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Summary

Energy Consumption Prediction for Electric City Buses
Using Physics-Based Principles

DRIVEN by climate change, the present-day transportation sector is tran-
sitioning to electrically powered mobility. In this transition, the battery

electric bus is a key solution that is already employed on a large scale in many
cities. Compared to conventional diesel-powered buses, these new energy vehicles
offer the possibility of a lower total cost of ownership due to lower fuel expenses
and maintenance costs. Even though electric buses are more energy-efficient than
conventional vehicles, the available energy is generally less due to the limited en-
ergy density of present-day battery cells. This results in a limited driving range
that varies with vehicle, road, and weather conditions. Because of the uncertainty
regarding the future energy consumption, electric buses are often scheduled more
conservatively than conventional buses. In this dissertation, the energy consump-
tion of a battery electric bus is modeled to more accurately predict the required
powertrain power in advance.

An electric vehicle energy consumption prediction model is developed using
physics-based principles. The model consists of a velocity prediction algorithm
and an energy consumption model. The velocity prediction algorithm uses the
maximum legislated speed, the road corner radius, traffic light locations along a
route, and the previously measured average acceleration. The energy consumption
model is based on the longitudinal dynamics of the vehicle and includes expressions
for rolling resistance, aerodynamic drag, and road gradient. The combined two
parts of the model are a function of route information, weather conditions, and
road slope, each of which are obtained from databases via the internet. The
model is applied to an electric delivery van and has an error ranging from 4.3% to
12% when compared to measurements. Given the correct model parameters, the
physics-based model can be applied to any electric road vehicle.

Next, physics-based extensions of the baseline energy consumption model are
developed. A nonlinear steady-state cornering model shows that both lateral and
longitudinal slip of the tires cause additional energy losses during cornering of the
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vehicle. This model is validated by comparing the results to steady-state cornering
tests conducted with a 12meter battery electric bus. Even though this effect is
rarely considered in the literature, these additional tire losses can account for up
to 5.8% of the powertrain energy consumption on city bus routes with many turns.

A second model extension involves the vertical dynamics of a bus. Simulation
results from a validated quarter car model indicate that the energy dissipated in the
dampers is equal to the work performed by the resistance force in the longitudinal
direction. The quarter car model is used to relate road roughness to damper losses.
Vehicle coast-down measurements reveal that the damper losses explain most of
the increase in rolling resistance when changing from a smooth to a rough road.
This is a solid motivation for including a road-type dependent rolling resistance
coefficient in a microscopic energy consumption model.

A challenge in most physics-based models is the selection of the correct model
parameters. In the longitudinal dynamics model the road-type dependent rolling
resistance and an accurate road gradient are challenging to determine. A method
is presented to estimate these parameters from the powertrain data of previous ve-
hicles traversing the same route, thereby creating a position-dependent resistance
profile. Using this profile to predict the future powertrain power reduces the error
by 1.7 percent point compared to a conventional method and does not require the
availability of a digital elevation model.

The physics-based energy consumption model requires knowledge of the future
vehicle speed. Two methods are explored to increase the accuracy of the future for-
ward velocity prediction. Firstly, during a hardware-in-the-loop test, an onboard
velocity prediction algorithm gives an improved up-to-date energy consumption
prediction by including the current vehicle speed and position in the prediction.
Secondly, based on measurement data of a bus fleet, it is shown that the longitudi-
nal vehicle acceleration, as a function of vehicle speed, is a good characterization
of the driver. This concept is applied by defining driver-specific acceleration and
deceleration curves. When applied in an energy consumption prediction, these
curves clarify the majority of the powertrain energy difference measured between
two drivers.

The methods presented in this thesis serve as the next step toward more accu-
rate energy and power prediction for electric buses and electric vehicles in general.
These predictions can be used to design onboard energy management controllers,
perform preliminary vehicle design studies, and provide driver dashboard informa-
tion.

Keywords: Battery electric bus, Energy consumption prediction, Physics-based
modeling, Vehicle dynamics, Electric powertrain efficiency, Rolling resistance



Publiekssamenvatting

OM klimaatverandering tegen te gaan, is de vervoersector aan het overscha-
kelen op elektrisch aangedreven mobiliteit. In deze overgang is de batterij-

elektrische bus een belangrijke oplossing die in veel steden al op grote schaal wordt
toegepast. Vergeleken met conventionele diesel bussen is de actieradius van elek-
trische bussen nog beperkt en varieert deze naar gelang van voertuig-, weg- en
weersomstandigheden. Om deze variaties in het energieverbruik beter te kunnen
voorspellen, en zo de bruikbaarheid van elektrische bussen te verhogen, worden
in dit proefschrift modellen gepresenteerd en experimenteel gevalideerd die het
energieverbruik van een elektrische bus in detail simuleren.

Allereerst wordt een model beschreven voor het voorspellen van de belangrijk-
ste fysische mechanismen die tot energieverbruik leiden in elektrische voertuigen.
Het model beschrijft rolweerstand, luchtweerstand, hellingsweerstand en aandrijf-
lijnverliezen en kan gebruikt worden om het energieverbruik van een elektrisch
voertuig voor een willekeurige route te bepalen.

Vervolgens is gezocht naar nieuwe fysische mechanismen welke verantwoorde-
lijk zijn voor energieverbruik. Ten eerste is vastgesteld dat tijdens het maken van
bochten de banden van het voertuig extra slip ervaren, wat leidt tot extra ener-
gieverliezen. Voor stadsbussen kan dit tot wel 5% van het energieverbruik van de
aandrijving zijn. Ten tweede is vastgesteld dat de invering van de wielophanging
tijdens het rijden over oneffen wegdekken leidt tot energieverliezen in de schokbre-
kers van het voertuig. Voor stadsbussen is dit effect verantwoordelijk voor wel 13%
van het gemiddelde energieverbruik. Ten derde is er een methode ontwikkeld waar-
mee rolweerstand en wegdekhelling, welke beide een duidelijk effect hebben op het
energieverbruik, nauwkeurig kunnen worden bepaald uit meetdata van meerdere
elektrische stadsbussen. Tenslotte worden twee methoden gepresenteerd waarmee
de voertuigsnelheid voorspeld kan worden met inachtneming van 1) de huidige
positie en snelheid en 2) het bestuurdersgedrag.

Gecombineerd vormen deze methoden een volgende stap naar een meer ac-
curate energie- en vermogensvoorspelling voor elektrische bussen en elektrische
voertuigen in het algemeen. Deze voorspellingen kunnen worden gebruikt om
energiebeheer regelaars te ontwerpen, ontwerpstudies uit te voeren en uiteindelijk
de kosten van het openbaar vervoer te verlagen.
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1
Introduction

1.1 Background

S INCE the end of the industrial revolution in the mid-19th century, the concen-
tration of CO2 and other greenhouse gasses have been rising at unprecedented

rates, leading to a global rise in temperature [1], see Figure 1.1. The transport
sector is partly responsible for this climate change, producing one quarter of the
global CO2 emissions [2] and 30% of NOx emissions in the European Union (EU)
[3]. Even though the city bus sector is responsible for only a small part of the
global pollution, it contributes 20% to the local emission in city centers [4]. Due
to the frequent acceleration and low average speed of these vehicles, the diesel
engines in city buses emit relatively large amounts of particle matter and NOx
[5, 6]. Electric buses minimize local pollution and offer reduced global emissions
if the CO2 intensity of the charging electricity is sufficiently low [7].
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Figure 1.1. Global temperature change relative to the average of the period
1971-2000. Visualization inspired by [8] and based on data from [9].
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Governments create incentives to accelerate the transition towards zero-emis-
sion vehicles through subsidies and legislation. The most significant subsidy bene-
fiting Zero-Emission Buses (ZEBs) is China’s new-energy vehicle subsidy scheme,
which has been running since 2009 and includes a separate category for Battery
Electric Buses (BEBs) [10, 11]. While the United States of America currently has
no explicit legislation to promote ZEBs, California aims to achieve 100% ZEB sales
by 2029 [12]. Another example is the EU’s Clean Vehicles Directive, which sets na-
tional targets for each of the EU member states, defined as a minimum percentage
of newly procured buses to be zero-emission [13]. This percentage varies between
the member states from 24% to 45% in 2025 and from 33% to 65% in 2030. In
the meantime, individual EU countries have specified targets that go even further,
such as the Dutch government’s goal to achieve 100% public transport ZEB sales
by 2025 and 100% public transport ZEB stock by 2030 [14].

Due to these kinds of governmental incentives, the total number of electric
buses in use globally, i.e., the global vehicle stock, has been rising since 2010. This
is visualized in Figure 1.2. The figure also indicates that battery electric buses
are the most commonly used of the available electric powertrain options. Deploy-
ment of other technologies, such as hydrogen Fuel-Cell Electric Buses (FCEBs), is
increasing at a slower rate. In most analyzed cases, the Total Cost of Ownership
(TCO) of FCEBs is higher compared to BEBs, mainly due to the cost related
to hydrogen production and storage [15]. The TCO represents the total sum of
money required to attain and operate a vehicle over its entire lifetime and is an
important factor that public transport operators base their technology choice on.
However, it should be noted that BEBs are still unable to compete with diesel
buses on cost without governmental incentives due to the high cost of the large
battery packs [16].

Trolleybuses, which run on electric power directly transferred to the vehicle
via overhead cables, are another noteworthy zero-emission alternative. In theory,
these vehicles are approximately 17% more energy-efficient than BEBs, because
the energy conversion step associated with the battery is omitted [17]. However,
the number of trolleybus networks is steadily decreasing [18]. A reason for this
could be the large initial costs and maintenance of infrastructure required operate
a trolleybus network. Although no recent yearly data is readily available, there
were an estimated 40.000 trolleybuses operational at the beginning of this century
[19], some of which are actually diesel-hybrid [20].

For a complete comparative analysis of the different electric bus powertrains
in terms of energy consumption, reference is made to [18]. This thesis focuses on
BEBs specifically because the BEB is currently the leading technology in terms
of market share. Additionally, the fact that multiple large-scale BEB fleets are
operational results in industry interest and the availability of large quantities of
measurement data. Furthermore, both FCEBs and trolleybuses rely on an electric
powertrain similar to a BEB, making the powertrain analyses of these vehicles
interchangeable to a certain extent.
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Figure 1.2. The global stock of electric buses, subdivided into Battery Electric
Buses (BEB), Plug-in Hybrid Electric Buses (PHEB), and Fuel-Cell Electric
Buses (FCEB) [2].

1.2 Battery electric bus developments

Battery electric buses are vehicles that draw their traction and auxiliary energy
primarily or exclusively from an onboard electric accumulator or battery. An
overview of specifications of recent BEBs on the market is supplied in Appendix A.

1.2.1 Historic overview

The use of battery electric vehicles in (semi-)public transport is not new. As early
as 1895, tests were undertaken with electric taxi-cabs running in London, Paris,
and various American cities [21, pp. 64-93]. In Amsterdam 12 electric taxi-cabs
were introduced in 1909 to replace horse-driven carriages [22, p. 14]. One of the
major advantages with respect to Internal Combustion Engine (ICE) vehicles of
that time was that electric vehicles were significantly easier to drive because there
was no clutch pedal, no changing of gears, and no hand crank. Therefore, they
required less skill to drive, lowering the average driver salaries and thereby reducing
the TCO. Secondly, battery-powered vehicles were considered less complicated and
thus more reliable than their combustion engine counterparts.

Around 1900–1905 the first electric buses emerged in the larger European and
American cities [21, pp. 181-182][23, pp. 66-67]. Whereas Berlin, Paris, and New
York had smaller streetcar companies that each put several vehicles in operation,
London, in particular, was notable because of the size of its fleet and the large
number of different operating companies. One of these was the London Electrobus
Company, which at its peak operated 20 buses. The Electrobus, displayed in Fig-
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Figure 1.3. The London Electrobus. Photo taken on the Embankment, in
London, on 18 April 1906. Reproduced with permission from [25].

ure 1.3, featured a driving range of 60 km and a 1.75 tonne battery that could be
swapped in 3 minutes [24]. The vehicles were praised for their low noise and lack
of fumes. However, the company went bankrupt in 1910 due to financial misman-
agement and the last Electrobus was decommissioned in 1917. Other companies
failed to compete with the rapidly innovating gasoline engine and low oil prices.

In the mid-1920s, city buses mostly ran on gasoline, sometimes as a series-
hybrid with an electric motor. Also, electric trolleybuses kept operating in several
cities [17]. Since then, only a few initiatives have existed that operated buses
independently without the use of fossil fuels.

One example is the Gyrobus designed in 1950, which, although technically not
a battery electric bus, is noteworthy because of its use of opportunity charging [26].
The vehicle featured a 1500 kg flywheel spinning at 3000 rpm as the primary energy
accumulator. This flywheel was spun-up using power from a 52 kW pantograph
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connection during standstill and stored sufficient kinetic energy to drive the vehicle
5 to 6 km between stops at speeds up to 55 km/h and carrying up to 70 passengers.

Interest in the BEB was further renewed during the oil crisis at the beginning
of the 1970s. As a result, several vehicles were put into operation on a small scale
in Germany [27], the United Kingdom [28], and, later, in the USA [29]. However,
none of these were ever produced on a large scale [30], and the city road transport
in Europe continued to be governed predominantly by diesel vehicles [17].

Since 2010, modern BEBs have been gaining market share in the city transport
sector. So far, this transition has mostly taken place in China, where more than
half a million BEBs are in operation in 2020 [11, 12]. In recent years, European
and American cities are also starting to employ larger fleets of BEBs [31].

1.2.2 Energy consumption of battery electric buses

Environmental impact comparisons between BEBs and other modes of transport
are often based on a well-to-wheel analysis [15, 32]. In this type of analysis, the en-
tire energy consumption chain is considered from the energy source to the vehicle’s
wheels, as indicated in Figure 1.4. These results are also required for conducting
a life-cycle assessment that quantifies the cost and environmental impact over the
entire vehicle lifetime, including manufacturing and end-of-use [7]. Another essen-
tial analysis to the operation of electric vehicles is the assessment of the vehicle’s
driving range given a particular battery State of Charge (SoC) [33, 34]. This type
of analysis concerns the modeling of the battery and all systems drawing power
from it during driving. These systems include auxiliary components, such as the
climate and pneumatic systems, and the powertrain. The powertrain is of special
interest because it consumes approximately 70% of the energy supplied by the
battery [35]. Additionally, the power request of the powertrain is highly variable
depending on environmental factors, vehicle parameters, and driver behavior [36].
Therefore, this thesis focuses primarily on models that support the battery-to-
wheel analysis of a BEB by modeling the energy consumption of the powertrain.
These models do not represent the complete energy consumption of a BEB yet are
essential for the other overarching types of analyses.

Figure 1.4 indicates the main components of the powertrain of a BEB. The
vehicle features an electrochemical battery that can be charged via an off-board
charger that draws power from the grid. While driving, the battery powers the
traction inverter that converts the Direct Current (DC) electrical power to three-
phase Alternating Current (AC), which is then converted to mechanical power
by the motor. A final drive reduces the rotational speed of the output shaft and
transfers power to the driven wheels. If regenerative braking is applied, power flows
in the reverse direction: from the wheels to the battery. Additionally, the energy
contained in the battery is used to power the different auxiliary components of
the vehicle. These include the climate system, the pneumatic system, hydraulics,
powersteering, and the low-voltage electronics such as lights and public transport
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FDMotorInverter

Auxiliaries

Battery

Charger

AC-grid

Battery-to-wheel analysis

Range prediction analysis

Well-to-wheel analysis

Source

Figure 1.4. Schematic overview of the main powertrain components in a bat-
tery electric bus, including the Energy Source, AC-grid, Charger, Battery, Aux-
iliary Components, Inverter, Electric Motor, and Final Drive (FD).

electronics. While Figure 1.4 displays a driveline topology with one central motor
and a final drive containing a differential, other topologies exist. An example is a
‘drive-axle’ where hub motors drive the wheels. Nevertheless, the basic powertrain
components, i.e., inverter, motor, and final drive, remain present.

The electrification of the city bus sector is happening faster than the consumer
passenger car market. City bus transport has several advantages with regard to
electrification: the vehicles drive at relatively low average velocities, experience
many stops, and drive in a restricted geographic area. Therefore, charging can
happen overnight at the central vehicle depot or through fast charging at bus stops
or other central locations. Nevertheless, similar to electric passenger cars, BEBs
have a more limited driving range than ICE vehicles due to the limited energy ca-
pacity of modern-day batteries [37]. This limited driving range makes knowledge
on the energy consumption more important. Because the intended driving dis-
tances are closer to the vehicle’s maximum driving range, the inherent variations
in the energy consumption have a more significant influence on whether or not a
trip can be completed. Electric buses are often scheduled more conservatively to
account for this uncertainty, resulting in more vehicles being required to operate
a public transport network. As a result, conserving and predicting the remaining
available energy of BEBs is essential to improving their viability compared to ICE
vehicles.

The energy consumption of BEBs can be reduced both through vehicle design
choices and vehicle control strategies. Vehicle design considerations include the
type of powertrain topology, the type and sizing of the climate system, tire choice,
and vehicle weight minimization [38, 39]. In addition, control strategies to mini-
mize BEB energy consumption exist on a vehicle level and on a fleet level. On a
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vehicle level, these control strategies include eco-driving [40], which supports the
driver in driving the vehicle in an energy-efficient manner, or onboard energy man-
agement and eco-comfort strategies [41, 42], which control powertrain and auxiliary
systems to minimize energy consumption. For BEBs, additional applications of
energy consumption models are found in solving fleet scheduling problems [43, 44]
and designing eco-routing and eco-charging strategies [45, 46]. Fleet scheduling
is often performed to minimize the number of redundant vehicles, reduce peak
grid load during charging, or minimize battery degradation [47]. In the future,
dynamic scheduling offers a possible solution to make vehicle schedules flexible
based on traffic conditions [48], electricity pricing [49] or battery degradation [50].

All the aforementioned methods rely on models that simulate the battery-to-
wheel energy consumed by BEBs. By improving these models and providing more
insight into the dynamics involved with the energy dissipated, both vehicle design
and vehicle control strategies can be improved. Ultimately, more accurate and
realistic energy consumption models can benefit BEB manufacturers by building
more specialized products, public transport operators by lowering the operational
expenses and number of redundant vehicles, and city residents by providing a
locally clean and cost-efficient mode of transport.

1.3 Problem statement

As described in Section 1.2.2, the driving range of battery electric buses, and
electric vehicles in general, is inherently variable. Because the driving range is
limited with respect to conventional vehicles, numerous control strategies either
minimize the energy consumption per driven distance, e.g., eco-driving or onboard
energy management, or optimize the deployment of vehicles, e.g., eco-routing or
fleet scheduling. These control strategies rely on models to either predict the en-
ergy consumption over a particular route or to predict the expected future power
requested from the battery as a function of time. In the context of this thesis,
prediction is referred to as the calculation of a physical value, e.g., energy con-
sumption or vehicle speed, over a certain route, without explicitly using previous
measurements of that value over the same route.

While plenty of literature exists on electric vehicle energy consumption pre-
diction, only a selection focuses specifically on BEBs [51, 52]. This BEB-related
literature concentrates mainly on data-driven models, which often rely on large,
low-resolution datasets. These macroscopic models, with a temporal resolution of
more than 1 s, aim to predict the energy required to traverse a route or a section
of a route [53]. In contrast, microscopic models predict the power requested from
the battery as function of time, which is required for onboard energy management
or eco-driving strategies. There are physics-based methods that predict energy
consumption [54], but these often contain the implicit assumption that the vehicle
only drives straight, thereby neglecting part of the vehicle dynamics. Therefore,
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a framework is required that supplies microscopic energy consumption prediction
for BEBs, to be used in future eco-driving or energy management strategies. In
summary, the objective of this thesis is:

To improve the accuracy of electric vehicle energy consumption prediction
methods by considering the vehicle dynamics of a battery electric bus.

The basis of this work is formed by the physics-based energy consumption pre-
diction model developed in [55]. This model is microscopic and is of the ‘backward-
facing’ type: the model predicts a vehicle speed and, given this speed, calculates
the resistance forces at the wheels and propagates these backward via the pow-
ertrain to determine the required battery power. This physics-based energy con-
sumption model was revised and integrated into a MATLAB tool. The tool is
interfaced with online information services to obtain road-, weather-, elevation
data and is published as the ‘TU/e Microscopic Energy Consumption PRedictino
tOol (MECPRO) 0.1’ [56].

1.4 Research challenges and contributions

The main contributions of the research in this thesis, aimed at addressing three
research challenges, are:

Physics-based model extensions. In the majority of the energy consumption
studies where a physics-based approach is followed, a backward-facing longitudi-
nal dynamics model is used. After reconstructing the vehicle speed, the model
considers the forces acting longitudinally on the vehicle, often including rolling
resistance, aerodynamic resistance, the longitudinal component of gravity, and the
force required to accelerate the vehicle. Although these forces comprise the main
contributors to the energy dissipated by the vehicle’s powertrain, other physical
effects can play a role, yet are often neglected. In this scientific search for different
physical effects that contribute to the dissipated energy, the first two contributions
of this thesis are defined:

Contribution I. A method to assess the slip losses occurring at the tires of
a battery electric bus during cornering, using a validated, nonlinear steady-
state cornering model.

Contribution II. A method to assess the damper losses occurring in the
suspension of a battery electric bus, using a validated, nonlinear quarter
car model.
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Contribution I pertains to the lateral vehicle dynamics, and Contribu-
tion II pertains to the vertical vehicle dynamics. In both cases, a vehicle dynamic
model is first defined and validated by demonstrating a favorable comparison be-
tween simulations and dedicated vehicle tests. The validated model is then applied
to quantify energy losses affiliated with the effects of interest for a realistic oper-
ation scenario with a battery electric bus. These analyses indicate that both the
lateral and vertical vehicle dynamics contribute to the power requested from the
battery and cannot be overlooked when accurate energy consumption predictions
are required.

Parameter estimation. Even though the parameters of physics-based energy
consumption models often describe physical quantities, the exact values can be
challenging to ascertain. The rolling resistance coefficient is one of the param-
eters that is notoriously difficult to determine accurately because it depends on
numerous factors, including tire design, tire inflation pressure, road roughness,
and suspension characteristics.

The local road slope is a parameter that is especially relevant if the power
request is to be predicted as a function of time. While various information sources
exist that report the local road gradient, these are often not sufficiently accurate
or restricted to certain countries or regions. In this context, the third contribution
of this thesis is defined as:

Contribution III. A method to recursively estimate the combined rolling
resistance and road gradient as function of position for a route that is tra-
versed repeatedly by a battery electric bus.

This method relies on the fact that both the rolling resistance and the road
slope are position-dependent for a fixed route. By calculating the difference be-
tween the measured and modeled powertrain power, an estimate for these pa-
rameters can be provided in the shape of a position-dependent road-resistance
profile. By describing this resistance profile using basis functions, measurements
from multiple vehicles traversing the same route segments can be combined. This
route-specific resistance profile includes all position-dependent resistance forces,
including possible additional resistance in corners and rolling resistance due to
rough roads. Contribution III thereby provides a method to also capture the
physics described by Contribution I and Contribution II in the longitudinal
dynamics model.

Forward velocity prediction. The longitudinal dynamics model describes the
power requested from the battery of the vehicle when driving a certain forward
velocity as function of time. To accurately predict the future power request, infor-
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mation on the future forward vehicle velocity is required for the route of interest.
While methods exist to predict the forward velocity based on route information,
the vehicle velocity is uncertain and can change based on unexpected traffic cir-
cumstances and driver behavior. Thus, up-to-date vehicle and driver information
is required to predict the remaining trip velocity and energy consumption online,
which is enabled by increasing computing power on-board modern-day vehicles.
This results in the final contribution of this thesis:

Contribution IV. A method to adapt the predicted forward vehicle velocity
online by including current vehicle position and forward velocity and by
performing driver characterization based on previous vehicle accelerations.

This method predicts the forward velocity for the remaining part of a route.
Besides route information that is conventionally used in these predictions, the
algorithm includes:

• the current position and speed of the vehicle,
• the previously measured acceleration and deceleration realized by the driver.

The resulting online prediction adapts to unexpected changes in vehicle speed,
providing an up-to-date estimate of the powertrain power and energy required
to complete a predetermined route. Furthermore, a fleet-monitoring experiment
indicates the potential of characterizing different drivers based on measured accel-
eration and using this information to make driver-specific speed predictions.

1.5 Outline

This thesis discusses the physics-based energy consumption prediction of electric
vehicles, with a focus on battery electric buses. Including this introduction, the
thesis consists of seven chapters.

Chapter 2 presents a backward-facing physics-based energy consumption pre-
diction model, which forms the basis of this work. This model is adapted from
[55] and applies longitudinal vehicle dynamics to predict the powertrain power
as function of vehicle speed, vehicle parameters, and environmental factors. The
model is demonstrated on an electric delivery van and can be generalized to dif-
ferent types of electric vehicles. In Chapter 3 the lateral vehicle dynamics are
considered to assess the energy losses occurring during cornering of the vehicle
by accounting for the slip losses occurring at the tires of the vehicle. In Chap-
ter 4 the vertical vehicle dynamics are considered to assess the energy lost in the
dampers of the suspension during traversal of rough roads. Chapter 5 presents a
method to estimate the rolling resistance and road slope resistance of a route that
is repeatedly traversed by an electric vehicle. Chapter 6 focuses on online forward
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velocity prediction, including a method to make driver-specific acceleration pre-
dictions. Finally, Chapter 7 closes the main body of the thesis by summarizing the
conclusions presented in Chapters 2-6. Furthermore, recommendations for future
research are presented in this chapter. The Appendices A, B, and C of this thesis
present extensions and additional findings on the matter presented in the main
chapters.

Note for the reader. Chapters 2-6 are all based on research articles and can
therefore be read independently. A reference to the corresponding research paper
is included at the beginning of each chapter. At the end of Chapters 2, 3, and 6
a supplementary discussion is provided to mention relevant additional results and
highlight the connection to other chapters. An overview of how the chapters relate
to the contributions mentioned in Section 1.4 is provided in Table 1.1.

Table 1.1. Overview of contents.

Chapter 1 Introduction

Chapter 2 A physics-based energy consumption model

Chapter 3

Contribution I
A method to assess the slip losses occurring at the tires

of a battery electric bus during cornering,
using a validated, nonlinear steady-state cornering model.

Chapter 4

Contribution II
A method to assess the damper losses

occurring in the suspension of a battery electric bus
using a validated, nonlinear quarter car model.

Chapter 5

Contribution III
A method to recursively estimate the combined rolling

resistance and road gradient as function of position for a route
that is repeatedly traversed by a battery electric bus.

Chapter 6

Contribution IV
A method to adapt the predicted forward vehicle velocity online

by including current vehicle position and forward velocity
and by performing driver characterization
based on previous vehicle accelerations.

Chapter 7 Conclusions & recommendations
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Abstract - For cost-optimal utilization of battery electric delivery vans, energy
consumption prediction is important. This chapter presents a microscopic energy
consumption tool, which requires the intended route as input. Both the forward
velocity profile prediction algorithm and the subsequent energy consumption model
are based on data obtained from dedicated vehicle tests. Secondly, up-to-date envi-
ronmental data on the weather, the road slope profile, and local speed legislation are
obtained through APIs via the internet. The results show good correspondence with
the measured energy consumption. Validation with several measured trips shows
that the energy consumption is predicted with an error that rarely exceeds 10%.

This chapter is based on:
C. J. J. Beckers, M. Paroha, I. J. M. Besselink, and H. Nijmeijer, “A Microscopic Energy Con-
sumption Prediction Tool for Fully Electric Delivery Vans,” in 33rd World Electr. Veh. Symp.
& Expo. (EVS33), Sep. 2020, doi: 10.5281/zenodo.4023302.

A supplementary discussion is provided in Section 2.6.

https://doi.org/10.5281/zenodo.4023302
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Figure 2.1. The Voltia eVan.

2.1 Introduction

MOTIVATED by the increasing awareness of global warming, the cargo
transport sector is making a transition towards electric mobility. One

example of such an electric vehicle is the Voltia eVan. The Voltia eVan is a fully
electric delivery van with a swappable traction battery. Converted from a Citroën
Jumper, the vehicle keeps all functional, safety, and driver-comfort features of the
donor vehicle, while enhancing its driving characteristics thanks to the 160 kW
(peak) electric motor. The capacity of the traction battery can vary between 40
and 90 kWh per vehicle. The Voltia eVan is also used as the carrier vehicle of
a demonstrative batterypack with novel battery management system (BMS) fea-
tures, which is developed within the scope of the H2020 project EVERLASTING
[57].

Despite the battery capacity options and battery swapping capabilities, an
accurate energy consumption prediction tool is essential for efficient utilization of
these vehicles. An example of such a prediction methodology can be found in [58],
where extensive fleet data is used to predict the energy consumption of electric
taxi’s. However, in case no large amount of fleet data is available, for instance
before initial vehicle deployment, other methods are required to make accurate
predictions.

In this chapter, a microscopic energy consumption prediction tool for the Voltia
eVan is presented. The tool consists of two parts: a forward velocity profile pre-
diction (FVPP) algorithm and an energy consumption prediction (ECP) model.
Both parts follow a physics-based approach in order to provide reliable extrapola-
tion to unknown geographic regions and operating conditions. The models rely on
up-to-date weather, road, and elevation data. The tool [56], developed in MAT-
LAB, is connected via APIs to OpenWeatherMap [59], OpenStreetMap [60], and
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Figure 2.2. Schematic side-view of the Voltia eVan with all longitudinal forces
indicated by arrows.

the SRTM elevation model [61], respectively, to obtain these data.
The outline of this chapter is as follows. In Section 2.2 the model and methods

underlying the prediction are explained. In Section 2.3 the results of the energy
consumption prediction tool are presented and compared to measurements. In Sec-
tion 2.4 the results are discussed and the conclusions are presented in Section 2.5.

2.2 Methodology

2.2.1 Model

The energy consumption of the vehicle is modeled using a physics-based approach,
i.e., by modeling the longitudinal dynamics of the vehicle, as shown in Figure 2.2.
By applying Newton’s second law we can write

meff
dv

dt
= Fdrive − Froll,1 − Froll,2 − Faero − Fgrav . (2.1)

In this equation, meff is the effective mass, which also includes rotational inertia
of the wheels and driveline and v is the forward vehicle velocity as function of
time t. Furthermore, Fdrive, Faero, and Fgrav represent the driving force, aerody-
namic drag force, and longitudinal gravity component, respectively. The rolling
resistance experienced by the front axle Froll,1 and the rear axle Froll,2 are indi-
cated individually in Figure 2.2. These are aggregated into one combined rolling
resistance force for the remainder of this chapter.

By modeling each of these forces, the power required by the powertrain Ppt
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can be calculated as [55]

Ppt =

(
meff

dv

dt
+ frmg cos(α) +

1

2
ρCdAf v

2
wind,rel +mg sin(α)

)
v

+ Ploss(ωwheel, Twheel) . (2.2)

This expression is first of all a function of the forward vehicle velocity v. Secondly,
there are several vehicle parameters, such as vehicle mass m, rolling resistance
coefficient fr, aerodynamic drag coefficient Cd, frontal area Af , and powertrain
losses Ploss as function of wheel speed ωwheel and wheel torque Twheel. Lastly,
also several environmental conditions are required, such as the gravitational accel-
eration g, the air density ρ, the local road slope α, and the relative wind velocity
vwind,rel. The total energy consumption Etot for a trip can be calculated by adding
the auxiliary power Paux and integrating over the trip time:

Etot =

∫ tend

t0

(Ppt + Paux) dt . (2.3)

While the physics of the methodology is captured by (2.2) and (2.3) alone, the
challenge lies in the accurate determination of all these vehicle and environmental
parameters.

2.2.2 Identification of vehicle parameters
The model requires knowledge of several vehicle-specific parameters. Because it
is generally difficult to determine these coefficients based on physical modelling
alone, dedicated vehicle tests are performed.

Rolling resistance and aerodynamic drag

Coast-down tests are performed to determine both the rolling resistance coefficient
and the aerodynamic drag coefficient. During such a coast-down test, the vehicle
is accelerated to a certain speed, after which the propulsion power is removed, e.g.,
Ppt = 0, causing the vehicle to decelerate. By conducting this experiment on a
level surface during low-wind conditions (2.2) reduces to

meff
dv

dt
+ frmg +

1

2
ρCdAfv

2 = 0 . (2.4)

Therefore, measurement of the forward velocity v and its time derivative dv/dt
during deceleration yields enough information to estimate both fr and Cd, as de-
scribed in [62]. Because the rolling resistance coefficient will also vary as function
of road surface, the tests are repeated for different road surfaces; good asphalt,
medium quality asphalt, and bad asphalt. Approximately 10 coast-down maneu-
vers are performed on each road surface type in two directions.
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Table 2.1. Measured average rolling resistance coefficient fr for different road
surfaces together with the applicable speed range for usage of the value in the
energy consumption prediction model.

Road surface quality Average measured fr [-] Prediction speed
range [km/h]

Good asphalt 0.0088 >80
Medium asphalt 0.0092 30-80
Bad asphalt 0.0112 0-30

-20 -10 0 10 20
Headwind yaw angle [deg]

0

0.05

0.1

 C
d
 [-

]

Figure 2.3. Increase in aerodynamic drag coefficient ∆Cd as function of head-
wind yaw angle β.

The results are listed in Table 2.1 and show that the rolling resistance coefficient
fr ranges between 0.0088 and 0.0112 and increases for decreasing road quality.
This road surface quality dependency is also taken into account in the energy
consumption prediction. The simulation value for fr is considered a piecewise
constant function of vehicle speed, as indicated in the last column of Table 2.1.
The underlying assumption is that the road quality is generally better on high-
speed roads, such as highways.

The aerodynamic drag coefficient is also a result of the coast-down tests. Be-
cause in theory the Cd of the vehicle does not change as function of road surface,
the results of all the coast-down tests are averaged resulting in a Cd value of 0.36.
As will be explained in Section 2.6, information about the apparent wind yaw angle
β may be available. In that case, the aerodynamic drag coefficient is considered
to increase due to crosswind effects and can be calculated by

Cd = 0.36 + ∆Cd (β) . (2.5)

Here, the increase in drag coefficient ∆Cd is a function of headwind yaw angle β.
Because only little research is available on the cross-wind aerodynamics of medium-
duty vehicles, such as the Voltia eVan, ∆Cd is assumed to be roughly similar as for
a large Multi Purpose Vehicle (MPV), as is described in [63]. Therefore, ∆Cd (β)
is considered a piecewise linear function shown in Figure 2.3 and is assumed to be
constant for |β| > 10 deg.

Lastly, the vehicle mass is determined by weighing the empty vehicle and
adding the mass of the cargo and drivers, resulting in m = 2800 kg. Addition-



20 Chapter 2. A microscopic energy consumption prediction tool

Figure 2.4. Schematic view of the Voltia eVan placed on the TU/e Heavy Duty
Chassis Dynamometer.

ally, the effective mass is calculated based on the known inertia of the tires and
motor rotor, resulting in meff = 2880 kg.

Powertrain losses and regenerative braking

The powertrain loss Ploss is difficult to determine based on physical modeling.
This term represents all the power lost between the vehicle’s traction battery and
the wheels, and includes both electrical losses in the inverter and motor, as well
as mechanical losses in the gearbox, bearings, and driveshafts. Therefore, the
choice is made to measure the lumped powertrain losses using vehicle tests. The
TU/e Heavy Duty Chassis Dynamometer, displayed in Figure 2.4, allows for the
measurement of the mechanical power output at the driven wheels of the vehicle
Pwheel. Simultaneously, the electrical power PDC at the DC-side of the vehicle’s
powertrain inverter is measured. This way, the powertrain losses can be determined
as

Ploss = PDC − Pwheel . (2.6)

By operating the vehicle in steady-state at several combinations of velocities
and torques, the powertrain loss is mapped for the entire operating range of the
powertrain. The results are visualised as efficiency values in Figure 2.5a, and
represent the efficiency of the inverter, motor, gearbox, and axle combined. The
efficiency is calculated separately for the driving situation ηdrv and the regenerative
braking situation ηbrk:

ηdrv =
Pwheel

Pwheel + Ploss
ηbrk =

|Pwheel| − Ploss
|Pwheel|

. (2.7)

In the case of braking, ηbrk is applied to the regenerated energy. If this energy
is that supplied again to the powertrain, additional losses occur, represented by
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Figure 2.5. Results of the TU/e Heavy Duty Chassis Dynamometer tests.

the battery efficiency and ηdrv. Therefore, the overall efficiency applicable to
regenerated energy is lower than ηbrk.

The measured powertrain losses are implemented in the energy consumption
prediction algorithm as Ploss in (2.2) and are considered to vary as function of
wheel angular velocity ωwheel and wheel torque Twheel. Furthermore, coast-down
experiments are conducted on the dynamometer with the goal of identifying the
regenerative braking characteristics of the vehicle. The moment of inertia of the
dynamometer is known, thus the braking force exerted by the vehicle on the drum
can be determined during such a coast-down test. The results are displayed in
Figure 2.5b and show a regenerative braking force that is approximately constant,
except at lower velocities. In the energy consumption prediction model this force is
modeled by a piecewise linear function, also indicated in Figure 2.5b. During nor-
mal operation of the vehicle the applied braking force up until this piecewise linear
function is assumed to be regenerative. Any additional braking force exceeding
this limit is applied using the hydraulic friction brakes and is therefore excluded
from the regenerative braking gain. Lastly, the auxiliary power is considered to
be constant based on measurements, resulting in Paux = 650W.

2.2.3 Identification of environmental parameters

The longitudinal dynamics model in (2.2) requires knowledge of several environ-
mental parameters. While some of these parameters are assumed constant, such
as the gravitational acceleration g = 9.81m/s2, others might vary as function of
location and/or time. Therefore, relevant information is obtained for an arbitrary
route through use of online Application Programming Interfaces (APIs).
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Figure 2.6. Elevation and gradient for one of the driven routes with the Voltia
eVan.

Road slope

The local road slope α is determined from the SRTM elevation database [61]. By
making use of the readhgt toolbox [64] relevant sections of the elevation map
are downloaded and queried. The resulting elevation, as function of travelled
distance, is filtered by a 3rd order Butterworth low-pass filter with cut-off spatial
frequency 1/λc = 1/2000 1

m , and differentiated numerically to obtain the local road
gradient α, see Figure 2.6. This specific λc indicates that all features smaller than
approximately 2 km are filtered out of the elevation profile. This step is essential,
as otherwise short wave length variations in the elevation model will result in
unrealistic road gradients, which can severely impact the accuracy of the energy
consumption prediction.

Weather data

The energy consumption prediction algorithm takes up-to-date weather informa-
tion into account. To this end, temperature T , air pressure pa, wind magnitude,
and wind direction are obtained from OpenWeatherMap [59]. The temperature
and air pressure are used to calculate the air density ρ(T, pa) [65].

The wind magnitude and direction are represented by the vector ~vW , which
indicates the direction the wind is blowing towards with respect to the north.
This vector is used together with the vehicle velocity vector ~vV , whose direction
is calculated from the vehicle heading, to determine the apparent wind vector ~vA

~vA = fw~vW − ~vV , (2.8)

which is also depicted in Figure 2.7. Practise shows that it is beneficial for the
energy consumption prediction to scale the wind magnitude by choosing the con-
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North

~vV

β
~vA

fw~vW

vwind,rel

Figure 2.7. Top view of the Voltia eVan with the vehicle velocity vector ~vV , the
scaled wind velocity vector fw~vW , the apparent wind vector ~vA and the relative
longitudinal wind velocity vwind,rel.

stant factor fw < 1. This factor is also used to compensate for the fact that the
obtained wind magnitude is specified at an altitude of 10m above the road surface
instead of 1m, where the vehicle drives. To compensate for this altitude difference
an fw of approximately 0.28 is expected [66, p. 56]. For the result presented here,
fw = 0.2 was used, because it results in the most accurate predictions for the
analysed trips. A likely reason that fw < 0.28 is that the vehicle rarely drives in
an open field where it is subject to the full influence of the wind. More often the
vehicle is sheltered from the wind by road-side structures, trees, or buildings. As
last step, the apparent wind direction β is calculated, which is used to determine
∆Cd(β) as described in Section 2.2.2. Furthermore, β is used to calculate the
relative longitudinal wind direction vwind,rel

vwind,rel = |~vA| cos(β) , (2.9)

which is used in (2.2).

2.2.4 Prediction of the forward velocity profile
The expression in (2.2) also requires knowledge of the forward velocity profile
of the vehicle. A velocity predicting algorithm is developed, based on [55], that
requires GPS coordinates of an intended route as input.

By use of the OpenStreetMap Functions toolbox [67], the algorithm queries
relevant road information from OpenStreetMap [60]. This includes the local speed
legislation and traffic light locations. The information is visualised in Figure 2.8 for
the route that will also be discussed in Section 2.3. In the first step of the forward
velocity profile prediction, the local speed legislation is considered to dictate the
maximum speed along the route. Next, further speed constraining locations are
identified. These include traffic light locations and corners. The vehicle is assumed
to make a full stop at every encountered traffic light. The reduced speed in a
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Figure 2.8. Legislated maximum speed and traffic light location according to
OpenStreetMap.
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Figure 2.9. Detail of the determined speed constraining locations and the
resulting predicted velocity profile.

corner is a function of the corner curvature calculated using the GPS-points and an
assumed maximum lateral acceleration of 2m/s2. The result is a profile dictating
the upper-bound of the forward velocity vmax as function of travelled distance s,
which is discretized as

s = [s1, s2, ..., si, ..., sN ] for i = 1, 2, ..., N , (2.10)

where N is the total number of coordinates along the route.
The final forward velocity profile is determined by including a limited vehicle

acceleration and deceleration. Because these limits are mainly dictated by the
driver, they are referred to as the driver model. The preferred cruising speed
is also assumed to be driver specific and is calculated as factor of the legislated
maximum speed. The three driver specific parameters; acceleration, deceleration,
and cruising speed, are tuned based on recorded data to represent the average
driving behavior of a particular driver, as shown in Figure 2.10a.
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Figure 2.10. Driver model that is used as input for the forward velocity profile
prediction (a) and the resulting predicted forward velocity profile (b), both
compared to measured data (black).

In order to include the acceleration limit, numerical time integration is per-
formed in between each of the points of the distance grid s, while also taking the
upper-bound of the forward velocity vmax into account:

v(si+1) = min

(∫ t(si+1)

t(si)

ax,lim(v)dt+ v(si) , vmax(si+1)

)
for i = 1, 2, ..., N − 1 ,

(2.11)
where ax,lim is the acceleration limit, displayed in Figure 2.10a. This procedure
is performed once in forward direction, as shown in (2.11), and once in backward
direction, to include the deceleration limit. Using the now known forward velocity,
the velocity profile as function of distance is interpolated to a time grid. The
resulting forward velocity profile in Figure 2.10b shows a fair correspondence with
a measured forward velocity profile. The prediction algorithm contains multiple
assumptions, such as the completely deterministic driver model, and the fact that
the vehicle stops at every traffic light. Even though not all realistic details are
represented, the resulting forward velocity profile is accurate enough for the goal
of energy consumption prediction.

2.3 Energy consumption prediction results

Having knowledge about the forward velocity profile and the vehicle and environ-
mental parameters, the energy consumption can be predicted for a given route. To
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Figure 2.11. Predicted energy consumption compared to the measured energy
consumption. In (a) the measured forward velocity v(t) was used, whereas in
(b) the predicted forward velocity profile was used.

this end, the forward velocity profile is first predicted, as described in Section 2.2.4.
The predicted forward velocity profile v(t) is then used as input for (2.2) and (2.3),
together with all the parameters described in Sections 2.2.2 and 2.2.3.

In order to validate both parts of the model, a comparison with measured data
is made. A 33.9 km route is used as input. Data for the same route are also
displayed in Figures 2.6, 2.8, 2.9, and 2.10. First of all, the energy consumption
model is validated by using the measured speed, also shown in Figure 2.10b as
input to (2.2) and (2.3). The results, displayed in Figure 2.11a, show a good
correlation between model and measurement, except for a slight under-estimation
of the regenerated energy.

Next, the same calculations are performed by taking the predicted forward ve-
locity profile, shown in Figure 2.10b, as input for the energy consumption model.
The result is presented in Figure 2.12, which displays the power described by each
of the terms in (2.2) as function of time. By comparing the individual contri-
butions, it can be concluded that for this particular trip 49% of the energy is
dissipated by aerodynamic drag, 25% on powertrain losses and 22% on rolling
resistance. The remaining 4% is lost due to occasional dissipative braking. Fur-
thermore, Figure 2.13 shows the total predicted power compared to the measured
power. The comparison indicates that the position and shapes of most, but not all,
of the power peaks caused by acceleration and deceleration events are predicted
correctly.Integrating and summing these powers, according to (2.3), results in the
total energy displayed in Figure 2.11b. The result shows a correct estimation of
the regenerated energy and a slight over-estimation of the dissipated energy. Ul-
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Figure 2.12. Overview of the power lost due to each of the terms in (2.2),
excluding acceleration.
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Figure 2.13. Comparison of the predicted battery power and the measured
battery power for the first half of the trip.

timately, the difference between the measured and predicted energy consumption
at the end of the trip is 4.3%.

The results of several trips are listed in Table 2.2. All trips are conducted in
and around the city of Eindhoven, the Netherlands. The longer distance trips,
e.g., trip 1, 3 and 4, include highway driving. All trips contain city driving. Based
on five analysed trips with an average length of 17.6 km, the tool is fairly accurate
and stays mostly below 10% with respect to the measured energy consumption.
Trip number 5 is an exception. Most probably, the rolling resistance coefficient
described in Section 2.2.2 is not in accordance with the real type of road along
this short route. For short routes like this one, a deviation of one of the model
parameters, which are often position-dependent, can result in large relative errors.
In contrast, on longer routes any local errors are averaged.

2.4 Discussion

In theory, the model includes the influence of road slope and wind in the energy
consumption. However, because the validation sets were recorded in the Nether-
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Table 2.2. Results of the energy consumption prediction tool for five different
trips. Data from Trip 4 is detailed in other figures throughout this chapter.

Distance
[km]

Measured
Energy [kWh]

Predicted
Energy [kWh]

Error
[%]

Trip 1 16.2 3.89 3.68 -5.3
Trip 2 6.8 1.54 1.41 -8.6
Trip 3 29.7 9.17 9.98 8.9
Trip 4 33.9 10.90 11.30 4.3
Trip 5 1.7 0.34 0.38 12.0

lands during relatively low-wind conditions of |~vW | ≤ 3m/s, the model should still
be validated for more extreme situations.

Analysis of the predicted trips also shows that traffic can have a significant
influence on the forward velocity profile and consequently on the energy consump-
tion. Because at the time of writing, no free up-to-date traffic data was available,
this effect is not included in the tool. Nevertheless, including information related
to the traffic flow would probably increase the accuracy of the forward velocity
profile and thus the energy consumption prediction.

Furthermore, the energy consumption prediction depends on several tunable
parameters, such as fw, λc and the chosen acceleration limits that capture the
driver behavior. These are typically tuned based on measured data from an ar-
bitrary route. Therefore, some vehicle data and knowledge related to the driver
behavior will always be beneficial to get a good prediction accuracy for future
trips.

2.5 Conclusions

The microscopic energy consumption prediction tool can be used for any predeter-
mined route and shows a fair correspondence with the available measurements. For
most of the analysed trips the deviation between predicted and measured energy
consumption stays below 10%.

During development of the tool, it was concluded that the most accurate results
are obtained by only partially taking the wind velocity into account and that
filtering the STRM elevation profile is important. Validation of the tool with
more extreme slope and weather conditions is considered future work. However,
decent extrapolability is expected, based on the usage of a physical model and
up-to-date map data. The full MATLAB-code for the tool, including connection
to the aforementioned APIs is freely available in [56].
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2.6 Supplementary discussion

This chapter demonstrates the application of a physics-based energy consumption
prediction method on an electric delivery van. The method is derived from [33, 55],
where it is applied to an electric passenger vehicle. In a comparison of 30 trips
with this passenger vehicle, the physics-based method is demonstrated to have an
offline energy consumption prediction error that is generally less than 10% [55,
Figure 23].

With respect to this previous study, this chapter adopts a more complex aero-
dynamics model, with a relative wind velocity defined by (2.9) and an aerodynamic
drag coefficient that varies as a function of apparent wind direction as defined in
(2.5). In [55], the OpenStreetMap road-type information is applied to scale the
rolling resistance coefficient. In this chapter, a pragmatic approach is followed,
where the rolling resistance is assumed to be correlated with the legislated speed
according to Table 2.1. This has the advantage that no road-type information is
required. The rolling resistance depends on several factors, including the rough-
ness of the road. This effect is discussed in detail in Chapter 4, revealing that the
energy losses in the suspension depend on road roughness. Because road roughness
information can be challenging to obtain, a method is presented in Chapter 5 to
estimate the position-dependent rolling resistance from powertrain measurement
data.

Both in [55], and in Section 2.2.4 of this chapter, the influence of corners on the
forward velocity profile acknowledged. However, the lateral vehicle dynamics are
not considered in detail. An analysis is presented in Chapter 3, where additional
resistance forces during cornering are quantified. These forces can be added to the
resistance forces in (2.1) to arrive at a model that better represents the position-
dependent cornering losses.

The forward velocity profile prediction, as discussed in Section 2.2.4 is extended
to an online algorithm in Chapter 6. The prediction is updated online by consid-
ering the current vehicle position and speed. Secondly, as also indicated by [55],
model accuracy can be improved by adapting the predicted forward velocity profile
to a specific driver. Therefore, in Chapter 6 a method is proposed to adapt the
modeled accelerations ax,lim(v) in (2.11) to past acceleration data from a specific
driver.

A note on battery modeling

The energy consumption prediction model presented in this chapter focuses specifi-
cally on the battery-to-wheel energy consumption of the vehicle. The results of the
simulations are therefore represented as discharged and regenerated energy with-
out making any explicit statements on battery efficiency. In case range prediction
of a vehicle is desired, a battery model will be required to compute the remaining
energy onboard and include losses occurring in the battery. These aspects are con-



30 Chapter 2. A microscopic energy consumption prediction tool

sidered in the original model of [33], where an empirical equivalent circuit model
is employed. However, detailed battery modeling is considered beyond the scope
of this thesis.

2.6.1 Battery electric bus specifics
While this chapter’s physics-based energy consumption model is demonstrated
on an electric delivery van, different vehicles can be simulated by adapting the
vehicle parameters meff ,m, fr, Cd, Af , Ploss, and Paux accordingly. By focussing
on the use-case of the electric delivery van, this chapter highlights the general
applicability of the model. Appendix B illustrates how a more basic version the
model can be applied to a battery electric bus and provides details on the empirical
powertrain losses map and determining the rolling-resistance values. Depending
on the purpose and the required accuracy of the model, several further additions
can be considered when aiming to predict the energy consumption of a battery
electric bus. One major addition is the modeling of the auxiliary components,
which is discussed in brief below.

Auxiliary components1

One main difference between the vehicle discussed in this chapter and an electric
city bus is that the average forward velocity of the latter is relatively low. Conse-
quently, the non-traction systems, i.e., the auxiliaries, play a significant role in the
energy consumption of city buses [38, 68, 69]. Additional to an extensive Heat-
ing, Ventilation, and Air Conditioning (HVAC) system, other auxiliary systems
are present on a bus that would typically not be present on a passenger vehi-
cle or mid-size delivery van. These auxiliaries include a pneumatic system that
supplies air to the pneumatic brakes and air suspension, a hydraulic system that
provides power steering, and a 24V low-voltage system that powers the lights and
the public-transport electronics, such as information signs and ticket machines.
All these systems draw power from the main battery via a set of power inverters,
as visualized in Figure 2.14. These inverters convert the battery’s High-Voltage
(HV) direct-current power to HV alternating-current power or low-voltage direct-
current for the respective auxiliary system. A traction-cooling system is present to
cool these auxiliary inverters, the pneumatic air-compressor, and the components
of the powertrain, which is also indicated in the figure.

An overview of the energy consumption shares of these BEB subsystems is given
in Figure 2.15. It can be observed that, for this particular case, the powertrain
is the primary energy consumer, consuming 81% of the vehicle’s energy, and the
HVAC subsystem is the second-largest consumer, at 14%. These numbers are
obtained under favorable weather conditions. In case of lower or higher ambient

1The results in this section are based on:
L. Trimbach, “Modeling of an Electric City Bus for Energy Consumption Estimation,” M.S. thesis
DC 2021.035 (Confidential), Eindhoven Univ. of Tech., Eindhoven, May 2021.



2.6. Supplementary discussion 31

HVAC

Pneumatics Hydraulics

Inverters

24Vsubsystem
Traction
cooling

Powertrain

HV Battery
HV 650 Vdc
HV 460 Vac
LV 28 Vdc
Heat exchange
Surroundings

Charging

LV Battery

Figure 2.14. Schematic view of the energy flow between the main auxiliary
components of a BEB1.

temperatures or lower average forward velocities, the share of energy consumed by
the HVAC system can be two or three times larger [70]. City bus HVAC systems
can consume large amounts of energy because significantly more cabin space needs
to be climatized compared to passenger cars. Additionally, the doors open and
close regularly, losing precious warm or cool air to the ambient environment. The
remaining auxiliary subsystems in the figure also account for a part of the total
energy consumption, with the pneumatics and traction cooling accounting for the
majority of the remaining 5%. It should be noted that Figure 2.15 represents an
exemplary situation and that these ratios can change depending on driving cycle
and environmental conditions.

Some research has been done regarding complete vehicle modeling for energy
consumption estimation of BEBs, including modeling of the auxiliary components.
In [34], the auxiliaries are modeled in detail, additional to the battery and the
powertrain. Similar to the physics-based method described in this chapter, the
powertrain model includes the longitudinal dynamics and an efficiency map of the
traction motor. The cabin thermal behavior is modeled, considering the passen-
ger heat and the effect of opening doors. The heat pump is modeled in detail in
[71]. Furthermore, in [34], the air ventilation is modeled, concerning the ambi-
ent air input flow. The steering pump consumption is considered decreasing as
function of the vehicle speed. For the pneumatic braking system, the airflow for
a certain braking torque is modeled. The resulting air tank volume is captured
and controlled with an on/off strategy. The remaining auxiliaries, e.g., the doors,
parking brakes, lighting, and windshield wipers, are captured by constant pow-
ers. Overall, this is a detailed energy consumption model, including the auxiliaries
with a physical approach; however, the model not validated or compared to any
measured data. Therefore, no assessment of its energy prediction accuracy can
be made. Instead, the model is applied for sensitivity studies and battery-sizing
comparisons [72]. Similar studies exist that model BEB auxiliaries in detail. One
example is [73], which includes models for the HVAC, the hydraulic power steer-
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Figure 2.15. Share of the total energy consumption of a battery electric bus for
each of the onboard systems. The data was gathered driving the route displayed
in Figure 6.4 in Chapter 6. During this measurement, the weather conditions
were dry and sunny with a light breeze at an ambient temperature of 22◦C. In
the test vehicle, the hydraulics are powered via low voltage (LV), and no public
transport electronics are present.

ing, and the pneumatic braking of the vehicle. Here again, the model is applied
to compare various auxiliary control strategies without making any statements on
the model accuracy with respect to measurements. Furthermore, in [70] a physics-
based HVAC model is presented, taking into account the loss of climatized air due
to the opening of doors. In a validation against low-frequency measurements data,
the model is shown to be an improvement compared to a reference model that
attributes a fixed energy consumption ratio to the auxiliaries. Regardless, it is ac-
knowledged that high-frequency data, including passenger occupancy, is essential
for improving performance.

The fact that the available literature seldomly compares its models to measured
data indicates the difficulty of auxiliary modeling. While macroscopic models of
the auxiliary energy consumption exist, often establishing a single dependency
of Paux on ambient temperature [54, 74], microscopic auxiliary models, such as
described in [34, 73] require a multitude of input signals. The HVAC system alone
depends on temperature, density, and humidity of the ambient air, solar irradiance,
passenger occupancy, bus-stop frequency, and the control strategy of the respective
HVAC system. When aiming to predict the HVAC power as function of time, the
additional challenge arises to predict each of these variables. Similar difficulties
exist for the pneumatic system power, which is mainly affected by the lowering of
the air suspension at bus stops, and the power steering hydraulics, which depends
on the number of steering actions and vehicle forward velocity. Because of the
complexity of the auxiliary systems, a possible solution might be found in data-
driven methodologies. Nevertheless, in this case, the challenge is shifted towards
gathering a dataset that contains sufficient data over the entire range of input
variables.
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Assessing the impact of cornering

losses on the energy consumption of
electric city buses

Abstract - In view of the increasing electrification of public city transport, an
accurate energy consumption prediction for Battery Electric Buses (BEBs) is es-
sential. Conventional prediction algorithms do not consider energy losses that oc-
cur during turning of the vehicle. This is especially relevant for electric city buses,
which have a limited battery capacity and often drive curvy routes. In this chapter,
the additional energy consumption during steering of a BEB is modeled, measured,
and assessed. A nonlinear steady-state cornering model is developed to establish
the additional energy losses during cornering. The model includes large steer an-
gles, load transfer, and a Magic Formula tire model. Model results show that both
cornering resistance and tire scrub of the rear tires cause additional energy losses
during cornering, depending on the corner radius and vehicle speed. The energy
consumption model is validated with full scale vehicle tests and shows an average
deviation of 0.8 kW compared to the measurements. Analysis of recorded real-world
bus routes reveals that on average these effects constitute 3.1% of the total power-
train energy. The effect is even more significant for routes crossing city centers,
reaching values up to 5.8%. In these cases, cornering losses can be significant and
should not be neglected in an accurate energy consumption prediction.

This chapter constitutes Contribution I of this dissertation and is based on:
C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer, “Assessing the impact of cornering losses
on the energy consumption of electric city buses,” Transp. Res. Part D: Transp. Environ., vol.
86, p. 102360, Sep. 2020, doi: 10.1016/j.trd.2020.102360.

A supplementary discussion is provided in Section 3.7.

https://doi.org/10.1016/j.trd.2020.102360
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3.1 Introduction

IN the recent transition towards electric mobility, Battery Electric Buses (BEBs)
are one of the first public transport solutions deployed on a large scale in many

city centers [11, 75]. BEBs offer the advantage of zero local emissions and a pos-
sibility for a reduced total cost of ownership, due to the relatively low operational
expenses [76].

Even though the electric drives of BEBs are more energy efficient than the
internal combustion engines of conventional vehicles, the available energy stored in
the vehicle is rather limited. This is mainly a consequence of the energy density of
batteries still being low compared to fossil fuels [77]. Also, there is often little space
available for batteries, as using maximum space for passengers still has priority. As
a result, most current BEBs have a limited driving range. Moreover, the driving
range can vary depending on several environmental and vehicle conditions, such as
usage of vehicle auxiliaries, vehicle mass, and road conditions [78]. Practise shows
that these effects result in conservative time table scheduling and use of redundant
vehicles, and consequently in an increased total cost of ownership.

To migitate the problems posed by the limited and uncertain driving range
of BEBs, energy consumption prediction methods are discussed extensively in
literature. The proposed models can be subdivided into physics-based methods
[33, 35, 79] and data-driven methods [80, 81]. Most models consider a multitude
of dependent variables, ranging from road slope and road roughness, to losses of
individual powertrain components, and detailed weather information. However, a
common assumption in most of these methods is that the vehicle is driving in a
straight line, i.e., only the longitudinal vehicle dynamics are accounted for. This
is not necessarily true, especially when city buses are considered. The city routes
contain many corners, which potentially cause additional tire wear and energy
losses. The goal of this chapter is to model, measure, and assess the energy losses
that occur in the tires when cornering a BEB.

3.1.1 State-of-the-art

There are some energy consumption prediction studies that consider the influence
of corners. For example Ojeda, Chasse, and Goussault [82], who successfully iden-
tified the curves and roundabouts along a route and included these in the speed
profile generation for heavy-duty trucks. However, the vehicle dynamic model that
is used to predict energy consumption neglects the effects of tire slip.

Early research indicates that additional energy losses occur in the tires of road
vehicles during cornering. This was modeled by Hales [83] and later experimentally
confirmed by Gyenes, Williams, and Simmons [84]. Both studies focus on heavy-
duty articulated vehicles and recognize that lateral tire forces result in additional
resistance during cornering, which in later research is referred to as cornering
resistance. Gyenes, Williams, and Simmons [84] estimate that a maximum of 3%
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of the total fuel consumption of long haul articulated freight trucks can be ascribed
to this effect.

There are several studies that recognize the relevance of cornering losses, and
aim to minimize these through the development of vehicle dynamic models and
application of control. An exemplary study is [85], where a linear bicycle model is
used to find an expression the for the total power required to corner a vehicle. The
validated model is used to develop a control strategy that minimizes the cornering
resistance by yaw moment control. Likewise, Ikezawa, Fujimoto, Kawano, Goto,
Takeda, and Sato [86] use a linear bicycle model to find an explicit expression
for the cornering resistance force. This resistance is included in the total energy
losses, which are minimized through optimization of the speed profile under time
constraints. A bicycle model with linear tire forces is also used in [87] to explore
various ways to minimize the power required for cornering an over-actuated vehicle.
The model is later extended to a double-track model with nonlinear tire forces to
expose the potential of active camber control [88]. This model then is extended to
a full six degree of freedom model, including body roll, to investigate the possible
energy savings of rear axle steering and torque vectoring [89]. The extension
towards more complex models enables an accurate description of the nonlinear
dynamics a vehicle might experience in tight cornering situations.

There are further studies that use more complex double-track models to de-
scribe the nonlinear dynamics that occur during cornering and relate these to
energy losses. Maclaurin [90] analyses the steering characteristics of a heavy-duty
six wheeled military vehicle. The author uses a steady-state double-track cor-
nering model of the vehicle to compare different steering geometries, also taking
energy consumption into account. In [91], a double-track model with load trans-
fer is used for the development of a computationally-efficient control strategy to
minimize cornering resistance. Lastly, in [92], an energy efficient torque vectoring
control strategy is developed, also taking into account the energy efficiency of the
individual electric motors. The cornering resistance is calculated using the IPG
Carmaker model. This model is detailed more extensively in [93] and includes
several nonlinear effects, such as large angle assumptions and weight transfer.

This brief survey reveals that the energy losses in the tires due to cornering
are acknowledged in literature. Models of varying complexity are used to describe
these effects. Even though some models manage to describe the elaborate nonlinear
dynamics involved in a cornering a road vehicle, many studies still use linear models
without load transfer. Moreover, only few of the described studies validate the
energy consumption predicted by the models. While the models are mostly used
to minimize the energy consumption through control, only little effort is focussed
on the impact of these losses on the total energy consumption. The contribution
of the cornering losses has not yet been compared to the total energy consumption
in a range prediction context. Finally, little of the cornering related research is
focussed on city buses, which drive curvy routes, often have double mounted tires,
and have a high center of gravity.
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3.1.2 Contribution

This chapter assesses the impact of the energy losses experienced by battery electric
buses during cornering. Hereto, a nonlinear double-track steady-state cornering
model is used. The model includes double tires on the rear axle to resemble the
lay-out of a two-axle, 12 meter city bus without articulation. Furthermore, it
includes relevant dynamic effects, such as nonlinear tire forces, longitudinal and
lateral load transfer, and large steer angles. Two effects that contribute to the
energy consumption are considered: cornering resistance and tire scrub.

Novelty of this work can be found in the fact that the model is validated on
an energy consumption level by comparing it to the results of full-scale steady-
state cornering tests. The energy-level validation and the inclusion of load transfer
effects, make the model suitable to assess the cornering losses for electric city buses.
Additionally, 62 hours of recorded real-world vehicle data from multiple routes are
used to establish the relative impact of the cornering losses on the measured total
energy consumption of the vehicles.

The outline of this chapter is as follows. In Section 3.2, the nonlinear double-
track steady-state cornering model of a BEB is presented. The model is used to
calculate the cornering losses for a typical BEB. Next, in Section 3.3, the model
is validated with results from experiments. In Section 3.4, the validated model is
applied to a set of recorded real-world electric bus routes to establish the signifi-
cance of cornering losses. A discussion of the results is provided in Section 3.5 and
the conclusions are given in Section 3.6.

3.2 Nonlinear double-track steady-state cornering
model

A vehicle dynamic double-track model is developed with the goal of accurately
identifying the tire forces and resulting energy loses during cornering of a BEB.
The model is presented first in [94] and is recapped here to make this work self-
contained. Throughout the model description, a multibody dynamics approach
is used to easily add additional tires to a standard double-track model, thereby
simulating double tires on the rear axle. Furthermore, the model includes longi-
tudinal and lateral load transfer caused by the elevated center of the gravity of
the vehicle. Angles are assumed to be large and the tire forces are represented
by Pacejka’s Magic Formula [95]. As a consequence, the four equations of motion
resulting from the model are highly nonlinear. Therefore, a steady-state solution is
found using Newton iterations. The complete code for the model presented in this
section is publicly available in [96]. Data related to the experimental validation
in Section 3.3 and to the route analysis in Section 3.4 are not included, because
these are subject to a confidentiality agreement.

A schematic top view of a BEB is displayed in Figure 3.1. The figure shows
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Figure 3.1. Schematic view of the steady-state cornering model. The tire loca-
tions are defined by the dimensions lf , lr, s1, s2, and ∆s. The positive definitions
of the velocity vector ~vi, the longitudinal force ~Fx,i, the lateral force ~Fy,i, and
the side-slip angle αi are indicated for each of the six tires (i = 1, ..., 6). In the
CoG, a vehicle fixed axis system (~ex, ~ey) is located. The normal acceleration
vector is indicated with ~an.

relevant dimensions, individual tire velocity vectors, and tire force vectors. The
tires at each side of the rear axle are assumed to have the same angular speed,
i.e., tires 3 and 4 rotate at a speed ωL and tires 5 and 6 at a speed ωR. The figure
depicts a steady-state cornering situation. This implies that both the vehicle speed
v = |~v| and the cornering radius R are constant. The vehicle’s left and right front
wheels are steered and have individual steer angles δ1 and δ2 respectively, which
are also constant. An average steer angle is defined as δ = 1

2 (δ1+δ2). Furthermore,
the vehicle has a constant yaw-rate ωz, a constant vehicle side-slip angle β, and
a constant lateral acceleration an = |~an|. The degrees of freedom of the model
are defined as s = [δ, β, ωL, ωR]

T . The goal of the model is to find a quasi-static
solution for a given forward speed v and corner radius R.

3.2.1 Kinematics
The calculation of the equations of motion starts by defining the velocity compo-
nents of the center of gravity (CoG) as

vx = v cos(β) vy = −v sin(β) ωz =
v

R
, (3.1)
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where vx and vy are respectively the longitudinal and lateral CoG velocity. Ac-
cording to the used multibody dynamics approach, the velocity coordinates are
stored in a column v such that

~v = vT ~e =
[
vx vy 0

] ~ex~ey
~ez

 , (3.2)

where ~e represents the column of unit vectors that describe a vehicle-fixed axis
system with its origin in the CoG. The same notation is used to define the position
of each of the six tires with respect to the CoG as

~pi = pT
i
~e i = 1, 2, ..., 6 , (3.3)

where p
i
is the column containing the position coordinates of tire i. These co-

ordinates depend solely on the vehicle dimensions lf , lr, s1, s2, and ∆s. Here,
lf and lr are the distances between the vehicle CoG and the front and rear axle
respectively, and s1, s2, and ∆s define the track widths as indicated in Figure 3.1.

The local tire velocity vectors can be expressed in each tire-fixed axis system
respectively, according to

vi = A(δi)

v +

 0
0
ωz

× p
i

 i = 1, 2, ..., 6 , (3.4)

where

A(δi) =

 cos(δi) sin(δi) 0
− sin(δi) cos(δi) 0

0 0 1

 (3.5)

denotes the direction cosine matrix that rotates the velocity vector from the
vehicle-fixed frame to the tire-fixed frame as function of the steer angle δi. The
front wheel steer angles δ1 and δ2 are assumed to be related through the Acker-
mann steering relation [97, p. 924],

δ1 = tan−1

(
l

(
l

tan δ
− s1

)−1)
and δ2 = tan−1

(
l

(
l

tan δ
+ s1

)−1)
(3.6)

with l = lf + lr the wheelbase of the vehicle. Because the rear wheels are not
steered, the direction cosine matrices corresponding to these wheels are A(δ3) =
A(δ4) = A(δ5) = A(δ6) = I, where I is the 3× 3 unity matrix.

The coordinates of the local velocity vector with respect to the tire-fixed axis
system are contained in the column vi. The first and second component of this
column are denoted as vx,i and vy,i, respectively. From these velocity components,
the tire side-slip angle αi and the longitudinal slip ratio κi can be determined;

αi = tan−1
(
−vy,i
|vx,i|

)
and κi = −vx,i − re,iωi

|vx,i|
i = 1, 2, ..., 6 . (3.7)
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In these calculations, the effective tire radius re,i is considered to be linearly de-
pendent on the vertical force Fz,i acting on the tire. Furthermore, longitudinal
slip of the front tires, which are not driven, is neglected.

3.2.2 Dynamics

In order to include load transfer both in longitudinal and lateral direction, the
CoG accelerations in these directions are expressed respectively as

ax = sin(β)
v2

R
ay = cos(β)

v2

R
. (3.8)

Next, the pitch moment Mpitch and roll moment Mroll are defined:

Mpitch = −h axm Mroll = h aym (3.9)

with h the CoG height and the m the total vehicle mass. A positive pitch moment
Mpitch redistributes part of the total vertical force from the rear axle to the front
axle. This difference in vertical force is indicated by

∆Fz,pitch =
Mpitch

lf + lr
. (3.10)

Similarly, a roll moment results in a difference in the total vertical force between
the left and right track of the model. The roll moment distribution kdist determines
the distribution of this moment between the front and rear axle. The difference in
vertical force between the left and right track is therefore described by

∆Fz,front = kdist
Mroll

2s1
∆Fz,rear = (1− kdist)

Mroll

2s2
. (3.11)

The total vertical force on each of the tires is a result of the static vertical force
plus the effects of the two types of load transfer, resulting in

Fz,1 =
lr
2l
m g −∆Fz,front +

1

2
∆Fz,pitch (3.12a)

Fz,2 =
lr
2l
m g + ∆Fz,front +

1

2
∆Fz,pitch (3.12b)

Fz,3 = Fz,4 =
lf
4l
m g − 1

2
∆Fz,rear −

1

4
∆Fz,pitch (3.12c)

Fz,5 = Fz,6 =
lf
4l
m g +

1

2
∆Fz,rear −

1

4
∆Fz,pitch (3.12d)

with g the gravitational acceleration. As can be seen from (3.12c) and (3.12d) it
is assumed that the vertical load is equal for two tires that are double mounted,
e.g. Fz,3 = Fz,4.
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To model the tires, a simplified version of Pacejka’s Magic Formula [95, p. 7]
is used. The Magic Formula is an established tire model that accurately captures
the nonlinear tire behaviour that occurs while taking sharp corners. The input
parameters required for this tire model are included in the code [96] and describe
typical bus or truck tires. The tire model expresses the longitudinal and lateral
tire force, Fx,i and Fy,i respectively, as function of the slip conditions κi and αi
and the vertical tire force Fz,i:

Fx,i = fMF,x(κi, Fz,i) + fmon,x(κ) and Fy,i = fMF,y(αi, Fz,i) i = 1, 2, ..., 6 .
(3.13)

The longitudinal force expression in (3.13) is slightly altered with respect to the
original Magic Formula by adding fmon,x(κ). This mathematical function is used
in other contexts to model mechanical freeplay [98] and is described by

fmon,x(κ) =
50000

π

(
(κ+ κc)

(
tan−1

(
−1

κe
(κ+ κc)

)
+
π

2

)
+

(κ− κc)
(

tan−1
(

1

κe
(κ− κc)

)
+
π

2

))
. (3.14)

The function is linear for large slip values (|κ| � κc) and approximately zero
for −κc < κ < κc, where κc is chosen 0.6 and the smoothness is determined
by κe = 0.02. This addition is made to ensure monotonicity of the longitudinal
force with respect to κ and aids the performance of the used Newton scheme,
which will be described in Section 3.2.3. The modified Magic Formula expression
for the longitudinal force is visualised in Figure 3.2. Because the final steady-
state solution of the model, also indicated in Figure 3.2, generally has low slip
longitudinal values, it is not affected by the discussed modification.

Before summation, the individual tire forces are transformed back to the vehicle-
fixed axis system described by ~e;∑Fx∑

Fy∑
Fz

 =

6∑
i=1

F i =

6∑
i=1

A−1(δi)

Fx,iFy,i
Fz,i

 . (3.15)

Four equations describe the steady-state solution. First of all, in accordance with
the assumption of a constant yaw-rate ωz, there is a moment equilibrium around
the vertical axis: ∑

Mz =

6∑
i=1

p
i
× F i = 0 . (3.16)

Secondly, the force equilibrium should hold for both the tangential and normal
direction:

ΣFt = cos(β) ΣFx − sin(β) ΣFy = 0 (3.17)

ΣFn = sin(β) ΣFx − cos(β) ΣFy =
mv2

R
. (3.18)
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Figure 3.2. Magic Formula function describing the longitudinal tire force as
function of the slip ratio. The function used in this study is adapted to be a
monotonic function of the slip ratio. The steady-state solution for v = 22.5 km/h
and R = 10m, corresponding to results of the inner right rear tire (tire 5) is
also indicated.

The last equilibrium equation is a moment equilibrium between the left and right
rear wheels. This results from the assumption that a mechanical differential dis-
tributes the torque produced by the powertrain evenly and without losses between
the left and right wheels:

ML −MR = 0 with ML = (Fx,3re,3 + Fx,4re,4) MR = (Fx,5re,5 + Fx,6re,6) .
(3.19)

3.2.3 Newton iterations

To find a solution for a given value of v and R, (3.16), (3.17), (3.18), and (3.19) are
to be solved simultaneously for the degrees of freedom s = [δ, β, ωL, ωR]

T . In this
case, unconstrained adapted Newton iterations [99] are used to find the solutions
numerically. Hereto,

sk+1 = sk + γ
(
−J(sk)−1ε(sk)

)
k = 0, 1, 2, ... . (3.20)

is evaluated repeatedly. In this equation, εk is the column containing the errors
in the four equilibrium equations in respectively [N] and [Nm] as function of the
current degrees of freedom sk. Furthermore, γ is the adapted Newton step size.
The matrix J represents the Jacobian matrix of εk with respect to the degrees of
freedom sk and is determined numerically using the central difference approxima-
tion. The solution of the linearized single track model at low speed is used as the
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Table 3.1. Typical vehicle parameters of a partially laden BEB.

Parameter Symbol Value

Vehicle mass (incl. passengers) m 15000 kg
Wheelbase l 6m
Longitudinal CoG position lf 3.5m
CoG height above road h 1.5m
Average track width 2s1 = 2s2 + ∆s 2m
Roll moment distribution kdist 1/4

starting point for the iterative scheme [95];

s0 =


tan−1(l/

√
R2 − lr)

tan−1(−lr/
√
R2 − lr)

v/re
v/re

 . (3.21)

3.2.4 Model results for a city bus

Using this model, the tire forces and the work performed by these forces can be
calculated for any realistic cornering situation defined by the vehicle speed v and
corner radius R. The model is solved for an exemplary cornering situation of
v = 22.5 km/h and R = 10m, using typical BEB parameters of a partially laden
vehicle with approximately 30 passengers, as listed in Table 3.1. The velocity and
force vectors of the obtained solution are shown in Figure 3.3. From the results
of this particular cornering situation, it becomes evident that the side-slip angles
differ for the individual tires. Also the vertical forces the tires, shown in Figure 3.4,
show great variation. Both effects result in different longitudinal and lateral forces
being generated by each individual tire.

The force vectors originating from the front tires are rotated with respect to the
velocity direction, due to the vehicle side-slip angle and the significant steer angles.
As a result, the lateral tire forces are partially directed in the rearward direction.
These tangential rearward components of the lateral tire forces are often referred
to as cornering resistance. To maintain a steady-state situation, this cornering
resistance is countered by a net longitudinal force produced by the rear tires.
Therefore, the cornering resistance power PcRes can be calculated according to

PcRes =

6∑
i=3

Fx,ivx,i , (3.22)

where Fx,i and vx,i are the longitudinal tire force and velocity of the respective
rear tires.
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Figure 3.3. Schematic top view of the vehicle and wheels (gray) with the
solution of the steady-state cornering model for the parameters v = 22.5 km/h
and R = 10m. The dashed line indicates the path of the CoG. Velocity vectors
are indicated in green and force vectors are indicated in red. The size of the
arrows corresponds to the magnitude of the vectors. This figure is directly
generated by the MATLAB-script provided in [96].
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Figure 3.4. Vertical tire force of the steady-state solution for each of the six
tires in case v = 22.5 km/h and R = 10m.
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At the rear tires, additional longitudinal forces exist. Of each set of double rear
wheels, the tire closest to the corner center develops a forward force, while the
tire furthest from the center generates a smaller rearward force. This effect is
caused by the fixed rotational speed of each set of double wheels and the fact that
each wheel has a slightly different radius with respect to the corner center. This
effectively results in additional tire scrub, which also results in additional energy
losses. The power lost due to this effect can be calculated by multiplying the local
slip velocity with the longitudinal tire force:

Pscrub =

6∑
i=3

Fx,i (−vx,i + re,iωi) . (3.23)

Overcoming the cornering resistance force and the tire scrub losses requires addi-
tional work, which is ultimately delivered by the powertrain of the vehicle. Using
the described model, the work required to overcome each of these effects is de-
termined for varying cornering situations (v,R). Figure 3.5 shows the resulting
cornering resistance power PcRes and the power lost due to tire scrub Pscrub.

The results indicate that both effects vary as function of cornering situation,
and are most profound for tight, fast corners. PcRes is the more significant effect
for the majority of the cornering situations and can reach values of up to 20 kW.
Pscrub is more relevant for low speed, small radius situations and can still exceed
1 kW. Therefore, both effects are taken into consideration for further analysis and
are together indicated as the combined cornering losses Ploss, which are equal to
the total power requested from the vehicle’s motor to overcome the considered
losses;

Ploss = PcRes + Pscrub = MLωL +MRωR . (3.24)

3.3 Model validation

In order to verify whether the combined cornering losses predicted by the de-
scribed cornering model are realistic, dedicated steady-state cornering tests have
been conducted with an electric city bus. The goal of the experiment is to cor-
relate the measured energy consumption of the vehicle during a tight cornering
situation to the energy consumption as predicted by the cornering model described
in Section 3.2.

3.3.1 Experimental setup

The experiment was conducted with a two-axle, 12m BEB, fitted with C3 class
tires of energy efficiency class D according to EU regulations [100]. Since the test
was performed using a specific vehicle, the vehicle parameters of this vehicle are
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Figure 3.5. Resulting energy losses due to cornering resistance (a) and rear
wheel tire scrub (b) for a range of vehicle speeds and corner radii. Solutions for
high lateral accelerations (ay > 0.4g) are not considered as the vehicle is close
to roll over in this region [94].

used for the subsequent simulation results. These are slightly different from the
parameters described in Table 3.1, also because the vehicles was largely unladen
during the test. The vehicle was equipped with a CAN-logging device to enable the
recording of several relevant sensors. Most importantly, all wheel velocities, the
steering wheel angle, and the powertrain Direct Current (DC) power consumption
were recorded. The test was conducted on a level piece of concrete of 80×360m.
Before start of the tests, the vehicle was driven for approximately 1 hour to reach
steady-state temperatures in all powertrain components and tires.

The experiment consists of two parts. First the base power request of the
powertrain of the vehicle was established by driving the vehicle in a straight line
at various speeds. Secondly, the vehicle was driven in circles at the same speeds,
thereby achieving steady-state cornering situations. By comparing the average
power request of the powertrain between both situations, the additional power
required for cornering can be determined.

3.3.2 Straight line driving results

The straight line driving power request of the vehicle is determined by driving at
a constant speed in a straight line. This maneuver is conducted multiple times for
velocities ranging from 5 km/h to 35 km/h, with intervals of 5 km/h. Results of
such a test are displayed in Figure 3.6a. These show that during the 120 second
measurement the vehicle speed ranges between 5 km/h and 7 km/h and is not
exactly constant. This is mainly due to the absence of a cruise control on the test
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Figure 3.6. Measured powertrain power and vehicle speed as function of time
(a) and average powertrain power as function of vehicle speed while driving
in a straight line (b). The measurement was performed in two directions, one
direction against the wind (headwind) and one direction along the wind direction
(tailwind). A third order fit of the measurements is indicated in red.

vehicle and the fact that the powertrain seems to operate at discrete power levels.
Therefore, average values for both speed and powertrain power are obtained by
averaging over a 120 second time interval. The same procedure is repeated for
multiple vehicle velocities. The duration of the measurement interval is limited by
the length of the available driving area. Therefore, tests at higher velocities have
shorter durations. The tests are conducted in two directions to average possible
slope and wind effects. Due to the presence of significant wind during the test,
the directions are labeled ‘headwind’ and ‘tailwind’, accordingly. The results are
combined in Figure 3.6b. These results show that the power consumption increases
with speed and confirm that the average power consumption is slightly higher in
the headwind situation. The tests up until 20 km/h are performed twice and show
good repeatability.

Also in Figure 3.6b, a polynomial fit is applied to express the average pow-
ertrain power as function of vehicle speed in the straight line driving situation.
The used polynomial is of third order, with coefficients constrained to be posi-
tive, in order to represent the power due to rolling resistance (mostly ∝ v) and
aerodynamic resistance (∝ v3). This fit represents the power consumption for
straight line driving due to rolling resistance, aerodynamic drag, and the internal
powertrain losses.



3.3. Model validation 47

3.3.3 Cornering results
For the second part of the test, the vehicle was driven at a constant speed in
circles of varying radii. The steer angle was kept constant during each measure-
ment, thereby achieving a steady-state cornering situation. Measurements where
performed both clockwise (right-hand turn) and counter-clockwise (left-hand turn)
and each measurement lasted approximately 60 seconds. Again, both vehicle speed
and powertrain power are averaged over each measurement interval.

As the steer angle and the vehicle speed are controlled during the experiment,
the resulting corner radius has to be measured or determined otherwise. In this
case, the corner radius is determined from the individual wheels speeds. The
vehicle yaw-rate ωz is calculated from the front wheel velocities by

ωz =
v2 − v1

2s1 cos(δ)
, (3.25)

where v1 and v2 are the velocities of the front left and right wheel, respectively.
Furthermore, s1 is half of the front track width and δ is the average front steer
angle, which is derived from the measured steering wheel angle. From the yaw
rate, the corner radius R is determined according to

R =
v

ωz
, (3.26)

where v is the speed of the CoG, which is approximated as the unweighted average
of the four individual wheel speeds. Experiments were conduced at four different
radii, as displayed in Figure 3.7.

Figure 3.7 shows the measured average power request while performing the
steady-state cornering maneuver (markers), as well as the straight-line driving
power request determined earlier (red). It is evident that the measured power
request of the vehicle during cornering is significantly higher than the straight line
power request. This difference can reach values of up to 15 kW at higher veloci-
ties. Furthermore, based on the measurements there seems to be little difference
between data from a left-hand turn and a right-hand turn, indicating that the
vehicle is symmetric.

The experimental data of the straight line driving measurements and the results
of the cornering model are combined in the black line in Figure 3.7. For the corner
radii 7.5m, 11m, and 25.5m the model results seem in good agreement with
the measured power consumption. The model appears to predict the increased
power consumption during cornering accurately, both for low velocities and for
higher velocities. However, when analysing the results for the minimal corner
radius, R = 7.5m, the measurements at v = 20 km/h fall far below the predicted
energy consumption. The tests performed in this situation show very high lateral
accelerations (near 4m/s2) and are on the edge of the cornering capabilities of the
vehicle. This is also indicated by velocity peaks in the individual tire velocities,
shown in Figure 3.8a. These peaks indicate a loss of traction of the outer rear
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(a) Corner radius: 7.5m.
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(b) Corner radius: 11m.
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(c) Corner radius: 18m.
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(d) Corner radius: 25.5m.

Figure 3.7. Average powertrain power as function of vehicle speed as measured
during steady-state cornering. Both measurements for right-hand turns and
left-hand turns are shown. The straight line driving power and the power as
predicted by the cornering model are also indicated. Data of four different
corner radii is shown: 7.5m (a), 11m (b), 18m (c), and 25.5m (d). Outliers are
marked gray.



3.3. Model validation 49

1850 1860 1870 1880 1890
Time [s]

0

10

20

30

T
ire

 v
el

oc
ity

 [k
m

/h
]

Front left
Front right
Rear left
Rear right

(a) Individual wheel velocities at
R = 7.5m.
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(b) Difference between measurement and
model.

Figure 3.8. Detail of the recorded wheel speeds during one of the measure-
ments (a). Difference between measured and modeled average powertrain power
request for all different corner radii and different velocities (b).

wheels and a subsequent interaction of the vehicle’s electronic stability control
system. Because these measurements are not steady-state, they are treated as
outliers for the remainder of the analysis.

The difference between the measured and modeled power is visualised in de-
tail in Figure 3.8b. This figure shows that generally, the model underestimates
the increase of the measured power request. Only between 15 km/h and 26 km/h,
the model overestimates the power request in some instances. On average, the
deviation between model and measurement is 0.8 kW, which corresponds to ap-
proximately 0.5% of the maximum powertrain power of the considered vehicle.
Even though the error of the model is not completely random, suggesting some
structural deviation, the overall error is very small. The deviation could be caused
by the fact that the tire parameters used are only estimates and are not matched
to the exact tires that were used during the experiments. However, the power
estimated by the model tends to be on the conservative side, resulting in slightly
lower values than those that were measured.

In general, the model shows a good correlation with the measurement results
for these relatively tight cornering situations, up until a radius of 25.5m. Larger
corner radii could not be tested due to the limited size of the available test area.
As the model properly describes the most tight cornering situations it is assumed
to be valid for larger corner radii as well.
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Figure 3.9. Schematic view of the corner radius calculation based on GPS-
coordinates (a) and the resulting corner curvature (b), indicated by the length
of the black lines.

3.4 Cornering losses on real bus routes

It has been established that the combined cornering losses are significant for fast,
sharp corners. Therefore, the question remains whether a BEB encounters these
type of cornering situations often during normal driving. To provide an answer,
real-world bus fleet data is analysed. Four BEBs, each driving a different route
on different locations were monitored for one day, thus collecting 62 hours of data.
Of each vehicle, GPS position, wheel-based vehicle speed, and powertrain power
consumption were measured with a sampling rate of 0.5Hz. During the measure-
ments, the vehicles were normally operated as part of a public transport fleet.

Because a steering wheel angle sensor is not present on the vehicles, the ra-
dius of the turns is estimated from the GPS-signal. Preprocessing of the signal
is performed by removing GPS-points with little intermediate distance and by
subsequently applying a Savitzky-Golay low-pass filter [101] to remove signal con-
tent with a high spatial frequency. These steps minimize the influence of GPS-
sensor noise in the estimated corner radii. After preprocessing, the corner radius
is calculated as the radius of circle circumscribing the triangle spanned by a GPS-
coordinate n and its two neighbouring points n − 1 and n + 1, as indicated in
Figure 3.9a. In Figure 3.9b, the resulting corner radius is visualized as a curvature
[1/m] for a section of the analysed route. The results show that the algorithm
correctly identifies corners of different curvature.

The resulting radii can be displayed as function of the vehicle speed, as shown
in Figure 3.10. Additionally, the combined cornering losses Ploss as defined in
(3.24) are included in the figure. While calculating Ploss as displayed here, vehicle
parameters are used that exactly represent the vehicles under consideration. These
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parameter values vary only slightly from the typical values mentioned in Table 3.1.
The vehicles are assumed to be 50% laden. The results of four different routes are
presented: a city route, a city route that also included rural driving to a nearby
suburban area, a purely rural route between several small villages, and a rural
route that includes a section of highway.

Overall, the results show that all kinds of corner radii can be observed, ranging
from sharp corners R ≈ 10m to straight line driving. When analysing the city
route specifically, as displayed in Figure 3.10a, it becomes evident that the corner
radius is positively correlated to the vehicle speed. Therefore, smaller corner radii
of R < 50m are only reached at lower vehicle velocities v < 30 km/h. A similar
trend is visible in Figure 3.10b, which shows the results for a city/rural route. In
this case, the distribution of corner radii is wider. When analysing a rural route,
as displayed in Figure 3.10c, velocities up to 80 km/h are reached, which is the
extra-urban speed limit. Lastly, in the route containing mainly rural and highway
driving, shown in Figure 3.10d, the vehicle regularly drives either roughly 50 km/h
or its maximum speed of 80 km/h.

In the high speed region of Figure 3.10c, a pattern becomes visible in the
distribution of determined corner radii. This is a side-effect of the limited reso-
lution of the available GPS-data and the fact that the analyzed route is largely
aligned with the WGS84-coordinate grid used to describe the GPS measurements.
Combined, these effects results in a erroneous discretization of the corner radii at
higher velocities. As this effect only occurs at large radii, the influence on the
energy consumption is considered to be small.

The total energy lost due to the described cornering effects is assessed. Hereto,
the nonlinear steady-state cornering model is evaluated for each of the measured
cornering situations as displayed in Figure 3.10. Integrating the resulting power
gives the energy loss due to cornering resistance EcRes and tire scrub Escrub. This
energy is compared to the measured total energy consumption of the powertrain
of the vehicle Etot in Table 3.2. This Etot is obtained by integrating the recorded
DC voltage and current from the powertrain inverter, while also taking the limited
battery efficiency into account.

The comparison reveals that, in general, the scrub energy Escrub is relatively
small compared to the cornering resistance energy EcRes. This is to be expected,
as it was already observed from the model results in Figure 3.5 that the power-
loss due to this effect is comparably small. Nevertheless, tire scrub constitutes
approximately 9% of the combined cornering losses.

When analysing the specific trips, it becomes clear that the contribution of
the cornering losses with respect to the total energy consumption depends on the
type of route. Whereas the contribution of cornering losses is relatively minor
for the rural/highway route, the effect is more profound in case of the city route
and the city/rural route. A possible cause is found in a combination of the street
layout and the local speed legislation. The rural/highway route contains many
straight roads, while the average vehicle speed, and thus also the total powertrain
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(a) City route (b) City/rural route

(c) Rural route (d) Rural/highway route

Figure 3.10. Combined cornering losses calculated by the model as function of
vehicle speed and corner radius. Recorded data from electric buses operating in
the field indicate the occurrence of these situations. Data of four different routes
are shown: city (a), city/rural (b), rural (c), and rural/highway (d). Solutions
for lateral accelerations of ay > 0.4g are not considered as the vehicle is close to
roll-over in these situations.
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Table 3.2. Calculated cornering resistance energy EcRes and tire scrub energy
EScrub with respect to the total powertrain energy Etot for several electric bus
routes.

Route Etot [kWh] EcRes
Etot

[%] EScrub
Etot

[%] EcRes+EScrub
Etot

[%]

City 139.7 2.82 0.39 3.21
City/Rural 131.9 5.32 0.43 5.75
Rural 150.5 2.11 0.18 2.29
Rural/Highway 393.2 1.25 0.07 1.32

Average 203.8 2.86 0.27 3.14

power consumption, is relatively high. This reduces the impact of cornering losses.
In contrast, the city/rural route was mainly driven around a city center that
contains many curved roads. Additionally, this specific route contained a high
number of roundabouts, on average one every 1.8 km, increasing the influence of
the considered effects. Based on the unweighted average over the four considered
routes, the combined cornering losses compose more than 3% of the powertrain
energy consumption.

3.5 Discussion and limitations

A nonlinear steady-state cornering model for a BEB has been developed. Although
the model contains many nonlinear effects, such as individual, large steer angles,
load transfer, and a Magic Formula tire model, not all possible physics are included.
The current tire model does not include combined slip, turn slip, or camber. The
influence of these phenomena is expected to be small, since the corner radius R
is large compared to the tire width (turn slip) and the longitudinal tire forces
are small (combined slip). Furthermore, the influence of camber angles on the
lateral force is neglected. Also, while load transfer due to the elevated center of
gravity is included in the model, body roll is not considered. Nevertheless, the
validation show a close resemblance between model and measurement. Therefore,
it can be concluded that the considered level of detail in the model is sufficient for
the purposes considered here.

The model aims to quantify the additional forces involved when cornering the
vehicle. Therefore, conventional road-load forces, such as aerodynamic drag or
rolling resistance, are not considered in the model. The effect that these forces
might have on the slip conditions of the tires is neglected. Consequently, the results
presented here do not allow for any relations between the presented cornering
losses and the rolling resistance properties of the tires. Furthermore, the energy
consumption due to deceleration into the corner and acceleration out of the corner
are not included in the study presented here.
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Most of the vehicle parameters of the buses described in Section 3.4 are known.
One exception is the loading condition of the vehicles. For city buses this can
change throughout the day, or even throughout a single trip. The vehicle mass is
therefore based on the assumption that the vehicles are 50% laden on average. In
order to get an indication of the influence the mass variation might have the final
result, the expression for the cornering resistance power derived from the linear
bicycle model [85, 86] can be used;

PcRes,lin =

([
l2r
2l2

1

CFα,f
+

l2f
2l2

1

CFα,r

]
m2a2y

)
v

=

[
l2r
2l2

1

CFα,f
+

l2f
2l2

1

CFα,r

]
m2v5

R2
, (3.27)

where CFα,f and CFα,r are the front and rear cornering stiffness respectively. The
cornering stiffness is a tire property describing the lateral force a tire generates
per unit of side-slip angle. As a first approximation, the cornering stiffness is a
linear function of the normal load on the tires, and thus of the vehicle mass, i.e.
CFα ∝ m [95]. Therefore, it can be concluded that the cornering resistance power,
which is the most significant of the combined cornering losses, increases linearly
with vehicle mass:

PcRes ∝ m . (3.28)

Nevertheless, the used vehicle mass m is considered to be accurate enough on
average. Only approximately 15% of the mass is determined by the passenger
loading, and the remainder is vehicle weight, which is accurately known.

Results from a specific cornering situation show that both cornering resistance
and tire scrub of the rear double tires cause additional cornering losses. The for-
mer of these effects is much more profound. Therefore, cornering losses are also
significant for heavy-duty vehicles not equipped with double rear tires. Further-
more, the detailed results in Figures 3.3 and 3.4 show the variation in side slip
angles and vertical tire forces between the individual tires. This emphasizes the
importance of using a nonlinear double-track model to accurately simulate these
tight cornering situations with a heavy-duty vehicle. If only a linear bicycle model
were used, the differences in tire load, local velocity, and side-slip angle between
the left and right side of the vehicle would not have been modeled in sufficient
detail. Also the additional effect of tire scrub can only be studied in case the track
width of the vehicle is not neglected.

Recordings from four real-world BEB routes are analysed. From recorded
CAN-bus data, the corner radius could only be determined through analysis of
the GPS-trace. Even though the analysis shows plausible results, some deviations
are expected due to the noise and limited resolution of the considered GPS-sensor.
These errors are expected to not introduce any bias and therefore still results in
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a realistic corner radius distribution nonetheless. Lastly, it is assumed a realis-
tic cornering situation can be represented by a sequence of different steady-state
results generated by the model.

The final results show that the cornering effects described here account on
average for 3.1% of the powertrain energy of the considered vehicle. It is also
shown that the combined cornering losses can momentarily reach values of several
kW’s. These results seem to be in accordance with previous research by [90], who
simulated vehicles of similar dimensions, and [84], who concluded that for long
freight trucks the cornering losses would by bound to roughly 3% of the total energy
consumption. Our results indicate that for BEBs driving in a city environment,
the relative contribution of these cornering losses can even be as high as 5.8%.
Considering the limited available energy of most BEBs, and electric vehicles in
general, it seems that cornering losses have a significant impact on the driving
range and should not be neglected. In contrast, literature shows that in many
energy consumption prediction analyses cornering of the vehicle is not considered.
It is likely that in these cases the cornering losses are implicitly included as part of
the rolling resistance. According [35, Fig. 1], approximately 40% of the powertrain
energy is ascribed to rolling resistance. Therefore, the indicated share of 3.1%
cornering losses corresponds to a change in rolling resistance of approximately
7.75%.

3.6 Conclusions

In this chapter, the additional energy losses that occur due to tire slip while
cornering are assessed using a nonlinear steady-state cornering model. From the
model, cornering resistance losses and tire scrub losses from the rear double tires
are identified, where the latter are less significant yet still relevant. The outcome
of the model matches the additional power consumption as measured during full
scale steady-state cornering tests and the model shows an average deviation of
only 0.8 kW, i.e., approximately 0.5% of the maximum power of the vehicle.

Using the validated model, various routes are analysed. By comparing the
simulated cornering losses with the measured energy consumption of the vehicle
powertrain, it is shown that the cornering losses on average constitute 3.1% of the
powertrain energy consumption. The effect varies depending on route type. While
cornering losses are less profound for rural or highway routes, the contribution
of these losses can reach values of up to 5.8% for routes in a city environment.
Considering the fact that BEBs are currently mostly deployed in city centers, it
seems relevant to take the described effects into consideration in the development
of accurate range prediction algorithms. Therefore, a topic of future research is the
inclusion of the described effects in a physics-based energy consumption prediction
model for electric city buses.

Due to the employed multibody approach in the model description, the wheel
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configuration of the modeled vehicle can be changed easily. Consequently, different
types of heavy-duty vehicles can be simulated by adapting the parameterized wheel
locations and the vehicle parameters. Therefore, the model presented here, and for
which the code is provided in [96], can be used to research the described cornering
losses for different types of vehicles, such as electric semi trailer-trucks.

3.7 Supplementary discussion

This chapter presents two physical phenomena that contribute to additional en-
ergy losses during the turning of a bus: cornering resistance and rear wheel tire
scrub. While the former has been acknowledged in literature since the 1980s [102],
the latter effect is not often considered because it only affects heavy-duty vehi-
cles. In summary, the results indicate that both cornering losses are the largest
in high-speed, small-radius corners. Therefore, routes exhibiting these character-
istics, such as city routes with faster sections, will show relatively large cornering
losses, as indicated in Table 3.2. These results depend on vehicle mass. The cor-
nering resistance scales linearly with mass, as indicated in (3.28), and the rear
wheel tire scrub also increases with vertical tire force. However, because the pow-
ertrain energy consumption generally scales linearly with mass as well, the ratios
mentioned in the table are approximately mass-independent.

The results in this chapter provide a clear motivation to include cornering losses
in a microscopic energy consumption prediction model, especially when accurate
power-request prediction as a function of time or distance is required. This can
be done by including the linearized cornering resistance, as described in (3.27), as
part of the conventional road-load forces, e.g., rolling resistance and aerodynamic
resistance. However, this does not capture the rear-wheel-tire scrub. Additionally,
knowledge is required on the vehicle’s weight distribution and cornering stiffness
to apply this method, and this information is not always available. Therefore,
Chapter 5 of this dissertation provides a method to estimate position-dependent
resistance forces from measured powertrain data. These forces implicitly include
the cornering losses described here, which are a function of road curvature R
and thus of the position along the route. Furthermore, the cornering resistance
is shown to scale linearly with the vehicle mass, similar to the rolling resistance
estimated in Chapter 5.

The vehicle described in this chapter is a 12m unarticulated city bus. Even
though these are the most occurring type, other vehicle configurations exist, such
as the 18m articulated city bus, see Figure A.1 and Table A.1 in Appendix A.
These longer vehicles consist of a front body, with two axles, which connects
via a revolute joint to a rear section with one axle. In theory, the nonlinear
steady-state cornering model presented here can be extended to include these
types of articulated vehicles. In that case, equations of motions will have to be
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extended to also describe the three degrees of freedom of the rear body and the
three constraint equations representing the revolute joint. Although the results
of such an analysis cannot exactly be predicted, the resulting cornering losses
are likely still proportional to the vehicle mass, as in (3.28). Since the powertrain
energy consumption scales approximately linear with mass, the share of the energy
consumption ascribed to cornering losses is likely to be similar for these 18m
vehicles.

Besides the effects described in this chapter, i.e., cornering resistance and rear
wheel tire scrub, other physical phenomena can potentially influence the energy
consumption during cornering. One example is the additional losses in a mechani-
cal differential. When cornering, a difference in rotational speed arises between the
left and right output shafts of the differential, causing additional movement of the
smaller planet bevel gears. This effect is modeled and discussed in Appendix C.
However, the results suggest that this effect is negligible compared to the other
cornering losses.





4
Analysis of energy losses in

suspension dampers on rough
roads

Abstract - The energy consumption of battery electric buses, and electric ve-
hicles in general, depends to a large extent on rolling resistance. Although often
aggregated into one, the energy lost due to rolling resistance can be subdivided into
hysteric tire losses, vertical tire losses, and losses occurring in the shock absorbers
of the vehicle suspension. In this chapter, the energy dissipated by the dampers of
a battery electric bus is quantified in an energy consumption context. The analy-
sis is based on a description of the vertical vehicle dynamics using a quarter car
model with a nonlinear dashpot. The model is validated by comparing suspension
deflection with a measurement on a known road surface. It is shown that 73%
of the energy dissipated in the dampers occurs at road frequencies between 3 and
12Hz. Model simulations on different simulated ISO 8608 road surfaces reveal that
damper losses are in the order of 100W on smooth roads (classes A and B), yet
can reach values of 6.8 kW on rough roads (class D) at 40 km/h. A comparison
with rolling resistance coefficients obtained from coast-down tests shows that the
damper losses can explain the majority of the rolling resistance difference between
road surfaces with a different roughness.

This chapter constitutes Contribution II of this dissertation and is based on:
C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer, “Analysis of energy losses in suspension
dampers on rough roads,” submitted, 2022.



60 Chapter 4. Analysis of energy losses in suspension dampers on rough roads

4.1 Introduction

IN an effort to electrify inner-city transport, battery electric buses (BEBs) are
introduced in ever more city centers around the world [12]. These vehicles offer

reduced noise and local pollution without the cost and maintenance of overhead
power lines. However, similar to electric passenger cars, the driving range of BEBs
is smaller compared to Internal Combustion Engine (ICE) vehicles. Accurate
modeling of the energy consumed by a BEB is therefore essential to maximize and
predict the vehicle’s driving range and reduce operational costs.

A physics-based approach to this energy consumption analysis involves mod-
eling the individual longitudinal forces acting on the vehicle; rolling resistance,
aerodynamic resistance, slope resistance, the force accelerating the vehicle, and
the powertrain losses. The rolling resistance is responsible for up to 30% of the
energy consumption of a BEB [35] and is often modeled as a constant coefficient
multiplied by the vertical tire force. In reality, the rolling resistance is a con-
sequence of different physical mechanisms, including hysteresis losses due to the
repeated deformation of the tire tread. This effect is already studied extensively
for bus and truck tires [103, 104]. This chapter focuses on the contribution of road
irregularities to the rolling resistance for heavy-duty vehicles.

The relation between the power required to move a vehicle forward and suspen-
sion shock absorbers precedes the introduction of modern electric vehicles. At the
beginning of the 1980s, road roughness was a topic of interest [105], and the link
between fuel consumption and suspension stroking was made by various authors
[102, 106, 107]. According to these sources, there are four mechanisms associated
with vertical vehicle dynamics that contribute to additional energy losses:

1. Stroking of the suspension shock absorbers
2. Dynamic deflection of the visco-elastic tire, including obstacle enveloping
3. Impact between tire and road [108]
4. Micro slip associated with angular accelerations of the wheel due to a varying

effective tire radius under dynamic wheel load [108] .

Since the loss of contact between tire and road is assumed to be unlikely on paved
roads where BEBs drive, and the energy effects of 4. are shown to be negligible
[108], only mechanisms 1. and 2. are considered in this study.

To the best of the authors’ knowledge, suspension losses are studied first in
[106], using a mass-spring-damper model. Later, a complete analysis of the entire
tire-wheel-suspension system is presented in [102]. The latter study includes a
radial spring-damper tire model and performs analyses for realistic road inputs.
This model is later extended to include loss of tire-road contact and is compared
to drum tests in [109]. In the 1990s, the observation that dampers dissipate energy
led to the idea that active dampers could be used to harvest part of the energy
that usually would be dissipated [110, 111]. Furthermore, simulation studies have
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been done that employ quarter car models to quantify damper losses, but often
without a comparison of the result to measurement data [112].

Most of these earlier studies employ linear quarter car models in combination
with a variety of tire models. However, it is established that automotive shock ab-
sorbers have nonlinear characteristics [113, 114]. A linearized damper only achieves
comparable results to nonlinear dampers for constant excitation amplitudes [115].
Therefore, when analyzing a variety of road roughnesses, a nonlinear damper model
is required.

Damper losses are not always considered when discussing rolling resistance.
Detailed empirical and finite element models exist that aim to model the resistance
experienced by an individual rolling tire [104, 116–118]. The tire models in these
studies that only concern the tire are often compared with measurements from a
tire-test setup.

The rolling resistance can also be studied using empirical methods. These
studies often focus on estimating the colling resistance coefficient based on data
without considering the details of the physical mechanisms through which energy
is dissipated. [119] and [120] are examples of empirical models for the rolling re-
sistance of truck tires based on tire measurements. The resulting models describe
a statistical relation between the rolling resistance coefficient and the road rough-
ness, typically indicated by Mean Profile Depth (MPD) or International Roughness
Index (IRI). Other studies directly relate the road roughness to fuel consumption
through regression analysis [121], without considering the rolling resistance coeffi-
cient in detail.

This chapter presents a quantitative analysis of the energy dissipated in the sus-
pension dampers due to road irregularities and evaluates the results in an energy-
consumption context. The contributions of this chapter are threefold: First, a
quarter car model with nonlinear suspension damper characteristic is validated by
comparison to multiple vehicle tests. Secondly, to support this validation, road-
profile measurements are augmented with data from a Digital Elevation Model
(DEM) to arrive at an accurate road description over a wide frequency range.
Lastly, using the validated nonlinear quarter car model, the energy dissipated in
the dampers of a BEB is quantified for different road conditions and is compared
to experimentally determined rolling resistance coefficients.

This chapter is organized as follows. In Section 4.2 a quarter car model is
introduced to describe the vertical dynamics of a battery electric city bus. Model
validations are provided in Section 4.3 using experimental data recorded on two
different road surfaces. In Section 4.4 the validated quarter car model is used
to quantify the damper losses in the suspension of a battery electric bus. The
results are compared to coast-down tests conducted with a similar vehicle. Lastly,
in Section 4.5 the conclusions of the work are summarized and the prospects of
future work are discussed.
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Figure 4.1. Schematic view of the quarter car model with a nonlinear shock
absorber and a tandem-cam enveloping model.

4.2 Quarter car vehicle model

An often employed model in vehicle dynamics literature is the quarter car model
[122, p. 194-196]. This model describes the vertical displacement of one corner
of the vehicle, with sprung mass ms and unsprung mass mu, as visualized in
Figure 4.1. Both masses are subject to the gravitational acceleration g and are
interconnected by a spring with stiffness ks and, in this case, a nonlinear damper.
The unsprung mass mu is connected to the road via the tire, which is represented
by a linear spring with stiffness kt and a linear damper with damping constant
dt. The tire-road contact is modeled using a tandem model with elliptical cams
according to [123, Chapter 4]. Two cams, a longitudinal distance apart, follow the
road profile zr, thereby simulating the enveloping of small objects by the tire and
generating an effective road profile ze that is perceived by the quarter car model.
The model does not include the rolling resistance due to hysteric tire losses.

The model features a nonlinear damper, where the damper force Fd(żd) is a
function of the suspension deflection rate żd, with

żd = żs − żu . (4.1)

Automotive shock absorbers generally have a nonlinear characteristic, with damper
forces typically being larger during extension than during compression [113, 114],
as visualized in Figure 4.2. This damper characteristic is realized in a passive way
using a series of internal chambers, orifices, and check valves through which hy-
draulic oil can flow. To describe the nonlinear damper force, a nonlinear damping
coefficient is considered in the model, according to

Fd(żd) = ds(żd) · żd . (4.2)
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Figure 4.2. A typical force-velocity diagram of an automotive shock absorber
(a), with corresponding nonlinear damping coefficient (b).

Secondly, linear tire damping dt, although small compared to the suspension damp-
ing, is included here because it contributes to the total energy dissipated in the
system.

Based on Figure 4.1, the following equations of motion can be defined for the
quarter car model;

msz̈s =− ks (zs − zu)− ds (żd) · (żs − żu)−msg ,

muz̈u =− kt (zu − ze) + ks (zs − zu)− dt (żu − że) + ds (żd) · (żs − żu)−mug .

(4.3)

These two second-order differential equations are rewritten to a system of first-
order differential equations by defining the state column x(t) and input column
u(t) according to:

x(t) :=
[
żs żu zs zu

]>
u(t) :=

[
że ze

]>
. (4.4)

In contrast to a quarter car model without tire damping, the input column includes
the time derivative of the effective road height że, which is required to calculate
the tire damping force. Using the definitions in (4.4), (4.3) can be written as a
first-order ordinary differential equation:

ẋ(t) = f(x(t), u(t)) (4.5)

with

f(x(t), u(t)) =
1
ms

(−ds (żd) (x1 − x2) + ks x4 − ksx3 )− g
1
mu

( ds (żd) (x1 − x2)− (kt + ks)x4 + ksx3 − dtx2 + dtu1 + ktu2)− g
x1
x2

 .

(4.6)
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Figure 4.3. Air bellow force-displacement characteristic for different nominal
pressures. A deflection of 0mm corresponds to the nominal ride height of the
vehicle. Data according to manufacturer specification.

To perform the simulations presented in this chapter, the system of equations
described by (4.5) is implemented in Simulink and integrated with respect to time
using an explicit numerical solver, in this case MATLAB’s ode3 [124], with a
fixed time step of 1ms. A fixed-step solver is used here because an equidistant
time vector will allow easy analysis of the model outputs in the frequency domain
later. At the start of every simulation, the system is assumed to be at rest. This
implies that all time derivatives are zero and the initial positions represent the
static deflections of suspension and tire due to gravity, with the road height zr
being equal to zero:

x(t = 0) =
[
0 0 −msgks −

(ms+mu)g
kt

− (ms+mu)g
kt

]>
. (4.7)

4.2.1 Air suspension characteristics

Most modern battery electric buses are equipped with Electronically Controlled
Air Suspension (ECAS), where air bellows are integrated into the suspension to
support the sprung mass. The pressure in the individual bellows is controlled
through a central electro-pneumatic actuator. This system enables the possibility
to control the vehicle’s ride height to be approximately constant under varying
passenger occupancy conditions. Secondly, it allows the vehicle to ‘kneel’ at bus
stops by lowering one side of the vehicle, or even the whole vehicle, to reduce the
entry step height for boarding passengers.
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The air bellow possesses a slightly progressive force-displacement characteristic,
as displayed in Figure 4.3. Furthermore, the bellow force is a function of the air
pressure inside the bellow. In this work, the air bellow is modeled as a quasi-linear
spring with stiffness kb,lin, which depends linearly on the static bellow pressure
pb,stat. This is visualised in the figure, where kb,lin is shown for a static bellow
pressure of pb,stat = 3bar.

The static bellow pressure is determined as

pb,stat =
ms g

Ab nb
, (4.8)

where Ab is the horizonal cross-sectional area of one air bellow and nb is the
number of air bellows per corner of the vehicle. Typically for a bus, nb = 1 at the
front axle of the vehicle and nb = 2 on the second- and possibly third axle. In this
research, Ab is determined empirically based on static measurements where both
the vehicle weight per vehicle corner and the bellow pressure have been measured.

After kb,lin is determined based on the bellow characteristic shown in Fig-
ure 4.3, the suspension stiffness is calculated as

ks = nb kb,lin(pb,stat(ms)) . (4.9)

According to (4.9), the suspension stiffness ks is a linear function of the sprung
mass ms. Consequently, the sprung mass resonance frequency ωs of the system
remains approximately constant under changing masses ms:

ωs =

√
ks
ms

, with ks ∝ ms . (4.10)

Any damping or hysteresis that the air bellow provides is assumed to be negligible
compared to the damping force of the hydraulic shock absorbers.

4.3 Model validation

In this section, two experiments are discussed that compare the output of the
quarter car model to measured suspension deflections. First, in Section 4.3.1 the
specific vehicle used for these validation tests is described. Next, Sections 4.3.2
and 4.3.3 describe experiments where the vehicle is driven over a specific road, and
the suspension deflection is compared to the quarter car simulation results.

4.3.1 Vehicle parameters
An articulated, three-axle, 18m diesel bus is used for the validation experiments.
Even though the vehicle has no electric powertrain, the suspension is similar to that
of a battery electric bus. The second axle of the vehicle is considered. This is a non-
driven, non-steered axle, with two air bellows, two shock absorbers, and two tires
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Table 4.1. Model parameter of the quarter car model that represents the
vehicle used in the validation tests.

Parameter Symbol Value Unit

Sprung mass (unladen) ms,unlad 1310 kg
Sprung mass (laden) ms,lad 3042 kg

Unsprung mass mu 600 kg
Bellow stiffness (unladen) ks,unlad 92000 N/m
Bellow stiffness (laden) ks,lad 154000 N/m

Damper force Fd(żd) Figure 4.4 N
Tire stiffness kt 2.3·106 N/m
Tire damping dt 600 Ns/m

per corner of the vehicle. The axle is instrumented with potentiometers positioned
parallel to each of the four shock absorbers. This allows for measurement of the
shock absorber deflection zd with an accuracy of 0.2mm at a sampling rate of
500Hz.

The parameters of the quarter car model simulating this vehicle are listed in
Table 4.1. The damper and spring characteristics originate from the respective
manufacturer information, except for the vertical tire damping, which is taken
from [125]. The unsprung mass originates from component specifications of the
axle and tires, and the sprung masses for both a laden and an unladen vehicle
are determined by measurements. Because the air bellow stiffness depends on the
sprung mass according to (4.9), this parameter is also reported for both loading
conditions. Enveloping model parameters for a 245/75 R16 tire are taken from
[123, Table 4.4], as these are geometrically closest to a bus tire.

The force Fd(żd) for this axle is visualized in Figure 4.4. This is the combined
force of two dampers that act in parallel. The damper characteristic shows that
the damping force is approximately a factor five higher for extension than it is for
compression at equal deflection rates.

4.3.2 Road bump test

In a first test, the laden vehicle is driven with a constant speed of 30 km/h over
a well-defined obstacle. The road section of interest is a bump with a relatively
steep increase and a more gradual decrease, as is displayed in Figure 4.5. The
bump is measured and subsequently modeled using a piecewise affine road-height
profile, as shown in Figure 4.6.

The results of the measurement are presented in Figure 4.7, together with the
simulated deflection from the quarter car model. The instance the second axle
of the vehicle encounters the bump is visible in the figure as t1, and after this
moment, the suspension is compressed 60mm. The axle reaches the top of the
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Figure 4.4. Damper force Fd versus damper deflection rate żs for the vehicle
used in the validation tests. Values represent the damping of two shock absorbers
combined. Data according to manufacturer specification.

Figure 4.5. Photo of the road bump with laser sensor.

bump at t2, after which the rebound of the suspension occurs and the dampers
extend to approximately -80mm. The results show that the quarter car model
accurately simulates this initial compression and the subsequent rebound. At
t3, the third axle of the vehicle encounters the bump. After this moment, the
simulation and measurement no longer coincide because the load transfer between
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Figure 4.6. Road height zr of the road bump as function of position x.
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Figure 4.7. Measured and simulated suspension travel of the second axle.
Time instances t1, t2, and t3 respectively indicate the start of the bump, the top
of the bump, and the instance the third axle encounters the start of the bump.

different axles is not included in the simulation. Nevertheless, from the data in the
range t = [t1 t3] it can be concluded that the model matches the measurements
well.

Energy decomposition

After simulating the road bump, the full state of the system x(t) is known for
all time instances. This information can subsequently be used to construct the
system’s energy balance. Firstly, the kinetic energy is calculated as

Ekin(t) =
1

2
msż

2
s(t) +

1

2
muż

2
u(t) . (4.11)

Secondly, the potential energy of the system equals

Epot(t) =
1

2
ks (zs(t)− zu(t))

2
+

1

2
kt (zu(t)− ze(t))2+mszs(t)g+muzu(t)g . (4.12)

Lastly, the energy dissipated due to non-conservative forces acting on the system
is calculated according to

Edis(t) = Edamp(t)+Etir(t) =

∫ t

t=0

Fd(żd(τ))·żd(τ) dτ +

∫ t

t=0

dt (żu(τ)− że(τ))
2

dτ.

(4.13)
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Figure 4.8. Schematic view of the tire-road contact point with the effective
road profile ze indicated in blue, and forces indicated in red.

According to conservation of energy, the sum of these energies ΣE should be equal
to the work exerted on the system W (t):

ΣE(t) = Ekin(t) + Epot(t) + Edis(t) = W (t) . (4.14)

This work is derived by examining the tire-road contact point, as detailed in
Figure 4.8. The modeled contact exerts a normal force Fn on the vehicle, which
is decomposed in a vertical dynamic tire force Fz and a longitudinal force Fx. If
the vehicle is moved at a constant longitudinal velocity, this force Fx exerts work
on the system, which can be calculated according to:

W (t) =

∫
Fx(t)dx with Fx(t) = Fz(t) tan( θ(t) ) , (4.15)

where θ(t) = − arctan(dze(t)/dx) and Fz is the dynamic tire force, which can be
calculated according to

Fz(t) = −kt (zu(t)− ze(t))− dt (żu(t)− że(t)) . (4.16)

The potential, kinetic and dissipated energy resulting from the bump simula-
tion are visualized in Figure 4.9. At the start of the simulation, the system is in
its initial position, and the internal energy is zero. At t1, the axle encounters the
bump, resulting in an increase of the potential energy Epot first and then also of
the kinetic energy Ekin. Note that the energy dissipated in the dampers is still low
at this point. Only after t2, when the axle has reached the top of the bump and
the rebound starts, most energy is dissipated. The oscillations in Epot and Ekin
disappear again, and, at the end of the simulation, both are zero. In contrast,
Edis is non-zero at the end, indicating that 1.8 kJ was dissipated in the tire and
the damper. The majority of this dissipation happens during the rebound, just
after t2. Lastly, simulated values for ΣE(t) and

∫
Fxdx show the conservation of

energy in the model.
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Figure 4.9. Energy decomposition of the bump simulation. Time instances t1
and t2 respectively indicate the start of the bump and the top of the bump.

4.3.3 Belgian blocks test

In the second test, the vehicle is driven over several strips of Belgian blocks. This
specific road has been designed to represent a worst-case situation regarding the
loading of the suspension and is generally used in durability tests. The measured
section consists of two strips of Belgian blocks, one with a length of 306m and
one of 714m, connected by a section of smooth asphalt. These strips are traversed
at a constant speed of v = 40 km/h using the vehicle described in Section 4.3.1,
resulting in a measurement with a duration of approximately 100 s.

Simulated road input

To simulate a stretch of Belgian blocks, information on the road height zr is
required. Because the road considered is part of a test track, a profile of the
Belgian-block section is available. The frequency content of the road height is
visualized in Figure 4.10. The road classes according to ISO 8608 [126] are also
indicated in the figure and show that the Belgian-block road is of class D or E for
the higher frequencies. However, for frequencies below 0.1m-1, the measurement
seems to indicate class C or lower. The measurement of the road height is compared
to data from a high-resolution digital elevation model [127]. This DEM has a
horizontal resolution of 0.5m, and a vertical accuracy of approximately 10 cm.
The strips of Belgian blocks are located on the DEM and the resulting height-
profile is also visualized in Figure 4.10.

Several observations can be made from Figure 4.10. First of all, for the spatial
frequency range from 0.04m-1 to 0.2m-1, the DEM and the measured road profile
coincide well, indicating that both sources of information are in agreement. For
spatial frequencies larger than 1/λ2 = 0.2m-1, the DEM seems to deviate from the
measured road profile. The likely cause is that the road profile oscillations are near-
ing the accuracy limit of the DEM. Lastly, for frequencies below 1/λ1 = 0.04m-1,
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Figure 4.10. Power spectral density of the Belgian blocks, based on measure-
ments, based the elevation model, and the resulting adapted road profile. Road
classes according to ISO 8608 are indicated as well.

the DEM indicates that the road is of class B or C, whereas the measurement
predicts barely any low-frequency oscillations. In this lower frequency range, the
DEM is likely to be the more trustworthy source of information, as the measured
road profile may have been filtered.

The measured road profile is adapted to construct a road input that is realistic
over the entire frequency range. A synthetic random-road profile of road class
B is generated. This profile is then low-pass filtered with a cut-off frequency of
1/λ1 = 0.04m-1, and the filtered signal is added to the measured road profile. The
result is indicated in Figure 4.10. For low frequencies, this signal has a similar
energy content as the DEM, and for higher frequencies, it is equal to the measured
road profile.

Results

The road profile, as described in Section 4.3.3, is used as input to the quarter
car model described in Section 4.2 with the vehicle parameters of Section 4.3.1.
The simulated road input has similar spectral characteristics as the actual surface
the vehicle was driven on. Therefore, the frequency content of the simulation and
measurement results can be directly compared.

Figure 4.11 shows the results of both measurement and simulation of an un-
laden vehicle traversing the Belgian blocks. The top figure displays the simulated
road input as function of temporal frequency. The middle figure shows the esti-
mated transfer function magnitude based on the input and output signals of the
quarter car model. Both the vehicle bounce eigenfrequency, around 1.3Hz and the
wheel hop eigenfrequency at 10Hz are clearly visible. Lastly, the bottom figure
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Figure 4.11. Input road profile (a), estimated transfer function from road to
suspension deflection (b), and resulting suspension deflection (c) of an unladen
vehicle at v = 40 km/h.

in Figure 4.11 shows the Power Spectral Density (PSD), determined via Welch’s
method [128], of both the simulated suspension deflection and the measured sus-
pension deflection signals. Again, the two eigenfrequencies are visible. It can be
seen that the simulated suspension deflection is in the same order of magnitude
as the measured signals. A difference can be observed around the 10Hz eigen-
frequency. Here, the measurement data shows more damping than the model. A
possible reason for this is that, for example, friction in the suspension, which is not
modeled, results in additional damping. Alternatively, the possibility exists that
the tire damping coefficient in Table 4.1 is lower than the actual tire damping.

Results of the Belgian blocks tests with a laden vehicle are displayed in Fig-
ure 4.12. These results are similar to those presented in Figure 4.11. The main



4.4. Quantification of damper losses 73

10-1 100 101 102
10-8

10-6

10-4

10-2
P

S
D

 e
ff.

 r
oa

d 
he

ig
ht

 [m
2
/H

z]

A
B
C
D
E
F
G
H

10-1 100 101 102
10-2

10-1

100

101

tf-
es

tim
at

e 
[-

]

10-1 100 101 102

Frequency  [Hz]

10-11

10-9

10-7

10-5

10-3

P
S

D
 s

up
en

si
on

 d
ef

l. 
[m

2
/H

z]

Quarter car simulation
Measurement left side
Measurement right side

Figure 4.12. Input road profile (a), estimated transfer function from road
to suspension deflection (b), and resulting suspension deflection (c) of a laden
vehicle at v = 40 km/h.

difference is the vehicle bounce resonance peak, which shows a larger amplitude
in the loaded vehicle situation. Because the air bellow stiffness changes according
to (4.9), the frequency at which this peak occurs barely changes between the two
loading situations. Again, it can be concluded that the PSD of the measured and
modeled suspension deflection zs are very similar.

4.4 Quantification of damper losses

The quarter car model that has been validated with measurement data of a diesel
bus in Section 4.3 is used here to assess the energy dissipated in the dampers of
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Table 4.2. Model parameters of the quarter car models that represent the front
and rear axle of a battery electric bus.

Parameter Symbol Value
Front Axle

Value
Rear Axle Unit

Sprung mass (unladen) ms,unlad 2390 3685 kg
Sprung mass (laden) ms,lad 3018 5037 kg

Unsprung mass mu 425 695.5 kg
Bellow stiffness (unladen) ks,unlad 151000 175000 N/m
Bellow stiffness (laden) ks,lad 182000 236000 N/m

Damper force Fd(żd) Figure 4.13 Figure 4.13 N
Tire stiffness kt 1.15·106 2.3·106 N/m
Tire damping dt 300 600 Ns/m

a battery electric bus. The battery electric bus is described in Section 4.4.1. The
results of the quarter car model simulations are presented in Section 4.4.2 and
compared to the results of coast-down tests in Section 4.4.3.

4.4.1 Vehicle parameters

The model parameters representing the battery electric bus are listed in Table 4.2.
Separate sets of parameters are used to represent both the front and rear axle
of the vehicle. The damper force characteristic for both axles is visualized in
Figure 4.13. Again, two loading conditions are considered; an unladen vehicle and
a laden vehicle.

With respect to the diesel vehicle in Section 4.3.1, the electric bus shows a
higher sprung mass and consequently a higher air bellow stiffness. The unsprung
mass of the rear axle is slightly higher here, because the rear axle here is driven
and contains a final drive. Also the parameters for the front axle are presented,
which has only one air bellow, one damper, and one tire per corner of the vehicle.
The stiffness and damper characteristics presented in Figure 4.13 represent the
effective values, after accounting for suspension kinematics.

4.4.2 Random road input

As input to the simulation, random road profiles of classes A, B, C, and D will
be considered. Higher road classes are of such poor quality that these are unlikely
to be encountered by electric city buses. The resulting profiles are shown in Fig-
ure 4.14. Tire enveloping is taken into account in the roads displayed in the figure
according to the method described by [123]. This results in a dip in the frequency
content of the road profiles, as objects of this spatial dimension are enveloped by
the tire.
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Figure 4.13. Damper force Fd versus damper deflection rate żs for both the
front (a) and rear (b) suspension of the battery electric bus. The values rep-
resent the damping force per corner of the vehicle according to manufacturer
specification.
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Figure 4.14. Power spectral density of the four effective random-road profiles
used for the simulation study, each representing one road-roughness class.

The quarter car model with nonlinear damper, as described in Section 4.3 is
used to simulate the front and rear axle of the battery electric bus. The random-
road profiles of Section 4.4.2 are used as input for these simulations.

For each road class A, B, C, and D, a 3 km section of road is simulated. The
vehicle forward velocity is assumed to be constant at v = 40 km/h. The front and
rear axle analyses are conducted independently with the same road profile. The
effect of any coupling between the dynamics of the front and rear-axle is thereby
assumed to be small. The resulting energy dissipated per axle for both dampers
and tires is displayed in Figure 4.15.

The results for road class A, displayed in Figure 4.15a, show that the total
dissipated energy increases linearly with time. The majority of this energy is dis-
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Figure 4.15. Simulated cumulative energy dissipated in dampers and tires,
indicated for both the front and rear axles for road classes A (a), and D (b).
Results are for an unladen vehicle driving 40 km/h.

sipated by the dampers, where the rear dampers dissipate almost twice as much
energy as the dampers in the front suspension. This is in accordance with the
fact that the rear axle is equipped with double springs, dampers, and tires. By
dividing the total dissipated energy by time, the front and rear dampers in this
simulation dissipate 110W combined on average. The dissipated energy increases
with increasing road classes. Consequently, the most energy is dissipated on the
class D road, where all dampers combined account for 6.8 kW, as shown in Fig-
ure 4.15b. Given the vehicle has six dampers, this is about 1.1 kW per damper.

An overview of the average specific dissipated energy, expressed in kWh/km,
is presented in Figure 4.16. The dissipated energy is partitioned into energy dissi-
pated in the shock absorbers and energy dissipated in the tires. This shows that
the contribution of the tire damping is relatively small. Data is shown for both a
laden and an unladen vehicle. Surprisingly, the energy dissipated in the dampers
in these two situations is very similar. This observation is likely a consequence of
air bellow stiffness increasing with sprung mass, resulting in dynamics that are ap-
proximately mass-independent. Nevertheless, the literature suggests that even for
vehicles with constant suspension stiffness, the dissipated damper energy mainly
depends on tire stiffness and is independent of other suspension parameters [112].

When comparing the different road classes, we see again that the dissipated
energy increases exponentially for increasing road classes. At 0.0027 kWh/km,
the total dissipated energy is lowest for road class A. For road class D, the total
distance-specific energy amounts to 0.17 kWh/km, which is approximately 13% of
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Figure 4.16. Total specific energy dissipated in the dampers and tires of a
battery electric bus for different road classes. Results are shown for both an
unladen and laden vehicle driving 40 km/h.

a representative energy consumption for a battery electric bus (= 1.3 kWh/km),
see Figure A.5a in Appendix A.

The simulation results presented here are obtained at a simulated forward
velocity of 40 km/h. Considering that the road PSD is effectively represented by a
-2 slope, as shown in Figure 4.14, and assuming that the constant forward velocity
only affects the vertical tire excision and no other vehicle dynamics, a doubling
of the forward velocity is equivalent to increasing the road class by +1. In other
words, the results presented for class B in Figure 4.16 would also approximately
represent the losses on a class C road at 20 km/h.

Frequency analysis

As previously shown in Figure 4.14, the random-road inputs have a broad fre-
quency content that is representative of a realistic road. The question arises which
frequency range is responsible for most of the energy consumption. To this end, the
random-road profile is filtered with a low-pass filter of varying cut-off frequencies.
This results in a set of different road profiles that range from profiles with only
low-frequency content to the original road profile with its full frequency content.

Each low-pass filtered profile is used as input to the quarter car model repre-
senting the battery electric bus. The resulting dissipated energy is expressed as
a percentage of the energy dissipated for the original road profile in Figure 4.17.
The results show that the frequencies below 0.7Hz do not contribute to the en-
ergy dissipation in the damper and tire. The frequencies related to vehicle bounce,
ranging from 0.7 to 3Hz contribute 27% to the total dissipated energy. However,
the majority of the energy, 73%, is dissipated due to road inputs in the 3 to 12Hz
frequency range. Only as of 7Hz, tire damping starts to become significant.
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Figure 4.17. Dissipated power due to vertical damping in shock absorbers and
tires for different low-pass cut-off frequencies of the road profile. Simulation
represents a BEB driving 40 km/h on a road of class B.

4.4.3 Coast-down tests
The dissipative damper losses described by the quarter car model represent only
part of the rolling resistance experienced by the bus. Energy is also dissipated due
to hysteresis effects in the deformation of rubber in the tire-road contact patch,
micro-slip between tire and road, and, in case of a wet road, due to displacement
of water [103, 129]. Because these effects are challenging to model based on first
principles, the tire rolling resistance is often measured on a drum test setup or
through a vehicle test. In this case, the rolling resistance is determined from
coast-down tests with a 12m battery electric bus on various roads.

The coast-down tests are conducted in accordance with NEN-ISO 10521-1 [62].
During each test, the vehicle is accelerated to a certain speed, after which propul-
sion is removed, and the vehicle is allowed to slow down under the influence of
rolling resistance and aerodynamic resistance. By analyzing forward velocity as
function of time, an estimate can be provided for both rolling resistance coefficient
cr and aerodynamic drag coefficient cd. Measurements are repeated five times in
both directions on each road to arrive at average values for both these parameters.
The tests are conducted with an unladen vehicle on four different road surfaces:
Smooth asphalt, standard asphalt, rough asphalt, and Belgian blocks. These four
road surfaces correspond to the first classes of the random road profiles, respec-
tively: A, B, C, and D.

In order to compare these results, the energy dissipated in the dampers Edamp
and tires Etir as described in (4.13), is determined for all i = 1, ..., 4 corners of
the vehicle and scaled with the vehicle mass and travelled distance to arrive at a
rolling resistance coefficient contribution, respectively,

cr,damp =

∑4
i=1Edamp,i(t)

mg v t
cr,tir =

∑4
i=1Etir,i(t)

mg v t
, (4.17)

where m is the total vehicle mass. The resulting rolling resistance contributed
both due to shock absorber losses and vertical tire damping losses are shown in
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Figure 4.18. Tire damping and shock-absorber damping expressed as rolling
resistance coefficient contribution. Trend line indicates increasing damper losses
and is shown once with and once without offset of cr,smooth. The error bars
indicate the maximum and minimum rolling resistance measured using coast-
down tests.

Figure 4.18. The results of the coast-down tests are shown as well, where the error
bars indicate the maxima and minima of all parameter estimates.

The results in Figure 4.18 show that the rolling resistance obtained from coast-
down tests approximately doubles when going from smooth asphalt to Belgian
blocks. This rolling resistance can be perceived as the sum of the rolling resistance
on a smooth surface, cr,smooth, and the rolling resistance contributed due to shock
absorber and tire damping losses. The trend line in Figure 4.18 indicates that the
road-roughness dependency of the coast-down test results and the damper losses
predicted by the quarter car model have a similar order of magnitude and trend.
Therefore, it is concluded that the majority of the rolling resistance increase on
rough roads is caused by energy dissipation in the dampers and, to a lesser extent,
by energy dissipation in the tires. Although it is acknowledged that the rolling
resistance of a tire on a smooth surface can increase for speeds above 100 km/h
[129], the damper losses described here are the dominant reason for increasing
resistance while increasing road roughness or increasing vehicle speed.

4.5 Conclusion

The energy lost due to stroking of the suspension shock absorbers when driving
over road irregularities is quantified. A quarter car model with nonlinear damper
and tire enveloping is validated based on data of an 18m, three-axle city bus. Two
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known road inputs are used; a road bump and Belgian blocks. The simulated
road bump compares well to measurements during compression and rebound, and
the energy balance of the quarter car model is demonstrated. The Belgian block
simulations, performed with both a laden and an unladen vehicle, compare well to
the measured suspension deflection in the frequency domain.

The validated model is employed to calculate the damper energy losses for a set
of generated random-road profiles. For all of these profiles, the energy dissipated
in the rear axle is roughly twice as large as the energy in the front axle. The
energy dissipated due to vertical damping of the tire is one order of magnitude
smaller than that of the suspension. The road roughness significantly affects the
total dissipated power, which can reach 6.8 kW, or 0.17 kWh/km, on roads of class
D at 40 km/h. This corresponds to approximately 13% of the nominal energy
consumption of a battery electric bus. These results are independent of vehicle
mass, which is likely a consequence of the mass-dependent air bellow stiffness.
Comparing the results to rolling resistance coefficients determined from coast-down
tests indicates that the effects described here are responsible for the majority of
the road-surface dependency of the rolling resistance coefficient. Lastly, by low-
pass filtering the road input, it is established that the road frequencies between 3
and 12Hz constitute 70% of the dissipated energy.

Several improvements to this study are conceivable. Firstly, this work only
concerns the losses attributed to the suspension dampers and the vertical damp-
ing of the tire. If a complete first-principles rolling resistance model is desired, a
model representing the hysteric tire losses on a smooth surface should be added.
Secondly, to more accurately simulate large vertical excitations of the suspension,
the nonlinear thermodynamic effects of the compressed air in the bellows should
be considered, thereby more closely resembling the characteristics in Figure 4.3.
Likewise, the inclusion of bump- and rebound stops might be considered. Fur-
thermore, making the damper force position-dependent, Fd = Fd(żd, zd), allows
for the modeling of the hysteresis that is often present in shock absorbers [114].
Lastly, it remains an open topic to simulate the dissipated damper power in both
front and rear axle and correlate these to the vehicle’s powertrain power in the
time domain. While the results presented here indicate a clear trend in average
rolling resistance, making a rolling resistance force prediction for a particular road
profile involves more detailed tire- and powertrain dynamics.
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Combined rolling resistance
and road grade estimation

based on EV powertrain data

Abstract - Energy consumption prediction is increasingly important for eco-dri-
ving, energy management, and charging scheduling of electric vehicles. Detailed
knowledge of the rolling resistance and road grade, combined here in a road-re-
sistance profile, improves the accuracy of these predictions. This chapter presents a
recursive method to identify the position-dependent road-resistance coefficient using
GPS position, powertrain power, and vehicle speed. The calculations make explicit
assumptions regarding the spatial continuity of both road gradient and rolling resis-
tance by defining road segments. A recursive least-squares method with Gaussian
basis functions allows the estimates to be updated whenever a route segment is tra-
versed anew. The method is tested on data gathered by a 12m battery electric bus.
The resulting road-resistance profile shows a strong resemblance to the road slope
and captures changes in rolling resistance well, including a dependency on ambi-
ent temperature, which is in accordance with literature on tire rolling resistance.
Including the resistance profile in a vehicle model reduces the error of the pre-
dicted powertrain power with 1.7 percent point compared to a conventional method,
without the limitation of requiring a high-resolution digital elevation model.

This chapter constitutes Contribution III of this dissertation and is based on:
C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer, “Combined Rolling Resistance and Road
Grade Estimation Based on EV Powertrain Data,” submitted, 2022.
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5.1 Introduction

TO reduce global climate change and local air pollution, the transportation
sector is transitioning to electric mobility [12]. Electric Vehicles (EVs) are

already a key solution in this transition, and in the next decade, the total share
of EVs is expected to keep growing exponentially [12, p. 75]. The shift towards
electric propulsion is also taking place in the public transport sector, where inner-
city transport is electrified, mostly by introducing Battery Electric Buses (BEBs)
[43]. The shorter routes with relatively low average velocities, together with the
need to reduce local air pollution, make the city centers a suitable use case for
BEBs [130].

The limited driving range is an important technical challenge still stalling the
dominance of EVs with respect to conventional Internal Combustion Engine (ICE)
vehicles. For EVs, the available energy stored in the battery is generally far less
than is available in the fuel tank of an ICE vehicle. Even though electric power-
trains operate more efficiently, the resulting net driving range is lower. A secondary
result of the relatively high and constant efficiency of the electric powertrain is that
the road loads, i.e., aerodynamic resistance, rolling resistance, and the longitudi-
nal force due to road gradient, have a larger effect on the vehicle’s driving range.
Therefore, the driving range can vary significantly when these resistance forces
change from route to route or day to day. Even though progress is made both
in increasing the available battery capacity and reducing the energy consumed
per driven distance, the variability of the driving range is inherent to the efficient
powertrain of the EV.

Accurately modeling the energy consumed by an EV powertrain remains an
essential requirement to predict the driving range and apply energy-saving control
algorithms. Examples of these control strategies include eco-driving [40], look-
ahead cruise controllers [131], on-board energy management [41], and eco-routing
algorithms [45]. For BEBs, additional uses of energy consumption models are
found in solving fleet scheduling problems [43, 44] and exploring the vehicle design
space [38, 39], often to minimize Total Cost of Ownership (TCO).

There are generally two types of EV energy consumption models. The first type
is a data-driven approach where historical measurements are used to predict the
energy consumption of a future trip under similar conditions [132, 133]. Evermore
often, machine learning-type methods are used for this purpose. Alternatively, a
physics-based approach can be employed, where the longitudinal dynamics of the
vehicle are reconstructed to determine the energy that will be required to traverse
a route at a certain forward velocity [33]. This method typically relies on models
of the different road load forces; aerodynamic resistance, rolling resistance, the
longitudinal component of gravity due to road gradient, the acceleration force,
and the powertrain losses. Compared to data-based models, physics-based models
offer an increased understanding of the energy losses and better extrapolatability to
different routes and operating conditions. However, the parameters of the physics-



5.1. Introduction 83

based model can be challenging to obtain.
The rolling resistance is an important physical effect that is challenging to

model accurately. Rolling resistance is a function of tire-design parameters, tire
inflation pressure, tire temperature, road wetness, and road roughness [129, 134]. A
second component strongly influencing the EV power request is the road gradient.
In any prediction, the quality of road gradient data is detrimental to the accuracy
of the energy prediction [135]. Road gradient profiles can be obtained from GPS
[136, 137], Inertial Measurement Units (IMUs) [138] or Digital Elevation Models
(DEMs) [139]. However, each of these methods brings its own disadvantages; GPS
is considered inaccurate for elevation measurements, IMU measurements require
additional sensors, and DEMs are often of limited spatial resolution or only locally
available. Furthermore, DEMs provide no data for parts of the route consisting of
tunnels or obscured by overpasses.

5.1.1 Literature overview: online rolling resistance and road
grade estimation

Because of the increasing number of sensors in road vehicles, interest arose in
the 1990s to identify vehicle parameters online [136, 140, 141]. Most of these
earlier studies, both in simulation and experimentally, use an ICE vehicle as a
case study [142–145]. In the presented estimator algorithms, engine torque is
often required to be measured. Because direct measurement of this torque is
challenging, most studies employ static engine maps to express this signal as a
function of speed and fuel rate. In the last decade, more EVs have appeared as
subject in parameter estimation studies [55, 146, 147]. These vehicles offer the
advantage of measurement of the motor current, which directly relates to motor
torque. Alternatively, the powertrain power can be used [55]. Except for engine
or motor torque, additional sensors are often employed to base the estimation on.
These include GPS [136, 137, 143, 146], which is often used to assess the road
grade, or IMUs [138, 142, 145]. In most studies, the vehicle speed signal is also
required and measured using wheel-speed sensors or a tachograph.

Most studies focus on the estimation of either road grade or rolling resistance.
Road grade estimators are often combined with simultaneous estimation of the
vehicle mass [142, 144–146, 148]. This is possible because the vehicle mass affects
the longitudinal acceleration of the vehicle, which can easily be measured directly
with an IMU or indirectly via the vehicle speed. Online rolling resistance estima-
tors are also described in literature [147, 149, 150] and are sometimes combined
with estimations for the aerodynamic coefficient [151, 152] or the vehicle mass [55].
Combined estimation of rolling resistance and road grade is seldomly encountered
[143].

Different techniques are used for the various online estimators. An often en-
countered choice in the automotive industry is the Kalman filter [136, 142] or
extended Kalman filter [131]. Secondly, more general observer-based methods
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are used [148–150], often in the context of estimating the rolling resistance. The
method encountered most often in the literature of interest is Recursive Least-
Squares (RLS) algorithm [55, 140, 143–146, 151]. This algorithm is intuitive and
computationally efficient.

While the applied methods can give a good indication of the rolling resistance
or road grade of past a route, this gives no direct information on any future
conditions the vehicle might encounter. This aspect is left undiscussed in most
studies, where results are presented as a function of time or traveled distance
with respect to the start of a measurement. Some studies, e.g., [138] and [147],
make the first step towards combining data from multiple vehicles by visualizing
the estimated parameter as function of position on a map. One other exemplary
study, [153], proposes a detailed method to combine data from a connected fleet
of vehicles to estimate rolling resistance and wind influence, yet is only applied
to simulated data. To the best of the authors’ knowledge, only in [131] multiple
measurements from multiple vehicles are combined to arrive at a single estimate
for the road gradient. Multiple measurements are averaged using a spatial Kalman
filter resulting in a road gradient that compares favorably to a reference profile.

5.1.2 Contribution
Although previous studies exist that estimate the rolling resistance or road gra-
dient online, only a few account for the location-dependency of both these pa-
rameters and use this to combine data from multiple measurements. Additionally,
other studies rarely estimate rolling resistance and road grade combined. This
chapter presents a novel approach to the problem by defining route segments to
include both the continuous nature of road gradient and the spatial discontinu-
ities introduced by the rolling resistance. Recursive least-squares with Gaussian
basis functions is applied to iteratively evaluate the measured powertrain power
of a battery electric bus that is repeatedly driving the same route. The resulting
parameter estimates are subsequently used in a physics-based longitudinal vehicle
model to predict the power request of a future vehicle traversing the same route.

This chapter is organised as follows. In Section 5.2 the physics-based longitu-
dinal dynamics model that is at the basis of this work is explained. In Section 5.3
the theory behind the proposed recursive identification method is detailed. This
method is evaluated with measurement data obtained from a 12m electric bus,
as described in Section 5.4. The results of this experiment are presented in Sec-
tion 5.5. Lastly, conclusions and future work are described in Section 5.6.

5.2 Vehicle model

This chapter follows a physics-based approach to energy consumption prediction.
This implies that the longitudinal dynamics of the vehicle are considered, as de-
scribed in Section 5.2.1. Notably, this model includes an empirically determined



5.2. Vehicle model 85

cav(t)
2

α(s(t))

mg

Fpt(t)

cr(s(t))mg cos(α(s(t)))

Figure 5.1. A schematic view of the longitudinal forces acting on the vehicle.

map to represent the powertrain losses as discussed in Section 5.2.2 and accounts
for the temperature-dependency of the aerodynamic drag force as discussed in
Section 5.2.3.

5.2.1 Longitudinal vehicle dynamics
The energy consumption of the electric vehicle is assumed to adhere to the road-
load equation [33], which describes the longitudinal dynamics of the vehicle, as
seen in Figure 5.1, according to:

meff
dv(t)

dt
= Fpt(t)− cos(α(s))cr(s)mg − sin(α(s))mg − ca(Tamb)v(t)2 , (5.1)

where constants meff and m are respectively the effective vehicle mass, which
includes rotational inertia of wheels and driveline, and the vehicle mass, ca(Tamb)
is the aerodynamic resistance coefficient as function of ambient temperature Tamb,
cr(s) is the rolling resistance coefficient, α(s) is the road gradient, and g is the
gravitational acceleration. Fpt(t) represents the driving force applied at the driven
wheels, which can be determined according to

Fpt(t) =
Ppt(t)− Ploss(Tmot(t), v(t))

v(t)
, (5.2)

where Ppt(t) is the electric powertrain power supplied by the high-voltage battery,
and Ploss(Tmot(t), v(t)) is the energy lost between wheel and battery as function
of motor torque Tmot(t) and forward vehicle velocity v(t). In these equations,
the forward velocity v(t), powertrain losses Ploss(t), and the powertrain power
Ppt(t) are functions of time t. In contrast, the road gradient α(s), and the rolling
resistance cr(s) are assumed functions of the vehicle position s(t), which by itself
is a function of time. This time-dependency of s, will be dropped hereafter for
brevity.

Next, (5.1) is rewritten as

1

mg

[
Fpt(t)−meff

dv(t)

dt
− cav(t)2

]
= croad(s(t)) . (5.3)
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From this equation, we define the road-specific resistance coefficient croad(s) as

croad(s) := cosα(s) cr(s) + sinα(s) , (5.4)

which represents the combined effect of rolling resistance and road grade. Using
(5.1) and (5.2), the variables in left term of (5.3) are either measured (Ppt(t),
Tmot(t), v(t)) or known constants (g, m, meff , ca). Therefore, it is possible to
calculate croad(s) when measurements on these signals are available.

There are two conditions under which direct calculation of the road resistance
is not possible. Firstly, because (5.3) does not contain any term for the dissipative
friction brakes of the vehicle, croad(s) can only be calculated if these brakes are not
engaged. Secondly, because (5.2) is badly conditioned for low velocities, croad(s)
is only calculated in case v(t) > 5 km/h.

The constants in (5.3) are subject to several assumptions. In practice, the
vehicle mass m of an electric bus can change due to differences in passenger occu-
pancy. However, modern vehicles are equipped with an Electronically Controlled
Air Suspension (ECAS) that enables estimates of the vehicle mass by measuring
the air bellow pressure. Given the availability of these sensors, the vehicle mass
is assumed a known piecewise constant parameter that changes when the vehicle
is halted at a bus stop. Furthermore, while the aerodynamic resistance coeffi-
cient ca is dependent on the ambient temperature, as described in Section 5.2.3,
these changes are typically slow. Therefore, during a single trip, ca is treated as a
constant.

5.2.2 Empirical powertrain losses model
The term Ploss(Tmot(t), v(t)) in (5.3) represents the combined losses of the inverter,
motor, possible driveshafts, the final drive, and bearings. Because modeling these
components in detail requires extensive knowledge about the powertrain, an em-
pirical method is followed. To this end, the losses between battery and wheels
are measured on a heavy-duty chassis dynamometer for different velocities and
torques. The resulting power losses map is visualized in Figure 5.2, and is de-
scribed in more detail in Appendix B. The map is a function of the wheel torque
Twhl(t), which here is determined from the motor torque Tmot(t) that is reported
by the motor controller during the measurements and the known final-drive gear
ratio.

5.2.3 Temperature-dependent aerodynamics
The aerodynamic resistance coefficient ca consist of

ca =
1

2
ρ(Tamb, hrel, patm) cdAf , (5.5)

where cd and Af describe respectively the aerodynamic drag coefficient and frontal
area of the vehicle. Both these parameters are assumed constant, indicating that
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Figure 5.2. The powertrain losses model originating from dynamometer mea-
surements.

no side-wind effects are considered here. The expression for the air density ρ is
based on [65], which describes a static relation as function of temperature Tamb,
relative humidity hrel, and the atmospheric pressure patm. The values for these
three parameters are obtained from openly accessible databases of nearby weather
stations [154]. The time-resolution of this weather data is 1 hr, and is matched to
the start time of each trip.

5.3 Recursive least-squares identification

Having defined the road-resistance coefficient croad(s), this section describes the
system identification method used to combine multiple observations of this coeffi-
cient in a single position-dependent road-resistance profile. Assumptions regarding
the position-dependency are summarized in Section 5.3.1 and the used recursive
least-squares method is detailed in Section 5.3.2.

5.3.1 Route segmentation

The road resistance croad(s), as defined in (5.4), combines the influence of the road
gradient α(s) and the rolling resistance coefficient cr(s). While α(s) can typically
be considered a continuous function of position s, the rolling resistance depends
strongly on the road surface [134] and can thus be discontinuous as function of
s. Therefore, it is assumed here that roads consist of shorter road segments that
each contain a specific road-surface type. Road segments are defined based on the
following criteria that can be obtained for any road via OpenStreetMap:

• The road name, e.g., ‘Station Road’ [155].

• The road type, e.g., ‘motorway’ or ‘primary’ [156].
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N
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Figure 5.3. Top view of a road network where each of the road segments are
indicated by individual colors. The segments indicated by 3©... 6© are included
in the test route.

• Whether or not the road is part of a junction [157].

Sections of the route with the above three properties in common are defined as part
of a single road segment, which is assumed to have a constant rolling resistance
cr. This implies continuity of croad(s) within every route segment. Discontinuities
in croad(s) are assumed possible on points between road segments to represent a
possible change in road-surface. In Figure 5.3 an exemplary highway overpass is
shown, with colors indicating the different route segments.

Besides realizing specific assumptions regarding the position-dependency of
croad(s), the above segment-based definition of the route offers the advantage that
at any location two roads meet, a new road segment is defined. This opens up the
ability to combine resistance profiles of vehicles that have several segments, but
not the entire route, in common.

5.3.2 Recursive least-squares with Gaussian basis functions
A vehicle is considered that traverses several route segments i = 1, ..., Ns, while
measuring Ppt(t), Tmot(t), v(t), and GPS position. Thereby, croad(s(t)) can be
determined through (5.3) and (5.2), which is referred to as an observation of
croad(s(t)). Whenever a similar vehicle drives the route the next time, a second
set of observations of croad(s(t)) can be made. These sequential batches of observa-
tions are indicated by k = 1, ..., Nt, whereNt is the number of trips. In this section,
a single road segment i, defined by the criteria in Section 5.3.1, is considered. To
this end, the subscript i will be dropped in the subsequent explanation.

Every time a vehicle traverses this route segment for the kth time, a batch of
measurements of the powertrain power Ppt,k(t1, ..., tNm,k), motor torque Tmot,k(t1,
..., tNm,k), and forward vehicle velocity vk(t1, ..., tNm,k) are made, whereNm,k is the
total number of measurements in the kth trip. The total number of measurements
Nm,k can vary and is a function of the route segment length d, the vehicle speed
v(t), and the sampling rate of the measured signals. The measured signals are
used to calculate No,k observations of croad,k(t1, ..., tNo,k) using (5.3) and (5.2).
Note that this calculation is only valid if the dissipative brakes of the vehicle are
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Figure 5.4. Schematic view of Gaussian basis functions approximating the
road-resistance profile for a single route segment of length d.

not engaged and v(t) > 5 km/h. These conditions are checked by monitoring the
brake-pedal position and forward vehicle velocity, and invalid data is excluded
from further processing. Therefore, No,k ≤ Nm,k. The resulting observations for
croad(sk) are gathered in a column croad,k, along with the positions sk at which
these are captured;

croad,k =

 croad,k(t1)
...

croad,k(tNo,k)

 sk =

 sk(t1)
...

sk(tNo,k)

 (5.6)

If the route segment is traversed the next time (k + 1), a new set of observations:
croad,k+1 at possibly different locations si,k+1 is generated. Therefore, the chal-
lenge arises to determine an average croad-profile from the spatially non-equidistant
observations of croad, and subsequently add new observations to this profile in a
recursive manner.

Gaussian basis functions

The positions at which the road resistance is measured sk are not equidistant due
to the non-constant forward velocity of the vehicle. Additionally, in the next set
of observations, the positions sk+1 are likely to differ. Gaussian basis functions
are proposed in the position-domain, as shown in Figure 5.4, to parameterize the
road-resistance profile and achieve a definition for the road resistance that does not
depend on sensor sampling time or forward vehicle velocity. Gaussian functions are
chosen because these are non-periodic, C1 continuous, and vanish at infinity, which
are all properties that apply to a local road gradient measurement. Additionally,
by using the amplitudes of the functions as the unknown parameters, physical
interpretation of the parameter values is maintained.

Figure 5.4 shows that the basis functions are spatially distributed along the
length of the road segment. The number of basis functions per road segment
Nφ depends on the road segment length d and a pre-defined inter-basis function
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distance dµ;

Nφ =

⌈
d

dµ

⌉
. (5.7)

For the results generated in this chapter, dµ = 66m is taken. The midpoints of
the Gaussian curves µj for the basis functions j = 1, 2, ..., Nφ are chosen to be
uniformly distributed over the length of the road segment:

µj := (j − 1)dµ +
(Nφdµ)− d

2
with j = 1, 2, ..., Nφ , (5.8)

where the latter term ensures symmetry with respect to the center of the segment,
which is convenient if the segment is traversed in both directions. Lastly, the basis
function width σφ, is constant and is taken σφ = 44m in this chapter. The values
described here result in approximately 1000/dµ ≈ 15 basis functions per kilometer
and are sufficiently small to capture any gradient changes in the measurement data,
such as those that will be described in Section 5.5.2. Additionally, the fact that
σφ = 2/3dµ ensures that the different basis functions partially overlap, enabling
even relatively constant profiles to be approximated.

The Gaussian basis functions are defined as [158]

φ
j
(sTk ) :=

{
exp

(
− s

T
k−µj
2σ2
φ

)
if Nφ > 1

J1×No,k if Nφ = 1 .
(5.9)

The lower condition in (5.9) ensures that if d < dµ, e.g., when only one basis
function fits the road segment, a matrix of ones J is used and thus croad(s) is
assumed constant over the entire road segment. If d ≥ dµ, multiple basis functions
are required. A regressor matrix Φ(sk) is constructed by ordening the Nφ basis
functions as

Φ(sk) :=


φ
j=1

(sTk )

...
φ
j=Nφ

(sTk )

 with j = 1, 2, ..., Nφ . (5.10)

The regressor matrix is used in a linear regression model defined as

croad,k(sk) = Φ(sk)T θ + εk(sk) , (5.11)

where croad,k(sk) is the data-vector containing the observed values for croad, Φ(sk)
is the previously defined regressor matrix, containing basis functions that are a
function of measured positions sk, θk is the column containing the individual
amplitudes of the basis functions, and εk(sk) is the error term. The positions
sk at which the croad-observations are made are based on GPS-measurements, as
is explained in Section 5.5.1. The assumption is made that any error in sk is
negligibly small compared to the width of the basis functions, thereby making
Φ(sk) completely known. Also assuming that the errors εk(sk) are zero-mean, the
parameter estimates in this least-squares problem can shown to be unbiased.
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Combining multiple observations

Having defined the regressor matrix Φ, next, parameter estimates θ̂ are sought
that minimize the errors εk(sk) in (5.11) in a least-squares sense for all available
Nt trips, i.e.,

θ̂Nt = argmin
θ

1

Nt

Nt∑
k=1

[
croad,k(sk)− Φ(sk)T θ

]2
. (5.12)

A recursive least-squares algorithm is applied [159], by repeatedly evaluating

P k =
(
P−1k−1 + Φ(sk)Φ(sk)T

)−1
, (5.13)

Lk = P kΦ(sk) , (5.14)

θ̂k = θ̂i,k−1 + L
(
croad,k(sk)− Φ(sk)T θ̂i,k−1

)
, (5.15)

for k = 1, ..., Nt. Whenever new data becomes available in the form of
croad,Nt+1(sNt+1), (5.13), (5.14), and (5.15) can be re-evaluated to arrive at up-
dated parameter estimates θ̂Nt+1.

During the first observation, i.e, k = 1, no prior information is available. There-
fore, the following initial conditions are assumed:

P 0 = a · I ∧ θ̂0 = 0 , (5.16)

with a a constant that should be sufficiently large compared to the covariance
introduced by measurement data, and I the identity matrix, thereby assuming no
prior knowledge. In these equations, the matrix P k can be used to estimate the
covariance of the parameter estimates according to [160, p. 74]

Cov θ̂Nt = σ̂2
ε,kP k, (5.17)

where the estimated error variance is given by

σ̂2
ε,k =

1

No,k −Nφ
εk(sk)T εk(sk) . (5.18)

There are several arguments for choosing the above method over other function-
estimation methodologies. First of all, the use of a parametric approach with
basis functions allows the estimated profile to be stored efficiently, with only 15
parameters per km of road. Using nonparametric methods would result in signif-
icantly higher memory requirements. Secondly, the use of a recursive algorithm
gives the ability to conveniently update croad-profile any time new observations
become available, i.e., when the same road segment is traversed again, by simply
re-evaluating the covariance matrix P k and the parameter estimates θ̂ according
to (5.13), (5.14), and (5.15). This is illustrated in Figure 5.5. The figure shows the
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Figure 5.5. Schematic view of the road-resistance profile iteratively changing.

road-resistance profile, first shown in Figure 5.4, gradually evolving as function of
the number of sets of observations k.

The above explanation describes the calculations for a single route segment i
and is repeated for all segments constituting the route. In the end, the profiles
of the individual road segments are aggregated into a total-route profile. Note
that the resistance profile is defined as function of segment position s and not as
function of traveled distance. As a result, data from vehicles with different start
positions can be combined.

5.4 Battery electric bus experiment

The method described in Section 5.3 is tested on real-world data. A dedicated
experiment is performed by driving a battery electric bus, as described in Sec-
tion 5.4.1, repeatedly over a predefined route, as described in Section 5.4.2. The
resulting dataset is summarized in Section 5.4.3.

5.4.1 Vehicle details

The used vehicle is a 12m battery electric bus with a curb weight of 14 tonnes and a
160 kW central electric motor. The vehicle was fitted with the factory-default set of
sensors which are logged via the CAN-bus. These measurement signals include the
powertrain power Ppt(t) and motor torque Tmot(t) as reported by the powertrain
inverter sampled at 20Hz and the forward vehicle velocity v(t) as measured by
ABS-sensors sampled at 50Hz. Additionally, for this test, a GPS sensor was
added that reports the GPS coordinates of the vehicle at a sampling frequency
of 10Hz. Further vehicle details are provided in Table 5.1. To simulate different
passenger loading conditions, the vehicle was loaded with sandbags resulting in
vehicle weights also mentioned in Table 5.1.
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Table 5.1. Vehicle parameters.

Parameter Symbol Value unit

Vehicle weight empty mempty 14390 kg
Vehicle weight half laden mhalf 16355 kg
Vehicle weight fully laden mfull 18350 kg

Aerodynamic coeff. (Tamb = 20 ◦C) ca 3.36 Ns2/m2

5.4.2 Route details

The considered route is 9.5 km long and mainly includes a primary road and a high-
way. Figure 5.6 shows the route details.The route contains three longer, straight
sections and is relatively flat except for two motorway links; an elevated highway
on-ramp at 4-5 km and a highway off-ramp at 10 km. The figure also shows the
road-type and -junctions as indicated by OpenStreetMap. Based on these, the
route is divided into 7 route segments, indicated by i = 1©,..., 7©. Even though
2© and 3© are both primary roads, these are considered separate route segments
because they bear different names in OpenStreetMap. This is a result of the fact
that these two roads are maintained by different municipalities, resulting in a dif-
ference in road surface between the two. The figure also shows that, based on
the OpenStreetMap data, two roundabouts are identified and the two highway
on/off-ramps are considered separately from the highway.

5.4.3 Resulting dataset

The instrumented vehicle described in Section 5.4.1 is driven on the route multiple
times in the span of approximately one month. The vehicle adheres to normal
traffic rules during driving without making any special maneuvers. The resulting
dataset describes 12 trips, as detailed in Table 5.2. The trips vary in driver, vehicle
load, and weather conditions. For each trip, the calculated air density is included
in the last column [65]. Due to faulty measurement equipment, a part of the data
is missing in trip #5. Nevertheless, this trip is still used because the presented
method accepts non-equidistant data.

The signals measured continuously during each of the trips are the forward
vehicle velocity v(t), the powertrain power Ppt(t), the motor torque Tmot(t), the
brake pedal position, and the GPS position. The measurements of the powertrain
power also serve as a reference for the validation presented in Section 5.5.3. The
brake pedal position is measured to distinguish when the dissipative brakes of the
vehicle are used.
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and the OpenStreetMap details (bottom). The numbers 1©,..., 7© indicate the
route segments.

5.5 Results

This section summarizes the results of the experiments. Pre-processing of the mea-
surement signals is explained in Section 5.5.1 and the first results are highlighted
in Section 5.5.2. The resulting road-resistance profile is used in a power-request
prediction in Section 5.5.3. Lastly, temperature effects are investigated in Sec-
tion 5.5.4.

5.5.1 Data pre-processing and map matching

When driving over a road segment the vehicle provides data in the form of mea-
surements of forward velocity v(t), powertrain power Ppt(t), motor torque Tmot(t),
and GPS coordinates. The position si of each measurement is determined by find-
ing a point on the OpenStreetMap route that has the smallest Euclidian distance
to the respective GPS measurement. Hereafter, the other measurement signals
v, Ppt and Tmot, are interpolated to the GPS time-grid and can thereafter be
defined as function of position; v(si), Ppt(si), and Tmot(si). The vehicle accel-
eration dv(t)

dt , which is also required for (5.3), is calculated before this step, in
the time-domain. To this end, the high-sampling rate forward velocity signal is fil-



96 Chapter 5. Combined rolling resistance and road grade estimation

1 2 3 4 5 6 7 8 9 10
0

50

100

V
el

. [
km

/h
]

1 2 3 4 5 6 7 8 9 10
-5

0

5

A
cc

. [
m

/s
2
]

1 2 3 4 5 6 7 8 9 10
Position [km]

-200

0

200

P
ow

er
 [k

W
]

Figure 5.7. Forward velocity, acceleration, and powertrain power of the 12
trips as function of position. The seven road segments i = 1©,..., 7© are indicated
by colors.

tered using a Savitzky-Golay filter with an approximate cut-off frequency of 0.6Hz
[101]. Advantages of the Savitzky-Golay filter are that it preserves high-frequency
signal content well, at the cost of a limited noise reduction. Furthermore, it can
be applied to non-equidistantly sampled data. Note that the filter is allowed to
be non-causal, as the measurement information is processed in batches after the
vehicle has completed the road segment i.

During pre-processing, all recorded CAN data is matched to the position si
along the route segment. As a result, data from all trips can be visualized on
a common position-axis, as seen in Figure 5.7. These results show that the 12
measured forward velocity profiles are similar for the majority of the route, except
route segment i = 3©, which is a primary road where more traffic might be encoun-
tered. This is also visible in the acceleration of route segment 3©. In contrast, on
route segment 6©, which is a highway, the forward velocity is nearly constant and
the vehicle can drive its maximum speed of 80 km/h. Over the entire route, the
powertrain power shows some correlation with the acceleration and often reaches
the limits of ± 160 kW.

5.5.2 Resulting route-resistance profile

The measured signals Ppt(s), Tmot(s), and v(s) of trips #1,...,#11 are used to
calculate separate observations of croad(s) according to (5.3) and (5.2). Based on
these, the method described in Section 5.3.2 is used to determine the parameters
estimates θ̂Nt=11 for every road segment i.

After 11 iterations, i.e., Nt = 11, the estimated road-resistance profile ĉroad is



5.5. Results 97

1 2 3 4 5 6 7 8 9 10
-2

0

2

4

c ro
ad

 [%
]

1 2 3 4 5 6 7 8 9 10
Position [km]

-2

0

2

R
oa

d 
gr

ad
e 

[%
]

Figure 5.8. Road resistance coefficient ĉroad(s) for all seven route segments
1©,..., 7© after Nt = 11 trips. 95% confidence bounds are indicated by dashed
lines. The road grade, as determined from the DEM [127], is also visualised.

reconstructed according to

ĉroad(s) = Φ(s)T θ̂11 , (5.19)

and is displayed for the entire route in Figure 5.8. Also included in this figure
is the road grade. The road grade is obtained from a high-resolution DEM [127],
which has been low-pass filtered using a Savitzky-Golay filter, with a spatial cut-off
frequency of approximately 1/50m-1, and differentiated with respect to position
using the forward difference method. The results in Figure 5.8 show that between
5.5 km and 9.5 km, where the road is nearly level, α(s) ≈ 0, the croad-profile is also
nearly constant at ĉroad ≈ ĉr ≈ 0.56%, which is a plausible value for the rolling
resistance coefficient cr of bus tires on good asphalt [103]. In contrast, in regions of
the route that are sloped, e.g., the highway on-ramp at 4.0-5.5 km and the highway
off-ramp at 9.5-10 km, the profile of ĉroad(s) deviates from this average value and
shows strong similarity to the road gradient.

The gray dots in Figure 5.8 represent the individual observations of croad(s) of
all 11 trips. Because the measurement signals Ppt(t), Tmot(t), and v(t) are mea-
sured at a constant sampling frequency, there are more observations of croad(s) on
sections of the route where the vehicle speed is low, for instance at the beginning
of the route, around s = 4 km, and near the end of the route. However, because of
the 1/v(t) term in (5.2) the accuracy of croad(s) decreases with forward velocity,
resulting in a wider spread of the observations here. This again motivates the con-
dition to not take into account measurements where v(t) < 5 km/h. Additionally,
it is worth noting that if a complete route segment is to be analyzed, persistency
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Figure 5.9. Road coefficient ĉroad(s) of road segment i = 3© after Nt = 11
trips.

of excitation is required; the vehicle needs to be driven at a sufficiently high speed
without the usage of the dissipative brakes at every position at least once.

Route segment 3© is of special interest. This section of road, which visually
would be considered ‘flat’, displays gradient oscillations in the order of 0.5% (α ≈
0.3◦). These small oscillations are reflected by the croad-profile in this region
between 0.8 and 3.9 km, which shows a strong correlation to the displayed road
gradient. This is further highlighted in Figure 5.9. In the bottom part of this
figure, the resulting estimated croad-profile is visualized with a 0.8% offset and
can be seen to coincide with the road gradient. This offset can be interpreted
as an estimated rolling resistance coefficient ĉr, 3© ≈ 0.8%, because for small road
grades croad ≈ cr + α(s). Note that this rolling resistance value is larger than
the earlier established average on road segment 6©; ĉr, 6© ≈ 0.56%. This difference
of (0.8 − 0.56)/0.56 = 43% is plausible, because rolling resistances obtained from
previously conducted coast-down tests, see Appendix B, showed a similar difference
between smooth asphalt and bad asphalt.

5.5.3 Leave-one-out cross-validation

As described in Section 5.5.2, 11 out of 12 trips are used to generate an estimate
of the location-dependent road load coefficient ĉroad(s), as displayed in Figures
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Figure 5.10. The estimated ĉroad(s) based on trips #1,...,#11 and the refer-
ence profile ĉroad,ref (s) for trip #12.

5.8 and 5.9. The 12th trip of the route is reserved for validation purposes. In the
following validation, ĉroad(s) will be compared to a reference profile defined by

ĉroad,ref := cosα(s) ĉr,ref + sinα(s), (5.20)

where α(s) is the road gradient based on a high-resolution DEM [127], as also
visualised in Figure 5.8, and ĉr,ref = 0.72% is an optimal constant rolling resis-
tance, that is determined by minimizing the powertrain-power error. Taking the
rolling resistance constant is a reasonable assumption because the road surface of
the entire route is indicated as ‘asphalt’ in OpenStreetMap. Thus, no distinction
can be made between the seven road segments based on this information. Both
ĉroad(s) and ĉroad,ref (s) are visualised in Figure 5.10 and are shown to be similar.
However, small offsets can be seen, for instance between 5.5 and 9.5 km, where
ĉroad,ref (s) is consistently higher.

Next, both ĉroad(s) based on trips #1,...,#11 and the reference profile ĉroad,ref (s)
are used to predict the powertrain power request of trip #12. By substituting (5.1)
in (5.2) the powertrain power request P̂pt(t) can be calculated according to

P̂pt(t) =
[
meff

dv(t)

dt
+ ĉroad(s(t))mg+ cav(t)2

]
v(t) + Ploss(Tmot(t), v(t)), (5.21)

where v(t) and Tmot(t) are the measured forward velocity and motor torque of the
validation trip. This results in P̂pt(ĉroad(s)) and P̂pt(ĉroad,ref (s)), respectively.
Both predictions are visualised in Figure 5.11 and are compared to the measured
power during trip #12, Pmeasured. The error between prediction and measurement
is also visualized and is slightly lower for P̂pt(ĉroad,ref ) in the first 4 km of the trip,
and slightly higher for the remaining part of the trip. This indicates that for
the first half of the trip, P̂pt(ĉroad,ref ), with its constant value for ĉr,ref , under-
estimates the rolling resistance, and over-estimates it for the second half of the
trip. This larger error is confirmed when calculating the RMS power error defined
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Figure 5.11. Estimated and measured powertrain power of trip #12 (top) and
the error of both compared to measurements (bottom).

as

PERMS(ĉroad(s)) :=
1

160 kW

√
1

Nm,k

(
P̂pt(ĉroad(s))− Pmeasured(s)

)2
, (5.22)

where Nm,k is the total number of data points in the k = 12th trip, and the factor
1/160 kW is used to scale the error with respect to the maximum power of the
vehicle. The resulting errors for the power predictions of trip #12 are

PERMS(ĉroad(s)) = 6.0% PERMS(ĉroad,ref (s)) = 8.2% .

Note that the value for ĉr,ref = 0.72% in ĉroad,ref (s) has been obtained by minimiz-
ing PERMS(ĉroad,ref (s)) and it is therefore the optimal average constant rolling
resistance coefficient for this approach. Nevertheless, the results show that using
the estimated road-resistance profile ĉroad(s) results in a lower power error, indi-
cating that the rolling resistance is not constant over the entire route. For this
particular route, the rolling resistance seems to be slightly higher on route seg-
ments 2© and 3©, which are primary roads, and slightly lower on route segment 6©,
which is a highway with relatively new, smooth asphalt. The proposed method
captures these effects accurately and also includes gradient estimation without
requiring a high-resolution DEM.

A leave-one-out cross-validation is performed by repeating the above valida-
tion procedure for different estimation and validation datasets combinations. In
all cases, 11 trips are used to estimate the position-dependent road load profile
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Table 5.3. Results of leave-one-out cross-validation.

Validation
Set

PERMS(ĉroad,ref (s))
[%]

PERMS(ĉroad(s))
[%]

Difference
[p.p.]

#1 8.5 6.7 -1.8
#2 7.4 4.5 -2.9
#3 7.6 6.9 -0.7
#4 8.8 5.5 -3.3
#5 8.7 7.3 -1.4
#6 10.4 8.5 -1.9
#7 8.9 7.3 -1.6
#8 8.6 7.1 -1.5
#9 6.3 5.6 -0.7
#10 6.9 5.2 -1.7
#11 9.8 8.5 -1.3
#12 8.2 6.0 -2.2

Average 8.3 6.6 -1.7

ĉroad(s) and the remaining trip is used as validation. The order of the 11 esti-
mation trips is arbitrary because no weighting is applied in the RLS algorithm.
For each validation dataset, the rolling resistance coefficient ĉr,ref in ĉroad,ref (s)
is determined by minimizing PERMS(ĉroad,ref (s)) for the respective validation
dataset. The results are displayed in Table 5.3. These clearly indicate that, irre-
spective of the validation dataset, the error consistently decreases when using the
croad-profile, compared to ĉroad,ref (s). On average, the proposed method reduces
the RMS power error PERMS from 8.3% to 6.6%. This is a strong indication
that using a constant rolling resistance results in a less accurate power-request
prediction even when the optimized value is known. In contrast, the proposed
RLS method with Gaussian basis functions captures the position-dependency of
the rolling resistance. Furthermore, the estimated ĉroad(s) also includes the effect
of road gradient, which is per definition position-dependent.

Likely, ĉroad(s) includes other physical effects or modeling errors that are cor-
related with position apart from rolling resistance and road gradient. One example
is the energy lost due to additional tire slip when cornering, which only occurs in
the corners of the route, as is described in Chapter 3. Even though these additional
effects are technically not rolling resistance, the fact that additional unmodeled dy-
namics are included in ĉroad(s) can improve the power-request prediction because
future vehicles are likely to experience these same effects.
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Figure 5.12. The estimated croad-profile as result of analysing trips #1, #3,
and #11 (T amb = 14.7 ◦C) and trips #5, #7, and #8 (T amb = 22.3 ◦C).

5.5.4 Temperature effects
Because ĉroad(s) includes the rolling resistance coefficient cr, it is expected to
have similar physical dependencies. After the road-surface type, the temperature
has the second largest effect on the rolling resistance of pneumatic tires [55]. To
evaluate if this effect is captured by the proposed method, the trips in Table 5.2, are
divided into separate sets. Three trips with the lowest ambient temperatures, trips
#1, #3, and #11 are combined, as well as the three trips with the highest ambient
temperatures; #5, #7, and #8. This results in a low temperature dataset with an
average ambient temperature T amb = 14.7 ◦C and a high temperature dataset with
an average ambient temperature of T amb = 22.3 ◦C. Both these datasets are each
used to estimate a ĉroad(s) for the entire route, the result of which is visualised in
Figure 5.12.

The results shown in Figure 5.12 indicate that the colder dataset results in
an overall higher croad-profile. This is also evident when the profiles are averaged
over s, thereby averaging out the influence of the road gradient, resulting in:

c̄road
∣∣
Tamb=14.7 ◦C = 0.69% c̄road

∣∣
Tamb=22.4 ◦C = 0.55% .

The results indicate a decrease of 20% between the cold-weather and warm-weather
datasets. This is more than the expected decrease based on literature [33], which
dictates a rolling resistance decrease of 7% for passenger car tires over the same
temperature interval. Note that the difference cannot be ascribed to a change in
air density because this is included in the model as described in Section 5.2.3.

Several reasons can explain this exaggerated temperature effect. Firstly, two of
the three cold-weather trips are driven on a wet road, which has an increasing effect
on the rolling resistance cr. Secondly, two of the three warm-weather trips were
recorded as the second trip of that day, implying that the powertrain and tires are
likely to have already reached operating temperature. Most other trips were driven
at the beginning of the day, without prior heating of the vehicle. This difference
in heating of the powertrain components, especially the drive-axle oil, can cause a
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Figure 5.13. Road resistance profile of road segment 3© as determined from
two different driving directions (top) and the resulting rolling resistande and
road grad (bottom).

significant difference in the powertrain losses, which is reflected here as a change
in ĉroad(s). Nevertheless, the results indicate that there is a strong temperature
dependency in ĉroad(s), which reflects the change of the rolling resistance and also
that of other physical effects.

5.5.5 Separating rolling resistance and road grade

Throughout this work, the rolling resistance and road grade are considered in a
combined croad. A possibility exists to separate the two parameters if a route
segment is traversed in the opposite direction as well, because the sign of the road
slope will change with respect to the rolling resistance. This is demonstrated in
Figure 5.13, where the ĉroad-profile of route segment 3©, which was driven from
west to east, is repeated. A road resistance profile is also shown based on two
trips where the vehicle traversed the segment in the reverse direction, from east
to west. Assuming that both lanes of the road are of the same surface type and
have the same road slope, the average of these two profiles ĉaverage(s) represents
the rolling resistance, according to:

ĉaverage(s) = 0.5 (ĉroad(s)W→E + ĉroad(s)E→W )

≈ 0.5 (ĉr(s) + α̂(s) + ĉr(s)− α̂(s)) (5.23)
≈ ĉr(s) .



104 Chapter 5. Combined rolling resistance and road grade estimation

Subsequently, the a road slope estimate can be determined according to

α̂(s) = ĉroad(s)W→E − ĉaverage(s) . (5.24)

The resulting rolling resistance and slope profile are both displayed in Figure 5.13
and indicate that the rolling resistance is indeed constant over almost the entire
segment, as is assumed in Section 5.3.1. Deviations at the beginning and end of
the segment are likely due to a wider median strip at these locations causing the
road slopes of both lanes to no longer be equal.

5.6 Conclusion

A recursive least-squares method with Gaussian basis functions is proposed to
identify the position-dependent road resistance coefficient to accurately predict
the powertrain power request of electric vehicles. Route segments are defined to
include both the continuous nature of road gradient and the possible discontinu-
ities due to changes in rolling resistance. The method is tested on data gathered by
a 12m battery electric bus, driving the same 9.5 km route 12 times, under varying
conditions. The results indicate that including the estimated road-resistance pro-
file improves the accuracy of the power-request prediction by from 8.3% to 6.6%,
i.e., by 1.7 percent point, with respect to using a high-resolution elevation model
and an optimized constant rolling resistance.

Based on the estimated road-resistance profile from 11 trips, it is shown that
road gradient features, such as highway on-ramps and off-ramps, are easily rec-
ognizable. Furthermore, even small gradient oscillations, in the order of 0.5% are
captured well. Also, the effect of a changing rolling resistance is recognizable in
the results, ranging from 0.8% for route segment 3© to 0.56% for route segment
6©. The road-resistance profile is shown to be strongly temperature dependent,
displaying a 20% decrease for a 7.5 ◦C ambient temperature increase. This effect
can partially be explained by the decreased rolling resistance at higher temper-
atures, yet also other unmodelled effects might be captured here, such as the
temperature-dependent powertrain losses.

The used RLS parameter estimation method is computationally cheap and,
because of its recursive aspect, allows for the easy addition of new observations
of the same route segments. While the results in this chapter are based on data
from electric buses, the underlying method can, in theory, be used to combine
data from electric vehicles in general. In this case, vehicles from which data is
combined should have the same expected rolling resistance coefficient, e.g., similar
type of tires and suspension. Additionally, the mass and the powertrain losses of
the considered vehicles should be known or determined otherwise.

Future work remains to prove that the method can be applied to data orig-
inating from different vehicles with possibly different powertrain characteristics.
Assuming this is feasible, the method described in this chapter could be used to
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estimate the road-specific resistance for an entire route network based on data
from a fleet of similar electric vehicles. Secondly, weights can be introduced in the
recursive-least squares method to empathize the importance of more recent trips,
thereby enabling tracking of temporal changes due to weather influence or road
maintenance in the road resistance.
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Abstract - To facilitate dynamic vehicle scheduling for battery electric city buses,
a real-time online energy consumption prediction model is proposed. The model uti-
lizes the current forward vehicle velocity and position, combined with knowledge of
the remaining route, to predict the total trip energy. The model consists of a re-
maining forward velocity profile predictor and a longitudinal dynamics model. The
algorithm is demonstrated in a Hardware-in-the-Loop experiment with a battery
electric bus. The model has an average error of 3.1% with respect to the total trip
energy and adapts in real-time to unexpected acceleration and deceleration events.
In the supplementary section of this chapter, the forward velocity prediction is
adapted to driver characteristics. Based on telemetry data from a fleet of electric
buses, differences are established in the longitudinal vehicle acceleration realized by
different drivers. Driver-specific acceleration curves are defined by describing the
measured acceleration and deceleration per forward velocity using probability den-
sity functions. Using these driver-specific curves in an energy consumption model
results in differences up to 17%, which is comparable to the measured energy dif-
ference between drivers of 14%.

This chapter constitutes Contribution IV of this dissertation and is based on:
C. J. J. Beckers, I. J. M. Besselink and H. Nijmeijer, “On-line Test of a Real-Time Ve-
locity Prediction for E-bus Energy Consumption Estimation,” 2021 IEEE Veh. Power
Propuls. Conf. (VPPC), Gijón, Spain, 2021, pp. 1-5, doi: 10.1109/VPPC53923.2021.9699205.

Additional results and a supplementary discussion are provided in Sections 6.6 and 6.7.

https://doi.org/10.1109/VPPC53923.2021.9699205
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6.1 Introduction

BATTERY Electric Buses (BEBs) are increasingly used for inner-city public
transport. The vehicles emit no local pollutants and potentially offer a lower

Total Cost of Ownership (TCO) because of relatively low running expenses. How-
ever, adaptation is still relatively low, partially because, compared to conventional
diesel vehicles, BEBs have a smaller driving range due to the limited energy den-
sity of their batteries [16]. Additionally, the driving range is uncertain, because
it can vary as function of road, weather and vehicle conditions and the performed
drivecycle [161]. This results in BEB schedules being conservative, sometimes even
including redundant vehicles.

Dynamic vehicle scheduling offers a possible solution by no longer fixing time
tables in advance, but rather making them flexible based on traffic conditions [48],
electricity pricing [49] or battery degradation [50]. In the dynamic version of this
vehicle scheduling problem, the schedule is based on both current information as
well as predictions regarding the future [48]. In order to make optimal dynamic
schedules for BEBs, it is beneficial to have up-to-date and accurate predictions
regarding the energy that will be consumed for a trip and the remaining driving
range.

Previous research indicates that using route information can be useful to pre-
dict the future energy consumption of an electric vehicle [55]. The same study
also indicates that it is beneficial to include up-to-date estimations of rolling resis-
tance and mass during driving to give a more accurate prediction during the trip.
The same is suggested by [162]. However, most of this research focuses on pre-
dicting certain parameters of the vehicle model, based on the observed difference
between measured and modeled energy consumption, while omitting the effect of
the current forward vehicle velocity has on the prediction. While other studies do
focus on online prediction of the future forward velocity [163, 164], many of these
methods are data-driven and cover a limited horizon.

This chapter presents an online method to predict the future forward vehicle
velocity, based on the current speed and route data, and uses this information
for the energy consumption prediction (ECP) on a BEB. The method is tested
by implementing a MATLAB Simulink model in Vector CANoe and performing
real-time Hardware-in-the-Loop (HiL) tests.

This chapter is organized as follows. In Section 6.2 the method applied to
predict the future forward velocity and energy consumption are explained. In Sec-
tion 6.3 the experimental setup of the HiL test is explained, including route details
and vehicle specifications. The results of this test are presented and discussed
in Section 6.4. Conclusions are given in Section 6.5. Furthermore, additional re-
sults regarding the characterization of the acceleration behavior of different drivers
are presented in Section 6.6. A supplementary discussion in Section 6.7 reflects
on these results and summarizes the presented methods that perform online and
driver-specific velocity-profile prediction.
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6.2 Future energy consumption prediction

The model works in two steps to predict future energy consumption using a
physics-based approach. Firstly, the forward velocity driven along the remain-
ing part of the route is predicted. Secondly, a physics-based energy consumption
model calculates the required energy to drive this velocity profile.

6.2.1 Future forward velocity profile prediction

The future forward velocity profile prediction is based on route information and
the current position and speed of the vehicle. The entire route is discretized,
consisting of N points. For each of these points i = 1, ..., N along the route, the
following information is assumed to be known:

• GPS coordinates pi ∈ R2 [deg.]

• Cumulative distance from start di [m]

• Legislated maximum speed vleg,i [m/s]

• Local road curvature ci [1/m]

• Boolean indicating (bus)stops bi [-]

During operation, a vehicle will start at the beginning of the route, near p1, and
will subsequently pass all the points along the route, until arriving at the end of
the route pN . To make a prediction regarding the remaining part of the route, it
is imperative to know the current position of the vehicle with respect to the route.
To this end, a map matching algorithm is applied.

Map matching

The route is represented by N − 1 route sections, indicated by si in Figure 6.1.
Each section si is defined by its vertices pi and pi+1. A straight-forward, compu-
tationally efficient map-matching algorithm is applied, which identifies the section
the vehicle is currently traversing by calculating the shortest Euclidian distance
li between the most current GPS measurement pv and each of the sections si, as
shown in Figure 6.1. The sections for which this distance li is shortest, is assumed
to be the one where the vehicle is currently driving. This index, specifying the
current location of the vehicle, is expressed as I;

I = argmin
i

li . (6.1)

The speudocode to this map-matching algorithm is listed in Section 6.7.1.
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Figure 6.1. Map matching: Schematic view of the shortest Euclidian distances
(li−1, li, li+1) between the vehicle position and the respective route sections
(si−1, si, si+1).

Forward velocity prediction algorithm

Given the vehicle is currently at position pI , the challenge is to predict the for-
ward velocity vi for all remaining route points i = I, ..., N . As first step, the
velocity limitations due to corners are included by considering a maximum lateral
acceleration ay,max. This corner-limited forward velocity is determined as

vcurv,i =

√
ay,max
|ci|

∀ i = I, ..., N . (6.2)

Secondly, the vehicle is assumed to make a full stop at every bus stop. There-
fore, the stop-limited speed is described as

vstop,i =

{
0 bi = 1

∞ bi = 0
∀ i = I, ..., N , (6.3)

where no speed limitations (vstop,i = ∞) are imposed on the points that are not
stops.

Lastly, the vehicle is assumed to adhere to the legislated maximum speed vleg,i.
Therefore, together with (6.2) and (6.3), a maximum forward velocity envelope
vmax can be described;

vmax,i = min( vleg,i, vcurv,i, vstop,i ) ∀ i = I, ..., N , (6.4)

which the vehicle is assumed to never exceed.
This maximum forward velocity envelope is discontinuous, which is unrealistic,

because the longitudinal vehicle acceleration and deceleration are finite. Therefore
the forward velocity profile has to be adapted to include the finite acceleration.
This is realized by step-wise forward time-integration of the profile with a limited
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Figure 6.2. Predicted future forward velocity at the route points defined both
as function of distance and remaining time.

longitudinal acceleration ax,acc;

vacci+1 = min

{∫ ti+1

ti

ax,accdt+ vacci ,vmax,i+1

}
∀ i = I, ..., N − 1 . (6.5)

Important here is that the currently measured forward velocity vv is used as start-
ing point for this procedure, i.e.

vaccI = vv , (6.6)

thereby including the current vehicle velocity in the prediction. Similarly, back-
wards time-integration is performed, starting at vN = 0, to ensure that the decel-
erations do not exceed a maximum value ax,dec;

vi−1 = min

{∫ ti−1

ti

ax,decdt+ vi, v
acc
i−1

}
∀ i = N, ..., I + 1 . (6.7)

After applying (6.5) and (6.7) to vmax,i described by (6.4), vi represents a future
velocity profile defined at each of the route points v(pi), and thus also as function
of distance v(di).

Distance-time conversion

For each of the future route points i = I, ..., N , the expected arrival time t̃ with
respect to the current time tI is calculated:

t̃i =

i−1∑
k=I

2 (dk+1 − dk)

vk + vk+1
, ∀ i = I + 1, ..., N (6.8)

which is based on the assumption that the acceleration is constant between two
route-points, as seen in Figure 6.2. Note that, because pI signifies the current
position of the vehicle, t̃I = 0. Now, the forward velocity profile for all the future
route points is defined as function of the remaining time: v(t̃i).
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6.2.2 Remaining energy consumption prediction
A physics-based model is applied to predict the energy required to drive the future
forward velocity profile v(t̃i). Because the model relies on knowledge regarding
the acceleration, the calculations are performed per route section si. Therefore,
forward velocity vs,i and acceleration as,i are calculated for every route section
i = I, ..., N − 1:

vs,i = 0.5 (vi + vi+1) [m/s] (6.9)

as,i =
(−vi + vi+1)(
−t̃i + t̃i+1

) [m/s2] . (6.10)

By modelling the longitudinal dynamics of the vehicle, the average driving force
at the wheels can be determined as

Fwheel,i = meffas,i + crmg + cav
2
s,i , (6.11)

where meff , m, cr, and ca are vehicle parameters described in Table 6.1. Note
that, due tot the characteristics of the route described in Section 6.3.2, no road
slope component is considered. From Fwheel,i, the electric power delivered by the
traction inverter is determined as

Pinv,i = Fwheel,ivs,i + Ploss (vs,i, Fwheel,i) , (6.12)

where Ploss represents a previously measured powertrain losses map, see Ap-
pendix B. By summing the inverter power over the remaining route, the remaining
energy consumption is determined to be

Eremaining =

N−1∑
i=I

Pinv,i ·
(
t̃i+1 − t̃i

)
. (6.13)

Trip energy consumption prediction

Simultaneously, the consumed powertrain energy

Econsumed =

∫ tI

t0

UHV,measured IHV,measured dt . (6.14)

is recorded by the model based on the measured traction inverter Direct-Current
(DC) voltage UHV,measured and current IHV,measured. In the calculation of both
Eremaining and Econsumed the effects of the battery efficiency are assumed to be
small. The total trip energy is determined by combining this measured energy
with the predicted remaining energy:

Etrip = Econsumed + Eremaining . (6.15)
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Figure 6.3. Photo of the HiL-setup in the vehicle, including the CAN break-
out, GPS-sensor, CANoe-interface, and the computer.

6.3 Case study: bus trip

The online ECP algorithm, as described in Section 6.2, is implemented in MAT-
LAB Simulink, and interfaced via Vector CANoe to the CAN-bus of a battery
electric city bus, as seen in Figure 6.3. This HiL setup allows for real-time reading
and processing of several sensor signals including:

• GPS position pv ∈ R2 [deg.]

• Forward vehicle velocity vv [m/s]

• Estimated vehicle weight mECAS [kg]

• Traction inverter voltage UHV,measured [V]

• Traction inverter current IHV,measured [A].

6.3.1 Test vehicle

The vehicle used for this test is a series-production 12m battery electric city bus
equipped with a 170 kW central motor and a 288 kWh battery pack. The vehicle
is fitted with the factory-default set of sensors, and an additional GPS-sensor.

The vehicle features an Electronically Controlled Air Suspension (ECAS) that
uses pressure measurements in the air-bellows to estimate the current weight of
the vehicle. This estimate mECAS is used as indicated in Table 6.1. The estimated
weight provided by the ECAS can vary incorrectly due to vehicle acceleration or
suspension kneeling. Therefore a processed signal m̃ECAS is created that only
registers the ECAS vehicle weight if the vehicle is 1) standing still, 2) not kneeled,
and 3) the accelerator pedal is not pressed. The effective mass of the vehicle is
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Table 6.1. Parameters used in the online ECP model.

Parameter Symbol Value Unit

Vehicle weight m m̃ECAS kg
Effective vehicle mass meff 1.02m kg
Aerodynamic coefficient ca 3.36 kg/m

Rolling resistance coefficient cr 0.007 -

Acceleration limit in prediction ax,acc 0.9 m/s2
Deceleration limit in prediction ax,dec -0.8 m/s2
Lateral acceleration in prediction ay,max 1.5 m/s2

Figure 6.4. The used test route, driven clockwise, with bus stops indicated as
black dots and the legislated maximum sped indicated by color.

assumed as 102% of the vehicle weight, where the 2% represents the contribution
of the rotating mass of the vehicle drivetrain. This includes the rotor of the motor,
drive-axles, and the six tires. Defining this rotating mass as ratio of the vehicle
weight results in a rough estimate for the effective mass that is valid for 12m as
well as 18m vehicles. During the measurements, the vehicle is loaded with sand
bags to half of its maximum capacity to simulate passenger load.

Except the mass, all further vehicle parameters are assumed constant, as listed
in Table 6.1. The rolling resistance coefficient cr and aerodynamic coefficient
ca originate from coast-down tests performed with a similar vehicle. The table
also shows the assumed acceleration limits ax,acc, ax,dec, and ay,max used in the
prediction of the remaining forward velocity profile. These are based on previously
measured speed profiles of the same vehicle.

6.3.2 Route information

For the HiL test, a route is defined to represent a typical city bus trip. The route
is shown in Figure 6.4 and features several legislated maximum velocities ranging
from 30 km/h to 60 km/h. Apart from the start/stop point, there are two further
bus stops. At each of these stops, the driver is instructed to make a full stop,
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Figure 6.5. Vehicle weight according to the ECAS system for trip #4.

open the doors of the vehicle, and wait for 7 seconds before resuming the trip.
In the online ECP algorithm, the 8.725 km route is discretized into N = 1285
points, resulting in an average section length ||si|| of 6.8m. The route is nearly
flat, therefore no road slope component is included in (6.11).

The route is located in a rural area, to minimize the effect of traffic. Never-
theless, some disturbances due to oncoming vehicles or cyclists are observed. The
driver is instructed to drive the route as he would normally assuming passengers
are onboard, while adhering to the specified maximum velocities and stopping at
the abovementioned bus stops. Before the start of the series of tests, the vehi-
cle is driven for at least 20minutes to achieve steady-state temperatures in the
powertrain and tires.

6.4 Results and discussion

The route specified in Section 6.3.2 is driven six consecutive times, where the
online ECP algorithm is restarted at the beginning of every route. This section
discusses the detailed results of trip #4.

6.4.1 Vehicle weight estimation

Figure 6.5 shows the estimated value indicated by the ECAS system together with
m̃ECAS as described in Section 6.3.1. Also indicated is the actual weight of the
vehicle, as determined prior to the test by placing the vehicle on scales. The
results show that the ECAS weight estimate varies during the trip and slightly
over-estimates the actual weight by 1.9%. The processed ECAS weight m̃ECAS

remains constant during driving, with an average error of 2.9%, and only varies
during a stop, around t = 220 s and t = 480 s. The fact that m̃ECAS provides an
over-estimate will results in more conservative energy predictions. Nevertheless,
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Figure 6.6. Measured and predicted forward velocity profile when the vehicle
is at a travelled distance of dI = 2.5 km along the route for trip #4.

the processed signal is considered useful, because it greatly reduces unwanted
fluctuations in the predicted trip energy.

6.4.2 Forward velocity profile prediction

During the experiment, the online model is repeatedly predicting the remaining
forward velocity profile v(di) as described in Section 6.2.1. All these calculations
are happening online on a computer onboard the vehicle.

Figure 6.6 shows the results of this prediction at a point in time where the
vehicle is 2.5 km along the route. In this situation, the forward velocity profile of
the past 2.5 km is known, as indicated by the black line. For the remaining 6.2 km
the forward velocity is predicted, based on the available route information and
current vehicle velocity.

The results in Figure 6.6 indicate that the predicted forward velocity generally
matches the measured velocity along the trip. Nevertheless, deviations due to
unmodelled effects, such as traffic, can occur. In this case, the online ECP model
predicts that the vehicle will accelerate before resuming the originally predicted
profile, as demonstrated at di = [2.5, 2.6] km by the steeply increasing blue line.
Note that prediction here does not include any future influence of traffic, and will
always assume unobstructed driving from t̃I =0 onwards.

6.4.3 Energy consumption prediction

The predicted remaining energy, as described in Section 6.2.2, is visualised for
this same trip #4 in Figure 6.7. This figure shows that dips in Econsumed, due to
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Figure 6.7. Measured and predicted energy consumption as function of trav-
elled distance for trip #4. Bus stops are indicated by B1 and B2.

deceleration events, are largely compensated by peaks in Eremaining, ultimately
resulting in a smooth estimate Etrip that generally stays within the 5% of the
actually consumed energy. When the trip is finished, the predicted and measured
energy consumption are per definition equal.

In case of an unexpected deceleration event, for instance at dI = 2.5 km,
Etrip increases to compensate for the acceleration expected after the decelera-
tion. Likewise, in the last 0.6 km of the trip in Figure 6.7, Etrip remains lower
than Econsumed, because the prediction already accounts for the energy regener-
ated during the final braking action of the route. This illustrates the predictive
capabilities of the online ECP model.

6.4.4 Weighted average prediction error
In order to quantify the observed difference, the Prediction Error (PE) is intro-
duced for a route point i, according to

PE(di) =
|Etrip (di)− Econsumed(tend)|

Econsumed(tend)
(6.16)

The trip energy becomes easier to predict as the vehicle progresses along the route,
because the prediction only concerns the remaining part of the trip. Therefore the
error is weighted by remaining distance, resulting in the Weighted Average PE;

WAPE =

∑n
i=1 wi PE(di)∑N

i=1 wi
, where wi = 1− di

dN
(6.17)

are the weight factors that decrease linearly as function of travelled distance di.
This way, the prediction error at the start of the trip is weighted more than the
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Table 6.2. Weighted Average Prediction Error (WAPE) for six trips.

Trip # 1 2 3 4 5 6 Average

PE(d1) [%] 2.0 6.2 1.1 0.4 9.0 7.8 4.4
WAPE [%] 1.6 3.4 2.4 1.2 5.1 4.7 3.1

predictions near the end of the trip. Calculating this value reveals that the WAPE
is 1.2% for the measurement presented in Figure 6.7. This is partially the result
of the fact that the model parameters Table 6.1 seem to match particularly well
for this trip.

The WAPEs for further trips are indicated in Table 6.2 and range between 1.2%
and 5.1% among the various trips. This variation could be caused by influences
that are not considered in the current algorithm, variation in the occurance of
traffic between the individual trips or unmodelled dynamics in the longitudinal
vehicle model. Also the variability introduced by the ECAS weight estimator is
expected to have an influence on the end results. Nevertheless, on average the
WAPE is 3.1%, and is shown to be generally lower than the offline prediction
error that is made at the beginning of the trip PE(d1).

6.5 Conclusions

This chapter presents an online energy consumption prediction model that in real-
time predicts the remaining energy required to complete a trip. The results show
that by using the current position and speed of the vehicle, a future forward veloc-
ity profile can be determined that accounts for future acceleration and deceleration
events in the route. The remaining energy consumption predicted basted on this
forward velocity profile complements the consumed energy to arrive at a predicted
total trip energy that is close to the consumed energy. The results of a Hardware-
in-the-Loop test show that the weighted average prediction error is 3.1% over
six observed trips. This indicates that the proposed methodology could provide
a reliable, real-time energy consumption prediction for future dynamic planning
algorithms.

Future work includes further testing of the online model with more vehicle
loading conditions, different drivers, varying weather conditions, and a route that
includes road slope. In a realistic scenario, where passenger occupancy can change
at each bus stop, an improved method for weight estimation, that could even
predict vehicle weight changes at future stops, would be beneficial. Moreover,
possibilities exist to make the algorithm adaptive by including online driver char-
acterization via nonconstant acceleration limits ax,acc and ax,dec and an adaptive
longitudinal dynamics model that iteratively estimates the rolling resistance coef-
ficient cr as function of distance.
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6.6 Driver characterization2

Driver behavior is an uncertain factor that significantly influences the energy con-
sumption of an electric vehicle. Besides defining the setpoints of several auxiliary
components, such as reference temperature for the Heating, Ventilation, and Air
Conditioning (HVAC) system, the driver controls the vehicle’s powertrain. By
adjusting the accelerator and braking pedal positions, the driver controls the lon-
gitudinal acceleration of the vehicle and governs the vehicle forward velocity as
function of time.

Literature suggests that driver behavior can significantly impact the energy
consumption of BEBs. Based on statistical analyses, the driver aggressiveness,
which quantifies the speed changes realized by a driver, in combination with the
number of stops, is found to explain 28% of the variation in energy consump-
tion [165]. Furthermore, simulations in [166] indicate that approximately 17% of
the powertrain energy consumption of a BEB could be saved by optimizing the
forward velocity profile between stops. Measurement data suggests a similar ef-
fect, where [167] found average energy consumptions ranging from 0.62 kWh/km
to 1.24 kWh/km, amongst drivers that were monitored over several months. It is
noteworthy that the results of driver behavior research on Internal Combustion
Engine (ICE) vehicles cannot directly be applied to BEBs. Compared to drivers of
diesel buses, drivers of BEBs are shown to drive more aggressively, achieving both
higher average velocities and higher accelerations [168]. This difference is likely
caused by the silent operation of the electric powertrain, thereby providing less
noise feedback to the driver, and by the large available torque at low velocities.
This literature serves as an indication that driving behavior is relevant and should
be incorporated in the prediction to achieve an accurate prediction of BEB energy
consumption.

According to [169] driving behavior can be divided into three different activi-
ties: strategical activities, tactical activities, and operational activities. Strategical
activities comprise knowledge-based choices such as route planning. Because city
buses adhere to fixed timetables and drive on predetermined routes, strategical
driver behavior variation is expected to be low. Tactical activities happen on a
smaller time scale, in the order of seconds, and include actions like the decision to
exceed the speed limit or to change lanes. Finally, on the smallest, sub-second time-
scale, operational activities mark the exact accelerator and braking pedal positions
a particular driver will use given certain strategical and tactical choices. Assum-
ing that strategical and tactical decisions are mostly fixed for city bus drivers, this
section focuses on operational driver behavior.

To enable further analysis on the operational driver behavior, a dedicated ex-
periment is set up that monitors small time-scale data of drivers that operate

2The results in this section are based on:
O.F. Hulsebos, “Driver Behaviour Analysis for Energy Consumption Prediction in Electric
Buses,” M.S. thesis DC 2020.008 (Confidential), Eindhoven Univ. of Tech., Eindhoven, Jan. 2020.
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electric busses as part of a public transport fleet. First, the experiment and re-
sults are summarized in Section 6.6.1. Next, a suggested method to include the
driver-specific differences in the forward velocity prediction is presented in Sec-
tion 6.6.2.

6.6.1 Driver-monitoring experiment

A driver-monitoring experiment is conducted to analyze how BEB drivers operate
vehicles in a real public-transport fleet. To this end, a student rode along aboard
selected vehicles to monitor several parameters. These parameters included the
driver identity, indicated by a number here, an approximation of the number of
passengers aboard, and a log of any particular events that influence the driver’s
reaction, such as red traffic lights. This log is supplemented by data from an
action camera mounted on the observed vehicle’s windshield. The camera recorded
video footage of the road in front of the vehicle, high-frequency GPS position, and
longitudinal acceleration. This data is later synchronized to the telemetry data of
the respective vehicles, which provides powertrain power, forward vehicle velocity,
and again GPS position. The telemetry data is available at a sampling frequency
of 0.5Hz, while the action-camera data is recorded with at least 18Hz.

Two routes are specifically selected for this experiment. The routes consist
mainly of dedicated bus lanes to minimize the influence of traffic on driver behavior
and minimize the variability in the resulting data. For both routes, trips in the
‘onward’ and ‘return’ directions are considered independently. Data is recorded in
the mornings for four days within the span of one week. In this time period, 16
different drivers were monitored over 21 trips in total. All monitored vehicles are
the same type 18m BEB. This section presents the main findings and observations
from these experiments.

To make a first assessment of the speed variation among drivers, the telemetry-
recorded speed data is categorized according to three vehicle states: decelerating,
accelerating, or cruising. The vehicle is considered to be cruising if the magnitude
of the longitudinal acceleration is below the bound of 0.275m/s2, which corre-
sponds to a 1 km/h speed change per second. This is assumed to be the minimally
noticeable acceleration, based on the resolution of the digital driver dashboard.
Beyond these bounds, the vehicle is either accelerating or decelerating, depending
on the sign of the acceleration signal. Based on this division, the powertrain en-
ergy and the distribution of the acceleration states can be visualized as presented
in Figure 6.8.

First of all, the figure indicates that for this single route, the powertrain energy
consumption varies from 7.0 kWh (Driver 16) to 11.7 kWh (Driver 10). While the
relatively large energy consumption of Driver 10 might partially be explained by
the large passenger occupancy of 30 persons, other trips with a similar occupancy
rate, such as the one of Driver 15, do not show the same increase. The trip of
Driver 10 is also noticeable because the vehicle spends only 25% of the driving
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Figure 6.8. Powertrain energy measured during decelerating, accelerating,
and cruising (top) and the percentage of driving time spent in each of these
three states (bottom). Data shown for nine different drivers on route 1 in the
‘onward’ direction.

time cruising, with the remaining time either accelerating or decelerating.
Next, for a selection of drivers, the acceleration is visualized as function of

forward velocity in Figure 6.9a. The data is sampled at a constant rate of 0.5Hz
and shows accelerations of up to 1.2m/s2, and decelerations of up to -2.3m/s2.
The measured forward velocity ranges from 0 to 60 km/h, and the density of the
points clouds suggests that 50 km/h is an often used cruising speed. When looking
at the boundaries of the point clouds, it can be seen that below 10 km/h, the
maximum acceleration is limited by the motor controller, leaving little room for
driver variation. However, as seen in Figure 6.9a, there is variation among drivers
above 30 km/h, with Driver 14 consistently showing slightly larger accelerations
than, for instance, Driver 15. During braking, Driver 14 often decelerates at
-0.4m/s2, which could indicate the default regenerative braking deceleration limit
of the vehicle. On the other hand, Driver 15 often achieves larger decelerations,
indicating more frequent use of the dissipative brakes. Figure 6.9b indicates similar
measurements if the same driver is observed, even if the route direction changes.

6.6.2 Driver-specific acceleration prediction

The results in Section 6.6.1 indicate that the acceleration as function of forward
velocity can vary amongst different drivers, yet shows good repeatability for a
single driver. This supports the idea to use this data as a basis for a driver-specific
velocity prediction. Therefore, a method is presented to model the acceleration
characteristics specific to a driver using previous measurements of forward velocity
and acceleration. The model is deterministic and is based on the method presented
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Figure 6.9. Acceleration versus forward velocity graph for three different
drivers (a) and for multiple trips from a single driver (b). Shown data is of
route 1 in multiple directions.

in [170, p. 30–33] to define acceleration requirements for powertrain control.
The velocity range, as displayed on the horizontal axis of Figure 6.9, is dis-

cretized into j = 1, ..., Nv intervals. This is also visualized in the top part of
Figure 6.10, where instead of low-frequency telemetry data, high-frequency mea-
surement data is used. The measured acceleration data is clustered according to
these velocity intervals, as demonstrated by the histogram in the bottom part of
Figure 6.10. Using this histogram, a probability density function is estimated per
velocity interval j for acceleration and deceleration separately. Accelerations be-
low a magnitude of ±0.05m/s2 are not considered for this high-frequency data
and estimates are provided for acceleration and deceleration separately. A non-
parametric kernel-based approach is applied to estimate these probability density
functions because this requires no prior assumptions on the distribution of the
data. Once an estimate is found, the accelerations indicating 90% of the Cu-
mulative probability Density Function (CDF) are marked. These represent the
values larger than 90% of all measured accelerations at this velocity. The value of
90% is chosen as this reflects a worst-case estimate of the driver acceleration with
respect to energy consumption and visually matches well with the measurement
data in Figure 6.10(top). Lastly, as in [170], the resulting acceleration is defined
as function of forward velocity through the use of a polynomial function of v that
approximates the values of the individual velocity intervals. The same procedure
is repeated for the deceleration. This way, two polynomials are constructed that
represents a driver-specific acceleration and deceleration as function of forward
velocity.
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Figure 6.10. Measured high-frequency velocity data (top) with the estimated
90% cumulative probability accelerations of all velocity intervals, and the mea-
sured and estimated probability densities for the velocity interval 14 ≤ v <
16 [km/h]. (bottom).

Based on the data of Driver 14 and Driver 15, both measured in the ‘onward’
direction of route 1, a driver-specific acceleration function is constructed. The
resulting driver characteristics are shown in Figure 6.11 and indicate that the
models of Driver 14, although based on different measurements, are very similar. In
contrast, the acceleration curve of Driver 15 clearly distinguishes itself, marked by
a slightly lower acceleration at higher velocities and an overall higher deceleration.
This difference is recognizable when a forward velocity prediction is made using
these driver-specific acceleration functions.

The forward velocity profiles shown in Figure 6.11(bottom) are used as input to
the longitudinal dynamics model described in Section 6.2.2. The vehicle parame-
ters of the model are adapted to represent the 18m vehicles that were monitored in
the experiment. As a result, the dissipated and regenerated energy are visualized
as function of trip distance in Figure 6.12.

The results show that both the dissipated and regenerated energy are similar
for the two simulations of Driver 14. In contrast, Driver 15 discharges 4.2% more
energy and regenerates 13.8% less energy than Driver 14. This is in accordance
with Figure 6.11, which showed a smaller acceleration, but more substantial de-
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Figure 6.11. The estimated acceleration profile based on measured velocity
data (top), and the simulated forward velocity profile using these acceleration
profiles (bottom). Data is shown two times for driver 14 and once for driver
15.

Table 6.3. Energy consumption measured, simulated using measured forward
velocity, and simulated using simulated forward velocity for two different drivers.

Energy → Measured Energy Measured Velocity Simulated Velocity

Driver 14 7.45 kWh 7.03 kWh 7.50 kWh
Driver 15 8.52 kWh 8.00 kWh 8.78 kWh

Difference +14% +14% +17%

celeration for Driver 15. The strong decelerations require the use of dissipative
brakes, and therefore results in an overall lower regenerated energy. Summing the
regenerated and dissipated energy, thereby neglecting any battery losses, reveals
that the simulated energy consumption of Driver 14 and Driver 15 are respec-
tively 7.50 kWh and 8.78 kWh. This is also listed in Table 6.3. These results are
in accordance with the measured energy from the vehicle’s telemetry data, which
indicated that Driver 15 consumed 14% more energy than Driver 14. Even though
this difference is at least partially due to other environmental factors, this exem-
plary result forms an indication that the provided method may be able to capture
and predict part of the energy consumption variation caused by driver behavior.

Lastly, simulations using the measured forward velocity profile of Driver 14
are also indicated in Figure 6.11. Compared to the measured forward velocity,
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Figure 6.12. Simulation results indicating dissipated and regenerated pow-
ertrain energy. Results are shown for the three forward velocity profiles in
Figure 6.11 and for the measured velocity of driver 14.

the results of the predicted forward velocity indicate a higher energy dissipation
and more energy regeneration. This could be considered an indication that the
predicted acceleration is conservative in terms of energy consumption, due to the
fact that the simulation represents the 90% worst-case accelerations.

6.7 Supplementary discussion

The driver-specific acceleration prediction of Section 6.6.2, is applied offline to
measurement data that was gathered in advance. It is also possible to apply the
proposed methodology to acceleration data obtained online to characterize the
driver while driving and include this information in the prediction for the remain-
ing part of the trip. A first simulation study3 of this online driver characterization
reveals several practical issues that come along with online driver prediction. Ex-
amples of these issues are the definition of an initial driver model that is applied
when no driver data is known, or a weighting function to average the measured
acceleration data over time, for each of which conscious choices are to be made.
A recommendation originating from this study is to use the maximum driven for-
ward velocity as a driver-specific parameter. As the results in Figure 6.9 already
suggest, this can vary among drivers, also influencing the energy consumption.

3D.T. van Blijderveen, “Real-Time Driver Characterization for Energy Consumption Predic-
tion of Electric City Buses,” Internship report DC 2021.006 (Confidential), Eindhoven Univ. of
Tech., Eindhoven, Jan. 2021.
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Ultimately, one could combine the online forward velocity prediction algorithm
in the first half of this chapter and the driver-specific acceleration prediction of Sec-
tion 6.6 to arrive at a forward velocity prediction that adapts both to the current
vehicle velocity and to the specific driver operating the vehicle. However, before
adding this additional model complexity, a comparative analysis should be per-
formed to quantify the expected accuracy improvement of the energy consumption
prediction when a driver-specific forward velocity profile is considered.

A remark on privacy

The driver-specific data presented in this chapter was gathered with the consent of
the drivers and the public-transport operator owning the vehicles. The visualiza-
tions can purposefully not be traced back to the individual drivers. If the methods
suggested here are implemented in a BEB fleet in the future, the data gathered
and processed to make any driver-specific prediction should be considered ‘sensi-
tive,’ as it might be used to quantify driver performance. This, however, is not
the purpose of the presented work, which aims to improve the accuracy of energy
consumption predictions.

6.7.1 Map-matching algorithm
The map-matching algorithm described in Section 6.2.1 is described by Algo-
rithm 6.1. Given a vehicle position pv ∈ R2 and a route defined by a list of
route points p1,...,N , the shortest Euclidian distance between the point pv and the
route segment si is determined for segment of the route. The segment for which
this length li is shortest is considered to be the best match.

Algorithm 6.1 Map matching pseudocode.

1: procedure MapMatch(pv ∈ R2)
2: lI,min = 999;
3: for i← 1 to (N − 1) do
4: li ← Shortest Euclidian distance between pv and line si.
5: |si| ← length of section si
6: lv1 ← |pv − pi| distance from pv to vertex 1 of section si
7: lv2 ← |pv − pi+1| distance from pv to vertex 2 of section si

. Check whether pv, pi−1, and pi form an acute triangle:
8: if lv1 + lv2 ≤

√
|si|2 + l2i + li then

9: if li < lI,min then
10: lI,min ← li
11: Imin ← i

return Imin



7
Conclusions and

recommendations

7.1 Conclusions

The transportation sector is a significant contributor to global greenhouse gas
emissions. City buses add to these global emissions and are responsible for a large
part of the local air pollution in cities. Consequently, governments are spurring
developments toward electric mobility. In these developments, Battery Electric
Buses (BEBs) are one of the first solutions deployed on a large scale in city centers.

Similar to electric passenger cars, BEBs face a more limited and more critical
driving range compared to conventional vehicles. To address these drawbacks,
research is aimed at vehicle design and control strategies that minimize energy
consumption and increase the economic viability of BEBs. Accurate models that
predict the battery-to-wheel energy consumption are essential for the required
analyses and potentially reduce the Total Cost of Ownership (TCO).

Achieving an accurate prediction of energy consumption is challenging due to
the variability of the resistance forces and the influence of the driver. Following
a physics-based approach to these predictions results in engineering insight and
models that extrapolate well to new operating conditions. However, the difficulty
of this approach is in achieving appropriate model complexity that accounts for
the relevant physics at hand. In addition, the various model parameters have to
be determined with sufficient accuracy. Therefore, the objective of this thesis is:

To improve the accuracy of electric vehicle energy consumption prediction
methods by considering the vehicle dynamics of a battery electric bus.
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The conclusions regarding this objective are discussed according to the three
research directions: 1.) physics-based extensions to the conventional energy con-
sumption model that is described in Chapter 2, 2.) estimation of difficult-to-
determine model parameters, and 3.) an adaptive forward velocity prediction
algorithm. Within each of these challenges, the presented thesis aims to follow a
physics-based approach with associated definitions and assumptions.

Physics-based model extension. Extensions are found to the conventional
longitudinal-dynamics model by evaluating both the lateral and the vertical ve-
hicle dynamics. A nonlinear steady-state cornering model has been developed to
assess the relevant energy losses associated with cornering. The model allows the
calculation of the tire forces in different cornering scenarios and indicates that
both cornering resistance due to the rearward component of the lateral tire force
and tire scrub due to the double-mounted rear tires result in additional energy
consumption. The model is validated against steady-state cornering tests with a
12m BEB and is able to predict these combined cornering losses with an accuracy
of 0.5%. Using data from a fleet of BEBs, it is established that cornering resis-
tance is the most relevant of the two effects and that the cornering losses combined
constitute up to 5.8% of the powertrain energy consumption on curvy city routes.

The vertical vehicle dynamics are considered by defining a quarter car model to
simulate the suspension dynamics of a BEB. The simulated suspension deflection
is validated against measurements of an 18m bus traversing a known road surface.
The validated model is applied in simulations of several realistic road classes. The
results indicate that the power dissipated in the dampers on rough roads of class
D can be up to 13% of the baseline powertrain power. While these damper losses
are often attributed to the rolling resistance, the road-roughness dependency is
emphasized by this result.

Parameter estimation. The above findings are a prime example that model pa-
rameters, such as the rolling resistance, can vary along a route and that additional
dynamics, such as cornering losses, can have a relevant impact on energy consump-
tion. Both these effects are position-dependent. A method is proposed to estimate
position-dependent model parameters in the form of the rolling resistance coeffi-
cient and local road grade based on measured powertrain data. The method em-
ploys recursive least-squares with Gaussian-basis functions in the position-domain
to estimate a road-resistance profile along pre-defined route segments. Based on
cross-validation of twelve measurements, the resulting road resistance is shown
to improve a power-request prediction error from 8.3% to 6.6% with respect to a
conventional method, without requiring a digital elevation model.

Forward velocity prediction. An online algorithm is developed that predicts
the expected forward velocity profile for the remaining part of a bus trip, which
is an important variable that influences the energy consumption of a BEB. The
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current vehicle position and speed serve as the initial value of this prediction.
The online forward velocity prediction is used to predict the remaining powertrain
energy required to complete the trip in real-time and responds to unexpected
decelerations. The algorithm is demonstrated in a Hardware-in-the-Loop test with
a 12m BEB. The online prediction is shown to have an average error of 3.6%
compared to the measured powertrain energy consumption, which is lower than
the value of 4.4% originating from a similar offline prediction.

By controlling the vehicle speed, the driver can significantly impact the energy
consumption of a BEB. By observing and measuring the driving behavior of several
drivers operating 18m BEBs in a city center, different drivers are characterized
based on an acceleration-versus-velocity plot. This characterization can differenti-
ate between drivers above a forward velocity of 30 km/h and is relatively constant
for a single driver between trips. To characterize the driver, a driver-specific ac-
celeration as a function of forward velocity is defined using data from these plots
and used as input to an energy consumption simulation. The simulation results
show an energy consumption difference of 17% between the two drivers, which is
in accordance with a difference of 14% seen in the measurement data.

Remark. Most of the percentages mentioned here refer explicitly to the power
or energy of the powertrain. However, as already indicated in Section 2.6.1, the
powertrain represents the majority, but not all, of the vehicle’s energy consump-
tion. Therefore, when projecting the contributions mentioned above to the total
vehicle energy consumption, the resulting percentages will be approximately 70%
to 80% of those mentioned here.

7.2 Recommendations

This thesis presents a physics-based approach to microscopic energy consumption
prediction for battery electric buses, while focusing on the battery-to-wheels mod-
eling. Naturally, there are several suggestions for future research and development
beyond the scope of this work. These are as follows.

A complete validation on high-resolution vehicle data. The methods
described in this thesis highlight various aspects of physics-based battery-to-wheel
energy consumption prediction, ranging from detailed model extensions, in Chap-
ters 3 and 4, to a parameter estimation technique in Chapter 5 and online methods
for forward velocity prediction in Chapter 6. Not all these extensions are integrated
into one complete energy consumption model yet. Firstly, the required model com-
plexity depends on the application in mind, ranging from eco-driving to life-cycle
assessment. Secondly, the dynamics of some extensions, for instance the vertical
dynamics model, occur on a small timescale, which can make the implementation
in a microscopic energy consumption model challenging.
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The extensions and suggestions in this thesis are evaluated individually using
dedicated vehicle measurements. These dedicated tests allow the measurement of
high-resolution, high-frequency data using non-default sensors while performing
specific vehicle maneuvers and require the availability of test personnel and equip-
ment. In contrast, fleet data can be gathered with little additional effort. However,
this data often has a limited temporal resolution and a smaller number of signals,
making the application of microscopic energy consumption models challenging.

Therefore, an extensive validation experiment is proposed to thoroughly assess
the validity of the methods presented in this thesis on the overall prediction ac-
curacy. A detailed dataset should be constructed by monitoring relevant signals
for one or several vehicles during a prolonged time period, e.g., several months
or one year, at a sufficiently high sampling rate. In this case, relevant signals
would include the powertrain and auxiliary energy consumption, longitudinal, lat-
eral and vertical vehicle acceleration, forward vehicle velocity, GPS position, and
ideally passenger count or a different signal to base a vehicle weight estimate on.
The availability of such a dataset would allow for the development of an extensive
model based on Chapter 2 in combination with the contributions of Chapters 5
and 6. Additionally, it opens up the ability to follow a more data-driven approach
to model extensions beyond the scope of this thesis, such as detailed modeling of
the auxiliary components or prediction of the passenger occupancy.

Improved modeling of temperature effects. Several of the model parameters
of the longitudinal dynamics model depend to some extent on temperature, as
discussed in Chapter 2. In this model, and the vehicle model applied in Chapter 5,
the temperature dependence of the air density is explicitly taken into account.
Nevertheless, a similar approach could be followed for other parameters. This
effect is included in the empirical rolling resistance estimation of Chapter 5, which
is shown to vary with ambient temperature. While not considered in this thesis,
the energy consumption of some auxiliary components, such as the climate system,
are known to be heavily temperature-dependent. Including these effects is essential
to achieve accurate range prediction.

Except for a static dependency on the ambient temperature, as described above,
dynamic model extensions could be considered that introduce an internal temper-
ature state. These could be used to model, for example, the powertrain losses and
the rolling resistance, which are both known to experience a settling time of hours
before reaching steady-state temperature. Including these thermal dynamics in a
physics-based model is expected to increase accuracy.

Traffic influence. The forward velocity prediction discussed in Chapters 2
and 6 is based on route data, such as stop locations and maximum legislated
speed, and a deterministic driver model. Even though the method presented in
Chapter 6 allows the model to react to decelerations that are not predicted based
on this information, it cannot predict traffic influence in advance. While the
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presented framework allows for the addition of other information sources that
limit the predicted forward vehicle velocity as a function of position, the challenge
lies in predicting the influence of traffic in advance. This information could be
estimated from historical fleet data or obtained from a commercial party.

Furthermore, including a waiting time at bus stops could be beneficial for
the prediction accuracy of a possible range prediction model. Even though the
powertrain dissipates little energy during these moments, the auxiliary components
are active during standstill and are influenced by the opening of doors or kneeling
of the vehicle.

Improved mass estimation. Vehicle mass is one of the most influential param-
eters in a physics-based energy consumption model. This parameter is especially
relevant when considering city buses because these vehicles can experience a 40%
difference in mass due to changes in passenger occupancy. This effect will only
become more prominent in the future as manufacturers strive to construct lighter
vehicles, while still maximizing passenger occupancy. In the baseline model, pre-
sented in Chapter 2, the mass appears in three terms of the road-load equation:
the acceleration term, the rolling resistance term, and the longitudinal component
of gravity. In Chapter 3 the cornering resistance scales linearly with the vehicle
mass. In Chapter 5 the mass must be known to calculate the road-specific resis-
tance. This allows for the data from different vehicles with different weights to be
combined. Lastly, the mass influences the maximum longitudinal acceleration and
deceleration as discussed in Chapters 2 and 6.

As discussed in Chapter 6, the vehicle mass is estimated based on the mea-
sured air bellow pressures in the Electronically Controlled Air Suspension (ECAS).
However, the air bellows are subject to suspension compression due to road un-
evenness and longitudinal and lateral load transfer during driving. As a result, the
estimated vehicle weights are not constant. To this end, the ECAS weight estimate
was processed in Chapter 6 to remain constant except for certain situations where
the vehicle is known to be stationary. Nevertheless, other aspects can influence
the estimated weight, such as hysteresis caused by friction in suspension bushings
or a sloped or banked road.

Other mass estimation methodologies could be investigated. A reference is
made to [145] for a suggested list of mass estimation methodologies. The methods
are based either on powertrain dynamics or on longitudinal, lateral, or vertical
vehicle dynamics. While all these options are feasible, the vertical eigenfrequency
of a bus with air suspension is shown to be mass-independent in Chapter 4, mak-
ing the latter option the least applicable to BEBs. Ultimately, the method that
requires minimal additional sensors is most likely to be adopted on a fleet level by
manufacturers.

If energy consumption prediction is required for trips further in the future, the
focus will shift from mass estimation to mass prediction. In this context, data-
based methods that estimate the likely passenger occupancy based on historical
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data could be used.

Rolling resistance and road slope estimation based on fleet data. Chap-
ter 5 of this thesis provides a method to estimate the local rolling resistance and
road slope based on power measurements of a vehicle that repeatedly travels the
same route. In theory, this methodology can be applied to combine data from a
fleet of similar vehicles. The introduced method already accounts for this by defin-
ing route segments that allow data from vehicles traveling different routes to be
combined. Although theoretically a small step, this method still has to be tested
with data from multiple vehicles with different vehicle parameters. The method
can potentially be applied to monitor the rolling resistance of a road network
traveled by a fleet of electric vehicles.

Model extension to range prediction. The scope of this thesis is explic-
itly restricted to predicting battery-to-wheel energy consumption. This type of
analysis focuses on modeling the vehicle, thereby predicting the power requested
from or, in the case of sufficient regenerative braking, delivered to the battery.
Because the battery and its efficiency are not considered in this thesis, results
are presented either as power as a function of time or as energy split up into
dissipated and regenerated energy. Nevertheless, in case the driving range of the
vehicle is to be predicted, a battery model will be required. Such a battery model
dictates the available energy onboard and describes the efficiency applied to the
regenerated and charged energy. Depending on the application of the model and
required accuracy, a multitude of different battery models is available in the lit-
erature [171, 172], ranging from empirical equivalent-circuit models [173], to more
physics-based electrochemical models [174].

Model applications in eco-driving and energy management strategies.
Chapters 3 and 4 of this thesis highlight how the resistance forces experienced by
the vehicle can be location-dependent down to a small scale, such as a single corner
or a single road bump. These local resistance forces can be of importance for eco-
driving methods or energy management strategies, where optimal speed profiles
or auxiliary control references are sought based on model simulations. Including
the local resistance forces in the evaluated model will result in different optimal
solutions. An exemplary study is [175] where the optimal speed trajectory is found
to reduce energy consumption if the cornering losses are included in the vehicle
model.

Data-driven energy consumption prediction methods. The fact that
modern BEBs are equipped with telemetry systems that gather and store data
acquired by onboard sensors opens up the possibility to apply data-driven, or
‘black-box’, methods to the energy consumption prediction problem. Some stud-
ies predict BEB energy consumption using data-driven or machine-learning type
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models [53, 176, 177]. These models are often macroscopic, with training data
and predictions on a time scale of minutes or based on the time intervals between
stops. In contrast, the physics-based methods presented in this thesis focus on mi-
croscopic energy consumption prediction on a sub-second time scale [52]. Although
studies are directed towards making microscopic energy consumption predictions
using black-box models [178], a combination of the two methods, e.g., a physics-
based model structure with data-driven parameters could provide results in both
the microscopic and the macroscopic domain.

Additional considerations. One of the main motivators to electrify mobility
in public transport is the reduction of global emissions and local air pollution.
Ultimately, the environmental impact of battery electric vehicles is largely deter-
mined by the origin of the power used to manufacture and charge the vehicle [7].
Therefore to fully exploit the environmental benefits of BEBs, a long-term goal
should be to reduce the greenhouse gas intensity of the grid electricity mix in the
regions where the vehicles are constructed and operated.
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A
A 2021 overview of battery

electric city bus specifications

Abstract - Driven by climate change, the public transport sector is currently tran-
sitioning to electric mobility. As part of this transition, many new battery electric
buses have entered the market over the last decade. By organizing and categorizing
the reported specifications of more than 130 battery electric buses, this appendix cre-
ates an overview of the state-of-the-art per 2021. The results give a distribution for
the battery capacity per vehicle type and indicate that Lithium-ion Iron Phosphate
and Nickel-Manganese-Cobalt are the most used cell chemistries. Central motor
and wheel hub motor driveline topologies are encountered approximately equally
often, and the average continuous driveline power is 7 kW per tonne of vehicle
weight. Based on the reported range and battery capacity, the energy consumption
is 1.3 kWh/km when averaged over all vehicles. Therefore, at an occupancy rate of
38% (seated), battery electric buses offer the same energy consumption per person
as an average electric passenger car. The current lack of standardization in the
reported range makes direct comparison of individual vehicles difficult. Based on
the charging rate and the battery capacity, depot charging and opportunity charging
strategies can be distinguished in the vehicle specifications.

This appendix is based on an extended version of:
C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer, “The State-of-the-Art of Battery Electric
City Buses,” presented at the 34th Int. Electric Veh. Symp. and Exhib. (EVS34), Nanjing, China,
Jun. 2021.
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A.1 Introduction

DRIVEN by climate change, the present-day transportation sector is under-
going a transition away from fossil fuels and towards electrically powered

mobility [12]. In this transition, the Battery Electric Bus (BEB) is a key solution
that is already employed on a large scale in many cities. Compared to conven-
tional Internal Combustion Engine (ICE) vehicles, BEBs offer no local pollutants,
reduced noise, less maintenance, and the potential of a lower Total Cost of Own-
ership (TCO) due to lower operational expenses [43, 130].

Since the recent revival of the BEB, both established and new Original Equip-
ment Manufacturers (OEMs) have entered the BEB market. While these vehicles
seem all similar in general terms, detailed specifications may vary. Exemplary,
OEMs have a range of different battery types to choose from, which in turn can
affect vehicle weight, passenger capacity, and driving range. Therefore, BEBs with
various specifications exist.

There are scientific studies that focus on the general design of BEBs and reflect
on the choices that OEMs and public transport operators have to make. In [44]
a detailed energy consumption model of a BEB is applied to data from a fleet
of diesel vehicles to consider the feasibility of electrifying the route. Using the
model, different battery sizing and charging strategies are examined. As input
to the model, typical BEB specifications are obtained by considering eight BEBs
from different manufacturers. Similarly, in [39] a design methodology is proposed
to calculate the TCO as function of the large BEB design space. This design space
is explored by considering cell chemistry, vehicle size, driveline topology, auxiliary
systems, and charging strategy. Typical values for each of these design parameters
are combined from different OEM specification sheets and the ZeEUS eBus Report
[75]. It shows that design studies such as these [39, 44, 72] require typical vehicle
parameters, which are often gathered by the individual authors.

Some studies do create an overview of BEB driveline technology. [17] presents
a detailed historical overview of the available bus driveline technologies and the
state-of-the-art per 2015. However, the work only partially focuses on battery elec-
tric buses. More details specifically regarding BEBs are offered in [179]. However,
one of the more recent of these kinds of overviews [180], dates from 2016, when the
scale of the transition to BEBs has only just begun to become clear. The majority
of the BEBs today have been introduced since.

More recent literature does exist but provides only few specifications on a ve-
hicle level. [181] presents an in-depth technical overview of different zero-emission
bus technologies available, also including fuel-cell buses, battery buses, and super-
capacitor buses. Furthermore, other studies [43, 182] review BEBs from both a
technological and economic perspective, listing current technologies and future
challenges. Even though the latter study gives the specifications of an exemplary
vehicle, most of these works focus more on providing an in-depth view of the
various technological solutions, as opposed to reporting the current-day vehicle
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specifications.
Although specifications of individual BEBs are abundantly available, there is

little recent scientific work that combines this information in a single overview.
This appendix aims to organize the specifications of BEBs available on the market
today and list the characteristics of these vehicles. To this end, the specifications
as provided by manufacturers are gathered and displayed graphically, similar to
the methodology presented in [183] for electric trucks. Using this method, average
values are quantified and trends in specifications are identified and discussed. This
appendix is thereby an extension of a previously published conference paper [184].

The outline of this appendix is as follows. In Section A.2, the method em-
ployed to gather the vehicle specifications is explained. Next, the graphs resulting
from this overview are presented and discussed in Section A.3. Furthermore, more
extensive discussions on energy consumption, driving range standardization and
charging strategy are presented in Section A.4. Lastly, the conclusions are sum-
marized in Section A.5.

A.2 Methods

To give an indication of the current-day status of BEB technology, a specification
overview is created. To this end, the specifications of over 130 individual BEBs are
collected and indexed. The information for this overview is obtained from OEM
webpages, brochures, and press releases, and also from secondary sources, such as
news-websites reporting on BEB technology and the ZeEUS eBus Report [75]. A
selection of the data is displayed in Table A.1.

The scope of the research is limited to battery electric city buses. Therefore,
only vehicles that obtain all or most (Vehicles that use a fuel heater as HVAC
solution are still included) of the energy required to independently operate the
vehicle from an electric accumulator are included in the overview. Therefore,
both ICE-electric hybrids and (hydrogen) fuel-cell vehicles are excluded from the
overview, as well as electric trolleybuses. Furthermore, only vehicles of a Gross
Vehicle Weight (GVW) of more than 8 tonnes that are specifically marketed as
‘city bus’ or ‘transit bus’ are included. Therefore, relatively small vehicles with a
GVW below 8 tonnes, and vehicles used for inter-city transport, e.g., coaches, are
excluded from the overview.

The information presented here is gathered by October 2021 and includes ve-
hicles that are in production or announced to go into production later this year.
The list distinguishes between prototype vehicles, which are typically only used for
presentations at public events and for tests, and series-production vehicles, which
are delivered to public transport operators and are operated in larger fleets.

Manufacturers included are those that are leading the market in 2020 in China
[185], Europe [31, 186], North America [187] and India [188], together with several
smaller OEMs. OEMs regularly launch new versions of existing vehicles or up-
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Figure A.1. Histograms of the reported battery capacity categorized per ve-
hicle type.

date the specifications of existing vehicles. Therefore, the numbers found across
different sources can be contradictory. Whenever this is the case, the most re-
cent values are considered. Else, the data as provided by the manufacturers or
news sources is used directly without making any statements on the accuracy of
these numbers. Lastly, it should be noted that the majority of the indexed data
originates from European and North-American manufacturers, because this infor-
mation was more readily available to the English-speaking authors. In contrast,
detailed specifications of Asian and Indian manufacturers are often challenging to
find. Nevertheless, there are sufficient OEMs in the dataset to assume that the
numbers represent the global battery electric bus market.

A.3 Results

This section presents the results of the BEB specification overview in a graphical
way. Results are categorized according to battery technology in Section A.3.1,
charging power in Section A.3.2, driveline topology in Section A.3.3 and Heating
Ventilation and Air Conditioning (HVAC) in Section A.3.4. Because not all OEMs
disclose the same specifications, the data for a single vehicle can be incomplete, as
also illustrated by the blank spaces in Table A.1. Therefore, figures only display
vehicles for which the specifications listed on both figure-axis are known. Figures
presented in this section only include data from series-production vehicles, unless
stated otherwise.

A.3.1 Battery technology

The total battery capacity is one of the main vehicle specifications of a BEB. It
directly affects the vehicle’s driving range and influences other important specifi-
cations, such as vehicle weight and space available for passengers. Therefore, the
battery capacity as specified by the OEMs is assessed.
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In Figure A.1, a histogram details the battery capacity per vehicle type, i.e.,
single-decker, double-decker, or articulated vehicles. The results show that most of
the indexed vehicles for which the battery capacity is known are single-decker-type
vehicles. These buses, with a typical length ranging from 9 to 15meter mostly have
a reported battery capacity between 200 and 400 kWh. Furthermore, the dataset
shows that articulated vehicles, which have a typical length of 18m, and double-
decker vehicles on average have a higher battery capacity. There is only one vehicle
in the dataset with two articulations and a total length of 25meter [206].

Across the indexed vehicles, various types of battery chemistry are used by the
different manufacturers. If available, the reported battery chemistry is listed for
every vehicle and ordered according to the number of OEMs using this technology,
in Table A.2. Additionally, in Figure A.2, the distribution of observed battery ca-
pacities per vehicle is reported in a boxplot per battery technology. Of the various

Table A.2. Overview of the battery chemistries categorized according to num-
ber of OEMs using the technology. OEMs who use multiple technologies are
counted multiple times.

Cell Chemistry # OEMs

Li-ion (LFP) 11
Li-ion (NMC) 9

Li-ion (unspecified) 8
Li-ion (LTO) 4

Li-ion (LFP, Solid-State) 2
Li-ion (LiPo) 1

Super capacitor 1
Unknown 17

Total 53

cell technologies observed, cells with Lithium-Iron-Phosphate (LFP) cathodes are
the most common, followed by cells with Nickel-Manganese-Cobalt (NMC) cathode
material. As can be seen from Figure A.2, battery packs with these two technolo-
gies exist in roughly the same capacity range. Smaller capacity battery packs with
Lithium-Titanate-Oxide anodes (LTO) and Lithium Polymer cells (LiPo) are en-
countered less frequently. Also, one vehicle featuring super-capacitor-based energy
storage is included in the overview [207]. Lastly, the results also show that there
are already multiple OEMs that have vehicles with a solid-state electrolyte on the
market [208, 209].

A.3.2 Charging power

Most OEMs offer multiple charging options for their range of vehicles. This in-
cludes a default charging option, which often consists of one - or two parallel - CCS
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Figure A.2. Boxplots of the reported battery capacity per vehicle categorized
according to battery technology.

Type 2 charger plugs, and an optional secondary charging option. The secondary
charging option is typically marketed as ‘fast charging’ and often happens via an
overhead pantograph. If available, the maximum power at which these charging
options operate is recorded and visualized in Figure A.3a. In case a vehicle only
supports fast (pantograph) charging, it is listed as the first charging option.

The results show that various charger powers are offered, ranging from 11 kW
[194] to 480 kW [75, p. 155]. While it is difficult to recognize any trend in the
maximum charger power, batteries rarely charge slower than 1/6C. This indicates
that OEMs consider 6 hours to be the maximum charging time for any charging
solution. By dividing maximum charger power by battery capacity, the maximum
charging rate of the battery pack can be expressed, as shown in Figure A.3b. The
results show that a C-rate below 1 is customary for most high-capacity battery
packs and that there are several battery packs with lower capacities that can be
charged relatively fast. This difference is further discussed in Section A.4.3

A.3.3 Driveline topology

Generally, two types of driveline topologies can be identified for BEBs; a central
electric machine, which powers the wheels via a differential, or a drive-axle where
the wheels are powered by two individual motors located in the wheel hubs. These
same two principles are encountered in different configurations, where mostly one
but also sometimes two of the vehicle’s axles are driven.

In Table A.3, the two observed driveline technologies are ordered according
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Figure A.3. (a) charger power (•), including optional secondary charging
option (•), as function of battery capacity. (b) maximum charge rate as
function of battery capacity for different cell chemistries. Here, typical fast
charging chemistries are indicated yellow (×�C), while typical slower charg-
ing chemistries are red (+F). In both plots, the dashed line ( - - ) indicates a
nominal charging time of capacity/power = 6hrs. Data also includes prototype
vehicles.

to the number of OEMs using this technology. Furthermore, in Figure A.4a the
distribution of the reported continuous power and peak power per driven axle
is visualized per topology. The results show that both driveline topologies are

Table A.3. Overview of the driveline type categorized according to number of
OEMs using the technology. OEMs who use multiple technolgies are counted
multiple times.

Driveline Topology # OEMs

Central motor 16
Wheel hub motors 14

Unknown 26

Total 56

encountered approximately equally often in the group of vehicles indexed in this
review. It is not uncommon for one OEM to use different topologies across their
range of vehicles. Figure A.4a shows that the continuous power of both these
systems is comparable and gives a slight indication that wheel hub motors offer a
higher peak power.

The driveline power is generally higher for longer, heavier vehicles. This is
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Figure A.4. Driveline power visualized in multiple ways. (a) shows boxplots of
the driveline power per driven axle categorized according to driveline technology.
(b) indicates the total driveline power per vehicle as function of gross vehicle
weight. In both figures, both continuous power (• – ) and peak power (• – ) are
indicated

confirmed by the data in Figure A.4b, which shows both the continuous and peak
driveline power versus the gross vehicle weight. The results show that the con-
tinuous power-to-weight ratio is approximately 7 kW/t (0.009 hp/kg). The peak
power shows a similar trend, with an additional 100 kW offset.

A.3.4 Heating, ventilation and air conditioning technology
The Heating, Ventilation, and Air Conditioning (HVAC) system consumes a sig-
nificant part of the energy in a BEB. Compared to passenger cars, the HVAC
system of a bus has to condition a larger air volume, which is made more chal-
lenging by the frequently opening doors through which both ambient air and new,
unconditioned passengers enter the vehicle. After the driveline, the HVAC system
consumes the most energy in a BEB [35].

In Table A.4 the type of HVAC system that is offered by the OEMs is listed.
Generally, there are only three types of HVAC systems mentioned; a (diesel) fuel
heater, an electric resistance heater, or an electric heat pump. As opposed to
an electric heater, a fuel heater does not affect the driving range, however, it
does require a separate, small diesel tank and negates the advantage that a BEB
emits no local pollutants. A heat pump offers a higher Coefficient of Performance
(CoP) than electric resistance heaters, thereby minimizing the negative effect on
the driving range of the vehicle, while still releasing zero local emissions. The data
in the table shows that only a small fraction of the OEMs are specific about the
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Table A.4. HVAC type and the number of OEMs offering this technology.
OEMs that offer multiple technolgies are counted multiple times.

HVAC type #OEMs

heat pump 10
fuel heater 4
electric 3
unknown 37

Total 54

type of HVAC system that is used. Out of the manufacturers that do mention this
in detail, most report to use a heat pump.

A.4 Discussions

Using the recent numbers provided in Section A.3, several topics related to BEB
development are discussed here. Brief discussions are provided on topics related to
energy consumption compared to consumer electric vehicles in Section A.4.1, driv-
ing range standardization in Section A.4.2, and charging strategy in Section A.4.3.

A.4.1 Energy consumption and driving range
Regardless of battery capacity, minimizing the vehicle energy consumption is rel-
evant to maximize the driving range and minimize TCO. Figure A.5a shows the
driving range reported by the manufacturers as function of the specified battery
capacity. In the same figure, the GVW is indicated, which shows that the larger
battery capacity is generally reserved for heavier vehicles. By taking the ratio
of battery capacity and range, the average energy consumption averaged over all
vehicles is found to be 1.3 kWh/km.

Next, the energy consumption per passenger is detailed in Figure A.5b, which
is on average 1.5 kWh/100 km/person. Based on the values of 50 of the indexed
vehicles, an average ratio between total passenger capacity and seated passenger
capacity is determined to be

npassengers,total
npassengers,seated

= 2.4 . (A.1)

Using this number, the specific energy consumption per seated passenger can be
derived from Figure A.5b, resulting in

ẼBEB = 2.4 · 1.5 = 3.6 [kWh/100 km/pers.] , (A.2)

assuming all the seats are occupied, but no passengers are standing. This value
can be compared to the average energy consumption of electric series production
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Figure A.5. Reported range versus battery capacity (a) together with the
average energy consumption. Energy consumption is shown versus passenger
capacity in (b). Marker size (•) indicates vehicle weight. Also prototype vehicles
are included.

passenger cars; 13.7 kWh/100 km [210, Fig. 3]. Together with the average number
of occupants per vehicle: 1.45 [211], this results in

Ẽcar = 13.7/1.45 = 9.4 [kWh/100 km/pers.] . (A.3)

Therefore, a BEB offers approximately the same person-specific energy consump-
tion as an electric passenger car if approximately 3.6/9.4 = 38% of the BEB seats
are occupied. Alternatively, if standing passengers are included, a fully occupied
BEB transports passengers 9.4/1.5 = 6 times more efficiently than the average
electric passenger car.

The battery capacity and reported driving range of newly introduced vehicles
can be visualized as function of time, see Figure A.6. Several trends can be dis-
tinguished from this figure. First of all, it can be seen that the battery capacity
per newly introduced vehicle increases over time. As a result, the reported driving
range increases as well. Nevertheless, this increase is not proportionate, resulting
in a net increase in the reported energy consumption over time. Only in 2021 is the
average energy consumption equal to the average as established in Figure A.5a:
1.3 kWh/km. For preceding years, it is generally less. This increase in reported
energy consumption could be a consequence of the fact that more heavier vehicles
were introduced in the later years, because most first-generation BEBs were of
the 12 single-decker type, which are relatively light. A second hypothesis is that
in later years OEMs are reporting more honestly about the driving range of their
vehicles.
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Figure A.6. The reported battery capacity (• – ) and the reported driving
range (• – ) as function of the introduction year of the vehicle. Prototype vehicles
are also included.

A.4.2 Driving range standardization

In Figure A.5a an uncertainty interval surrounding the average energy consump-
tion by ±25% is indicated with dashed lines. This 25% is considered the approx-
imate difference that could be caused by either including or excluding the HVAC
consumption in the reported driving range number [35, Fig. 1]. Still, several ve-
hicles exceed this boundary, indicating that there is a large spread in reported
energy consumption.

Whereas some differences are expected due to design differences, part of the
spread is likely caused by a lack of standardization surrounding the reported range.
In the gathered dataset, only a handful of OEMs specify which driving cycles or
environmental conditions are considered for the reported driving range or explain
whether the value originates from simulations or driving tests. This makes a direct
comparison of individual vehicles difficult.

Several standardized driving cycles exist specifically for BEBs [212, 213]. How-
ever, the variety of cycles is still large, and the usage of a particular cycle seems
to correlate with the geographic region where the OEM operates. There are even
examples of single public transport operators specifying their own standardized cy-
cles [214]. Additionally, based on the data indexed here, these cycles are seldomly
used when reporting driving range numbers publicly.

A.4.3 Charging strategy

When electrifying a city bus network, two main charging strategies can be con-
sidered. On one side, there is the depot-charging strategy, whereby vehicles are
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charged only once or twice per 24h, typically at the bus depot. This strategy
allows the vehicles to be operated similarly to diesel vehicles: driving for a large
part of the day without interruption. On the other side, Opportunity Charging
(OC), assumes the vehicles are charged additionally for brief intervals at some or
all of the intermediate bus stops.

This choice of charging strategy has a defined influence on the vehicle design.
For a depot-charging solution, the driving range should be relatively large, ideally
comparable to diesel vehicles. In contrast, for OC functionality, a smaller driving
range is allowed, but the vehicle should be able to recharge quickly. Some OEMs
actively advertise their vehicle for either depot charging [193] or OC [207] strate-
gies; however, the majority of the OEMs offer multiple versions of their product,
thereby leaving the choice to the public transport operator. While there is scien-
tific literature that takes a distinct stance towards a particular charging solution
[39], the majority of the charging studies [44, 215] seem to indicate there is no
absolute best option and the preferred solution depends on the nature of the bus
routes and the optimization objectives, e.g., minimizing TCO, grid impact, or fleet
size.

The two different charging strategies can be distinguished from the results pre-
sented in this appendix. First of all, the battery box plot in Figure A.2 shows
clearly that LTO and LiPO cells are encountered in battery packs with a rela-
tively small capacity. Because these cells are suitable for high-power applications,
they are often used in vehicles that apply an OC strategy. This is confirmed by
Figure A.3b, which shows that these cell types are also the ones boasting charg-
ing rates above 1C. In contrast, the LFP and NMC cells are often encountered
in larger capacity battery packs and have lower charge rates, making them more
suitable for depot-charging strategies. Lastly, the fact that the smallest battery
capacity encountered in a battery electric double-decker is still relatively large
(314 kWh [216]), as seen in Figure A.1, indicates that this type of vehicle is mostly
operated in a depot-charging strategy.

A.5 Conclusion

This appendix presents a specification overview of over 130 BEBs available on
the market per 2021. Based on the numbers provided by OEMs and news sources,
trends and average values are identified. It is established that both LFP and NMC
are the most frequently encountered cell chemistries at this moment. Based on the
reported charging power, a minimal charging time of 6 hrs across all vehicles can
be identified. In the driveline design, central motors and wheel hub motors are
encountered approximately equally often and the average nominal driveline power
is 7 kW per tonne GVW. Unfortunately, only a few OEMs are specific about the
used HVAC solution, but those that do, report using a heat pump.

Based on the reported specifications, it is revealed that the average energy con-
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sumption of a BEB is 1.3 kWh/km, and that an occupancy rate of 38% (seated)
is already enough for a BEB to match the specific energy consumption of an elec-
tric passenger car. Furthermore, during the study, it was found that the energy
consumption varies significantly across vehicles, likely because standardization re-
garding these values is seldomly reported. Lastly, it is shown that, from the
resulting graphs, vehicles that focus specifically on depot charging or opportunity
charging can be identified.
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Energy consumption prediction

for electric city buses

Abstract - Similar to electric vehicles for the consumer market, the driving
range of battery electric city buses is still a limiting factor for market adoption.
Furthermore, this driving range can vary depending on environmental conditions,
the number of passengers, and driver behavior and is therefore often uncertain.
This results in conservative charging strategies and an increased total cost of own-
ership of the vehicle. This appendix presents a physics-based energy consumption
prediction model, aimed at electric city buses, with the goal of reducing the uncer-
tainty regarding the energy consumption of the vehicle. The model is derived from
first principles and complemented by dedicated measurements of an electric city
bus, including dynamometer tests and coast-down measurements. Validation using
real-world data shows that the model has the ability to accurately predict the con-
sumed energy for the majority of the analyzed trip, although deviations, probably
caused by road slope effects, do occur.

This appendix is based on:
C. J. J. Beckers, I. J. M. Besselink, J. J. M. Frints, and H. Nijmeijer, “Energy consumption predic-
tion for electric city buses,” presented at the 13th ITS Eur. Congr., Brainport, The Netherlands,
Jun. 2019.
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B.1 Introduction

OVER the last decades, battery research advancements have led to increased
energy density and reduced costs of battery packs [217]. These develop-

ments, together with the favorable legislation for electric mobility with respect
to fossil fuel-based transportation [218], sparked a renewed interest in Battery
Electric Vehicles (BEVs). The rate of adoption of BEVs varies across different
markets. While diesel is generally still regarded as the most cost- efficient solution
for long-distance road-freight transport, the passenger car sector is slowly evolving
towards electric propulsion as the new standard. In the public transport sector,
BEV implementation is also gaining traction [14]. In all sectors, the rate of adop-
tion seems to be limited by the battery-powered alternatives having inferior driving
range with respect to their fossil fuel counterparts. This results in ‘range anxiety’
experienced by BEV drivers and fleet operators, which is amplified by unreliable
range predictions [219]. In the public transport sector, this uncertainty in range
prediction gives rise to conservative charging strategies, resulting in unnecessarily
long charging times, sub-optimal timetables, and the use of more (redundant) vehi-
cles compared to a fossil fuel-powered fleet. While increasing the available battery
capacity will resolve the range anxiety, this solution is not always trivial due to
cost, weight, and space constraints. Therefore, until future generation batteries
are developed, a more suitable method to decrease range anxiety can be found
in developing more accurate energy consumption models to supply more reliable
information to both drivers and public transport fleet operators. While the power
drawn from the main battery of a BEV also includes the auxiliary components,
such as the HVAC system, the pneumatic system, and low voltage electronics, this
appendix focuses on predicting the power consumed by the powertrain, as this
power varies significantly as function of a number of vehicle and environmental
parameters and it is generally the most significant energy consumer of the vehicle.

B.1.1 EVERLASTING

The Horizon 2020 project EVERLASTING (Electric Vehicle Enhanced Range,
Lifetime And Safety Through INGenious battery management) aims to develop
innovative technologies to improve the reliability, lifetime, and safety of lithium-
ion batteries by developing more accurate, and standardized, battery monitoring
and management systems [57]. These novel battery technologies will be demon-
strated in two vehicles, one of which is a battery electric city bus. This vehicle
is also the subject of the study presented here and is henceforth denoted as the
‘EVERLASTING demonstrator’. Among other technologies, the EVERLASTING
demonstrator will be able to accurately predict the future power request and en-
ergy consumption of the driveline of the vehicle, as function of the route that will
be driven.
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B.1.2 Problem statement

While energy consumption models are widely researched for passenger cars [33, 78,
81], the available literature on electric city busses is more limited. Furthermore,
much of the research that is available relies on historic data from a single vehicle
or a fleet of monitored vehicles. This data dependency makes it difficult to apply
the result to a specific vehicle, such as the EVERLASTING demonstrator. There-
fore, this appendix presents a physics-based energy consumption model for the
EVERLASTING demonstrator. In addition to the advantage of straightforward
adaptation to different types of vehicles, the physics-based approach also yields
more insight in the energy consumption processes and allows for better extrapo-
lation of the results to more diverse operating conditions.

B.1.3 Approach

First, a literature overview on energy consumption models is presented in Section
B.2. In Section B.3 the physics of the longitudinal dynamics of the vehicle are
explained to derive an energy consumption model. Where a purely first-principles
approach is difficult or impractical, dedicated measurements are supplied to pro-
vide realistic parameters for the model in Section B.4. The resulting energy con-
sumption model is compared against real-world measurements in Section B.5, after
which conclusions and future model extensions are summarized in Section B.6.

B.2 Literature overview

Vehicle energy consumption models are an extensively researched topic. The mod-
els serve different purposes, ranging from the development of eco-driving algo-
rithms [220], to parameter sensitivity studies [78], driver behavior research [168],
range prediction [33], and energy management and charging strategy studies [221].
Regardless of the purpose of the models, the aim is to predict the energy con-
sumption of the vehicle, often as function of a set of vehicle and environmental
parameters.

B.2.1 Literature on energy consumption models

There are generally two classes of energy consumption models: physics-based mod-
els and data-driven models. Physics-based models [33, 79, 221] apply the available
knowledge of the energy-consuming physics. This often includes modeling the lon-
gitudinal dynamics of the vehicle and the powertrain, thereby aiming to accurately
mimic the physical components of the vehicle. The models are often a ‘backward
simulation’ of the actual power flow, starting from the dynamics of the vehicle to
finally calculate the electrical power requirements at the battery terminals. While
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the derivation of the model equations is generally straightforward and well under-
stood, the challenge lies in accurately predicting or measuring the relevant input
parameters for the models.

Data-driven methodologies [80] are based on statistical models describing cor-
relations between certain input parameters and the vehicle’s energy consumption.
In general, the models are derived by identifying statistical relations in sets of
real-world data. If this data is available, these models allow to capture complex
relations between the parameters and the vehicle energy consumption. However,
the quality of the model depends heavily on the available data and accuracy is not
ensured in case the model is used to extrapolate outside the range of the available
data. Furthermore, as the model parameters often no longer represent a physical
quantity, insight into the underlying physics is lost. There are studies that com-
bine a physics-based and data-driven approach, such as [81], where the applied
methodology is mainly data-driven, but with a model structure that is strongly
based on the underlying physics.

B.2.2 Energy consumption of electric city buses
In the energy consumption modeling field, some research is specifically aimed at en-
ergy consumption models for electric city buses. In [222], an electrical-mechanical
road load model of an electric bus is developed and verified using real-world data.
Different models for the electric drive are investigated, ranging from an efficiency
map, wherein all the losses are lumped into one parameter, to a more compli-
cated electric model of the inverter and motor. Results show a 5% error in energy
consumption between measurement and simulation, in case an efficiency map is
used.

B.3 A physics-based energy consumption model

In this section, the applied methodology is explained. The longitudinal equations
of motion of the vehicle are used to derive expressions for the energy consumption
of the powertrain. Furthermore, the relevant input parameters for the model are
discussed.

B.3.1 Longitudinal vehicle dynamics
Figure B.1 shows a side-view of a vehicle with all longitudinal forces acting on it.
The longitudinal dynamics of the vehicle can be described by

meff ax = Fx − Fr,f − Fr,r − Faero − sin(α)Fg , (B.1)

where meff is the effective mass of the vehicle and ax is the longitudinal acceler-
ation. The effective mass includes the rotational inertia of the wheels and power-
train components that also experience rotational acceleration when ax is non-zero.
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Figure B.1. Schematic side-view of a bus driving with a forward velocity V
with acting forces in red.

For busses, the effective mass is typically 102% of the total vehicle mass. The
right-hand side of (B.1) describes the various forces acting longitudinally on the
vehicle and include the driving force Fx, the combined rolling resistance force
Fr = Fr,f + Fr,r, the aerodynamic drag force Fearo, and the longitudinal compo-
nent of gravity Fg. The driving force of the vehicle can be expressed as

Fx = η
PDC
V

, (B.2)

where η is the overall powertrain efficiency between battery and wheels, PDC is
the electrical DC power drawn from the battery by de powertrain and V is the
forward vehicle velocity. The rolling resistance is modelled as

Fr = fr Fg cos(α) , (B.3)

where fr is the rolling resistance coefficient, α is the local road gradient, and Fg
is the gravitational force according to

Fg = mg , (B.4)

where g is the gravitational acceleration and m is the vehicle mass. Lastly, the
aerodynamic drag force is modelled as

Faero =
1

2
ρCdAf V

2 , (B.5)

where ρ is the air density, Cd is the aerodynamic drag coefficient, and Af is the
frontal area of the vehicle.

Substituting the above relations into (B.1) and rearranging, results in

PDC =
V

η

(
meff ax + frmg cos(α) +

1

2
ρCdAfV

2 + sin(α)mg

)
. (B.6)
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This is a closed-form expression for the power drawn from the battery by the
powertrain, as function of the longitudinal velocity V and acceleration ax, a set
of vehicle parameters (η,m,Cd, andAf ), and a set of environmental parameters
(fr, α, ρ, and g). Assuming the motion of the vehicle, e.g. the forward velocity
profile as function of time, is known, the challenge lies in accurately determining
each of the model parameters.

B.3.2 Input parameters

In reality, the model parameters mentioned above are not constant, as is shown
in Table B.1. Note that the variability of some model parameters changes with
respect to research performed for passenger cars, such as [33], when electric city
buses are considered. For this study, it is assumed that the constant model pa-
rameters g and Af are easily measurable or known. However, other parameters
might be more challenging to determine and are discussed below individually.

Table B.1. Model parameters and their variability for city buses, adapted from
[33, Table 1].

Parameter Dependency Variability
g,Af - constant

Cd relative wind direction low
ρ weather low

m passenger load high
η velocity, torque, temperature high
fr road, weather high
α road high

Aerodynamic drag coefficient

Even though, as indicated in Table B.1, the aerodynamic drag coefficient is a
function of the relative wind direction, this correlation is difficult to determine
for a specific vehicle. Also, when driving at high velocities, the influence of the
relative wind direction is reduced. Therefore, in this study, Cd is assumed to
be constant. While it is possible to determine Cd using Computational Fluid
Dynamics (CFD), this method requires exact knowledge of the geometry of the
vehicle and extensive computational effort and knowledge. Therefore, a more
pragmatic approach is used and coast-down measurements are used to determine
Cd experimentally. These tests are discussed in Section B.4.2.
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Figure B.2. Schematic overview of the powertrain with the various losses,
indicated by numbers. Figure adapted from [33].

Air density

As already shown by [33], the variability of the air density can be taken into account
in a vehicle energy consumption model. For this, the equations from [65] are used
to express the air density as function of ambient temperature, ambient pressure,
and relative humidity. These environmental weather variables are obtained from
the Royal Netherlands Meteorological Institute (KNMI) [154].

Vehicle mass

In contrast to a passenger car, the total vehicle mass of a city bus can vary sig-
nificantly during a route, due to variations in the number of passengers. However,
exact real-time data on passenger loading is difficult to obtain. Therefore, in this
initial study, the vehicle mass m is assumed to be constant.

Powertrain losses

In (B.6), the powertrain efficiency η summarizes the power losses that occur be-
tween battery and wheels. This single quantity actually represents multiple in-
dividual physical losses. Figure B.2 shows the topology of the powertrain of the
considered vehicle. The power flow starts as DC current at the battery terminals
and flows through the inverter to the electric motor. The resulting mechanical
power is transferred through a driveshaft to the rear axle. This rear axle contains
a differential gearing unit and additional reduction gears. Finally, the mechanical
energy is transferred to the road through the tires. Note that the efficiency of the
battery is not taken into account in this study. Inside and in between each of these
powertrain components, energy losses can occur. These are summarized below:

1. Electrical losses. These include

(a) Ohmic losses in both DC cables between battery and inverter and the
3-phase AC cables between the inverter and the motor.
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(b) Losses in the inverter. The inverter suffers from ohmic and switching
losses of the switch-mode converter, which can be approximately 3 to
4% of the total power [223, p. 266].

(c) Losses in the motor. These also include ohmic losses. For induction
motors, these comprise 55 to 60% of the total motor losses at full load
[223, p. 262]. Furthermore, there are magnetic core losses, these typi-
cally comprise 20 to 25% of the total motor losses. Further losses are
due to mechanical friction in the motor (2.a) and other losses that are
difficult to specify further.

2. Mechanical friction. Generally, all components that are lubricated experi-
ence friction and will heat up during driving, thus energy is lost here. These
losses include

(a) Bearings in the motor, differential housing and uprights.
(b) Constant velocity joints of the driveshaft.
(c) Gears: in the rear axle.
(d) There can also be unintended (dry) mechanical friction, for in-

stance in the brakes that are not fully released.
3. Tire slip. All tires experience slip. This can be longitudinal slip of driven

or braked wheels but also lateral slip.

Because it is challenging to predict all these losses individually based on first
principles, the lumped powerlosses of the powertrain is determined through mea-
surements, as is described in Section B.4.1.

Rolling resistance coefficient

The vehicle experiences rolling resistance on all tires contacting the road. The
rolling resistance force is caused by the continuous deformation at the tire-road
contact patch of the rolling pneumatic tire. Due to the visco-elastic nature of the
rubber in the tire, energy is lost in this process, resulting in a resistance force.
This effect is captured by the rolling resistance coefficient fr.

The physics that underly the rolling resistance are complex. Even though
physics-based models exist that simulate the rubber deformation that results in
rolling resistance, these models often include large finite element simulations of the
tire and require extensive knowledge of the tire construction and material prop-
erties. Even if this information is available, the numerical models have difficulty
finding accurate rolling resistance coefficient values, due to the many factors that
can influence rolling resistance [103, p. 60]. These factors include the tire itself
(dimension, structure, and material), tire temperature, tire pressure, and road
condition, which further includes road surface roughness and wetness.

Due to the complexity of the rolling resistance phenomenon, it seems preferable
to determine fr in an alternative manner, that is representative of the real-world
driving conditions of the vehicle. Therefore, the rolling resistance coefficient used
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Figure B.3. Schematic of the dynamometer measurement. Adapted from [33].

in this study is determined through vehicle coast-down measurements, as is ex-
plained in Section B.4.2.

Road gradient

In (B.6) it can be seen that the road gradient has an influence on the energy
consumption. However, in the current appendix, this effect is assumed negligible,
because only relatively flat routes in the Netherlands are considered.

B.4 Dedicated measurements

As discussed in Section B.3, not all input parameters for the physics-based energy
consumption model can be determined in a straightforward manner. Especially
the powertrain efficiency, the aerodynamic drag coefficient, and the tire rolling
resistance are parameters that represent the effect of complex physical processes.
Therefore, this study deviates from its first-principles approach with respect to
these three parameters and determines these through dedicated vehicle tests.

B.4.1 Dynamometer measurements
The combined powertrain efficiency η, as discussed in Section B.3.2, is measured
for the EVERLASTING demonstrator. The methodology from [224] is used in
these tests. The vehicle is fixed on the TU/e Heavy Duty Chassis Dynamometer,
with the driven wheels of the vehicle in contact with the drum of the dynamometer.
This drum can be powered or braked using a 260 kW electric motor. A schematic of
this setup is shown in Figure B.3. During the measurement, various variables are
recorded. A shunt sensor measures the DC electrical power transferred between the
battery and the inverter PDC . This gives an accurate value for the total power that
is consumed or regenerated by the powertrain. Furthermore, the dynamometer
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setup contains sensors to measure the rotational velocity of the drum and the
torque applied to the drum. This allows for the calculation of the total mechanical
power applied at the driven wheels of the vehicle Pwheel.

The purpose of the test is to determine the power loss in the powertrain Pptloss
as function of the motor torque and angular velocity. Assuming the powertrain of
the vehicle is in steady-state, e.g. no forces/torques are required for the accelera-
tion of masses or inertias, the power loss is defined as

Pptloss = PDC − Pwheel . (B.7)

The powertrain efficiency η is then defined as the ratio between the power flowing
out of the driveline and the power entering the driveline. As this powerflow is
reversed when switching between driving and regenerative braking, two definitions
for η are used:

ηdrv =
Pwheel

Pwheel + Pptloss
ηbrk =

|Pwheel| − Pptloss
|Pwheel|

, (B.8)

where ηdrv and ηbrk apply for driving and regenerative braking situations, respec-
tively.

Measurement results

The results of the dynamometer efficiency measurements are shown in Figure B.4a
as function of motor angular velocity and motor torque. The figure shows the
normalized powertrain efficiency ηnorm, which is defined as

ηnorm =
η

max(η)
. (B.9)

The results show that the powertrain efficiency varies significantly as function of
motor torque and that the regenerative efficiency, e.g. the shown efficiency for
negative torques, is generally lower than the driving efficiency. Due to torque
limitations of the experimental setup, high torque regions of the efficiency map
could not be measured. Therefore, the found relation for Pptloss is extrapolated
into these regions of the map, as shown in Figure B.4b. Furthermore, the figure
shows that the operating points from the recorded validation data, discussed in
Section B.5, are mostly within the measured part of the efficiency map.

B.4.2 Coast-down tests
Coast-down tests are performed to determine estimates for both the aerodynamic
drag coefficient Cd and the tire rolling resistance coefficient fr. During such a
test, the vehicle is accelerated up to a certain speed, after which the propulsion
force is removed, e.g. the vehicle is put into ‘neutral gear’. During the coast-down
that follows, the vehicle slows down under the influence of the road load forces
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Figure B.4. Normalized efficiency map, as function of motor speed and nor-
malized motor torque. The black lines indicate the motor torque limit.

summarized in Section B.3. From the forward velocity profiles recorded during
several of such measurements, estimates for Cd and fr can be derived.

Several of these coast-down measurements are performed using the EVER-
LASTING demonstrator. By performing the test at various geographical locations,
thereby changing the road surface, the rolling resistance coefficient is determined
for several road surfaces, ranging from Belgian blocks to good quality asphalt. A
comparison between the measurement results and the rolling resistance coefficient
provided by the tire manufacturer is shown in Figure B.5. It shows that the rolling
resistance can vary according to the quality of the road. The figure also shows that
the manufacturer-supplied value is roughly in accordance with the average value
of the measurements. Both for fr and Cd, the average value as obtained from the
measurements is used for the energy consumption model.

B.5 Model validation

The energy consumption model is validated using measurement data from a real-
world trip of a vehicle comparable to the EVERLASTING demonstrator. During
the trip, the longitudinal vehicle velocity V is measured, along with the power
consumption of the driveline. The measured velocity profile as function of time
V (t) and its time derivative ax(t) are used as input for the energy consumption
model. Figure B.6 shows the energy discharged and regenerated by the powertrain,
as measured on the vehicle and as estimated by the model. As expected, the total
accumulated energies increase during the trip, where regenerated energy is defined
as negative. The results show that the model closely approximates the measured
discharged energy. However, there are larger deviations visible in the recharged
energy profile. The majority of this error originates from the period between 370 s
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Figure B.5. Ranges for the normalized rolling resistance coefficient found on
various road surfaces. Values are scaled such that the manufacturer provided
value is fr = 1.

and 400 s.
Zooming in on this time period reveals that, while in reality a considerable

amount of energy is regenerated, the model predicts barely any charging or dis-
charging. A more detailed analysis of the driven route reveals that the driven
road section during this time had a downward slope, which allowed the monitored
vehicle to regenerate energy. Because road gradient effects are not included in the
current version of the model, the regenerated energy is under-estimated.

B.6 Conclusions and outlook

An energy consumption model is derived for the EVERLASTING demonstrator,
using a first-principles approach. For model parameters that are less trivial to
determine, dedicated experiments are conducted.

The powertrain efficiency is measured using a chassis dynamometer and is
mapped as function of motor speed and motor torque. Differences are visible
between the efficiency for regenerating conditions compared to driving conditions.
Secondly, the rolling resistance coefficient is measured on different road surfaces
by use of coast-down tests. The measured rolling resistance coefficient is largely
in agreement with the manufacturer-provided value, and shows small deviations
depending on road surface quality. The coast-down test also yields an estimate for
the aerodynamic drag coefficient.
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Figure B.6. Discharged and regenerated energy from the vehicle battery, from
measurement and estimated by the energy consumption model.

With the measured parameters as input, the energy consumption model is
validated using a recorded bus trip. The model output is compared to the measured
energy consumption of the powertrain of the vehicle. The results show that for
the majority of the trip, the model is able to approximate the measured energy
consumption relatively closely. However, the deviations during one particular time
period in the simulation indicate that road slope effects have a significant influence
on the energy prediction.

B.6.1 Outlook

The validation in this appendix is based on real-world data from a single recorded
trip. The resulting analysis shows that particular route characteristics can have
a large influence on the model results. Therefore, to better assess the overall
accuracy of the model, data from multiple trips, recorded under more varying
conditions, should be used.

The energy consumption prediction model can be improved by supplying better
estimates for several of the model parameters, as listed in Table B.1. As indicated
by the model validation, including road height information to supply a road gradi-
ent to the model will improve the results. As the height profile from a GPS-signal
is rather unreliable, it would be advisable to extract this information from a height
map, was done by [33] for a passenger car. Further parameter estimates that could
be improved are the rolling resistance coefficient, which could be adapted depend-
ing on road type. Also the aerodynamic model can be improved by taking into
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account wind velocity and relative wind direction.
Additionally, if the model were to be implemented online, up-to-date infor-

mation of the forward vehicle velocity and energy consumption could be used to
further improve and adapt the model predictions. Furthermore, online prediction
could also be used to estimate parameters from the additional sensor data available
on the vehicle.

Supplementary remark
This appendix presents a preliminary study that demonstrates a physics-based en-
ergy consumption prediction model on a battery electric bus. While the model here
focuses specifically on powertrain losses and rolling resistance measurements, other
aspects are not considered, such as road-roughness variation, road gradient, and
weather influence. These aspects are included in the study presented in Chapter 2,
which demonstrates a complete energy consumption prediction model. Moreover,
due to the physics-based nature of the model, it can easily be generalized to other
types of electric vehicles.



C
Mechanical differential losses

during cornering

C.1 Introduction

Electric vehicles with a central motor typically employ a mechanical differential to
split the motor torque to both driven wheels while preserving independent freedom
of rotation of both wheels. A simulation analysis is performed to quantify the
possible additional losses that occur in this differential gear unit during cornering.
First, in Section C.2, the nonlinear steady-state cornering model, presented in
Chapter 3, is employed to determine the possible speed difference between the left
and right axle. Next, Section C.3 details the methods and assumptions involved
in calculating the additional gearing losses compared to straight-line driving.

C.2 Steady-state cornering vehicle model

As described in Section 3.2.3, the nonlinear steady-state cornering model has four
degrees of freedom, the latter two of which represent the angular velocities of both
the left and right rear wheels, respectively ωL and ωR. After iteratively solving the
model for a particular forward vehicle velocity V and corner radius R, the solution
of the model includes values for ωL and ωR, while accounting for nonlinear effects
such as large angles, lateral load transfer, and tire slip.

The resulting speed ratio between left and right axle is defined as rdiff = ωR
ωL

and is visualized for different velocities and corner radii in Figure C.2a. Based
on this figure, it can be seen that rdiff ≈ 1 for large corner radii and gradually
increases for tighter turns. The value is also slightly vehicle-speed-dependent due
to the nonlinear effects, such as lateral load transfer and changing vehicle sideslip
angles. Values of up to rdiff = 1.32 are found for realistic cornering situations,
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Figure C.1. Schematic view of the differential gear unit [225].

indicating a speed difference between the right and left axle of 32%.

C.3 Differential gear unit efficiency calculation

Given that the speed difference between the right and left axle exists, the challenge
arises to estimate the effect this has on the energy losses in the differential. A
differential gear unit, as in Figure C.1, is considered, where the gear carrier k is
driven by the driveshaft connected to the motor, and L and R are the driven axles,
connected to respectively the left and right rear wheels. Assuming the speeds of
the wheels are known, the rotational velocity of the gear carrier can be calculated
as the average of the two wheel velocities, according to:

ωk =
1

2
(ωL + ωR) . (C.1)

In a straight-line driving situation ωR = ωL = ωk. However, in a corner there will
be a relative speed difference ∆ω between the carrier and the wheels. Knowing
that the carrier speed is the average of the two wheel velocities, we can write

∆ω =
1

2
|ωR − ωL| . (C.2)

An exemplary left-hand turn is considered. In a reference frame attached to the
carrier, the left axle rotates with ωL,k = −∆ω and the right axle rotates with
ωR,k = ∆ω, causing meshing of the planetary bevel gears. The torque on both
axles is assumed known and is equal in steady-state: ML = MR = 0.5M , where
M is the driving torque applied by the motor on the carrier. Next, the total power
transferred through the bevel gears can be calculated as

Pplanet = ∆ω ·ML + ∆ω ·MR = ∆ωM =
1

2
|ωR − ωL|M (C.3)

The assumption is made that the meshing of the planetary bevel gears and the
driven bevel gears has a constant efficiency ηmesh = 98%, [225]. Therefore, the
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to the nonlinear steady-state cornering model from Chapter 3 and the resulting
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additional power lost due this meshing is given by

Ploss = (1− ηmesh) · Pplanet =
1

2
(1− ηmesh) |ωR − ωL|M (C.4)

As the total power transferred through the differential gear unit is given by Ptotal =
MLωL+MRωR = 0.5M(ωL+ωR), the efficiency of the bevel gears can be expressed
as

ηdiff = 1− Ploss
Ptotal

= 1−(1−ηmesh)
|ωR − ωL|
ωL + ωR

= 1−(1−ηmesh)
|rdiff − 1|
rdiff + 1

, (C.5)

where the ratio |ωR−ωL|ωL+ωR
indicates the ratio of the total driveline power that is

transferred through the bevel gears. For instance, when ωL = ωR,
|ωR−ωL|
ωL+ωR

= 0,
and when ωL = 0, |ωR−ωL|ωL+ωR

= 1. Reference is made to [226] for more details on
analytical efficiency calculations of differential gear units.

Equation C.5 allows us to calculate the efficiency of the differential gear unit as
function of rdiff . Therefore, the results presented in Figure C.2a can be translated
to an efficiency value, as shown in Figure C.2b. These show that in the worst-case
situation, the differential action reduces the drivetrain efficiency to 99.7% of its
original value. Therefore, according to the results presented here, the effect of
differential action on the overall efficiency appears to be small.

Note that this analysis only concerns the planetary gears in the differential.
Therefore, the percentages mentioned in Figure C.2b are with respect to a straight-
line-driving situation and do not reflect the total driveline efficiency.





Bibliography

[1] S. K. Gulev, P. W. Thorne, J. Ahn, F. J. Dentener, C. M. Domingues, S. Gerland,
D. Gong, D. S. Kaufman, H. C. Nnamchi, J. Quaas, J. Rivera, S. Sathyendranath,
S. L. Smith, B. Trewin, K. von Schuckmann, and R. S. Vose. Climate Change 2021:
The Physical Science Basis, chapter Changing State of the Climate System, pages
287–422. Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 2021. doi: 10.1017/9781009157896.004.

[2] IEA. Global Renewable Energy Policies and Measures Database c©. Available on-
line: https://www.iea.org/articles/global-ev-data-explorer, 2022. Accessed
on 9 Feb. 2022.

[3] D. Lowell and F. Kamakaté. Urban off-cycle NOx emissions from Euro IV/V trucks
and buses. ICCT White Pap., (Number 18), Mar. 2012.

[4] R. Kok, R. de Groot, S. van Zyl, S. Wilkins, R. Smokers, and J. Spreen. Towards
Zero-Emission Bus Transport. Technical Report TNO 2017 R10952, TNO, Sept.
2017, Available online: https://publications.tno.nl/publication/34625509/
aL0fyW/.

[5] Q. Liu, Å. M. Hallquist, H. Fallgren, M. Jerksjö, S. Jutterström, H. Salberg, M. Hal-
lquist, M. Le Breton, X. Pei, R. K. Pathak, T. Liu, B. Lee, and C. K. Chan. Road-
side assessment of a modern city bus fleet: Gaseous and particle emissions. Atmos.
Environ. X, 3(May):100044, July 2019. doi: 10.1016/j.aeaoa.2019.100044.

[6] F. Rosero, N. Fonseca, J.-M. López, and J. Casanova. Real-world fuel effi-
ciency and emissions from an urban diesel bus engine under transient oper-
ating conditions. Appl. Energy, 261(October 2019):114442, Mar. 2020. doi:
10.1016/j.apenergy.2019.114442.

[7] A. Nordelöf, M. Romare, and J. Tivander. Life cycle assessment of city
buses powered by electricity, hydrogenated vegetable oil or diesel. Transp.
Res. Part D Transp. Environ., 75(September):211–222, Oct. 2019. doi:
10.1016/j.trd.2019.08.019.

[8] E. Hawkins. ShowYourStripes.info. Available online: https://
showyourstripes.info/c/globe, 2022. Accessed on 13 Mar. 2022.

[9] R. A. Rohde and Z. Hausfather. The Berkeley Earth Land/Ocean Temperature
Record. Earth Syst. Sci. Data, 12(4):3469–3479, Dec. 2020. doi: 10.5194/essd-12-
3469-2020.

[10] H. Hao, X. Ou, J. Du, H. Wang, and M. Ouyang. China’s electric vehicle sub-
sidy scheme: Rationale and impacts. Energy Policy, 73:722–732, Oct. 2014. doi:
10.1016/j.enpol.2014.05.022.

https://doi.org/10.1017/9781009157896.004
https://www.iea.org/articles/global-ev-data-explorer
https://publications.tno.nl/publication/34625509/aL0fyW/
https://publications.tno.nl/publication/34625509/aL0fyW/
https://doi.org/10.1016/j.aeaoa.2019.100044
https://doi.org/10.1016/j.apenergy.2019.114442
https://doi.org/10.1016/j.trd.2019.08.019
https://showyourstripes.info/c/globe
https://showyourstripes.info/c/globe
https://doi.org/10.5194/essd-12-3469-2020
https://doi.org/10.5194/essd-12-3469-2020
https://doi.org/10.1016/j.enpol.2014.05.022


170 Bibliography

[11] J. Du, F. Li, J. Li, X. Wu, Z. Song, Y. Zou, and M. Ouyang. Evaluating the
technological evolution of battery electric buses: China as a case. Energy, 176:
309–319, June 2019. doi: 10.1016/j.energy.2019.03.084.

[12] IEA. Global EV Outlook 2021. Technical report, IEA, Paris, Apr. 2021, Available
online: https://www.iea.org/reports/global-ev-outlook-2021.

[13] European Commission. Directive (EU) 2019/1161 of the European Council and
of the European Parliament of 20 June 2019, amending Directive 2009/33/EC on
the promotion of clean and energy-efficient road transport vehicles. Off. J. Eur.
Union, 2019(December 2018):1–15, 2019.

[14] Ministerie van Infrastructuur en Milieu. Bestuursakkoord Zero Emissie Regionaal
Openbaar Vervoer Per Bus. Technical report, Ministerie van Infrastructuur en
Milieu, Apr. 2016, Available online: https://www.greendeals.nl/sites/default/
files/uploads/2015/04/Bestuursakkoord_Zero_OV-Bus_v3.pdf.

[15] H. Kim, N. Hartmann, M. Zeller, R. Luise, and T. Soylu. Comparative TCO Analy-
sis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in
Small to Midsize Cities. Energies, 14(14):4384, July 2021. doi: 10.3390/en14144384.

[16] S. Bakker and R. Konings. The transition to zero-emission buses in public transport
- The need for institutional innovation. Transp. Res. Part D Transp. Environ., 64:
204–215, Oct. 2018. doi: 10.1016/j.trd.2017.08.023.

[17] M. Schwertner and U. Weidmann. Stand und Perspektiven elektrischer Bu-
santriebe. Schweizer Eisenbahn-Revue, 38(7):330–335, 2015.

[18] M. Schwertner. Energetischer Systemvergleich von Diesel-, Hybrid- und Elek-
trobussen. PhD thesis, ETH Zürich, 2017. doi: 10.3929/ethz-b-000206395.

[19] S. Tica, S. Filipović, P. Živanović, and S. Bajčetić. Development of Trolleybus
Passenger Transport Subsystems in Terms of Sustainable Development and Quality
of Life in Cities. Int. J. Traffic Transp. Eng., 1313(4):196–205, 2011.

[20] M. Połom. Technology Development and Spatial Diffusion of Auxiliary Power
Sources in Trolleybuses in European Countries. Energies, 14(11):3040, May 2021.
doi: 10.3390/en14113040.

[21] G. Mom. The electric vehicle : technology and expectations in the automobile age.
Johns Hopkins University Press, Baltimore SE, 2004. ISBN 0801871387.

[22] J. Wouters. De elektische auto : Is het marktaandeel van 1914 in 2020 haalbaar?
Pepijn, Eindhoven, The Netherlands, June 2013. ISBN 9789078709220.

[23] D. A. Kirsch. The electric vehicle and the burden of history. Rutgers University
Press, New Brunswick, N.J., 2000. ISBN 0813528097.

[24] M. Hamer. All aboard! New Sci., 235(3142):35–37, Sept. 2017. doi: 10.1016/S0262-
4079(17)31776-1.

[25] M. Hamer. A Most Deliberate Swindle: How Edwardian Fraudsters Pulled the Plug
on the Electric Bus and Left Our Cities Gasping for Breath. RedDoor Publishing,
2018. ISBN 1910453420.

[26] Anonymous. The Oerlikon Electrogyro - Its development and application for om-
nibus service. Automob. Eng., 45(13):559–566, Dec. 1955.

[27] M. Kane. MAN Presented Its First Electric Bus Some 50 Years Ago. Available on-
line: https://insideevs.com/features/429781/man-first-electric-bus-50-
years-ago/, 2020. Accessed on 18 Oct. 2021.

[28] C. Morris. Silent Rider-A Project for City Center Transport. In Automot. Eng.
Congr. Expo., number 750192, Detroit, Michigan, Feb. 1975. SAE International.

https://doi.org/10.1016/j.energy.2019.03.084
https://www.iea.org/reports/global-ev-outlook-2021
https://www.greendeals.nl/sites/default/files/uploads/2015/04/Bestuursakkoord_Zero_OV-Bus_v3.pdf
https://www.greendeals.nl/sites/default/files/uploads/2015/04/Bestuursakkoord_Zero_OV-Bus_v3.pdf
https://doi.org/10.3390/en14144384
https://doi.org/10.1016/j.trd.2017.08.023
https://doi.org/10.3929/ethz-b-000206395
https://doi.org/10.3390/en14113040
https://doi.org/10.1016/S0262-4079(17)31776-1
https://doi.org/10.1016/S0262-4079(17)31776-1
https://insideevs.com/features/429781/man-first-electric-bus-50-years-ago/
https://insideevs.com/features/429781/man-first-electric-bus-50-years-ago/


Bibliography 171

doi: 10.4271/750192.
[29] MCR Technology. Denver RTD range extension study : final report : task 4, rec-

ommendations. Technical Report NTIS PB83- 226050, Urban Mass Transportation
Administration, US Department of Transportation, 1982.

[30] M. Hamer. Batteries for the van about town. New Sci., (1517):37–38, July 1986.
[31] Sustainable-bus.com. The pandemic doesn’t stop the European e-bus mar-

ket: +22% in 2020. Available online: https://www.sustainable-bus.com/news/
europe-electric-bus-market-2020-covid/, 2021. Accessed on 15 Mar. 2021.

[32] G. Correa, P. Muñoz, T. Falaguerra, and C. R. Rodriguez. Performance comparison
of conventional, hybrid, hydrogen and electric urban buses using well to wheel
analysis. Energy, 141:537–549, 2017. doi: 10.1016/j.energy.2017.09.066.

[33] J. Wang, I. J. M. Besselink, and H. Nijmeijer. Battery electric vehicle energy
consumption modelling for range estimation. Int. J. Electr. Hybrid Veh., 9(2):79,
2017. doi: 10.1504/IJEHV.2017.085336.

[34] H. Basma, C. Mansour, M. Haddad, M. Nemer, and P. Stabat. Comprehensive
energy modeling methodology for battery electric buses. Energy, 207:118241, 2020.
doi: 10.1016/j.energy.2020.118241.

[35] J. Vepsäläinen, K. Kivekäs, K. Otto, A. Lajunen, and K. Tammi. Development and
validation of energy demand uncertainty model for electric city buses. Transp. Res.
Part D Transp. Environ., 63:347–361, Aug. 2018. doi: 10.1016/j.trd.2018.06.004.

[36] I. J. M. Besselink, J. Wang, and H. Nijmeijer. Evaluating the TU/e Lupo EL BEV
performance. In 2013 World Electr. Veh. Symp. Exhib., pages 1–12. IEEE, Nov.
2013. doi: 10.1109/EVS.2013.6915029.

[37] L. Mauler, F. Duffner, W. G. Zeier, and J. Leker. Battery cost forecasting: a
review of methods and results with an outlook to 2050. Energy Environ. Sci., 14
(9):4712–4739, 2021. doi: 10.1039/D1EE01530C.

[38] K. Kivekas, A. Lajunen, F. Baldi, J. Vepsalainen, and K. Tammi. Reducing
the Energy Consumption of Electric Buses With Design Choices and Predic-
tive Driving. IEEE Trans. Veh. Technol., 68(12):11409–11419, Dec. 2019. doi:
10.1109/TVT.2019.2936772.

[39] D. Göhlich, T.-A. Fay, D. Jefferies, E. Lauth, A. Kunith, and X. Zhang. Design of
urban electric bus systems. Des. Sci., 4:e15, Aug. 2018. doi: 10.1017/dsj.2018.10.

[40] A. Sciarretta, G. De Nunzio, and L. L. Ojeda. Optimal Ecodriving Control: Energy-
Efficient Driving of Road Vehicles as an Optimal Control Problem. IEEE Control
Syst., 35(5):71–90, Oct. 2015. doi: 10.1109/MCS.2015.2449688.

[41] G. P. Padilla, J. C. Flores Paredes, and M. C. F. Donkers. A Port-Hamiltonian
Approach to Complete Vehicle Energy Management: A Battery Electric Vehicle
Case Study. In 2020 Am. Control Conf., volume 2020-July, pages 288–294. IEEE,
July 2020. doi: 10.23919/ACC45564.2020.9147748.

[42] M. M. Hasan, M. El Baghdadi, J. Van Mierlo, and O. Hegazy. Energy management
and ECO-strategies modeling of electric bus fleets in Barcelona city. In 2021 23rd
Eur. Conf. Power Electron. Appl. EPE 2021 ECCE Eur. EPE Association, 2021.

[43] R. Deng, Y. Liu, W. Chen, and H. Liang. A Survey on Electric Buses–Energy Stor-
age, Power Management, and Charging Scheduling. IEEE Trans. Intell. Transp.
Syst., 22(1):9–22, Jan. 2021. doi: 10.1109/TITS.2019.2956807.

[44] Z. Gao, Z. Lin, T. J. LaClair, C. Liu, J.-M. Li, A. K. Birky, and J. Ward. Battery
capacity and recharging needs for electric buses in city transit service. Energy, 122:

https://doi.org/10.4271/750192
https://www.sustainable-bus.com/news/europe-electric-bus-market-2020-covid/
https://www.sustainable-bus.com/news/europe-electric-bus-market-2020-covid/
https://doi.org/10.1016/j.energy.2017.09.066
https://doi.org/10.1504/IJEHV.2017.085336
https://doi.org/10.1016/j.energy.2020.118241
https://doi.org/10.1016/j.trd.2018.06.004
https://doi.org/10.1109/EVS.2013.6915029
https://doi.org/10.1039/D1EE01530C
https://doi.org/10.1109/TVT.2019.2936772
https://doi.org/10.1017/dsj.2018.10
https://doi.org/10.1109/MCS.2015.2449688
https://doi.org/10.23919/ACC45564.2020.9147748
https://doi.org/10.1109/TITS.2019.2956807


172 Bibliography

588–600, Mar. 2017. doi: 10.1016/j.energy.2017.01.101.
[45] M. Zhou, H. Jin, and W. Wang. A review of vehicle fuel consumption models to

evaluate eco-driving and eco-routing. Transp. Res. Part D Transp. Environ., 49
(5):203–218, Dec. 2016. doi: 10.1016/j.trd.2016.09.008.

[46] M. M. Hasan, A. Saez-de Ibarra, M. El Baghdadi, and O. Hegazy. Analysis of the
peak grid load reduction using ECO-charging strategy for e-bus fleets in Gothen-
burg. In 2021 IEEE Veh. Power Propuls. Conf., volume 769850, pages 1–6. IEEE,
Oct. 2021. doi: 10.1109/VPPC53923.2021.9699184.

[47] M. Rogge, S. Wollny, and D. Sauer. Fast Charging Battery Buses for the Elec-
trification of Urban Public Transport–A Feasibility Study Focusing on Charging
Infrastructure and Energy Storage Requirements. Energies, 8(5):4587–4606, May
2015. doi: 10.3390/en8054587.

[48] X. Tang, X. Lin, and F. He. Robust scheduling strategies of electric buses under
stochastic traffic conditions. Transp. Res. Part C Emerg. Technol., 105:163–182,
Aug. 2019. doi: 10.1016/j.trc.2019.05.032.

[49] G. Wang, X. Xie, F. Zhang, Y. Liu, and D. Zhang. bCharge: Data-Driven Real-
Time Charging Scheduling for Large-Scale Electric Bus Fleets. In 2018 IEEE Real-
Time Syst. Symp., pages 45–55. IEEE, Dec. 2018. doi: 10.1109/RTSS.2018.00015.

[50] J. Wang, L. Kang, and Y. Liu. Optimal scheduling for electric bus fleets based
on dynamic programming approach by considering battery capacity fade. Renew.
Sustain. Energy Rev., 130:109978, Sept. 2020. doi: 10.1016/j.rser.2020.109978.

[51] A. S. Al-Ogaili, A. Q. Al-Shetwi, H. M. K. Al-Masri, T. S. Babu, Y. Hoon,
K. Alzaareer, and N. V. P. Babu. Review of the Estimation Methods of Energy
Consumption for Battery Electric Buses. Energies, 14(22):7578, Nov. 2021. doi:
10.3390/en14227578.

[52] Y. Chen, G. Wu, R. Sun, A. Dubey, A. Laszka, and P. Pugliese. A Review and
Outlook on Energy Consumption Estimation Models for Electric Vehicles. SAE
Int. J. Sustain. Transp. Energy, Environ. Policy, 2(1):13–02–01–0005, Mar. 2021.
doi: 10.4271/13-02-01-0005.

[53] T. Pamuła and D. Pamuła. Prediction of Electric Buses Energy Consumption
from Trip Parameters Using Deep Learning. Energies, 15(5):1747, Feb. 2022. doi:
10.3390/en15051747.

[54] C. Fiori, M. Montanino, S. Nielsen, M. Seredynski, and F. Viti. Microscopic energy
consumption modelling of electric buses: model development, calibration, and val-
idation. Transp. Res. Part D Transp. Environ., 98(July):102978, Sept. 2021. doi:
10.1016/j.trd.2021.102978.

[55] J. Wang, I. J. M. Besselink, and H. Nijmeijer. Battery electric vehicle en-
ergy consumption prediction for a trip based on route information. Proc. Inst.
Mech. Eng. Part D J. Automob. Eng., 232(11):1528–1542, Sept. 2018. doi:
10.1177/0954407017729938.

[56] C. J. J. Beckers, T. A. G. H. Geraedts, I. J. M. Besselink, and H. Nijmeijer.
TU/e Microscopic Energy Consumption PRediction tOol 0.1 (TU/e MECPRO
0.1). Available online: https://doi.org/10.4121/12764732, Jan. 2021.

[57] EVERLASTING Consortium. EVERLASTING Website. Available online: https:
//everlasting-project.eu/, 2019. Accessed on 8 Jan. 2019.

[58] A. Deschênes, J. Gaudreault, and K. Rioux-paradis. Predicting Electric Vehicle
Consumption: a Physical Model That Fits. In EVS32 Symp., number 1, pages 1–7,

https://doi.org/10.1016/j.energy.2017.01.101
https://doi.org/10.1016/j.trd.2016.09.008
https://doi.org/10.1109/VPPC53923.2021.9699184
https://doi.org/10.3390/en8054587
https://doi.org/10.1016/j.trc.2019.05.032
https://doi.org/10.1109/RTSS.2018.00015
https://doi.org/10.1016/j.rser.2020.109978
https://doi.org/10.3390/en14227578
https://doi.org/10.4271/13-02-01-0005
https://doi.org/10.3390/en15051747
https://doi.org/10.1016/j.trd.2021.102978
https://doi.org/10.1177/0954407017729938
https://doi.org/10.4121/12764732
https://everlasting-project.eu/
https://everlasting-project.eu/


Bibliography 173

Lyon, France, 2019.
[59] OpenWeather R©. OpenWeatherMap.org. Available online: https://

openweathermap.org/current, 2022. Accessed on 28 Mar. 2022.
[60] c© OpenStreetMap contributors. OpenStreetMap. Available online: https:

//www.openstreetmap.org/copyright, 2022. Accessed on 28 Mar. 2022.
[61] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick,

M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland,
M. Werner, M. Oskin, D. Burbank, and D. Alsdorf. The Shuttle Radar Topography
Mission. Rev. Geophys., 45(2):RG2004, May 2007. doi: 10.1029/2005RG000183.

[62] ISO 10521-1:2006. Road vehicles – Road load – Part 1: Determination under refer-
ence atmospheric conditions. Technical report, Nederlands Normalisatie-instituut,
Delft, Netherlands, Oct. 2006, Available online: https://www.iso.org/standard/
37533.html.

[63] J. Howell. Aerodynamic Drag of Passenger Cars at Yaw. SAE Int. J. Passeng.
Cars - Mech. Syst., 8(1):2015–01–1559, Apr. 2015. doi: 10.4271/2015-01-1559.

[64] F. Beauducel. readhgt. Available online: https://github.com/IPGP/mapping-
matlab/tree/master/readhgt, 2020. Accessed on 28 Feb. 2020.

[65] A. Picard, R. S. Davis, M. Gläser, and K. Fujii. Revised formula for the density of
moist air (CIPM-2007). Metrologia, 45(2):149–155, Apr. 2008. doi: 10.1088/0026-
1394/45/2/004.

[66] T. R. Oke. Boundary Layer Climates. Routledge, London, 2nd edition, Sept. 2002.
ISBN 9781134951345. doi: 10.4324/9780203407219.

[67] I. Filippidis. OpenStreetMap Functions. Available online: https:
//nl.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-
functions, 2020. Accessed on 31 Aug. 2020.

[68] A. Lajunen, K. Kivekäs, F. Baldi, J. Vepsaelaeinen, and K. Tammi. Dif-
ferent Approaches to Improve Energy Consumption of Battery Electric Buses.
In 2018 IEEE Veh. Power Propuls. Conf., pages 1–6. IEEE, Aug. 2018. doi:
10.1109/VPPC.2018.8605024.

[69] T. Halmeaho, M. Antila, J. Kataja, P. Silvonen, and M. Pihlatie. Advanced Driver
Aid System for Energy Efficient Electric Bus Operation. In Proc. 1st Int. Conf.
Veh. Technol. Intell. Transp. Syst., pages 59–64. SCITEPRESS - Science and and
Technology Publications, 2015. doi: 10.5220/0005494600590064.

[70] O. A. Hjelkrem, K. Y. Lervåg, S. Babri, C. Lu, and C.-J. Södersten. A battery elec-
tric bus energy consumption model for strategic purposes: Validation of a proposed
model structure with data from bus fleets in China and Norway. Transp. Res. Part
D Transp. Environ., 94(April):102804, May 2021. doi: 10.1016/j.trd.2021.102804.

[71] R. Al Haddad, H. Basma, and C. Mansour. Analysis of heat pump performance in
battery electric buses. In ECOS 2019 - Proc. 32nd Int. Conf. Effic. Cost, Optim.
Simul. Environ. Impact Energy Syst., pages 1897–1909, Wroclaw, Poland, 2019.

[72] H. Basma, C. Mansour, M. Haddad, M. Nemer, and P. Stabat. Energy consumption
and battery sizing for different types of electric bus service. Energy, page 122454,
Oct. 2021. doi: 10.1016/j.energy.2021.122454.

[73] Y. Luo, Y.-P. Tan, and L.-F. Li. Study on saving energy for electric auxiliary
systems of electric bus. Energy Sources, Part A Recover. Util. Environ. Eff., pages
1–13, Oct. 2020. doi: 10.1080/15567036.2020.1829750.

[74] A. Lajunen and A. Kalttonen. Investigation of thermal energy losses in the pow-

https://openweathermap.org/current
https://openweathermap.org/current
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://doi.org/10.1029/2005RG000183
https://www.iso.org/standard/37533.html
https://www.iso.org/standard/37533.html
https://doi.org/10.4271/2015-01-1559
https://github.com/IPGP/mapping-matlab/tree/master/readhgt
https://github.com/IPGP/mapping-matlab/tree/master/readhgt
https://doi.org/10.1088/0026-1394/45/2/004
https://doi.org/10.1088/0026-1394/45/2/004
https://doi.org/10.4324/9780203407219
https://nl.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
https://nl.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
https://nl.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
https://doi.org/10.1109/VPPC.2018.8605024
https://doi.org/10.5220/0005494600590064
https://doi.org/10.1016/j.trd.2021.102804
https://doi.org/10.1016/j.energy.2021.122454
https://doi.org/10.1080/15567036.2020.1829750


174 Bibliography

ertrain of an electric city bus. In 2015 IEEE Transp. Electrif. Conf. Expo, pages
1–6. IEEE, June 2015. doi: 10.1109/ITEC.2015.7165776.

[75] ZeEUS Consortium. ZeEUS eBus Report #2 - An updated overview of elec-
tric buses in Europe. Technical report, ZeEUS Consortium, 2017, Available on-
line: https://zeeus.eu/uploads/publications/documents/zeeus-report2017-
2018-final.pdf.

[76] M. Pihlatie, S. Kukkonen, T. Halmeaho, V. Karvonen, and N. O. Nylund. Fully
electric city buses - The viable option. In 2014 IEEE Int. Electr. Veh. Conf., pages
1–8, Florence, Italy, Dec. 2014. IEEE. doi: 10.1109/IEVC.2014.7056145.

[77] Y. Ding, Z. P. Cano, A. Yu, J. Lu, and Z. Chen. Automotive Li-Ion Batteries:
Current Status and Future Perspectives. Electrochem. Energy Rev., 2(1):1–28,
Mar. 2019. doi: 10.1007/s41918-018-0022-z.

[78] J. Asamer, A. Graser, B. Heilmann, and M. Ruthmair. Sensitivity analysis for en-
ergy demand estimation of electric vehicles. Transp. Res. Part D Transp. Environ.,
46:182–199, July 2016. doi: 10.1016/j.trd.2016.03.017.

[79] K. Sarrafan, D. Sutanto, K. M. Muttaqi, and G. Town. Accurate range estima-
tion for an electric vehicle including changing environmental conditions and trac-
tion system efficiency. IET Electr. Syst. Transp., 7(2):117–124, June 2017. doi:
10.1049/iet-est.2015.0052.

[80] R. Shankar and J. Marco. Method for estimating the energy consumption of electric
vehicles and plug-in hybrid electric vehicles under real-world driving conditions.
IET Intell. Transp. Syst., 7(1):138–150, Mar. 2013. doi: 10.1049/iet-its.2012.0114.

[81] C. De Cauwer, J. Van Mierlo, and T. Coosemans. Energy Consumption Prediction
for Electric Vehicles Based on Real-World Data. Energies, 8(8):8573–8593, Aug.
2015. doi: 10.3390/en8088573.

[82] L. L. Ojeda, A. Chasse, and R. Goussault. Fuel consumption prediction for
heavy-duty vehicles using digital maps. In 2017 IEEE 20th Int. Conf. Intell.
Transp. Syst., pages 1–7, Yokohama, Kanagawa, Japan, Oct. 2017. IEEE. doi:
10.1109/ITSC.2017.8317613.

[83] F. D. Hales. Computer Prediction of Power Required by Articulated Vehicles Dur-
ing Cornering. Technical Report TT 7901, Department of Transport Technology,
Loughborough Univeristy of Technology, 1977.

[84] L. Gyenes, T. Williams, and I. C. P. Simmons. Power requirements of articulated
vehicles under cornering conditions. Technical Report TRRL Supplementary Re-
port 484, Department of the Environment Department of Transport, Crowthorne,
1979, Available online: https://trl.co.uk/sites/default/files/SR484.pdf.

[85] T. Kobayashi, E. Katsuyama, H. Sugiura, E. Ono, and M. Yamamoto. Di-
rect yaw moment control and power consumption of in-wheel motor vehicle
in steady-state turning. Veh. Syst. Dyn., 55(1):104–120, Jan. 2017. doi:
10.1080/00423114.2016.1246737.

[86] Y. Ikezawa, H. Fujimoto, D. Kawano, Y. Goto, Y. Takeda, and K. Sato. Range
Extension Autonomous Driving for Electric Vehicle Based on Optimal Vehicle Ve-
locity Profile in Consideration of Cornering. Electr. Eng. Japan, 207(1):43–54, Apr.
2019. doi: 10.1002/eej.23088.

[87] S. Bhat, M. M. Davari, and M. Nybacka. Study on Energy Loss due to Cornering
Resistance in Over-Actuated Vehicles using Optimal Control. SAE Int. J. Veh.
Dyn. Stability, NVH, 1(2):2017–01–1568, Mar. 2017. doi: 10.4271/2017-01-1568.

https://doi.org/10.1109/ITEC.2015.7165776
https://zeeus.eu/uploads/publications/documents/zeeus-report2017-2018-final.pdf
https://zeeus.eu/uploads/publications/documents/zeeus-report2017-2018-final.pdf
https://doi.org/10.1109/IEVC.2014.7056145
https://doi.org/10.1007/s41918-018-0022-z
https://doi.org/10.1016/j.trd.2016.03.017
https://doi.org/10.1049/iet-est.2015.0052
https://doi.org/10.1049/iet-its.2012.0114
https://doi.org/10.3390/en8088573
https://doi.org/10.1109/ITSC.2017.8317613
https://trl.co.uk/sites/default/files/SR484.pdf
https://doi.org/10.1080/00423114.2016.1246737
https://doi.org/10.1002/eej.23088
https://doi.org/10.4271/2017-01-1568


Bibliography 175

[88] P. Sun, A. Stensson Trigell, L. Drugge, J. Jerrelind, and M. Jonasson. Exploring
the Potential of Camber Control to Improve Vehicles’ Energy Efficiency during
Cornering. Energies, 11(4):724, Mar. 2018. doi: 10.3390/en11040724.

[89] J. Edrén, M. Jonasson, J. Jerrelind, A. Stensson Trigell, and L. Drugge. Energy
efficient cornering using over-actuation. Mechatronics, 59(March):69–81, May 2019.
doi: 10.1016/j.mechatronics.2019.02.006.

[90] B. Maclaurin. Comparing the steering performances of skid- and Ackermann-
steered vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 222(5):739–756,
May 2008. doi: 10.1243/09544070JAUTO567.

[91] G. Rill. Reducing the cornering resistance by torque vectoring. Procedia Eng., 199:
3284–3289, 2017. doi: 10.1016/j.proeng.2017.09.393.

[92] C. Chatzikomis, M. Zanchetta, P. Gruber, A. Sorniotti, B. Modic, T. Motaln,
L. Blagotinsek, and G. Gotovac. An energy-efficient torque-vectoring algorithm for
electric vehicles with multiple motors. Mech. Syst. Signal Process., 128:655–673,
Aug. 2019. doi: 10.1016/j.ymssp.2019.03.012.

[93] L. De Novellis, A. Sorniotti, and P. Gruber. Wheel Torque Distribution Criteria for
Electric Vehicles With Torque-Vectoring Differentials. IEEE Trans. Veh. Technol.,
63(4):1593–1602, May 2014. doi: 10.1109/TVT.2013.2289371.

[94] C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer. Modeling of Energy
Losses During Cornering for Electric City Buses. In 2019 IEEE Intell. Transp.
Syst. Conf., pages 4164–4169, Auckland, New-Zealand, Oct. 2019. IEEE. doi:
10.1109/ITSC.2019.8917232.

[95] H. B. Pacejka. Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford, 3rd
edition, Apr. 2012. ISBN 978-0-08-097016-5.

[96] C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer. MATLAB-scripts describing
a nonlinear steady-state cornering model for an electric city bus. Available online:
https://doi.org/10.4121/12717902, Mar. 2020.

[97] I. Kageyama. Steering System. In G. Mastinu and M. Ploechl, editors, Road Off-
Road Veh. Syst. Dyn. Handb., chapter 25, pages 919–942. CRC Press, Boca Raton,
1st edition, 2014. ISBN 978-0-8493-3322-4. doi: 10.1201/b15560.

[98] C. Howcroft, M. Lowenberg, S. Neild, and B. Krauskopf. Effects of Freeplay on
Dynamic Stability of an Aircraft Main Landing Gear. J. Aircr., 50(6):1908–1922,
Nov. 2013. doi: 10.2514/1.C032316.

[99] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design. Cambridge
University Press, Cambridge, 2nd edition, 2000. ISBN 9780511626418. doi:
10.1017/CBO9780511626418.

[100] European Union Parliament. Regulation (EC) No 1222/2009 of the European
Parliament and of the Council of 25 November 2009 on the labelling of tyres with
respect to fuel efficiency and other essential parameters. Off. J. Eur. Union, L 342:
46–58, Dec. 2009.

[101] A. Savitzky and M. J. E. Golay. Smoothing and Differentiation of Data by Sim-
plified Least Squares Procedures. Anal. Chem., 36(8):1627–1639, July 1964. doi:
10.1021/ac60214a047.

[102] L. Segel and X. Lu. Vehicular Resistance To Motion As Influenced By Road Rough-
ness And Highway Alignment. Aust. Road Res., 12(4):211–222, Dec. 1982.

[103] C. O. Bachmann. Vergleichende Rollwiderstandsmessungen an Lkw-Reifen im La-
bor und auf realen Fahrbahnen. PhD thesis, RWTH Aachen University, Aachen,

https://doi.org/10.3390/en11040724
https://doi.org/10.1016/j.mechatronics.2019.02.006
https://doi.org/10.1243/09544070JAUTO567
https://doi.org/10.1016/j.proeng.2017.09.393
https://doi.org/10.1016/j.ymssp.2019.03.012
https://doi.org/10.1109/TVT.2013.2289371
https://doi.org/10.1109/ITSC.2019.8917232
https://doi.org/10.4121/12717902
https://doi.org/10.1201/b15560
https://doi.org/10.2514/1.C032316
https://doi.org/10.1017/CBO9780511626418
https://doi.org/10.1021/ac60214a047


176 Bibliography

Mar. 2017. ISBN 978-3946019190.
[104] A. J. P. Miège and A. A. Popov. Truck tyre modelling for rolling resistance calcu-

lations under a dynamic vertical load. Proc. Inst. Mech. Eng. Part D J. Automob.
Eng., 219(4):441–456, Apr. 2005. doi: 10.1243/095440705X11176.

[105] T. D. Gillespie, M. W. Sayers, and L. Segel. Calibration of Response-Type
Road Roughness Measuring Systems. Technical Report 228, Transportation Re-
search Board, National Research Council, Dec. 1980, Available online: https:
//trid.trb.org/view/165815.

[106] D. Karnopp. Power Requirements for Traversing Uneven Roadways. Veh. Syst.
Dyn., 7(3):135–152, Sept. 1978. doi: 10.1080/00423117808968558.

[107] S. A. Velinsky and R. A. White. Vehicle Energy Dissipation Due to Road Rough-
ness. Veh. Syst. Dyn., 9(6):359–384, Dec. 1980. doi: 10.1080/00423118008968630.

[108] X. P. Lu and L. Segel. Vehicular Energy Losses Associated with The Traver-
sal of an Uneven Road. Veh. Syst. Dyn., 15(sup1):342–352, Jan. 1986. doi:
10.1080/00423118608969146.

[109] X. P. Lu and L. Segel. Vehicular Energy Losses Associated with the Traver-
sal of an Uneven Road. Veh. Syst. Dyn., 14(1-3):166–171, June 1985. doi:
10.1080/00423118508968823.

[110] D. A. Crolla and A. M. A. Abouel Nour. Power losses in active and passive sus-
pensions of off-road vehicles. J. Terramechanics, 29(1):83–93, Jan. 1992. doi:
10.1016/0022-4898(92)90016-D.

[111] M. A. A. Abdelkareem, L. Xu, M. K. A. Ali, A. Elagouz, J. Mi, S. Guo,
Y. Liu, and L. Zuo. Vibration energy harvesting in automotive suspension sys-
tem: A detailed review. Appl. Energy, 229(April):672–699, Nov. 2018. doi:
10.1016/j.apenergy.2018.08.030.

[112] M. C. Smith and S. J. Swift. Power dissipation in automotive suspensions. Veh.
Syst. Dyn., 49(1-2):59–74, Feb. 2011. doi: 10.1080/00423110903427421.

[113] J. Wallaschek. Dynamics of non-linear automobile shock-absorbers. Int. J. Non.
Linear. Mech., 25(2-3):299–308, Jan. 1990. doi: 10.1016/0020-7462(90)90059-I.

[114] C. Surace, K. Worden, and G. R. Tomlinson. On the Non-Linear Characteristics
of Automotive Shock Absorbers. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.,
206(1):3–16, Jan. 1992. doi: 10.1243/PIME_PROC_1992_206_156_02.

[115] S. J. Elliott, M. G. Tehrani, and R. S. Langley. Nonlinear damping and quasi-linear
modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 373(2051):20140402,
Sept. 2015. doi: 10.1098/rsta.2014.0402.

[116] S. Boere, I. L. Arteaga, A. Kuijpers, and H. Nijmeijer. Tyre/road interaction model
for the prediction of road texture influence on rolling resistance. Int. J. Veh. Des.,
65(2/3):202, 2014. doi: 10.1504/IJVD.2014.060815.

[117] C. Hoever and W. Kropp. A model for investigating the influence of road surface
texture and tyre tread pattern on rolling resistance. J. Sound Vib., 351:161–176,
Sept. 2015. doi: 10.1016/j.jsv.2015.04.009.

[118] O. E. Lundberg, A. Nordborg, and I. Lopez Arteaga. The influence of surface rough-
ness on the contact stiffness and the contact filter effect in nonlinear wheel–track
interaction. J. Sound Vib., 366:429–446, Mar. 2016. doi: 10.1016/j.jsv.2015.12.026.

[119] Y. Huang and H. Chen. Review of rolling resistance influence on fuel consumption
of trucks. In 13th ITS Eur. Congr., pages 1–12, Brainport, The Netherlands, 2019.
ERTICO.

https://doi.org/10.1243/095440705X11176
https://trid.trb.org/view/165815
https://trid.trb.org/view/165815
https://doi.org/10.1080/00423117808968558
https://doi.org/10.1080/00423118008968630
https://doi.org/10.1080/00423118608969146
https://doi.org/10.1080/00423118508968823
https://doi.org/10.1016/0022-4898(92)90016-D
https://doi.org/10.1016/j.apenergy.2018.08.030
https://doi.org/10.1080/00423110903427421
https://doi.org/10.1016/0020-7462(90)90059-I
https://doi.org/10.1243/PIME_PROC_1992_206_156_02
https://doi.org/10.1098/rsta.2014.0402
https://doi.org/10.1504/IJVD.2014.060815
https://doi.org/10.1016/j.jsv.2015.04.009
https://doi.org/10.1016/j.jsv.2015.12.026


Bibliography 177

[120] J. A. Ejsmont, G. Ronowski, B. Świeczko-Żurek, and S. Sommer. Road texture
influence on tyre rolling resistance. Road Mater. Pavement Des., 18(1):181–198,
Jan. 2017. doi: 10.1080/14680629.2016.1160835.

[121] G. Svenson and D. Fjeld. The impact of road geometry and surface roughness on
fuel consumption of logging trucks. Scand. J. For. Res., 31(5):526–536, July 2016.
doi: 10.1080/02827581.2015.1092574.

[122] G. Rill. Road Vehicle Dynamics. Ground vehicle engineering series. CRC Press,
Sept. 2011. ISBN 9781439897447. doi: 10.1201/9781439897447.

[123] A. J. C. Schmeitz. A Semi-Empirical Three-Dimensional Model of the Pneumatic
Tyre Rolling over Arbitrarily Uneven Road Surfaces. PhD thesis, TU Delft, Delft,
2004.

[124] Mathworks. Solver. Available online: https://nl.mathworks.com/help/simulink/
gui/solver.html, 2022. Accessed on 3 Feb. 2022.

[125] P. Johannesson and I. Rychlik. Modelling of road profiles using roughness indica-
tors. Int. J. Veh. Des., 66(4):317, 2014. doi: 10.1504/IJVD.2014.066068.

[126] ISO 8608:2016. Mechanical vibration – Road surface profiles – Reporting of
measured data. Technical report, Koninklijk Nederlands Normalisatie-instituut,
Delft, Netherlands, Nov. 2016, Available online: https://www.iso.org/standard/
71202.html.

[127] Algemeen Hoogtebestand Nederland. AHN.nl. Available online: https://
www.ahn.nl/, 2021. Accessed on 27 Nov. 2021.

[128] P. Welch. The use of fast Fourier transform for the estimation of power spectra: A
method based on time averaging over short, modified periodograms. IEEE Trans.
Audio Electroacoust., 15(2):70–73, June 1967. doi: 10.1109/TAU.1967.1161901.

[129] Michelin. The tyre - Rolling resistance and fuel savings. Technical report, Sociéte
de Technologie Michelin, Clermont-Ferrand, 2003.

[130] F. Meishner and D. Uwe Sauer. Technical and economic comparison of different
electric bus concepts based on actual demonstrations in European cities. IET
Electr. Syst. Transp., 10(2):144–153, June 2020. doi: 10.1049/iet-est.2019.0014.

[131] P. Sahlholm and K. Henrik Johansson. Road grade estimation for look-ahead
vehicle control using multiple measurement runs. Control Eng. Pract., 18(11):
1328–1341, Nov. 2010. doi: 10.1016/j.conengprac.2009.09.007.

[132] H. A. Yavasoglu, Y. E. Tetik, and K. Gokce. Implementation of machine learning
based real time range estimation method without destination knowledge for BEVs.
Energy, 172:1179–1186, Apr. 2019. doi: 10.1016/j.energy.2019.02.032.

[133] J. Yao and A. Moawad. Vehicle energy consumption estimation using large scale
simulations and machine learning methods. Transp. Res. Part C Emerg. Technol.,
101:276–296, Apr. 2019. doi: 10.1016/j.trc.2019.02.012.

[134] MIRIAM Consortium. Rolling Resistance – Basic Information and State-of- the-
Art on Measurement methods. Technical Report MIRIAM_SP1_01, MIRIAM,
2011, Available online: https://www.diva-portal.org/smash/get/diva2:674026/
FULLTEXT02.pdf.

[135] Y. Ma, I. J. M. Besselink, and H. Nijmeijer. Impact of elevation data quality on
power request modelling accuracy for electric vehicles. In ITS Eur. Congr. 2019,
pages 1–12, Eindhoven, The Netherlands, July 2019. ERTICO.

[136] S. Han and C. Rizos. Road Slope Information from GPS-Derived Trajectory
Data. J. Surv. Eng., 125(2):59–68, May 1999. doi: 10.1061/(ASCE)0733-

https://doi.org/10.1080/14680629.2016.1160835
https://doi.org/10.1080/02827581.2015.1092574
https://doi.org/10.1201/9781439897447
https://nl.mathworks.com/help/simulink/gui/solver.html
https://nl.mathworks.com/help/simulink/gui/solver.html
https://doi.org/10.1504/IJVD.2014.066068
https://www.iso.org/standard/71202.html
https://www.iso.org/standard/71202.html
https://www.ahn.nl/
https://www.ahn.nl/
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1049/iet-est.2019.0014
https://doi.org/10.1016/j.conengprac.2009.09.007
https://doi.org/10.1016/j.energy.2019.02.032
https://doi.org/10.1016/j.trc.2019.02.012
https://www.diva-portal.org/smash/get/diva2:674026/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:674026/FULLTEXT02.pdf
https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)
https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)
https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)


178 Bibliography

9453(1999)125:2(59).
[137] K. Jo, J. Kim, and M. Sunwoo. Real-Time Road-Slope Estimation Based on In-

tegration of Onboard Sensors With GPS Using an IMMPDA Filter. IEEE Trans.
Intell. Transp. Syst., 14(4):1718–1732, Dec. 2013. doi: 10.1109/TITS.2013.2266438.

[138] J. Jauch, J. Masino, T. Staiger, and F. Gauterin. Road Grade Estimation With
Vehicle-Based Inertial Measurement Unit and Orientation Filter. IEEE Sens. J.,
18(2):781–789, Jan. 2018. doi: 10.1109/JSEN.2017.2772305.

[139] H. Liu, H. Li, M. O. Rodgers, and R. Guensler. Development of road
grade data using the United States geological survey digital elevation model.
Transp. Res. Part C Emerg. Technol., 92(August 2017):243–257, July 2018. doi:
10.1016/j.trc.2018.05.004.

[140] K. Oda, H. Takeuchi, M. Tsujii, and M. Ohba. Practical Estimator for Self-Tuning
Automotive Cruise Control. In 1991 Am. Control Conf., pages 2066–2071. IEEE,
June 1991. doi: 10.23919/ACC.1991.4791762.

[141] M. Würtenberger, S. Germann, and R. Isermann. Modeling and Parameter Esti-
mation of Nonlinear Vehicle Dynamics. Transp. Syst., 44:53–63, 1992.

[142] P. Lingman and B. Schmidtbauer. Road Slope and Vehicle Mass Estimation
Using Kalman Filtering. Veh. Syst. Dyn., 37(sup1):12–23, Jan. 2002. doi:
10.1080/00423114.2002.11666217.

[143] H. S. Bae and J. C. Gerdes. Parameter Estimation and Command Modification for
Longitudinal Control of Heavy Vehicles. Technical Report UCB-ITS-PRR-2003-16,
Stanford University, Apr. 2003, Available online: https://escholarship.org/uc/
item/6s35h1ch.pdf.

[144] A. Vahidi, A. Stefanopoulou, and H. Peng. Recursive least squares with forgetting
for online estimation of vehicle mass and road grade: theory and experiments. Veh.
Syst. Dyn., 43(1):31–55, Jan. 2005. doi: 10.1080/00423110412331290446.

[145] H. K. Fathy, Dongsoo Kang, and J. L. Stein. Online vehicle mass estimation using
recursive least squares and supervisory data extraction. In 2008 Am. Control Conf.,
pages 1842–1848, Seattle, WA, June 2008. IEEE. doi: 10.1109/ACC.2008.4586760.

[146] X. Zhang, L. Xu, J. Li, and M. Ouyang. Real-Time Estimation of Vehicle Mass
and Road Grade Based on Multi-Sensor Data Fusion. In 2013 IEEE Veh. Power
Propuls. Conf., pages 1–7. IEEE, Oct. 2013. doi: 10.1109/VPPC.2013.6671743.

[147] D. Alegre, R. de Lemos Peroni, E. da Rosa Aquino, and F. Dille. A method to
assess haul roads rolling resistance using dispatch system data. Min. Technol., 130
(3):1–12, June 2021. doi: 10.1080/25726668.2021.1935098.

[148] R. Wragge-Morley, G. Herrmann, P. Barber, and S. Burgess. Gradient and Mass
Estimation from CAN Based Data for a Light Passenger Car. SAE Int. J. Passeng.
Cars - Electron. Electr. Syst., 8(1):2015–01–0201, Apr. 2015. doi: 10.4271/2015-
01-0201.

[149] C. E. Tannoury, S. Moussaoui, F. Plestan, N. Romani, and G. Pita-Gil. Synthesis
and Application of Nonlinear Observers for the Estimation of Tire Effective Ra-
dius and Rolling Resistance of an Automotive Vehicle. IEEE Trans. Control Syst.
Technol., 21(6):2408–2416, Nov. 2013. doi: 10.1109/TCST.2012.2232669.

[150] A. K. Sharma, M. Bouteldja, and V. Cerezo. High gain and sliding mode adaptive
observers comparison: estimation of tire rolling resistance. In 2018 6th Int. Conf.
Control Eng. Inf. Technol., number October, pages 1–7. IEEE, Oct. 2018. doi:
10.1109/CEIT.2018.8751889.

https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)
https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)
https://doi.org/10.1061/(ASCE)0733-9453(1999)125:2(59)
https://doi.org/10.1109/TITS.2013.2266438
https://doi.org/10.1109/JSEN.2017.2772305
https://doi.org/10.1016/j.trc.2018.05.004
https://doi.org/10.23919/ACC.1991.4791762
https://doi.org/10.1080/00423114.2002.11666217
https://escholarship.org/uc/item/6s35h1ch.pdf
https://escholarship.org/uc/item/6s35h1ch.pdf
https://doi.org/10.1080/00423110412331290446
https://doi.org/10.1109/ACC.2008.4586760
https://doi.org/10.1109/VPPC.2013.6671743
https://doi.org/10.1080/25726668.2021.1935098
https://doi.org/10.4271/2015-01-0201
https://doi.org/10.4271/2015-01-0201
https://doi.org/10.1109/TCST.2012.2232669
https://doi.org/10.1109/CEIT.2018.8751889


Bibliography 179

[151] D. Zhang, A. Ivanco, and Z. Filipi. Model-Based Estimation of Vehicle Aerody-
namic Drag and Rolling Resistance. SAE Int. J. Commer. Veh., 8(2):433–439,
Sept. 2015. doi: 10.4271/2015-01-2776.

[152] F. Andriaminahy, A. Amamou, S. Kelouwani, N. Zioui, A. Ghobadpour, and K. Ag-
bossou. Comparative Study of Vehicle Aerodynamic and Rolling Resistance Coef-
ficients Estimation Methods. In 2019 IEEE Veh. Power Propuls. Conf., pages 1–5.
IEEE, Oct. 2019. doi: 10.1109/VPPC46532.2019.8952491.

[153] Z. Yi and P. H. Bauer. Adaptive Multiresolution Energy Consumption Prediction
for Electric Vehicles. IEEE Trans. Veh. Technol., 66(11):10515–10525, Nov. 2017.
doi: 10.1109/TVT.2017.2720587.

[154] Royal Netherlands Meteorological Institute (KNMI). Hourly Observations.
Available online: https://www.daggegevens.knmi.nl/klimatologie/uurgegevens,
2019. Accessed on 10 Jan. 2019.

[155] OpenStreetMap Wiki. Key:name — OpenStreetMap Wiki, 2021. URL https:
//wiki.openstreetmap.org/w/index.php?title=Key:name&oldid=2194005. Ac-
cessed on 25 Oct. 2021.

[156] OpenStreetMap Wiki. Key:highway — OpenStreetMap Wiki, 2021. URL https://
wiki.openstreetmap.org/w/index.php?title=Key:highway&oldid=2156966. Ac-
cessed on 25 Oct. 2021.

[157] OpenStreetMap Wiki. Key:junction — OpenStreetMap Wiki, 2020. URL https://
wiki.openstreetmap.org/w/index.php?title=Key:junction&oldid=2034421. Ac-
cessed on 25 Oct. 2021.

[158] J. H. Friedman. Multivariate Adaptive Regression Splines. Ann. Stat., 19(1):1–67,
Mar. 1991.

[159] L. Ljung and T. Söderström. Theory and Practice of Recursive Identification. MIT
Press, Cambridge, MA, USA, 1983. ISBN 9780262620581.

[160] K. J. Keesman. System Identification. Advanced Textbooks in Control and Signal
Processing. Springer London, London, 2011. ISBN 978-0-85729-521-7.

[161] K. Kivekäs, J. Vepsalainen, K. Tammi, and J. Anttila. Influence of Driving
Cycle Uncertainty on Electric City Bus Energy Consumption. In 2017 IEEE
Veh. Power Propuls. Conf., pages 1–5, Belfort, France, Dec. 2017. IEEE. doi:
10.1109/VPPC.2017.8331014.

[162] S. Sautermeister, F. Ott, M. Vaillant, and F. Gauterin. Reducing range estimation
uncertainty with a hybrid powertrain model and online parameter estimation. In
2017 IEEE 20th Int. Conf. Intell. Transp. Syst., pages 1–6. IEEE, Oct. 2017. doi:
10.1109/ITSC.2017.8317633.

[163] Y. Li, H. He, and J. Peng. An Adaptive Online Prediction Method With Variable
Prediction Horizon for Future Driving Cycle of the Vehicle. IEEE Access, 6:33062–
33075, 2018. doi: 10.1109/ACCESS.2018.2840536.

[164] J. Hou, D. Yao, F. Wu, J. Shen, and X. Chao. Online Vehicle Velocity Prediction
Using an Adaptive Radial Basis Function Neural Network. IEEE Trans. Veh.
Technol., pages 3113–3122, Apr. 2021. doi: 10.1109/TVT.2021.3063483.

[165] J. Vepsäläinen, A. Ritari, A. Lajunen, K. Kivekäs, and K. Tammi. Energy
Uncertainty Analysis of Electric Buses. Energies, 11(12):3267, 2018. doi:
10.3390/en11123267.

[166] A. Lajunen. Energy-optimal velocity profiles for electric city buses. In 2013
IEEE Int. Conf. Autom. Sci. Eng., pages 886–891. IEEE, Aug. 2013. doi:

https://doi.org/10.4271/2015-01-2776
https://doi.org/10.1109/VPPC46532.2019.8952491
https://doi.org/10.1109/TVT.2017.2720587
https://www.daggegevens.knmi.nl/klimatologie/uurgegevens
https://wiki.openstreetmap.org/w/index.php?title=Key:name&oldid=2194005
https://wiki.openstreetmap.org/w/index.php?title=Key:name&oldid=2194005
https://wiki.openstreetmap.org/w/index.php?title=Key:highway&oldid=2156966
https://wiki.openstreetmap.org/w/index.php?title=Key:highway&oldid=2156966
https://wiki.openstreetmap.org/w/index.php?title=Key:junction&oldid=2034421
https://wiki.openstreetmap.org/w/index.php?title=Key:junction&oldid=2034421
https://doi.org/10.1109/VPPC.2017.8331014
https://doi.org/10.1109/ITSC.2017.8317633
https://doi.org/10.1109/ACCESS.2018.2840536
https://doi.org/10.1109/TVT.2021.3063483
https://doi.org/10.3390/en11123267


180 Bibliography

10.1109/CoASE.2013.6653956.
[167] A. Kontou and J. Miles. Electric Buses: Lessons to be Learnt from the Mil-

ton Keynes Demonstration Project. Procedia Eng., 118:1137–1144, 2015. doi:
10.1016/j.proeng.2015.08.455.

[168] J. Vepsäläinen. Driving Style Comparison of City Buses: Electric vs. Diesel. In
2017 IEEE Veh. Power Propuls. Conf., volume 2018-Janua, pages 1–5, Belfort,
France, Dec. 2017. IEEE. doi: 10.1109/VPPC.2017.8330942.

[169] G. Li, S. E. Li, B. Cheng, and P. Green. Estimation of driving style in naturalistic
highway traffic using maneuver transition probabilities. Transp. Res. Part C Emerg.
Technol., 74:113–125, Jan. 2017. doi: 10.1016/j.trc.2016.11.011.

[170] D. V. Ngo. Gear Shift Strategies for Automotive Transmissions. PhD thesis,
Eindhoven University of Technology, Eindhoven, 2012. ISBN 9789038632223. doi:
10.6100/IR735458.

[171] G. Saldaña, J. I. San Martín, I. Zamora, F. J. Asensio, and O. Oñederra. Analysis
of the Current Electric Battery Models for Electric Vehicle Simulation. Energies,
12(14):2750, July 2019. doi: 10.3390/en12142750.

[172] A. Fotouhi, D. J. Auger, K. Propp, S. Longo, and M. Wild. A review on electric
vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renew.
Sustain. Energy Rev., 56:1008–1021, Apr. 2016. doi: 10.1016/j.rser.2015.12.009.

[173] X. Hu, S. Li, and H. Peng. A comparative study of equivalent circuit mod-
els for Li-ion batteries. J. Power Sources, 198:359–367, Jan. 2012. doi:
10.1016/j.jpowsour.2011.10.013.

[174] Z. Khalik, M. C. F. Donkers, J. Sturm, and H. J. Bergveld. Parameter estima-
tion of the Doyle–Fuller–Newman model for Lithium-ion batteries by parameter
normalization, grouping, and sensitivity analysis. J. Power Sources, 499(January):
229901, July 2021. doi: 10.1016/j.jpowsour.2021.229901.

[175] G. P. Padilla, C. Pelosi, C. J. J. Beckers, and M. C. F. Donkers. Eco-Driving
for Energy Efficient Cornering of Electric Vehicles in Urban Scenarios. IFAC-
PapersOnLine, 53(2):13816–13821, 2020. doi: 10.1016/j.ifacol.2020.12.891.

[176] P. Li, Y. Zhang, Y. Zhang, Y. Zhang, and K. Zhang. Prediction of electric bus
energy consumption with stochastic speed profile generation modelling and data
driven method based on real-world big data. Appl. Energy, 298(March):117204,
Sept. 2021. doi: 10.1016/j.apenergy.2021.117204.

[177] H. Abdelaty, A. Al-Obaidi, M. Mohamed, and H. E. Z. Farag. Machine
learning prediction models for battery-electric bus energy consumption in tran-
sit. Transp. Res. Part D Transp. Environ., 96(May):102868, July 2021. doi:
10.1016/j.trd.2021.102868.

[178] Y. Chen, Y. Zhang, and R. Sun. Data-driven estimation of energy consumption
for electric bus under real-world driving conditions. Transp. Res. Part D Transp.
Environ., 98(July):102969, Sept. 2021. doi: 10.1016/j.trd.2021.102969.

[179] F. C. Barbosa. Pure Electric Bus Traction Technology Overview - A Path Towards
Enhanced Environmental Performance and Efficiency for Transit Bus Fleets. In
SAE Tech. Pap., number October, Sept. 2014. doi: 10.4271/2014-36-0205.

[180] J.-Q. Li. Battery-electric transit bus developments and operations: A review. Int.
J. Sustain. Transp., 10(3):157–169, Mar. 2016. doi: 10.1080/15568318.2013.872737.

[181] F. C. Barbosa. Bus’ system electrification review – A technological operational
comparative assessment. In SAE Tech. Pap., number September, Sept. 2018. doi:

https://doi.org/10.1109/CoASE.2013.6653956
https://doi.org/10.1016/j.proeng.2015.08.455
https://doi.org/10.1109/VPPC.2017.8330942
https://doi.org/10.1016/j.trc.2016.11.011
https://doi.org/10.6100/IR735458
https://doi.org/10.3390/en12142750
https://doi.org/10.1016/j.rser.2015.12.009
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1016/j.jpowsour.2021.229901
https://doi.org/10.1016/j.ifacol.2020.12.891
https://doi.org/10.1016/j.apenergy.2021.117204
https://doi.org/10.1016/j.trd.2021.102868
https://doi.org/10.1016/j.trd.2021.102969
https://doi.org/10.4271/2014-36-0205
https://doi.org/10.1080/15568318.2013.872737


Bibliography 181

10.4271/2018-36-0095.
[182] M. Pagliaro and F. Meneguzzo. Electric Bus: A Critical Overview on the Dawn

of Its Widespread Uptake. Adv. Sustain. Syst., 3(6):1800151, June 2019. doi:
10.1002/adsu.201800151.

[183] F. J. R. Verbruggen, A. Hoekstra, and T. Hofman. Evaluation of the state-of-the-
art of full-electric medium and heavy-duty trucks. In 31st Int. Electr. Veh. Symp.
Exhib., Kobe, Japan, Sept. 2018.

[184] C. J. J. Beckers, I. J. M. Besselink, and H. Nijmeijer. The State-of-the-Art of
Battery Electric City Buses. In 34th Int. Electr. Veh. Symp. Exhib., Nanjing,
China, June 2021.

[185] Chinabuses.org. China Sold 150,637 Units Buses & Coaches in 2020. Available
online: http://www.chinabuses.org/analyst/2021/0115/article_12287.html,
2021. Accessed on 15 May 2021.

[186] W. Chatrou. Development of alternative drivelines 2012-2020 western-europe
+ poland gvw 8t. Available online: https://www.sustainable-bus.com/news/
europe-electric-bus-market-2020-covid/, Feb. 2021.

[187] Mordor Intelligence LLP. North America Electric Bus Market - Growth,
Trends, and Forecast (2020-2025). Technical Report 5986874, Mor-
dor Intelligence LLP, Telangana - 500008 India, Oct. 2020, Available
online: https://mordorintelligence.com/industry-reports/north-america-
electric-bus-market.

[188] Prescient & Strategic Intelligence Private Limited. India Electric Bus Mar-
ket Overview. Technical report, Prescient & Strategic Intelligence Pri-
vate Limited, Delhi- 110096 India, May 2019, Available online: https://
www.psmarketresearch.com/market-analysis/india-electric-bus-market.

[189] BYD Company Limited and Alexander Dennis Limited. BYD ADL En-
viro400EV. Available online: https://www.evbus.co.uk/products/byd-adl-
enviro400ev/, 2021. Accessed on 29 Sept. 2021.

[190] Anhui Ankai Automobile Co.,Ltd. Ankai latest 12M electric city bus. Avail-
able online: https://www.ankaiglobal.com/ankai-latest-12m-electric-city-
bus_p41.html, 2021. Accessed on 29 Sept. 2021.

[191] BYD Motors Inc. The BYD K9 - 40’ Transit. Available online:
https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-
sheets_k9-40_lr.pdf, 2021. Accessed on 29 Sept. 2021.

[192] CaetanoBus. e.City Gold - Specification. Available online: https://
caetanobus.pt/en/buses/e-city-gold-2/#especificacoes, 2021. Accessed on
29 Sept. 2021.

[193] Ebusco. Ebusco 3.0. Available online: https://www.ebusco.com/electric-buses/
ebusco-3-0/, 2021. Accessed on 29 Sept. 2021.

[194] GAZ Global. All-Electric City Bus. Available online: https://gazglobal.com/
buses/electrobus/, 2021. Accessed on 29 Sept. 2021.

[195] EvoBus GmbH. Mercedes-Benz eCitaro - Download technical brochures. Avail-
able online: https://www.mercedes-benz-bus.com/en_DE/buy/services-online/
download-technical-brochures.html, 2021. Accessed on 29 Sept. 2021.

[196] Olectra Greentech Limited. . Electric Bus K9 highlights. Available online: https:
//olectra.com/electric-bus-k9/, 2021. Accessed on 29 Sept. 2021.

[197] Otokar. e-KENT C. Available online: https://commercial.otokar.com.tr/bus/

https://doi.org/10.4271/2018-36-0095
https://doi.org/10.1002/adsu.201800151
http://www.chinabuses.org/analyst/2021/0115/article_12287.html
https://www.sustainable-bus.com/news/europe-electric-bus-market-2020-covid/
https://www.sustainable-bus.com/news/europe-electric-bus-market-2020-covid/
https://mordorintelligence.com/industry-reports/north-america-electric-bus-market
https://mordorintelligence.com/industry-reports/north-america-electric-bus-market
https://www.psmarketresearch.com/market-analysis/india-electric-bus-market
https://www.psmarketresearch.com/market-analysis/india-electric-bus-market
https://www.evbus.co.uk/products/byd-adl-enviro400ev/
https://www.evbus.co.uk/products/byd-adl-enviro400ev/
https://www.ankaiglobal.com/ankai-latest-12m-electric-city-bus_p41.html
https://www.ankaiglobal.com/ankai-latest-12m-electric-city-bus_p41.html
https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-sheets_k9-40_lr.pdf
https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-sheets_k9-40_lr.pdf
https://caetanobus.pt/en/buses/e-city-gold-2/#especificacoes
https://caetanobus.pt/en/buses/e-city-gold-2/#especificacoes
https://www.ebusco.com/electric-buses/ebusco-3-0/
https://www.ebusco.com/electric-buses/ebusco-3-0/
https://gazglobal.com/buses/electrobus/
https://gazglobal.com/buses/electrobus/
https://www.mercedes-benz-bus.com/en_DE/buy/services-online/download-technical-brochures.html
https://www.mercedes-benz-bus.com/en_DE/buy/services-online/download-technical-brochures.html
https://olectra.com/electric-bus-k9/
https://olectra.com/electric-bus-k9/
https://commercial.otokar.com.tr/bus/city/e-kent-c-bus
https://commercial.otokar.com.tr/bus/city/e-kent-c-bus
https://commercial.otokar.com.tr/bus/city/e-kent-c-bus


182 Bibliography

city/e-kent-c-bus, 2021. Accessed on 29 Sept. 2021.
[198] Proterra. The Proterra ZX5 Electric Transit Bus. Available online: https:

//www.proterra.com/vehicles/zx5-electric-bus/, 2021. Accessed on 29 Sept.
2021.

[199] Scania CV AB. Fully Electric Low Floor - Scania Citywide. Available online:
https://www.scania.com/content/dam/scanianoe/market/master/products-
and-services/buses-and-Coaches/novali/brochures/product-brochure-
scania-citywide-bev.pdf, 2021. Accessed on 29 Sept. 2021.

[200] Solaris Bus & Coach sp. z o.o. Urbino 15 LE electric. Available online: https://
www.solarisbus.com/en/vehicles/zero-emissions/new-u15le-electric, 2021.
Accessed on 29 Sept. 2021.

[201] Tata Motors Limited. STARBUS EV: Tata 4/12m Low Entry AC Electric bus.
Available online: https://www.buses.tatamotors.com/products/brands/starbus/
starbus-ev-tata-4-12m-low-entry-ac-electric-bus/, 2021. Accessed on 29
Sept. 2021.

[202] TEMSA Skoda. Avenue Electron. Available online: https://www.temsa.com/eu/
en/city/avenue-electron, 2021. Accessed on 29 Sept. 2021.

[203] VDL Bus & Coach bv. Citea Electric > Technical specifications.
Available online: https://web.archive.org/web/20190611183354/http:
//www.vdlbuscoach.com/Producten/Openbaar-vervoer/Citea-Electric/
Technische-specificaties.aspx, 2019. Accessed on 29 Sept. 2021.

[204] Volvo Bus Corporation. Volvo 7900 Electric. Available online: https:
//www.volvobuses.com/content/dam/volvo/volvo-buses/master/bre/our-
offering/documents/Brochure_7900E_EN.pdf, 2021. Accessed on 29 Oct. 2021.

[205] YUTONG. E12. Available online: https://en.yutong.com/products/
ZK6128BEVG.shtml, 2021. Accessed on 29 Sept. 2021.

[206] Sileo GmbH. Technical Specification Sileo S25. Available online:
https://www.sileo-ebus.com/fileadmin/user_upload/service/download/
datenblaetter/Sileo_Datenblatt_S25_EN.pdf, 2021. Accessed on 16 Sept. 2021.

[207] Chariot Motors. 12m ultracapacitor Chariot e-bus. Available online: https:
//chariot-electricbus.com/cmproduct/12m-ultracapacitor-chariot-e-bus/,
2021. Accessed on 20 Oct. 2021.

[208] Sustainable-bus.com. France, 92 ecitaro ordered in rennes. the star network pre-
pares for the transition. Available online: https://www.sustainable-bus.com/
news/rennes-electric-bus-mercedes-ecitaro-star/, 2020. Accessed on 6 May
2021.

[209] electrive.com. Paris public transport operator orders 109 electric buses by Blue-
bus. Available online: https://www.electrive.com/2021/01/09/146625/, Jan.
2021. Accessed on 17 Sept. 2021.

[210] D. Berjoza and I. Jurgena. Effects of change in the weight of electric vehicles on
their performance characteristics. Agron. Res., 15(Special Issue 1):952–963, 2017.

[211] European Environment Agency. Occupancy rates of passenger vehicles. Available
online: https://www.eea.europa.eu/data-and-maps/indicators/occupancy-
rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles,
2015. Accessed on 6 May 2021.

[212] I. C. Borbujo, P. G. Pereirinha, J. A. del Valle, M. G. Vega, D. A. Gonzalez, and
J. C. V. Perez. International and European Legislation and Standards for Battery

https://commercial.otokar.com.tr/bus/city/e-kent-c-bus
https://commercial.otokar.com.tr/bus/city/e-kent-c-bus
https://commercial.otokar.com.tr/bus/city/e-kent-c-bus
https://www.proterra.com/vehicles/zx5-electric-bus/
https://www.proterra.com/vehicles/zx5-electric-bus/
https://www.scania.com/content/dam/scanianoe/market/master/products-and-services/buses-and-Coaches/novali/brochures/product-brochure-scania-citywide-bev.pdf
https://www.scania.com/content/dam/scanianoe/market/master/products-and-services/buses-and-Coaches/novali/brochures/product-brochure-scania-citywide-bev.pdf
https://www.scania.com/content/dam/scanianoe/market/master/products-and-services/buses-and-Coaches/novali/brochures/product-brochure-scania-citywide-bev.pdf
https://www.solarisbus.com/en/vehicles/zero-emissions/new-u15le-electric
https://www.solarisbus.com/en/vehicles/zero-emissions/new-u15le-electric
https://www.buses.tatamotors.com/products/brands/starbus/starbus-ev-tata-4-12m-low-entry-ac-electric-bus/
https://www.buses.tatamotors.com/products/brands/starbus/starbus-ev-tata-4-12m-low-entry-ac-electric-bus/
https://www.temsa.com/eu/en/city/avenue-electron
https://www.temsa.com/eu/en/city/avenue-electron
https://web.archive.org/web/20190611183354/http://www.vdlbuscoach.com/Producten/Openbaar-vervoer/Citea-Electric/Technische-specificaties.aspx
https://web.archive.org/web/20190611183354/http://www.vdlbuscoach.com/Producten/Openbaar-vervoer/Citea-Electric/Technische-specificaties.aspx
https://web.archive.org/web/20190611183354/http://www.vdlbuscoach.com/Producten/Openbaar-vervoer/Citea-Electric/Technische-specificaties.aspx
https://www.volvobuses.com/content/dam/volvo/volvo-buses/master/bre/our-offering/documents/Brochure_7900E_EN.pdf
https://www.volvobuses.com/content/dam/volvo/volvo-buses/master/bre/our-offering/documents/Brochure_7900E_EN.pdf
https://www.volvobuses.com/content/dam/volvo/volvo-buses/master/bre/our-offering/documents/Brochure_7900E_EN.pdf
https://en.yutong.com/products/ZK6128BEVG.shtml
https://en.yutong.com/products/ZK6128BEVG.shtml
https://www.sileo-ebus.com/fileadmin/user_upload/service/download/datenblaetter/Sileo_Datenblatt_S25_EN.pdf
https://www.sileo-ebus.com/fileadmin/user_upload/service/download/datenblaetter/Sileo_Datenblatt_S25_EN.pdf
https://chariot-electricbus.com/cmproduct/12m-ultracapacitor-chariot-e-bus/
https://chariot-electricbus.com/cmproduct/12m-ultracapacitor-chariot-e-bus/
https://www.sustainable-bus.com/news/rennes-electric-bus-mercedes-ecitaro-star/
https://www.sustainable-bus.com/news/rennes-electric-bus-mercedes-ecitaro-star/
https://www.electrive.com/2021/01/09/146625/
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles


Bibliography 183

Electric Buses. In 2020 IEEE Veh. Power Propuls. Conf., pages 1–6, Gijon, Spain,
Nov. 2020. IEEE. doi: 10.1109/VPPC49601.2020.9330865.

[213] Union Internationale des Transports Publics. UITP SORT & E-SORT
brochures. Available online: https://www.uitp.org/publications/uitp-sort-e-
sort-brochures/, 2021. Accessed on 15 May 2021.

[214] Transport For London. London Exhaust Emissions Study. Available
online: http://content.tfl.gov.uk/london-exhaust-emissions-study-drive-
cycle-development.pdf, 2016.

[215] D. Jefferies and D. Göhlich. A Comprehensive TCO Evaluation Method for Electric
Bus Systems Based on Discrete-Event Simulation Including Bus Scheduling and
Charging Infrastructure Optimisation. World Electr. Veh. J., 11(3):56, Aug. 2020.
doi: 10.3390/wevj11030056.

[216] Anhui Ankai Automobile Co.,Ltd. Ankai 12M electric double decker sightsee-
ing bus. Available online: https://www.ankaiglobal.com/ankai-12m-electric-
double-decker-sightseeing-bus_p40.html, 2021. Accessed on 20 Oct. 2021.

[217] B. Nykvist, F. Sprei, and M. Nilsson. Assessing the progress toward lower priced
long range battery electric vehicles. Energy Policy, 124(September 2018):144–155,
Jan. 2019. doi: 10.1016/j.enpol.2018.09.035.

[218] N. Rietmann and T. Lieven. How policy measures succeeded to promote electric
mobility – Worldwide review and outlook. J. Clean. Prod., 206:66–75, Jan. 2019.
doi: 10.1016/j.jclepro.2018.09.121.

[219] M. Nilsson. Electric vehicles: The phenomenon of range anxiety. Tech-
nical Report Task 1300, ELVIRE Consortium, 2011, Available online:
http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/
the_phenomenon_of_range_anxiety_elvire.pdf.

[220] Z. Khalik, G. P. Padilla, T. C. J. Romijn, and M. C. F. Donkers. Vehicle Energy
Management with Ecodriving: A Sequential Quadratic Programming Approach
with Dual Decomposition. In 2018 Annu. Am. Control Conf., volume 2018-June,
pages 4002–4007. IEEE, June 2018. doi: 10.23919/ACC.2018.8431544.

[221] M. T. Sebastiani, R. Luders, and K. V. O. Fonseca. Evaluating Electric Bus
Operation for a Real-World BRT Public Transportation Using Simulation Opti-
mization. IEEE Trans. Intell. Transp. Syst., 17(10):2777–2786, Oct. 2016. doi:
10.1109/TITS.2016.2525800.

[222] T. Halmeaho, P. Rahkola, K. Tammi, J. Pippuri, A.-P. Pellikka, A. Manninen,
and S. Ruotsalainen. Experimental validation of electric bus powertrain model
under city driving cycles. IET Electr. Syst. Transp., 7(1):74–83, Mar. 2017. doi:
10.1049/iet-est.2016.0028.

[223] N. Mohan. Electric Machines and Drives. John Wiley & Sons, Feb. 2011. ISBN
978-1-118-07481-7.

[224] P. Kokke, J. Wang, I. J. M. Besselink, and H. Nijmeijer. TU/e Lupo EL Powertrain
Efficiency Experiments. In Eur. Electr. Veh. Congr., pages 1–7, Brussels, Belgium,
Dec. 2014.

[225] E. Pennestrì and P. P. Valentini. A Review of Formulas for the Mechanical Effi-
ciency Analysis of Two Degrees-of-Freedom Epicyclic Gear Trains. J. Mech. Des.,
125(3):602, 2003. doi: 10.1115/1.1587157.

[226] D. Yu and N. Beachley. On the Mechanical Efficiency of Differential Gearing. J.
Mech. Transm. Autom. Des., 107(1):61–67, Mar. 1985. doi: 10.1115/1.3258696.

https://doi.org/10.1109/VPPC49601.2020.9330865
https://www.uitp.org/publications/uitp-sort-e-sort-brochures/
https://www.uitp.org/publications/uitp-sort-e-sort-brochures/
http://content.tfl.gov.uk/london-exhaust-emissions-study-drive-cycle-development.pdf
http://content.tfl.gov.uk/london-exhaust-emissions-study-drive-cycle-development.pdf
https://doi.org/10.3390/wevj11030056
https://www.ankaiglobal.com/ankai-12m-electric-double-decker-sightseeing-bus_p40.html
https://www.ankaiglobal.com/ankai-12m-electric-double-decker-sightseeing-bus_p40.html
https://doi.org/10.1016/j.enpol.2018.09.035
https://doi.org/10.1016/j.jclepro.2018.09.121
http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/the_phenomenon_of_range_anxiety_elvire.pdf
http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/the_phenomenon_of_range_anxiety_elvire.pdf
https://doi.org/10.23919/ACC.2018.8431544
https://doi.org/10.1109/TITS.2016.2525800
https://doi.org/10.1049/iet-est.2016.0028
https://doi.org/10.1115/1.1587157
https://doi.org/10.1115/1.3258696




Dankwoord

Dit proefschrift markeert voor mij het eind van een meer dan vier jaar durend
project. In deze tijd ik veel mensen mogen ontmoeten, die allemaal - bewust of
onbewust - hebben bijgedragen aan dit werk. Enkelen van hen wil ik hier bedanken.

Allereerst gaat mijn dank uit naar mijn twee promotoren Henk Nijmeijer en Igo
Besselink. Henk, jij hebt gedurende mijn promotie altijd een wetenschappelijk oog
in het zeil gehouden maar mij ook aangespoord om vooral zelf de koers te bepalen.
Tijdens onze gesprekken wist je altijd vrij snel tot de kern van het probleem te
komen; iets wat het resultaat ten goede kwam. Ik ben je humor, gekenmerkt door
gepast sarcasme, gaan waarderen. Bedankt voor de prettige samenwerking en al
je advies. Igo, bedankt voor alle technische discussies en je kritische commentaar.
Jouw aanstekelijk enthousiasme was voor mij, vooral gedurende de huiswerkpe-
riode, een belangrijke motivator. Tevens heb ik altijd met interesse meegekeken
naar de vriendelijke doch directe manier waarop je studenten begeleidt. Als we-
tenschapper heb je een scherp oog voor ‘novelty’. Zo zijn meerdere hoofdstukken
in dit proefschrift tot stand gekomen nadat jij zei: “Misschien moet je dáár eens
naar kijken.”

Furthermore, I would like to extend this gratitude to the chair Anton van
Steenhoven and the members of the doctorate committee: Kari Tammi from Aalto
University, Omar Hegazy from Vrije Universiteit Brussel, Maarten Bonnema from
Universiteit Twente, Theo Hofman from Eindhoven University of Technology, and
Pieter Blom from VDL ETS. Thank you for taking the time to read my thesis and
providing valuable feedback that improved the quality of the work.

This research is part of EVERLASTING, and I want to thank everyone involved
in this project. It was insightful and informative to learn about all the partners’
interests and visit their labs in the cities of Aachen, München, and Lyon. Thanks
to Carlo Mol from Vito for demonstrating a well-organized project. Thanks to
Mario Paroha from Voltia for the support in conducting the eVan measurements.
Also, thanks to the colleagues from the CS-group: to Will Hendrix for teaching
me the internal politics of an EU project, to Tijs Donkers for the enthusiasm
that he brought to the general assembly meetings, and to Paul Padilla for the
many insightful discussions, one of which has materialized in a journal publication.
Thanks to Matthieu Ponchant from Siemens for involving me in their work, which



186 Dankwoord

resulted in a conference contribution.
I sincerely thank VDL ETS for the fruitful collaboration that has arisen within

the EVERLASTING project. The results presented in this thesis could only be
achieved by combining theoretical research with practical vehicle tests, to which
VDL contributed greatly. Especially thanks to Anouk Hol and Pieter Blom for
their guidance and for allowing me to move freely within their organization.
Thanks to the controls engineering team: Juan, Rahul, Koen, Roshni, Oswin,
Stijn, Arda, Bregje, and Chris for making me feel part of their team by invit-
ing me to their many potlucks, bowling events, and housewarmings. Also thanks
to the people from the test department, including Nick, Frank, Edwin, Gökman,
and Wim, who provided practical insights and helped to conduct many of the
measurements presented in this thesis.

To all the students I had the pleasure of working with: Jules, Kaustav, Mark,
Tim, Oswin, Kevin, Achyuthan, David, and Loek. Your input has directly or
indirectly contributed to the results presented in this thesis, and I am grateful for
that. I also thank Rudolf Huisman from DAF for the pleasant collaboration in
supervising one of these projects.

Next, I would like to thank all the (ex-)colleagues from the D&C and CST
groups. It is precious to work in an environment where scientific discussions
are easily mixed with informal leisure activities, such as the Benelux Meetings,
D&C outings, bowling events, and Friday afternoon drinks. I will highlight just a
few of you: Thanks to Michiel, Mark, Frans, Robert, Lennart, Ruud, and Leroy
for showing us how its done, to Daniël, Rob, Geertje, Bas, Jari, Viral, Farhad,
Wouter, Luuk, Ruud, and Brandon for keeping the vrijmibo alive during lock-
downs, to Yuhze, Wouter, and Viral for the collaboration during the vehicle dy-
namics courses, to Erwin, Wietse, Gerard, and Marvin for helping me out in the
AES-lab, and to Geertje and Anouk for being the organizational center of the D&C
group and for contributing to a great group atmosphere. Also, I want to thank
the next-door neighbors: Noud, Nard, Nick, Max, Masahiro, and Wataru, for the
timely coffee breaks. Lastly, thanks to Brandon for the many early-morning train
rides together.

Dan mijn kantoorcollega’s: Fahim en Joey. Ondanks dat onze projecten inhou-
delijk verschilden, heb ik veel aan jullie gehad; presentaties oefenen in een Center
Parks bungalow of samen fietsen in Meijel. Er heerste een gemoedelijke gezellig-
heid op kantoor, waarin goed gewerkt kon worden, maar ook zeker ruimte was voor
onzin en ontspanning. Ik zal dit gaan missen. Joey, bedankt voor je aanmoedigin-
gen om af en toe “nou eens gewoon door te werken!” en voor je nuchtere kijk op
problemen. Fahim, bedankt voor al je advies, zowel academisch als daarbuiten, en
voor alle discussies over gitaarspelen, fietsen, en wat nu écht belangrijk is in het
leven.

Aan alle vrienden buiten Eindhoven: bedankt voor alle fietsavonturen, klus-
middagen, bordspelavonden, gezellige etentjes en filmmarathons. Dit waren voor
mij momenten waarop ik af kon schakelen en kon ontspannen. Bovendien dank



Dankwoord 187

aan Falco Creemers en Martijn Merks voor het reviewen van vroege versies van
delen van dit proefschrift. Bedankt aan de kerels van Das Haus, waar ik het eerste
jaar van mijn promotie nog heb gewoond, maar me ook daarna nog altijd welkom
heb gevoeld.

Pap, mam, Karlijne en Jasper. Het is onbeschrijfelijk belangrijk om een thuis-
haven te hebben waar je weet dat je altijd terecht kunt, al is het maar voor een
relativerend gesprek of warme kop soep. Jullie hebben mij altijd gesteund en m’n
eigen keuzes laten maken. Bedankt voor alles.

Mijn laatste dank gaat uit naar mijn allerliefste: Roos. Jouw steun en begrip
zijn belangrijker dan je beseft. Je hebt me op de juiste momenten gemotiveerd om
de schouders eronder te zetten, of juist om wat afstand te nemen. Ik ben blij dat
ik jou naast me heb, en ik zie uit naar de rest van ons leven samen. Ik hou van je.

Camiel Beckers
Roermond, mei 2022





About the author

Camiel Beckers was born in Enschede on April 18,
1993. He obtained his bachelor’s degree in mechan-
ical engineering in 2014 and his master’s degree in
mechanical engineering in 2017, both with great ap-
preciation, at Eindhoven University of Technology
(TU/e). From 2014 to 2016, Camiel worked part-
time at student team InMotion on the simulation,
design, and construction of a battery electric for-
mula race car. His graduation project, under the
supervision of Rob Fey and Nathan van de Wouw,
entitled ‘Bifurcation-based shimmy analysis of land-
ing gears using flexible multibody models,’ was per-
formed in close collaboration with Siemens PLM
Software and Fokker Landing Gear.

In December 2017, Camiel started his Ph.D. research in the Dynamics & Con-
trol (D&C) group at the Mechanical Engineering department of Eindhoven Uni-
versity of Technology under the supervision of Igo Besselink and Henk Nijmeijer.
This research is part of the research project ‘Electric Vehicle Enhanced Range,
Lifetime And Safety Through INGenious battery management (EVERLASTING),’
financed by the European Union’s Horizon 2020 research and innovation program.
The research focuses on energy consumption modeling of battery electric vehi-
cles through the use of physics-based and vehicle-dynamics-related methods, with
application to battery electric city buses. The main results of this research are
presented in this thesis.







�
��

�����������
��������

�����

��������
�������	�������������

���������


	Summary
	Publiekssamenvatting
	Contents
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Battery electric bus developments
	1.3 Problem statement
	1.4 Research challenges and contributions
	1.5 Outline
	1.6 List of publications
	1.7 List of supervised projects

	2 A microscopic energy consumption prediction tool
	2.1 Introduction
	2.2 Methodology
	2.3 Energy consumption prediction results
	2.4 Discussion
	2.5 Conclusions
	2.6 Supplementary discussion

	3 Assessing the impact of cornering losses on energy consumption
	3.1 Introduction
	3.2 Nonlinear double-track steady-state cornering model
	3.3 Model validation
	3.4 Cornering losses on real bus routes
	3.5 Discussion and limitations
	3.6 Conclusions
	3.7 Supplementary discussion

	4 Analysis of energy losses in suspension dampers on rough roads
	4.1 Introduction
	4.2 Quarter car vehicle model
	4.3 Model validation
	4.4 Quantification of damper losses
	4.5 Conclusion

	5 Combined rolling resistance and road grade estimation
	5.1 Introduction
	5.2 Vehicle model
	5.3 Recursive least-squares identification
	5.4 Battery electric bus experiment
	5.5 Results
	5.6 Conclusion

	6 Online and driver-specific velocity prediction
	6.1 Introduction
	6.2 Future energy consumption prediction
	6.3 Case study: bus trip
	6.4 Results and discussion
	6.5 Conclusions
	6.6 Driver characterization
	6.7 Supplementary discussion

	7 Conclusions and recommendations
	7.1 Conclusions
	7.2 Recommendations

	Appendices
	A A 2021 overview of battery electric city bus specifications
	A.1 Introduction
	A.2 Methods
	A.3 Results
	A.4 Discussions
	A.5 Conclusion

	B Energy consumption prediction for electric city buses
	B.1 Introduction
	B.2 Literature overview
	B.3 A physics-based energy consumption model
	B.4 Dedicated measurements
	B.5 Model validation
	B.6 Conclusions and outlook

	C Mechanical differential losses during cornering
	C.1 Introduction
	C.2 Steady-state cornering vehicle model
	C.3 Differential gear unit efficiency calculation


	Bibliography
	Dankwoord
	About the author

