 

therefore, to facilitate the follow up processing with the neural networks. The 

mapping to [0, 1] also facilitates the normalized 𝑥𝑦𝑧 facial data visualization of the 

as 𝑟𝑔𝑏 (geometry-) images, see Figure 6.2 for an example. The range parameters 

for each grid vertex were retained for denormalizing the synthetic images into 3D 

shapes. The neural network approach VQ-VAE-2 with PixelSNAIL used in the 

current chapter is presented in the previous chapter, section 5.3. 

METRICS FOR QUANTITATIVE EVALUATION 
Our goal is to provide always realistic synthetic samples, and to achieve it, we 

visually inspected the generated scans and selected suitable metrics to prove this 

statement. The main idea is to prove that synthetic scans are statistically 

indistinguishable from a test set of original scans excluded from training. Before 

computing the metrics, the scans need to have identical parametrization 

corresponding to the 3D template. The identical parametrization enables a simple 

distance metric between a pair of scans, defined as the Root Mean Squared 

Distance between the corresponding pairs of vertices, after the rigid alignment of 

one scan to another [113]. 

We have employed two derivative metrics used in the literature to evaluate synthetic 

scans. The first metric is called diversity and has been introduced by Abrevaya et al. 

[164] with the aim to produce a single number measuring the heterogeneity of a set 

of scans. The diversity is defined as a distance between a random pair of synthetic 

https://scholar.google.com/citations?user=nOAIpv4AAAAJ&hl=en&oi=sra
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scans. In our work, we compare the 

empirical distribution of the diversity of 

250 generated scans with the empirical 

distribution of diversity in 250 original 

scans from the test dataset. The second 

selected metric is called specificity and 

is defined in Davies et al. [163] for a 

scan as the minimal distance to the 

scans in the training dataset. Similar to 

the diversity distribution, we evaluate 

the empirical distribution of the 

specificity over 250 synthetic scans and 

compare it with the empirical distribution 

of specificity in 250 original scans from 

the test dataset. 

6.4. EXPERIMENTS 

Within this work, we have considered two datasets of registered scans already 

available at Philips Research the SizeChina dataset of 3D head scans [82], and the 

CAESAR of full body scans [36], [178] where only the head was extracted. The 

above data gave us more than 5000 registered 3D face templates. We augment the 

face dataset by performing a symmetric reflection over the y-axis. While in this 

application we assume that asymmetries are normally distributed on the left and on 

the right of face we do not know if this is true. Nonetheless, we still believe this 

augmentation does not hamper the results of the approach. The dataset was split 

stratified according to participant id into train 90%, validation 5%, and test set 5%. 

We tested and computed the metrics only on the test set without considering the 

augmentations. For the sake of experimental reproducibility, we did not perform any 

other augmentation neither in training nor in test time. However, we believe further 

realistic augmentations would impact and consolidate the results. Nevertheless, we 

also notice that the current set of scans is enough to achieve the desired outcome 

of statistical indistinguishability from the test set. 

In our experiments we focus on a two layers VQ-VAE hierarchy with input grid 

resolution of 128 × 128 and relative latent maps of dimension 32 × 32 and 16 × 16. 

We follow the approach described in chapter 5 to find the best combination of 𝐾 =
[64, 128, 256 512], 𝐷 = [2, 4, 8, 16, 32, 64] and found out that, according to 

reconstruction error, 𝐾 = 512 is always better than smaller values. Vice versa for big 

enough 𝐾 we notice that smaller dimension of 𝐷 provides the best outcomes. Hence, 

we used 𝐷 = 2 for our final VQ-VAE-2 model. We also reduced the batch size to 32 

compared to the original implementation for both the autoencoder and the 

autoregressive model. The reconstruction root mean squared weighted error per 

participant is 0.29mm compared to 0.97mm for PCA and is mostly accumulated in 

the areas with higher curvature or with low weights such as eyes, mouth, nostril, and 

neck, as shown in Figure 6.3. We use vertex weights to improve the results in three 

different situations: to facilitate the registration of the raw scans, to maximize the 

 
Figure 6.3. Test set reconstruction mean absolute 
weighted error on the left using VQ-VAE-2 and on 
the middle using PCA. The meshes jet color-code 
ranges from blue 0.0mm error map to red 1.0mm. On 
the right the used vertex weights are shown with 
color-code that ranges from 0.0 black to 1.0 white. 
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PCA encoding energy in the face area of interest, and within the quantitative metrics, 

reported in the next section, to focus the attention of the metrics on more important 

facial areas of the model. Figure 6.3 shows the errors maps per vertex across the 

test set population: as expected the neural network reconstruction outperforms the 

smaller and linear PCA model – where we encoded the registered scans in “only” 

200 principal components as done in chapter 2. To sample a new scan with PCA, 

we decode a 3D scan from the random PCA scores, where each score was sampled 

independently from the respective marginal empirical Cumulative Density Function 

(eCDF) computed over all PCA encoded scans. The above procedure guarantees 

that the synthetic PCA scans inherit the eCDF from the original data. Concerning the 

PixelSNAIL autoregressive model, we used the original configuration for ImageNet 

apart from the batch size, 32 in our example, and total number of epochs, 420 for 

both top and bottom hierarchy. The autoregressive models’ validation accuracies in 

predicting the latent codes after 420 epochs are 0.87 for the top space and 0.91 for 

the bottom one. All the models were trained on PyTorch [110] with the same 

 
Figure 6.4. Example of facial scans (without selection). A batch of registered scans (top left), same scans 
encoded (top right), synthetic scans generated with our approach (bottom left), and PCA synthetic scans 
(bottom right). 
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hyperparameters as in the original implementation (excluding the one explicitly 

mentioned above). 

Comparing the scans by visual inspection is not a trivial task and often not an 

objective metric. However, we believe that it is possible to spot some differences in 

the shape distribution between the different sets by looking at the overall scan’s 

appearance. We present some scans randomly selected in Figure 6.4: the top right 

shows registered scans with the relative PCA encoded version on the top left; the 

bottom scans are synthetic and generated with our approach on the left and with 

PCA on the right. The PCA ones present more variability, or, in other words, more 

shapes differences compared to the other sets. The synthetic scans generated with 

our approach, from a visual inspection, present similar shape variability to the original 

scans compared to the PCA synthetic. Nevertheless, this is not enough since our 

approach may simply replicate or clone the original training data. We test these 

hypotheses in the following quantitative analysis proving that the synthetic scans are 

novel and different from the original training ones. 

QUANTITATIVE EVALUATION 

We have analyzed 2D representations for registered raw versus PCA-encoded 

vertices and computed empirical distributions for specificity and diversity metrics. 

Given 𝑉 the vertices of a synthetic scan its specificity 𝑆 is defined has 

𝑆(𝑉) = min
𝑡∈𝑇

[
∑ 𝑤𝑖‖𝑣𝑖 − 𝑣𝑖

𝑡‖2
2𝑁

𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

]

1
2

    

where 𝑡 is the index of the training set, 𝑁 = 128 × 128 = 16384 the total number of 

vertices 𝑣𝑖 ∈ 𝑉, 𝑤𝑖 ∈ 𝑊 are the weights for the 𝑖th vertex as shown on the right of 

Figure 6.3. The diversity 𝐷 of a pair of scans with vertexes 𝑣𝑖
1 ∈ 𝑉1, 𝑣𝑖

2 ∈ 𝑉2 is defined 

as  

 
Figure 6.5. Quantitative metrics. On the left, the diversity is plotted for each i.i.d. pair and shows that the 
PCA distribution is “flatter” as excepted by the linear method. On the right, the specificity (the minimum 
distance versus the training set is kept) shows that our approach is much closer to the test set. Moreover, 
the specificity also proves that we do not replicate the input training scans since the minimum distance is 
markedly above 0mm – with our approach above 2mm. 
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𝐷(𝑉1, 𝑉2) = [
∑ 𝑤𝑖‖𝑣𝑖

1 − 𝑣𝑖
2‖2

2𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

]

1
2

. 

The empirical distributions presented in Figure 6.5 show that our approach results in 

synthetic faces which are statistically close to the original scans in the test set, unlike 

the PCA-based method which shows a flattened diversity distribution and higher 

specificity. The figure shows that our approach closely follows the distribution of the 

test-registered and -encoded scans, both in terms of diversity and specificity 

distributions. Moreover, since the specificity is computed against the training scans, 

we demonstrate that the faces generated by our approach are diverse from the 

training set since they do not collapse to zero and have a minimum distance above 

2mm. The higher specificity of the PCA-synthetic scans also confirms the qualitative 

evaluation, see example scans in Figure 6.4, that PCA-based faces have more 

extreme characteristics. 

6.5. DISCUSSION AND CONCLUSION 

We presented a novel approach that can generate high-resolution synthetic 3D 

scans that combine traditional 3D parameterization approaches with the recent VQ-

VAE-2 and PixelSNAIL deep learning based generative models. Our approach does 

not require the parametrization of the 3D face model and can be directly applied to 

registered templates, hence, allowing for a richer generation domain since synthetic 

scans can be outside the PCA linear sub-space. However, the major contribution of 

our work is that our method strictly outperforms the linear PCA classical approach 

and generates realistic high-resolution scans. We consider this only a first step in 

proving the validity of this approach – future work will perform a benchmark versus 

other state-of-the-art generative models. One main challenge is the lack of a clear 

quantitative metric to judge whether a scan belongs to the “real” class since the 

proposed diversity and specificity metrics may not be enough to capture all the 

relevant shape information. Additionally, while we believe the two selected metrics 

are suited for the current evaluation of realistic human faces, different metrics can 

be developed in the future. A natural extension of our approach that can partially 

solve the metrics problem could combine the 3D shape synthesis with the photo-

realistic texture synthesis adding the 𝑟𝑔𝑏 to the 𝑥𝑦𝑧 channels within the 2D 

representation. 
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7. 3D BODY GENERATION 

“Vulnerability is the birthplace of  

innovation, creativity and change.” 

― Brene Brown 

Modelling and representing 3D shapes of the human body is a prominent field due 

to its applications in healthcare, clothes design, virtual fit rooms, and the movie 

industry. The realistic generation of synthetic 3D shapes is an open challenge due 

to the complexity of the geometry and the lack of large and diverse publicly available 

datasets. While generative models based on convolutional neural networks (CNNs) 

have shown the ability to produce novel synthetic high-resolution images 

indistinguishable from the original pictures by an expert human observer, applying 

them to non-grid-like data like 3D meshes presents many challenges. 

In our work, we tackle the problem of 3D body synthesis by reducing 3D meshes to 

2D image representations. We show previously that the face can naturally be 

modelled on 2D grid, while for the more challenging 3D body geometry we propose 

a novel non-bijective 3D-2D conversion method representing the 3D body mesh as 

a plurality of rendered projections on the 2D grid. Then we train a state-of-the-art 

Vector Quantized Variational Autoencoder VQ-VAE-2 to learn a latent representation 

of 2D images. The 3D synthesis is achieved by training on the latent space and 

sampling it with a powerful PixelSNAIL autoregressive model. 

We evaluate our method of 3D shape synthesis versus a classical one based on 

Principal Component Analysis (PCA), where the synthetic shapes are obtained by 

sampling from the empirical cumulative distribution of the PCA scores. We use the 

empirical distributions of two commonly used metrics, called specificity and diversity, 

to demonstrate that synthetic bodies generated with our method are statistically 

closer to the real faces when compared to the PCA ones. This experiment on 3D 

body geometry is a preliminary work and requires further research to match the test 

set statistics but shows promising results. 

  

This section is a part of the paper Generating High-Resolution 3D Shapes using VQ-

VAE-2 with PixelSNAIL Networks authored jointly with Dmitry Znamenskiy, Long, 

Yuxuan, Nicola Pezzotti and Milan Petkovic, which is currently under review in 

Special Issue "Computer Vision in Human Analysis: From Face and Body to 

Clothes". A special issue of Sensors (ISSN 1424-8220). This special issue belongs 

to the section "Sensing and Imaging". 



78 

 

 

7.1. INTRODUCTION 

In the last two decades, the use and applications of virtual 3D models in the real 

world have risen exponentially. There are many reasons behind this, from the growth 

in computational power to the economic benefit of using a parametric model to 

simulate physical phenomena. Today, 3D models serve many fields including 

animation of character [67] and faces [154]–[156], recognition of expression [157], 

face recognition [158] and inferring body shapes and measurement to be used, for 

example, in the clothing industry for virtual try-on [179] or in the medical field to 

estimate fat distribution. 

The analysis of personal 3D data is subject to privacy constraints, limiting the 3D 

data sharing. Modern 3D scanners operate with sub-millimetre accuracy so that a 

person can be identified from its 3D scan. At the same time, the use of obscuring 

and decimation methods on 3D data can conflict with the modelling objectives and 

accuracy requirements of body or face measurements for a particular healthcare 

device. The sharing of randomly generated 3D subjects, using generative models 

trained on original 3D data, could enable 3D analysis when the sharing of the original 

data is constrained for example when data protection laws forbid sharing them 

between hospitals.  

The analysis of a dataset of 3D models requires that all scans are brought in full 

correspondence. This can be achieved by registering a common reference 3D 

template into every scan, so that all morphed templates, representing individual 

scans, will have a common parametrization, see the seminal work of Blanz and 

Vetter [4] for faces and a Allen et al [5] similar work on full-bodies. Once having a 

common representation, we tackle the problem of generating synthetic and realistic 

shapes. The registered template has thousands of vertices, but their positions are 

highly correlated. Generation methods should take this correlation into account by 

finding a low-dimensional de-correlated representation of the surface. Thus Blanz 

and Vetter [4] used Principal Component Analysis (PCA) as a data driven approach, 

to reduce a stacked array of thousands of vertex coordinates to a small number of 

PCA scores. Analogously in [5], [180] Allen et al. applies the same approach to learn 

a data-driven human shape model.  

The generation of synthetic 3D meshes by sampling using PCA decomposition is 

straightforward: assuming the orthogonality of the PCA basis vectors it is sufficient 

to sample the PCA scores as independent random variables. While the PCA analysis 

assumes that the marginal coefficient distributions are close to Gaussian, it is more 

reasonable to follow a data-driven approach and sample from the empirical 

distributions of each coefficient. This approach brings multiple benefits: It is easy to 

implement, it is fast, and the sampled shapes will have the marginal coefficient 

distributions statistically indistinguishable from the original data. However, there are 

also disadvantages. In fact, not all combinations of PCA scores result in a natural 

human shape as shown in the previous experiment for the face geometry.  
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Stepping back from PCA, we explore generative methods which could work with 

original high-dimensional vertex data. The recent advances in Convolutional Neural 

Networks (CNNs) where the deep generative modelling can capture more complex 

interactions in the data, thus potentially improving over linear methods. The current 

state of the state of the art advances in the field of geometric deep learning [58] uses 

the power of CNNs by adapting them to work on meshes [59], [60]. Graph 

convolutions, however, restrict the resolution, and therefore, the accuracy of the 3D 

template. 

In our work, we decided to use an alternative approach (A schematic representation 

of our approach is presented in Figure 7.1): we work with the representation of the 

registered 3D template on a regular 2D grid to fully employ CNNs. Hence, a part of 

this work is devoted to the conversion from 3D shapes to 2D grids. We first 

considered a simpler case of the human facial surface using a 3D template with a 

CNN-friendly 2D grid structure as shown in the previous chapter. The face can be 

represented as a 2D image where a single piece UV map is easy to generate. Once 

can simply register starting with a regular grid the face scans. Here, we consider a 

general case of the complete human body that cannot be naturally unwrapped into 

a 2D grid. It is in fact hard to cut and unwrap the mesh considering the complex 

manifold of the full body. Therefore, we propose a novel non-bijective method when 

the 3D shape is represented as a sequence of projections on the 2D grid, as 

illustrated in the right of Figure 7.2, and explained in detail in the next sections. The 

advantage of this method is the simple creation of 2D body template by means of 

rendering, which works with any parametrization of the 3D grid. The inverse 2D to 

3D conversion is achieved by aggregating and regularizing multiple body projections.  

Once we have 2D representations of 3D template, we can apply CNNs to generate 

new 3D shapes. For our experiments, we use the relatively novel 2D image synthesis 

 
Figure 7.1. Flowchart of Full body. Definition of the components for our approach on synthetic body 
generation. The registered 3D scans are first converted into a regular 2D image to feed the VQ-VAE-2 
autoencoder. The PixelSNAIL later learns a prior over the discrete codes and then it is used to sample 
novel synthetics codes, which are then decoded into the new geometric images and 3D scans. 
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method employing a latent image 

representation given by a quantized 

variational autoencoder VQ-VAE-2 [56], 

which is sampled using the 

autoregressive network PixelCNN [147] 

with attention, called as 

PixelSNAIL[162].  

The remaining chapter content is 

structured as follows. In the next section 

we will introduce related works for full 

body representations. In Section 7.3, we 

introduce our method for generating 2D 

regular representation. The fourth 

section describes the input data and the 

experiments performed, and the fifth 

section contains the results of objective 

evaluation. Finally, we discuss the 

results, conclude the chapter, and give acknowledgements.  

7.2. RELATED WORKS 

Many 2D representation methods originate from the solution of the rendering 

problem which relies on so called UV maps for the mapping of 2D texture image on 

3D object. The UV maps, by definition, provides bijective mapping from the 3D mesh 

triangles to their images on the texture image. The UV maps for the face model can 

be created by warping of the 3D templates with a regular grid of the facial surface, 

see for example Booth et al. [61] for a list of possible optimal implementations. In the 

previous chapter we utilize a facial parametric model which 3D template has already 

a regular 2D grid. Instead, the full body UV maps can be coarsely divided into two 

classes: single connected piece and a patch work of multiple pieces. Regarding the 

single piece solution, in 2002, Gu et al. [169] showed how to cut a surface and 

sample it over a regular 2D square grid generating the so-called geometry image. 

While the work did minimize the artefacts along the cuts, it naturally cannot solve 

huge distortions when mapping complex 3D body shape with arms and legs into a 

square grid. The majority of the recent prior art follows UV map from the SMPL model 

[181] which has a patchwork of different body parts: head, two palms, two arms, 

torso, two feet, two legs, which are economically mapped each in their own place on 

the 2D grid, so that the total area of background pixels is minimized. While the 

patchwork has more control over the surface area, it has many cuts through the 

surface and every cut creates a challenge to get the continuity in the generated 

vertex positions on both sides of the cut. Thus, in a more recent work, Zeng et al. 

[182] revert to a single piece solution where the geometrical distortions are reduced 

for the cost of increased percent of background pixels present in the UV map.   

Observe that the use of prior-art UV maps for the 3D-2D conversion is subject to 

licenses that constrain commercial applications and limit the impact this technology 

 
Figure 7.2. Template and UV Map. The average full-
body template with half rendered surfaces and half 
mesh on the left and the relative regular 
representation on the right. The mesh is composed 
of more than 50.000 vertexes. The geometry images 
for the full body have resolution of 256×256 and is 
derived from 3 projections: frontal view, the middle 
from a rear view and the right from the bottom. 
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can have in several real-world applications. Thus, in this work we propose a novel 

non-bijective method that maps 3D body into multiple 2D projections rendered from 

a set of camera views. This method minimizes the number of pieces and is 

generalizable to arbitrary 3D body template. 

7.3. FROM 3D TO 2D REPRESENTATIONS 

Within this work, we have considered two datasets of registered scans already 

available at Philips Research: one corresponding to a face template with a regular 

grid of 128 × 128 vertices introduced in the previous chapter, and a full body 

template with about 50K vertices randomly placed over the body surface shown on 

the right of Figure 7.2. Conceptually, we have followed the method explained in [4], 

[62] and have morphed all scans by means of non-rigid registration methods [83], 

[84]. A more detailed description of our parametric models is reported in Chapter 2.  

Since the face template already has a grid structure, we have only applied vertex-

based normalization to map the range of input values into interval [0, 1], and 

therefore, to facilitate the follow up processing with the neural networks. The 

mapping to [0, 1] also facilitates the visualization of the normalized xyz facial data as 

rgb images, as illustrated on Figure 6.2.  

In contrast to the face, the body template’s complex shape cannot be naturally 

unwrapped into a 2D grid due to its watertight geometry, where cutting and unfolding 

to a planar geometry without introducing extreme deformations is challenging. We 

propose a novel non-bijective method that represents the 3D shape as a sequence 

of projections on the 2D grid. The advantage of this method is the simple creation of 

2D body template by means of rendering, which works with any parametrization of 

the 3D grid. In our experiments we have rendered three body views: from front, from 

back and from bottom, where in the first two views we have morphed the arms down 

to save space on the rendered geometry image. The use of multiple views ensures 

that almost all template vertices are visible in at least one view, see Figure 7.3 (left), 

where their displacement can be computed via bilinear interpolation of the 2D grid 

values. 

The inverse conversion from 2D to 3D is achieved by aggregating bilinear 

interpolated vertex displacements from the views followed by regularization of the 

3D shape using mesh Laplacian, as described in [183]. Thus, the vertexes positions 

𝑉 are found by minimizing quadratic cost function: 

𝑉 =  argmin(‖𝐺 ∙ 𝑉 − 𝑃‖2 + 𝛼‖𝐿 ∙ 𝑉 − 𝐿 ∙ 𝑉0‖2) 

where 𝐺 is the sparse registration matrix for 2D grid points on the body, 𝑃 are the 

de-normalized 𝑥𝑦𝑧 vertex positions at the 2D grid points, 𝛼  = 0.001 is the 

regularization parameter (for units defined in mm), 𝐿 is the sparse matrix 

corresponding to discrete Laplacian, and 𝑉0 are the average body vertices. Due to 

the use of the quadratic norm, it is easy to derive a closed form solution for V which 

gives us a mean vertex error of 0.14 mm, distributed as illustrated on Figure 7.3 

(right).  
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Once the 3D bodies are mapped to the 

2D grid, we apply the same 

normalization as in the case of faces to 

map the range of input values into 

interval [0, 1]. The range parameters for 

each grid point were retained for use 

during the de-normalization and 

conversion of the synthetic images into 

3D shapes.  

7.4. EXPERIMENTS 

In our experiments we have used 3D 

scans from the CAESAR dataset of full 

body scans [36], [178]. The above data 

gave us more than 4000 registered 3D 

body scans which we augmented to 

50000 registered bodies using ‘Age’ and 

‘Weight’ growth models. The dataset 

was split stratified according to 

participant id into train 90%, validation 

5%, and test set 5%, both for face and 

full-body experiment. We tested and computed the metrics only on the test set 

without considering the augmentations. For the sake of experimental reproducibility, 

we did not perform any other augmentation neither in training nor in test time. 

However, we believe further realistic augmentations would impact and consolidate 

the results.  

After registering the common templates, we encoded the information in 200 principal 

components (both for the head and full body). The description of our parametric 

model is presented in Chapter 2. We then computed the eCDF for all PCA encoded 

scans separately. To sample a new scan, we simply sample each score 

independently and then decode 3D scan from the scores. 

In our experiments we focus on a two layers VQ-VAE hierarchy with input resolution 

of grid resolution of 256×256 (and relative latent maps of dimension 64×64 and 

32×32) for the full body. We follow the approach described in Chapter 5 and Chapter 

6 to fine tune hyperparameters such as the latent space dimensions. We also 

reduced the batch size to 32 compared to the original implementation for both the 

autoencoder and the autoregressive model. The reconstruction error average per 

vertex for the full body is presented in Figure 7.5. The figure shows an error bigger 

than 1.00mm on foot and hands as expected due to the complexities of fingers and 

the relatively few pixels devoted to them. However, we believe we should reduce the 

reconstruction error in the hip-waist area by improving the methods e.g., by providing 

and a better 2D representation. 

Concerning the autoregressive model, we used the original configuration for 

ImageNet apart from the batch size, 32 in our example, and total number of epochs, 

 
Figure 7.3. 2D-3D reconstruction accuracy. Left 
image shows visible (red) vs invisible(blue) vertexes 
in the template body. Right image shows distribution 
of the reconstruction error, according to ‘jet’ 
colormap (blue=0.0mm and red= 1.00mm), in a 
sample body. 
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1000 for both top and bottom hierarchy. 

The autoregressive models’ validation 

accuracies in predicting the latent codes 

after 1000 epochs reaches 0.45 top 

accuracy and 0.88 bottom accuracy. All 

the models were trained on PyTorch 

[110] with the same hyperparameters as 

in the original implementation 

(excluding the one explicitly mentioned 

above). 

In Figure 7.4 one example of how 

PixelSNAIL is failing to produce correct 

geometry images is shown. This is 

happening for 0.5% of generated scans 

when using temperature 1.0. However, 

the failing generation can be easily detected by checking whether the background 

pixels are synthesized at the same places as in the original 2D template. 

7.5. EVALUATION 

We have analysed 2D representations for registered raw vs PCA-encoded vertices 

and computed empirical distributions for specificity and diversity metrics. The 

empirical distributions of metrics are shown in Figure 7.6. Contrary to the face 

metrics which show that our approach results in synthetic faces which are statistically 

close to the original scans in the test set, the full-body metrics do not confirm our 

subjective evaluation. The distribution of diversity and specificity metrics for the PCA-

based method seems closer to the distribution in the test dataset selected from 

original scans. We can suggest the following reasons explaining this counterintuitive 

result. First, the full body, compared to face, has more challenging 3D-2D mapping 

with value discontinuity at the border of the projections. Quantitatively this is already 

seen in the autoencoder, and autoregressive worse performances compared to the 

 
Figure 7.4. Corrupted synthetic 2D representations. An example in which the PixelSNAIL fails to produce 
a correct geometrical image on the left. The right is the distribution of Intersection Over Unions over the 
segmented UV body mask. 

 
Figure 7.5. Reconstruction error vertex-wise mae for 
the best VQ-VAE-2 full body model. On the left the  
full-body error is first plotted and then displayed on 
the full body mesh surface. The meshes jet color-
code ranges from blue 0.0mm error map and to red 
1.0mm. 
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face experiment which we believe is the main reason for the lower specificity and 

diversity. In fact, we believe that a less accurate autoregressive model will lead to 

closer to average distributions of latent codes and 3D synthetic shapes. Another 

major point of discussion that will be analysed in future work is to benchmark the 

effectiveness and quality of our augmentations prior to model training. 

Few example of synthetic bodies generated with our methods and with PCA are 

shown in Figure 7.7. The qualitative comparison seems promising but further 

experiments and quantitative evaluation is necessary. 

7.6. DISCUSSION AND CONCLUSION 

While the experiments successfully generate realistic high-resolution 3D faces and 

full bodies, we consider this only a first step in proving the validity of this approach.  

One main challenge is the lack of a clear, quantitative, metric to judge whether a 

scan belongs to the “real” class (of faces or full bodies). These proposed diversity 

and specificity metrics may not be enough to capture all the relevant shape 

information. Moreover, the full-body experiment still requires further investigation in 

many directions. In fact, the purpose of generating full body 2D representation was 

required for different applications. We suggest that future research consider 

optimizing the number of projections and their position, taking particular interests in 

minimizing the background pixels to facilitate the NNs training. 

Another potential issue is the geometric distortion introduced by the reconstruction 

from multiple projections. This can be explored are reduced in future research by 

using a deep learning approach to rendering for example as described in Kato et al. 

[184].  

 
Figure 7.6. The full body metrics. The full body metrics do not show promising results as in the face 
geometry and further work are experiments are necessary to reach the desired quality of scans. Both 
diversity and specificity for our approach are lower than test set distributions allow us for example to 
calibrate the model and increase the variability of scans by raising the sampling temperature and therefore 
increasing entropy, diversity and specificity of the scans. 
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In summary we presented a novel approach that is able to generate high resolution 

synthetic 3D faces in the previous chapter and full bodies. While tackling the more 

complex full-body geometry we presented a new non-bijective way of creating the 

2D representation of 3D template by using multi-view projections. The advantage of 

this method is that it is agnostic to the shape of the 3D template and can be adapted 

to any 3D template: of foot, hand, torso, etc. The remaining challenge (and the 

subject of optimization) is finding of the best set of camera views while minimizing 

the overlap and the number of invisible vertices. 

Another relevant strength of our approach is that it does not require the 

parametrization of 3D face/body model and can be directly applied to registered 

templates. This leads to the possibility to generate scans outside of the PCA linear 

sub-space. However, the major contribution of our work is that our method strictly 

outperforms the linear PCA classical approach and generates realistic high-

resolutions scans. Moreover, our method also outperforms the PCA-based one when 

  
Figure 7.7: Full body scans. The three columns on the left are sampled using our approach, the three 
columns on the right are samples generated using the PCA based approach. Subjectively, our approach 
more often provides realistic scans compared to PCA-based approach where we observe extreme shape 
features and often bodies with mixed gender that are not representative of the input dataset. 
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training it over the PCA encoded scans for the facial scans. Further work is required 

to ensure that the same conclusions hold also for the full body surface.  

To conclude we demonstrate that is possible to apply the state-of-the-art CNNs for 

the generation of realistic high-resolution 3D scans by reducing the problem to 2D 

representations. In particular we have shown that the combination of VQ-VAE-2 with 

PixelSNAIL, which was previously used for the generation of realistic facial images 

and skin lesions, it also applicable to 3D meshes when representing them as images. 
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8. CONCLUSIONS  

The analysis and parametrization of the outer body skin have been proven vital in 

many fields spanning from healthcare to the clothes and movie industry. This has 

not been possible before the advent of modern computer vision and the harness of 

artificial intelligence power. In this thesis, we explored recent advances in the 

modeling and parametrization of the body skin on different scales: from the global 

body measurements and shape to the face shape, and then to the local description 

and classification of skin features such as skin hair and lesions. While applying and 

advancing deep learning and shape modeling, we proposed novel approaches to the 

prediction of the skin surfaces and to the analysis of local skin patches effectively 

satisfying several real-life needs and enabling a few industrial applications. 

8.1. OVERVIEW 

Our research was driven by consumer and business needs and our aim from the 

beginning was to blend them with the research goals and research questions. We 

developed skin modeling and parametrization technologies to advance devices, 

solutions and digital tools for personal health and healthcare. Thus, a large part of 

the research is devoted to the Laser Hair Removal applications, where we first 

addressed the image-based hair counting for automatic assessment of the epilation 

efficiency. Second, we considered the skin lesion classification which can be treated 

differently during the epilation. Third, the epilation application motivated the analysis 

of 3D body surface shape and area, where we generated synthetic 3D data to avoid 

privacy-related issues. Another application that benefits from the synthetic 3D facial 

surfaces is the analysis of the facial geometry for making a perfectly fitting oxygen 

mask for patients suffering from sleep apnea.  

We defined five research questions to advance the state of the art in the field of 

computer vision applied to the skin: 

RQ1. How accurately can one estimate skin shape                                
from anthropometric measurements? 

RQ2. Can a computer vision based automatic hair counter               
replace the human annotator? 

RQ3. Does hair affect skin lesion diagnosis in deep learning 
classifiers? 

RQ4. Can we model the distribution of skin lesion images and 
generate realistic looking synthetic examples with deep 
learning? 

RQ5. Can we generate realistic 3D skin                                         
exploiting the power of deep generative models? 

And our main contributions answering these questions respectively are: 
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• a methodological approach suggesting the best combination of simple body 

measurements to acquire for the shape estimate of any selected body part 

demonstrating high accuracy in surface prediction (Chapter 2, RQ1) 

• an end-to-end deep learning approach to automatically count skin hair in 

small skin patches which has the potential to replace the manual hair 

counting but is not yet mature enough to replace human work fully (Chapter 

3, RQ2) 

• a pipeline demonstrating that hair presence does not affect state-of-the-art 

skin lesion classification models (Chapter 4, RQ3) 

• an effective approach to the controllable generation of artificial skin lesion 

images using deep generative models (Chapter 5, RQ4) 

• and, finally, a successful adaptation of the above approach, which was 

initially developed for the generation of images, to the generation of 

synthetic 3D skin surfaces of faces and bodies (Chapter 6 and 7, RQ5). 

8.2. LIMITATIONS AND FUTURE WORK 

Hence, all questions have been positively answered except for RQ2, where further 

work will be needed to create more robust hair counters to replace the human 

annotators. Despite the adoption of such solutions by the industry, many limitations 

are still present, and many open problems need future work. One major limitation is 

the ability to process 3D meshes efficiently and similarly to the 2D images defined 

on a regular pixel grid. Such a possibility was not available at the start of the research 

where now many directions in the deep learning field are rising like geometric deep 

learning. Another limitation posed to such meshes models is capturing and 

normalizing proper skin textures on top of the model. Concerning the skin patches 

analysis, we see a need for deep learning models to properly handle medical data 

that suffer from difficult light conditions and unbalance in the classes. Note that the 

controllable generation of synthetic skin lesions presented in Chapter 5 and similar 

related research work partially solves the problem, as we do not factorize the effect 

of illumination. Without factorization, the presented generative approach requires a 

significant amount of training data to be able to extrapolate unseen data or 

hypotheses. However, as presented in our work, the ability to manipulate only a 

salient part of the image allows for a richer data augmentation possibility, for 

example, in the case of a rare class representing a rare disease. 

Over the past four years, many researchers have provided feedback on our work. 

Additionally, a collaboration called “z-inspection” [185], [186] with a group of external 

researchers aimed at addressing the trustworthy use of AI in healthcare raised a 

significant ethical awareness related to the research presented in the dissertation. In 

the following part of this sub-section the most important ethical considerations are 

discussed. 

ARTIFICIAL INTELLIGENCE VERSUS HUMAN LABOR 

The work on hair count was not possible without the work of many human annotators. 

More than 4000 pictures were annotated by hand with the total hair count. 

Nevertheless, the annotator’s work is the same work that might help replace himself 
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with the automatic end-to-end deep learning solution. We believe that particular care 

for such topics is crucial, and we recommend that AI researchers be well acquainted 

with these ethical tensions by taking the necessary steps to ensure their work is not 

misused to reduce overall population wellbeing. This can be achieved only by the 

cooperation between different institutions and stakeholders since no single person 

or entity can predict or understand how complex new technologies could evolve; 

however, the AI researcher should raise awareness as much as possible within its 

capabilities.  

An ethical assessment attached to a submitted paper is one practical step that AI 

venues and journals may implement. Another possibility is the full ethical 

assessment by a third party or independent organization such as z-inspection to 

detect human concepts in skin lesions [187].  

ACCESSIBILITY 

Ideally, the benefit of the research should be accessible to everyone no matter their 

social status or geographic location. This is not always possible, but steps may be 

taken to ensure broader access. For example, one of the main limitations of the work 

presented in Chapter 2 is the need for constructing a full parametric model in the 

training phase. This implies that a retrain of the model including different dependent 

variables or dependent parametric scores (for example the calf to predict foot shape) 

would require building a new parametric model.  

We hope that the synthetic generation of skin surfaces presented in Chapter 6 may 

improve the accessibility of such data. Similarly, the generative models may allow 

everyone to access expensive and rare skin images in the future. 

PRIVACY AND DATA COLLECTION 

Another tension that often emerged in the dissertation is the attention to privacy 

versus the need for big data collection: skin images and 3D human avatar has always 

the potential to leak privacy-sensitive information.  

Ideally skin images should be cleaned to remove any birthmark or identifying tattoo. 

One suggestion for future research is to exploit the generative approach presented 

in Chapter 5 to inpaint and remove the area of the image which are potentially linked 

to the user identity.  

DEVELOPMENT VERSUS DEPLOYMENT 

After the major dissemination in a conference or journal, all models developed in the 

dissertation were deployed in production for various research and business 

applications. They were all sent to production and maintained by the engineering 

teams. This implies that the model must be robust and stable over time. These are 

qualities that are sometimes overlooked for research outputs. Future research will 

constrain the deep learning models, especially generative ones, to be deployment 

friendly for example by reducing their complexity. 



90 

 

ENERGY CONSUMPTION 

A similar action might be taken to reduce energy usage. In fact, training deep neural 

networks requires great computational power and, therefore, great consumption of 

energy. In this work, we trained several neural networks models and in future 

research we will aim to reduce the energy costs in deep generative models. For 

example we are currently improving our DL pipelines by maximizing the use of pre-

trained models and training efficient and smaller ones such as EfficientNet [153] as 

already seen in Chapter 5.   

8.3. IN CONCLUSION 

In conclusion, we presented several techniques to use modern computer vision to 

enhance skin-based applications. We believe that a combination of shape modeling 

and texture analysis using deep learning methods will play a crucial role in the future 

of skin mapping, navigation, and parametrization enabling game-changing 

technologies such as the full integration of robotic tools to help in surgical operations. 
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SUMMARY  

The skin is the largest human organ and performs essential biological functions like 

protection, regulation, and sensation. These functions are often impaired or changed 

due to natural conditions or human intervention and lifestyle. For example, human 

interventions applying products to preserve skin beauty are common when the skin 

is aging. Similarly, skin ageing also impairs the normal protection against DNA 

damage and, therefore, it can lead to skin cancer. Skin specialists can restore the 

functions and detect and prevent diseases by looking at and analyzing the skin 

surface and texture. Their work can be improved with the help of computer vision –

a scientific field under artificial intelligence that studies how computers can observe, 

recognize, and interact with the world via visual inputs such as videos, images, and 

3D data. 

Within the computer vision fields, several archetypal tasks can be considered:  

classifying and labeling objects in the images, counting the total number of instances 

of an object, detecting a human constitution through the analysis of 3D scans, and 

health state evaluation through a sequence of images. By applying computer vision 

to parametrize and analyze the skin surface distribution and the local texture, one 

can improve personal care devices such as shavers, epilators, and skin care 

products and support dermatologists in their daily work. In this dissertation, we 

leverage and improve modern computer vision algorithms to enable various human 

skin applications. We use shape analysis and synthetic generation of skin surfaces 

to reduce the costs of acquiring and using precious 3D human scans. We use 

artificial neural networks to detect, classify and count skin features, such as 

potentially harmful skin lesions or skin hair. 

We improve the analysis of 3D human skin surfaces by defining a novel methodology 

to infer the surface shape distribution from sparse measurements like weight, age, 

height, and arm length. Predictive statistical models can estimate skin surfaces given 

a set of anthropometric measurements with superior accuracy. Successively, we 

leverage deep generative models –a subfield of artificial neural networks aiming at 

generating synthetic data– to generate novel 3D scans. Our contribution is a novel 

approach that converts 3D representation into a 2D one, where a generative model 

is then applied, enabling the generation of surfaces instead of textures. The 

quantitative comparison of synthetic test shapes versus real ones demonstrates the 

strength of this approach in terms of diversity and fidelity. 

Besides the analysis of 3D skin, the dissertation investigates the use of deep learning 

to detect local skin features to enable several applications. Usually, the screening 

and diagnosis of skin lesions like melanomas are primarily carried out by clinical 

visual inspection and biopsy if necessary. However, this process is slow and there 

is a pressing need to reduce the amount of work of dermatologists and skin 

specialists employing computer assistant telemedicine. We use state-of-the-art 

architectures to automatically count skin hair in a tiny skin patch, to understand 

wheatear skin hair presence influence skin lesions classification and generate novel 

skin lesions for training new classification models. 
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To count skin hair, we collected a dataset of 4000 skin patches from more than 100 

volunteers.  Based on this data, we trained a prediction model that can count hairs 

with an accuracy of ~6 hair out of the ~55 in the images. While not beating an expert 

human annotator, the automatic method is extremely fast and deemed sufficient for 

an industrial evaluation of epilation devices. Building on top of learned knowledge in 

the hair domain, we investigate how their presence may influence the diagnosis of 

skin lesions. We trained neural networks with and without hair, demonstrating that 

their presence does not hamper the ability to classify skin cancer correctly. Hence, 

we show that shaving prior to acquiring skin pictures is not required, thus facilitating 

an early diagnosis of potential skin cancer. 

One clear challenge to achieving great prediction accuracy for skin lesions is the lack 

of a large amount of annotated data. Collecting real samples is time-consuming and 

difficult, for example, considering rare diseases. In this work we propose using a 

novel approach to generate synthetic skin lesions to augment and increase the 

number of images in the lesions’ datasets using state-of-the-art neural networks. 

This offers benefits including directly modifying a local part of an input lesion without 

affecting its global structure. The quantitative results are promising but still show that 

the synthetic data are not good enough to improve downstream tasks such as the 

classification one. 

To conclude, in this work we explored several multiscale computer vision 

methodologies and confirmed the potential of deep learning to improve the analysis 

and parametrization. While doing so, we presented new compelling applications that 

are currently used in the industry practice or that will soon be deployed and adopted. 
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