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Abstract
We study a special class of cooperative games with transferable utility (TU), called
m-attribute games. Every player in an m-attribute game is endowed with a vector of m
attributes that can be combined in an additive fashion; that is, if players form a coalition,
the attribute vector of this coalition is obtained by adding the attributes of its members.
Another fundamental feature of m-attribute games is that their characteristic function is
defined by a continuous attribute function 𝜋—the value of a coalition depends only on
evaluation of 𝜋 on the attribute vector possessed by the coalition, and not on the identity
of coalition members. This class of games encompasses many well-known examples,
such as queueing games and economic lot-sizing games. We believe that by studying
attribute function 𝜋 and its properties, instead of specific examples of games, we are
able to develop a common platform for studying different situations and obtain more
general results with wider applicability. In this paper, we first show the relationship
between nonemptiness of the core and identification of attribute prices that can be used
to calculate core allocations. We then derive necessary and sufficient conditions under
which every m-attribute game embedded in attribute function 𝜋 has a nonempty core,
and a set of necessary and sufficient conditions that 𝜋 should satisfy for the embedded
game to be convex. We also develop several sufficient conditions for nonemptiness
of the core of m-attribute games, which are easier to check, and show how to find a
core allocation when these conditions hold. Finally, we establish natural connections
between TU games and m-attribute games.

K E Y W O R D S
convex games, cooperative game theory, the core, totally balanced games

1 INTRODUCTION

In today’s global markets, companies are facing growing
pressure to increase their efficiencies and reduce costs. Shar-
ing of resources is a well-known approach that simultane-
ously improves the performance of service and manufactur-
ing systems and reduces costs due to economies of scale and
scope. Examples of such collaborative activities are reported
in many industries. For instance, the distributors of Okuma
America Corporation carry minimum inventory of machine
tools and spare parts. If customers order an item that is
locally out of stock, the demand is satisfied either by the
central stock of Okuma America or the stock of another dis-
tributor, thanks to the shared information technology system
(Narus & Anderson, 1996). Similar practices are also com-
mon among the car dealers and within retail chains. In avi-
ation, airline companies form alliances (e.g., Star Alliance,
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Sky Team) to improve their operations and customer service
through joint mileage programs and hospitality services (e.g.,
airport lounges), along with spare parts sharing and code
sharing. In the public health sector, health agencies share
influenza vaccines to alleviate shortages and improve public
health (Westerink-Duijzer et al., 2020).

A key issue for stable cooperation is appropriate incen-
tivization of independent parties—anticipated costs and
benefits should be allocated among participants in a way
conducive to their long-lasting collaboration. Cooperative
game theory provides a natural framework to study this type
of problem and to identify allocations that encourage stable
cooperative relationships among firms. Most notably, allo-
cations that belong to the core of the underlying cooperative
game discourage defection, as no subset of participants can
generate a higher value on their own. In general, the core can
be empty, as it may be impossible to allocate costs and bene-
fits in a way that prevents some players from acting indepen-
dently and improving their payoffs. Due to its intuitive nature,
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the core is the most commonly used stability concept in coop-
erative games, and it is defined formally in Section 1.1.

There are an increasing number of papers in the opera-
tions management (OM) literature focusing on cooperative
games arising from several OM problems (called OM games
hereafter) and their core. For example, in the area of pro-
duction management, Owen (1975) considered cooperation
among retailers with linear production (LP) function who can
pool their resources to produce different products. Van den
Heuvel et al. (2007) and Chen and Zhang (2016) studied
cooperation in lot-sizing environments. In newsvendor set-
ting, Müller et al. (2002) and Slikker et al. (2001) were the
first to show that stable cooperation is possible if retailers
share their inventory. Slikker et al. (2005), Özen et al. (2008),
and Chen and Zhang (2009) extended this result to more com-
plex newsvendor networks. Cooperation in queueing systems
is studied in several more recent papers, for example, Özen
et al. (2011), Anily and Haviv (2010), and Karsten et al.
(2015).

One common feature seen in OM games is that every
player is endowed with a vector of m attributes that can be
combined in an additive fashion; that is, if players form a
coalition, the attribute vector of this coalition is obtained by
adding the attributes of its members. Another fundamental
feature is that the value of a coalition depends only on evalu-
ation of a continuous attribute function 𝜋 on the attribute vec-
tor possessed by the coalition, and not on the identity of coali-
tion members. For example, in LP games studied by Owen
(1975), the attributes of the retailers are m different types of
resources owned by each retailer, and they can be pooled in
an additive fashion if the retailers cooperate. The value of
a coalition of retailers is expressed through the LP function
that evaluates the profit achieved through an efficient use of
coalition resources. We call this class of cooperative games—
that is, the games defined by players with additive attribute
sets and an attribute function 𝜋—m-attribute games. In this
study, we aim to develop a common platform for analyzing
m-attribute games by studying properties of attribute function
𝜋, and to use this platform to obtain more general results with
wider applicability.

A special class of m-attribute games closely related to
this work, called single-attribute games, is introduced by
Özen et al. (2011). Each player in a single-attribute game
is endowed with a single type of attribute, and a coalition’s
attribute level is given by the sum of its members’ attribute
levels. The value of a coalition is determined by a single-
variable function, 𝜋, at its attribute level. Özen et al. (2011)
showed that elasticity of attribute function 𝜋 plays an impor-
tant role in single-attribute games. A function 𝜋 is elastic if
𝜋(x1)

x1
≤ 𝜋(x2)

x2
for all x1, x2 such that x1 ≤ x2. In other words,

elasticity implies increasing average return with increasing
attribute levels. Increasing returns can also be interpreted
as increasing unit price for the attribute. Therefore, if the
attribute function is elastic, compensating each player propor-
tionally to the price and the players’ attribute levels increases
players’ allocations as the coalition grows, making the largest

coalition the most desirable one. The allocation mechanisms
with this property are called population monotonic allocation
schemes (PMAS), and they constitute core allocations of the
underlying game and its subgames. It is then natural to study
elasticity as a sufficient condition for showing nonemptiness
of the core. More interestingly, Özen et al. (2011) showed
that all single-attribute games that are defined by an attribute
function, 𝜋, have a nonempty core if and only if 𝜋 is elastic.
This result reveals some interesting characteristics of single-
attribute games. First, one only needs to focus on elasticity
of 𝜋 to study the core of single-attribute games defined by
𝜋. This approach was employed by Özen et al. (2011) to
study the core of several games of Erlang B and C queue-
ing systems, by Karsten et al. (2015) for OPTN-M/M/s and
OPTℝ-M/M/s games, and by Karsten and Basten (2014) for
spare parts games. Next, if all single-attribute games defined
by 𝜋 have a nonempty core, then the attribute function 𝜋 is
elastic and, as discussed above, there exists an attribute price
that can be used to create a core allocation of payoffs. This
price reflects the worth of a unit attribute level in a stable
coalition regardless of the identity of its owner. Hence, it
can be calculated a priori, without knowing exact players or
their attribute levels. The existence of increasing prices (due
to elasticity), which also implies the existence of a PMAS,
encourages formation of larger coalitions as everyone bene-
fits from increased prices.

In this paper, we extend the analysis by Özen et al. (2011)
to m-attribute games, in which each player is endowed with
a vector of m attributes. Our results indicate that superho-
mogeneity of degree one (which is the extension of elastic-
ity to functions of m variables and is defined in Section 3)
of the attribute function 𝜋 is not a sufficient and necessary
condition for core nonemptiness in itself. That is, we require
additional conditions (modified concavity) to establish that
the core is nonempty. To gain additional insights into m-
attribute games, we derive several additional sufficient con-
ditions for core nonemptiness of m-attribute games, and suf-
ficient and necessary conditions for their convexity. Unlike
single-attribute games, m-attribute games do not always pos-
sess a PMAS. However, we show existence of attribute prices
(which we refer to as core prices) that can be used to derive
core allocations for m-attribute games with a nonempty core.
We also show how m-attribute games can be seen as a gener-
alization of several well-known OM games, and we illustrate
how core allocations obtained for those games can be seen
as special cases of our results. Finally, we establish natural
connections between transferable utility (TU) games and m-
attribute games. We provide a more detailed discussion of our
results at the end of this section.

1.1 Game theory preliminaries

Before we explain our findings in more detail, we need to
introduce some concepts and results from game theory. A
TU game is a pair (N, v), where N is a finite set of agents,
also called the grand coalition, while v : 2N → ℝ, which is
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called the characteristic function, is a map assigning to each
subset of agents S ⊆ N a real number, v(S), with v(∅) = 0.
The set S is called a coalition, and v(S) can be interpreted as
the profit that coalition S can achieve by cooperation. A TU
game (N, v) is called superadditive if v(S ∪ T) ≥ v(S) + v(T)
for every S,T ⊂ N such that S ∩ T = ∅. If a game is super-
additive, two separate coalitions can increase their total profit
by cooperating. However, superadditivity does not guarantee
stability of the grand coalition.

One of the common stability concepts is the core. Let z =
(zi)i∈N ∈ ℝ

N be a payoff vector specifying the payoff zi for
each player i. The core of the game (N, v) is

Core(N, v) =

{
z ∈ ℝN|∑

i∈N

zi = v(N) and

∑
i∈S

zi ≥ v(S) for each S ⊆ N

}
. (1)

The core consists of all efficient payoff vectors such that no
group of players benefits by a defection from the grand coali-
tion. We say that the grand coalition is stable if the core of the
corresponding game is nonempty. The two central questions
in the analysis of the grand coalition stability are as follows:
Is the core empty, and if it is nonempty, how can we find
allocations in the core? Answering these questions can be a
difficult task; even checking if a specific allocation belongs
to the core can be NP-hard due to the exponential number of
constraints that define the core (Chen & Zhang, 2009).

Convexity gives us sufficient conditions for nonempti-
ness of the core. A TU game (N, v) is called convex if for
all i ∈ N and all S ⊂ T ⊆ N ⧵ {i}, v(T ∪ {i}) − v(T) ≥ v(S ∪
{i}) − v(S); that is, a player’s marginal contribution weakly
increases as it joins a bigger coalition. Convex games have a
nonempty core (Shapley, 1971).

Bondareva (1963) and Shapley (1967) studied nonempti-
ness of the core and independently identified a set of neces-
sary and sufficient conditions. For every S ⊆ N, let us define
vector eS ∈ {0, 1}N by

eS
i =

{
1, i ∈ S;

0, i ∈ N ⧵ S.
(2)

A map 𝜅 : 2N ⧵ {∅}→ [0, 1] is called a balanced map if∑
S∈2N⧵{∅} 𝜅(S)eS = eN , and a game (N, v) is called a bal-

anced game if for every balanced map 𝜅 : 2N ⧵ {∅}→ [0, 1],
it holds that

∑
S∈2N⧵{∅} 𝜅(S)v(S) ≤ v(N). Bondareva (1963)

and Shapley (1967) proved that a TU game has a nonempty
core if and only if it is balanced. Finding a core element can
be an intricate task even when the game is shown to be bal-
anced. A TU game (N, v) is totally balanced if it is balanced
and, for each coalition T ⊂ N, the subgame (T , v|T ), defined
by v|T (S) = v(S) for all S ⊆ T , is balanced as well.

It follows from the previous discussion that there are three
common approaches to study core nonemptiness: (i) identi-
fying a core allocation, (ii) checking if the game is convex,1

and (iii) checking if the game is balanced. We illustrate each
of these approaches with an example from OM games. First,
Chen and Zhang (2016) studied economic lot-sizing (ELS)
games with general concave ordering cost and showed how
to find a core allocation using linear programming duality.
This technique was first applied by Owen (1975) to find a
core allocation in LP games. Second, Anily and Haviv (2010)
studied cooperation in M∕M∕1 queueing systems and showed
that the resulting auxiliary game is concave. Lastly, Müller
et al. (2002) and Slikker et al. (2001) studied newsvendor
games and showed that such games satisfy balancedness con-
ditions regardless of the distribution of demand faced by the
players. We refer to Borm et al. (2001), Fiestras-Janeiro et al.
(2011), Dror and Hartman (2011), and Nagarajan and Sošić
(2008) for comprehensive reviews of OM games. Next, we
review the OM games related to m-attribute games.

1.2 OM games and regular games

The coalition value in a TU game can depend on the iden-
tities of its members—coalitions with the same vector of
attributes but different players can receive different payoffs.
In a typical OM game, every coalition is usually identified by
a vector of attributes, and the value of its characteristic func-
tion is given by evaluating a function of these attributes—an
attribute function—for given attributes’ values, regardless of
the identities of coalition members. We say that such a game
is embedded in the corresponding attribute function. When
the attribute vectors of the players are additive—that is, when
the attribute vector of a coalition is given by the sum of the
attribute vectors of its players—these OM games fall into the
class of m-attribute games (for a formal definition, see Defini-
tion 1 in Section 2). Anily and Haviv (2014) introduced a new
class of games, which they called regular games. In a regu-
lar game, every player is identified by a vector of attributes,
and the characteristic function assigns a value to any possi-
ble profile of vectors of which coalitions might be endowed.
This setting is more conducive for analysis of the OM games.
Anily and Haviv (2014) showed that a regular subadditive
game that is homogeneous of degree one has a nonempty
core. A game is said to be homogeneous of degree one if
for any positive integer k, the characteristic function value
obtained by cloning k times a collection of players equals k
times the value of the original collection of players. However,
many OM games, including the ones we focus on (m-attribute
games), exhibit economies of scale and scope, as cooperation
creates additional benefits. Therefore, many OM games are
not homogeneous of degree one, and this result does not help
in their analysis.

In a more recent paper, Anily (2018) studied centraliz-
ing aggregation games, a special class of regular games. An
aggregation game is a regular game in which an aggrega-
tion function aggregates any profile of vectors into a vec-
tor of attributes. The game is centralizing if the character-
istic function value for the aggregated vector lays between
the lowest and the highest value vectors within the profile. In
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other words, the characteristic function acts like a measure of
centrality under the aggregation function. Anily (2018) fully
characterized the nonnegative core of centralizing aggrega-
tion games under a decreasing variation condition. Because
adding the players’ attribute levels acts as an aggregation
function, the m-attribute games studied in this paper are a
subclass of aggregation games; however, they are not central-
izing. We refer to Anily and Haviv (2014) and Anily (2018)
for formal definitions of regular and centralizing aggrega-
tion games.

1.3 Related economics work

One paper closely related to our m-attribute games comes
from the economics literature. Sharkey and Telser (1978)
studied supportable cost functions. A cost function c defined
as ℝm

+ is called supportable if for every x̄ > 0 = (0, … , 0)
there exists a price vector p ∈ ℝm such that

∑m
j=1 pjxj ≤

c(x) for all x ∈ ℝm
+ with x ≤ x̄ (i.e., for all 0 ≤ x ≤ x̄) and∑m

j=1 pjx̄j = c(x̄). Sharkey and Telser (1978) derived the nec-
essary and sufficient conditions for a nonnegative and nonde-
creasing cost function c with c(0) = 0 to be supportable. One
important implication of supportability is that if the charac-
teristic function of a cooperative cost game is embedded in
a supportable cost function (as it is the case in m-attribute
games), these price vectors can be used to calculate core allo-
cations. In this paper, we show that these conditions are also
necessary and sufficient for core nonemptiness of m-attribute
games. Note that we consider profit function 𝜋 and profit
games instead of cost function c and cost games. However,
price vectors that can be used to derive core allocations for
profit games exist if the corresponding cost function c = −𝜋
is supportable; nonnegativity is not required for a function
to be supportable. Interestingly, these results have not been
considered in the OM literature, which has not used the sup-
portability concept to date.

While deriving the sufficient and necessary conditions for
supportability, Sharkey and Telser (1978) implicitly refer to a
result in Telser (1978) similar to our Theorem 1. Telser (1978)
studied the core of profit games with a continuum of players
and showed that the core of such games is nonempty if and
only if their characteristic function V is kind, that is, if −V
is supportable. Sharkey and Telser (1978) assumed that the
cost function is nondecreasing. Therefore, their model did not
cover some of the OM games, such as the queueing games
in Anily and Haviv (2010) and the FIX-M/M/s games in
Karsten et al. (2015), which we would like to study under the
m-attribute games framework. Moreover, Sharkey and Telser
(1978) never attempted to identify the abovementioned price
vectors but focused mainly on the conditions under which a
function is supportable. Telser (1978) focused on a class of
games with a continuum of players that is different from our
setting with a finite number of players; while it is more chal-
lenging to prove results with a finite number of players, such
a setting is more natural in the analysis of OM games. In this

paper, we revisit results from Sharkey and Telser (1978) and
provide a framework that is helpful in the analysis of OM
games, including the queueing and FIX-M/M/s games.

In a recent working paper, Cao (2019) built on the results
from Sharkey and Telser (1978) and studied superadditive
market games. Unlike our paper, Cao (2019) assumed that
cooperative functions (corresponding to our attribute func-
tions) are nonnegative, superadditive, and, hence, nonde-
creasing; these conditions are violated by both the queue-
ing and FIX-M/M/s games. He independently showed a result
similar to our Theorem 1 and derived the conditions for con-
vexity of the m-attribute games. However, the mathematical
techniques used in Cao (2019) are significantly different from
those used in our paper, hence our results are complementary
to each other. Although Cao (2019) assumed increasing coop-
erative functions, we use continuity of attribute functions to
derive our results. The new sufficiency conditions and core
price vectors for the queueing games and FIX-M/M/s games
are the novel results unique to our paper.

A setting closely related to our work is considered by the
seminal work of Shapley and Shubik (1969). Shapley and
Shubik (1969) studied a class of games called market games,
which result from an exchange economy—that is, a market
in which every player with a continuous and convex utility
function owns a vector of divisible and transferable resources.
In a market game, players can form coalitions by reallocat-
ing their resources to maximize the utility they can jointly
achieve. Shapley and Shubik (1969) showed that all market
games are totally balanced, and that there exists a price vec-
tor that can be used to calculate a payoff vector that is in the
core. As discussed by Cao (2019), m-attribute games can be
derived from superadditive market games in which the play-
ers’ utility functions are identical and superadditive (but not
necessarily convex), and hence, are not equivalent to market
games. For example, unlike market games, m-attribute games
can have an empty core. Although these games are fundamen-
tally very different, in Theorem 1 we show a result similar to
the one from Shapley and Shubik (1969); that is, the exis-
tence of core prices when the core of m-attribute games is
nonempty. Cao (2019) referred to the set of the core prices as
the Walrasian core and showed that these prices are equiva-
lent to Walrasian equilibrium prices of an exchange economy.

Another famous result of Shapley and Shubik (1969) is
that every totally balanced TU game can be reformulated
as a market game. Although market games and m-attribute
games are very different, in the final part of this paper we
show that a similar relationship holds for TU games and m-
attribute games.

1.4 Results

Let us now review our main results. We start by provid-
ing a feasibility problem that can be used to check for core
nonemptiness of an underlying cooperative game. More pre-
cisely, by finding a feasible solution of a semi-infinite linear
program, we can find prices for all attributes (which we refer
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to as attribute prices) that can be used to calculate a core allo-
cation of the corresponding m-attribute game. More interest-
ingly, our findings also imply that establishing nonemptiness
of the core is analogous to checking whether such prices exist.
This result is a good starting point as it has a nice intuitive
interpretation, achieved by linking attribute prices with core
allocations. It can be useful for studying the core of some spe-
cial classes of m-attribute games, as illustrated in the queue-
ing games in Section 3.

We then derive two sets of necessary and sufficient con-
ditions for attribute function 𝜋 that lead to nonemptiness
of the core of the embedded cooperative m-attribute game.
Both these conditions require a type of modified concavity
of the attribute function 𝜋. We show that once we move from
single-attribute to m-attribute games, an extended version of
elasticity is no longer enough, and we require additional con-
ditions (modified concavity) for establishing that the core is
nonempty. We then develop conditions for convexity of all m-
attribute games embedded in attribute function 𝜋—additivity
and strongly increasing differences (for the definition, see
Section 4). It is interesting to observe that strongly increasing
differences imply a convex-type behavior, while our first two
conditions imply a concave-type behavior. Thus, our results
indicate that nonemptiness of the core is not a feature of only
convex-behaving or of only concave-behaving attribute func-
tions. In other words, attribute functions that exhibit either
convex or concave type of behavior can have embedded
balanced m-attribute games. We illustrate in Section 4 how
our results can be applied to several problems from the OM
literature, such as ELS games and queueing games.

Next, as it may be difficult to verify necessary and suffi-
cient conditions for core nonemptiness, we study several sets
of sufficient conditions, which might be easier to check. A
common theme for these conditions is a type of generalized
elasticity coupled with a type of (relaxed) concavity. Finally,
we show that concavity of function 𝜋 can be relaxed to con-
cavity in m − 1 variables, and use this to describe how to find
attribute prices that can be used to generate a core allocation
for balanced m-attribute games. In Section 5, we illustrate the
application of these sufficient conditions with some examples
from OM games.

In the final part of this paper, we show that for each TU
game there exists an equivalent m-attribute game embedded
in attribute function 𝜋 such that the TU game is totally bal-
anced if and only if all m-attribute games embedded in 𝜋 have
a nonempty core.

The remainder of the paper is organized as follows: We
introduce m-attribute games and provide examples of OM
games that can be formulated as m-attribute games in Sec-
tion 2. In Section 3, we provide a formulation of the optimiza-
tion problem that calculates core allocations for m-attribute
games and use this formulation to calculate a core alloca-
tion for special classes of m-attribute games. In Section 4,
we present the necessary and sufficient conditions for core
nonemptiness and convexity of m-attribute games. This is fol-
lowed by Section 5, which considers three sets of sufficient

conditions for core nonemptiness. We conclude the paper by
establishing connections between TU games and m-attribute
games in Section 6.

2 m-ATTRIBUTE GAMES

In this section, we formally introduce m-attribute games and
then provide some examples of OM games that fall into this
class.

Definition 1. Let m1,m2 ∈ Z+. Consider a domain m =
ℝ

m1
+ × ℝ

m2
++ ∪ {0}, where ℝ++ = {y ∈ ℝ, y > 0}, and let 𝜋 :

m → ℝ with 𝜋(0) = 0. Assume that each player i ∈ N
comes with an input vector x̄i ∈ m. When players form a
coalition, S, they pool their resources and are endowed with
an input vector x̄S =

∑
i∈S x̄i. An m-attribute game embedded

in 𝜋 is defined by (N, v) such that

v(S) = 𝜋(x̄S) for all S ⊆ N∖{∅} and v(∅) = 0. (3)

We refer to m as the set of attribute vectors, and we call 𝜋
the attribute function.

Note that m-attribute games can have players with zero
input vector, 0. Because such players do not have any
attributes, they cannot create positive return or contribute to
any coalition they join. It is then natural to assume 𝜋(0) = 0,
which is in line with the assumption v(∅) = 0 in TU games.
Thus, players with zero input vector are dummy players and
are irrelevant for the analysis.2 We also note that m is not
necessarily a closed set (when m2 > 0). These features are
essential for the analysis of some important OM games (e.g.,
queueing games) whose domains are not closed.

Next, we provide some examples of OM games that fall
into this class.

2.1 Economic lot-sizing games

Our first example comes from the inventory/production
environment—ELS games, which were first introduced by
Van den Heuvel et al. (2007) and Chen and Zhang (2016).
Denote by N the set of n retailers, each selling the same prod-
uct of a single manufacturer and solving an ELS problem to
determine their ordering schedules. For each retailer i ∈ N we
assume identical revenues and costs. Let t ∈ {1, 2, … ,m} be
the index for periods in the planning horizon, with m being
the last period. Let x̄i

t denote the demand faced by retailer
i ∈ N in period t. The products are sold at a price rt in period
t. At the beginning of period t, the cost of ordering qt units is
given by a concave function Kt(qt), with Kt(0) = 0. If there is
inventory on hand at the end of period t, a holding cost of ht
per unit is incurred. Backorders are not allowed. If the play-
ers form a coalition S, coalition S chooses an ordering plan
(q1, … , qm) to satisfy the demand vector x̄S =

∑
i∈S x̄i. Thus,
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coalition S is facing the following optimization problem:

𝜋(x̄S) = max
(q1,…,qm)

m∑
t=1

rtx̄
S
t − Kt(qt) − htIt (4a)

s.t. It + x̄S
t = It−1 + qt, t = 1, … ,m, (4b)

qt, It ≥ 0, t = 1, … ,m, (4c)

I0 = 0. (4d)

The ELS game (N, v) is then defined by v(S) =
𝜋(x̄S) for all S ⊆ N. This is an m-attribute game in which
demand in each period is an attribute, m1 = m, m2 = 0, and
x̄i is the input vector for player i.

2.2 Queueing games

Our second example is taken from queueing games stud-
ied by Anily and Haviv (2010). Note that Anily and Haviv
(2010) studied cost games, whereas we study profit games in
this paper. Nevertheless, their cost game can be reformulated
as a profit game and vice versa. Therefore, they are equiva-
lent problems.

Each player i in the set N = {1, … , n} manages an
M∕M∕1-queueing system with arrival rate 𝜆i and service
rate 𝜇i, such that 𝜇i > 𝜆i. The players can form coalitions
to take advantage of reduced congestion in the pooled sys-
tem. Once a coalition S is formed, it manages an M∕M∕1-
queueing system with arrival rate 𝜆S =

∑
i∈S 𝜆i and service

rate 𝜇S =
∑

i∈S 𝜇i. Each coalition S ⊆ N, S ≠ ∅, serves a cus-

tomer stream 𝜆S, earns r𝜆S, and pays congestion cost p
𝜆S

𝜇S−𝜆S
.

If we let 𝜌S = 𝜇S − 𝜆S, the queueing game (N, v) is then
defined by

v(S) = 𝜋(𝜆S, 𝜌S) = r𝜆S − p
𝜆S

𝜌S
for all S ⊆ N with S ≠ ∅,

and v(∅) = 𝜋(0) = 0. (5)

The queueing game is an m-attribute game in which arrival
rate 𝜆 and 𝜌 are the two attributes, m1 = 1, and m2 = 1
because 𝜌i > 0 for all i ∈ N. Note that the cost component

p
𝜆

𝜌
(and hence the corresponding cost function c = −𝜋 when

r = 0) is decreasing with 𝜌, so the model of Sharkey and
Telser (1978) does not cover these games.

2.3 FIX-M/M/s games

Our third example considers a queueing game studied by
Karsten et al. (2015), in which each player has multiple
servers. More precisely, each player i ∈ N = {1, … , n} man-

ages an M∕M∕l-queueing system with arrival rate 𝜆i and li
servers, each with a service rate 𝜇, such that li𝜇 > 𝜆i. The
players can form coalitions to reduce congestion and the wait-
ing times of customers in the pooled system. Once a coali-
tion S is formed, it manages an M∕M∕l-queueing system with
arrival rate 𝜆S =

∑
i∈S 𝜆i and number of servers lS =

∑
i∈S li.

For coalition S with 𝜆S > 0, 𝜇 > 0, and lS ∈ ℝ with lS >
𝜆S

𝜇
,

the expected sojourn time of a customer is given by

W(lS, 𝜆S) =
C
(

lS,
𝜆S

𝜇

)
lS𝜇 − 𝜆

+
1
𝜇
, (6)

where

C(l, a) =
⎛⎜⎜⎝
∞

∫
0

a e−ax(1 + x)l−1x dx
⎞⎟⎟⎠
−1

for each a > 0 and

l ∈ ℝ with l > a. (7)

Each coalition S ⊆ N, S ≠ ∅, serves a customer stream 𝜆S,
earns r𝜆S, and pays the congestion cost p𝜆SW(lS, 𝜆S). If we

let 𝜌S = lS −
𝜆S

𝜇
, then FIX-M/M/s game (N, v) is defined by

v(S) = 𝜋(𝜆S, 𝜌S) = r𝜆S − p𝜆SW

(
𝜌S +

𝜆S

𝜇
, 𝜆S

)
for all S ⊆ N with S ≠ ∅, and v(∅) = 𝜋(0) = 0. (8)

Similar to queueing games, the FIX-M/M/s game is an m-
attribute game in which arrival rate 𝜆 and 𝜌 are the two

attributes, m1 = 1 and m2 = 1 because 𝜌i = li −
𝜆i

𝜇
> 0 for

all i ∈ N. Note that for this class of games, the cost compo-

nent p𝜆W(𝜌 +
𝜆

𝜇
, 𝜆) is decreasing with 𝜌 (due to Theorem 2.2

of Karsten et al., 2015), so the model of Sharkey and Telser
(1978) does not cover these games.

2.4 Linear production games

Next, we consider the LP game studied in Owen (1975). Let
N = {1, … , n} denote the retailers. Each retailer i possesses
bi

k level of resource k ∈ {1, 2, … ,m} and can produce p dif-
ferent products. Each unit of product j ∈ {1, 2, … , p} requires
ajk units of resource k and sells at a price of cj. A retailer,
i, endowed with the resource vector bi = {bi

1, … , b
i
m}, has to

determine how many units of each product to produce to max-
imize its profit. If several retailers form a coalition S, it will be
endowed with bS =

∑
i∈S bi. The problem faced by coalition

S can be formulated as

𝜋(bS) = max(x1,…,xp)

p∑
j=1

cjxj
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s.t.
p∑

j=1
ajkxj ≤ bS

k k = 1, … ,m,

xj ≥ 0 j = 1, … , p. (9)

Note that the LP game is an m-attribute game in which each
resource type is an attribute, m1 = m and m2 = 0.

2.5 Newsvendor games

In the standard newsvendor game, each player i ∈ {1, … , n}
buys the same product at a cost c and sells it at a price p
to satisfy its discrete random demand, Xi, with finite expec-
tation and finite sample space. The goal of each player, i,
is to determine its order quantity, Qi, which maximizes its
expected profit. Let Ω denote the finite sample space. For a
realization 𝜔 ∈ Ω and order quantity Q, the profit of player
i is given by Π(Q,Xi(𝜔)) = p min{Q,Xi(𝜔)} − cQ, hence its
maximum expected profit is

𝜋(Xi) = max
Q≥0

E[Π(Q,Xi(𝜔))]. (10)

If the players form a coalition S, the coalition faces demand
XS such that XS(𝜔) =

∑
i∈S Xi(𝜔) for each 𝜔 ∈ Ω. The

newsvendor game can then be seen as an m-attribute game in
which Ω is the set of attributes, m1 = |Ω|, m2 = 0, and each
player i possesses input vector (Xi(𝜔))𝜔∈Ω.

As can be seen, m-attribute games provide a more gen-
eral setting than those used in Sharkey and Telser (1978) for
studying diverse classes of OM games, and our results can
be applied to different special cases. We will provide some
additional examples in subsequent sections.

3 DETERMINING A CORE
ALLOCATION AND CORE PRICES

Determining a core allocation of a TU game might be a hard
problem. In this section, we will investigate this problem for
m-attribute games and we will look for existence of (attribute)
price vectors (i.e., core prices) that can be used to calculate
core allocations for each m-attribute game embedded in 𝜋.
We will first introduce and discuss the price vectors of inter-
est for our results. After presenting several novel concepts
that will be used in the analysis, we will state our first main
result in Theorem 1, showing the existence of core prices that
can be used to calculate core allocations for m-attribute games
that possess a nonempty core. In this theorem, we will intro-
duce a semi-infinite linear problem formulation that is used
to determine core prices. At the end of the section, we will
illustrate how this formulation can be used to study the core
of some special classes of m-attribute games.

Consider a function 𝜋 : m → ℝ, x̄ ∈ m and an m-
attribute game embedded in 𝜋 with

∑
i∈N x̄i = x̄. Let

(𝜂j)j=1,…,m ∈ ℝ
m be a price vector, with 𝜂j being the unit price

for attribute j. Suppose that 𝜂 is used to compensate each
player i ∈ N proportionally with its attribute levels, that is,
player i receives the payoff zi =

∑m
j=1 x̄i

j𝜂j. The payoff vector

(zi)i∈N is a core allocation if
∑

i∈S zi =
∑m

j=1 x̄S
j 𝜂j ≥ 𝜋(x̄S) =

v(S) for all S ⊂ N and
∑

i∈N zi =
∑m

j=1 x̄N
j 𝜂j = 𝜋(x̄) = v(N).

We are interested in price vectors that can be used to calcu-
late core allocations proportional with players’ attribute lev-
els regardless of the specific profile of players’ input vec-
tors, that is, for all m-attribute games embedded in 𝜋 with∑

i∈N x̄i = x̄. As any vector x ∈ m with x ≤ x̄ (i.e., xj ≤ x̄j
for all j = 1, … ,m) can be an input vector of a coalition in
one of these m-attribute games, a price vector 𝜂 can be used
to calculate core allocations for all of these m-attribute games
if

m∑
j=1

xj𝜂j ≥ 𝜋(x) for all x ∈ m with x ≤ x̄, (11a)

m∑
j=1

x̄j𝜂j = 𝜋(x̄). (11b)

We summarize this discussion in the following definition.

Definition 2. For an input vector x̄ ∈ m, a price vector
(𝜂j)j=1,…,m ∈ ℝ

m is called a core price vector (of x̄) if it satis-
fies (11).

We observe that any core price vector (of x̄) can be used to
calculate a core allocation for any m-attribute game embed-
ded in 𝜋 with

∑
i∈N x̄i = x̄.

As mentioned in the introduction, our analysis requires
introduction of some novel concepts that represent general-
izations of elasticity used in single-attribute games.

Definition 3. A function 𝜋 : m → ℝ is called superho-
mogeneous of degree one (or SH(1)) if for all x ∈ m and

0 < 𝛼 ≤ 1 with 𝛼x ∈ m,
𝜋(𝛼x)

𝛼
≤ 𝜋(x). 𝜋 is called homoge-

neous of degree one (or H(1)) if for all x ∈ m and 0 < 𝛼 ≤ 1

with 𝛼x ∈ m,
𝜋(𝛼x)

𝛼
= 𝜋(x). 𝜋 is called superadditive if for

all x, y ∈ m, 𝜋(x) + 𝜋(y) ≤ 𝜋(x + y).

Sharkey and Telser (1978) showed that a cost function is
supportable only if it is SH(1). SH(1) is sometimes referred
to as increasing return to scale—it implies that if multiple
players with the same attribute vector cooperate, the aver-
age return increases as more players join the cooperation,
which makes cooperation desirable and stable. In a single-
attribute game each player is of the same type, and Özen et al.
(2011) showed that elasticity (which is SH(1) for functions of
one variable) is a sufficient and necessary condition for core
nonemptiness. Moreover, when m = 1 (as in single-attribute
games), the feasibility problem in (11) reduces to 𝜂 = 𝜋(x̄)∕x̄,
and 𝜂 ≥ 𝜋(x)∕x for all 0 < x ≤ x̄, which naturally holds if 𝜋
is SH(1). When m > 1, problem (11) is more complex and
SH(1) does not guarantee existence of feasible prices any
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more. However, SH(1) can help us to simplify problem (11).
In order to develop a tighter formulation of problem (11), we
need to introduce the notion of a neighboring face.

Definition 4. For an input vector x̄ ∈ m, the kth neighbor-
ing face of x̄ is defined as

Fk(x̄) =

{
{x ∈ m|xk = x̄k, xj ≤ x̄j ∀j ≠ k, } if x̄k > 0;

∅ if x̄k = 0.

(12)

F(x̄) = ∪k∈{1,…,m}Fk(x̄) denotes the collection of points in all
neighboring faces of x̄. A vector x ∈ F(x̄) is called a neigh-
boring face vector of x̄.

Note that we set Fk(x̄) = ∅ if x̄k = 0 because these cases
can be analyzed in m − 1 dimensions. When x = 0, constraint
(11a) holds for any price vector because 𝜋(0) = 0; hence,
(11a) is redundant. Consider now an x ∈ m∖{0} with x ≤ x̄.
If 𝜋 is SH(1), the constraint in (11a) related to x ∉ F(x̄) is
dominated by another constraint because there exists a 𝛽 > 1
with 𝛽x ∈ m and 𝛽x ∈ F(x̄). Hence, all such constraints are
redundant and it is enough to focus on the constraints for
x ∈ F(x̄), as described in our first result.

Theorem 1. Suppose that 𝜋 : m → ℝ is continuous on
m∖{0}. Then, all m-attribute games embedded in 𝜋 have
a nonempty core if and only if 𝜋 is SH(1) and for all x̄ ∈ m,
there exists a core price vector (of x̄) 𝜂 that satisfies the fol-
lowing set of constraints:

m∑
j=1

xj𝜂j ≥ 𝜋(x) for all x ∈ F(x̄) (13a)

m∑
j=1

x̄j𝜂j = 𝜋(x̄). (13b)

In Theorem 1, we introduce feasibility problem (13a)–
(13b), which is a tighter formulation of problem (11) under
SH(1). Together with SH(1), the solution of problem (13)
gives specific core prices. Theorem 1 shows that establishing
core nonemptiness is analogous to establishing the existence
of core prices. Although the existence of core prices directly
implies nonemptiness of the core, our result also shows the
opposite implication. This opposite relation is nontrivial and
interesting, as the existence of core prices has not been estab-
lished for some OM games (e.g., queueing games and FIX-
M/M/s games) that are known to have a nonempty core. Our
result also shows that the feasible set of core prices depends
only on the input vector of the grand coalition and that core
prices can be used to calculate core allocations regardless of
players’ specific profile of input vectors.

We will begin the proof by showing that, under SH(1), any
core price vector satisfying (13) can be used to calculate a
core allocation for any game with the grand coalition input
vector x̄. This will show the “if” part of the theorem. Showing

that all m-attribute games embedded in 𝜋 have a nonempty
core only if 𝜋 is SH(1) and if, for all x̄ ∈ m, there exists
a core price vector satisfying (13) is more involved. We will
first introduce a semi-infinite LP problem equivalent to the
feasibility problem (13) and its dual. Then, we will prove that
the strong duality theorem holds for our semi-infinite linear
program. Together with SH(1), the dual formulation gives us
a set of necessary and sufficient conditions for existence of
core prices.3 In the proof of Theorem 2, we will show that the
same set of conditions will also give us sufficient and nec-
essary conditions for nonemptiness of the core. Despite the
fact that we do not have all tools required to prove this result
at the moment, we choose it as our starting point because it
has a nice intuitive interpretation—it links core prices with
core nonemptiness.

Proof of Theorem 1. In Theorem 2, we show that SH(1) is a
necessary condition for all m-attribute games embedded in 𝜋
to have a nonempty core. Therefore, in the remainder of the
proof, we focus on 𝜋 that is SH(1).

We first prove the “if” part of the theorem. Consider an x̄ ∈
m and suppose that (𝜂j)j=1,…,m is a feasible solution for x̄.
Consider an m-attribute game embedded in 𝜋 such that x̄N =
x̄, and coalition S ⊆ N with input vector x̄S. Because x̄S ≤ x̄,
there exists an 𝛼S ≥ 1 such that 𝛼Sx̄S ∈ F(x̄). Then,

v(S) = 𝜋(x̄S) ≤ 𝜋(𝛼Sx̄S)
𝛼S

≤
∑m

j=1 𝛼Sx̄S
j 𝜂j

𝛼S
=

m∑
j=1

x̄S
j 𝜂j =

∑
i∈S

zi.

(14)

The first inequality holds because 𝜋 is SH(1). The second
inequality follows because 𝜂 represents a feasible solution for
(13) and, hence, it satisfies (13a) if 𝛼Sx̄S ≠ x̄, and it satisfies
(13b) if 𝛼Sx̄S = x̄.

It remains to show the “only if” part. Suppose that all m-
attribute games embedded in 𝜋 have a nonempty core. Due to
Lemma 1, which is presented in the Supporting Information
Appendix, we can restrict our attention to x̄ ∈ m with x̄k > 0
for all k = 1, … ,m without loss of generality.

Consider an x̄ ∈ m with x̄k > 0 for all k = 1, … ,m. The
“only if” statement will follow from the following observa-
tions. The feasibility problem (13) has a feasible solution if
and only if the following problem has a solution achieving
minimum that is equal to 𝜋(x̄):

P : inf
(𝜂1,…,𝜂m)

m∑
j=1

(
x̄j𝜂j

)
(15a)

s.t.
m∑

j=1

xj𝜂j ≥ 𝜋(x) for all x ∈ F(x̄). (15b)

The dual for problem (P) can be written as

D : sup
(ax)x∈F(x̄)

∑
x∈F(x̄)

(𝜋(x)ax) (16a)
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s.t.
∑

x∈F(x̄)

xjax = x̄j for all j = 1, … ,m (16b)

ax ≥ 0 for all x ∈ F(x̄). (16c)

We remark that there is a finite number of decision vari-
ables and an infinite number of constraints in problem (15).
This special type of linear problem is known as a semi-infinite
linear problem (Charnes et al., 1963), and the duality result
known for its finite counterparts does not directly extend to
semi-infinite linear problems (Duffin & Karlovitz, 1965, pro-
vided a counterexample4). The following conditions guaran-
tee that the primal and dual optimal solutions exist and a
strong duality result holds (Corollary 12.3 in Faigle et al.,
2002):

∙ 𝜋 is a continuous function;
∙ F(x̄) is a compact set (i.e., closed and bounded);
∙ Slater constraint qualification for P (hereafter denoted as

SCQP for brevity) holds: (SCQP) there exists a vector
(𝜂
′

j )j=1,…,m such that
∑m

j=1 𝜂
′

j xj > 𝜋(x) for all x ∈ F(x̄);
∙ dual Slater condition (hereafter denoted as SCD for brevity)

holds: (SCD) x̄ ∈ int cone{x|x ∈ F(x̄)}.

We remark that F(x̄) is a compact set when m = ℝm
+.

However, it is not closed and hence not compact when m =
ℝ

m1
+ × ℝ

m2
++ with m2 > 0. Next, we study these two cases sep-

arately.
To start, suppose that m2 = 0 and, hence, m = ℝm

+. Let
x̄ ∈ m with x̄k > 0 for all k = 1, … ,m. Because 𝜋 is a con-
tinuous function, we will show that F(x̄) is a compact set, and
SCQP and SCD are satisfied by (15) and (16).

First, consider F(x̄). Because m = ℝm
+ and x̄k > 0 for

all k = 1, … ,m, the kth neighboring face can be restated
as Fk(x̄) = {x ∈ ℝm|xk = x̄k, 0 ≤ xj ≤ x̄j ∀j ≠ k}, which is
closed and bounded. Therefore, F(x̄) = ∪k∈{1,…,m}Fk(x̄) is
closed and bounded as well.

Next, we consider SCQP. Because F(x̄) is closed
and bounded, and 𝜋 is continuous and finite in m,
maxx∈F(x̄) 𝜋(x) is well defined. Note that for each x ∈ F(x̄)

there exists a j such that xj = x̄j. As a result, for any (𝜂
′

j )j=1,…,m

such that 𝜂
′

j > maxx∈F(x̄)(𝜋(x))∕x̄j, it holds that
∑m

j=1 𝜂
′

j xj >

𝜋(x) for all x ∈ F(x̄). Therefore, SCQP is satisfied. Finally,
because F(x̄) contains points other than x̄, SCD is satisfied
and the strong duality theorem holds for our semi-infinite lin-
ear program.

To conclude, when m = ℝm
+, problem (16) (and prob-

lem (15), due to the strong duality theorem) has a feasible
solution with an objective function value equal to 𝜋(x̄) if
and only if attribute function 𝜋 has the following prop-
erty:

∑
x∈CF(x̄) ax𝜋(x) ≤ 𝜋(x̄) for each (ax)x∈F(x̄) satisfying

constraints (16b) and (16c). We refer to this property as
constructive face concavity (see Section 4 for a formal defini-
tion). In Theorem 2 we will show that SH(1) and constructive

face concavity are necessary and sufficient conditions for
nonemptiness of the core.

The proof for the case m2 > 0 follows similar steps; we
present it in the Supporting Information Appendix. □

The main difficulty in solving problem (13) is that it
contains an infinite number of constraints. However, this
formulation can be useful for studying the core of some
special classes of m-attribute games, as illustrated in the
following example.

3.1 Queueing games

Consider the queueing game (N, v) defined by v(S) =
𝜋(𝜆S, 𝜌S) for all S ⊆ N, with attribute function 𝜋 satisfying
SH(1). When 𝜆N = 0, it is a null game with v(S) = 0 for all
S ⊆ N, and each player receives zero payoff. When 𝜆N > 0,
a price vector 𝜂 ∈ ℝ2, which describes a core allocation,
should satisfy the following set of constraints:

𝜆𝜂1 + 𝜌
N𝜂2 ≥ 𝜋(𝜆, 𝜌N) for all 0 ≤ 𝜆 < 𝜆N , (17a)

𝜆N𝜂1 + 𝜌𝜂2 ≥ 𝜋(𝜆N , 𝜌) for all 0 < 𝜌 < 𝜌N , (17b)

𝜆N𝜂1 + 𝜌
N𝜂2 = 𝜋(𝜆N , 𝜌N). (17c)

It follows from (17c) that 𝜆𝜂1 + 𝜌
N𝜂2 = 𝜋(𝜆N , 𝜌N) −

𝜂1(𝜆N − 𝜆). Together with (17a), this implies that for all
0 ≤ 𝜆 ≤ 𝜆N ,

𝜋(𝜆N , 𝜌N) − 𝜂1(𝜆N − 𝜆) ≥ 𝜋(𝜆, 𝜌N) ⇒ 𝜂1

≤ 𝜋(𝜆N , 𝜌N) − 𝜋(𝜆, 𝜌N)

𝜆N − 𝜆
=

r𝜆N − p
𝜆N

𝜌N
− r𝜆 + p

𝜆

𝜌N

𝜆N − 𝜆

= r − p
1
𝜌N
, (18)

where the first equality follows from (5). Therefore, con-
straint (17a) is satisfied if and only if

𝜂1 ≤ r − p
1
𝜌N
. (19)

Similarly, it follows from (17c) that 𝜆N𝜂1 + 𝜌𝜂2 =
𝜋(𝜆N , 𝜌N) − 𝜂2(𝜌N − 𝜌), which together with (17b) implies
that for all 0 < 𝜌 ≤ 𝜌N ,

𝜋(𝜆N , 𝜌N) − 𝜂2(𝜌N − 𝜌) ≥ 𝜋(𝜆N , 𝜌) ⇒ 𝜂2

≤ 𝜋(𝜆N , 𝜌N) − 𝜋(𝜆N , 𝜌)
𝜌

N

− 𝜌 ≤ p
𝜆N

𝜌
𝜌N , (20)
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where the last inequality follows from (5). Because (20)

should hold for all 0< 𝜌 ≤ 𝜌N , it holds that 𝜂2 ≤ p
𝜆N

(𝜌N )2
. Now,

(17c) and (19) imply that

𝜂1 =
𝜋(𝜆N , 𝜌N) − 𝜂2𝜌

N

𝜆N
=

r𝜆N

𝜆N
− p

𝜆N

𝜆N𝜌N
−
𝜂2𝜌

N

𝜆N
⇒

r − p
1
𝜌N
−
𝜂2𝜌

N

𝜆N
≤ r − p

1
𝜌N
. (21)

As 𝜆N , 𝜌N > 0, it directly implies that 𝜂2 ≥ 0. Therefore,

every price vector 𝜂 ∈ ℝ2 such that 0 ≤ 𝜂2 ≤ p
𝜆N

(𝜌N )2
and 𝜂1 =

𝜋(𝜆N ,𝜌N )−𝜂2𝜌
N

𝜆N
describes a core allocation. We remark that this

range covers all price vectors 𝜂 ∈ ℝ2 that can describe a core
allocation for all queueing games embedded in 𝜋 with input
vector (𝜆N , 𝜌N) assigned to the grand coalition.

4 NECESSARY AND SUFFICIENT
CONDITIONS FOR NONEMPTINESS
OF THE CORE

In this section, we will first provide sufficient and necessary
conditions for core nonemptiness of every m-attribute game
embedded in attribute function 𝜋. These conditions coincide
with the sufficient and necessary conditions for existence of
core prices in the proof of Theorem 1. After presenting alter-
native sufficient and necessary conditions for core nonempti-
ness, we will derive sufficient and necessary conditions for
convexity of every m-attribute game embedded in 𝜋. Before
we introduce our first result in this section, we need to intro-
duce the concepts of (minimal) constructive face collection
and constructive face concavity, which play an important role
in our analysis.

Definition 5. A finite set CF(x̄) ⊂ F(x̄) is called a construc-
tive face collection of x̄ if there exist ax > 0 for all x ∈ CF(x̄)
such that

∑
x∈CF(x̄) axx = x̄. Vector (ax)x∈CF(x̄) is referred to as

the weights of constructive face collection CF(x̄). A construc-
tive face collection CF(x̄) is called minimal if there does not
exist another constructive face collections CF′(x̄) such that
CF′(x̄) ⊂ CF(x̄).

Definition 6. A function 𝜋 : m → ℝ satisfies constructive
face concavity if for any x̄ ∈ m and any of its constructive
face collections5 CF(x̄),

∑
x∈CF(x̄) ax𝜋(x) ≤ 𝜋(x̄).

As for each constructive face collection of x̄ we have∑
x∈CF(x̄) axx = x̄, constructive face concavity requires that

𝜋 satisfies a modified concave inequality,
∑

x∈CF(x̄) ax𝜋(x) ≤
𝜋(
∑

x∈CF(x̄) axx), when applied to points in any constructive
face collection of any point in the domain with their corre-
sponding weights.

Theorem 2. Suppose that 𝜋 : m → ℝ is continuous on
m∖{0}. All m-attribute games embedded in 𝜋 have a
nonempty core if and only if 𝜋 is SH(1) and satisfies con-
structive face concavity.

There are several important messages that we can derive
from Theorem 2. First, SH(1) implies an increasing average
return along the line of every input vector crossing the origin.
In other words, the average return increases with the number
of symmetric players joining the cooperation. This condition
is an extension of the elasticity condition in single-attribute
games. One direct consequence of the elasticity condition for
single-attribute games is that the set of totally balanced games
and the set of games containing a PMAS coincide. There-
fore, all single-attribute games embedded in 𝜋 are (totally)
balanced if and only if they all contain a PMAS. When we
consider more than one attribute, Theorem 2 reveals that the
increasing average return is still a necessary condition for
nonemptiness of the core, but it is no longer sufficient—we
now require constructive face concavity as well. In addition,
for m-attribute games the set of totally balanced games and
the set of games containing a PMAS do not necessarily coin-
cide (see Example 4.3 in Karsten et al., 2015, for a coun-
terexample). Nonetheless, there still exist core prices for m-
attribute games with a nonempty core, as we prove in The-
orem 1. Finally, Theorem 2 implies that attribute functions
defined by (4a) and (5) are SH(1) and that they satisfy con-
structive face concavity, as ELS games and queueing games
are shown to have a nonempty core by Van den Heuvel et al.
(2007) and Anily and Haviv (2010), respectively.

One may ask whether constructive face concavity and
SH(1) are independent properties. It is easy to see that SH(1)
does not imply constructive face concavity; however, the
reverse is not clear. This is an open question that requires
further analysis.

Although the “if” part of Theorem 2 follows directly from
the proof of Theorem 1, proving the “only if” part is more
involved. We will first show that if 𝜋 is not SH(1), there exists
an m-attribute game whose balancedness condition requires
SH(1). We will create this game by using symmetric play-
ers having the same input vector. We will then show that if
the constructive face concavity is violated, there exists an m-
attribute game whose balancedness condition requires con-
structive face concavity. To create this game, we will use m
different types of players, each having only one attribute type.

Proof of Theorem 2. The “if” part of the theorem follows
directly from the proof of Theorem 1. In this proof, we show
that if 𝜋 is SH(1) and satisfies constructive face concavity,
there exists a price vector (a feasible solution of problem (13))
for each x̄ ∈ m that can be used to calculate a core alloca-
tion, and hence, all m-attribute games embedded in 𝜋 have a
nonempty core.

Next, we show the “only if” part by identifying m-attribute
games with an empty core when any of the abovementioned
statements are not satisfied.
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Suppose first that 𝜋 is not SH(1). Then, there exist x̄ ∈

m and 𝛼 < 1 such that
𝜋(𝛼x̄)

𝛼
> 𝜋(x̄). If 𝛼 ∈ Q++ = Q+ ⧵

{0} with p, q ∈ IN. Let y = 1∕q. We can construct an m-
attribute game (N, v) embedded in 𝜋 with |N| = q wherein
each player i ∈ N has an input vector zi = yx̄. Let Sp denote
the set of all coalitions with p players. For each S ∈ Sp

it then holds that
∑

i∈S zi = pyx̄. Note that every coalition
S ∈ Sp contains p players, there are

(q

p

)
coalitions in Sp,

and every player i ∈ N appears in
(q−1

p−1

)
coalitions with

p players.
Consider the map 𝜅 such that

𝜅(S) =

⎧⎪⎪⎨⎪⎪⎩

1(q−1

p−1

) , if |S| = p,

0, otherwise.

(22)

As every player i ∈ N appears in
(q−1

p−1

)
coalitions with p play-

ers, 𝜅 is a balanced map. The following relation shows that a
balancedness condition is not satisfied, and the core of (N, v)
is empty:

∑
S⊆N

𝜅(S)v(S) =
∑

S∈Sp

𝜅(S)𝜋(pyx̄) =
∑

S∈Sp

1(q−1

p−1

)𝜋(pyx̄)

=

(q

p

)
(q−1

p−1

)𝜋(pyx̄) =
q
p
𝜋(pyx̄)

=
𝜋(𝛼x̄)
𝛼

> 𝜋(x̄) = v(N). (23)

If 𝛼 ∈ ℝ++ ⧵ Q++, there exists an 𝜖 > 0 such that 𝛼 + 𝜖 ∈

Q++ and
𝜋((𝛼+𝜖)x̄)

𝛼+𝜖
> 𝜋(x̄). Repeating the abovementioned

arguments, there exists an m-attribute game embedded in 𝜋
that has an empty core.

Now, suppose that 𝜋 does not satisfy constructive
face concavity. Assume that there exist an x̄ ∈ m and
a (minimal) constructive face collection CF(x̄) such that∑

x∈CF(x̄) ax𝜋(x) > 𝜋(x̄).

If x̄ ∈ Qm
+, there exist pj, qj, p

x
j , q

x
j ∈ IN such that x̄j = pj∕qj

and xj = px
j ∕qx

j . Let yj = 1∕(qjq
x
j ), dj = pjq

x
j , d

x
j = px

j qj for
j = 1, … ,m and for all x ∈ CF(x̄).

∙ Suppose first that m2 = 0 and hence m = ℝm
+. We can

then construct a game with m different types of players
such that there are dj players of type j ∈ {1, … ,m} holding
yj resources of type j only. We remark that when m2 > 0,
some player types are not allowed by the definition of m-
attribute games because zi ∈ m for all i ∈ N. We will
study this case separately. Note that for each x ∈ CF(x̄) and

j = 1, … ,m,
dx

j

dj
=

xj

x̄j
.

Let N̄ and N̄j denote the set of all players and the set of all
type j players, respectively. Let ek ∈ ℝm denote the vector
such that

ek
j =

{
1, if j = k,

0, otherwise,
(24)

and let zi denote the resource vector of player i ∈ N̄. If i is
a type j player, then zi = yje

j.
Let Sx denote the set of coalitions S with

∑
i∈S zi = x.

Note that every coalition S ∈ Sx contains dx
j type j play-

ers and |Sx| = Πm
j=1

(dj

dx
j

)
. Consider (ax)x∈CF(x̄) such that∑

x∈CF(x̄) axx = x̄, which exists because CF(x̄) is a con-
structive face collection. Then,

∑
x∈CF(x̄)

ax

dx
j

dj
= 1 for all j = 1, … ,m. (25)

Consider the map 𝜅 such that

𝜅(S) =

⎧⎪⎨⎪⎩
ax

Πm
j=1

(dj

dx
j

) , if S ∈ Sx,

0, otherwise.

(26)

We will show that 𝜅 is a balanced map. Consider a player j̄
of type j. This player would appearΠi≠j

(di

dx
i

)
×
(dj−1

dx
j −1

)
times

in coalitions in Sx. Then,

∑
x∈CF(x̄)

∑
S∈Sx|j̄∈S

𝜅(S) =
∑

x∈CF(x̄)

∑
S∈Sx|j̄∈S

ax

Πm
j=1

(dj

dx
j

)
=

∑
x∈CF(x̄)

Πi≠j

(di

dx
i

)
×
(dj − 1

dx
j − 1

) ax

Πm
j=1

(dj

dx
j

)
=

∑
x∈CF(x̄)

ax

dx
j

dj
= 1. (27)

The last equality holds by (25), hence 𝜅 is a balanced map.
Then,∑

x∈CF(x̄)

∑
S∈Sx

𝜅(S)v(S) =
∑

x∈CF(x̄)

∑
S∈Sx

𝜅(S)𝜋(x)

=
∑

x∈CF(x̄)

∑
S∈Sx

ax

Πm
j=1

(dj

dx
j

)𝜋(x)

=
∑

x∈CF(x̄)

ax𝜋(x) > 𝜋(x̄) = v(N̄), (28)

therefore a balancedness condition is not satisfied and the
core of the game (N̄, v) is empty.
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∙ Now, assume that m2 > 0 and m = ℝ
m1
+ × ℝ

m2
++ ∪ {0}.

Consider m different types of players as defined above
and recall that some player types are not allowed by the
definition of m-attribute games because m2 > 0. We will
construct a related game with an empty core. Let e ∈ ℝm

denote the unit vector. Then, there exists an 𝜖 > 0 such that
x + 𝜖

∑m
j=1 dx

j e ∈ Q++. This statement holds because 𝜋 is

continuous. Note that, for all x ∈ CF(x̄), x + 𝜖
∑m

j=1 dx
j e ≤

x̄ + 𝜖
∑m

j=1 dje because dx
j ≤ dj for all j = 1, … ,m.

We can construct the related game with m different types
of players as follows. There are dj players of type j ∈
{1, … ,m} holding resource vector yje

j + 𝜖e, that is, zi =

yje
j + 𝜖e if i ∈ N is a type j player. Let x̃ = x + 𝜖

∑m
j=1 dx

j e

and Sx̃ denote the set of coalitions S with
∑

i∈S zi = x̃.
Every coalition S ∈ Sx̃ contains dx

j type j players. Replac-

ing x̄ and {x}x∈CF(x̄) as arguments of 𝜋 by x̄ + 𝜖
∑m

j=1 dje

and {x̃}x∈CF(x̄), and {Sx}x∈CF(x̄) by {Sx̃}x∈CF(x̄) while leav-
ing ax, dx

j , Sx and dj unchanged, the same arguments as
above hold, hence a balancedness condition is not satisfied
and the core of the related game is empty. This completes
the proof of “only if” statement under the assumption that
x̄ ∈ Qm

+. We provide the proof for the real numbers in the
Supporting Information Appendix. □

We note that it might be hard to study constructive face
concavity for attribute function 𝜋 resulting from an optimiza-
tion problem (e.g., ELS games). Before we introduce an alter-
native necessary and sufficient condition for core nonempti-
ness, we need the following definition.

Definition 7. Let ∨j=1,…,𝓁xj denote the component-wise max-

imum of x1, … , x𝓁, (∨j=1,…,𝓁xj)l = max{x1
l , … , x

𝓁
l }. A func-

tion 𝜋 : m → ℝ satisfies max-concavity if for all 𝓁 ≥ 1,
x1, … , x𝓁 ∈ m and a1, … , a𝓁 ∈ ℝ++ such that ∨j=1,…,𝓁xj ≤∑𝓁

j=1 ajx
j,
∑𝓁

j=1 aj𝜋(xj) ≤ 𝜋(
∑𝓁

j=1 ajx
j).

Max-concavity can be described as follows: For any pos-
itive linear combination of points from the domain such
that this linear combination has larger elements than any of
the original points, the function value at the linear combi-
nation is greater than the linear combination of the func-
tion values at the original points. The following proposi-
tion states compact and equivalent necessary and sufficient
conditions.

Theorem 3. Suppose that 𝜋 : m → ℝ is continuous on
m∖{0}. All m-attribute games embedded in 𝜋 have a
nonempty core if and only if 𝜋 satisfies max-concavity.

Although max-concavity is not easier to analyze than
SH(1) and constructive face concavity, we will use it to
derive sufficient conditions for nonemptiness of the core of

m-attribute games in the next section. Theorem 3 implies
that attribute functions defined by (4a) and (5) are max-
concave.

Proof of Theorem 3. Suppose that 𝜋 satisfies max-concavity
and consider the case 𝓁 = 1. Then, a1 ≥ 1 and 𝜋 is SH(1).
Moreover, for all x̄ ∈ m and constructive face collection
CF(x̄), it holds that x ≤ x̄ for all x ∈ CF(x̄) and therefore
∨x∈CF(x̄)x ≤ x̄ =

∑
x∈CF(x̄) axx, hence constructive face con-

cavity follows from max-concavity. Consequently, if 𝜋 satis-
fies max-concavity, then 𝜋 is SH(1) and satisfies constructive
face concavity.

Suppose that 𝜋 is SH(1) and satisfies constructive face
concavity. Consider 𝓁 ≥ 1, x̄1, … , x̄𝓁 ∈ m and a1, … , a𝓁 ∈

ℝ++ such that ∨j=1,…,𝓁x̄j ≤ ∑𝓁
j=1 ajx̄

j ∈ m. Let F(x̄) be
the collection of points in all neighboring faces of x̄ =∑𝓁

j=1 ajx̄
j. There exists sj ≥ 1 such that sjx̄

j ∈ F(x̄) for all

j ∈ {1, … , 𝓁}. Hence, {sjx̄
j}j∈{1,…,𝓁} is a constructive face

collection of x̄ with weights asjx̄j =
aj

sj
. Then,

∑𝓁
j=1 aj𝜋(x̄j) ≤∑𝓁

j=1
aj

sj
𝜋(sjx̄

j) ≤ 𝜋(
∑𝓁

j=1
aj

sj
sjx̄

j). The first inequality holds

because 𝜋 is SH(1), and the second inequality holds because
𝜋 satisfies constructive face concavity. □

An important subclass of totally balanced games are con-
vex games. Before we present sufficient and necessary condi-
tions for convexity of m-attribute games, we need to introduce
additional terminology.

Definition 8. For a function 𝜋 : m → ℝ, any pair of
indices j, k ∈ {1, … ,m} and vector x−jk = (x1, … , xj−1,

xj+1, … , xk−1, xk+1, … , xm) ∈ m−2, define 𝜋x−jk
(xj, xk) =

𝜋(x1, … , xj−1, xj, xj+1, … , xk−1, xk, xk+1, … , xm).
We say that 𝜋 : m → ℝ has increasing differencesif for

any pair of distinct indices j, k ∈ {1, … ,m}, any x−jk ∈ m−2,
and any 𝜀, 𝛿 > 0, we have

𝜋x−jk
(xj + 𝜀, xk + 𝛿) − 𝜋x−jk

(xj + 𝜀, xk)

≥ 𝜋x−jk
(xj, xk + 𝛿) − 𝜋x−jk

(xj, xk). (29)

We say that 𝜋 : m → ℝ has strongly increasing differences
if, for any x, 𝜖1, 𝜖2 ∈ m,

𝜋(x + 𝜖1 + 𝜖2) − 𝜋(x + 𝜖2) ≥ 𝜋(x + 𝜖1) − 𝜋(x). (30)

Supermodularity of an m-variable function requires that
the function has increasing differences. The functions with
strongly increasing differences are also referred to as
ultramodular; see Marinacci and Montrucchio (2005) for
a detailed discussion of ultamodular functions. Strongly
increasing differences impose stronger conditions than super-
modularity, as (29) can be obtained as a special case of (30)
in which 𝜖1 = 𝜀ej, 𝜖2 = 𝛿ek, j < k ∈ {1, … ,m}, ej, ek ∈ ℝm
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with

ej
l =

{
1, j = l,

0, otherwise.
(31)

A function with strongly increasing differences is convex in
all dimensions, but it may not satisfy joint convexity; simi-
larly, a convex function may not have strongly increasing dif-
ferences. In Proposition 8, Sharkey and Telser (1978) showed
that strongly increasing differences are sufficient for support-
ability. In the following proposition, we show that these con-
ditions are also sufficient and necessary for the embedded
games to be convex.

Proposition 1. All m-attribute games embedded in an
attribute function 𝜋 : m → ℝ are convex if and only if 𝜋
has strongly increasing differences.

The proposition shows that strongly increasing differences
are the necessary and sufficient condition for the resulting m-
attribute games to be convex. Note that strongly increasing
differences imply superadditivity, which is a necessary condi-
tion for a TU game to be totally balanced, because 𝜋(0) = 0.
Compared with constructive face concavity, this condition is
more in line with convex behavior, and it is easier to check.

Proof of Proposition 1. The convexity condition for m-
attribute games can be restated as follows: An m-attribute
game is convex if and only if for all i ∈ N and S ⊆ T ⊆
N ⧵ {i}:

v(T ∪ {i}) − v(T) ≥ v(S ∪ {i}) − v(S)⟺𝜋
(
xT∪{i}

)
−𝜋

(
xT
) ≥ 𝜋(xS∪{i}

)
− 𝜋

(
xS
)
. (32)

We first show the “only if” part by identifying a nonconvex
m-attribute game in a setting in which the statements above
are not satisfied. If 𝜋 does not have strongly increasing dif-
ferences, then there exist 𝜖1, 𝜖2 ∈ ℝm

+ such that

𝜋(x + 𝜖2 + 𝜖1) − 𝜋(x + 𝜖2) < 𝜋(x + 𝜖1) − 𝜋(x). (33)

Consider an m-attribute game with three players,
N = {1, 2, 3}. Suppose that the players’ attribute levels are
x1 = x, x2 = 𝜖

1 and x3 = 𝜖
2. Then, for T = {1, 2}, S = {1}

and i = 3, it holds that xT∪{i} = x + 𝜖1 + 𝜖2, xT = x + 𝜖1,
xS∪{i} = x + 𝜖2 and xS = x, hence v(T ∪ {i}) − v(T) −
v(S ∪ {i}) + v(S) = 𝜋(xT∪{i}) − 𝜋(xT ) − 𝜋(xS∪{i}) + 𝜋(xS) =
𝜋(x + 𝜖1 + 𝜖2) − 𝜋(x + 𝜖1) − 𝜋(x + 𝜖2) + 𝜋(x) < 0, where
the inequality follows from (33).

In the second part of the proof, we show the “if” part—
that is, all m-attribute games embedded in 𝜋 are convex
if 𝜋 has strongly increasing differences. Consider an x ∈
m and 𝜖1, 𝜖2 ∈ ℝm

+. Let Δ(x, 𝜖1) = 𝜋(x + 𝜖1) − 𝜋(x) and
Δ2(x, 𝜖2, 𝜖1) = Δ(x + 𝜖2, 𝜖1) − Δ(x, 𝜖1). Then, Δ2(x, 𝜖2, 𝜖1) ≥
0 because 𝜋 has strongly increasing differences.

Consider an m-attribute game embedded in 𝜋. Then, for all
i ∈ N and S ⊆ T ⊆ N ⧵ {i} it holds that v(T ∪ {i}) − v(T) −
v(S ∪ {i}) + v(S) = 𝜋(xT∪{i}) − 𝜋(xT ) − 𝜋(xS∪{i}) + 𝜋(xS) =
Δ(xT , x{i}) − Δ(xS, x{i}) = Δ2(xS, xT − xS, x{i}) ≥ 0, where
the inequality holds due to Δ2(x, 𝜖2, 𝜖1) ≥ 0 because xT

j ≥ xS
j

for all j ∈ {1, … ,m}. Therefore, (32) holds. □

For twice differentiable functions, strongly increasing dif-
ferences can be restated as in the following corollary.

Corollary 1. If attribute function 𝜋 from Proposition 1 is
a twice differentiable function on ℝm

+, then all m-attribute
games embedded in 𝜋 are convex if and only if for all x ∈ ℝm

+
and j, k ∈ {1, … ,m} (including j = k),

𝜕2𝜋(x)
𝜕xj𝜕xk

≥ 0. (34)

Supermodularity conditions for twice-differentiable func-
tions require that (34) holds only for j ≠ k, while under
strongly increasing differences it has to hold for j = k as
well. These conditions can be checked more easily than
constructive face concavity, as we illustrate with our next
example.

Consider queueing games with attribute function 𝜋 defined
in (5). We check the second derivatives of 𝜋:

𝜕𝜋(𝜆, 𝜌)
𝜕𝜌

= p
𝜆

𝜌2
≥ 0

𝜕2𝜋(𝜆, 𝜌)

𝜕𝜌2
= −2p

𝜆

𝜌3
≤ 0. (35)

Because (35) is negative for 𝜆 > 0, 𝜋 does not have strongly
increasing differences, hence queueing games are not convex
in general.

5 SUFFICIENT CONDITIONS FOR
CORE NONEMPTINESS

In the previous section, we derived the necessary and suffi-
cient conditions for core nonemptiness and for the convexity
of all m-attribute games embedded in attribute function 𝜋. In
this section, we present several sufficient conditions for core
nonemptiness that are easier to evaluate.

We start with a special subclass of m-attribute games that
naturally satisfies max-concavity.

Proposition 2. Suppose that 𝜋 : m → ℝ is continuous
on m∖{0}. All m-attribute games embedded in 𝜋 have a
nonempty core if 𝜋 is SH(1) and concave on m∖{0}.

A natural question that arises is whether we can find any
OM games for which the attribute function is concave and
SH(1). The answer to this question is positive. For instance,
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consider a two-period version of the ELS game with no back-
logging wherein 𝜋 is defined by (4a) with 2 = ℝ2

+. Let
K1(q1) = 15 + q1 for all q1 > 0, K2(q2) = 16 + 2q2, K2(0) =
K1(0) = 0, and r1 = r2 = 20. Because it is more expensive to
produce in the second period, the optimal solution is to pro-
duce enough quantity in the first period to satisfy the total
demand. Therefore, for this game, 𝜋(x1, x2) = �̄�(x1 + x2) =
20(x1 + x2) − (15 + x1 + x2) for all x1 + x2 > 0. Because �̄�
is linear on ℝ2

+∖{0}, 𝜋 is concave on 2∖{0}. Moreover, it
is easy to check that

𝜋(sx1, sx2)
s

=
19s(x1 + x2) − 15

s
= 19(x1 + x2) −

15
s

≤ 19(x1 + x2) − 15 = 𝜋(x1 + x2)

for all 0 < s ≤ 1 and x1 + x2 > 0. (36)

Therefore, together with 𝜋(0) = 0, 𝜋 is SH(1).
In this proposition, we presented an independently derived

result analogous to Corollary 1 of Sharkey and Telser (1978).
Our proof uses a different approach from theirs, as it is based
on max-concavity, while Sharkey and Telser (1978) used sub-
homogeneity.

Proof of Proposition 2. Suppose that 𝜋 is SH(1) and
concave on m∖{0}. Consider an 𝓁 ≥ 1, x1, … , x𝓁 ∈ m

and a1, … , a𝓁 ∈ ℝ++ such that x1 ∨ … ∨ x𝓁 ≤ ∑𝓁
j=1 ajx

j. If

x1, … , x𝓁 = 0, then
∑𝓁

j=1 aj𝜋(xj) = 𝜋(
∑𝓁

j=1 ajx
j) = 0 because

𝜋(0) = 0. Now consider the case where at least one of the
vectors x1, … , x𝓁 is not equal to 0. Note that max{x1

l … , x
𝓁
l } ≤∑𝓁

j=1 ajx
j
l for all l = 1, … ,m, hence

∑𝓁
j=1 aj ≥ 1. Then,

𝓁∑
j=1

aj𝜋(xj) =
𝓁∑

l=1

al

𝓁∑
j=1

aj∑𝓁
k=1 ak

𝜋(xj)

≤
𝓁∑

l=1

al𝜋

⎛⎜⎜⎝
𝓁∑

j=1

aj∑𝓁
k=1 ak

xj
⎞⎟⎟⎠

≤ 𝜋
⎛⎜⎜⎝
𝓁∑

l=1

al

𝓁∑
j=1

aj∑𝓁
k=1 ak

xj
⎞⎟⎟⎠ = 𝜋

(
𝓁∑

j=1

ajx
j

)
. (37)

The first inequality holds because 𝜋 is concave, and the sec-
ond inequality holds because 𝜋 is SH(1). Therefore, 𝜋 that is
SH(1) and concave on m∖{0} satisfies max-concavity. □

Anily and Haviv (2014) studied regular games and derived
sufficient conditions for nonemptiness of their core based on
the superadditivity concept and H(1) (homogeneity of degree
one) property. As we mentioned earlier, m-attribute games are
a special class of regular games, and we restate the conditions

from Anily and Haviv (2014) for m-attribute games. Although
Proposition 3 follows directly from Anily and Haviv (2014)
and Corollary 2 of Sharkey and Telser (1978) presented anal-
ogous results to this proposition, we present it for complete-
ness.

Proposition 3. Suppose that 𝜋 : m → ℝ is continuous
on m∖{0}. All m-attribute games embedded in 𝜋 have a
nonempty core if 𝜋 is H(1) and superadditive.

The proof of Proposition 3 indicates that SH(1) and con-
cavity are more general conditions than H(1) and superaddi-
tivity. For example, the attribute function for the two-period
ELS game introduced above is SH(1) and concave, but not
H(1).

Proof of Proposition 3. Suppose that 𝜋 is H(1) and super-
additive. Then, the homogeneity of degree one implies
that 𝜋 is SH(1). Moreover, for all x, y ∈ m and a ∈
(0, 1), a𝜋(x) + (1 − a)𝜋(y) = 𝜋(ax) + 𝜋((1 − a)y) ≤ 𝜋(ax +
(1 − a)y), where the equality holds because 𝜋 is H(1), and
the inequality holds because 𝜋 is superadditive. Therefore, 𝜋
is concave in x. Proposition 2 completes the proof. □

The next proposition presents an alternative set of suffi-
cient conditions for nonemptiness of the core. SH(1) and
partial concavity of attribute function are identified as suf-
ficient conditions for core nonemptiness for special classes
of m-attribute games. Consider FIX-M/M/s games with the
attribute function described by (5). Karsten et al. (2015) used
these conditions to show that FIX-M/M/s games are totally
balanced, without identifying a core allocation. In Proposi-
tion 4, we not only show that an adaptation of conditions
from Karsten et al. (2015) is sufficient for core nonemptiness
of m-attribute games but we also describe how to find a core
allocation. Before we formally state our result, we introduce
a special type of partial concavity.

Definition 9. For a j ∈ {1, … ,m}, we say that a function 𝜋 :
m → ℝ satisfies j-complement concavity if 𝜋 is concave in
x−j ∈ m−1, where x−j = (x1, x2, … , xj−1, xj+1, … , xm).

A function satisfies j-complement concavity if its projec-
tion on m − 1 dimensional space, which excludes the jth com-
ponent, is concave. This is used in our next set of sufficient
conditions.

Proposition 4. Suppose that 𝜋 : m → ℝ is continuous
on m∖{0}. All m-attribute games embedded in 𝜋 have a
nonempty core if 𝜋 is SH(1) and there exists a j ∈ {1, … ,m}
such that 𝜋 is j-complement concave.

Moreover, consider an m-attribute game embedded in 𝜋,
wherein player i ∈ N has xi resources. If 𝜋 is SH(1) and j-
complement concave, then there exists a vector a ∈ ℝm with
aj = 0 such that 𝜋(xN) + ay ≥ 𝜋(xN + y) for all y ∈ ℝm with
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yj = 0 and xN + y ∈ m. Let

𝜂l =

⎧⎪⎪⎨⎪⎪⎩

al for all l ≠ j

𝜋(xN) −
∑
k≠j

𝜂kxN
k

xN
j

, l = j.

(38)

Then, zi =
∑m

l=1 𝜂lx
i
l for all i ∈ N is a core allocation.

Proposition 4 provides more general sufficient conditions
than Propositions 2 and 3; that is, any attribute function that
is SH(1) and concave in x, or that is H(1) and superadditive,
is also SH(1) and j-complement concave. More importantly,
Proposition 4 also describes a set of core allocations for the
games with6 m ≥ 2 satisfying those conditions; Sharkey and
Telser (1978) did not derive any core allocation although they
showed that these conditions are sufficient for supportabil-
ity. The core allocation described in Proposition 4 requires
finding the tangent plane to a surface described by 𝜋 at xN ;
the difficulty of this process depends on the properties of the
underlying attribute function 𝜋.

Proof of Proposition 4. Suppose that 𝜋 is SH(1) and j-
complement concave. Due to the supporting hyperplane theo-
rem, j-complement concavity directly implies that there exists
a vector a ∈ ℝm with aj = 0 such that 𝜋(xN) + ay ≥ 𝜋(xN +

y) for all y ∈ ℝm with yj = 0 and xN + y ∈ m. We will

show that for all i ∈ N, zi =
∑m

l=1 𝜂lx
i
l is a core allocation,

where

𝜂l =

⎧⎪⎪⎨⎪⎪⎩

al, for all l ≠ j

𝜋(xN) −
∑
k≠j

𝜂kxN
k

xN
j

, l = j.

(39)

Consider coalition S ⊆ N and its input vector xS. Let 𝛼 ≥ 1
such that 𝛼xS

j = xN
j , and let y = 𝛼xS − xN . Then,

𝜋(xS) ≤ 𝜋(𝛼xS)
𝛼

=
𝜋(xN + y)
𝛼

≤ 𝜋(xN) + ay
𝛼

=
𝜋(xN) + a(𝛼xS − xN)

𝛼
=

𝜋(xN) +
∑
l≠j
𝜂l
(
𝛼xS

l − xN
l

)
𝛼

=

(
𝜋(xN) −

∑
l≠j
𝜂lx

N
l

)
+
∑
l≠j
𝜂l𝛼xS

l

𝛼

=

(
𝜋(xN )−

∑
l≠j
𝜂lx

N
l

xN
j

)
xN

j +
∑
l≠j
𝜂l𝛼xS

l

𝛼
=

𝜂jx
N
j +

∑
l≠j
𝜂l𝛼xS

l

𝛼

=

𝜂j𝛼xS
j +

∑
l≠j
𝜂l𝛼xS

l

𝛼
=

m∑
l=1

𝜂lx
S
l

=

m∑
l=1

𝜂l

∑
i∈S

xi
l =

∑
i∈S

m∑
l=1

𝜂lx
i
l =

∑
i∈S

zi. (40)

The first inequality holds because 𝜋 is SH(1), while the sec-
ond follows from the definition of 𝛼. □

Corollary 2. If attribute function 𝜋 from Proposition 4 is
differentiable at xN, the weights in Proposition 4 can be set
as

𝜂l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝜋(xN)
𝜕xl

, for all l ≠ j

𝜋(xN) −
∑
k≠j

𝜂kxN
k

xN
j

, l = j.

(41)

Next, we illustrate application of sufficient conditions with
some examples.

5.1 Queueing games

Consider queueing games with an attribute function described
by (5). Observe that for all x ∈ m and 0 < 𝛼 ≤ 1, we have

𝜋(𝛼𝜆, 𝛼𝜌)
𝛼

=
1
𝛼

(
r𝛼𝜆 − p

r𝛼𝜆
𝛼𝜌

)
= r𝜆 −

1
𝛼

p
r𝜆
𝜌

≤ r𝜆 − p
r𝜆
𝜌
= 𝜋(𝜆, 𝜌), (42)

hence 𝜋 is SH(1). Moreover, (35) implies that 𝜋 is concave in
𝜌, hence it satisfies j-complement concavity. Therefore, 𝜂2 =
𝜕𝜋(𝜆N ,𝜌N )

𝜕𝜌
= p

𝜆N

(𝜌N )2
and 𝜂1 =

𝜋(𝜆N ,𝜌N )−𝜂2𝜌
N

𝜆N
describe a core

allocation, where each player i ∈ N gets zi = 𝜂1𝜆
i + 𝜂2𝜌

i.

5.2 Economic lot-sizing games

Consider a two-period ELS game with attribute function
described by (4a). Suppose that r1 = r2 = 20, h1 = h2 =
2, K1(1) = K2(1) = 5, K1(2) = K2(2) = 9,K1(3) = K2(3) =
12, and K1(0) = K2(0) = 0, hence production cost in each
period is concave. Let x1 = (1, 0), x2 = (2, 0), x3 = (3, 0),
y1 = (0, 1), y2 = (0, 2) and y3 = (0, 3). It is easy to check that

𝜋(x3) − 𝜋(x2) = (60 − 12) − (40 − 9) = 17 ≥ 16

= (40 − 9) − (20 − 5) = 𝜋(x2) − 𝜋(x1),
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𝜋(y3) − 𝜋(y2) = (60 − 12) − (40 − 9) = 17 ≥ 16

= (40 − 9) − (20 − 5) = 𝜋(y2) − 𝜋(y1). (43)

Therefore, 𝜋 is convex in both dimensions, and it is not con-
cave, H(1) or j-complement concave, hence it does not satisfy
any of the sufficient conditions introduced in this section.

5.3 Linear production games

It is easy to see that previously introduced attribute function
𝜋 for LP games satisfies H(1), and it has been shown in the
literature that 𝜋 is a nondecreasing piecewise-linear concave
function (Proposition 1 of Ho, 2000). Moreover, its subgradi-
ent at point bN , Δ(bN), is given by the dual solution (Propo-
sition 2 of Ho, 2000), 𝜋(b) = Δ(b)Tb. Therefore, the core
prices proposed by Owen (1975) that are given by these sub-
gradients are exactly the solution imposed by Proposition 4.

5.4 Newsvendor games

Recall the newsvendor problem under discrete demand with
finite expectation and finite sample space. It has been shown
by Müller et al. (2002) that Π(Q,Xi(𝜔)) and 𝜋(X) are H(1)
and superadditive. Therefore, the prices imposed by Proposi-
tion 4 correspond to those given by the dual solution of the
stochastic program (see Chen & Zhang, 2009), which coin-
cides with the solution proposed by Montrucchio and Scarsini
(2007).

6 TU GAMES AND m-ATTRIBUTE
GAMES

m-Attribute games studied in this paper are a special class
of regular games, and more general, of TU games. The main
characteristic of m-attribute games is additivity of input vec-
tors that endows players, that is, the input vector of a coali-
tion is obtained by adding input vectors of its members. It
can be argued that the additivity assumption of m-attribute
games is too restrictive and that there are many TU games
outside of this class. In this section, we will establish a one-to-
one relation between TU games and m-attribute games, and
show that for each TU game there exists an attribute function
𝜋 : m → ℝ and an equivalent m-attribute game embedded
in 𝜋 such that the TU game is totally balanced if and only if
all m-attribute games embedded in 𝜋 have a nonempty core.
A similar result for the relationship between TU games and
market games has been shown by Shapley and Shubik (1969).

Shapley and Shubik (1969) show that every totally bal-
anced TU game can be reformulated as a market game. We
use a similar reformulation approach to establish a natural
relationship between TU games and m-attribute games.

Theorem 4. For every TU game (M,w), there exists an
attribute function 𝜋 : ℝM

+ → ℝ+ such that we can construct
an m-attribute game embedded in 𝜋 that coincides with
(M,w). If (M,w) is totally balanced, then there exists an
attribute function 𝜋 : ℝM

+ → ℝ+ such that all m-attribute
games embedded in 𝜋 have a nonempty core.

The abovementioned result implies that (i) the class of TU
games coincides with the class of m-attribute games, and
(ii) the class of totally balanced TU games and hence, the
class of market games (Shapley & Shubik, 1969), coincides
with the class of totally balanced m-attribute games. There-
fore, in theory, the class of m-attribute games is rich enough
to study (total balancedness of) TU games. In other words,
different classes of games can be shown to be totally bal-
anced if they can be reduced to totally balanced m-attribute
games (or market games). However, as argued by Anily and
Haviv (2014) for market games, this reformulation (or show-
ing that such a reduction is not possible) can be an intri-
cate job and the reformulation presented in the proof is not
practical in this sense. As such, if one can find another
natural reformulation (as we show for newsvendor games),
our results can be used to study the core of these games
further.

Proof of Theorem 4. Consider a TU game (M,w) with set of
players M = {1, … ,m} and characteristic function w. For any
S ⊆ M, let 𝜖S ∈ ℝm denote the vector such that

𝜖Si =

{
1, if i ∈ S,

0, otherwise.
(44)

For any x ∈ ℝM
+ , consider the following optimization prob-

lem:

Ψ(x) = max
(𝜅(S))S⊆M

×

{∑
S⊆M

𝜅(S)w(S)| ∑
S⊆M

𝜅(S)𝜖S = x, 𝜅(S) ≥ 0 ∀S ⊆ M

}
.

(45)

Equation (45) always has an optimal solution. It is easy to
argue that Ψ is superadditive because the sum of the opti-
mal solutions for Ψ(x) and Ψ(y) is a feasible solution for
problem Ψ(x + y) with value Ψ(x) + Ψ(y), hence Ψ(x + y) ≥
Ψ(x) + Ψ(y). For any feasible solution (𝜅(S))S⊆M of prob-
lem Ψ(x), (s𝜅(S))S⊆M is a feasible solution for Ψ(sx) with
s > 0 and

∑
S⊆M 𝜅(S)w(S) =

∑
S⊆M s𝜅(S)w(S)∕s, hence Ψ(x)

is H(1).
Consider an m-attribute game in which each player i ∈ N

has an input vector xi ∈ ℝm
+. The input vector for coalition S
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is then xS =
∑

i∈S xi. Define function 𝜋 as follows:

𝜋(x) =

{
w(S) if x = 𝜖S for some S ⊆ M;

Ψ(x) otherwise.
(46)

𝜋 is not continuous in general. The m-attribute game (M, v)
embedded in 𝜋 in which each player i ∈ M has the input vec-
tor xi = 𝜖i is equivalent to (M,w) by definition. This com-
pletes the proof of the first statement of the theorem.

Next, we prove the second statement by showing that if
(M,w) is totally balanced, then 𝜋(x) = Ψ(x) for all x ∈ ℝM

+ ,
and 𝜋 is superadditive and H(1).

Consider an x ∈ ℝm
+. If there is no S ⊆ M such that x =

𝜖S, then by definition 𝜋(x) = Ψ(x) for all x ∈ ℝm
+. Suppose

that there exists an S ⊆ M such that x = 𝜖S. A feasible set
of (45) then consists of balanced combinations of (𝜖T )T⊆S.
Because (M,w) is totally balanced, its subgame (S,w|S) is
balanced and Ψ(x) = w(S). Hence, 𝜋(x) = Ψ(x) for all x ∈
ℝm
+. Because Ψ is H(1) and superadditive, 𝜋 is also H(1)

and superadditive. Proposition 3 implies that all m-attribute
games embedded in 𝜋 have a nonempty core, and Proposi-
tion 4 describes a set of core allocations. This completes the
proof. □

7 CONCLUSIONS

In this paper, we developed a generalized framework for
studying a large class of games in which players are
endowed with m attributes, while values generated by coali-
tions depend on its members’ attributes in an additive form
expressed through an attribute function, 𝜋. One important
feature of this setting is that the value of a specific coalition
does not depend on the identity of members of that coali-
tion directly. For the class of games we have described in this
paper, m-attribute games, we developed a set of conditions
that characterize nonemptiness of the core. In other words, we
identify sets of conditions that an attribute function has to sat-
isfy in order to assure the existence of a method for apportion-
ing benefits from collaboration that leads to long-term coop-
eration of companies contemplating pooling their resources.
More interestingly, the same conditions also guarantee the
existence of core (attribute) prices. Many well-studied games
can be shown to fall into the class of m-attribute games.
We hope that there will be more examples developed in
the future, and that our results can help in identifying
whether pursuing an all-inclusive collaboration has long-term
potential.
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E N D N O T E S
1 Note that this applies to profit games; in the case of cost games, we check

for concavity.
2 The games with v(N) = 𝜋(0) = 0 are zero games where all players are

dummy players. Because they are trivial, we will not discuss these cases
explicitly in our analysis.

3 In Proposition 4, Sharkey and Telser (1978) derived similar conditions
as necessary and sufficient conditions for cost functions to be support-
ive. Their result follows directly from balancedness conditions for games
with an infinite number of players, and a result similar to our Theorem 1
in Telser (1978). As described above, our proof follows a very different
approach from theirs. In addition, there are other differences between our
results. Telser (1978) studied games with a continuum of players and con-
sidered domain ℝm

+ throughout—i.e., m2 = 0. Moreover, core nonempti-
ness is defined in Telser (1978, p. 150) directly in terms of existence of
prices, rather than via core nonemptiness of associated cooperative games.

4 The general conditions for the strong duality theorem to hold for semi-
infinite linear problems were first derived by Charnes et al. (1963) and
then refined by Duffin and Karlovitz (1965). Since then, semi-infinite lin-
ear problems have been studied extensively in the literature. As stated in
Faigle et al. (2002), another difference to finite linear programming is that
the existence of primal and dual feasible solutions need not imply the exis-
tence of optimal solutions.

5 By Lemma 3, we could equivalently restrict this definition to minimal con-
structive face collections.

6 Note that when m = 1, we already know that SH(1) is a sufficient and
necessary condition. Moreover, 𝜂 = 𝜋(x)∖x is a core price.
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