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In this paper we propose a method to design a freeform lens including the effect of Fresnel reflections on the trans-
mitted intensity. This method is elaborated for a lens with one freeform surface shaping a far-field target from a
point source or collimated input beam. It combines the optical mapping with the energy balance incorporating
the loss due to Fresnel reflections, which leads to a generalized Monge–Ampère equation. We adapt a least-squares
solver from previous research to solve the model numerically. This is then tested with a theoretical example and a
test case related to road lighting. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.456028

1. INTRODUCTION

Recently, a lot of research has been done on inverse methods
for freeform optical design. In particular, freeform lenses have
become more popular with the introduction of LED lighting.
This has a lower working temperature and allows for the usage
of plastic materials, which are easier to manufacture in arbitrary
shapes. The arbitrary shapes of freeform lenses give rise to arbi-
trary angles of incidence at the freeform surface. The fraction of
reflected light can strongly vary with these angles ([1], Sec. 4.6).
Especially close to the critical angle, a large part of the incident
flux is deflected into this so-called Fresnel reflection. Most
inverse methods for freeform design do not take into account
these Fresnel reflections, while they can have a significant influ-
ence on the outgoing intensity distribution. In this paper we
will introduce a method that does take into account Fresnel
reflections.

There have been many methods developed for designing
freeform optics recently. We give a brief overview of some of
these methods. For a more complete summary, see [2]. Some
approaches use numerical methods such as finite differences and
Newton’s method to solve the Monge–Ampère equation related
to the optimal transport formulation of the problem [3–5]. The
supporting quadrics method was proposed by Oliker et al . [6]
to design freeform surfaces. An alternative approach based on
discretizing the corresponding optimal transport problem into a
linear assignment problem has been developed by Doskolovich
et al . [7]. A ray mapping method has also been used to solve this
optical design problem for arbitrary wavefronts [8,9].

As mentioned, most inverse methods for freeform optical
design do not take into account Fresnel reflections. There are

some methods that aim to minimize the total loss due to Fresnel
effects [10–13]. However, the authors only try to minimize the
reflectance, and do not take into account the effect of the Fresnel
reflections on the outgoing intensity or irradiance. To the best of
our knowledge, only one paper claims to incorporate this effect
in their freeform design method [14]. In their algorithm, the
authors calculate the effect of the freeform lens on the wavefront,
including the effect of Fresnel, and iteratively adapt the freeform
surface. However, the Fresnel effect is not stated explicitly in any
expressions.

A least-squares algorithm has been developed by Prins et al .
as a way to design a freeform surface for transforming a colli-
mated beam into a far-field target [15,16]. This has later been
expanded to shape one collimated beam to another [17], to cre-
ate a far-field target from a point source [2,18], and to collimate
and shape a beam from a point source [19]. A more complete
overview of optical systems for which these methods have been
adapted has been given by Romijn [20] and by Anthonissen
et al . [21]. In this paper we will adapt the least-squares algorithm
as in [2] to account for Fresnel losses. These changes are made to
give an actual transmitted intensity of the same shape as a given
hypothetical target distribution without Fresnel reflection,
up to scaling, despite variations in the reflectance. The loss is
unknown beforehand, so the scaling factor is as well. We apply
our adapted algorithm to two different lens systems. Both have a
far-field target, one having a point source and the other having a
collimated input beam.

In this work, we first derive the equations for the relation
between the source distribution, the target distribution, and
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the freeform lens surface in Section 2. We also derive a conven-
ient expression for the reflectance. In Section 3 we present an
algorithm to solve the aforementioned equations for the surface
shape. Since parts of the algorithm remain unchanged, we give
a brief summary and refer to other papers for more details. In
Section 4 we show the results of our algorithm on two test cases.
One theoretical example consists of a uniform source and target,
while the other has a practical application as road lighting.

2. OPTICAL SYSTEMS

In this section we will first give a mathematical description of
the optical systems. Then, we will derive the equations necessary
for computing the optical surfaces. This includes the reflection
coefficients, which we will write in a form that is convenient to
include in our algorithm.

A. Optical System Layouts

We consider two optical systems consisting of a lens, shaping
the light distribution from a point source or parallel beam to a
far-field target. Both cases are sketched in Fig. 1. The lens, with
refractive index n, has a surface perpendicular to the incident
rays and a freeform surface where the light exits the lens. In other
words, only the second surface shapes the output distribution.
We assume that the surrounding medium has refractive index 1.
The unit direction vectors of a ray before and after the freeform
surface are given by ŝ = (s 1, s 2, s 3)

> and t̂= (t1, t2, t3)>,
respectively.

For a point source, we have a given source luminous intensity
f = f (ŝ) and a desired target distribution g = g (t̂), both
with a total flux equal to 1. Note that g is a purely hypothetical
intensity that can only be achieved if we would disregard Fresnel
reflections. The source is located at the origin. The location
of the freeform surface is defined by the radial distance from
the point source, u = u(ŝ). A point on this surface is described
by the position vector r(ŝ)= u(ŝ)ŝ . We introduce the stere-
ographic coordinates from the south pole of the unit sphere
x = x(ŝ), so that every ŝ except (0, 0,−1)> has a unique
two-dimensional parametrization ([20], Sec. 3.1.2). This
transformation is given by

x(ŝ)=
(

x1

x2

)
=

1

1+ s 3

(
s 1

s 2

)
, ŝ(x)=

1

1+ |x |2

 2x1

2x2

1− |x |2

.

(1)
Analogously, we define the stereographic coordinates y= y(t̂)
for the target. The source domain for vectors ŝ is S ⊂ S2 and
contains the support of f . The source domain in stereographic
coordinates is X = x(S). The target domain T is equal to the
support of g , and its stereographic projection is denoted by
Y = y(T ).

Fig. 1. Projections on the x , z plane of example lenses for a point
source (left) and a collimated source beam (right).

In the case of a parallel source beam, we have ŝ = (0, 0, 1)>

for every ray. Instead of the stereographic coordinates, x here
denotes the position vector on the source plane. The source
emittance is given by f = f (x), and X is the spatial domain
on the source plane. We also use a different, generalized stere-
ographic projection for the target coordinates in this system.
Instead of a projection from the south pole, we project from the
point (0, 0, n) above the north pole, followed by a multiplica-
tion with 1/n. This leads to simpler equations later [16]. In this
case, the generalized stereographic projection is given by

y(t̂)=
(

y1

y2

)
=

1

n − t3

(
t1
t2

)
. (2a)

It can be shown that the inverse is given by

t̂( y)= n êz + H(| y|; n)

 y1

y2

−1

 if (n2
− 1)| y|2 ≤ 1,

(2b)
where

H(z; n)=
n2
− 1

n +
√

1− (n2 − 1)z2
. (2c)

The condition in Eq. (2b) means that total internal reflection
does not happen.

When light is incident on an optical surface, a part of it is
transmitted, while the rest is reflected due to Fresnel reflections.
Because the incident rays are perpendicular to the first sur-
face, the reflectance coefficient is constant there. The freeform
second surface has a reflectance depending on the incident and
transmitted angles ([1], Sec. 4.6). We assume that all reflected
light, from both the inner and freeform surfaces, ends up on the
substrate at z= 0 and is absorbed there.

B. Optical Mapping

In this section, we state a short summary of the derivation of a
relation between the source and target coordinates, implicitly
defining a mapping. For a point source, a more in depth deriva-
tion is given by Romijn et al . [2]. The relation is similar and of
the same form for a parallel source [16].

Using Hamilton’s characteristics [22], it is possible to find the
equation

ũ1(ŝ)+ ũ2(t̂)= c̃ (ŝ, t̂). (3)

The function c̃ is called a cost function and is of the form
c̃ (ŝ, t̂)=− log(n − ŝ · t̂). The functions ũ1 and ũ2 are
related to the shape of the lens, with ũ1(ŝ)= log u(ŝ) and
ũ2(t̂) an auxiliary variable depending on the target coor-
dinates. We change Eq. (3) to stereographic coordinates
by introducing u1(x)= ũ1(ŝ(x)), u2( y)= ũ2(t̂( y)), and
c (x , y)= c̃ (ŝ(x), t̂( y)) and obtain

u1(x)+ u2( y)= c (x , y)=− log(n − ŝ(x) · t̂( y)). (4)

For a parallel source beam we can derive an equation of the same
form [16]. As mentioned, x is then the position coordinate on
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the source plane and y is the generalized stereographic projec-
tion defined in Eq. (2a). In this case, c(x , y)= x · y, u1 = u,
and u2 is a function containing Hamilton’s mixed characteristic.

Equation (4) has many solutions, so we can choose a specific
one. A unique solution can be found by assuming that u1 and
u2 are a c -convex or c -concave pair [23]. The c -convex solution
pair has the form

u1(x)=max
y∈Y

(c (x , y)− u2( y)),

u2( y)=max
x∈X

(c (x , y)− u1(x)). (5)

Similarly, the c -concave solution pair has the form

u1(x)=min
y∈Y

(c (x , y)− u2( y)),

u2( y)=min
x∈X

(c (x , y)− u1(x)). (6)

As a result, with either choice, u2 is obtained as a stationary
point of c (·, y)− u1 with respect to x , so we have the necessary
condition

∇x c (x , y)−∇u1(x)= 0. (7)

This equation implicitly defines a mapping y=m(x), provided
that C = C(x , y)= Dx yc = ( ∂2c

∂xi ∂ y j
) is a regular matrix, by the

implicit function theorem ([24], Sec. 12.8). However, the com-
putation of m can be very difficult, especially for the system with
the point source. Instead of computing the mapping directly,
we derive an equation for the Jacobian of m. This will be useful
later; see Section 2.D. To achieve this, we substitute y=m(x)
into Eq. (7) and take the derivative with respect to x again to
obtain

C Dm= D2u1 − Dx x c =: P, (8)

where Dm is the Jacobian matrix of m, D2u1 is the Hessian
matrix of u1, and Dx x c = D2c (·, y). The Hessian matrix of
c (·, y)− u1 is equal to −P , so a c -convex pair u1, u2 has a
symmetric positive definite (SPD) matrix P . Similarly, P is
symmetric negative definite (SND) for a c -concave solution
pair.

C. Reflection and Transmission

As stated by Hecht ([1], Sec. 4.6), the reflection coefficient or
reflectance R is the fraction of the flux that gets reflected at an
optical surface. It depends on the angles of incidence (θi ) and
refraction (θt ) as well as the polarization of the light. We assume
here that the light is unpolarized, but the algorithm can easily be
adjusted to incorporate different polarizations. The reflectance
for light moving from a medium with refractive index ni to a
medium with index nt is then given by

R =
1

2
(RS + R P ), (9a)

with RS and R P the reflectance coefficients for perpendicular
and parallel polarized light, respectively, given by

RS =

(
ni cos θi − nt cos θt

ni cos θi + nt cos θt

)2

, R P =

(
nt cos θi − ni cos θt

nt cos θi + ni cos θt

)2

.

(9b)
At the first surface each ray has normal incidence, so the reflec-
tion coefficient R is constant there. We denote this coefficient
by R1 and using that ni = 1, nt = n, and θi = θt = 0, we obtain
from the above equation

R1 =

(
1− n
1+ n

)2

. (10)

At the second surface, rays go from ni = n to nt = 1. The
rays are generally not normal to the surface. To calculate the
reflectance in a point on this surface using Eq. (9) we need
the angle between ŝ and the normal n̂, as well as the angle
between t̂ and n̂. For this we need to calculate the surface from
the mapping m. Instead, we rewrite the coefficient as a function
R2 = R2(ŝ, t̂), where t̂ can easily be computed as the (gener-
alized) inverse stereographic projection of m. We substitute
cos θi =−ŝ · n̂ and cos θt =−t̂ · n̂. We then eliminate n̂ from
the expression by using that n̂ is parallel to t̂− n ŝ , due to Snell’s
law in vector form. We obtain

R2(ŝ, t̂)=
1

2

(
(n ŝ − t̂) · n̂

(n ŝ + t̂) · n̂

)2

+
1

2

(
(ŝ − n t̂) · n̂

(ŝ + n t̂) · n̂

)2

=
1

2

(
(n ŝ − t̂) · (t̂− n ŝ)

(n ŝ + t̂) · (t̂− n ŝ)

)2

+
1

2

(
(ŝ − n t̂) · (t̂− n ŝ)

(ŝ + n t̂) · (t̂− n ŝ)

)2

=
1

2(1− n2)2

[(
2n ŝ · t̂− (1+ n2)

)2

+
1

(ŝ · t̂)
2

(
(1+ n2)ŝ · t̂− 2n

)2

]
.

(11)

This expression holds for both source types. For the case of a
collimated source beam we can simplify it somewhat. All rays are
then parallel to the z axis, so ŝ = (0, 0, 1)> and ŝ · t̂= t3. This
gives the reflectance

R2(t̂)=
1

2(1− n2)2

[(
2nt3 − (1+ n2)

)2
+

1

t2
3

(
(1+ n2)t3 − 2n

)2
]

.

(12)
We can directly relate the transmission coefficient to the reflec-
tion coefficient. Since we assume that no light is absorbed by
the lens, all light is either reflected or transmitted. We define
T1 = 1− R1 and T2(ŝ, t̂)= 1− R2(ŝ, t̂) as the transmittance
at the first and second surfaces, respectively.

D. Energy Conservation

The main result from Section 2.B, Eq. (8), describes the propa-
gation of transmitted rays, but not the flux at the source or
target. To take that into account, we need to satisfy conservation
of energy. First, we look at the point source. Without Fresnel
reflections, the flux in any subset of S should be equal to that
contained in its image on T . With the Fresnel reflections taken
into account, only the flux that is transmitted by both surfaces
ends up at the target. LetA be a subset ofS and t̂(A)⊆ T be its
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image. When we use the far-field approximation, conservation
of energy is given by∫

A
T1T2(ŝ, t̂) f (ŝ)dS(ŝ)=

∫
t̂(A)

g t(t̂)dS(t̂), (13)

where g t is the transmitted target distribution. We choose this
to be a scaling of g . This hypothetical target distribution g has
a total flux equal to that of f (i.e., 1). The transmitted flux can
never be equal to that due to the reflected light being absorbed
by the substrate. Instead, we want a target distribution with the
same shape as g , but a flux adapted to the transmission. For that,
we choose g t = βg , with β ∈ (0, 1) the fraction of transmitted
flux, dependent on m. Using the equation above with A= S
and using that the total flux of g is 1, we obtain

β(m)= T1

∫
S

T2(ŝ, t̂(m)) f (ŝ)dS(ŝ). (14)

Next, we want to use Eq. (13) to find a Monge–Ampère type
equation similar to the one found in previous work [2]. We
apply substitution laws for integration to write both sides as
integrals over x . This gives us for any X ⊂X∫

X
T1T̃2(x,m(x)) J ŝ (x) f̃ (x)dx

=

∫
X
| det(Dm(x))|J t̂(m(x))g̃ t(m(x))dx , (15)

with f̃ (x)= f (ŝ(x)), g̃ t( y)= g t(t̂( y)) and T̃2(x, y)=
T2(ŝ(x), t̂( y)). The functions J ŝ and J t̂ denote the Jacobians
of the coordinate transformations ŝ = ŝ(x) and t̂= t̂( y),
respectively, as in Eq. (1). For a point source, these coordinate
transformations are the same, so J ŝ = J t̂, with

J ŝ (x)=

∣∣∣∣ ∂ ŝ
∂x1
×
∂ ŝ
∂x2

∣∣∣∣= 4

(1+ |x |2)2
. (16)

We assume that the Jacobian determinant det(Dm) is positive
to obtain the Monge–Ampère type equation

det(Dm(x))= T1T̃2(x ,m(x))
J ŝ (x)

J t̂(m(x))
f̃ (x)

g̃ t(m(x))

=: F1(x ,m(x)). (17)

The approach is similar for a parallel source beam. The integrals
on the left-hand side of Eq. (13) and in Eq. (14) should be over
an area element dA(x) instead of a surface element dS(ŝ). We
now only have the Jacobian for the change of variables on the
right-hand side of Eq. (13), as defined in Eq. (2). Following the
same calculation steps, we then arrive at a variant of Eq. (17)
given by

det(Dm(x))= T1T̃2(m(x))
1

J t̂(m(x))
f (x)

g̃ t(m(x))

=: F2(x ,m(x)), (18)

with T̃2(m(x))= T2(t̂(m(x))). We will use F to indicate either
F1 or F2, depending on the optical system. When we combine

Eq. (17) or Eq. (1) with Eq. (8), we obtain a condition on P
given by

det(P(x))= F (x ,m(x)) det(C(x ,m(x))). (19)

To close the model, we have the boundary condition
m(∂X )= ∂Y . Assuming that our mapping is injective and
continuous, this is equivalent to stating that all transmitted light
is mapped from the source to the target ([20], Sec. 4.5).

3. LEAST-SQUARES ALGORITHM

To recap the previous section, we derived a boundary value prob-
lem given by

C Dm= P, x ∈X , (20a)

subject to det P = F det C with P SPD or SND,
(20b)

m(∂X )= ∂Y . (20c)

This boundary value problem is solved to compute a mapping
m. Subsequently, substituting y=m(x) in Eq. (7) we compute
u1, defining the surface shape. The least-squares method to solve
a system like this has been explained in detail by Yadav [23] and
Romijn [20] among others. This method has been used for cases
where Fresnel reflections are not included. In Section 2.D we
introduced changes in the Monge–Ampère equation by consid-
ering these reflections. To take these changes into account, we
slightly adapt the least-squares solver. In this section, we will give
a brief overview of the method that we use to solve the boundary
value problem (20).

We introduce a functional J I as a measure of how closely we
are approximating a solution to Eq. (20a). This functional is
given by

J I [m, P] =
1

2

∫∫
X
‖ C Dm− P ‖2

F dx , (21)

where ‖ ·‖F is the Frobenius norm. As a measure of the
difference between m(∂X ) and ∂Y we introduce the functional

J B [m, b] =
1

2

∫
∂X
|m − b|2ds , (22)

where b : ∂X → ∂Y and | · | indicates the standard 2-norm. We
combine the two functionals by taking a weighted average with
parameterα ∈ (0, 1). The resulting functional is given by

J [m, P, b] = α J I [m, P] + (1− α)J B [m, b]. (23)

We define the following function spaces for P , b, and m:

P(m)=
{

P ∈ [C 1(X )]2×2
| det(P)

= F (·,m) det(C(·,m)), P SPD or SND
}
, (24a)

B=
{

b∈ [C 1(∂X )]2|b(x ) ∈ ∂Y
}
, (24b)

M= [C 2(X )]2. (24c)
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In other words, P(m) contains 2× 2 matrices with differ-
entiable entries that satisfy the stated constraints. The set B
contains vector-valued functions from the source bound-
ary to the target boundary. Finally, M contains two times
differentiable vector-valued functions defined onX .

We cover the domain X by a grid with gridpoints x ij.
We calculate T1 once, since it does not depend on m. The
algorithm then starts with an initial guess m0 and conse-
quently C0

= C(·,m0). Also, we calculate T̃2(·,m0) and
β0
= β(m0), which defines g 0

t = β
0g and subsequently a func-

tion F 0
= F (·,m0). Then, for every i = 0, 1, 2, . . . we iterate

P i+1
= argminP∈P(mi ) J I [mi , P], (25a)

bi+1
= argminb∈B J B [mi , b], (25b)

mi+1
= argminm∈M J [m, P i+1, bi+1

], (25c)

C i+1
= C(·,mi+1), (25d)

T̃ i+1
2 = T̃2(·,mi+1), β i+1

= β(mi+1), F i+1
= F (·,mi+1).

(25f)
In the first two steps, the functionals do not contain derivatives
of the variables to be minimized and thus can be solved point-
wise. The minimization for mi+1 does contain derivatives of m,
so this step cannot be done point-wise. The optimization step
(25c) is done with calculus of variations [20]. The first variation
of J [·, P, b]with respect to an arbitraryη ∈M should be equal
to 0. This condition gives the boundary value problem

div(C>C Dm)= div(C>P), for x ∈X , (26a)

αC>C(Dm)ν̂ + (1− α)m= αC>P ν̂ + (1− α)b, for x ∈ ∂X ,
(26b)

with div the divergence operator applied to the rows of a matrix
and ν̂ the outward unit normal of X . We then discretize this
system with finite volumes and solve the resulting linear sys-
tem with a QR-decomposition. The last steps of the iteration
scheme (25) are straightforward evaluations from Eq. (11) or
(12), Eq. (14), and Eq. (17) or (18).

After a given number of iterations or when a stopping cri-
terion (i.e., a certain value of J ) is met, we calculate u, defining
the surface shape, from the resulting m. We do this by solving
Eq. (7) for u1. An exact solution to this equation might not exist
due to previous approximations. Therefore, we introduce a
functional I to minimize, given by

I [φ] =
1

2

∫∫
X
|∇x c (·,m)−∇φ|2dx . (27)

One can easily see that this functional becomes 0 when Eq. (7)
is satisfied. Similar to the minimization for m, we set the first
variation of I equal to 0 and use calculus of variations to derive a
boundary value problem for u1 of the form

1u1 = div(∇x c (·,m)), x ∈X , (28a)

∇u1 · ν̂ =∇x c (·,m) · ν̂, x ∈ ∂X , (28b)

as shown by Yadav [23]. This is then solved for u1, which is
unique up to a constant. The constant can be chosen to fix the
average distance of the freeform surface. From u1 we can then
calculate the function u, defining the freeform surface. For the
point source we have u = e u1 and for the parallel source u = u1.

4. NUMERICAL RESULTS

We apply our algorithm to two different cases. First, we use a
parallel source for which we can compare the result to an analytic
solution. Then, we use the algorithm to construct a lens for
street lighting and compare the result to previous results without
Fresnel reflections.

First, we apply our algorithm to a problem for which we can
find an analytic solution. Without Fresnel reflections, choosing
the mapping m(x)= x for a parallel source corresponds to a
source distribution f and stereographic target distribution J t̂ g̃
that are equal, in accordance with Eq. (18). This is no longer
the case when we consider Fresnel reflections. The rays close
to t̂= (0, 0, 1)> have smaller incident and transmitted angles
than rays closer to the edge of the domain, and as a result the
reflection coefficient is smaller near t̂= (0, 0, 1)>. If we would
have a uniform source f (x)= f0, then the transmitted stere-
ographic target distribution is no longer uniform, but given by
J t̂(x)g̃ t(x)= T1T̃2(x) f0. From substituting m(x)= x into
Eq. (2b) we obtain

t3 = n − H(|x |; n). (29)

Using this, we derive an analytic expression for the transmitted
target distribution; see Fig. 2(a).

We choose the source and stereographic target domain to be
the square [−0.63, 0.63]2. The source domain is covered with a
uniform 200× 200 grid. The lens has a refractive index n = 1.5.
Our initial guess for the mapping is a random perturbation of
m(x)= x . Every target gridpoint yij =m(x ij) is shifted from
y= x ij in both the y1 and y2 directions with a maximum of half
the grid size. We run the algorithm for 500 iterations, taking
approximately 200 s on a laptop with Intel Core i7-8750H CPU
2.20 GHz with 32.0 GB of RAM. The convergence behavior of
the algorithm is shown in Fig. 2(b) by plotting the error of the
mapping mi compared to the exact mapping m(x)= x . The
figure also shows the values of the functionals J I and J B . We can
see that the error converges to approximately 10−7, while both
functionals converge to values around 10−14. This makes sense,
since both functionals consist of the square of an error term of
the mapping.

Next, we compute a lens for a typical street lamp. We model
an LED as a point source with a Gaussian light distribution on
the positive half-sphere, with variance 0.05 and scaled to a total
flux of 1. The target intensity is an intensity that is used for street
lights [2]; see Fig. 3(a). Again, the lens material has refractive
index n = 1.5. We use a uniform 200× 200 grid and run the
algorithm for 300 iterations. This process takes approximately
3800 s.

The resulting lens has the shape of a so-called “peanut
lens”; see Fig. 4. We verify this result with our own raytracer
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Fig. 2. Target distribution and convergence of the analytic test case. (a) Hypothetical analytic target J t̂ g̃ corresponding to m(x)= x with Fresnel
reflections. (b) Values of J I and J B and the error compared to the exact mapping.

Fig. 3. Target distribution of the streetlight example in stereographic coordinates. Note that the scales are different, but the shape is similar.
(a) Hypothetical target J t̂ g̃ in stereographic coordinates. (b) Raytraced target from a lens resulting from our algorithm.

in MATLAB, tracing 10 million rays in a quasi-Monte Carlo
sense, including Fresnel reflections. The reflected flux is 13.4%
of the source flux. The resulting target intensity in stereographic
coordinates is shown in Fig. 3(b). We can see that it corresponds
well with the desired target intensity in Fig. 3(a), although with a
lower intensity.

For comparison, we also used the least-squares algorithm
from [2] without taking into account Fresnel reflections. All
other input parameters were chosen to be the same. The run-
ning time for this algorithm was similar to the one with Fresnel
reflections included. Then, a raytrace with Fresnel reflection was
applied to the resulting lens surface, again tracing 10 million
rays. The flux lost due to reflection is 12.6% of the source flux
here. Evaluating the result, we see that the intensity pattern
deviates significantly from the desired one along some intersec-
tion planes, as shown in Fig. 5. In that figure, the intensities are
scaled to have the same total flux. This way, we can compare the
intensity shapes without considering the flux. In comparison
to the result of the algorithm without Fresnel, the results from
the algorithm as stated in this paper seem to match the desired

Fig. 4. Freeform lens surface resulting from our algorithm in
Cartesian coordinates.

intensity better. Therefore, this example shows the usefulness of
the adaptations to the algorithm introduced in this paper.
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Fig. 5. Comparison between the desired output intensity and the results of the algorithm with and without Fresnel reflection scaled to have the
same total flux. The results are obtained by raytracing with Fresnel reflection.

Fig. 6. Reflectance on the freeform surface resulting from our
algorithm as a function of Cartesian x , y coordinates.

The reflectance on the resulting freeform surface is shown in
Fig. 6. We see that it varies a lot over the surface, with maximal
values around 0.2. This indicates that without taking Fresnel
reflections into account, the transmitted intensity would be
significantly higher than desired. By incorporating these reflec-
tions into our algorithm, we make sure that the output is of the
correct shape. Therefore, this figure shows the importance of the
modifications we have elaborated in this paper.

Of course, the benefit of considering Fresnel reflections
depends strongly on the design problem. As can be found
from Eq. (9), the reflectance increases with increasing angles.
Therefore, the new algorithm is especially beneficial for designs
where there are large (variations in) angles between incident and
transmitted rays. However, as mentioned, the runtime for the
adapted algorithm does not significantly differ from the algo-
rithm as used before. This means that the new algorithm could
be used even when only small angles are involved, although the
benefit is smaller.

5. CONCLUSION

In this paper we presented a method to take into account Fresnel
reflections when designing a freeform lens. We have derived
an expression for the reflectance in terms of source and target
coordinates. This has been incorporated in the least-squares
algorithm that has been used before as an inverse method for
designing freeform optical surfaces.

We tested this modified algorithm on two cases. For a par-
allel source beam we constructed a test where we know the
analytic solution. This was used to verify our algorithm. We
then investigated a practical application, namely that of street
lighting. It was shown that the reflectance on parts of the lens
can be very significant. This shows the importance of including
Fresnel reflections in our algorithm to ensure the correct target
intensity shape, especially when the angles between incident and
transmitted rays can become large.

In this paper we limited ourselves to energy loss due to Fresnel
reflections, but the same techniques could be used to take into
account other phenomena such as partially absorbing lenses.
Likewise, we only elaborated the algorithm for lenses with a
far-field target and point source or collimated input beam, but
similar algorithms can be used to consider Fresnel reflections in
the design of other optical systems. For future research, it would
also be interesting to extend our research to optical systems
with two freeform surfaces and investigate the possibility of
minimizing the reflectance and with that the loss of light.
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