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SUMMARY 

Cellular heterogeneity is a fundamental property of the immune system that enables it to 

recognize myriads of antigens for tissue maintenance, surveillance, repair, and defense 

against pathogens or cellular stress. Even though this plasticity has allowed robust 

immunological response on average, the cell-to-cell variation observed at different levels (at 

donor, tissue, cellular and subcellular levels) has made it difficult to design effective 

immunotherapeutic strategies. Therefore, understanding cellular heterogeneity in immune 

cell populations aid in the development of superior cell-based immunotherapies to treat 

infection, inflammation, and cancer (Chapter 1).  Innovation in microsystems and microfluidics 

facilitated the integration of numerous complex interactions within the immune system to 

identify the existing cellular variance. However, the major shortcoming remains integrating an 

efficient cell pairing with real-time monitoring of the interaction in a high throughput manner. 

Droplet-based microfluidics integrated with microscopy facilitate compartmentalization of 

immune cells to understand cellular behavior and allow real-time monitoring at high 

throughput. In this thesis, we aimed to successfully integrate droplet-based microfluidic 

technology for investigating the underlying heterogeneity in human plasmacytoid dendritic 

cells (pDCs) and Natural Killer (NK) cells, ultimately improving cell-based immunotherapeutic 

strategies.  

Droplet-based microfluidics is a well-established platform for single-cell encapsulation, 

however, when used with primary cells, efficient cellular distribution is often missed due to 

cell loss. To circumvent this problem, we devised a tip-loading approach (Chapter 2) that 

allowed us to match Poisson distribution in droplets and prevent the loss of rare cells from 

sedimentation and clumping. By further adjusting the cell concentration, we enabled a 1:1 

pairing of effector immune cells with target cells. We used a glass-based observation chamber 

that allows immobilization of droplets, thus enabling tracking of over 60,000 droplets in real-

time (Chapter 3). This enhanced the overall throughput of the analysis and provided a large 

data sample to monitor heterogeneous behavior within the immune cell population.  

The NK cells and the pDCs are two important innate immune cells that display multiple 

functions ranging from cytotoxicity, immunoregulation, adaptive and tolerance ability. We 

used the droplet-based adaptation to investigate the functional heterogeneity within these 
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cells by monitoring the dynamics of their interaction with different target cells. By assessing 

NK cells (PB and Umbilical cord) interaction with the tumor cell, we showed that the NK cell 

compartment is composed of cells with different cytotoxic strengths and efficacy. Including 

paramagnetic nanoparticle-based immunoassay in droplets facilitated studying the 

association between the secretion and the cytotoxic function in NK cells (Chapter 4). Single-

cell activation of pDCs in droplets showed that stimulation induces functional diversification 

of pDCs, and the IFN-I pathway is controlled by stochastic gene regulation. We also showed 

that the environmental signals further amplified this phenomenon rather than subsets-based 

division of labor (Chapter 5).  

We paired NK cells together with pDCs inside the droplets to monitor their crosstalk at the 

individual level. In this study, we monitored the amount of IFN-γ and IFN-α secreted by NK 

cells and pDCs respectively to show that activation of pDCs can enhance NK cell activation 

(Chapter 6). This preliminary study is an example of the futuristic approach toward 

implementing single-cell tools into the understanding of cellular coordination in the immune 

system.  

In this way, we showed a successful integration of droplet-based microfluidics to probe 

functional heterogeneity in immune cells. Finally, we discussed different solutions derived 

from single-cell studies to improve or develop more efficient cell-based immunotherapy 

approaches (Chapter 7). 
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SAMENVATTING 

Cellulaire heterogeniteit is een fundamentele eigenschap van het immuunsysteem die het in 

staat stelt om talloze antigenen te herkennen voor weefselonderhoud, surveillance, reparatie 

en verdediging tegen pathogenen of cellulaire stress. Hoewel deze plasticiteit zorgt voor een 

robuuste immunologische respons, maakt de cel-tot-cel variatie die op verschillende niveaus 

(donor-, weefsel-, cellulair en sub-cellulair niveau) wordt waargenomen, het moeilijk om 

effectief immuno-therapeutische strategieën te ontwerpen. Daarom helpt het begrijpen van 

cellulaire heterogeniteit in immuun cel populaties bij de ontwikkeling van verbeterde cel-

gebaseerde immuuntherapieën voor de behandeling van infecties, ontstekingen en kanker 

(Hoofdstuk 1). Innovatie in microsystemen en microfluïdica hebben onderzoek mogelijk gemaakt 

naar vele complexe interacties binnen het immuunsysteem. De belangrijkste tekortkoming blijft 

echter het integreren van een efficiënte cel-cel paring waarbij cel interactie direct kan worden 

gemonitord voor grote hoeveelheden cellen.  Microfluïdische technieken die cellen vangen in 

druppels, gecombineerd met microscopie, vergemakkelijken de compartimentering van 

immuuncellen om cellulair gedrag te begrijpen en over de tijd te monitoren op een “high-

throughput” manier. In dit proefschrift, beoogde we om op druppels gebaseerde 

microfluïdische technologie toe te passen voor het onderzoeken van de onderliggende 

heterogeniteit in menselijke plasmacytoïde dendritische cellen (pDC's) en NK-cellen, met het  

uiteindelijke doel om cel-gebaseerde immuno-therapeutische strategieën te verbeteren. 

“Droplet-based microfluidics” is een gevestigd platform voor het compartimenteren van 

individuele cellen, maar bij gebruik met primaire cellen wordt efficiënte cellulaire distributie 

vaak gemist vanwege cel verlies. Om dit probleem te omzeilen, hebben we een “tip-loading” 

aanpak bedacht (Hoofdstuk 2), waarmee we de Poisson-verdeling in druppels konden 

matchen en het verlies van zeldzame cellen door sedimentatie en klontering konden 

voorkomen. Door de cel concentratie verder aan te passen, hebben we een 1:1-koppeling van 

effector-immuuncellen met doel-cellen mogelijk gemaakt. We gebruikten een glazen 

observatiekamer die immobilisatie van druppeltjes faciliteerde, waardoor het mogelijk werd 

om meer dan 60.000 druppeltjes over de tijd te volgen (Hoofdstuk 3). Dit verbeterde de 

algehele doorvoer van de analyse en leverde een grote dataset op om heterogeen gedrag 

binnen de immuuncel populatie te volgen. 
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“Natural Killer” cellen en de plasmacytoïde dendritische cellen zijn twee belangrijke cellen 

binnen het aangeboren immuunsysteem, die meerdere functies vervullen, variërend van 

cytotoxiciteit, immuun-regulatie, adaptief en tolerantie. We gebruikten de op druppels 

gebaseerde aanpassing om de functionele heterogeniteit binnen deze cellen te onderzoeken 

en de dynamiek van hun interactie met verschillende doelcellen te volgen. Door de interactie 

tussen NK-cellen (PB en navelstreng) en de tumorcel te monitoren, hebben we aangetoond 

dat de NK-cel populatie is samengesteld uit cellen met verschillende cytotoxische sterktes en 

werkzaamheden. Integratie van een op paramagnetische nano-deeltjes gebaseerde 

immunoassay vergemakkelijkte het bestuderen van de associatie tussen secretie en 

cytotoxische functie in NK-cellen (Hoofdstuk 4). Activatie van enkele pDC's in druppeltjes 

toonde aan dat stimulatie zorgt voor functionele diversificatie van pDC's, en dat type I IFN 

signalering wordt gecontroleerd door stochastische genregulatie. Daarnaast  toonden we aan 

dat omgevingssignalen dit fenomeen verder versterkten in plaats van op subsets gebaseerde 

taakverdeling (Hoofdstuk 5). 

Om cellulaire interacties per cel te onderzoeken hebben we individuele NK-cellen en pDC's 

samen in druppeltjes gevangen. In deze studie hebben we de hoeveelheid IFNγ en IFNα 

gevolgd die wordt uitgescheiden door respectievelijk NK-cellen en pDC's om aan te tonen dat 

stimulatie van pDC's de activatie van NK-cellen kan verbeteren. Deze studie is een voorbeeld 

van de futuristische aanpak van het implementeren van hulpmiddelen voor het begrijpen van 

cellulaire coördinatie in het immuunsysteem op het niveau van één enkele cel. 

Middels deze methodes demonstreerde we een succesvolle toepassing van op druppeltjes 

gebaseerde microfluïdica om functionele heterogeniteit in immuun cellen te onderzoeken. 

Ten slotte hebben we verscheidenen toepassingen besproken gebaseerd op “single-cell” 

studies die gebruikt kunnen worden voor het ontwikkelen en verbeteren van efficiëntere cel-

gebaseerde immunotherapieën (Hoofdstuk 7). 
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साराांश 

सेलुलर विषमता प्रवतरक्षा प्रणालीको एक मौवलक गुण हो जसले यसलाई ऊतक मममत, विगरािी, मममत, र रोगजिक 

िा सेलुलर तिाि विरुद्ध रक्षाको लावग असांख्य एन्टिजेिहरू पवहचाि गिम सक्षम बिाउँछ। यद्यवप यो प्लान्टिवसटीले 

औसतमा बवलयो immunological प्रवतवियालाई अिुमवत विएको छ, विविन्न स्तरहरूमा (िाता, तनु्त, सेलुलर र 

सबसेलुलर स्तरमा) अिलोकि गररएको सेल-िेन्टि-सेल विन्नताले प्रिािकारी immunotherapeutic रणिीवतहरू 

विजाइि गिम गाह्रो बिाएको छ। तसर्म, प्रवतरक्षा सेलको सेलुलर विषमता बुझ्िा सांिमण, सूजि र क्यान्सरको 

उपचार गिम उच्च सेल-आधाररत इमु्यिोरे्रापीहरूको विकासमा मद्दत गिमछ (अध्याय १)। माइिो-प्रणाली र 

Microfluidics आविष्कारले प्रवतरक्षा प्रणाली वित्र धेरै जवटल अन्तरवियाहरूको एकीकरणलाई सहज बिायो। 

यद्यवप, प्रमुि कमजोरी उच्च थु्रपुट तररकामा अन्तरवियाको िास्तविक-समय विगरािीको सार् एक कुशल सेल 

जोिीलाई एकीकृत गिम बाँकी छ। माइिोस्कोपीसँग एकीकृत Droplet based Microfluidics ले सेलुलर व्यिहार 

बुझ्न र उच्च थु्रपुटमा िास्तविक-समय विगरािीलाई अिुमवत विि प्रवतरक्षा कोवशकाहरूको वििाजिलाई सुविधा 

विन्छ। यस thesis मा हामीले मािि Plasmacytoid dendritic कोवशकाहरू (pDCs) र Natural Killer (NK) 

कोवशकाहरूमा अन्तविमवहत विषमताको अिुसन्धािको लावग Droplet-आधाररत Microfluidic टेक्नोलोजीलाई 

सफलतापूिमक एकीकृत गरेर, अन्ततः  सेल-आधाररत इमु्यिोरे्रापु्यवटक रणिीवतहरू सुधार गिम लक्ष्य रािेका छौां । 

Droplet-आधाररत Microfluidics एकल-सेल encapsulation को लावग एक राम्रो-स्र्ावपत पे्लटफमम हो, तर्ावप, 

प्रार्वमक कक्षहरूमा प्रयोग गिाम, कोवशकाको क्षवतको कारणले गिाम प्रिािकारी सेलुलर वितरण प्रायः  छुटेको छ। 

यस समस्यालाई रोक्नको लावग, हामीले Tip Loading दृविकोण (अध्याय २) बिायौां जसले हामीलाई र्ोपाहरूमा 

Poisson वितरण वमलाउि र अिसािि र क्लन्टिङबाट िुलमि कोवशकाहरूको हावि रोक्न अिुमवत वियो। सेल 

एकाग्रतालाई र्प समायोजि गरेर, हामीले लवक्षत कोवशकाहरूसँग प्रिािकारी प्रवतरक्षा कोवशकाहरूको  १: १ 

जोिी सक्षम गयौं। हामीले अिलोकि कक्ष प्रयोग गरय्ौां जसले र्ोपाहरूको न्टस्र्रतालाई अिुमवत विन्छ, यसरी 

िास्तविक समयमा ६0,000 िन्दा बढी र्ोपाहरूको टर ्यावकङ सक्षम पाछम  (अध्याय ३)। यसले विशे्लषणको समग्र 

थु्रपुट बढायो र प्रवतरक्षा सेल जिसांख्या वित्र विषम व्यिहार अिुगमि गिम ठूलो िेटा िमूिा प्रिाि गरय्ो। 

Natural Killer कोवशकाहरू र Plasmacytoid Dendritic कोवशकाहरू िुई महत्त्वपूणम जन्मजात प्रवतरक्षा 

कोवशकाहरू हुि् जसले cytotoxicity, immunoregulation, adaptive र सहिशीलतािेन्टि वलएर धेरै कायमहरू 

प्रिशमि गिमछ। हामीले वबविन्न लक्ष्य कक्षहरूसँग वतिीहरूको अन्तरवियाको गवतशीलता अिुगमि गरेर यी 

कक्षहरू वित्र कायामत्मक विषमताको अिुसन्धाि गिम िर पलेट-आधाररत अिुकूलि प्रयोग गयौं। NK कोवशकाहरू 

(PB र Umbilical cord) को टु्यमर सेलसँगको अन्तरवियाको मूल्याङ्कि गरेर, हामीले NK कोवशकाहरू विविन्न 

साइटोटोन्टिक शन्टि र प्रिािकाररता िएका कोवशकाहरू वमलेर बिेको िेख्यौां। र्ोपाहरूमा Paramamagnetic 

nanoparticle आधाररत immunoassay सवहत NK कोवशकाहरूमा स्राि र cytotoxic प्रकायम बीचको सम्बन्धको 

अध्ययि गिम सहज ियो (अध्याय ४)। र्ोपाहरूमा pDCs को एकल-कोवशका सवियताले िेिायो वक उते्तजिाले  
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(stimulation) pDCs को कायामत्मक विविधीकरणलाई पे्रररत गिमछ , र IFN-I मागम stochastic gene वियमि द्वारा 

वियन्टित छ। हामीले यो पवि िेिायौां वक िातािरणीय सांकेतहरूले यस घटिालाई श्रमको उप-समूहहरूमा 

आधाररत वििाजिको सट्टा र्प विस्तार गरेको छ (अध्याय ५)। 

हामीले व्यन्टिगत स्तरमा वतिीहरूको crosstalk विगरािी गिमका लावग र्ोपाहरू वित्र pDCs सँग NK कोषहरू 

जोड्ौां। यस अध्ययिमा, हामीले IFNγ र IFNα को मात्रा NK कोवशकाहरू र pDCs द्वारा गुप्त गररएको िमशः  

अिुगमि गयौं वक pDCs को सवियताले NK सेल सवियता बढाउि सक्छ (अध्याय ६) । यो प्रारन्टिक अध्ययि 

प्रवतरक्षा प्रणालीमा सेलुलर समन्वयको समझमा एकल-कोवशका उपकरणहरू लागू गिे विशामा िावि अध्ययि 

सिाििाहरूको  एक उिाहरण हो। 

यसरी, हामीले प्रवतरक्षा कोवशकाहरूमा कायामत्मक विषमताको जाँच गिम Droplet-आधाररत Microfluidics को 

सफल उपयोग गरेर िेिाएका छौां  । अन्तमा, हामीले cell-आधाररत इमु्यिोरे्रापी दृविकोणहरू (अध्याय ७) सुधार 

गिम िा विकास गिम एकल-सेल अध्ययिहरूबाट वु्यत्पन्न विविन्न समाधािहरू छलफल गरेका छौां। 
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CHAPTER 1 

GENERAL INTRODUCTION  
 

This chapter has been partially adapted from following papers: 

1. Understanding Natural killer cell biology from a single cell perspective 
Nikita Subedi, Liesbeth Petronella Verhagen, Esmée Michelle Bosman, Ilse 

van Roessel Jurjen Tel 

Cellular Immunology,  
Published: March 3, 2022 

 

2. Integrating Immunology and Microfluidics for Single Immune Cell Analysis 

Nidhi Sinha, Nikita Subedi, Jurjen Tel 
Frontiers in immunology, 9:2373 
Published: October 16,2018 

 

 



  

16 
 

 



 Chapter 1- Introduction  

17 
 

Resolving cellular heterogeneity: Studying immune cells at single cell level 

The human immune system recognizes myriads of environmental triggers and is highly flexible 

in generating a variety of signaling responses over time. Several types of cells collaborate with 

antibodies and cytokines to generate an appropriate immune response. The spatial 

organization and migration of cells within tissues, as well as the dynamic nature of cellular 

communication, enhances the complexity of our immune system and collectively mount the 

response. The nature and magnitude of an immune response are dependent on dynamic 

molecular and cellular interactions where well-orchestrated cellular communication is the key 

factor to maintain them. The question arises whether all immune cells fight all pathogens and 

tumors similarly to leverage this broad flexibility and diversity. Even though there are multiple 

subsets of immune cells, with each subset responding to specific stimuli, responses are often 

initiated by individual cells within each subset and communicated to other cells to establish a 

more complex, population level response[1]. Stochastic expression of genes (influenced by a 

cellular microenvironment) or pre-defined molecular drivers (as in case of B-cell and T-cell 

receptors) are driving factors behind heterogeneity in the human immune system[1]. 

Numerous studies over the last decades established that heterogeneity is a trademark of the 

human immune system[2,3]. Experiments performed at population level average out the 

behavior of individual cells[4]. Hence, bulk studies fail to provide a coherent understanding of 

the immune system by masking their phenotype, expressed genes, proteins or metabolites at 

single-cell level and cellular communication between single immune cells[4,5]. The advent of 

single-cell technologies and the subsequent possibility to study the behavior of individual 

immune cells uncovered several biological functions that were previously not detectable with 

bulk studies[6–8]. For instance, Shalek et al. demonstrated the importance of paracrine 

communication during immune response using single-cell analysis[9]. Single-cell analysis 

enabled the investigation of maturation, activation, and signaling pathways of individual 

immune cells triggered by various environmental factors as well as intercellular 

communication[10–12]. Additionally, this approach identified new immune cell 

subsets[13,14]. For instance, single cell transcriptomics, introduced a paradigm shift in the 

CD4+ T helper field and enabled the identification of multiple functionally distinct T helper cell 

subsets in addition to the well-established Th1 and Th2 subsets[15–18]. 
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Single-cell technology requires isolation of individual cells from a population for multiple data 

extraction from each isolated cell in order to gain information on the genotype, phenotype, 

lineage, protein secretion, proliferation, activation, maturation, cytolytic activity and 

intercellular communication[19]. Single-cell analysis tools are currently investigated by 

various research groups worldwide and hold great promise in providing a comprehensive 

understanding of our immune system[20]. Following the isolation of individual immune cells, 

multiple experimental operations for DNA sequencing, RNA sequencing, and protein 

expression profiling can be implemented to map the lineage and identify subsets of immune 

cells[21–23].  

1. Immune cell heterogeneity and its implication for immunotherapy 

Harnessing the host’s immune system to treat cancer was first conceptualized by William 

Coley, also known as the father of immunotherapy, who used live bacteria as an immune 

stimulant to treat cancer[24]. Immunotherapy relies on the abilities of our immune system to 

identify and eliminate malignancy during initial transformation via immune surveillance[25].  

A successful immunotherapeutic approach exploits a well-coordinated interaction between 

immune cells and cancer cells in the tumor microenvironment (TME) , however the complexity 

of these interactions kindled by the heterogeneity of immune cell subpopulations has become 

a real challenge.   

Recent advances in immunotherapies range from stimulating effector mechanisms to 

counteracting inhibitory and suppressive mechanisms. Over the years, Natural Killer (NK) cells 

gained popularity for immunotherapy of cancer given their unique combination of potent anti-

tumor effector functions and safety profile[26,27]. The capacity of NK cells to discriminate 

healthy from diseased cells creates the opportunity to safely use healthy NK cells in an 

allogeneic setting and to maximally benefit from their anti-tumor potential without risking the 

development of graft-versus-host pathology[28,29]. In vivo, NK cells interact with other 

immune cells, such as dendritic cells (DCs) or T cells, for an enhanced activation[30]. 

Plasmacytoid dendritic cells (pDCs), the major producer of type 1 interferons (IFN-I), play a 

significant role during in vivo NK cell development and recruitment[31]. Activated pDCs on 

their own have been shown to safely induce antigen specific T cell responses against 

melanoma patients[32]. NK cells receive an activation signal from pDCs in juxtracrine and 

paracrine manner for augmented cytotoxic and secretory functions[33]. Also, NK cells 
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maintain the activation of pDCs and support them in activating CTLs. In this way, a 

bidirectional talk between NK cells and pDCs provides a positive feedback activation for both 

the innate immune cell types. Even though the cross-talk between these immune subsets has 

been explored during viral infections, its implications in cancer immunotherapy are not well 

understood[34]. Since these cells play an important role in maintaining the balance between 

adaptive and innate immune responses and have potential anti-tumor functions, a deeper 

understanding of their interplay will add to the clinical outcomes of combinatorial cell therapy.  

Despite encouraging results from adaptive NK cell therapy, further investigations to improve 

the clinical efficacy are required. One of the key strategies would be to explore the interaction 

dynamics of NK cells with other accessory and target cells (infected or transformed cells). It is 

also important to consider the functional heterogeneity of NK cells in form of distinct subsets 

and activated stages. Since the function of these cells relies on the array of activating and 

inhibitory receptors, the nature of the response they generate is highly variable and depends 

on the dynamics of cellular interaction with their target cells. The heterogeneity within the 

pDCs population upon diversification has also been observed. The emerging notion about 

functional heterogeneity of both NK cells and pDCs is likely to augment potential applications 

of dendritic and NK cell-targeting therapies in combination or separately.  

In the forthcoming sections, a comprehensive overview of phenotypical and functional 

heterogeneity in the NK cell population along with a brief overview on heterogeneity in pDCs 

is provided. Subsequently, information regarding emerging single cell technologies  is  also 

discussed. 

2. Natural Killer Cells (NK cells) 

In the early seventies, a subset of innate immune lymphocytes capable of inducing 

spontaneous yet selective cytotoxicity against cancer cells without pre-exposure was 

recognized and coined as NK cells[35,36].  These cells play an important role in anti-viral 

immunity and immune surveillance by identifying and eliminating transformed or infected 

cells through distinct recognition mechanisms[37]. NK cells are large granular lymphocytes 

derived from CD34+ hematopoietic progenitor cells that originate in bone marrow, constitute 

around 10-15% of the total peripheral blood lymphocyte population and have been 

traditionally defined as CD3- and CD56+cells[38].  
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According to the developmental model proposed by Freud and Caligiuri, the maturation of NK 

cells involves six distinct stages, starting with the Lin−CD34+CD133+CD244+  hematopoietic 

stem cells that differentiate into towards CD45RA+ lymphoid-primed multipotential 

progenitors in Stage 1, and into common lymphoid progenitors. Common lymphoid 

progenitors (CLPs) then form NK progenitor cells characterized by the loss of CD34 and 

expression of the surface marker LFA-1 leading to NK cell lineage commitment. Later these 

cells mature into the CD56bright NK cell subpopulation that subsequently differentiate into the 

CD56dim NK cell subpopulation. At this stage there is the expression of CD16 and KIRs and 

finally NK cells differentiate into adaptive NK cells.  

Even though the linear model of development gives fundamental information regarding the 

development of NK cells, several lines of evidence also suggest a more branched model 

whereby different precursor populations may independently develop into distinct subsets of 

mature NK cells. The contradictory developmental scheme for NK cells maturation is shown in 

Figure 1.  

Figure 1. The linear and branched model of NK cell development and maturation: A. Linear model 

explains a direct route of NK cell development from hematopoietic stem cells to the NK cell progenitor 

sequentially developing into CD56 bright, dim and into adaptive NK cell. B. Branched model suggest 

that the hematopoietic stem cells differentiate into lymphoid-primed multipotent progenitors (LMPP), 

which then differentiate toward common lymphoid (CLP) or myeloid progenitors (CMP). These 

progenitors give rise to individual NK cell progenitors (NKP) into specific NK cell subsets. Figure adapted 

from Cichocki et.al. Front. Immunol.[7] . Figure created using BioRender (https://biorender.com/ 
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One of the examples of such illustration is the experiment that showed that NK cells derived 

from CMPs and granulocytic monocytic precursors (GMPs) isolated from cord blood could 

efficiently differentiate into NK cells when cultured in presence of supporting cytokines and 

stroma. This finding challenged the belief that all NK cells are exclusively derived from 

CLPs[39]. In addition, in healthy adults, PB CD56- NK cells have been identified, which is an 

intermediate cell type progressing to CD56dim NK cells, supporting the idea that different NK 

cell development pathways exist. Also, NK cells, which phenotypically resemble CD56dim cells, 

have been identified however they lack inhibitory receptors such CD94/NKG2A and KIRs. It is 

currently unknown how these NK cells can originate from CD56bright NK cells[40].  Existence of 

these different conflicting theories suggests that there is a need for a more definitive 

understanding in the field[39,41,42]. 

Resolving these issues requires an in-depth investigation of NK cell distribution, maturation, 

function, and transcriptional profiles across different anatomical sites and compartments. 

Advancing single-cell technologies like RNA sequencing has revealed several tissue-specific 

patterns related to the development and maturation of multiple lineages. Based on the 

evidence gathered from the study, Dogra et al. have proposed a model for anatomic control 

of NK cell development and function that shows site-specific segregation of NK cell 

maintenance and differentiation[43]. Several other single cell-based studies investigating NK 

cell development have been discussed in later sections. 

3.1. NK cell surface receptors and regulation  

NK cells have the intrinsic ability to identify “self” to distinguish healthy from target cells (e.g., 

virus-infected cells or tumor cells). The concept of “dynamic equilibrium” suggests that the 

stimulation of NK cells and their effector function depends on integrating signals from both 

activating and inhibitory receptors[44–46]. Virtually all cells express MHC-I molecules (HLA 

molecules), which function as ligands for inhibitory receptors on the NK cell surface, 

contributing to self-tolerance. NK inhibitory receptors broadly fall into two subcategories— C-

type lectin-like inhibitory receptors (e.g. NKG2A) and killer-cell immunoglobulin-like receptors 

(KIRs)[47,48]. Apart from MHC class I molecules, other different “self-signals” detected by NK 

cells, as other inhibitory receptors (e.g., sialic acid binding Siglec receptors) can also regulate 

cellular activation[37] 
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In contrast to healthy cells, virus-infected cells or tumor cells lack or have reduced MHC class 

I expression to avoid antigen-dependent recognition and therefore also have reduced 

inhibitory signals for NK cells. Simultaneously, activating receptor ligands, such as the Fas 

death receptor and MHC-I chain-related proteins, are upregulated upon diseased 

conditions[49]. This causes NK cell activation, leading to target cell elimination through 

cytotoxicity or secretion of pro-inflammatory cytokines[50]. Different Activation NK cell 

receptors include KIR family receptors, type II C-type lectin-like molecule (NKG2D), NKG2C 

heterodimeric receptors, the nectin/nectin-like binding receptors DNAM-1/CD226 and CD2-

like receptor- activating cytotoxic cell and Nkp46, Nkp30, and Nkp44 are the superfamily of 

natural cytotoxicity receptors (NCRs)[51]. These receptors act together with different adaptor 

proteins to initiate NK cell activation however, combined signaling via inhibitory and activation 

receptors determine the final functional output[51].  

Figure 2. Regulation of NK cell via its surface receptors: Functional regulation of NK cells involves 

synergistic signaling via combination of different receptors expressed within their cell surface. Different 
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cell types provide ligands for these receptors that define whether the NK cell gets activated or not. 

Different activating and inhibitory receptors in human NK cells and their corresponding ligands along 

with other chemokines, adhesion receptors and cytokine receptors which are altogether show in the 

figure. Figure created using BioRender (https://biorender.com/) 

Along with the above-mentioned receptors, NK cells also display surface expression of 

different cytokine receptors that play an integral role in NK cell regulation. NK cell maturation 

is dependent on the cytokine microenvironment generated by bidirectional crosstalk with 

other immune cells such as T cells, dendritic cells (DCs) and macrophages[37,52,53]. An array 

of different activation, regulatory as well as inhibitory receptors expressed on the NK cell 

surface and their involvement in regulating NK cells activity has been schematically presented 

in the Figure 2.  

3.2. Heterogeneity within the NK cell compartment 

The phenotypical variation within the NK cell population is marked by the combination and 

frequency of expressed surface receptors. Traditionally, the NK cell population is classified 

into two distinct subsets based on their level of CD56 expression: CD56bright, and CD56dim NK 

cells. The CD56bright population is more immunomodulatory and known to be the precursor of 

the more cytotoxic CD56dim population. The CD56dim population constitutes the largest 

fraction of peripheral blood conventional NK (cNK) cells while the CD56bright population is more 

dominantly present in tissues.  

Even though this dichotomy is widely accepted, it fails to represent the complexity of NK cells 

at different maturation stages and cells residing at different anatomical locations. The recently 

discovered adaptive role of NK cells, along with tissue specific heterogeneity further enhances 

the complexity[54,55]. All these aspects do not fit the dichotomy dogma, and therefore 

studying NK cell diversity demands a fresh perspective.  Here, heterogeneity within NK cells 

have been explained in terms of tissue of maturation and the functional attributions it displays  

(Figure 3A). However, these specific subgroups of cells are further influenced by the stage of 

maturation they are in and what combination of surface receptors they express. In the 

following sections the two main aspect of NK cell heterogeneity are discussed. 

 

 

https://biorender.com/
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Figure 3. The NK cell heterogeneity beyond the dichotomy. A. The NK cell diversity can be categorically 

explained based on site of maturation and their functional ability. Both the groups can further be 

correlated via the surface receptors they express and the stage of maturation they are at. B. Based on 

different functions NK cell display, they can be cytotoxic, regulatory, tolerant, or adaptive in nature.  

Cytotoxic NK cell (CD56dim CD16bright phenotype) display cell lysis as the major function while regulatory 

sub population (CD56bright phenotypes) are more adept in secreting cytokines such as IFN-γ and TNF-α. 

Regulatory NK cells function in modulating the functions of other immune cells such as DCs, 

macrophages and T cells. These cells help in quality assessment of DCs and T cells by lysing less mature 

cells.  Tolerant NK cells are passive form of regulatory subsets that plays more important role in 

maintaining the tolerance to the self. Tolerant NK cells are also known for their ability to induce vascular 

remodeling to provide physiological support to the fetal development.  Adaptive NK cell displays a 

different phenotypical as well as functional characteristic to other NK cells. These cells are found more 

in chronic viral infections and upon vaccination. Adaptive NK cells are responsible for generating 

memory NK cells however they show less cytotoxic and secretory ability. Figure created using BioRender 

(https://biorender.com/) 

3.2.1. Tissue specific NK cell diversity 

The ability of lymphocytes to migrate in interstitial tissues is essential for both innate and 

adaptive immune responses. NK cells play an important role in immune surveillance and 

instead of remaining confined to peripheral blood, they are widely distributed throughout the 

body. NK cells are found in healthy skin, gut, liver, lungs, and the uterus during pregnancy[56]  

https://biorender.com/
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along with secondary lymphoid organs. Additionally, human NK cells were also identified in 

other tissues such as the kidney[57], joints[58], and breast[59] under pathophysiological 

conditions. Depending on the site and stage of the maturation, NK cells can display different 

surface markers and functions. cNK cells are mainly found in peripheral blood, migrate to a 

specific location to exert their effects, and can be further classified as either CD56brightCD16- 

or CD56dimCD16+ cell types.  

Specialized tissue resident NK (trNK) cells are identified in various tissues in the human body 

and contain a higher fraction of CD56bright NK cells.  Additionally, they express adhesion 

molecules, such as CD69, and chemokine receptors, including CCR5 and CXCR6 that preserve 

trNK cells in tissues and prevent them from entering the circulation. TrNK cells have several 

features comparable to CD56bright cNK cells and are indirectly involved in inducing cytotoxicity. 

The trNK cells in the bone marrow, secondary lymphoid tissues and liver have an increased 

expression of the inhibitory receptor CD94/NKG2A and the receptor NKp46, but lower 

expression of CD94/NKG2C, KIRs and CD16[60]. Several functional and phenotypic similarities 

between trNK cells and CD56bright cells suggest that trNK cells could be an immature cell type 

in transition to become cNK cells[61].  The topological organization of trNK cells within the 

microenvironment of different organs modulates their functional adaptations. The NK cells 

that localize in the blood, blood-rich sites such as BM, spleen, and lungs are largely 

CD56dimCD16+ cells with cytotoxic capacity while NK cells are present only at low frequencies 

in lymphnodes, tonsils, and throughout the gastrointestinal tract where they are 

predominantly CD56bright cells and show more regulatory functions. TrNK cells at those 

locations are mostly responsible for interaction with other cell types to maintain homeostasis 

and thus show more of regulatory function[61]. For example, NK cells at lymphnodes are 

responsible for T cell polarization, while uterine NK cells are mostly responsible for placental 

vascular remodeling[43]. Crinier et al. profiled the transcriptome of human spleen NK cells 

and compared them with peripheral blood NK cells. They identified four subsets of human 

spleen trNK cells of which two subsets lack any blood specific signatures and were therefore 

unique to spleen[62]. Moreover, three different NK cell subpopulations were discovered in 

human bone marrow. By pseudotime analysis, a subset of trNK cells (not found in blood) was 

found to be the precursor of both CD56dim-like NK cells and CD56bright-like NK cells[63]. These 

findings support the theory that NK cells enter the blood stream from the bone marrow and 

subsequently circulate to infiltrate multiple organs. In contrast, evidence also suggests that 
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some trNK cells belong to a distinct lineage of peripheral blood cNK cells. Research showed 

that those trNK cells can survive in situ for a considerable amount of time, do not translocate 

to the blood, require different transcription factors (such as Hobit and Tbet) for their 

development and are presumably terminally differentiated[60]. For instance, some NK cells 

have different functional roles compared to what has been shown earlier. Profiling tonsil NK 

cells demonstrated that the majority of tonsil NKs are composed of a CD56+CD16- population 

that displays contrastingly higher NK activating and cytotoxic transcriptome[64]. These 

contrasting functional properties shown by the CD56bright population suggest that trNKs 

possess an independent character that could have their own functional range. 

Given their functional similarity and site of residence, ILC1s found in organs traditionally have 

been understood as trNK cells subtypes[65]. Despite sharing overlapping transcriptomic 

regions and a dependency towards IL-15 for proliferation and stability, the developmental 

pathways for both the cell types are rather different[66]. NK cell develops strictly from NK cell 

progenitors that are restricted to generate NK cells but none of the other ILC subsets. Apart 

from CD200R, no other reliable markers have been identified that distinguish murine NK cells 

with ILCs[67]. A recent study allowing multi-tissue single-cell analysis deconstructed the 

complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues to 

identify unique transcriptional programs underlying both the cell types[68]. The study 

classified ILC1 as the Eomes- tissue specific NK cells that expresses Zfp683[68]. Single cell-

based applications as such could serve as the molecular guide in resolving the debate also in 

human immune cells. 

3.2.2. Functional NK cell diversity 

The NK cell phenotype and maturation state has been integrally conflated with effector 

function and used as the basis for classifying NK cells into distinct subsets (Figure 3B). The cells 

that have superior lytic abilities are known to be cytotoxic NK cells. They are phenotypically 

defined as CD56dimCD16bright subpopulation with larger expression of lytic granules, and KIRs 

and are thought to be more mature compared to other NK subsets[69]. The other less mature 

subsets display more regulatory functions via secretion of different cytokines. These subsets 

can be further subdivided as the regulatory and the tolerant population[70]. Both subsets are 

characterized by expression levels of CD56, NKG2A, CD2, CD62L and CCR7 molecules. 

However, these subsets vary in terms of functions as regulatory NK cells are more responsible 
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for modulating  the immune responses from other immune cells and are functionally similar 

to the trNK cells[70]. The role of the regulatory NK cells has been quite evident in the 

maturation of dendritic cells, direct activation of adaptive immune cells and killing of 

immature DCs and overstimulated macrophages (Figure 3B). Tolerant NK cells on the other 

hand  show dominant inhibitory characteristics and aid in fetal development during pregnancy 

as they are mostly found in decidual region[70] (Figure 3B). 

Recently, it was discovered that a few percent of NK cells can develop immunological memory 

and differentiate into adaptive NK cells[54,71]. Adaptive NK cells were shown to proliferate 

and differentiate in reaction to a cytomegalovirus (CMV) infection upregulating HLA-E-specific 

activating receptor CD94/NKG2C[72]. Additionally, antigen-specific NK cell memory was also 

described in T and B cell deficient mice displaying hapten-specific contact hypersensitivity in 

skin cells after adoptive transfer of NK cells from a previously sensitized donor[73]. NK cells 

can undergo differentiation into memory-like effectors once exposed to various cytokines 

such as IL-12, IL-15, and IL-18[74]. In the peripheral blood of CMV+ individuals, adaptive NK 

cells were identified and described as CD56dimCD16bright, have reduced levels of the surface 

marker NKp30 and NKp46, and  displaying a highly differentiated surface signature, namely, 

self-KIR+NKG2A–LILRB1+CD57+Siglec7- [75][76].  Unlike cNK cells, Adaptive NK cells are poor 

responders to IL-12 and IL-18 and show reduced expression of  the NCRs. However, upon 

activation via CD16 and NKG2C, they show rapid proliferation, immense secretion of IFN-γ and 

enhanced ADCC[77,78]. Furthermore, these specialized subsets have reduced expression of 

promyelocytic leukemia zinc finger while DNA methylenation  similar to cytotoxic T 

cells[75,79]. Adaptive NK cells upon continuous activation or chronic viral infection increase 

expression of check point inhibitors like LAG-3 , PD1 thus rendering them into hypofunctional 

state[80]. All these features make Adaptive NK cells phenotypically as well as functionally 

different than cNK cells[60].  

3.2.3. How does heterogeneity arise 

As outlined in the sections, NK cells display a high level of diversity at single-cell level because 

of variegated expression of activating and inhibitory receptors, yet the developmental roots 

and functional consequences of this diversity remains unclear. The developmental model of 

NK cell origin explains that the diversity in the NK cell repertoire is the functional consequence 

of developmental stages during its maturation and is maintained by the expression of different 



 Chapter 1- Introduction  

28 
 

surface molecules. A given phenotype for a NK cell subset is the combination of these 

receptors expressed stochastically within the cells which might further determine its 

functional capabilities. Studying different developmental phases, it appears as if a group of NK 

cells starts from a common progenitor cell, however during different developmental stages, 

they drift from one another due to several intrinsic (genetic) or extrinsic factors 

(environmental) they are exposed to[60]. This concept  for origination of heterogeneity has 

been shown in figure 4. 

 

Figure 4. Origin of Heterogeneity: The NK cell diversity is acquired at different levels during 

the overall life cycle of NK cells. These variations are already acquired during the 

developmental phase of NK cells where different intrinsic factors such as genetics, epigenetics 

and transcription factors play an important role. Furthermore, upon maturation, NK cells go 

through an education process that prevents the cells from self-harm. However,  there are also 

the population that do not match the HLA proteins upregulated by “self” cells thus making 

them more responsive towards acute viral infections. The third level of variation are induced 

due to different environmental exposure such as tissue specific cytokines, cross talk with other 

immune cells, tumor infiltration and encounter with infected cell types.  Upon all these 

exposures, a repertoire of NK cells with different functional capabilities and preferences are 

generated thus resulting to unexpectedly wide diversity within the cell population. Figure 

created using BioRender (https://biorender.com/) 

 

 

https://biorender.com/
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3.2.3.1. Intrinsic factors that govern NK cell heterogeneity 

Host genetics and epigenetics have one of the important roles in determining the fate of the 

NK cell diversity and are composed together as one of the “intrinsic factors” in this review. In 

1997, the study by Parham et al. showed that each individual expresses a different subset of 

KIR and suggested that the polymorphic allelic distribution could be one of the important 

factors regulating the NK cell diversity[81]. More recently, the variation in expression pattern 

KIRs was correlated with the host genetics[82]. By performing a multiparameter mass 

cytometry of 28 NK cell panels to phenotype peripheral blood NK cells from 5 sets of  

monozygotic twins and 12 unrelated adults they showed the existence of  more than 100,000 

possible NK cell phenotypes and no single phenotype accounted for more than 7% of total NK 

cells[82]. Receptor patterns and expression levels in identical twins, showed less variability 

compared to non-related individuals, marking genetics to be one of the determining factors 

for the observed heterogeneity. Furthermore, the genetic differences within an interracial and 

interethnic population also greatly influenced the stochastic expression of different cell 

surface receptors. Different functionally evolved NK cell subsets such as activated NK cells 

with adaptive memory-like functions are highly linked to epigenetic reprogramming including 

alterations in DNA methylation[75,83]. Wiencke et al. has provided a model for adaptive NK 

cell diversification whereby engagement of DAP12-coupled activating receptors results in 

epigenetic imprinting of the ZBTB16 locus, resulting in loss of promyelocytic leukemia zinc 

finger protein expression[83]. Promyelocytic leukemia zinc finger protein expression deficient 

NK cells also display stochastic hypermethylation of promoters encoding signaling proteins 

SYK, EAT-2, DAB2, and Fc𝜀R𝛾, resulting in the diversification of the adaptive NK cell repertoire. 

In addition to host genetics and epigenetics, another crucial intrinsic factor that governs 

cellular diversity is the involvement of different transcription factors[84–86]. Closer analysis 

of different organ-specific NK cell clusters showed discrete developmental stages at different 

points of differentiation. This study supported the notion that the developmental progression 

of NK cells goes from CD56bright to CD56dim NK cells and showed the existence of  a  

“transitional” population with intermediate expression of CD56 or CD57 surface molecules 

that links the two phenotypes[87]. Similar developmental subsets consisting of mature, 

transitional, and terminal NK cell subsets were identified in murine bone marrow NK cells. 

Later it was identified that different developmental stages were regulated by different 
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transcription factors thus leading to heterogeneity[88,89]. It is widely appreciated that cNK 

cells differ from trNK by a different set of transcription factors during differentiation. For 

example, the development of liver-resident NK cells is dependent on the transcription factors 

Hobit and T-bet, whereas differentiation of cNK cells requires expression of the transcription 

factors Eomes and only moderately T-bet[90,91].  

All these studies show how host intrinsic factors play an important role in modulating variation 

within NK cells. Even though host genetics determines the expression pattern of different KIRs 

together with selective transcription translation and post-translational modifications, external 

factors such as cytokine signaling, cell–cell interactions, epigenetic modifications and 

immunological experience further affects the gene expression at multiple levels generating 

multiple layers of heterogeneity within NK cell compartment. 

3.2.3.2. Extrinsic factors that govern NK cell heterogeneity 

NK cell development is equally affected by cues from the environment wherein they reside. 

Examples of such extrinsic factors include, NK cell education, the expression level of MHC-I 

molecules and, furthermore, different environmental cues such as cytokines, growth factors 

and pathogenic interactions, that shape the NK cell development process.  

The expression pattern and the affinity of different KIRs identify self-molecules during 

maturation and play an important role in inducing the functional variation within the NK cell 

compartment. By the process of “education”, these cells can tune the functional ability of cells 

in an MHC-dependent or independent way[92,93]. Thus, generated educated population can 

identify self from foreign and have acquired more adept effector function while some with 

non-reactive or lacking expression of inhibitory receptors remain hypofunctional[94]. Around 

10-20% less educated or uneducated cells, that might be considered potentially harmful co-

exist together with functionally superior NK cells[95,96]. These uneducated NK cells have a 

high threshold for activation, thus maintaining the self-tolerance in the body[95,97]. They are 

also thought to play an important role during inflammatory microenvironments, like viral and 

bacterial infections and certain tumor invasions[98,99]. The state of education could be 

reversed by the cytokines, thus providing the possibility of changing the functional fate of the 

NK cells[100].  Thus educated, uneducated, non-binding and weakly-binding NK cells play their 

part in maintaining host immunity[99]. Apart from the host’s genetics, which can affect the 

stochastic expression of different inhibitory receptors on their surface, NK cell education also 
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depends on the expression of HLA molecules which varies among the population. Thus, in the  

process of  developing functionally competent NK cells, a new level of  diversity is generated 

within and between individuals. 

NK cells can sense different chemokines that direct them towards the site of infection or adapt 

a certain functionality in response to cytokines being secreted. The role of cytokines, such as 

IL-15, in inducing intra-lineage plasticity to maintain phenotypical and functional diversity 

within NK cell repertoires has been recently identified[101]. IL-15 helps in controlling the 

cellular metabolism via activating the mammalian target of rapamycin (mTOR) and is essential 

for  NK cell survival, development and proliferation[102]. The role of IL-15 has also been 

studied in maintaining the functional plasticity therefore providing the opportunity to tune 

different functional state within NK cell repertoire. Either way, the physiological as well as the 

pathological environment shapes the phenotype of NK cells in such a way that they are 

capable to serve a particular function. NK cells that have attained full maturation and 

education, leave the site of generation, and take up residence at the peripheral tissues. At the 

tissue level, these cells are exposed to different tissue specific cytokines, growth factors and 

pathogens. This difference in exposure can generate different phenotypical variants that are 

opted to fulfill specific tasks. For example, decidual NK cells found in the uterus have a distinct 

phenotype compared to peripheral blood NK cells. These cells share common features to 

CD56bright cNK cells and secrete several chemokines like XCL1, CCL1 and angiogenic factors 

such as, vascular endothelial growth factor (VEGF), placental growth factor (PLGF), Ang1, and 

Ang2 that are involved in vascular remodeling and therefore promote the fundamental 

physiological process of pregnancy[103,104]. 

NK cell diversity expands with immune experience, which means that the more cells are 

exposed to environmental stimuli, the more there is diversification. At birth, NK cells have 

very low diversity but have high capacity for a range of responses. This variation enhances 

with age and over the course of a lifetime exposure, the NK repertoire diversifies, hence, 

becoming functionally specialized and unique to an individual. Even though the NK cell 

repertoire stabilizes over time, their adaptability to respond against novel antigens decreases 

[105]. The  high NK cell diversity was identified to be significantly associated with 2.5 folds 

higher risk of HIV-1 acquisition[105].  

The tumor microenvironment (TME) can steer and affect NK cell heterogeneity. This variation 

impairs the effectiveness of NK cells by limiting their capacity to infiltrate tumors, thus 
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dampening the cytolytic function of tumor-infiltrating NK cells. Additionally, the TME induces 

several immunosuppressive soluble factors such as TGFβ, prostaglandin E2 (PGE2), adenine, 

indoleamine 2,3-dioxygenase (IDO) and a range of ligands that inhibit their function, including  

KIRs, CD94/NKG2A, PD1, CTLA4, TIM3, TIGIT, CD96, KLRG-1, LAG3, and, recently discovered, 

IL-1R8  [106,107]. Another aspect contributing to the impaired NK cells function in the TME is 

the poor availability of nutrients, such as glucose and glutamine. Research showed that 

CD56bright NK cells require glycolysis to produce IFN-γ and promote their survival, while the 

lung TME favors more gluconeogenesis due to up-regulation of the fructose diphosphates 

enzyme[108]. This leads to inhibition of glycolysis and eventually leading to impaired NK cell 

viability.  

Taken together, several studies have shown that heterogeneity is the function of intrinsic as 

well as extrinsic factors eventually shaping different stages within the development, thereby 

generating wide variations within cell types, and resulting in the diverse NK cell populations 

(Figure 4).  

3. Plasmacytoid dendritic cells (pDCs): 

Plasmacytoid dendritic cells (pDCs) were first described by the Liu and Colonna groups as the 

major IFN producing cells of the immune system[109,110]. They are generated continuously 

in the bone marrow from hematopoietic stem cells via both myeloid and lymphoid precursors. 

The development of pDCs highly depends on the ligation of CD135 cytokine receptors by Flt3L 

that even in absence of other proliferative signals is enough to induce their development in 

vivo[111]. Plasmacytoid DCs also require the high-level expression of IRF-8, TCF-4 (also known 

as E2-2), and BCL-11A for their development, functional specification, and maintenance[112–

114]. Plasmacytoid DCs are characterized as BDCA-2+BDCA-4+CD4+CD45RA+IL-3Rα+ILT3+ILT1− 

CD11c− lineage- cells[115]. After the development, proteins such as CXCR4 (context-

dependently) mediate pDC trafficking to peripheral blood and lymphoid organs where they 

remain non-proliferative and show a short life span of a few days[116]. Furthermore, pDCs 

express TLR-7 and TLR-9 in their endosomal compartments which upon ligand ligation led to 

the immense production of type I interferons (IFN-I). Lastly, upon activation they become 

larger and more branched like other DCs.  
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3.1 Diversity within the pDCs compartment: 

Plasmacytoid DCs are known as natural IFN secreting cells because of their immense capacity 

to secrete IFN-I against infections. These cells are exclusively known for their ability to mount 

antiviral immune response along with a response towards a bacterial, fungal, and parasitic 

infection. Although pDCs constitute less than 1% of the total PBMCs population in peripheral 

blood, they still produce over 80% of total IFN-I secreted upon infection[109,117]. They also 

have other functions, including adaptive, regulatory, and tolerogenic roles, however, it is not 

yet clear how they show these ranges of functions[118]. There are two different theories 

regarding the origin of diversity within pDCs population: Development of distinct functional 

subsets during the maturation or acquired plasticity upon stimulation[119]. Data generated 

from single-cell transcriptomic analysis support acquired plasticity over-development subsets 

theory by showing a homogenous pDCs population in homeostatic conditions[120]. It was also 

observed that pDCs could convert into conventional (cDC)-like cells upon stimulation with IL-

3 or CpG-B[121,122]. A slight difference in the signal integration at single-cell level is already 

enough to drive such functional plasticity[119,123]. However, in the absence of enough 

information regarding the development and maturation scheme of pDCs and identification of 

several phenotypes within the DC population, it is still hard to gather consensus regarding the 

origin of pDC heterogeneity[119]. In the following section, the phenotypical and functional 

diversity within the pDC population is discussed. 

4.1.1  Phenotypical heterogeneity within pDC 

pDCs with different phenotypical characteristics have been identified, mostly differing in the 

degree of their differentiation and capacity for secreting IFN-I. In mice, different markers such 

as CCR9, SCA-1, CD9, and Ly-49Q are expressed by peripheral pDCs and can distinguish 

between different phenotypes[124–126]. Human pDCs were characterized into two subsets 

based on the expression of CD2 surface molecules where CD2high pDCs showed the higher 

capacity to promote T cell stimulation when activated while CD2 sparse populations secreted 

IFN-I upon activation[127]. Similarly, Siglec-1 was also used to distinguish between IFN-I 

secreting and non-secreting cells. However, this marker also described the IFN-I non-secreting 

cells as immature phenotypes of pDCs[128]. Positive expression of CD5 and CD81 was later 

described together with CD2 to describe the IFN-1 secreting potential of pDCs and linked this 

expression to tyrosine kinase receptor AXL[119,129]. It has also been found that pDCs upon 
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activation with the tick-borne encephalitis vaccine (FSME)  upregulate CD56 in their cell 

surface that enables them to induce cytotoxic effector function against MHC-I negative tumor 

cells along with priming antigen specific T cells[130,131].  

 Transcriptional profiling of individual pDCs revealed an unprecedented phenotypic 

heterogeneity within a cellular compartment that could be directed towards the early lineage 

priming of the progenitor cells. A DC population was identified that displayed similar features 

between pDCs and cDCs, eg: the surface phenotypes and functionality of cDCs while the 

transcriptional profile of pDCs. A more recent study highlighted the phenotypical diversity 

within pDCS compartment where the cells upon activation showed three specific 

subpopulations with the differential functional ability for IFN-I secretion and T cell 

priming[123]. 

4.1.2 Functionally diverse pDCs 

4.1.2.1 Innate and adaptive role of pDCs 

Plasmacytoid DCs sense pathogen associated molecular patterns via specific endosomal toll-

like receptors: TLR-9 (unmethylated CpG motif-containing DNA), TLR-7 (viral single-stranded 

RNA) ultimately leading to its activation[132–134]. This activation starts the downstream IFN 

signaling pathways via myeloid differentiation primary response protein 88. Additionally, pDCs 

can also produce IFN-I through cyclic GMP-AMP synthase and stimulator of IFN genes  and 

retinoic acid-inducible gene 1 like receptor cytoplasmic pathways[135,136]. Thus, secreted 

IFNs play an important role in restricting viral entry and replication. This overall process of 

pDCs activation by directly sensing the pathogens has been described as cell-intrinsic 

activation. Although it is a well-known phenomenon in pDCs study, it has also been shown 

that some pDC subpopulation requires additional IFN-I boost for activation rather than direct 

pathogen sensing[137]. Some pDCs can self-regulate and activate other pDCs via autocrine 

and paracrine signaling of IFN-I signaling[138,139]. There is also the indication that a direct 

cellular interaction also enables the activation and IFN-I secretion machinery within these cell 

types[140,141]. Hence, the overall process of pDCs activation and IFN-I secretion is modulated 

via integrating multiple pathways and cellular processes that remain to be fully explained.  

Besides their innate protective function, pDCs also play a key role in shaping the adaptive 

responses to viruses. Upon activation, these cells undergo morphological changes and 

increase upregulation of MHC molecules and co-stimulatory molecules, along with secreting 
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different proinflammatory cytokines[142]. These changes further adapt pDCs for their role as 

antigen-presenting cells. Several studies have highlighted the fact that pDCs can more 

efficiently take up and present endogenous antigens compared to exogenous antigens, thus 

showing an enhanced MHC-I and MHC-II presentation[143]. Apart from IFN-I, pDCs also 

produce pro-inflammatory cytokines such as IL-6, and tumor necrosis factor  in response to 

TLR activation, thus activating the adaptive immune response[137]. Besides, pDCs have also 

been shown to induce activation of NK cells in a juxtacrine or paracrine manner, leading to the 

augmented lytic function of NK cells and secretion of IFN-γ[33]. IFN-γ enhances the function 

of T cells and B cells. This crosstalk between two cells is important for proper recruitment of 

either cell towards the site of infection and induces the suited immune response. In this way, 

pDCs either directly or indirectly facilitate the smooth functioning of the adaptive immune 

responses.  

4.1.2.2 Immunosuppressive and Cytotoxic effector pDCs 

Plasmacytoid DCs along with different co-stimulatory molecules also upregulate program 

death ligands, which are well-known checkpoint inhibitors for T cells. Additionally, pDCs also 

promote the induction of Foxp3+ regulatory T cells. Besides peripheral tolerance, pDCs are 

reported to transport antigen to the thymus to promote central tolerance through clonal 

deletion[144] pDCs exert immunosuppressive effects via mechanisms that involve T cell 

anergy and deletion[145,146]. This demonstrates that pDCs have multiple mechanisms 

devoted to immune tolerance, and these may be engaged in a context-dependent manner. 

However, identification of regulatory pDCs in the tumor microenvironment could also be 

detrimental. Plasmacytoid DCs have been reported to infiltrate in head and neck cancer, lung 

cancer, breast cancer, ovarian cancer, and skin cancer thereby contributing to the suppressive 

tumor microenvironment via generation of regulatory T cells and correlated to their poor 

prognosis[147–149].  

Plasmacytoid DCs have also been associated with the unique cytotoxic properties that are 

endowed upon TLR-7 mediated activation[131]. Viruses such as influenza virus and synthetic 

components such as imiquimod are the ligand for TLR-7 that could induce functionally active 

TRAIL+ pDCs that can lyse appropriate tumor targets[150–154]. HIV-infected pDCs also 

upregulate TRAIL that has been shown to kill CD4+ T cells and thus might be involved in the 

depletion of T cells in HIV patients. 
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4. Next generation immuno-technologies: Microfluidics for Single-Cell Analysis  

Although ample evidence obtained in bulk-based studies suggest the presence of phenotypical 

and functional heterogeneity, in-depth understanding remains quite limited. Amongst 

immunologists, flow and mass cytometry are among well-established, high-throughput, and 

high-content single-cell analysis tools[155–157]. Flow cytometers measure fluorescently 

labelled cells and mass cytometers use transition element isotopes for mapping the functional 

heterogeneity and phenotypes of different immune cells by quantification of multiple 

cytokines, chemokines, and surface protein markers of individual cells[158,159]. Although 

cytometers are a powerful tool for single-cell analysis, they are still predominantly an end-

point measurement tool that can only provide a snapshot in time and quantify static markers 

on cells to provide information on immune cell heterogeneity.  

Over the last decade, microfluidics made significant contributions to the field of single-cell 

research. This method allows cells to be monitored dynamically with high degree of control 

over the cellular microenvironment[160,161]. These approaches have offered new 

information by creating innovative conditions that are limited in conventional bulk methods. 

Microfluidic systems were also developed for applications in several areas such as protein 

purification and PCR on a drastically decreased scale[162,163]. Microfluidic chips are capable 

of accurately replicating in vivo biological environments to allow high-throughput analysis of 

cells[164]. It also allows precise automation and control of analytical functions as well as 

manipulation of cells and their microenvironments with high resolution in both space and 

time[165,166]. With microfluidics, scientists can implement techniques and protocols for 

single-cell analysis through DNA sequencing, RNA expression, and protein quantification to 

understand the mechanism of cell activation, proliferation, protein expression, motility and 

morphology, secretion, and cellular communication[167–170].  

The ability to rapidly fabricate microfluidic devices in PDMS by soft lithography greatly 

stimulated the development of microfluidic designs[171]. Besides being inexpensive, PDMS is 

biocompatible and permeable to gases, two properties that are a necessary for replication of 

artificial cellular microenvironments, in vitro[172,173]. The flexibility of PDMS allows easy 

integration of membrane valves and pumps on more complex microfluidic designs to create 

an intricate network of microchannels wherein protocols can be realized in full automation 

with programming software[174]. Microfluidic chip designs can be broadly classified in three 
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categories: microfluidics with passive traps, valve-based microfluidics, and droplet 

microfluidics. The trap based and well based microfluidic platforms are often limited by  

limited by their ability to replicate the dynamically variable immune cell microenvironment in 

which immune cells work. Also, for more efficient single-cell level analysis of immune cells it 

is essential that cells are isolated, stimulated and analyzed in a noise-free environment to 

negate the effects of paracrine communication from neighboring cells which are not easily 

obtained in these platforms.  Valve-based platforms provides an optimal platform for cell 

isolation yet, it is severely limited in terms of throughput. All the above-mentioned limitation 

are catered to by droplet-based microfluidics, thus making it a robust tool for studying single 

cell. This thesis focuses on droplet based microfluidic system to further study the interaction 

within immune cells. 

5.1 Droplet-Based Microfluidics 

The idea to perform biological analysis in water-in-oil droplets was first published in the 1950s 

by Nossal and Lederberg[175]. Since then droplet microfluidics has continued fueled growing 

body of research leading to multiple applications in fields of biology and chemistry[176–178]. 

Droplet microfluidics has been widely implemented for high-throughput screening of 

biological and chemical reactions, single-cell analysis, genomics, and transcriptomics[179–

183]. It also finds applications in molecular detection, imaging, drug delivery, antibody 

screening, toxicity screening, and diagnostics[184–190]. On a microfluidic chip, using two 

immiscible liquids, droplets, in one liquid phase, are generated in another liquid phase by 

breaking off either at a T-junction or flow-focusing junction[191,192]. In such a setup, passive 

generation of droplets relies on drag forces and viscous dissipation[193]. Variations in channel 

geometries help to pair, trap, merge, mix, release, and split droplets[194]. Pneumatic 

membrane valves, electrical forces, optical manipulations, and acoustic waves are other 

alternatives for active production of droplets on microfluidic chips[195–198].  

Droplet-based microfluidic platforms provide scientists with the ability to investigate immune 

cell behavior in complete isolation by creating a noise-free and controlled cellular 

microenvironment[199]. Specifically, it allows to map immune cell subsets, quantify secretion 

of signaling molecules from single cells, and investigate cellular communication. In 2015, 

Sarkar et al. demonstrated an array-based droplet device that allowed monitoring of 

nanoliter-sized droplets for T-cell activation longitudinally right from the onset of 
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activation[200]. Their results suggested that the activation of single T-cells is faster when cells 

encounter dendritic cells in comparison to other activation methods. Furthermore, they 

developed a method to probe into the potentially heterogeneous cytolytic behavior of human 

NK cells[201]. They demonstrated a hundred percent killing efficiency of NK cells, which is in 

contrast to earlier findings by various groups who performed such studies, either, in bulk or 

at single cell resolution[202,203]. 

In order to quantify secreted molecules in droplets, cells are often paired with functionalized 

beads or other sensing molecules to capture target analytes during incubation, prior to 

analysis[204]. The droplet interface ensures that encapsulated cells are shielded from external 

factors that might influence their secretory behavior. Concurrently, this interface in 

combination with the small droplet volume, confines secreted molecules within the droplet 

resulting in increased sensitivity. Qiu et al. employed aptamer-based DNA sensors to quantify 

IFN secretion by encapsulating single T-cells in droplets followed by flow-cytometric and 

microscopic analysis (Figure 5A)[205]. This study demonstrated the versatility of droplet 

microfluidics to be integrated with multiple detection methodologies. In another recent study, 

Eyer et al. used Drop-Map technology for phenotyping IgG secreting plasma cells at single-cell 

level (Figure 5B)[206]. In this study, they paired antibody secreting cells with multiple 

paramagnetic functionalized nanoparticles that captures target antibodies in picolitre sized 

droplets. For the purpose of analysis, the generated droplets were immobilized in a glass 

observation chamber to measure fluorescence intensity of each droplet and quantify secreted 

antibodies for mapping different plasma cell phenotypes. With this technology it was possible 

to monitor and quantify antibody secretion by encapsulated cells in droplets, real-time.  

Besides aqueous based droplets, hydrogels like agarose can also be used to create droplets in 

oil phase, which allows washing steps and permits staining with antibodies in droplets by slow 

diffusion. This conceptual advantage of using hydrogel based droplets was exploited in the 

Huck laboratory, where agarose droplets were used for encapsulation of Jurkat T-cells to 

capture multiple cytokines on functionalized beads to demonstrate cellular heterogeneity and 

map cellular subsets (Figure 6)[207]. Generally, for cytometry, droplets need to be broken to 

retrieve cells and beads. On the contrary, cells and beads encapsulated in hydrogels can be 

analyzed directly with flow cytometry, preventing the loss of cells, and saving significant 

amount of time.   
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Recently, researchers have also implemented protocols for single-cell sequencing in droplet 

microfluidics[208]. In 2015, Macosko et al. developed Drop-seq technology where the 

transcriptomics of thousands of retinal cells were analyzed in droplets using barcoded 

microparticles[209]. Later, the Abate lab also demonstrated the genomic sequencing of more 

than fifty thousand single cells in agarose microgels[210]. Single-cell sequencing allows 

researchers to identify differences in cellular behavior and understand the functionalities of 

individual cells that assists in decoding immune cell heterogeneity[211].  

Genomic amplification for sequencing can be performed in droplet microfluidics with high 

accuracy and specificity in a massively parallel fashion[208]. The work of Shahi et al., 

demonstrated the efficiency of droplet microfluidics to profile protein secretion by single 

immune cells using a high-throughput droplet-microfluidic barcoding technique, Abseq[212]. 

This microfluidic device was integrated with functions to amplify DNA in nanoliter sized 

droplets to allow for more than tens of thousands of cells to be analyzed in parallel.   

Together, all these studies highlighted the role of droplet microfluidics in single-cell analysis 

of immune cells. Droplet-based microfluidics is a highly versatile and flexible technology and 

is widely applicable in multiple realms of immunology. The ability to carry out high-throughput 

analysis of hundreds to thousands of individual immune cells and paired immune cells in 

parallel makes droplet microfluidics a highly reliable and popular single-cell analysis tool. 
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Figure 5. Droplet microfluidics is a very versatile tool that allows single-cell analysis of 

immune cells in a noise-free environment. The cells are often paired with functionalized beads 

or sensors such as aptamer sensors for quantification of secreted molecules and proteins. 

Droplet microfluidics is combined with flow cytometry, mass cytometry, and automated 

microscopy for downstream analysis. A. Adapted from Qiu et al.[205]. B. Adapted from Eyer et 

al.[206]. Reproduced with permission from Springer Nature. 
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Figure 6. Hydrogel agarose gel droplets used in the Huck laboratory for measurement of 

cytokine secretion. The advantage of hydrogel droplets is that it allows washing steps for 

immunoassays. Also, cells encapsulated in hydrogel droplets can directly be analyzed by 

cytometry. Figure adapted from Chokkalingam et al.[207].  
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5. Scope of the Thesis 

A well-coordinated interaction between immune components is crucial for successful 

immunotherapy, however, the underlying cellular heterogeneity within both the immune cells 

and tumorous cells adds complexity to this interplay. Although cellular heterogeneity in the 

immune system is widely appreciated, many aspects of it remain understudied. Use of 

conventional population-based technologies, cannot dissect this complex variation since it can 

only estimate the average distribution of responses. For long, flow cytometry and microscopy-

based techniques have been the gold standard for the analysis of cellular behavior. These tools 

can measure with single cell resolution, however, lack single cell manipulation and often 

involve activation of cells in bulk-assays, which ultimately leads to paracrine and juxtacrine 

signaling among cells. Recent breakthroughs in single-technologies such as mass cytometry, 

single-cell RNA sequencing (scRNA-seq), and a combination of different microfluidics and 

micro systems-based studies, integrated with flow cytometry and microscopy, have allowed 

new ventures to study, identify, and correlate the phenotypical characteristic with functional 

diversity. In this thesis I aim to achieve a balanced integration of single cell technology to 

investigate functional heterogeneity and cellular interactions in immune system to channel 

new avenues for immunotherapy.   

Part 1 

The aim of this part is to develop single cell-based platforms that facilitates monitoring of 

cellular interaction and functional outputs. Droplet based microfluidics provides a robust tool 

for isolating and analyzing cells at the single-cell level by eliminating or controlling the 

influence of external factors on the cellular microenvironment. In the following chapters, I 

addressed the two major challenges namely: efficient cellular encapsulation, and high-

throughput real time monitoring of the cells in droplets, thus enhancing the performance of 

in-droplet immunoassays. 

In Chapter 2, I utilized a simple yet innovative “Tip-loading” technique to overcome the loss 

of scarce immune cells during encapsulation. The higher encapsulation efficiency is ensured 

by circumventing the chances of cell sedimentation in the tube or cell clumping due to longer 

tube length. 
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In Chapter 3, I integrated our droplet-based platform with real time microscopy and 

automated analysis scripts to monitor the dynamics of immune cell mediated cytotoxicity in 

droplets. This adaptation facilitates efficient cell pairing and high throughput monitoring of 

droplets in real time. 

Part 2  

In Part 2, I dove into the application of the previously developed platform to study intriguing 

biological processes. In the following sections, I studied functional heterogeneity in immune 

cells (NK cells and pDCs)  and the consequences of their interaction at single cell level using 

the platform. 

In Chapter 4, I investigated the functional heterogeneity in NK cell population by monitoring 

the dynamics of their interaction with different target cells. I also studied the cytotoxic and  

secretory functions of individual NK cells separately and together with cancer cells to 

understand how different functions are performed by a single NK cell. By identifying rare serial 

killers and assessing stem cell differentiated NK cells (for adoptive NK cell therapy), I 

demonstrated how studying these interactions at single cell level provide  novel and relevant 

insights. 

In Chapter 5, I probed the heterogeneity within the pDCs population and understand how the 

IFN-I secretion mechanism is regulated by its microenvironment. 

In Chapter 6, I studied how bidirectional talk in between immune cells regulate each other’s 

function. I facilitated interaction between single pDCs and single NK cells in droplets and 

monitor their functional output in terms of cytotoxicity and secretion of interferons using 

microscopy or FACS. 

In Chapter 7, I summarized the findings of this thesis and provide an outlook for the future 

research. I also provided the information on how the insights from single cell studies in 

immune system be used to create avenues for immunotherapy. 
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Abstract 

Amongst various microfluidic platform designs frequently used for cellular analysis, droplet-

microfluidics provides a robust tool for isolating and analyzing cells at the single-cell level by 

eliminating the influence of external factors on the cellular microenvironment. Encapsulation 

of cells in droplets is dictated by the Poisson distribution as a function of the number of cells 

present in each droplet and the average number of cells per volume of droplet. Primary cells, 

especially immune cells, or clinical specimens can be scarce and loss-less encapsulation of cells 

remains challenging. In this paper, we present a new methodology that uses pipette-tips to 

load cells to droplet-based microfluidic devices without the significant loss of cells. We 

demonstrate, with various cell types, efficient cell encapsulation in droplets that closely 

corresponds to the encapsulation efficiency predicted by the Poisson distribution. Our method 

ensures loss-less loading of cells to microfluidic platforms and can be easily adapted for 

downstream single cell analysis, e.g. to decode cellular interactions between different cell 

types.  

Graphical Abstract 
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1. Introduction 

In recent years, the use of microfluidics as a robust and versatile platform for cellular analysis 

at the single cell level has rapidly increased[1]. These platforms provide high-throughput 

screening of single cells and biological molecules with high precision and sensitivity using very 

small sample volume[2–4]. Among different types of microfluidic designs, droplet-based 

platforms enable high-throughput analysis of single cells by isolating them in an aqueous 

phase droplet surrounded by an immiscible phase that allows precise and accurate control 

over the cellular microenvironment[5,6]. Droplet-based microfluidics gives the flexibility to 

isolate single or multiple-cells in, both, aqueous and hydrogel droplets and is valuable in 

probing complex cellular behavior, such as protein secretion or cellular interactions[7–9]. 

Signaling and cross-talk amongst immune cells can be influenced by interactions with other 

cells in the microenvironment[10]. Isolation of single cells in droplets provides an effective 

noise-free analytical laboratory, free from the influence of external environmental factors for 

more efficient and accurate results[11,12]. Modifying the design of a droplet-microfluidic 

platform with multiple inlets allows the encapsulation of multiple cell types to study cellular 

interactions via cell-pairing[12,13].  

The process of encapsulation of cells in droplets is random and the rate of encapsulation of 

cells can be  statistically determined using the formula for the Poisson distribution[14,15]. This 

rate of encapsulation can be estimated by considering the average rate of the arrival of cells 

at the droplet junction and assuming that the arrival of each cell is independent from the 

arrival of other cells[16]. Even though independent cell arrival cannot be guaranteed, in cases 

of sparsely distributed cells, the assumption of independence can be considered and the 

probability of a droplet containing one or more cells can be predicted as a function of the 

number of cells present in each droplet and the average number of cells per droplet[16,17]. 

Since this estimation of cellular encapsulation in droplets is dependent on the number of cells 

present in each droplet, one can suggest that increasing the concentration of the cells at the 

inlet will increase the average number of cells present in each droplet[16]. Therefore, to 

ensure single cell encapsulation, the cell concentrations must be reduced but this often leads 

to a large number of empty droplets[18].  

 



 
 Chapter 2- A pipette tip-based method for cell loading on chip 

60 
 

Loss of cells during loading by either attachment, sedimentation, and/or clumping in the 

syringe, tubing, or production device is a common drawback responsible for the deviation of 

actual encapsulation values from the predicted encapsulation values[19]. This problem gets 

further exaggerated when seeding rare immune cells or clinical specimens as they are already 

scarce in population and the encapsulation of only a few cells, much lower than expected, 

does not provide sufficient data for experimental analysis. Plasmacytoid dendritic cells (pDCs) 

are a rare subset of immune cells that only constitutes approximately 0.2 - 0.6 percent of the 

entire white blood cell population[20]. These cells secrete massive amounts of type I 

interferons upon activation and thereby play a critical role in immune responses[21]. When 

studying the cellular behavior of such rare cells in droplets, it is imperative to prevent cell loss 

during cell seeding and encapsulation[22]. There are several design related developments that 

have ensured the encapsulation of single cells in droplets using active encapsulation methods 

that utilize different physical forces such as acoustic or electrical forces for generation of 

droplets containing single-cells[23,24]. However, these methods have their own limitations in 

terms of droplet production[16].  

In this study, we established a robust and straightforward method that circumvents the 

shortcomings of traditional methods for loading single or multiple cells to microfluidic devices. 

Our method, inspired by Rho et al., utilizes differently-sized pipette tips for seeding small 

volumes of rare immune cells to droplet microfluidic platforms without significant sample loss 

and yielded results that are coherent with theoretical predictions[25].  This methodology can 

be easily and successfully adapted for several applications involving droplet-based 

microfluidics and applied for a wide variety of cell types or even microparticles. 
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2. Protocol 

 

2.1.-inlet Polydimethylsiloxane (PDMS) device fabrication 
 

2.1.1  Measure 40 g PDMS base in a conditioning mixer cup and add 4 g PDMS curing agent 
to the base reagent in the cup, carefully, using a dropper.  

 

2.1.2 2.1.2 Place the cup in the holder of the conditioning mixer and measure the total 
weight of the cup with the holder. Set the value of the centrifuge balance weight on 
the conditioning mixer accordingly.  
 

2.1.3 2.1.3 Mix the base and curing agent in the conditioning mixer at 2000 rpm for 2 min 
followed by de-foaming at 2000 rpm for 2 min.  
 

2.1.4 Prepare an aluminum boat, with a diameter approximately the same size as that of a 
100 mm silicon wafer. Place the silicon wafer, fabricated for the replica molding 
process, in the aluminum boat and put this setup in a petri dish (diameter = 120 mm, 
height = 20 mm). 
 

Note: The size of the petri dish depends on the size of the silicon wafer. 

 

2.1.5  Remove the cup from the holder and the pour pre-cured PDMS mixture (contents of 
the cup), carefully, on the silicon wafer.  

 

2.1.6  Place the petri dish, containing the silicon wafer with the pre-cured PDMS mixture, in 
a desiccator for about 20 min to remove all the air bubbles.  
 

2.1.7  Remove the petri dish after 20 min and check for any remaining air bubbles that can 
be removed.  
 

2.1.8  Place the petri dish in an oven, set at 65 °C, for at least 3 h.  
 

2.1.9  Remove the petri dish from the oven after 3 h and carefully peal the cured PDMS from 
the silicon wafer.   
 

2.1.10  Cut PDMS devices along the cut lines, using a knife or a scalpel.  Punch holes at the 
inlets and outlet of each device using a 1.2 mm puncher. Clean each PDMS device with 
scotch tape to remove any dust or residual pieces of PDMS. 

 

Optional: Blow with nitrogen to remove residual PDMS pieces. 

 

2.1.11  Prepare glass slides by cleaning them with soap-water, followed by isopropanol and 
dry with nitrogen. 
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2.1.12  Bond a clean PDMS device with a clean glass slide in a plasma asher to close the flow 
lines. The settings used in this setup are as follows: Power: 50 W, Time: 45 s, Bleed 
delay time: 2 s, Process gas: Gas 1 (Air), Vent: Both valves, Restricted vent time: 60 s, 
Pump spin down time: 10 s, Vent hold time: 0 s, Gas shutoff time: 1 s, Turbo pumping 
enabled: 0. All the other gas lines are disconnected.  
 

Note: The settings used for the plasma asher can vary according to the brand of the plasma 

asher used.  

 

2.1.13  Prepare the silane solution by adding 50 μL silane (1H,1H,2H,2H-
Perfluorooctyltriethoxysilane) to 950 μL fluorinated oil. 

 

Note: Silane is toxic. Please operate under fume hood.  

 

2.1.14  Draw the prepared silane solution in a syringe, which is connected to a teflon tubing.  
 

2.1.15  Salinize the device by flushing the prepared silane solution through the outlet of the 
device. 
 

2.1.16   Place the device in an oven, set at 65 °C, for 30 min. 
 

2.1.17  Remove the salinized device from the oven and flush excess silane out of the device 
with   fluorinated oil. 
 

2.1.18  Place the device back in an oven, set at 65 °C, for at least 1 h to complete the bonding 
process.    

 

Note: The Protocol can be paused here. 

 

2.2 Loss-less cell encapsulation 
 

2.2.1 Cell harvesting 
Re-suspend Jurkat T cells in Roswell Park Memorial Institute (RPMI) medium at  
concentrations of 1.0E6 cells/mL, 2.0E6 cells/mL, 4.0E6 cells/mL, and 8.0E6 cells/mL; 
pDCs in X vivo 15 medium at concentrations of 1.3E6 cells/mL, 3.0E6 cells/mL, and 
13.0E6 cells/mL; A549 cells in Dulbecco's Modified Eagle's Medium (DMEM) at a 
concentration of 1.0E6 cells/mL. 

 

Note: The type of cells and concentration of cells can vary based on the experiment. Labelling 

of cells can also be done based on the experiment. 

 

2.2.1 Tip-loading for aqueous droplet generation 
 

2.2.1.1  Prepare fluorinated oil with 3% biocompatible surfactant mixture by adding 30 mL 
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surfactant to 20 mL fluorinated oil (oil phase).  
 

Note: The concentration of the surfactant added to the fluorinated oil determines the stability 

of the emulsion for different incubation periods. The concentration of the surfactant 

varies depending on the media used for specific cell-types.  

2.2.1.2 Draw the oil phase mixture in a syringe (1 mL). Remove air bubbles from the syringe 
and connect it to a teflon tubing of appropriate length.  

 

2.2.1.3  Prepare a sample syringe by drawing biocompatible mineral oil in a syringe. Remove 
air bubbles and connect the syringe to a teflon tubing of appropriate length.   
 

2.2.1.4  Punch a PDMS plug with a diameter of 5 mm from a cured PDMS slab. 
 

Note: The cured PDMS slab can be prepared using steps 1.1 to 1.9. Use a plain silicon wafer 

instead of a fabricated silicon wafer.  

 

2.2.1.5  Punch another hole in the center of the plug with a 1 mm puncher.  
 

2.2.1.6  Insert the plug in a 200 µL pipette tip, from the larger end, such that it fits tightly. 
 

Note: Use a 1000 µL pipette tip for larger sample volume and larger cells. For 1000 µL pipette 

tip, plugs of diameter ranging between 5 mm and 7 mm can be used.  With a plug of diameter 

5 mm, a sample volume of around 400 µL can be aspirated in the pipette tip. If a plug of larger 

diameter is used (7 mm), more sample volume can be aspirated (around 900 µL). 

 

2.2.1.7  Insert the tubing, which is connected to the syringe, in the PDMS plug, which has been 
inserted in the pipette tip. Push the syringe plunger slowly to fill the connected pipette 
tip with mineral oil. Push out all the residual air from the pipette tip.   
 

2.2.1.8  Lower the pipette tip, connected to the syringe, in the sample solution and aspirate 
about 150 µL of sample in the tip. 
 

2.2.1.9  Repeat steps 2.2.4 to 2.2.8 to prepare a second sample syringe.  
 

2.2.1.10  Carefully place all the three prepared syringes on the syringe pump.  
 

2.2.1.11  Insert both the pipette tips, containing the sample, in the two inner inlets of 
the PDMS chip. Insert the tube containing the oil phase mixture in the outer inlet. 
 

2.2.1.12  Set the value of the flow rates on the syringe pump as follows: continuous 
phase solution: 600 µL/h, cell samples: 100 µL/h, each. Enter and set the dimensions 
of the syringe. 
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Note: The diameter settings will vary based on the type of syringe. 

 

2.2.1.13 Start the pump to flush sample solution through the inner channels of the 
device and oil phase through the outer channel of the device.  
 

2.2.1.14  Plug in a tubing of appropriate length to the outlet to start collecting the 
droplets when the droplet formation is stable. The time of collection varies based on 
the experiment. 
 

2.2.1.15  Collect droplets in a lock tube. Add 200 µL RPMI medium (without serum) on 
top of the collected droplets and incubate the sample.  
 

Note: Incubation time of the collected droplets varies based on the experiment.  

 

Note: Droplets are collected in a lock tube when flow cytometry-based analysis or isolation is 

performed after retrieving the cells from droplets by breaking the emulsion. It is possible to 

collect the droplets in a glass chamber if the experiment requires in-droplet microscopic 

analysis. 

 

2.3 Emulsion breaking and cell retrieval for flow cytometric analysis 
 

2.3.1 Prepare 20% 1H,1H,2H,2H-Perfluoro-1-octanol (PFO) solution (v/v) in fluorinated oil by  
adding 2 mL PFO in 10 mL flourinated oil. 
 

2.3.2 Remove excess oil from the bottom of the collection tube, containing the droplets, 
using a syringe.  
 

2.3.3  Add 100 µL of 20% PFO solution to the emulsion to break the emulsion and release 
the encapsulated cells into the aqueous phase. Tap and mix briefly. Do not vortex at 
this point. Incubate for 1-2 min.  
 

Note: The amount of PFO added depends on the quantity of droplets produced. Keep adding 

additional PFO until the oil layer is completely dissolved. Keep in mind that PFO is toxic 

for the cells and that too high PFO concentrations or too long incubation in PFO might 

lead to increased cell death. 

 

2.3.4  Spin the solution shortly at the lowest possible rcf for 30 s.  
 

2.3.5 Prepare 100 mL cold Phosphate-Buffered Saline (PBS) solution supplemented with 2% 
Fetal Calf Serum (FCS) (2 mL FCS in 98 mL PBS).  

 

2.3.6  Pipette 550 µL of aqueous fraction, immediately after centrifugation and transfer it to 
a new lock tube containing 500 µL cold PBS solution supplemented with 2% FCS, as 
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prepared in step 2.3.5.  Let any residual oil sink to the bottom of the new lock tube. 
 

2.3.7  Aspirate 950 µL of the aqueous phase containing the cells from this lock tube, 
carefully, without aspirating any residual oil and transfer the solution to a new lock tube. 

 

2.3.8  Spin down the cells in the new lock tube for 10 min.  
 

2.3.9  Re-suspend the cells in 300 µL cold PBS solution supplemented with 2% FCS, as 
prepared in step 2.3.5. 

 

Note: The cells can be also re-suspended in any other suitable solution such as media 

depending on the experiment.   

 

Note: Stain the cells, based on the experiment, for analysis using flow cytometry.  

 

2.4 Cell pairing  
 

2.4.1 Cell harvesting and staining  
 

2.4.1.1  Count Jurkat T cells, from culture flask, and spin down the cells at 1500 rpm for 5 min. 
 

2.4.1.2 Remove the supernatant and re-suspend 1.0E6 cells in 1 mL PBS to get a concentration 
of 1.0E6 cells/mL. The amount of PBS added depends on the cell count. 
 

2.4.1.3 Repeat steps 3.1.1 to 3.1.2 to prepare a second sample of Jurkat T-cells with the same 
cell concentration. 
 

2.4.1.4  Wash both samples twice with 1 mL of PBS at 1500 rpm for 5 min. 
 

2.4.1.5 Re-suspend one cell sample with 1.25 µM carboxyfluorescein succinimidyl ester (CFSE) 
dye and the other cell sample with 1.25 µM far red dye or 1.25 µM cell proliferation 
dye at a cell concentration of 1.0E6 cells/mL. The total staining solution is 1 mL for 
1.0E6 cells. 

 

Note: Cells can be labelled with different dyes depending on the filters available in the flow 

cytometer or in the fluorescence microscope. 

 

2.4.1.6  Incubate the cell samples with dyes for 10 min at 37 °C. 
 

2.4.1.7  Stop the staining reaction by adding 1 mL ice cold FCS after 10 min. 
 

2.4.1.8  Wash the cell samples twice with 1 mL PBS at 1500 rpm for 5 min. 
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2.4.1.9  Re-suspend the cell samples in RPMI media at a concentration of 10.0E6 cells/mL, for 
each color. 

 

2.5 Tip-loading for production of agarose hydrogel droplets for cell pairing  
 

Note: For cell pairing using agarose hydrogel droplets, maintain the temperature of the system 

between 27 °C and 37 °C throughout the droplet generation and collection process to 

prevent gelling of the hydrogels and to warrant cellular viability[9].  

 

2.5.1  Dissolve ultra-low gelling temperature agarose by heating it upto 75 °C in PBS at a 
concentration of 4% (w/v) and stir the mixture for 20 min. 

 

2.5.2  Mix the agarose solution with labelled Jurkat T cells to yield an agarose concentration 
of 2% (w/v). Repeat this for the other sample with differently labelled cells. 

 

2.5.3  Prepare fluorinated oil with 2% surfactant mixture by adding 20 mL surfactant to 30 
mL fluorinated oil (oil phase mixture).  

 

2.5.4 Follow the steps 2.2.2 – 2.2.14.  
 

Note: Because of the viscous nature of low melting agarose and to ensure stable droplet production, 

set the value of the flow rates on the syringe pumps as follows: oil phase mixture: 2000 µL/h, cell 

samples: 200 µL/h. Enter and set the dimensions of the syringe. 

 

2.5.5  Collect the droplets in a lock tube and incubate the droplets at 4 °C for 60 min. 
 

2.6 Emulsion breaking and agarose bead retrieval for FACS analysis 
 

2.6.1  After incubation of droplets for 60 min, remove excess oil from the lock tube, containing the 
droplets, using a syringe.  

 

2.6.2  Add 200 µL PFO to remove the oil interphase from the droplets. 
 

Note: The amount of PFO added to the tube depends on the quantity of droplets produced. Keep 

adding additional PFO until the oil layer is completely dissolved. 

 

2.6.3  Wash the collected agarose beads twice with 1 mL of cold PBS to remove oil completely by 
centrifugation at 1500 rpm for 10 min. 

 

2.6.4 Analyze collected agarose beads using flow cytometry.  
 

Note: It is also possible to observe the beads under a fluorescence microscope.  
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3. Representative results  
 
For our experiments, we used a 3-inlet PDMS based microfluidic device with the height of 25 

microns (Figure 1). In this device setup, we used the outer inlet for flushing the oil with 

surfactant and the two inner inlets for flushing the aqueous phases with cell suspensions or 

media. After generation and collection, the droplets were incubated for a couple of hours off 

chip before downstream analysis using flow cytometry. During the incubation period, serum 

components present in the media can interact with the surfactant and cause droplets to 

become unstable and disintegrate. It is therefore important to add an optimized 

concentration of surfactant to the fluorinated oil. We tested the stability of the 

monodispersed droplets containing X vivo 15 medium supplemented with 2% human serum 

with different concentrations of surfactant in fluorinated oil. It can be inferred from Figure 2 

that these monodispersed droplets are highly stable for up to 24 hours when at least 3% 

surfactant is added to the oil phase. Similar results were obtained with RPMI media with and 

without the addition of 10% FCS (data not shown). Therefore, droplet stability is highly 

dependent on optimal surfactant concentrations when working with different sources of 

culture media and serum components. 

 

Figure 1. PDMS based droplet microfluidic device with three inlets and one outlet. The device consists 

of three inlets for continuous oil phase, cell culture media, and cell suspension, respectively. The 

generated droplets are collected at the outlet. The samples flow laminarly to the flow‐focusing junction 

where they are encapsulated in droplets. At the inlets, filter structures hold large particles like protein 

or cell aggregates back. The diameter of the gaps in the filter structure are indicated by blue lines. The 

diameter of the channels at the production nozzle are indicated by red lines. The channel height on the 

entire chip was 25 μm.  
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Figure 2. Droplet stability over 24 hours. The graphs show the area of droplets containing X vivo 15 + 

2 % human serum, over time for three different concentrations of surfactant A. 0.5% B. 3% C. 5%. 

To demonstrate the encapsulation efficiency of our approach we first seeded the cells using 

tubing connected to syringes, which is the most conventional approach for seeding cells 

(Figure 3A). We harvested Jurkat T cells at different concentrations of 1.0E6 cells/mL, 2.0E6 

cells/mL, and 4.0E6 cells/mL and obtained an encapsulation efficiency that was lower than 

predicted values (Figure 3B). At 1.0E6 cells/mL, the fraction of droplets that contained a single 

cell was 2.5%, which did not increase even upon using higher cell concentrations. 

Figure 3. Tubing based cell loading approach. Jurkat-T cells are loaded at different concentrations to 

the device using a syringe connected to tubing. A. The iIllustration shows the experimental setup. B. 

The cell encapsulation rate as determined by light microscopy. Dots: experimentally determined values; 

Closed lines: Poisson distribution. Error bar represents standard error of mean.  
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To increase the cell-loading efficiency, we modified our previous approach and mounted the 

tubing at half the length to an elevated tripod and loaded the cell suspension in the half that 

was attached to the PDMS device (Figure 4A). Using this approach, we encapsulated Jurkat T 

cells at different concentrations of 1.0E6 cells/mL, 2.0E6 cells/mL, and 4.0E6 cells/mL, and also 

rare pDCs at different concentrations of 1.0E6 cells/mL, 2.0E6 cells/mL, and 12.0E6 cells/mL. 

We expected improved encapsulation rates by preventing cell sedimentation with this 

method. However, at all the concentrations tested, the experimental results were much lower 

than the predicted Poisson values (Figure 4B and Figure 4C).  

Figure 4. Encapsulation of various cell types at different concentrations using a vertical tube loading 

approach. Jurkat T cells and pDCs (of different concentrations) were encapsulated to determine the 

efficiency of cell encapsulation. A. The illustration shows the experimental setup for the vertical tube 

loading approach. B. The graph shows the encapsulation efficiency of Jurkat T cells. C. The graph shows 



 
 Chapter 2- A pipette tip-based method for cell loading on chip 

70 
 

the encapsulation efficiency of pDCs. Dots: experimentally determined values; Closed lines: Poisson 

distribution. Error bar represents standard error of mean.  

Using our tip-loading approach we optimized our cell encapsulation rates to obtain 

experimental results coherent with the statistically predicted values (Figure 5A). For different 

concentrations of Jurkat T cells, the obtained encapsulation efficiency matched our calculated 

values at all concentrations (Figure 5B). Remarkably, even with adherent cells like A549 tumor 

cells, which tend to clump, we observed a slightly improved encapsulation efficiency at a 

cellular concentration of 1.0E6 cells/mL (Figure 5C). We also assessed the efficacy of our 

system to encapsulate less available and scarce pDCs at different cell concentrations of 1.3E6 

cells/mL, 3.0E6 cells/mL, and 13.0E6 cells/mL (Figure 5D). To facilitate the loading of possibly 

larger volumes exceeding 200 µL, e.g when working with cell lines or more abundant primary 

immune cells, we also investigated the cell encapsulation efficiency by using 1000 µL tips 

(blue). We demonstrated that these 1000 µL tips gave a similar encapsulation efficiency in 

comparison to the 200 µL tips (yellow) (Figure 5E).   

Dependent on the chip design and research question at hand, our tip loading technique can 

be used to load cells through either one inlet, for probing into cellular heterogeneity, or 

multiple inlets in parallel, for decoding cellular interactions. We compared the loading of 

Jurkat T cells (at a final concentration of 10.0E6 cells/mL) from one inlet to two differently 

labeled populations of Jurkat T cells (at a final concentration of 10.0E6 cells/mL) from two 

inlets (Figure 6A and Figure 6B).  During encapsulation, the droplets were generated using 

ultra-low gelling temperature agarose and gelled after production to form agarose hydrogel 

beads that allowed subsequent downstream analysis via microscopy and flow cytometry 

(Figure 6C and Figure 6D). Microscopic analysis revealed that cell pairing was achieved at 

different combinations indicating for high throughput cell pairing (Figure 6C). Furthermore, 

analysis of the same population of hydrogel beads by flow cytometry revealed that beads 

without cells could be separated from beads with cells based on the  distinct forward (FSC, 

size) and sideward (SSC, granularity) scatter pattern (Figure 6D). Gating on the population of 

beads without cells confirmed a lack of cell encapsulation by the absence of fluorescent 

signals. Additionally, gating on the bead population with cells revealed the existence of 

multiple sub-populations indicative for the encapsulation of differently labeled Jurkat T cells.  

Our results demonstrate that efficient cell pairing can be achieved, based on both microscopic 
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and flow cytometric analysis, and showed a slightly increased encapsulation efficiency 

compared to the Poisson prediction (Figure 6E).  

 

 

 

 

 

 

 

 

 

Figure 5. Tip loading approach to encapsulate different cells types. A. Schematic illustration of the tip 

loading technique. B. The graph shows the encapsulation efficiency of Jurkat cells. C. The graph shows 

the encapsulation efficiency of A549 cells. D. The graph shows the encapsulation efficiency of 

pDCs. E. The graph shows the encapsulation efficiency of Jurkat T cells using 200 µL pipette tips (yellow) 

and 1,000 µL pipette tips (blue). Dots: experimentally determined values; Closed lines: Poisson 

distribution. Error bar represents standard error of mean. 
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 Figure 6. Cell pairing in droplets. A. Schematic illustration of the tip loading approach for pairing 

distinct cells from 2 inlets in droplets. B. The graph shows the encapsulation of Jurkat T cells using one 

inlet or two inlets in parallel. The cell concentration for one tip is 20x106 cells/mL and the cell 

concentration used for two tips both 10x106 cells/mL maintaining the final concentrationn of 

10x106 cells/mL in both the setups. Dots: experimentally determined values; Closed lines: Poisson 

distribution. C. The Fluorescence microscopic overlays of hydrogel beads and labelled Jurkat T 

cells. D.The graph shows the flow cytometric analysis of paired cells in agarose hydrogel beads. The 

plot demonstrates both forward scatter and sideward scatter. E. Comparison of cell numbers in agarose 

hydrogel beads as detected by fluorescence microscopy and flow cytometry. Bars: mean value; 

Whiskers: standard error of mean, n ≥ 4. Error bar represents standard error of mean.   
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4. Discussion 

In this protocol, we have demonstrated an efficient and straightforward technique to load and 

encapsulate cells in droplets for high-throughput, single-cell analysis and to perform 

controlled cell pairing for cellular interaction studies. Furthermore, we have compared several 

conventional approaches to load cells to microfluidic devices and showed that our tip loading 

approach is a more efficient technique in comparison to other methods.  

Studying clinical specimens or rare cell types scarce in number by droplet based microfluidics 

possess some inherent challenges. Like we have also demonstrated, cells tend to sediment in 

syringes and surface of the tubing, thereby, preventing cellular encapsulation to conform to 

the predicted values. To evade this problem, some groups use stirring bars in the syringes. 

However, when using rare and limited cell populations, the total cell volume is also limited, 

thereby, limiting the use of large syringes and stirring bars. Furthermore, we also replaced 

more commonly used tubing with Teflon coated tubing to prevent cell attachment but this 

method did not improve the results and if the tubing is too long, the problem of cell 

attachment aggravates (data not shown). Alternatively, we used a vertical tube loading 

approach  where the cells were loaded in the tubing and not in the syringe to prevent the loss 

of cells in large syringe volumes. Using this technique, cells with small sample volume can be 

loaded, e.g. pDCs which are rare and limited. Also, the sample from the tubing is loaded to the 

device vertically to prevent cell sedimentation. The tubing used for cell seeding has small 

dimensions and can be compared to microchannels. The flow in the tubing is pressure driven 

and follows a parabolic velocity profile[26]. This implies that the maximum flow velocity is at 

the center of the tubing and minimum velocity is at the edges of the tubing [27]. When flushing 

a population of cells through the tubing, the velocity gradient causes the cells to be pushed 

towards the edges where they settle down because the velocity at the boundary is close to 

zero. The sedimentation or settlement of cells in the tubing, thereby, reduces the 

encapsulation efficiency as shown in the representative results where the experimental data 

did not match with the predicted model.  

Another commonly adopted solution used by scientists, working with droplet microfluidics, is 

to increase the density of the cell culture media by addition of density matching reagents such 

as Iodinaxol to prevent cell sedimentation in syringes[19]. However, density matching 
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reagents can influence cellular behavior and adversely affect the cytokine secretion by cells 

(data not shown)[28].  

Even though several small and big modifications in conventional cell loading techniques 

showed slight improvements in encapsulation efficiencies, the obtained experimental results 

still did not match the theoretical calculations. However, with the tip loading approach we 

could the overcome the limitations of previous methods and encapsulation efficiency 

governed by Poisson statistics. This technique is not only advantageous for loading suspension 

cells but can also be applied for loading adherent cells, such as primary keratinocytes and A549 

to microfluidic chips. When using abundant cell lines, for example A549, K562 etc., larger 

sample volume can be used.   

Therefore, depending on the volume of the sample, different sized pipette-tips can also be 

used and this simple technique can be adapted for both single-cell encapsulation and multiple 

cell encapsulation.    

While low cell concentration is required to ensure the encapsulation of single cells in droplets, 

higher cells concentrations are desired to increase the average number of cells encapsulated 

in each droplet for studies related to cell pairing. There are several  single-cell methods that 

have been previously described to pair immune cells on microfluidic chips or microfabricated 

nanowells[29–31]. In droplet microfluidics, Poisson statistics dictates that 1:1 cell pairing for 

two different cell types can be achieved at optimal cell concentrations.  Based on the Poisson 

prediction, there is also a probability that droplets might contain other combinations. While 

1:1 cell pairing can be desirable to study cellular interactions at single cell level and results in 

increased cellular understanding, multiple cell pairing also has major advantages. It allows to 

comprehend the influence of multiple cells of one cell type on the other cell type. Cross talk 

between different immune cells help to generate an effective immune response against 

several infections and pathogens and also adds robustness to our immune system[32]. As 

such, cellular communication can be interrogated with high precision in distinct contexts, e.g. 

1:1, 2:1, 1:2, 2:2, 3:1, etcetera yielding increased understanding on how single or pairs of cells 

control the induction of immune responses. This is particularly interesting to study for 

example the capacity of natural killer cells or cytotoxic T cells to serially kill their respective 

target cells.  
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As discussed, for multiple encapsulation of cells in droplets, higher cell concentrations are 

desired. However, when loading cells from one inlet for  cell encapsulation, higher 

concentrations of cell sample can cause cells to aggregate at the inlet. This results in lower 

encapsulation rates and higher deviation from the theoretical values. To evade this problem, 

the cells can be loaded from two separate inlets as well. Theoretically, it would be possible to 

develop other microfluidic devices with multiple inlets to achieve even higher levels of cell 

encapsulation where an average on x number of cells is warranted. In this study we 

investigated the encapsulation efficiency of Jurkat T cells when loaded from both one inlet 

and two inlets using the same total concentration and obtained similar encapsulation 

efficiency. This modification allows researchers to pair different cell types on chip.  

While this method aids in loading cells to microfluidic devices without significant loss of cells, 

there are certain precautions that need to be kept in mind. When filling the syringes with 

mineral oil and aspirating the cell sample in pipette tips,  incorporation of air bubbles should 

be avoided and the entire system should be air-free. It is also important to keep in mind that  

the mineral oil should not mix with the sample. Pipette tips, containing samples, should be 

inserted firmly in the inlets of the microfluidic device, with utmost precaution, to prevent 

leakage and further incorporation of air bubbles. To summarize, tip-loading is a 

straightforward, yet, robust technique that allows for high-throughput analysis of cellular 

behavior through cell encapsulation without significant loss of cells in a cost-effective manner. 

When used with optimal sample concentrations at the inlet, this approach of loading cells with 

pipette-tips is very flexible and can be adapted for different cell types, especially for rare 

primary immune cells, to obtain higher encapsulation efficiency, close to predicted models. 
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Abstract 

Cytotoxicity is a vital effector mechanism used by immune cells to combat pathogens and 

cancer cells. While conventional cytotoxicity assays rely on averaged end-point measures, 

crucial insights on the dynamics and heterogeneity of effector and target cell interactions 

cannot be extracted, emphasizing the need for dynamic single-cell analysis. Here, we present 

a fully automated droplet-based microfluidic platform that allowed the real-time monitoring 

of effector-target cell interactions and killing, allowing the screening of over 60,000 droplets 

identifying 2000 individual cellular interactions monitored over 10 hours. During incubation, 

we observed that the dynamics of cytotoxicity within the Natural Killer (NK) cell population 

varies significantly over the time. Around 20% of the total NK cells in droplets showed positive 

cytotoxicity against paired K562 cells, most of which was exhibited within first four hours of 

cellular interaction. Using our single cell analysis platform, we demonstrated that the 

population of NK cells is composed of individual cells with different strength in their effector 

functions, a behavior masked in conventional studies. Moreover, the versatility of our 

platform will allow the dynamic and resolved study of interactions between immune cell types 

and the finding and characterization of functional sub-populations, opening novel ways 

towards both fundamental and translational research. 
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1. Introduction 

The human immune system operates in an intricate environment that involves a complex and 

coordinated system to identify and eliminate threats. Since both pathogens and tumour cells 

can be highly variable, the immune system evolved into a highly heterogeneous, but tightly 

regulated system[1]. Traditionally, the diversity in immune cell populations is characterised 

predominantly by differences in morphology and expression of static markers. However, 

cellular effector functions, such as migration of immune cells to the site of infection, release 

of cytokines, or cytolytic activity, also exhibit enormous variation between and among well-

defined cellular subsets, such as the cytolytic heterogeneity observed in NK cells[2,3]. 

Although several studies have highlighted how heterogeneity is a hallmark of immune system 

and plays an important role in shaping the overall immune response, the functional aspects 

of cellular heterogeneity remain largely unexplored[4]. So far, the majority of both in vivo 

animal models and in vitro experiments mainly only yielded an averaged outcome as a 

consequence of the interactions between multiple cells, rather than providing functional 

readouts of single-activated cells. Additionally, the current systems that can provide 

functional readout of individual cells either lack throughput or fail to isolate individual cell 

pairs to exclude possible effects of paracrine signalling. Since a well-functioning immune 

response is the result of combined efforts of multiple, and diverse individual cells, 

understanding heterogeneity within immune cell populations is crucial for a better 

understanding of the overall immune response and the effector functions in a cell population.  

Cytotoxicity is an important effector mechanism used by Cytotoxic T cells (CTLs) and Natural 

Killer (NK) cells to combat both pathogens and tumour cells. Cytotoxicity assays are essential 

to understand the functional activation and cytolytic impact of individual effector cells 

towards various target cells, including heterogenous tumours. For decades, the gold standard 

to assess immune cell-mediated cytotoxicity used to be the chromium release assay, where 

the release of radioactive 51Cr by dying target cells is indicative for specific lysis[5]. While 

quantitative and precise, this method requires the handling and disposal of radioactive 

compounds. Recently, several other alternative approaches have been developed, e.g. 

fluorescent probes to detect cell viability[6], metabolic MTT assay[7], enzyme-based LDH 

assays[8], and luciferase transduced cell-based bioluminescence assays[9]. Even though these 

assays have provided insight into fundamental cellular behaviour, these studies are performed 
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in bulk and generate averaged responses[10]. Bulk-based studies fail to address the functional 

heterogeneity underlying a given cell population by masking the phenotype, gene expression, 

and the mechanism of cellular communication in between individual immune cells[11,12]. To 

overcome the limitations of bulk methodologies, the study of cytotoxicity at a single-cell level 

can be performed using flow cytometry-based assays and single cell microscopy assays[13,14]. 

However, flow cytometric assays are snapshot-based and therefore not suited to monitor 

temporal dynamics of cellular interactions leading to cytotoxicity[10]. Besides, single cell 

microscopy systems average out the overall population dynamics by allowing paracrine 

signalling to steer individual cell behaviours[1].  

Advances in technology and miniaturization yielded microsystem-based technologies that aim 

to overcome the limitations of conventional and flow cytometry-based assays[15,16]. These 

technologies enhanced the sensitivity of measurements, allowing the investigation of lower 

cell numbers using reduced reagent volumes. However, a major challenge of adopting 

microsystem technologies for interaction-based assays is the efficient pairing of effector and 

target cells[17]. Despite the numerous attempts to overcome this challenge, a novel approach 

that meets the requirements is a necessity.   

Here we present a droplet-based microfluidic platform that, in conjunction with real-time 

fluorescence microscopy and an automated image analysis script, enables high-throughput 

monitoring of over 60,000 droplets therefore allowing to analyse around 20,000 droplets with 

cells. Droplet-based microfluidics is highly tuneable and provides the opportunity to pair cells 

in a compartmentalized and noise-free microenvironment[18–21]. The cellular encapsulation 

and pairing can be precisely controlled to achieve different effector:target ratios[22]. By 

studying the interaction between NK cells and different target tumour cells we present the 

possibility to study the underlying dynamics of cytotoxicity. Our data reveals heterogenous NK 

cell behaviour with a consistent percentage of the population displaying cytolytic abilities.  
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2. Materials and methods 

2.1 Cell isolation and culture  

K562 cells were cultured in 1:1 (v/v) mixture of RPMI 1640 (Gibco, Catalog no. 22400089) 

and IMDM (Gibco, Catalog no.12440053) supplemented with 10% fetal bovine serum (FBS; 

Gibco) and 1% penicillin/streptomycin (PS; Gibco). Jurkat T cells were cultured in RPMI, 

supplemented with 10% FBS and 1% PS. Both cell lines were regularly tested for 

mycoplasma contamination. Primary NK cells were obtained from buffy coats of healthy 

donors (Sanquin) after written informed consent according to the Declaration of Helsinki 

and all experimental protocols concur to institutional guidelines. In short, peripheral blood 

mononuclear cells (PBMCs) were isolated from donor blood via density gradient 

centrifugation using Lymphoprep Density Gradient Medium (Stem cell). The NK cells were 

subsequently isolated using magnet-activated cell sorting (MACS) by negative selection 

using the NK cell isolation kit (Miltenyi Biotech, Catalog no. 130-092-657) following the 

manufacturer’s instructions. Cells were counted and purity was routinely assessed using 

flow cytometry by cell surface marker staining for 10 minutes at 4°C, using PE-CY7-labeled 

anti-CD56 (Biolegend, Catalog no. 362509), PE-labeled anti-CD16 (Biolegend, Catalog no. 

302007), and PerCP-labeled anti CD3 (Biolegend, Catalog no. 300328) antibodies in 50 μL 

FACS buffer (2% FBS in PBS). The NK cells were identified as CD16+CD56+CD3−, and purity 

was on average 91%. Subsequently, isolated NK cells were encapsulated into droplets with 

K562 pair in presence of 1400 ng/mL IL2, as stimulant (Peprotech, Catalog no. 200-02) to 

monitor the cytotoxicity function of NK cells.  

2.2 Microfluidic chip for droplet production 

The microfluidic device was molded using an SU-8 photo resist structure on a silicon wafer 

and a commercially available polydimethylsiloxane silicone elastomer (Sylgard 184, Dow 

Corning), mixed with curing agent at the ratio 10:1 (w/w) and allowed to cure for 3 hours 

at 600C. The surface of the Sylgard 184 was activated by exposure to plasma and sealed 

with a plasma-treated glass cover slide to yield closed micro channels. Channels were 

subsequently treated with a 5% (v/v) silane (1H,1H,2H,2H-Perfluorooctyltriethoxysilane; 

Fluorochem, Catalog no.  S13150) solution in fluorinated oil (Novec HFE7500, 3M, Catalog 

no.  51243) and thermally bonded for 12 hours at 600C. The dimensions of the microfluidic 
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channels are 40 µm × 30 µm at the first inlet, 60 µm × 30 µm at the second inlet and the 

production nozzle, and 100 µm × 30 µm at the collection channel (Figure 1B).  

2.3 Assembly of Droplet observation chamber   

Glass microscopy slides (76 × 26 × 1 mm; Corning) were used as top and bottom covers (76 

× 26 × 1 mm). Two access holes of 1.5 mm diameter were drilled in the top glass. Both slides 

were thoroughly cleaned using soap, water, and ethanol, and were exposed to air plasma 

(60 W) for 5 minutes. A cutout sheet of 60 μm thick double-sided tape (ORAFOL) was 

carefully placed above the bottom glass slide. Afterwards, the glass slides were stacked on 

top of each other, and the assembly was pressed using Atlas Manual 15T Hydraulic Press 

(Specac) for 5 minutes at 155°C at 400 kg per m2 pressure load (Supplementary Figure 1). 

Next, two nano ports (Idex) were attached to the holes using UV curable glue (Loctite 3221 

Henkel) which was cured under UV light for 5 min. Subsequently, the surface of the 2D 

chamber was treated with 5% (v/v) silane solution. Lastly, the chamber was dried, filled 

with fluorinated oil, and sealed until used. The chamber was reused multiple times and 

cleaned after each experiment by flushing fluorinated oil to remove droplets and stored 

filled until the next use.  

2.4 Cell Staining  

5 µM Calcein Red AM (AAT Bioquest, Catalog no. 21900) and 10 µM Cell Tracker Blue dyes 

(Invitrogen, C2110) were used to stain primary NK cells and target cells (K562 or Jurkat), 

respectively. For staining, around 2 million cells were washed with RPMI free of 

supplements and Phenol red (Gibco, Catalog no. 11835030), resuspended in the freshly 

prepared dye solution in-RPMI (1 mL) and incubated at 37 °C for 30 min. Thereafter, cells 

were subsequently washed twice and resuspended in RPMI medium supplemented with 25 

mM HEPES (Gibco, Catalog no. 15630056), 2% human serum (Sanquin), without Phenol red) 

containing 2.5 µM Sytox green (Invitrogen, Catalog no. S7020) and 7 µM CellEvent Caspase-

3/7 Green Detection Reagent (Invitrogen, Catalog no. C10423), respectively. The stained 

cells were then proceeded for cell encapsulation. 

 

 



 
 Chapter 3- An automated real-time microfluidic platform to probe cytotoxicity on chip 

85 
 

2.5 Cell loading in microfluidic chip 

2.5 mL glass syringe and tubing polytetrafluoroethylene tubing were filled with 

biocompatible mineral oil (Sigma Aldrich, Catalog no. M8410-1L). The end of the tubing was 

attached to a PDMS plug of 5 µm diameter, which was then squeezed tightly into the large 

end of a pipette tip (200 µL). Subsequently, the pipette tip was filled with mineral oil from 

the syringe. To load cell suspension, the pipette tip was lowered into a cell solution and the 

syringe pump was used to aspirate the solution into the tip. Finally, the pipette tip was 

connected tightly to the inlet of a microfluidic chip and droplet production was started. The 

syringes were driven by computer-controlled syringe pumps (Nemesys, Cetoni GmbH). The 

droplets of ~50 µm diameter were generated using flow speed of 30 µL/min for oil and 5 

µL/min for each sample inlet. The droplets were produced for around 5 minutes, thus 

generating 700,000 droplets in total. For the stability of droplets, 2.5% (v/v) Pico-Surf 

surfactant (Sphere Fluidics, Catalog no. C024) was used in fluorinated oil.  

2.6 Single NK cell cytotoxicity assay 

Primary NK cells and target cells were loaded into different inlets at the concentration of 7 

million cells/mL and 10 million cells/mL, respectively. The viability dyes Sytox Green and 

Cell Event Caspase-3/7 Green were loaded along with the cells, and droplets were collected 

in the observation chamber. Droplets were generated at room temperature while collected 

into the observation chamber over a warm water bath at 37 °C. After collection, the 

droplets were incubated in a stage top incubator (Okolab) set at 5% CO2 and 37 °C 

temperature and observed using Nikon Ti2 microscope for 10 hours. The 0h were 

considered everything after ±10 mins. 

2.7 Image acquisition and analysis 

Fluorescence imaging was performed using a Nikon Eclipse Ti2 microscope, using a 10X 

objective and mCherry, DAPI, and FITC/YFP filters every hour. 15×15 tiles with resolution of  

20477 × 20477 were framed per experiment. The images were viewed using NIS Element 

and Image J. Automated Image analysis was performed using custom-made in-build 

MATLAB script (Mathworks), DMALAB (available on request). The script generated droplet 

mask that was overlaid onto the fluorescence images, and each droplet was analyzed 

separately. Over 60,000 droplets per experiment were analyzed using this script. The cel l 
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division of the target or effector cell was not considered during the analysis. The output 

received are in terms of droplet index, cell count, fluorescence intensity and dead cell 

count. Detailed description of image analysis script is provided in Result  and Discussion 

section. 

2.8 Statistics and software 

The Graphs were generated using GraphPad Prism 9.0.0.  The results are expressed as 

mean ± SEM. Significant differences between two groups were analyzed by two -tailed 

unpaired Student’s t-test. P values < 0.05 were considered statistically significant.  

 

3. Results and Discussion 

3.1. Droplet-based microfluidic platform to detect immune cell cytotoxicity  

Cell-mediated cytotoxicity is a very dynamic and heterogeneous process since not all effector-

target-cell interactions lead to targeted cell death[20]. Although molecular mechanisms 

mediating cytotoxicity have been extensively studied, the understanding of the determinants 

that govern the differential killing of specific target cells is yet elusive and often based on 

averaged and end-point readouts. Therefore, we developed a high-throughput cytotoxicity 

platform that combines (i) droplet generation and cell pairing using microfluidics, (ii) droplet 

immobilization for real-time microscopy, and (iii) automated image analysis to allow unbiased 

and high-throughput detection of cytotoxic events (Figure 1A).  

To automate cell tracking and the image analysis process, we labelled immune cells and target 

cells with different membrane permeable dyes. Next, we co-encapsulated them in water-in-

oil droplets (~70 pL) using a 3-inlet microfluidic chip of 30 µm height, along with the viability 

dye and cell stimulus in the medium (Figure 1B). An important aspect of our platform is the 

ability to track large numbers of droplets over time. For this purpose, we adapted a droplet 

immobilization chamber from Bounab et al. made by stacking two glass slides on top of each 

other that are glued together with thermo-responsive double-sided tape[23,24]. To ensure 

the sealing quality of the chamber, they were tested visually for deformation of the tape in 

the chamber and experimentally by testing the mobility of the droplets that were collected 

and were monitored over 10 hours. We observed that the droplets barely moved over time 

and the chamber did not contain any air bubbles (Figure 1C), indicative for an efficiently 
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pressed and sealed chamber. The versatility of our approach lies in the flexibility of controlling 

the height of the chamber to allow immobilization of differently sized droplets. 

 In summary, our single-cell cytotoxicity platform allows for the imaging of over 50,000 

droplets, thus allowing high-throughput monitoring of cellular interactions in a noise-free and 

controllable microenvironment in real-time.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental setup of high-throughput droplet-based cytotoxicity platform. A. 

Experimental schematics showing cytotoxicity platform that combines (i) droplet generation and cell 

pairing using microfluidics, (ii) droplet immobilization for real-time microscopy, (iii) automated image 

analysis using custom-made MATLAB script to allow unbiased and high throughput detection of 

cytotoxic events. Stained NK cells and K562 cells were loaded into the chip using 200 µL pipette tips and 

encapsulated into droplets using a 3-inlet microfluidic chip. The viability dyes were included within the 

cell medium. The immobilized droplets were incubated in a stage top incubator set at 5% CO2 and 37°C. 

Image acquisition was performed at every hour interval for 10 hours. B. The three-inlet microfluidic 

device with flow-focusing junction to generate droplets. C. A qualitative test of the observation 

chamber was performed by monitoring droplets movement in the chamber under the microscope for 

10 hours.   
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3.2. Highly tunable and controllable co-encapsulation of cells in droplets 

Single cell cytotoxicity assays with primary cells, containing rare cell populations, emphasize 

the necessity to ensure efficient and controllable encapsulation. In practice, cell encapsulation 

does not always match the predicted values due to technical variables such as cellular 

sedimentation, and attachment or clumping of cells in the tubes. Over the years, there have 

been several design-related developments that have improved the encapsulation of single 

cells in droplets. Examples of such developments include the use of active encapsulation 

methods that utilize either acoustic or electrical forces for the generation of droplets 

containing single cells[25,26]. However, these methods have their own limitations in terms of 

bio-incompatibility and total expense compared to passive droplet generation techniques[27].  

To combat those limitations, we utilized the tip-loading method that we had optimized before, 

ensuring efficient cellular encapsulation that closely matched the Poisson distribution[22] 

(Figure 2A & Supplementary Figure 2A, B, C, D). The rate of cell arrival at the junction is a 

function of cell seeding density. Therefore, by varying the concentrations of cells, we can 

maximize cell pairing. By using different cell concentrations for effector and target cells, 

different Effector:Target (E:T) ratios in droplets were obtained. We aimed for the highest 1:1 

(E:T) encapsulation ratios while avoiding excessive cell clumping, which we achieved using 

concentrations of 7 and 10 million cells/mL for effector and target cells, respectively. At this 

concentration, we showed that around 3% (~2000 droplets) of the total fraction of droplets 

had 1:1 cell pairing (Figure 2A). At concentrations above 10 million/mL, the encapsulation 

became unstable because of the large number of cells clustering at the inlet and resulting in 

channel blockage, (Supplementary Figure 3 A, B).  

Until now, cell pairing efficiency in droplets at high throughput had been the limiting factor in 

developing a platform that combines real-time microscopy with cellular interactions-based 

assays. Several groups have developed a variety of approaches such as hydrodynamic trap-

based or microwell/nanowell-based platforms to tackle this problem[3,28,29]. Even though 

these platforms achieved high pairing efficiencies and dynamic monitoring, they failed to 

exclude paracrine signalling between neighbouring cells and lack high throughput, important 

factors that need to be considered when studying and understanding functional heterogeneity 

in immune cells[30]. Furthermore, the droplet-based cytotoxicity platform developed by 

Sarkar et al. utilized a docking array-based system, allowing the visualization of around 4000  
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Figure 2: Cell encapsulation and 

pairing in droplets. A. Graph 

showing the predicted fraction of 

droplets containing a different 

combination of cells illustrated on 

the x-axis according to Poisson 

distribution (red solid line) and the 

observed fraction of droplets 

containing given combinations of 

cells (bar diagram) at 7 million/mL 

NK cells (red) and 10 million/mL 

K562 cells (blue); n=3 independent 

experiments; red and black dots 

represent mean value for given 

combination for Poisson 

distribution and observed 

distribution respectively. Error bars 

represents standard error of mean. 

B. Schematic and Macroscopic view 

of the observation chamber. The 

image represents around 229 mm2 

viewing area of the chamber, allowing to image ~100,000 droplets of 70 pL volume; scale bar =1 mm. 

Droplets without cells (representing approximately 66.66 percentage of total droplets fraction) are not 

shown in the figure. C. Magnified segment in the observation chamber showing distribution of different 

cells in droplets; scale bar = 100 µm. D. Visualization of different E:T ratios in droplets at the cell seeding 

concentration of 7 million/mL and 10 million/mL for effector and target cells, respectively; scale bar = 

25 µm. 

droplets and  the platform developed by Antona et al. utilized spherical traps, allowing the 

visualization of around 6500 droplets per experiment[20,21]. These studies analyzed 

approximately 100 droplets  to study the cellular interaction in between NK cells and target 

wells. Since immune cells can be highly heterogeneous in their effector functions, throughput 

is vital to discover small and distinct subsets. So far, to the best of our knowledge, no other 

droplet-based cytotoxicity platform has been able to meet that requirement in such a way as 
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our platform, allowing the visualization of around 60,000 droplets per experiment (Figure 2B, 

C). Among those droplets, this platform allows to analyse 20,000 droplets with cells including 

cell pairs at different E:T ratio thereby allowing to do proper statistical analysis and even 

identification of rare cells (Figure 2D). Droplets with only either effector or target cells serve 

as an internal negative control for viability (Supplementary Figure 4A, B). Droplets with 

multiple effector cells encapsulated with one or more target cells are used to examine the 

effect of intercellular interactions and paracrine stimulation. Finally, the droplets with only 

one effector cell and multiple target cells are monitored to examine the so-called serial killing 

effect of effector cells. Concluding, our droplet-based microfluidic platform allows for easy, 

highly controllable effector-target co-encapsulation efficiencies, including proper biological 

controls and the possibilities to examine the effects of paracrine signaling and serial killing in 

parallel.  

3.3. Live fluorescent cell labelling allows for cell tracking and identification of cytotoxic 

events 

A crucial aspect of the droplet-based cytotoxicity platform is the accurate monitoring of cell 

viability in droplets. Additionally, it is also important to trace if either an effector cell or a 

target cell died once a cytotoxic event is measured (Figure 3A). To trace cells over time, they 

were labelled with the commonly used live cell imaging dyes, Cell Tracker Blue, and Calcein 

Red AM. The latter is also used as a viability marker in some cytotoxicity-based studies, 

however, the possibility of  signal loss caused by membrane pumps can make it difficult to use 

this dye for real-time assays with longer incubation times[31,32]. The stability and toxicity of 

the dyes were tested using our custom-made DMLAB script over time. We observed that the 

signal from Cell Tracker Blue labelled cells remained stable, whereas the signal from Calcein 

Red AM reduced gradually over time without inducing toxic effects (Supplementary Figure 5A, 

B, C, D). 

To achieve an accurate and dynamic readout of the viability of cells in droplets, two viability 

markers were tested: Sytox Green, for necrotic and late apoptotic events, and Cell Event 

Caspase, to detect early apoptotic event. In droplets, we observed, for both candidate dyes, 

that they can dynamically stain apoptotic cells, while remaining stable over time, therefore 

being the perfect candidate to also detect early and late apoptotic events (Figure 3B, C & 

Supplementary Figure 6A, B). 
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These results show that different dyes can be used together with our script to trace and 

identify cytotoxic events in real time. 

 

 

 

Figure 3: Real-time viability tracking. NK cells and target cells (here K562 cells and Jurkat T cells) were 

labelled with Calcein Red AM (5 µM) and Cell Tracker Blue (10 µM), respectively. The viability dyes Sytox 

Green (2.5 µM) and Cell Event Caspase 3/7 (7 µM) were encapsulated in droplets with cells and culture 

medium. A. Image showing different cells in droplets that are monitored using mCherry for NK cells, 

DAPI for K562 cells, and YFP/FITC for dead cells; scale bar = 100 μm. B. K562 cells were labelled with 

Cell Tracker Blue (25 µM) and co-encapsulated with Sytox Green as viability marker. The signal remains 

stable over 10 hours; scale bars = 25 μm. C. Jurkat T cells were encapsulated in droplets along with (Cell 

Event Caspase3/7 (7 μM) and 5% DMSO to induce apoptosis. In presence of DMSO, the cell undergoes 

apoptosis after 6 hours, and the staining remains stable over 10 hours; scale bars = 100 μm. 

3.4. Script for robust, automated, high throughput image analysis of cytotoxic events  

The droplet-based cytotoxicity assay yields fluorescence images with thousands of droplets at 

multiple time points. To maintain the high-throughput character of the assay, and to gain 

accurate results, an automated readout of these images is pivotal. For a complete automation 

of the image analysis, certain requirements were fulfilled. First, the script should be able to 

track the droplets over several hours. Second, the script should be able to distinguish the 

different cell types and corresponding numbers of cells in each of the tracked droplets. Third, 
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it should be able to accurately track the change in viability signal for each cell type to connect 

the viability signal to the corresponding cell, which could either be the effector or target cell. 

To this end we developed a custom-made In-Droplet Viability Analysis script, or DMALAB 

script, to allow for automated detection of thousands of cells, corresponding cytotoxic events, 

and full control over the image processing procedure.  

In short, the image analysis script consists of three steps: (i) droplet tracing (BF), (ii) 

fluorescence image pre-processing (fluo), (iii) and cell counting (ncel; Figure 4A). The process 

starts with detecting individual droplets in the bright field channel using the commercially 

available “imfindcircle” function. The script allows to optimize the settings for the droplet 

identification, which are based on the shape, size, and immobilization of the droplets. Using 

contrast stretching, the edges of the individual droplets get identified, allowing the accurate 

monitoring of moving droplets over time. Next, each droplet will be given an index number, 

while the coordinates determine the droplet position. The script allows for the control over 

contrast stretching parameters and tracks and removes the moving droplets, thus ensuring 

the accuracy of droplets detection over different time frames (Figure 4B). After the script has 

traced the individual droplets, the next step is to detect the individual cells per droplet. To 

facilitate the cell detection in the droplets, we prelabeled the cells with fluorescent dyes. With 

the objective of obtaining a binary image that represents the object (here cells), the 

fluorescent images are preprocessed by cropping, applying a top hat filter, setting the 

intensity of non-droplet pixel to zero and applying the threshold to get the binary image 

(Figure 4C). The final part of the analysis consists of cell counting within droplets and the 

detection of changes in fluorescence. Finally, all objects can be counted, and the change in 

fluorescence can be detected at sequential time points. 

To validate the performance of the script, overnight activated NK cells in presence of 50ng/ml 

IL2 were encapsulated with K562 cells in the droplets and the results from manual and 

automated analysis in terms of droplets count, cell distribution, cell pairing, and viability of 

cells at random time frames were compared. Upon comparing, we obtained coherent results 

between the two methods with a maximum deviation of only 2% (Figure 4D & Supplementary 

Figure 7A, B). In case of doubts, there is also an inbuilt droplet trace function that allows for 

the visualization of the individual droplets, for all fluorescent channels, and the possibility to 

exclude droplets from downstream analysis if needed. Altogether, our script enables high-

throughput analysis of images with large amounts of data by automatically detecting cells and 
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their viability in droplets. It gives a high level of control over the analysis parameters, making 

it easily applicable in various kinds of functional droplet-based assays.  

 

 

Figure 4: Image processing and analyzing steps in MATLAB script. A. Image processing by stacking 

different channels, droplet tracing, and detection of cells over each channel. B. Droplet movement over 

one hour. An adjustable amount of movement is allowed by the script, but if this allowed movement is 

more than the droplet radius, the risk exists of detecting a different droplet at the next time point. 

Droplet detection over time is done by comparing the coordinates of the center of the droplet between 

two consecutive time points and selecting the closest center within the allowed movement range. C. 

Evaluation of the script for cells recognition over different channels, here two cells labelled with cell 

tracker blue are identified in DAPI channel). D. Validation of the script by comparing differences in cell 

distribution, cell pairing, and dead cell identification at 3 different time points (t=3 hrs., t=4 hrs., and 

t=10 hrs.) in-between script generated data with manually counted data. 

 

3.5. Dynamic nature of NK cell-mediated killing of tumor cells  

NK cells are well known for the efficient identification of their targets to induce killing without 

prior antigen sensitization, making them an ideal target for anti-cancer immunotherapies[33]. 
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They identify target cells that lack or have reduced expression of MHC-1 molecules and 

subsequently kill upon balanced signaling between activation and inhibitory receptors[34]. 

The use of several receptor interactions and signaling pathways makes NK cells a very complex 

and heterogeneous cell type[35]. The cytotoxic interactions are both effector-cell as well as 

target-cell dependent, which further enhances the variation in responses mediated by both 

types. Therefore, to address functional heterogeneity in the NK cell compartment, we co-

cultured them with K562 as target cells. K562 is a myelogenous leukemia cell line that lacks 

MHC-1 expression and therefore is an attractive target to further characterize NK cell-

mediated cytotoxicity. The effector (NK cells) and the target (K562) cells were paired together 

in 70 pL droplets, allowing them to interact. The study by Antona et al. showed that cells in a 

confined environment, such as droplets, increase the chances of cellular interaction[21]. 

However, we observed that only around 20% of NK cells were potent killers, while the large 

majority were not able to induce killing at all during the 10 hours of incubation, which is in 

agreement with the micro-well based study by Gudeval et al[3]., and earlier chromium 

release-based study by Vanherberghen et al.[3] (Figure 5A, B). In contrast to the work 

described by Sarkar et.al., we did not observe 100% NK cell-mediated killing in droplets, which 

we believe is explained by the characteristics of the utilized dye, which includes the sensitivity 

of being actively pumped out by the target cell[20]. Interestingly, our results reveal 

heterogeneity within the NK cell compartment with only part of the population displaying 

cytotoxic behavior. This indicates that only a small percentage of NK cells kill, whilst the 

majority are either inactive, very late killers (beyond our time frame of 10 hrs) or require 

passive support from paracrine signaling from the other cells to be able to induce cytotoxic 

ability. 

Additionally, the dynamics of NK cell mediated cytotoxicity of K562 cells was monitored using 

our platform. During the incubation, we observed that different NK cells demonstrate 

different potential to kill. In a representative experiment, we analyzed 66,600 droplets in total 

(18,320 droplets with cells), of which 2052 droplets contained the desired cell pairing (Figure 

5C, D). By plotting the intensity of viability dye over incubation time, we showed the dynamics 

of cellular interaction between NK cells and K562 cells. Our findings from this experiment 

revealed that 17.25% K562 cells were dead whereas 82.5% K562 cells were alive despite being 

incubated together with NK cells. We also observed that a large fraction of cytotoxic NK cells 

(77%) induces cytotoxicity within the first four hours of interaction. 40% of the NK 
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cells provided lytic hits within first hour of interaction while the incident of cell death 

decreased over time and was minimal after 10 hours (0.88%). These findings were consistent 

with other donors as well. Of all the NK cells that have the potential to kill K562 cells, 

approximately 86% delivered a lytic hit within four hours of incubation, and we refer to them 

as fast killers. Among these fast killer cells, 52% of cells initiated killing within 1 hour of 

incubation (Figure 5E). 25% of NK cells were able to mount the cytotoxic ability in the second 

hour of incubation and the number went down subsequently over time. In contrast, K562 in 

absence of NK cells had higher viability (around 95%) over 10 hours and most of the target cell 

death occurred only at the later phase of the incubation (Supplementary Figure 4B).  These 

results suggested that a majority of NK cell population showed spontaneity on killing their 

target cells upon recognition. A fraction of NK cell population was not able to kill as quickly, 

however, for these late killing events, the possibility of natural cell death could be equally 

likely. 

The data presented here supports the classification of NK cells based on their cytotoxic ability 

and the dynamics at which they kill their target cells[2]. Even though the time of target cell 

lysis varied considerably over different time point during the course of  incubation, our result 

supports the notion of the existence of a NK cell subpopulation that induces killing as early as 

30 minutes after interaction with a target cell[2,36,37]. The fast and slow killing ability of NK 

cells could be coupled to the granzyme dependent and independent  mechanisms by which 

NK cells induces cell death. Furthermore, The size and content of the lytic granules along with 

the secretion and quantity of degranulation events can also be associated with the kinetics of 

target cell killing by NK cells[38]. We can associate these variations in killing capacities of NK 

cells to functional heterogeneity within NK cell population. However, the potential cause 

underlying these variations was not explored in this research and requires further 

investigation.   

These distinctive properties within NK cell population can determine the capacity of NK cells 

mediating cytotoxicity indicating towards the heterogeneity within NK cell populations.  

However, the specific causes of such variation in the killing potentials are still not clear and 

requires further study. 
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Figure 5: NK cytotoxicity in real-time. A. Microscopic overview of NK cell-mediated cytotoxicity in 

droplets. NK cells were labelled with Calcein Red AM dye (red cells) and K562 cells with Cell Tracker Blue 

(blue cells) and paired together in 70 pL droplets in presence of viability dye (Sytox green and Cell event 

Caspase 3/7). They were then incubated at 37°C and 5% CO2 for 10 hrs. Image acquisition was done at 

an hour interval. Over the interval of 10 hours, NK cells are interacting with target cells, either, with 

(left) or without inducing cytotoxicity (right). The cells that die are stained with the viability dye and 

thus turn green. The live cell retains the original color. B. Bar diagram representing killer fraction of NK 

cells in droplets; data analysis performed on E:T 1:1; n=3 independent experiments; error bar represents 
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standard error of mean. C. A representative experiment showing intensity of the viability for K526 cells 

upon interaction with NK cells plotted over time. Each line represents individual cells; n=66,600 total 

droplets with 20,860 droplets containing cells. The graph does not include the droplets with 0, or 1 cell 

and droplets with dead cells at t=0 hr. An alive cell gives the intensity of viability dye as “0”, cells with 

values above zero are considered as dead. D. Heat Map showing the dynamics of cytotoxicity within an 

experiment. Each line represents individual cells. The viability was assessed over the period of 10 hours.  

E. Graph representing the dynamics of cytotoxic events in droplets for different donors. The dynamics 

were determined for the killer fraction of NK cells, thus showing the percentage of the fast and slow 

killer population in NK cells; data analysis performed on E:T 1:1; n=3 independent experiments; error 

bar represents standard error of mean. 

Some NK cells have the capacity to kill multiple target cells, referred to as serial killers[2,39]. 

For years, translational researchers that aim to use NK cells for immunotherapy have aimed 

to harness this extremely relevant and promising feature[2,40]. Although this search goes 

beyond the scope of this study, we investigated the pairing distribution and the cytotoxicity 

induced by different E:T ratios (Supplementary Figure 8A) to characterize serial killing ability 

of NK cells. Even with a limited sample size, we could identify several instances (around 2.5% 

of droplets with the combination of multiple K562 and a single NK cells; data not shown) where 

a single NK cell could kill two target cells, supporting the previously observed serial killing 

ability of NK cells[40]. Future studies will be needed to assess the serial killing potential of NK 

cells, which can be achieved by minimal adaptations to our experimental workflow. 

Concluding, our droplet-based microfluidic platform allows for easy, highly controllable 

effector-target co-encapsulation efficiencies, including proper biological controls and the 

possibilities to examine the effects of paracrine signaling and serial killing in parallel. 

4. Conclusion and outlook 

In this paper, we have presented an integrated platform that allows for monitoring and 

decoding cellular interactions between immune and tumor cells in high throughput. This 

methodology was built on the already available and broadly utilized principles of cytotoxicity 

assessment and live-cell imaging. Here we combined (i) the assessment of different E:T ratios, 

(ii) a dynamic readout, and (iii) an automated image analysis script that allows an unbiased 

and high-throughput detection of cytotoxic events. Besides, this cytotoxicity platform is 
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designed to be easily adjusted according to different experimental needs, allowing the 

assessment of cytotoxicity in a wide variety of both immune cells and target cells. 

 We show that NK cell cytotoxic effector functions are highly dynamic and heterogeneous, 

which could otherwise not have been possibly studied with conventional assays. The value of 

this microfluidic setup is its simplicity, both in fabrication and experimental workflow. Future 

minor modifications to adapt this platform for droplet sorting and barcoding will also allow 

the use of this setup for omics-based studies, thereby opening new avenues of research in 

cellular and functional diversity. Apart from NK cells, there are several cell types including 

CTLs, macrophages, and killer dendritic cells that can exhibit cytotoxic abilities, and have been 

widely explored for immunotherapeutic purposes. In vitro cytotoxicity assays have been an 

important assessment tool for measuring the maturation and functional activities of these 

immune cells. Therefore, a comprehensive evaluation of cell-mediated cytotoxicity can 

become an important parameter to correlate the treatment with the clinical outcome. Since 

we deliberately designed our platform to allow flexibility, other cell types can easily be studied 

without the need for modifications. Therefore, this platform can be easily adapted to the 

abovementioned cell types and their killing dynamics can be assessed for clinical as well as for 

research purposes. 
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7. Supplementary Information 

  

 

 

 

 

 

 

Supplementary Figure 1. Graph 

showing effect of different pressure 

loads (200 kgs, 300 kgs, 400 kgs, and 

500 kgs) on the height of the 

collection chamber; Error bar 

represents standard error of mean.  

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Co-encapsulation efficiency of effector cells and target cells at various seeding 
densities. Graphs showing the predicted fraction of droplets containing the combination of cells 
illustrated on the x-axis according to Poisson distribution (lines) and the observed fraction of droplets 
containing those combinations of cells (bars) at various seeding densities. The seeding densities were: 

A. 10*10
6
 red cells/mL and 5*10

6
 blue cells/mL, B. 10*10

6
 cells/mL for both cell types, C. 15*10

6
 red 

cells/mL and 7.5*10
6
 blue cells/mL, D. 30*10

6
 red cells/mL and 10*10

6
 blue cells/mL. E. line graph 

representing the fraction of droplets with and without cells (irrespective of cell pairing) at different 
concentration. 
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A B 

Supplementary Figure 3. Overview of droplets containing different numbers of cells. 

The seeding densities in this experiment were 10*10^6 cells/mL for both cell types. (A) 

Droplet with cell pairing is indicated with arrows. (B) Cell clumps in polydisperse 

droplets. Here, the seeding density of the effector cells was 15*10^6 cells/mL, and the 

seeding density of the target cells was 7,5*10^6 cells/mL. Scale bars are 100 µm. 

A B 

Supplementary Figure 4. Distribution of viabilities within droplets. A. The total 

counted viabilities of NK cells and target cells (n=1000 droplets). The graph depicts 

the experiment with NK cells paired together with K562 were all E:T ratios were taken 

together to show the difference between unpaired and paired cells. B. the viability of 

K562 cells in droplets; The graph depicts the experiment with only K562 in the 

droplets. Error bar represents Standard error of mean; n=2,; t=10h.  
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Supplementary Figure 5. Characterization of the use of Calcein Red AM (CR) and CellTracker Blue (CTB). A-B. 

K562 cells and Jurkat cells were labelled with different concentrations of CellTracker Blue and Calcein Red AM, 

washed, and cultured overnight. Necrosis and apoptosis were assessed using flow cytometry. n=2 for both 

graphs. C. K562 cells were labelled with different concentrations of CellTracker Blue (both cell types) and Calcein 

Red AM (K562 cells), washed, and encapsulated in droplets. Fluorescent signal of 20 randomly sampled cells was 

then measured using ImageJ and corrected for background. Significance was tested with unpaired Student’s t-

test, two-tailed. D. Jurkat cells were labelled with Calcein Red at 5 µM and CellTracker Blue at 5 µM and were 

encapsulated in droplets. The DMLAB script was then used to detect cells. The percentage of cells that was 

detected over time over the maximum number of cells that was detected is depicted in the graph. n=3 for both 

cell dyes; Error bar represents SEM. 
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Supplementary Figure 6. Stability of viability dye over time A. Sytoxgreen (Nucleic acid binding) dye stability 

was measured on K562 cells that were labelled with  CR at a concentration of 10 µM; n=20; Error bar 

represents SD. B. Caspase detection reagent signal intensity was measured on Jurkat cells (not labelled with 

CR); n=20; Error bar represent SD. 

A B 

Supplementary Figure 7. Distribution of viabilities within droplets. A-B. Validation of the script by 

comparing differences in cell distribution, cell pairing, and dead cell identification at 3 different 

time points (t=3, t=4, and t=10) in-between script generated data with manually counted data. 
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A 

 Supplementary Figure 8. Distribution of different E:T ratio in droplets: 

Difference in cytotoxicity at different cellular distributions (E:T 

1:1,1:2,2:1,3:1);n=3  ( for representative n=1 total droplets pair analyzed 

1143;  for 1:1  1066 droplets; 1:2 13 droplets ; 2:1 49 droplets; 3:1 15;);  error 

bar represents SEM. 
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CHAPTER 4 

SINGLE CELL PROFILING REVEALS FUNCTIONAL 

HETEROGENEITY AND SERIAL KILLING IN HUMAN 

PERIPHERAL AND EX VIVO-GENERATED CD34+ 

PROGENITOR DERIVED NATURAL KILLER CELLS  
 

This chapter is submitted for publication as: 

Single cell profiling reveals functional heterogeneity and serial killing in human 

peripheral and ex vivo-generated CD34+ progenitor derived natural killer cells 

Nikita Subedi, Liesbeth Petronella Verhagen, Paul de Jonge, Laura Van 

Eyndhoven, Mark C. van Turnhout, Vera Koomen, Jean Baudry, Klaus Eyer, Harry 

Dolstra, Jurjen Tel 
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Abstract 

Increasing evidence suggest that Natural killer (NK) cells are composed of distinct functional 

subsets. This multi-functional role displayed by NK cells have made them an attractive choice 

for anti-cancer immunotherapy. A functional NK cell repertoire is generated through cellular 

education, resulting in heterogeneous NK cell population with distinct capabilities to respond 

to different stimuli. The application of a high-throughput droplet-based microfluidic platform 

allows monitoring of NK cell-target cell interactions at single-cell level and in real-time. 

Through fluorescence-based screening of around 80,000 droplets, with different 

Effector:Target ratios, a fully automated image analysis allows for the assessment of individual 

killing events in each droplet over time. We observed a variable response of single NK cells 

towards different target cells and identified a distinct population of NK cells capable of 

inducing multiple target lysis, coined as serial killers. To meet the increasing clinical demand 

for NK cells several sources, such as umbilical cord blood (UCB), have successfully been 

explored. By assessing the cytotoxic dynamics, we showed that single UCB-derived CD34+ 

hematopoietic progenitor (HPC)-NK cells display superior anti-tumor cytotoxicity. 

Additionally, with an integrated analysis of cytotoxicity and cytokine secretion we showed that 

target cell interactions augmented cytotoxic as well as secretory behavior of NK cells. By 

providing an in-depth assessment over NK cell functions, this study provides crucial 

information on diversity and functional characteristics of peripheral blood NK cells and ex vivo-

generated HPC-NK cells to develop and improve of NK cell-based cancer immunotherapy. 

Graphical Abstract 
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1. Introduction  

Natural killer (NK) cells are a subgroup of type 1 innate lymphoid cells capable of inducing 

cytolytic activity against virus-infected or cancer cells. Unlike other lymphocytes, these cells 

do not need prior antigen sensitization and induce rapid lysis of target cells upon identification 

without harming healthy tissue[1]. Apart from cytotoxicity, NK cells also secrete immune- 

stimulating molecules that modulate the functions of other immune cells[2]. This functional 

versatility has enhanced the popularity to exploit NK cells in anti-cancer immunotherapy. 

More importantly, clinical effects have been demonstrated upon infusion in cancer-bearing 

patients[3,4]. Recent developments in NK cell-based immunotherapy consist of different 

strategies, including the use of different cytokines to enhance autologous NK cells or to use 

allogeneic NK cells (both in their endogenous or genetically engineered form) as the mode of 

adoptive therapy. Even in allogeneic conditions, NK cell infusion is safe they match the criteria 

for the off-the-shelf immunotherapy[5]. A major hurdle is that only a small fraction of 

peripheral blood mononuclear cells comprises of NK cells, and thus generating them in 

sufficient numbers to meet clinical requirements is challenging[5]. Recently, other sources for 

NK cells, such as umbilical cord blood (UCB) and G-SCF mobilized blood, have therefore been 

successfully explored[6–8] As a major advantage, UCB-derived CD34+ hematopoietic 

progenitor cells (HPCs) are more easily available and have several NK cell progenitors with 

fewer requirements for HLA matching compared to T cells.[9]. This makes UCB-derived HPCs 

a flexible and attractive source for NK cells[7]. Upon expansion, these cells display significantly 

more cytotoxicity in bulk experiments compared to their blood-derived counterparts[10]. 

 In addition to their clinical relevance, it is also important to understand the functional potency 

of individual NK cells to optimize immunotherapeutic efficacy. Namely, NK cells exhibit a high 

degree of heterogeneity, both phenotypically and functionally[11–13].  Mass cytometry-based 

data demonstrated how diverse the NK cell population can be by revealing over 100,000 

different phenotypes within a healthy individual[14].  Therefore, the overall function of NK 

cells results from combined efforts of multiple diverse individual cells. Although these cells 

lack genetic rearrangement and recombination, like T and B lymphocytes, this high variation 

shapes them into becoming a versatile cell type[15]. Recent studies utilized single-cell RNA 

sequencing to profile NK cells transcriptomic and identified specific markers that could be 

clustered into different functional subpopulation[11,13,16,17]. Furthermore, using a 
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microwell-based single-cell platform Vanherberghen and coworkers identified rare serial killer 

NK cells with superior cytotoxic behavior which accounted for more than 50% of total lysis[1]. 

Hence, single-cell-based tools lay the basis for a new era in dissecting heterogeneity within 

the NK cell compartment to address the functional ability of individual cells[18].  

Previously, we developed a high throughput droplet-based microfluidic platform to monitor 

the cytotoxic effector function of immune cells at single-cell level[19]. In this current study, 

we monitored around 80,000 droplets over 10 hours in real time to probe the phenotypical 

and functional heterogeneity of single human PB-NK cells and ex vivo-generated HPC-NK cells. 

Furthermore, we identified a cell population within these NK cell sources with superior serial 

killing ability. By pairing NK cells with distinct target cells, we demonstrate that NK cell-

mediated cytotoxicity and cytokine secretion is a dynamic process restricted to a percentage 

of single NK cells equipped with this ability. By providing an in-depth assessment of NK cell 

functions, this research provides crucial information on the diversity and functional 

characteristics of PB-NK cells and HPC-NK cells to channel new avenues in NK cell-based cancer 

immunotherapy. 
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2. Materials and Methods 

2.1 Cell isolation and culture  

K562 cells were cultured in 1:1 (v/v) mixture of RPMI 1640 (Gibco, Catalog no. 22400089) 

and IMDM (Gibco, Catalog no.12440053) supplemented with 10% fetal bovine serum (FBS; 

Gibco) and 1% penicillin/streptomycin (PS; Gibco). THP-1 and Daudi cells were cultured in 

RPMI, supplemented with 10% FBS and 1% PS. All the cell lines were regularly tested for 

mycoplasma contamination. PB-NK cells were obtained from buffy coats of healthy donors 

(Sanquin) after written informed consent according to the Declaration of Helsinki and all 

experimental protocols concur to institutional guidelines. In short, peripheral blood 

mononuclear cells (PBMCs) were isolated from donor blood via density gradient 

centrifugation using Lymphoprep Density Gradient Medium (Stem cell). The NK cells were 

subsequently isolated using magnet-activated cell sorting (MACS) by negative selection 

using an NK cell isolation kit (Miltenyi Biotech, Catalog no. 130-092-657) following the 

manufacturer’s instructions. Cells were counted and purity was routinely assessed using 

flow cytometry by cell surface marker staining for 10 minutes at 4°C, using PE-CY7-labeled 

anti-CD56 (Biolegend, Catalog no. 362509), PE-labeled anti-CD16 (Biolegend, Catalog no. 

302007), and PerCP-labeled anti CD3 (Biolegend, Catalog no. 300328) antibodies in 50 μL 

FACS buffer (2% FBS in PBS). The NK cells were identified as CD16+CD56+CD3−, and purity 

was on average 91%. Subsequently, isolated NK cells were encapsulated into droplets with 

K562 in presence of 1400 ng/mL IL2, as stimulant (Peprotech, Catalog no. 200-02). 

2.2 HPC-NK cell culture and expansion 

Cryopreserved UCB CD34+ progenitor-derived HPC- NK cells from different donors were 

kindly provided by Dr. Harry Dolstra (Radboudumc, Nijmegen)[10]. The cells were thawed 

in medium with 71% Human Serum (HS; Sanquin), 0.03% DNAse and 0.1%MgCL2 and were 

washed (at 300 g for 15 minutes) after 10 minutes resting. The cells were then resuspended 

in NK MACS medium (Miltenyi, Catalog no. 130-107-209) supplemented with 10% HS and 

1% NK MACS supplement (Miltenyi) at the concentration of 3 million cells/mL. 1.5 mL of 

the cell suspension was loaded into the 6 well plate and were supplemented by 50 ng/mL 

IL-15 (Immunotools, Catalog no. 352310) and 0.2 ng/mL IL-12 (Miltenyi, Catalog no. 130-

096-704). On every second day, 1 mL NK MACS medium (with 10%HS, 1% NK MACS 
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Supplement, 50 ng IL-15 and 0.2 ng/mL IL-12) was added to the cells, thus allowing them to 

expand for 7 days. All the assays were performed after the 6th day of expansion. The culture 

was kept for 2 weeks after thawing. 

2.3 Microfluidic chip for droplet production 

The three-inlet microfluidic device was developed following the protocols as described in 

Sinha et. al[20]. The microfluidic device was molded using an SU-8 photo resist structure 

on a silicon wafer and a commercially available polydimethylsiloxane silicone elastomer 

(Sylgard 184, Dow Corning), mixed with curing agent at the ratio 10:1 (w/w) and allowed to 

cure for 3 hours at 60oC. The surface of the Sylgard 184 was activated by exposure to plasma 

and sealed with a plasma-treated glass cover slide to yield closed micro channels. Channels 

were subsequently treated with a 5% (v/v) silane (1H,1H,2H,2H-

Perfluorooctyltriethoxysilane; Fluorochem, Catalog no.  S13150) solution in fluorinated oil 

(Novec HFE7500, 3M, Catalog no.  51243) and thermally bonded for 12 hours at 600C. The 

dimensions of the microfluidic channels are 40 µm × 30 µm at the first inlet, 60 µm × 30 µm 

at the second inlet and the production nozzle, and 100 µm × 30 µm at the collection 

channel. 

2.4 Assembly of Droplet observation chamber   

Glass microscopy slides (76 × 26 × 1 mm; Corning) were used as top and bottom covers (76 

× 26 × 1 mm). Two access holes of 1.5 mm diameter were drilled in the top glass. Both slides 

were thoroughly cleaned using soap, water, and ethanol, and were exposed to air plasma 

(60 W) for 5 minutes. A cutout sheet of 60 μm thick double-sided tape (ORAFOL) was 

carefully placed above the bottom glass slide. Afterwards, the glass slides were stacked on 

top of each other, and the assembly was pressed using Atlas Manual 15T Hydraulic Press 

(Specac) for 5 minutes at 155°C at 400 kg per m2 pressure load. Next, two nano ports (Idex) 

were attached to the holes using UV curable glue (Loctite 3221 Henkel) which was cured 

under UV light for 5 min. Subsequently, the surface of the 2D chamber was treated with 5% 

(v/v) silane solution. Lastly, the chamber was dried, filled with fluorinated oil, and sealed 

until use. The chamber was reused multiple times and cleaned after each experiment by 

flushing fluorinated oil to remove droplets and was stored filled until the next use.  

2.5 Cell loading in microfluidic chip 
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Droplets were produced with a three-inlet microfluidic device. The protocol for loading cells 

in the microfluidic chips is described in Subedi et al[19]. The droplets of ~50 µm diameter 

were generated using flow speeds of 30 µL/min for oil and 5 µL/min for each sample inlet. 

For serial killer experiments, droplets of ~130 µm diameter were produced using flow 

speeds of 20 µL/min for oil and 5 µL/min for each sample inlet. The droplets were produced 

for around 5-10 minutes, thus generating 700,000 droplets in total. For the stability of 

droplets, 2.5% (v/v) Pico-Surf® surfactant (Sphere Fluidics, Catalog no. C024) was used in 

fluorinated oil.  

2.5 Bulk Activation Assay 

NK cells were incubated at 1 million cells per 100 µL in PBA containing IFNγ Catch Reagent 

(Miltenyi, Catalog no. 130-090-443) and TNFα Catch Reagent (Miltenyi, Catalog no. 130-

091-268) at 4°C for 20 minutes. Next, cells were washed and resuspended in RPMI cell 

culture medium supplemented with 2% HS, 1% PS, at 25,000 cells per 100 µL in U-bottom 

microwell plates together with stimulants (K562 cells at E:T 1:1 or IL2 50 ng/ml or K562+IL-

2 at above mentioned concentrations). The cells were incubated at 5% CO2 and 37 °C 

temperature for 4 hours. 

2.7 Single NK cell Activation Assay 

NK cells were incubated at 1 million cells per 100 µL in PBA containing IFNγ Cytokine Catch 

Reagent and TNFα Cytokine Catch Reagent at 4°C for 20 minutes. Cells were then washed 

and resuspended in RPMI culture medium supplemented with 2% HS and 1%PS, at 2 million 

cells/mL for single-cell encapsulation. Next, the NK cells were encapsulated in 70 pL (~50 

µm) droplets together with stimulus ( final concentration of K562 cells, 15 million cells/mL 

or IL-2, 700 ng/ml or K562+IL-2, earlier mentioned concentrations) loaded from another 

inlet. The concentrations of stimulus have been adjusted such that each single-cell received 

same absolute number of molecules as in bulk-based experiments. Droplet production and 

encapsulation rates were carefully monitored using a microscope (Nikon) at 10x 

magnification and a high-speed camera. The droplet emulsion was collected and covered 

with culture medium to protect droplets from evaporation. The encapsulated cells were 

incubated in Eppendorf tubes with a few punched holes to allow gas exchange, at 5% CO 2 

and 37 °C temperature. After 4 hours of incubation, the droplets were de-emulsified by 
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adding 100 µL 20 v/v% 1H,1H,2H,2H-Perfluoro-1-octanol (PFO; Sigma Aldrich, 370533) in 

HFE-7500 and stained for FACS analysis. 

2.8 FACS-Antibody Staining 

Cells were washed once with PBS and dead cells were stained with Zombie Green fixable 

viability dye (Biolegend, 423111), 1:10.000 in PBS, 50 µL) at 4°C for 20 minutes. 

Subsequently, cells were washed once with PBS and incubated with anti-human antibodies 

against CD3 (PerCP-Cy5.5, Biolegend), CD56 (BV510, Biolegend), CD16 (BV605, Biolegend), 

CD11b (PE-Cy5, Biolegend) CD27 (AF700, Biolegend) NKp46 (PE, Biolegend), NKg2A (PE-

Dazzle 594, Biolegend), IFNγ (FITC, Miltenyi) and TNFα (APC, Miltenyi) at 4°C for 30 m inutes. 

Next, the cells were washed twice with PBS buffer with 0.5% BSA and analyzed via BD FACS 

AriaII. 

2.9 Single NK cell cytotoxicity assay 

NK cells and target cells were labelled with Calcein red (5 µM) (ATT Bioquest) and Cell tracker 

blue, CMAC (10 µM) (Invitrogen) respectively. The labelled NK cells and target cells were then 

loaded into droplet chip via different inlets at the concentration of 7 million cells/mL and 

10 million cells/mL, respectively. The viability dyes Sytox Green (Invitrogen) and Cell Event 

Caspase-3/7 Green (Invitrogen) were loaded at the final concentration of 5 µM and 7 µM 

respectively along with the cells, and droplets were collected in the observation chamber. 

Droplets were generated at room temperature while collected into the observation chamber 

over a warm water bath. The immobilized droplets were incubated in a stage top incubator 

set at 5% CO2 and 37 °C. Image acquisition was performed at every hour interval for 10 h.  

2.10 Nanoparticle functionalization 

50 µg of Paramagnetic nanoparticles (Bio-Adembeads Streptavidin Plus 300nm, Ademtech) 

were washed with 50 µg PBS(Gibco) using a magnet. The supernatant was removed, and 

the nanoparticles were resuspended in 990 µL PBS with biotinylated anti-IFN-γ (Biolegend) 

antibodies and incubated for 30 min at room temperature while mixing. 10 µL Biotin was 

added with a final concentration of 1 mM in the solution and incubated for 10 min at room 

temperature. The beads were washed again with PBS using magnets and resuspended in 

5% Pluronic F-68 (Gibco) PBS solution and incubated for 30 min at room temperature. The 

beads were washed and resuspended in assay buffer containing RPMI 1640 (Gibco, life 
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technologies), 5% Human Serum (HS) (Sanquin), and 25 mM HEPES (Gibco) and incubated 

for 10 min at room temperature. The nanoparticles were washed again and finally 

resuspended in the 100 µL of assay buffer containing fluorescently labeled AlexaFlora568-

detection antibody for IFN-γ (Biolegend).  

When performing time-lapse experiments with cells, the final nanoparticle suspension 

contained 700 ng/ml IL-2 stimuli (Peprotech) and 10 μM Sytox Green (Invitrogen) as final 

concentration in drpplets. For experiments concerning the calibration curve and 

optimization steps, IFN-γ (Peprotech) cytokine samples ranging from 0.001 - 100 nM were 

prepared in assay buffer. All calculations were made considering the final concentration 

inside the droplets. 

2.11 Image acquisition and analysis 

Fluorescence imaging was performed using a Nikon Eclipse Ti2 microscope, using a 10X 

objective and mCherry, DAPI, and FITC/YFP filters every hour. The images were viewed 

using NIS Element and Image J. Automated Image analysis was performed using custom-

made in-build MATLAB script (Mathworks), DMALAB (available with submission). The script 

generated a droplet mask that was overlaid onto the fluorescence images, and each droplet 

was analyzed separately. Over 80,000 droplets were analyzed using this script. The output 

received are in terms of droplet index, cell count, fluorescence intensity and dead cell 

count. Detailed description of image analysis script is provided in Subedi et al [19].  For the 

experiments with serial killers, microscopy images were analyzed manually.  

2.12 Statistics and software 

The graphs were generated using GraphPad Prism 9.0.0. The results are expressed as 

mean ± SEM. Significant differences between two groups were analyzed by two -tailed 

unpaired Student’s t-test (Mann-Whitney test). P values < 0.05 were considered statistically 

significant. Flow cytometry data were analyzed using FlowJo X (Tree Star). FMO staining 

served as controls for gating strategy. For the gating strategy, the readers are referred to 

Supplementary Figure 1A. 
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3. Results  

3.1 Single-NK cell activation in droplets using K562 and IL2 

To study the diversity within the NK cell compartment, we utilized droplets-based 

microfluidics to activate single NK cells with K562 cells and cytokines in an isolated 

environment with reduced paracrine interaction within cells. Similar to our previous work, NK 

cells were labelled with cytokine catch reagents for IFN-γ and TNF-α to allow for capturing and 

monitoring cytokine secretion by single-cells[21,22]. After 4 hours of activation cells were 

retrieved from the droplets by breaking the emulsion with PFO and prepared the cells for 

downstream Flowcytometric analysis (Figure 1A). 

 

Figure 1. Experimental Schematics showing NK cell activation and cytokine secretion assay in droplet: 

A. Freshly isolated human peripheral blood NK cells were labelled with IFN-γ and TNF-α catch reagent 

and encapsulated together with stimulants (K562/IL-2) into oil/water droplets using a 3-inlet flow-

focusing droplet chip with 25 µm height. After 4 hours, the droplets were dissolved using PFO solution 

to retrieve the cells, which were thereafter labelled for FACS analysis. The distribution of cellular 

encapsulation of NK cells B. or K562 cells  C. in the droplets. D. Cell pairing distribution in droplets. 

Results are shown as the mean ± SEM of 3 independent experiments with different donors. 
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 Similar to our previous studies with other cell types, the viability of NK cells after culturing in 

droplets was preserved (Supplementary figure 1B). We used pipette tips for loading cells in 

microfluidic chips to increase the probability of cellular encapsulation, and to achieve optimal 

cell pairing at a ratio of 1:1 in the oil-water droplets (~70 pL)[20]. The cell loading 

concentrations were adjusted such that NK cells were optimally paired with K562 cells, and 

the percentage of activated cells reflected the cellular interaction. With optimal loading 

conditions we generated droplets containing 65% single NK cells co-encapsulated together 

with K562 cells (Figure 1B-D). In summary, our platform allowed us to probe NK cell activation 

at single-cell level and interaction with target cells. 

 

3.2 Functional heterogeneity within peripheral blood NK cells - phenotypical correlation at 

different maturation stages 

Studies associated stages of NK cell maturation with functional variations[23,24]. Here, we 

combined CD56 and CD16 with CD11b and CD27 to define different functional subsets within 

PB-NK cells. Even though CD11b and CD27 are generally not considered conventional markers 

for maturation in humans, their functional role has recently been documented[25,26]. 

Additionally, recent studies showed a correlation between murine maturation phenotypes 

and human phenotypes[27]. This prompted us to investigate these specific markers in 

association with human maturation stages. With our platform, we assessed the phases of 

maturation and characterized them into three distinct phenotypical subsets: 1. Tolerant NK 

cells (CD56++CD16-CD27-CD11b-), 2. Regulatory NK cells (CD56++CD16-CD27+CD11b+), and 3. 

Cytotoxic NK cells (CD56+CD16++CD27-CD11b-) (Figure 2A). We also identified an intermediate 

stage that showed dim expression of both CD56 and CD16 (CD56+CD16+/-CD27-CD11b+), here 

described as pre-cytotoxic NK cells. The distribution of the different NK cell subsets was 

investigated in freshly isolated cells and analyzed after bulk and single-cell culture without 

addition of external stimuli. The composition within the population was dominated by mature 

NK cells, ~80% CD56+ cytotoxic phenotypes (Figure 2B,C). Activating NK cell with IL2 induced 

a 2-fold increment in tolerant phenotypes (Figure 2D,F, Supplementary Figure 2) whereas 

interaction with K562 led to an increase in the cytotoxic subsets (Figure 2E,F, Supplementary 

Figure 2). For both single and bulk stimulated cells, we hardly observed the regulatory NK cell 

phenotype (Figure 2). 
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Taken together, the overall composition of the PB-NK cell population with distinct subsets was 

not altered by external factors such as cytokines and cellular interactions. Even at single-cell 

level, the observed NK cell diversity was similar as was defined in earlier studies, thus 

confirming that droplets-based platforms are suited for studying NK cell heterogeneity. 

Figure 2. Phenotypical heterogeneity within peripheral blood NK cells and correlation at different 

maturation stages: A. Schematics of NK cell maturation versus different functional subgroups within 

the NK cell population. B-F, Graphs showing distribution of different NK cell population for different 

conditions upon incubation for 4 hours.  B. Unstimulated NK cells in a traditional bulk-based assay. C. 

Unstimulated NK cells in droplets, D. Activation of single NK cells with IL-2 in droplets. E. Activation of 

single NK cells with K562 in droplets. F. Activation of single NK cells with K562 and IL-2. Green, blue, 

white, and red bars represent tolerant, regulatory, pre-cytotoxic and cytotoxic phenotypes respectively. 

Results are shown as the mean ± SEM of 3 independent experiments with different donors. 

3.3 Functional diversity of PB-NK cells at single-cell level 

Next, we studied different functions of PB-NK cells at single-cell level to associate them with 

the respective phenotypes. IFN-γ and TNF-α secretion were included as functional markers for 

immune regulation, CD107a (degranulation marker) as measure for cytotoxicity and NKG2A 
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and NKp46 as maturation markers[28–30]. The combined stimulation with IL-2 and K562 

induced the most secretion of IFNγ by all four defined subsets (Figure 3A). Regulatory and 

tolerant phenotypes (CD56+++) showed the highest percentage (approximately 10%) of 

cytokine secreting cells, however, the total number of events observed for these subtypes was 

very low (at most 2%). Therefore, compared to the absolute number of events, both of the 

cytotoxic phenotypes showed the largest number of positive cells upon combined stimulation.  

 

Figure 3. Functional diversity of NK cells at single-cell level: A-E, Graphs showing the percentage of 

NK cells population positive for A. IFN-γ, B. TNF-α, C. CD107a, D. NKG2A, E. NKp46 when stimulated in 

droplets with IL-2, K562 or IL-2 and K562 combination. Green, blue, white, and red bars represent 

tolerant, regulatory, pre-cytotoxic and cytotoxic phenotypes respectively. Results are shown as the 

mean ± SEM of 3 independent experiments with different donors. 

Both the regulatory and the cytotoxic phenotypes showed high TNFα secretion upon 

stimulation (Figure 3B).  Notably, no difference in CD107a expression upon stimulation was 

observed with the cytotoxic phenotypes  while the pre-cytotoxic phenotype dominated the 

CD107a expression thus showing an enhanced cytotoxic behavior (Figure 3C). Furthermore, 

pre-cytotoxic phenotype also formed a major component of the PB-NK cell compartment and 

expressed intermediate levels of NKp46 (Figure 3E). These findings strengthen the notion that 

this subset could be the immediate precursor of the cytotoxic population. As expected, the 

tolerant and regulatory phenotypes showed higher expression of NKG2A, while NKp46 was 
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highly upregulated by more mature regulatory and cytotoxic phenotype (Figure 3D,E). 

Collectively, we showed functional variation among different PB-NK cell phenotypes upon 

stimulation at single-cell level indicative for heterogeneity within the NK cell compartment. 

3.4 NK cell mediated cytotoxicity is a dynamic process and highly dependent upon target 

cell interaction 

The interaction dynamics of single NK cells with different target cell types were closely 

monitored to improve the understanding of cytolytic function. Previously, we developed a 

droplet-based single-cell platform for high throughput and real time analysis of cellular 

cytotoxicity[19]. We used this platform to monitor over 80,000 droplets per experiment which 

approximately contained 3,500 droplets with a 1:1 NK cell: target cell ratio (Figure 4A). 

Individual droplets were monitored for 10 hours and subsequently analyzed with an 

automated script to identify possible cytotoxic events (Figure 4B). During the course of 

incubation, we observed around 3% target cell division (data not shown) however, all the E:T 

ratio were defined based on observation at t=0. 

PB-NK cells showed a significant variation in the cytolytic function upon interaction with 

different target cells (Figure 4C). Where single PB-NK cells lysed around 25% (±2.25; n=3) K562 

cells, only 10%  (±4.318; n=3) of THP-1 and 8% (±0.271; n=3) of Daudi cells were killed by single 

PB-NK cells. We observed similar variation using a bulk-based cytotoxicity assay, thereby 

benchmarking our single-cell findings. For K562 and Daudi cells, most of the cytotoxic events 

were observed within the first four hours of cellular interaction, while lysis of THP-1 cells 

occurred at later time points (Figure 4D). This variation in lytic abilities of PB-NK cells could be 

linked with the differential expression of the MHC-I molecules expressed by different target 

cells (Supplementary figure 3). 
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Figure 4. NK cell mediated cytotoxicity at single-cell level: A. Schematic representation of single-cell 

cytotoxicity. NK cells were labelled with Calcein Red AM dye (red cells) and K562 cells with Cell Tracker 

Blue (blue cells) and paired together in 70 pL droplets in the presence of viability dye (Sytox green and 

Cell event Caspase 3/7; yellow cells). Cells were incubated at 37 °C and 5% CO2 for 10 h. B. Microscopic 

overview of NK cell-mediated cytotoxicity in droplets. Over the interval of 10 h, NK cells  interacted with 

target cells inducing cytotoxicity. The dead cells were stained with the viability dye turning yellow. Scale 

bar = 50 µm. C. Bulk versus droplets cytotoxicity assay with K562 (Blue), Thp1 (Red) and Daudi 

cells(green). Light and dark colors represent bulk and droplets experiments respectively. D. Graph 

representing the dynamics of cytotoxic events in droplets for different donors. The dynamics were 

determined for the killer fraction of NK cells, thus showing the percentage of the fast and slow killer 

population in NK cells. Blue, green, and red lines represent K562, THP1 and Daudi cells respectively; 

data analysis performed on E:T 1:1. E. Heat Map showing the dynamics of cytotoxicity within an 

experiment. Each line represents individual cells. The graph does not include the droplets with 0, or 1 

cell and droplets with dead cells at t = 0 h. Results are shown as the mean ± SEM of 3 independent 

experiments with different donors. 

Zooming in on the killing events revealed that 42% of NK cells (fast killers) induced killing as 

early as 1 hour. In total 69% NK cells were able to kill K562 cells during 4 hours of interaction 

(Figure 4E). The remaining 31% of cells (slow killers) only induced cytotoxicity at later time 
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intervals. The observation of these early and late lytic events implies differential regulation in 

target cell recognition and the involvement of different cytotoxic mechanisms shown by 

different NK cells with regards to different target cells. Two distinct cytotoxic mechanisms 

were shown to act on different time scales, with rapid granule-mediated cell death and slower 

CD95-induced or TRAIL induced apoptosis[31]. These striking differences in lytic ability 

observed between individual NK cells, together with their variation in killing behavior towards 

different target cells further strengthens the existence of heterogeneity within the PB-NK cell 

population. 

3.5 Identification of rare serial killing events executed by NK cells using droplet-based single-

cell platform  

There exists a small fraction of NK cells endowed with an immense capacity to kill and handle 

most of the target cell lysis[1,31]. These cells, also known as serial killers, can kill over 3 target 

cells consecutively and are a pursued phenotype for application in cancer immunotherapy. 

The fraction of serial killer NK cells is however relatively low and other than their superior 

killing ability, not much is known yet about them. 

We therefore adapted the microfluidic platform by tuning the droplet size and cell loading 

concentrations and utilized the strength of our approach to study these potent serial killers in 

high throughput. With larger droplets (1.2 nL volume) we increased the fraction of droplets 

containing multiple target cells (≥3) with single NK cells to around 3% (242 droplets) (Figure 

5A,B). Exploring different E:T ratios i.e., 1:1, 1:2, 2:1 and 3:1, variations in lysis of target cells 

was distinctly observed (Figure 5C). At 1:1 ratio, lower fraction of death in K562 cells was seen 

in bulk than compared to droplets at a 1:1 ratio. In contrast, at 1:2 ratio around 50% (±4.7;  

n=4) of paired K562 cells were killed by single encapsulated NK cells in the droplet and this 

was higher than observed in bulk-based measurements. When single K562 cells were paired 

with either 2 or 3 NK cells in droplets, the percentage of cell death increased and was 

somewhat higher than the corresponding bulk-based assay. By comparing with the 

significantly low killing events with unpaired K562 (in-droplet controls), we ruled out the 

possibility of spontaneous cell death in the droplets (Figure 5C). 

We defined serial killing activity if a single NK cell could consecutively lyse ≥3 target cells over 

the period of 10 hours. Zooming in on droplets with 1 NK cell and 3 or more target cells, we 

observed 12% (±0.736, n=3) serial killing events by PB-NK cells (Figure 5D,E, Supplementary 
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figure 4). Additionally, we observed in 49% (±8.06, n=3) of droplets with less than 3 K562 cells 

target cell lysis and 37% (±9.68, n=3) droplets showed no target cell lysis. To ensure multiple 

cell encapsulation, we enhanced the droplet size which however resulted in  later cellular 

interactions between NK and target cell, thus decreasing the percentage of positive cytotoxic 

events early upon incubation [32].  

Interestingly, using our droplet-based assay we segregated and created multiple conditions 

with high-throughput resolution to scrutinize the killing properties of NK cells. This enabled us 

to identify a rare serial killer subset in the PB-NK cell population where single NK cells are 

capable of lysing over three K562 cells. This is a first and important step to open the possibility 

of studying these highly searched for cell types. 

Figure 5. Adaptation of cytotoxicity platform to identify serial killer NK cells: A. Graph showing the 

experimental (grey bars) and predicted (red line) probability for different cell pairing ratios inside the 

1.2 nL droplet. B. Microscopic overview of different E:T ratio for NK cells (red) and K562 (blue) observed 

inside the droplet.  Scale bar=50 µm. C. Bulk (blue) versus droplets (black) cytotoxicity assay with K562 

(at 0:1; 1:1; 1:2, 2:1, 3:1 E:T ratio, respectively. D. Graph depicting percentage of alive K562, <3 dead 

K562 and ≥3 dead K562 within the droplets containing more ≥3 or more K562 cells. E. Microscopic 

overview of a serial killing event in droplets over the period of 10 hours. red = NK cells; Blue= K562 cells; 

yellow= dead cells; scale bar= 50 µm. 
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3.6 Single ex vivo-generated HPC-NK cells display superior anti-tumor cytotoxicity 

Given the potency and high translational efficacy of HPC-NK cells, we next sought to determine 

their tumoricidal activity. We observed an enhanced IFNγ and TNFα secretion by HPC-NK cells 

in droplets when paired together with target cells thus ensuring their activation in droplets 

Figure 6 A). In total 53% (±7.75; n=4) total  lytic events was observed for these NK cells with 

an increasing trend of lytic events over the period of 10 hours (Figure 6B). HPC-NK cells were 

able to induce significantly higher lytic ability in comparison to PB-BK cells (Figure 6C). At 

different E:T ratios, both in bulk and at single-cell level, there was a significant increase in the 

percentage of cytotoxic events compared to unpaired target cells (Figure 6D). At 1:1, the 

cytotoxic event in both bulk (51%; ±7.4; n=4) and at single-cell level (54%; ±2.4; n=4) were 

similar, but with other E:T ratios the number of cytotoxic events increased in droplets despite 

the number of effector or target cells inside. 

Figure 6. Functional assessment of HPC-NK cells in single-cell level: A. Activation of HPC-NK cells at 

single-cell level with different stimulants (IL2, K562 or IL2+K562) to measure the secretion of IFNγ (Blue 

bars) and TNFα (Green Bars). n=4 activation with IL2 and K562; n=3 activation with IL2 and K562. B. 

Graph representing the dynamics of cumulative cytotoxic events in droplets for different donor-derived 

HPC-NK cells. The dynamics were determined for the killer fraction of HPC-NK cells; data analysis 



 Chapter 4 - Single cell profiling reveal functional heterogeneity in NK cells 
 

127 
 

performed all possible E:T.  C. Comparison between cytotoxic events between UCB-derived 

(HPC) NK cells  (Black bars) and  PB-NK cells (grey bars); n=3.  D. Bulk (blue) versus droplets 

(black) cytotoxicity assay with K562 (at 0:1; 1:1; 1:2, 1:3; 2:1, 3:1 E:T ratio, respectively.  E. 

Graph depicting percentage of no dead K562, <3 dead K562 and ≥3 dead K562 within the 

droplets containing ≥3 K562 cells. F. Comparison between percentage of serial killers NK cells 

in  HPC-NK cells (UCB-derived; black bars) and PB-NK cells (Grey bars); n=3. Results are shown 

as the mean ± SEM of 4 independent experiments with different donors (other than denoted 

differently). 

 A large fraction of NK cells with serial killing ability was identified in HPC-NK cells compared 

to PB-NK cells (Figure 6Eand F) . Of the total droplets with over 3 target cells, we observed 

around 34% (±3.2; n=4) HPC-NK cells had lysed over 3 target cells successively. We also 

observed a higher percentage of droplets with positive cytotoxic events (48%; ±4.0; n=4), 

while the droplets with no cytotoxic events remained at a minimum. In conclusion, we showed 

that ex vivo-generated HPC-NK cells are equipped with superior cytotoxic potential in 

comparison to PB-NK cells both at population as well as at single-cell level. 

3.7 NK and target cell co-encapsulation augments IFN-γ secretion 

To obtain insight in the distinct functional abilities of NK cells, we designed an in-droplet 

immunoassay to correlate two important functions: cytotoxicity and IFN-γ secretion. To the 

best of our knowledge, we report for the first time on a droplet-based platform that allows 

monitoring both functions in single primary NK cells simultaneously in real time. A similar 

platform was developed by Antona et al. that also studied these functions in droplets, 

however their platform was designed for end-point based analysis and thus cannot address 

the temporal dynamics of cellular interactions[33]. We adapted the “In-drop sandwich 

immunoassay”, as described by Eyer.et al.[34,35] to allow the combinatorial investigation of 

IFN-γ release and NK cell cytotoxicity in a time dependent manner. In essence, each droplet 

functions as a bio-nanoreactor containing NK cells co-encapsulated together with target cells, 

soluble viability dyes, functionalized magnetic nanoparticles, and detection antibodies in 

solution. Within a magnetic field, the nanoparticles form a uniform bead line. Thus, making 

each individual droplet a screening chamber in which cytotoxicity and secretion can be 

investigated together (Figure 7A,B). To validate our approach, we first generated two batches 
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of droplets that both contained the magnetic capture beads and fluorescently labeled IFN-γ 

detection antibodies and co-encapsulated either 0 nM IFN-γ or 50 nM soluble IFN-γ. During 

microscopy we clearly observed a strong positive signal for the droplet batch with soluble IFN-

γ (Figure 7C). Next, we integrated this technical advancement in our NK cell killing platform which 

yielded droplets with 7 different possible combinations (Figure 7D, Supplementary figure 5). 

Figure 7. Combinatorial assessment of cytotoxic and secretory function of PB NK cells upon target 

cell interaction: A. Schematics of in-droplet combinatorial assay. NK cells were labelled with Cell 

tracker Blue (10 µM) and encapsulated together with target cells and nanoparticles mix at the 

concentration of 10 million cells/mL. Mixture of viability dyes (Sytox green and Cell event caspase3/7 

green) was added together with the cells. Oil/water droplets were immobilized in an observation 

chamber in presence of magnetic field and monitored for 10 hours at 37oC. Each image was captured 

at an hour interval. B. The magnetic nanoparticle coated with streptavidin allowed binding of 

biotinylated catch antibody. When secreted IFNγ binds to the catch antibody, the freely floating 

detection antibody is relocated into the beads thus forming a fluorescent bead line. C.  Microscopic 

overview of droplet with fluorescent breadline (left) and zoomed in view of a droplet with 0 nM IFN-γ 

(upper right) or with 50 nM IFN-γ (lower right). Scale bar 50 µm. D.  Microscopic overview of several 

conditions analyzed inside droplets; (1) Droplets with only NK cells that secreted IFN-γ, (2) droplets 

with NK cells and K562 cells positive for both cytotoxicity and IFN-γ secretion, (3) droplets with NK 

and K562 and positive only for IFN-γ secretion, (4) droplets with K562 and NK cells positive only for 

cytotoxicity. Scale bar = 50 µm. E. Graph representing percentage of NK cells secreting IFN-γ in 

droplets when incubated only with IL-2 (white bars) or with IL-2 and K562 (grey bars). F. Graph 
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representing percentage of droplets with cell pair showing secretion only (white), lysis only (light 

grey); lysis and secretion (dark grey) and no secretion or lysis (black). G.  Dynamics of IFN-γ secretion 

by NK cells measured over the period of 10 hours. Each vertical bar represents independent events 

per hour. Results are shown as the mean ± SEM of 2 independent experiments with different donors. 

To examine whether target cell-induced secretory and cytolytic function were associated with 

individual NK cells, we monitored the secretion dynamics of an NK cell upon pairing with target 

cells in real time. Approximately, 33%  droplets were positive when paired with K562 while 

only 5%  droplets without target cells showed positive IFN-γ secretion (Figure 7E). Among the 

total number of droplets with E:T pairing, only 22%  (±1.12; n=2) showed both cytotoxicity and 

secretion, 13% (±2.9; n=2) were positive only for cytolysis, and 10%  (±1.6; n=2) for secretion 

only. To investigate how the dynamics of contact with target cells could regulate cytolysis and 

secretion in single NK cells, the droplets with positive events for both cytolysis and secretion 

were monitored closely. On average, an NK cell would already induce a lytic event within the 

first three hours of interaction (data not shown) while the secretion followed around 4.7 

hours. The highest fraction of IFN-y producing cells (~67%) were observed positive within 3 to 

6 hours (Figure 7G). Hence these results suggest that secretion follows the lytic event upon 

interaction with target cells, however the underlying mechanistic mode of action needs to be 

further explored. 

4. Discussion 

Cellular heterogeneity within the NK cell compartment is well appreciated, however, how 

functional cellular properties are tied to this phenotypical diversity remains largely 

understudied. It is important to study at a single-cell level in a noise-free environment to 

exclude juxtacrine or paracrine interactions to fully comprehend NK cell diversification and 

their ability to induce different effector functions. Therefore, an optimal experimental 

approach requires both stimulation and analysis with single-cell resolution. By activating NK 

cells in picolitre size droplets, we ensured that external noise is reduced, and that observed 

cellular responses reflect intrinsic behavior. 

Using our microfluidic platform, we present the functional assessment of ex vivo-generated 

HPC-NK cells and compared them with peripheral blood NK cells at single-cell level. We 

successfully demonstrated that HPC-NK cells, upon expansion with cytokines, are significantly 

more cytotoxic than primary NK cells isolated from peripheral blood. Furthermore, we showed 
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that HPC-NK cells harbor a larger pool of serial killers which is consistent with the percentage 

of serial killers in HPC-NK cells identified in a recent study using a microwell-based 

platform[10]. Interestingly, for all E:T ratios tested (except for 1:1), we observed a higher 

percentage of cytotoxicity similar or higher than bulk-based analysis. These results suggest 

that the confinement within droplets enhances the probability for NK cells to interact with a 

target cell compared to a crowded microwell-based setup[32]. Similar cytotoxic events at 

different E:T ratio, for example similar percentage of lysis with 2:1 and 1:2 (or 3:1 or 1:3) was 

observed. This suggests that NK cells within a small group (as inside the droplets), operate 

independently to mediate the lysis of a single target cell and do not show cumulative cytolytic 

effect by cooperating with neighboring NK cell as in bulk based co-culture[36].  

Serial killers have been studied previously for population-based IL-2-activated human PB-NK 

cells[1,37,38]. However, it is still not studied how NK cell activation at a single-cell level affects 

the phenomenon. We identified 12% serial killing events where a single NK cell (upon single-

cell activation) could lyse ≥3 target cells consecutively. The percentage of serial killers 

identified in our study is higher than what had been observed in resting NK cells, as shown by 

Guldevall et.al., suggesting that IL-2 can enhance the serial killer behavior in NK cells[38,39]. 

In line with earlier studies, around 25% of NK cells showed positive cytotoxic events while 

remaining other NK cells did not induce target cell lysis[1,19,39]. In contrast to the work 

described by Sarkar et.al., we did not observe 100% NK cell-mediated killing in droplets. We 

believe 100% killing in earlier study could be due to the characteristics of the utilized dye being 

actively pumped out by the target cell[40].  

The FACS based data from single-cell activation showed an augmented secretory activity of 

CD56+ phenotypes (both cytotoxic and pre-cytotoxic) upon interaction with their target 

cells[41]. We further investigated the correlation between target interaction induced 

cytotoxic event and secretory behavior of individual NK cells by incorporating an innovative 

in-droplet sandwich immunoassay together with our in-droplet cytotoxicity assay. This 

combinatorial platform provides a unique ability for high throughput monitoring of cytokine 

secretion in real time together with cytotoxicity at single-cell level. To this end we identified 

74% of total lytic events in droplets that showed positive secretory function as well. In this 

way we demonstrated a correlation between cytotoxic and secretory function of NK cells, 

which others were not able to find[33,42]. We believe that this discrepancy is explained by a 
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short experimental protocol of 4 hours leading to a missed cytolytic fraction that also test 

positive for IFN-γ. 

The dynamics of NK cell-mediated cytotoxicity are dependent on several factors such as the 

maturation state of NK cells, phenotypical variation based on the expression of several surface 

molecules, and lytic content of NK cells[40]. Besides these NK cell-specific factors, the 

expression of NK-responsive factors in target cells also determines the nature and speed of 

cell death. In our study, we presented the comparison of NK cell-mediated cytotoxicity with 

two leukemia (K562 and THP-1) and one lymphoma (Daudi) cell line, known to show different 

sensitivity towards NK cells[43,44]. Along with the number of cytotoxic events, the differences 

were also observed in the timeline of the cytotoxicity. This variation could be linked to the 

surface arrangements of these cells (expression patterns of different activating and inhibitory 

molecules) which eventually leads to activation of different killing mechanisms. In agreement 

with the literature, we observed upregulated expression of HLA molecules by all cell types[45–

47]. NK cells lyse K562 target cells primarily by delivering perforin/granzyme-loaded cytolytic 

granules into the lytic synapse. However, the lysis of THP-1 cells had been found to be more 

dependent on cytokines, such as IFNγ that could lead to increase in ICAM-1 molecule upon 

exposure[48,49]. NK cells also kill THP-1 cells by forming nanotubes that generally occurs after 

certain hours of interaction[49,50]. Involvement of all these different pathways lead to later 

killing of THP-1 cells compared to K562. 

Our research puts emphasis on unraveling the complex functional and phenotypical 

heterogeneity within the NK cell population. This research provided an integrated analysis of 

NK-target cell interactions and its implications on the cytolytic and secretory behavior of single 

NK cells. By adapting the droplet-based cytotoxicity platform, we identified rare serial killers, 

thus channeling exciting ways for easy identification and study of these rare cell types in 

future. Furthermore, with functional assessment of ex vivo-generated HPCNK cells, one of the 

important sources of adaptive NK cell therapy, we probed heterogeneity in these cell types. 

We believe that our data on functional heterogeneity underlying NK cell population, both 

peripheral NK cells as well as CD34+ HPC-derived NK cells, provides valuable contributions 

towards developing and elevating efficacy of NK cell-based cancer immunotherapy. 
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7. Supplementary Figures 

 

Supplementary Figure 1: A. Gating strategy for NK cells to identify different subpopulation based on 

CD56/CD16 and CD11b/CD27. B. Graph showing the viability of NK cells in bulk and droplets after 

activation.  

 

 

 

 

 

 

 

 

 

Supplementary Figure 2: A. Heat map demonstrating the fold increment of different markers in NK cell 

with and without stimulation in bulk and droplets. 
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Supplementary Figure 3: A. Expression of MHC-1 molecule by K562 (red), Daudi (green) and Thp1 cells 

(red); n=2 error bar represents standard error of mean. 

 

Supplementary Figure 4: A. microscopic view of a single NK cell lysing 3 different K562 cells over 10 

hours’ time period. Blue: K562 cell, Red: NK cell, Yellow: Dead cell 
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Supplementary Figure 5: A. microscopic view showing different conditions in combinatorial 

assay for cytotoxicity and IFNγ secretion. 1. NK-K562 with no positive signal for both lysis and 

secretion. 2. only NK with no positive signal for secretion. 3. only K562 cells with no positive 

signal for cytotoxicity and secretion 
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Abstract 

Type I interferon (IFN) is a key driver of immunity to infections and cancer. Plasmacytoid 

dendritic cells (pDCs) are uniquely equipped to produce large quantities of type I IFN but the 

mechanisms that control this process are poorly understood. Here we report on a droplet-

based microfluidic platform to investigate type I IFN production in human pDCs at the single-

cell level. We show that type I IFN but not TNFα production is limited to a small subpopulation 

of individually stimulated pDCs and controlled by stochastic gene regulation. Combining 

single-cell cytokine analysis with single-cell RNA-seq profiling reveals no evidence for a pre-

existing subset of type I IFN-producing pDCs. By modulating the droplet microenvironment, 

we demonstrate that vigorous pDC population responses are driven by a type I IFN 

amplification loop. Our study highlights the significance of stochastic gene regulation and 

suggests strategies to dissect the characteristics of immune responses at the single-cell level. 

Graphical Abstract 
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1. Introduction 

Plasmacytoid dendritic cells (pDCs) are blood circulating innate immune cells with the unique 

ability to rapidly release large quantities of type I interferon (IFN) for anti-viral immunity[1–

3]. pDC-produced type I IFN is associated with effective anti-cancer immunity but is also a 

driver of autoimmune diseases[4–8]. Type I IFN production by pDCs is initiated when nucleic 

acids trigger the endosomal Toll-like receptors (TLRs) 7 or 9 leading to the activation of 

transcription factor interferon regulatory factor-7 (IRF7), which only pDCs express 

constitutively and at high levels[9–11]. Several pDC subclasses were proposed and single-cell 

genomic profiling revealed ample variation in the molecular outfit of individual DCs[12–16]. 

These individual differences may have an impact on the ability of each pDC to produce type I 

IFN, and in non-pDC model systems random differences between virus-infected cell 

populations, attributed to stochastic gene regulation, caused significant variation in the 

production of type I IFN[17–21]. Additionally, type I IFN production by pDCs can be modulated 

by the microenvironment via soluble factors or cell surface receptors[22–27]. It is currently 

not known how pDC populations combine the complex information from TLR signaling and 

microenvironmental factors with random variations in the molecular outfit of individual pDCs 

to generate robust type I IFN responses. The question remains whether pDCs display 

stochastic expression of type I IFN despite high IRF7 expression, and whether pDC populations 

exploit environmental cues to counterbalance potential heterogeneity arising from this 

phenomenon. 

Here, we developed a droplet-based microfluidic platform to dissect the human pDC-driven 

type I IFN response at the single-cell level within a tunable microenvironment. Generating 

thousands of identical droplets at high throughput allows massively parallelized single-cell 

experiments within these bioreactors. Recent technological breakthroughs in the field of 

droplet-based microfluidics increased the throughput of single-cell DNA and RNA-sequencing 

experiments by orders of magnitude[28,29]. Previous attempts by our lab and others to 

leverage this power for the analysis of cytokine secretion were hampered in their translation 

into practice due to complex detection equipment or difficult handling conditions[30,31]. 

Here, we demonstrate the detection of cytokine secretion and activation marker expression 

by individually stimulated cells in droplets and reveal stochastic differences in pDC-driven type 

I IFN production. Single-cell RNA-sequencing (ScRNA-seq) of these cells allowed us to profile 
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the transcriptional changes in each cell upon perturbation with TLR ligands and links 

transcriptional variation to cytokine secretion at the protein level. Finally, by varying key 

droplet parameters, we find that single pDCs collaborate to amplify their activity and generate 

population-driven type I IFN responses. 

2. Material and Methods 

2.1 Antibodies and cell stimuli 

For a full list of utilized antibodies and reagents, the readers are referred to the 

Supplementary Methods. 

2.2 Cell isolation and culture 

Jurkat T cells (ATCC, Clone E6-1 (ATCC® TIB-152™)) were cultured in RPMI (Thermo Fischer 

Scientific) supplemented with 10% fetal calf serum (FCS; Greiner Bio-One) and 1% Antibiotic-

Antimycotic (Life Technologies), and regularly tested for mycoplasma contamination. The 

pDCs were obtained from buffy coats of healthy donors (Sanquin) after written informed 

consent per the Declaration of Helsinki and according to institutional guidelines. In short, 

peripheral blood mononuclear cells (PBMCs) were isolated from donor blood via Ficoll density 

gradient centrifugation (Axis-Shield). The pDCs were subsequently isolated using magnet-

activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS). 

For MACS isolation, PBMCs were resuspended in X-Vivo 15 cell culture media (Lonza) 

supplemented with 2% pooled human serum (HS; Sanquin) and incubated for 1 h at 37 °C in 

cell culture flasks T75 (Corning) to deplete monocytes. Cells were washed thrice with 

phosphate-buffered saline (PBS; Braun) while non-adherent cells were collected. The pDCs 

were isolated from this cell population by positive selection using the CD304 Microbeat Kit 

(Miltenyi Biotec) following the manufacturer’s instructions. Cells were counted and purity was 

assessed using flow cytometry. For this purpose, cells were washed with PBS supplemented 

with 0.5% bovine serum albumin fraction V (BSA, Roche) and 0.01% NaN3 (Merck; 

subsequently referred to as PBA) and stained for 10 min at 4 °C using APC-labelled anti-CD303 

and fluorescein isothiocyanate (FITC)-labelled anti-Lineage Cocktail 1 (LIN1) antibodies in 

30 μL PBA. The pDCs were identified as CD303+LIN− and purity was on average 93% (Std.: 

3.76%, n = 67). 
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For FACS isolation, PBMCs were washed and FITC-labelled anti-LIN1 antibodies were added to 

the pellet. Cells were incubated for 20 min at 4 °C. Subsequently, cells were washed with PBS 

supplemented with 4 mM ethylenediaminetetraacetic acid (EDTA; Sigma) and 0.1% BSA 

(subsequently referred to as wash buffer) and anti-FITC microbeads (Miltenyi Biotec) were 

added to the pellet. Cells were incubated for 30 min at 4 °C and subsequently washed with 

wash buffer. LIN1-positive cells were magnetically depleted using an LD column (Miltenyi 

Biotec) following the manufacturer’s instructions. Cells were washed with wash buffer and 

VioBlue- or PE-Cy7-labeled anti-HLA-DR and BV510- or PE-labeled anti-CD304 antibodies were 

added to the pellet. Cells were incubated for 30 min at 4 °C and afterwards washed with wash 

buffer. The pDCs were sorted as LIN1−HLA-DR+CD304+ cells on a FACS Aria II SORP (BD). 

During stimulation, pDCs were cultured in X-Vivo 15 supplemented with 2% HS or RPMI 

supplemented with 10% FCS. 

2.3 Soft lithographic procedure 

The microfluidic device was molded against an SU-8 photo resist structure on a silicon wafer 

using a commercially available polydimethylsiloxane silicone elastomer (Sylgard 184, Dow 

Corning). The surface of the Sylgard 184 was OH-terminated by exposure to plasma (Diener 

Electronic GmbH) and was sealed with another plasma-treated glass cover slide to yield closed 

micro channels. Channels were treated with a 2% silane solution. 

2.4 Microfluidic setup 

Soft lithographic techniques were used to fabricate microfluidic channels (see above). Liquids 

were dispensed from plastic syringes (Becton Dickinson), which were connected to the 

microfluidic device by polytetrafluoroethylene tubing (Novodirect GmbH). The syringes were 

driven by computer-controlled syringe pumps (Nemesys, Cetoni GmbH). For the stability of 

droplets, 3 w/w% Pico-Surf surfactant (Sphere Fluidics) was used in fluorinated HFE-7500 oil 

(Novec 7500, 3M). Cells and stimuli were loaded separately on the microfluidic chip. The 

dimensions of the microfluidic channels are 40 µm × 25 µm at the first inlet, 60 µm × 25 µm at 

the second inlet and the production nozzle, and 100 µm × 25 µm at the collection channel. 
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2.5 Priming and blocking 

To block type I IFN signaling, pDCs were incubated at 37 °C for 30 min with medium containing 

blocking antibody against IFNAR2 (PBL Assay Science, 10 μg/mL) and neutralizing sera against 

IFN-α and IFN-β (both from PBL Biomedical Laboratories, both 1000 NU/mL). To prime, pDCs 

were resuspended in medium containing cytokines or conditioned medium and incubated for 

2 h, 37 °C. Subsequently, cells were washed thrice with wash buffer and prepared for 

downstream applications. 

2.6 Single-cell activation assay 

Cells were washed twice with wash buffer and incubated in 100 µL per 106 cells wash buffer 

containing Cytokine Catch Reagent (Miltenyi Biotec) at 4 °C for at least 40 min. Control 

experiments excluded that the employed Cytokine Catch Reagents affect viability or cellular 

functions (Supplementary Fig. 15). Next, cells were washed with wash buffer and medium and 

resuspended in medium at 2.6·106 cells/mL for single-cell encapsulation in 70–100 pL 

droplets. In case of experiments using different droplet sizes or multiple cells per drop, these 

concentrations were adjusted to yield the desired Poisson distribution. Stimulus was dissolved 

in medium at twice the desired concentration to account for on-Chip dilution. For 90 pL 

droplet production, flow rates were adjusted to 900 µL/h for the oil phase and 200 µL/h for 

the aqueous fractions (Supplementary Table 4 for overview of all employed flow rates). In all 

experiments, constant volumetric flow rates were used. To assess the encapsulation rate, 

videos of the droplet production and images of the produced emulsion were acquired using a 

CKX41 microscope (Olympus) at ×10 magnification. Encapsulation rate was manually assessed 

using Fiji[32,33]. The emulsion was collected and covered with medium to protect droplets 

from evaporation. Cells were incubated with open lid at 37 °C and 5% CO2. Next, the emulsion 

was broken by adding 150 µL HFE-7500 containing 20% w/w 1H,1H,2H,2H-Perfluoro-1-octanol 

and centrifuging briefly at 60 relative centrifugal force (RCF). The cell-containing aqueous 

phase was transferred into a new tube containing 500 µL PBA and left for 2 min to allow 

residual oil to settle. Finally, the aqueous phase was transferred into a clean tube and cells 

were washed with PBS. Dead cells were identified by staining with Fixable Viability Dye 

eFluor780 (eBioscience, 1:2000 in PBS, 100 μL) for 30 min at 4 °C. Cells were washed once with 

PBS and blocked with PBA supplemented with 1% HS for 10 min at 4 °C. To stain for surface 
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proteins and captured cytokines, cells were incubated with antibodies in 70 μL PBA 

supplemented with 1% HS for 10 min on ice. After incubation, cells were washed and 

resuspended in PBA and kept at 4 °C until acquisition on a FACS Verse flow cytometer (BD). 

2.7 RNA isolation and quantitative PCR 

RNA was isolated using Trizol (Life Technologies) following the manufacturer's protocol. RNA 

quantity was determined on NanoDrop 2000c (Thermo Scientific) and RNA quality was 

determined via agarose gel electrophoresis. Then, 2 μg of RNA was DNAse I-treated to remove 

residual genomic DNA and reverse transcribed into complementary DNA (cDNA) by M-MLV 

reverse transcriptase (Life Technologies) to obtain 25 μL of cDNA. The cDNA was diluted 25× 

in nuclease free water. For each reaction, 4 μL diluted cDNA, 300 nM primers, 10 μL SYBR 

Green (Roche), and water were added to a final volume of 20 μL. Each sample was amplified 

using a CFX96 sequence detection system (Bio-Rad). The following quantitative PCR (qPCR) 

cycling conditions were used: 50 °C/2 min, 95 °C/10 min, 40 cycles of 95 °C/15 s; 60 °C/1 min, 

melt analysis 60 °C–95 °C with increment 0.5 °C/5 s. The gene-specific oligonucleotide primers 

used to determine the expression of the genes of interest are listed in Supplementary Table 2. 

To increase the chance of consistency, qPCR primers were based on the MA probes with 

highest differential expression. PCR products were monitored by measuring the increase of 

fluorescence caused by binding of SYBR Green. Quantitative PCR data were analyzed using 

CFX96 manager and relative expression of the gene of interest was determined using the cycle 

threshold method with GAPDH as reference genes[34]. 

2.8 Perturbation profiling–scRNA-seq 

Using FACS as described above, single cells were sorted in 384-well plates containing a 50 nL 

droplet with CELseq2-primers and covered by mineral oil. A Mosquito® HTS (TTP Labtech) was 

used to dispense the droplets. To remove red blood cells, PBMCs were resuspended in 8 mL 

of ice-cold ACK buffer and incubated for 5 min on ice prior antibody staining with FITC-labeled 

anti-LIN1. Subsequently, the cells were washed with X-Vivo 15 supplemented with 2% HS and 

the standard protocol was further followed. 

After sorting, plates were immediately frozen at −80 °C until further processing. Several days 

later, plates were thawed and incubated at 65 °C for 5 min to lyse cells. Perturbation profiling 
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was conducted using the SORT-Seq protocol[35]. In short, spike-in RNA, reverse transcriptase 

and second-strand mixes were added to the wells using the Nanodrop II liquid handling 

platform (GC Biotech). Subsequently, the mRNA of each cell was reverse transcribed and 

converted to double-stranded cDNA. Libraries were then pooled, and in vitro transcribed for 

linear amplification, following the CEL-Seq 2 protocol[36]. Primers consisted of a 24 bp polyT 

stretch, a 6 bp random molecular barcode (unique molecular identifier (UMI)), a cell-specific 

8 bp barcode, the 5′ Illumina TruSeq small RNA kit adaptor, and a T7 promoter. Illumina 

sequencing libraries were then prepared with the TruSeq small RNA primers (Illumina) and 

sequenced paired end at 75 bp read length (high output) on the Illumina NextSeq. 

2.9 Stimulation in microtiter plate 

The pDCs were resuspended in 100 µL medium containing the appropriate stimulus (see 

supplementary methods) and cultured in 96-well round bottom plates (Costar, polystyrene) 

at a density of 25,000 cells per well if not stated differently. Depending on the experimental 

setting, Brefeldin A (Sigma, 10 µg/mL) was added 2 h before harvesting the cells. 

2.10 Antibody staining 

Cells were washed once with PBS and dead cells were identified by staining with Fixable 

Viability Dye eFluor® 780 (eBioscience, 1:2000 in PBS, 100 μL) at 4 °C for 30 min. Subsequently, 

cells were washed once with PBS and blocked with PBA supplemented with 1% HS at 4 °C for 

10 min. Cells were washed and incubated with antibodies against surface proteins in 30 μL 

PBA supplemented with 1% HS for 10 min on ice. Afterwards, cells were washed with PBA 

followed by a wash with PBS. Cells were fixed and permeabilized with Cytofix/Cytoperm 

solution (BD, 100 μL) for 20 min at 4 °C. Next, cells were washed with Perm/Wash buffer (BD) 

and blocked for 10 min at 4 °C using Perm/Wash buffer supplemented with 1% HS. 

Subsequently, cells were incubated with antibodies against intracellular proteins in 30 μL 

Perm/Wash buffer supplemented with 1% HS for 30 min at 4 °C. Cells were washed twice with 

Perm/Wash buffer followed by a wash with PBA and resuspended in PBA. For IRF7 staining, 

cells were instead fixed with 4% paraformaldehyde (Merck) in PBS for 10 min at room 

temperature. After incubation, PBA was added and cells were washed twice with PBA, 

followed by a wash with PBA supplemented with 0.1% Triton X (Sigma). Cells were blocked for 
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10 min at 4 °C using PBA supplemented with 0.1% Triton X and 1% HS. Subsequently, cells 

were incubated with antibodies against intracellular proteins in 30 μL PBA supplemented with 

0.1% Triton X and 1% HS for 30 min at 4 °C. Cells were washed twice with PBA supplemented 

with 0.1% Triton X followed by a wash with PBA and resuspended in PBA. All cells were kept 

at 4 °C until acquisition on a FACS Verse flow cytometer (BD). To guarantee highest purity in 

experiments, we limited our analysis to viable CD14−CD19− pDCs. 

2.11 ELISA analysis 

The enzyme-linked immunosorbent assay (ELISA) plates (Nunc MaxiSorp ELISA Plates for IFNα, 

Greiner bio-one high binding microplates for TNFα ELISA) were incubated with PBS containing 

anti-cytokine antibodies at the manufacturer-recommended concentration (Human IFN-alpha 

matched antibody pairs, Human TNF alpha ELISA Ready-SET-Go, both from eBioscience) 

overnight at 4 °C. Next, plates, coated with antibodies against IFNα, were washed once with 

PBS supplemented with 0.05% Tween-20 (Merck, subsequently referred to as ELISA wash 

buffer and used for all wash steps) and blocked using 250 µL ELISA wash buffer supplemented 

with 0.5% BSA for 2 h at room temperature. Plates were washed twice and incubated with 

50 µL of sample or standard and 50 µL of horseradish peroxidase (HRP)-conjugated detection 

antibody at the recommended concentration for 2 h at room temperature. Plates coated with 

antibodies against TNFα were washed once and blocked with ELISA dilutent (eBioscience) for 

2 h at room temperature. Plates were washed once and incubated with 50 µL sample or 

standard. Next, plates were washed 4× and incubated with detection antibody at the 

recommended concentration. Subsequently, plates were washed 4× and incubated with 

Avidin-HRP at the recommended concentration for 30 min at room temperature. Finally, all 

plates were washed trice and incubated with 100 µL TMB Solution (eBioscience). Reaction was 

stopped by adding 100 µL of 1 M H3PO4 and absorption was measured at 450 nm using a 

microplate reader (Bio-Rad). 

2.12 Flow cytometry and ELISA analysis 

Flow cytometry data were analyzed using FlowJo X (Tree Star) and SPICE (downloaded 

from http://exon.niaid.nih.gov)[37]. Analysis and presentation of distributions was performed 

using PRISM for windows version 5.03 (GraphPad) and The R Project for Statistical Computing 
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using the ggplot2, reshape, and xlsx packages[38–41]. For statistical analysis, Student's t-test, 

Mann–Whitney test, and linear regression analysis using least square fit were performed. 

2.13 Linear regression model 

Two models were generated: direct interactions between two random pDCs amplify the type 

I IFN production (2 × percentage of droplets with >1 cells/[100% + percentage of droplets with 

>1 cells] × 100% ~ percentage of cells that produce IFNα); interactions between early type I 

IFN-producing pDCs and other pDCs amplify type I IFN production (percentage of droplets >1 

cells · percentage of early-responding cells + the percentage of early-responding cells ~ 

percentage of cells that produce IFNα). In both models, droplets with 3 or more cells are 

treated as if they contained only 2 cells. To compare the fit of each model, the dataset (n = 24) 

was randomly split into training (75%) and test (25%). Model parameters were estimated 

based on the training dataset, and the test dataset was used to predict the fraction of type I 

IFN-producing cells. Predicted and measured values were compared using the root-mean-

square error (RMSE). This process was repeated 100 times and the average RMSE for each 

model was calculated. 

2.14 ScRNA-seq analysis 

Paired-end reads from Illumina sequencing were aligned to the human transcriptome with 

BWA[42]. Read 1 was used for assigning reads to correct cells and libraries, while read 2 was 

mapped to gene models. Reads that mapped equally well to multiple locations were 

discarded. Read counts were first corrected for UMI barcode by removing duplicate reads that 

had identical combinations of library, cellular, and molecular barcodes and were mapped to 

the same gene. Transcript counts were then adjusted to the expected number of molecules 

based on counts, 4096 possible UMIs, and poissonian counting statistics. 

Samples were normalized by down-sampling to a minimum number of 1700 transcripts. 

RaceID2 was used to cluster cells and to perform outlier analysis. Differentially expressed 

genes between two subgroups of cells were identified based on DEseq[35]. Gene ontology 

(GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis was conducted by 

submitting lists of up to 50 most upregulated genes (log2(fold change) of >1.5, 

adjusted p value < 10−8) to the DAVID 6.7 online platform[43,44]. 
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2.15 Data availability 

All relevant data related to this manuscript are available on request from the authors. The 

accession number for the single-cell RNA-sequencing data described in this study is GEO: 

GSE114161. All relevant codes related to this manuscript are available from the authors or as 

Supplementary Information. 

3. Results 

3.1 Functional pDC heterogeneity arises early after stimulation 

pDCs operate in complex microenvironments that influence their cellular state. To investigate 

the intrinsic potential of single pDCs to produce IFNα without interference of other cells, we 

developed a droplet microfluidic single-cell assay for the detection of cytokine secretion (Fig. 

1a). In short, pDCs were coated with capture reagents for cytokine readout and encapsulated 

in picoliter droplet microenvironments using a microfluidic device (Fig. 1b, c). During in-

droplet incubation, produced IFNα and tumor necrosis factor-α (TNFα) was captured on the 

cell surface by the cytokine capture reagents. After breaking the emulsion, pDCs were isolated 

and analyzed via multicolor flow cytometry. Each droplet served as a standardized and 

independent cell reactor and allowed the investigation of tens of thousands of individually 

stimulated cells simultaneously. This massively parallel approach facilitated the 

characterization of rare, truly single-cell behavior. This system greatly exceeds the throughput 

and possibilities when compared to conventional limited dilution experiments which require 

numerous replicate cultures and, crucially, cannot prohibit cellular crosstalk. Further, the low 

droplet volume greatly reduced reagent consumption and allowed us to work with small 

numbers of (primary) cells. We routinely probed rare pDCs using as few as 40,000 cells as 

input, showing that our technique is highly suited for the use of small biological samples. 

Importantly, our droplet-based cytokine capture approach enables sensitive cytokine 

detection and makes no use of transport inhibitors, which negatively impact cellular function 

and viability. This enabled us to measure cytokine secretion for extended time periods in an 

accumulative rather than snapshot fashion and facilitated the analysis of extremely early 

secretion events within the first 30 min of stimulation. Early activation events are problematic  
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Figure 1. Single-cell analysis reveals functional heterogeneity within individually stimulated 

pDCs. a. Schematic overview of the droplet microfluidic assay. The pDCs were coated with cytokine 

capture reagents, encapsulated in picoliter droplets, and stimulated with TLR ligands. After incubation, 

cells were stained for viability, cytokine, and surface marker expression, and analyzed by flow 

cytometry. b. Schematic overview of the employed microfluidic chip with microscopic image of the 

flow-focusing nozzle for the encapsulation of cells in droplets. c. Microscopic image of emulsion after 

droplet production. B,C Red arrows indicate cells. Scale bars equal 100 µm. d. The pDCs were 
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encapsulated at a concentration of 1,300,000 cells/mL in 92 pL droplets. The distribution of cells in 

droplets was measured by manual analysis of microscopic images showing the emulsion directly after 

production. Shown is the fraction of droplets plotted against the number of cells per droplet; n = 85, 

black line indicates median, red line indicates predicted values. e. Shown is the fraction of cell-

containing droplets with exactly one cell; n = 85. Lines indicate mean, hinges mark interquartile ranges, 

and whiskers reach to the highest/lowest value that is within 1.5 × interquartile range. f-k The pDCs 

were treated as described above and stimulated with 5 μg/mL or 50 µg/mL CpG-C. f. Viable pDCs were 

detected by forward scatter (FSC) and side scatter (SSC) analysis and subsequent gating on 

CD14−CD19− and viability dye− cells. g. IFNα- and TNFα-secreting cells were detected within that 

population. h. Shown is the fraction of cytokine-secreting cells plotted against incubation 

time; n (5 µg/mL) = 3, n (50 µg/mL) = 6. i. Surface marker-expressing pDCs were identified comparing 

the expression levels to fluorescence-minus-one controls. j. Shown is the fraction of surface marker-

expressing cells plotted against the incubation time; n > = 4. k. The co-expression of CCR7, CD40, CD86, 

and TNFα by single IFNα+ and IFNα− pDCs was analyzed. Shown is the relative contribution of each 

functional response pattern to the total pDC population. h,j Dots indicate mean, error bars indicate 

SEM 

to investigate with transport inhibitor-based methods as they negatively impact cell signaling, 

thereby distorting the measurement. In contrast to microtiter-based approaches, our 

microfluidic setup makes use of computer-controlled syringe pumps. This allowed us to 

precisely control environmental factors and vary droplet volume and local cell density in a 

range that currently cannot be obtained with conventional cultures. 

First, we encapsulated pDCs in picoliter droplets (average 92 pL, SEM 1.8 pL, n = 85) with an 

encapsulation efficiency of approximately 6% cell-containing drops (Fig. 1d) of which 96% 

contained a single cell (Fig. 1e). Cells were incubated with the synthetic nucleic acid compound 

CpG-C (TLR9 agonist) and analyzed by flow cytometry (Fig. 1f). Strikingly, only a minor subset 

of pDCs produced IFNα, which emerged as early as 2 h after stimulation and peaked after 6 h 

of stimulation (Fig. 1g, h). In contrast, we observed that virtually all pDCs produced TNFα 

during incubation in droplets (Fig. 1g, h). Similarly, the majority of pDCs was positive for the 

activation markers CCR7, CD40, and CD86 and most pDCs were highly multifunctional (Fig. 1i–

k). Furthermore, we confirmed previous findings that a recently discovered subset of pDC-like 

progenitor cells, called AS DCs, was not involved in IFNα production (Supplementary Fig. 

1)[15]. 
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Next, we studied the capacity of TLR signaling to modulate the probability of pDCs to produce 

IFNα. We encapsulated cells with varying concentrations of CpG-C and measured the fraction 

of cells producing IFNα (Fig. 2a). Surprisingly, we only observed minor variations in the fraction 

of pDCs secreting IFNα irrespective of the concentration of CpG-C. In contrast, the production 

of TNFα, the expression of the activation markers CCR7, CD40, and CD86, and cell viability all 

positively correlated with CpG-C concentration (Fig. 2a, Supplementary Fig. 2). To exclude 

CpG-C-specific limitation in the TLR9 signaling pathway, we stimulated pDCs with the synthetic 

TLR7/8-agonist R848 (Fig. 2b) and the strong IFNα inducer TLR9 agonist CpG-A (Supplementary 

Fig. 3). Similar to CpG-C stimulation, only a small fraction of pDCs produced IFNα and this 

effect was independent of stimulus concentration. Thus far, virtually all knowledge on IFNα 

secretion by human pDCs is based on bulk cultures. Therefore, cells from the same donor were 

analyzed by microfluidics and bulk culture side-by-side. Our results demonstrate that 

individually stimulated cells in droplets indeed have an inferior capacity to secrete IFNα as 

compared to bulk stimulated cells (Supplementary Fig. 4). Finally, to rule out that the observed 

IFNα production was due to stimulus-independent constitutive secretion, we stimulated pDCs 

with either interleukin-3 (IL-3) or CpG-C. The pDCs treated with IL-3, a survival factor for pDCs, 

which only survive briefly ex vivo when left unstimulated, showed a significantly reduced 

probability to produce IFNα (Fig. c). To exclude that IFNα production by single pDCs is delayed 

compared to bulk analysis, we incubated pDCs for 12 h and 24 h but only observed small 

deviations (Fig. 2d). 

Together, our data demonstrate that our microfluidic assay is suited for the sensitive detection 

of cytokine secretion and protein expression by single cells. Functional heterogeneity emerges 

immediately after TLR activation in pDCs, as only a small fraction of cells is able to produce 

IFNα. IFNα production is enhanced by TLR signaling but appears to be regulated by an 

additional stochastic, i.e. random, component which is not associated with strength, 

amplitude, or duration of cell activation. 
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Figure 2. TLR-L concentration does not influence the fraction of IFNα-producing pDCs in 

droplets. a,b. The pDCs were coated with capture reagent, encapsulated in picoliter droplets, and 

stimulated individually with a. CpG-C or b. R848 for 12 h. After staining for viability, surface marker 

expression and cytokine secretion, cytokine-secreting cells, and viable cells were detected via flow 

cytometry. Shown is the fraction of marker-expressing cells plotted against TLR ligand concentration. 

Different concentrations were tested in different donors; a n ≥ 3, b n ≥ 2. c. The pDCs were treated as 

described above and stimulated with 0.01 µg/mL IL- 3 or 50 µg/mL CpG-C. Shown is the fraction of 

cytokine-secreting cells plotted against treatment condition: n = 5. Bars indicate mean. c. The pDCs 

were treated as described above and stimulated with 50 µg/mL CpG-C for 12 h or 24 h. Shown is the 

fraction of IFNα-secreting or viable cells plotted against treatment condition; n = 8 (c,d)) Mann–

Whitney test *p < 0.05, **p < 0.01. 

3.2 Type I IFN is an important regulator of early pDC function 

Cellular heterogeneity often emerges from random processes during gene transcription[45]. 

To probe whether the observed differences in IFNα production originate from such stochastic 

gene regulation or whether a privileged pDC subset already exists at steady state, we 

employed scRNA-seq to profile the onset of the type I IFN response upon perturbation with 

CpG-C. Freshly isolated pDCs from a healthy donor were encapsulated in droplets and 

individually stimulated with CpG-C using our microfluidic platform (Fig. 3a). After incubation 

for 0, 1, or 2 h, the emulsion was broken, cells were stained for cytokine secretion, and 384 

cells at each time point were sorted into well plates for scRNA-seq (Fig. 3b). Single cells were 

processed using the SORT-Seq (sorting and robot-assisted transcriptome sequencing) protocol 

followed by sequencing of ~0.1 million to 0.2 million paired-end reads per cell[35]. At 2 h, 

when we detected the first IFNα+ pDCs, we enriched for this subset by sorting 39 IFNα+ pDCs 

before randomly filling up remaining wells with IFNα+ and IFNα− cells. In total, we profiled 

1152 cells with an average of 4677 transcripts per cell and 1574 unique genes detected per 

cell. After filtering, down-sampling, and removal of 141 DCs that clustered separately in initial 

analyses and expressed gene signatures of non-pDC subsets (CD1c+, CD141+), the final dataset 

contained 774 cells expressing 13,214 genes (Supplementary Fig. 5)[15]. 
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Figure 3. Single-cell RNA-sequencing identifies type I IFN-expressing cells early after activation. a. 

The pDCs were coated with capture reagent, encapsulated in picoliter droplets, and stimulated 

individually with 50 µg/mL CpG-C for varying amounts of time. b. After staining for surface marker 

expression and cytokine secretion, different pDC subsets were collected using fluorescence-activated 

cell sorting (FACS) and their transcriptomes were sequenced using the SORT-Seq protocol. c. Heat map 

of the 774 cells that passed quality control filters representing transcriptome similarities as measured 

by Euclidean distance. The k-medoid clustering in combination with the raceID2 algorithm identified 8 

distinct cell clusters. d. t-SNE map showing all identified clusters. Different colors indicate clusters, 

different shapes indicate stimulation time. e. The employed workflow allowed to link protein expression 

data acquired during FACS to the transcriptome data. The number of IFN-α+ cells assigned to each 
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cluster, and the percentage of sorted IFN-α+ cells in each cluster, is plotted against the cluster name. f. 

t-SNE map showing the fluorescence intensity of IFNα and TNFα as measured during FACS for each cell. 

g. Shown are transcript counts for genes of the type I IFN response and the TNF gene in single cells 

stimulated for 2 h with CpG-C. IFNα+ cells, identified during FACS, are indicated in blue, other cells are 

shown in red. h Genes that were upregulated in cluster 5 compared to cells from all other clusters were 

detected (p < 10−8). Shown is the log2(fold change) for each gene. The color scale indicates the 

corresponding p value. 

Unsupervised k-medoid clustering of the correlation matrix combined with outlier detection 

using the raceID2 algorithm suggested the presence of 8 cell clusters (Supplementary Figure 

6a-e) which were visualized in two dimensions using t-distributed stochastic neighbor 

embedding (t-SNE) (Fig. 3c, d; Supplementary Fig. 6f-h)[46]. We observed two clusters of 

unstimulated cells, Cl1 and Cl7. Cl1 also contained a group of cells that expressed 

characteristics of the described CD2hi pDC and AS DC subsets (Supplementary Fig. 7)[12,15]. 

Cells stimulated for 1 h mapped into Cl2 with few cells also present in Cl3 and Cl8. Cl4, Cl6, 

and Cl5 were dominated by pDCs that were stimulated for 2 h. Cells sorted as IFNα+ mapped 

to Cl4 and Cl5 at equal fractions and more than 60% of cells in Cl5 were sorted as IFNα+ (Fig. 

3e). The pDCs mapping to Cl5 produced high levels of IFNα as measured by flow cytometry 

(Fig. 3f) and cells sorted as IFNα+ expressed high levels of type I IFN genes, such as IFNA2, and 

IFNB1, as well as the interferon-inducible gene IFIT2 (Fig. 3g). Differential gene expression 

analysis showed an enrichment of type I IFN genes or type I IFN-induced genes in Cl5 as 

compared to all other cells (Fig. 3h). In contrast, no obvious transcriptionally distinct pDC 

subset that could predict type I IFN production was observed at steady state. This could either 

be because type I IFN production is genuinely a stochastic process, or because the nature of 

such a privileged cell state cannot be determined a priori by present technology. Similar 

results were obtained when pDCs from two additional healthy donors were profiled at steady 

state (Supplementary Fig. 8). 

Next, we compared the gene expression of individually stimulated pDCs and unstimulated 

cells. We argued that the underlying mechanisms of Cl5 pDCs' unique activation state might 

become evident when comparing the differential gene expression profiles of all stimulated 

pDC clusters. On average, Cl5 pDCs showed 77 upregulated genes (log2(fold change) > 1.5; p 

value < 10−8) and 1 downregulated gene (log2(fold change) < −1.5; p value < 10−8) compared  
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Figure 4. Type I IFN-expressing pDCs show unique gene expression patterns. a. Differentially regulated 

genes in cells from all activated clusters compared to cluster 1 were identified. Differentially regulated 

genes from cluster 5. The average log2(count) of each gene is plotted against the log2(fold change) 

compared to cells in Cl1. Red color indicates p value < 10−8. b. The top 30 most upregulated genes are 

shown for cluster 5. Shown is the log2 fold change for each gene. The color scale indicates the average 

log2(Count) for each transcript in Cl5. c. Venn diagram of the upregulated genes (log2(fold 

change) > 1.5, p value < 10−8) within different clusters. d. Lists of upregulated genes were submitted to 

DAVID for GO enrichment analysis and KEGG enrichment analysis. Heat maps show the most 

significantly enriched terms for the gene list from cluster 5. The color scale indicates the significance of 

enrichment of a particular term in all selected clusters after Benjamini–Hochberg correction for multiple 

testing 

to unstimulated pDCs in Cl1 (Fig. 4a). Type I IFN and IFN response genes were among the most 

upregulated genes as well as several genes that support IFNα production in pDCs including 

MIR155HG, HSPA1A, and HSP90AA1 (Fig. 4b)[47–49]. Notably, the chemokines CCL3 and CCL4 

that bind to the chemokine receptor CCR5 were upregulated. CCR5 is expressed on all pDCs 

and CCL3/4-CCR5 signaling might be responsible for the generation of large pDC clusters early 
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after activation[50,51]. Next, we checked for other clusters with similar expression patterns. 

Cl5 cells shared many upregulated genes with cells from other clusters, especially Cl3 and Cl4; 

however, they also retained a group of uniquely upregulated genes centered around type I 

IFN production (Fig. 4c). Gene enrichment and functional annotation analysis using DAVID 

(Database for Annotation, Visualization and Integrated Discovery) showed that upregulated 

genes in Cl5 pDCs were enriched for anti-viral responses, cytokine responses, and apoptosis 

(Fig. 4d and Supplementary data 1−4)[43,44]. Similarly, type I IFN-related or -induced 

pathways were uniquely enriched in Cl5 genes, including TLR signaling, cytosolic DNA sensing, 

and the RIG-I-like pathway. 

These results demonstrate that our microfluidic platform is ideally suited to work in 

conjunction with scRNA-seq to link functional information from extremely rare cells (<0.02% 

IFNα-producing pDCs) to whole transcriptome profiling. Together, the data show that type I 

IFN-producing cells possess unique transcriptional features, many of which are associated 

with autocrine type I IFN signaling. ScRNA-seq data revealed no evidence for a privileged pDC 

subset at steady state but type I IFN appears to be an important orchestrator of early pDC 

activation. The question remains of how pDC populations regulate the cellular heterogeneity 

originating from variation in type I IFN production. 

3.3 Environmental factors modulate type I IFN production 

In vivo, pDCs act in a dynamic microenvironment and migrate considerably during their life 

cycle. To assess the impact of environmental changes on the observed heterogeneity during 

pDC-driven type I IFN responses, we systematically varied key droplet parameters (Fig. 5a). 

First, we generated droplets of varying size, covering several orders of magnitude (Fig. 5b). 

Single pDCs were encapsulated in droplets ranging from 31 to 1209 pL and stimulated for 12 h 

(Fig. 5c). No significant difference in the fraction of IFNα-secreting cells was detected (Fig. 5d, 

colored dots). Comparison with pDCs from additional donors, which were encapsulated in 

droplets of up to 3371 pL—a volume comparable to the average volume of a single pDC in a 

perfectly mixed microtiter plate—showed no increase in the fraction of IFNα-secreting cells 

(Fig. 5d, gray dots). 
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Figure 5. Microenvironmental factors influence the fraction of IFNα-producing pDCs. a,b. The pDCs 

were coated with cytokine capture reagents, encapsulated in droplets of varying size (b, scale bar 

equals 100 µm), and stimulated individually with 50 µg/mL CpG-C for 12 h. The distribution of cells in 

droplets was measured by manual analysis of microscopic images after production. After staining for 

viability and surface marker expression, viable cells and TNFα-positive cells were detected via flow 

cytometry. c. Shown is the fraction of cell-containing droplets with exactly one cell; n > = 3. Lines 

indicate mean, hinges mark interquartile ranges, and whiskers reach to the highest/lowest value that 

is within 1.5 × interquartile range. d. The fraction of IFNα-secreting pDCs was plotted against droplet 

volume. Dots of the same color indicate cells from the same donor. Gray dots are all originating from 

different donors. Linear regression was employed to calculate a trend line; n = 24. e. The pDCs were 

stimulated in ~92 pL droplets with an increasing fraction of droplets containing more than 1 cell. f. 

Shown is the fraction of IFNα-secreting cells plotted against the fraction of droplets containing more 
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than 1 cell. Two models were generated to explain the observed pattern: (red) two random pDCs co-

encapsulated in the same droplet can induce type I IFN production in each other; (blue) rare early type 

I IFN-producing cells can induce type I IFN production in conventional co-encapsulated cells. The root-

square-mean error (RMSE) was calculated for both models to compare the fit to the data; n = 24. g. 

Schematic overview of both models 

Previous studies indicated that pDCs build homologous cell clusters upon stimulation, 

indicating that cellular crosstalk might be involved in their activation process[2,51]. To test 

this, we stimulated pDCs at various cell densities in microtiter plates in bulk (Supplementary 

Fig. 9A). Indeed, the fraction of IFNα-expressing pDCs depended on cell density 

(Supplementary Fig. 9B–F). 

Communication between abovementioned pDCs in bulk can, thus, amplify the fraction of 

IFNα-producing cells. To get more insight into the nature of this communication, we tested 

whether crosstalk between two random interacting cells would be sufficient to enable IFNα 

production. We encapsulated pDCs in 90 pL droplets and gradually increased the fraction of 

droplets containing multiple cells (Fig. 5e). The fraction of IFNα-secreting cells increased 

slightly with the fraction of multiple cells per drop but did not match the predictions of a 

random interaction model (Fig. 5f, red). In contrast, the increase was better described by an 

alternative model based on the assumption that the early IFNα-producing pDCs activate co-

encapsulated cells to produce IFNα as well (blue). However, in the employed system, we 

cannot rule out the possibility that the increase was caused by passive diffusion of cytokines 

or capture reagent between two co-encapsulated cells (Supplementary Fig. 10). 

Together, these results show that the microenvironment—in this case represented by 

surrounding pDCs—has a critical impact on the probability of a pDC to produce IFNα. 

3.4 Priming with type I IFN increases the chance to produce IFN-α 

Communication between IFNα-producing pDCs and surrounding pDCs occurs either in a 

juxtacrine or paracrine fashion. To elucidate whether paracrine signaling is the driving factor, 

freshly isolated pDCs were primed for 2 h with conditioned medium (CM) harvested from 

overnight bulk pDC cultures (Fig. 6f). After priming, pDCs were thoroughly washed, coated 

with capture reagent, encapsulated in picoliter droplets, and stimulated individually with CpG-

C. Priming cells with 10% CM significantly increased the fraction of single pDCs that produced 

IFN-α (Fig. 6b). In contrast, no effect was observed when cells were primed with remnant CpG-
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C, fresh cell culture medium, or primed without subsequent TLR stimulation. Similar to 

previous experiments, IFN-α-secreting cells were highly multifunctional (Fig. 6c). Interestingly, 

the fraction of IFN-α-secreting pDCs depended on the concentration of the CM, but not on the 

concentration of CpG-C (Fig. 6d, e). These findings indicate that priming modulates the 

probability of a pDC to produce IFN-α but does not directly induce IFN-α production. 

To identify the responsible factor for the priming effect, we tested several cytokines described 

to positively affect IFN-α-production by pDCs[22,27]. An initial screen revealed that only IFN-

β—which acts similar to IFN-α via the IFN-α/β-receptor—increased the average per-cell IFN-α 

production by pDCs cultured in microtiter plates at low cell density (Supplementary Fig. 11A, 

B). Furthermore, blocking the IFNα/β receptor and adding neutralizing antibodies against IFN-

α and -β inhibited the positive effect of CM on per-cell IFN-α production. Priming of pDCs with 

IFN-β also led to an increase in the fraction of low-density cultured pDCs producing IFN-α as 

measured by flow cytometry (Supplementary Fig. 11C). Finally, priming with IFN-β increased 

the fraction of IFN-α-secreting cells in droplets to a similar extent as CM (Fig. 6f). 

Previous studies identified IRF7 as a limiting factor in non-pDC models of type I IFN 

production[18]. In our hands, all pDCs displayed high levels of IRF7 immediately after isolation 

which decreased, however, during ex vivo culture (Supplementary Figs. 12, 13). High levels of 

IRF7 were induced by priming with IFN-β or by natural production of type I IFN by pDCs and 

coincided with but did not precede IFN-α production (Supplementary Figs. 12, 13). 

Together, these results unambiguously show that signaling via the type I IFN receptor 

amplifies TLR-induced IFNα production, thus modulating the patterns of heterogeneity within 

the pDC population. Next,we challenged our hypothesis that the bulk type I IFN response is 

governed by a small driver population of cells by conducting bulk experiments where type I 

IFN-mediated paracrine communication was abrogated by blocking the IFN-α/β receptor and 

by adding neutralizing antibodies against IFN-α and -β prior to bulk activation. Our 

experiments revealed that blocking the IFNAR in combination with neutralizing sera reduced 

the fraction of cells secreting IFN-α to similar numbers as observed in our droplet experiments 

(Supplementary Fig. 14), indicative for a pool of early responder cells. 
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Figure 6. The pDCs primed with CM or IFNβ are more likely to produce IFNα. a. Schematic overview 

of the priming experiment. The pDCs were stimulated for 2 h with conditioned medium (CM), 0.5 µg/mL 

CpG-C, or control medium. Cells were washed, coated with cytokine capture reagent, encapsulated in 

droplets, and stimulated individually with 0.01 µg/mL IL-3 or 50 µg/mL CpG-C for 12 h. CM was 

generated from bulk pDC cultures stimulated with 5 µg/mL CpG-C at a density of 25,000 cells/well. 

Cytokine-secreting cells were detected using flow cytometry. b. The fraction of IFNα-secreting cells is 

plotted against different treatment conditions. c. Co-expression of CCR7, CD40, CD86, and TNF-α by 

single IFN-α+ and IFN-α− pDCs was analyzed. Shown is the relative contribution of each functional 

response pattern to the total pDC population. d. The pDCs were primed with different concentrations 

of CM and stimulated with 50 µg/mL CpG-C. Shown is the fraction of IFNα-secreting cells plotted 

against CM concentration; n > = 3. Dots indicate mean and whiskers indicate SEM. e. The pDCs were 

treated as described above, primed with 10% CM, and stimulated with different concentrations of CpG-

C. Shown is the fraction of IFN-α-secreting cells plotted against CpG-C concentration; n = 3. f. The pDCs 

were primed with 10% CM, control medium, or 500 U/mL IFN-β, and stimulated with 50 µg/mL CpG-C. 

The fraction of IFNα-secreting cells is plotted against different treatment conditions; n > = 3. g. 

Schematic model illustrating stochastic IFNα-production by pDCs. Few pDCs produce IFNα constitutively 

without stimulation by TLR ligands, here resembled by differentiation from a freshly isolated pDC 

(pDC0) to an IFN-α-secreting pDC (pDC1). Literature indicates that this is not IRF7 dependent but NF-κB 

and AP-127. Upon TLR9 triggering the IRF7-dependent pathway is activated which also allows 

differentiation to IFN-α-secreting pDC at a much higher rate. Despite involvement of the IRF7 pathway, 
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still only very few pDCs produce IFN-α. Paracrine signaling via the type I IFN receptor can increase this 

rate, probably via the upregulation of IRF7 expression, leading to a large fraction of cells expressing 

IFN-α. After producing IFN-α, pDCs become refractory to re-stimulation (pDC2) and eventually die (Φ). 

b,f Welch-corrected two-sample t-test; *p < 0.05, **p < 0.01 

Based on our results, we propose the following model of early pDC activation (Fig. 6g). The 

pDCs are able to produce IFN-α constitutively, but this is a rare and stochastic process that is 

controlled by transcription factors such as nuclear factor (NF)-κB or activator protein 1 (AP-1), 

but not IRF7[27]. TLR triggering, which behaves as a sensitive and digital process, leads to the 

activation of the MyD88–IRF7 pathway and a 20-fold increase in stochastic IFNα expression. 

In many cells, this pathway is, however, limited by downstream components and by trafficking 

of CpG molecules to early endosomes. This leads to a still very limited pool of early responder 

pDCs that secrete type I IFN. Secreted type I IFN, then, primes surrounding pDCs and induces 

the expression of important factors for the IFN-α production. This increases the probability of 

IFNα expression in those cells and leads to a robust population response. 

4. Discussion 

We show that type I IFN production by freshly isolated human pDCs is controlled by stochastic 

gene regulation and amplified by environmental signals. This is supported by several 

observations. First, TLR signaling was necessary but insufficient for the induction of type I IFN 

production. Only a minor subset of cells produced IFNα, whereas all cells expressed TNF-α or 

CCR7, implying universal activation of the TLR signaling pathway. Second, neither TLR signaling 

strength nor duration influenced the fraction of IFN-α-producing cells. Third, RNA profiling of 

single pDCs indicated no evidence of a privileged pDC subset with superior ability to produce 

type I IFN. On the contrary, a type I IFN-expressing pDC subset emerged at 2 h after activation, 

at the same time as type I IFN secretion was first observed in droplets, indicating that 

heterogeneity emerges simultaneously at protein and messenger RNA (mRNA) levels. 

Stochastic gene regulation is one of the strongest drivers of cellular heterogeneity and can be 

caused by not only the inherently random nature of gene expression itself but also by 

limitations in the signalling pathways leading to the production of a cytokine[19,21,45]. In our 

system, high IRF7 expression, which represented the most important cause of stochasticity in 

other systems, did not guarantee type I IFN production in all pDCs[18]. 



 Chapter 5 - Single cell analysis  of pDCs 

166 
 

In contrast, we show here that the microenvironment has a decisive impact on type I IFN 

responses as IFN-α production by pDCs depended directly on cell density. This effect could be 

mimicked by pre-treating pDCs with type I IFN leading to an increase in the fraction of IFNα-

producing individually stimulated pDCs. This combination of stochastic gene regulation and 

environmental response amplification poses an efficient yet flexible solution for pDCs to 

generate robust type I IFN responses. IFNα production by rogue cells that detect host-derived 

nucleic acids in sterile situations is limited without type I IFN amplification, but rapid and 

robust responses are guaranteed when pDCs are triggered in inflamed tissue with high pDC 

density or type I IFN signals from infected body cells. Furthermore, controlling type I IFN 

production in such a population-regulated stochastic manner allows the induction of an 

antiviral state in all cells of a given tissue but bypasses the necessity of all cells being type I IFN 

producers, reducing type I IFN levels and tissue damage. 

These insights have far-reaching implications: on an applied level, pDC-focused treatments, 

such as DC-based immunotherapy, need to reconsider vaccine parameters, such as number of 

injected cells, location and pre-treatment of injection side, and cell density during stimulation 

for better efficacy. On a more fundamental level, our insights imply that the functional 

behavior of pDCs is plastic and adaptable to local cues from the tissue microenvironment, 

similar to macrophages[52]. Therapy approaches that target pDCs inside the body should take 

into account that not all pDCs are the same and that pDCs might react differently to treatment 

depending on the tissue context of the disease. 

Here, we show that well-studied human primary immune cell responses can be based on 

stochastic processes at the single-cell level and emphasize the importance of single-cell 

techniques to deconstruct immunological responses at the single-cell level. 
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7. Supplementary Figures 

Supplementary Figure 1 – Axl expression by pDCs vanishes early after stimulation with CpG-C and 

AS DCs produce no IFNα. PDCs were coated with capture reagent, encapsulated in picoliter droplets, 

and stimulated individually with 50 µg/mL CpG-C. A. After staining for viability, surface marker 

expression and cytokine secretion, AS DCs were detected via flow cytometry. B. Cytokine expression 

in AS DCs and traditional pDCs was analyzed. 

Supplementary Figure 2 – Expression of cell surface markers by individually stimulated pDCs is 

depending on CpG-C concentration. PDCs were coated with capture reagent, encapsulated in picoliter 

droplets, and stimulated individually with CpG-C for 12h. After staining for viability, surface marker 

expression and cytokine secretion, CCR7-, CD40- and CD86-expressing cells were detected via flow 
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cytometry. Shown is the fraction of surface marker-expressing cells plotted against CpG-C 

concentration. Different concentrations were tested in different donors. Dots indicate mean, error bars 

indicate SEM. n>=3 

Supplementary Figure 3 – IFNα expression by pDCs stimulated with different CpG molecules. PDCs 

were coated with capture reagent, encapsulated in picoliter droplets, and stimulated individually with 

50 μg/mL CpG-A, -B or -C for 12h. After staining for viability and cytokine secretion, IFNαsecreting cells 

were detected via flow cytometry. Shown is the fraction of IFNα-secreting cells plotted against 

treatment condition. Bars indicate mean, error bars indicate SEM. n=2 

 

Supplementary Figure 4 – IFNα and TNFα expression by single or bulk activated pDCs from the same 

donor. PDCs were encapsulated in picoliter droplets and stimulated individually with 50 μg/mL CpG-C 

for 14h (black bars). Alternatively, pDCs were stimulated with CpG-C in microtiter plates at a density of 

25.000 cells/well. After incubation, cells were fixed, permeabilized, and stained for viability and 
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cytokine expression. IFNα- and TNFα-expressing cells were detected using flow cytometry. Shown is the 

fraction of cytokine-expressing pDCs after 6 hours (light grey bars) or 8 hours (dark grey bars) of 

incubation. Bars indicate mean, error bars indicate SEM. n=6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5 – A subset of cells analyzed by scRNA-seq expressed gene signatures from 

DC subsets other than pDCs. A. t-SNE map showing different DC clusters after initial quality control 

filtering, cell clustering using k-medoids, and raceID2 (n = 915, see Methods). B. Expression of different 

gene signatures by each analyzed cell. Gene signatures are derived from Villani et al.1 CD141: CLEC9A, 
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HLA-DPA1, CADM1, CAMK2D; CD1C_B: S100A9, S100A8, VCAN, LYZ, ANXA1; CD1C_A: CD1C, FCER1A, 

CLEC10A, ADAM8, CD1D; AS DC: AXL, SIGLEC6, PPP1R14A, CD22, DAB2. 

Supplementary Figure 6 – K-medoids clustering and raceID2 of unstimulated and early stimulated 

pDCs. A, B. Shown is the simulated within-cluster dispersion A. or its change  B. for a range of seed 

cluster numbers in k-medoids clustering. N(bootstrapping) = 50. C. The bars indicate the Jaccard’s 

similarity for each cluster identified by k-medoids clustering. D. Heat map of the 774 cells that passed 

quality control filters representing transcriptome similarities as measured by Euclidean distance. 

Kmedoids clustering characterized 4 clusters based on input from A) - C). E. t-SNE map of different 

clusters. F. Histogram showing the –log10 probability that transcript levels in a particular cell are 

explained by a background model G. accounting for the expected variability. The probability threshold 

for outlier identification (10-5 ) is included (black broken line). G) Background model for expected 

variability. Shown is the log2 variance plotted against the log2 mean. H. The number of the potential 

outlier cells plotted against the log10 probability threshold is indicated. 
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Supplementary Figure 7 – A subset of cells analyzed by scRNA-seq expressed gene signatures of the 

CD2hi pDC subset. t-SNE map showing different DC clusters after quality control filtering, cell clustering 

using k-medoids, and raceID2 (see Methods). Color scale indicates the expression values of several 

genes associated with the CD2hi pDC subset. 
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Supplementary Figure 8 – Single cell RNA-sequencing of pDCs from additional healthy donors. PDCs 

from two additional donors were isolated from PBMCs, collected using fluorescence activated 

cellsorting (FACS), and their transcriptomes were sequenced using the SORT-Seq protocol. Single cell 

transcripts were pooled with Figure 3, and all cells were analyzed together using the previously 

established filtering pipeline. In total, 1,190 cells expressing 14,979 genes were then subjected to 

kmedoids clustering and raceID2 analysis using the previously established clustering parameters. A) 

tSNE map with identified clusters. Different colors indicate clusters, different shapes indicate 

stimulation time. Cells in Cl7 show a differential gene expression profile that is similar to cells in Cl5 in 

Figure 3 (data not shown). B-D) Same t-SNE map as in A). Blue color indicates location of unstimulated 

pDCs from a particular donor. 

 

  



 Chapter 5 - Single cell analysis  of pDCs 

177 
 

 

Supplementary Figure 9 – Kinetics of IFNa and TNFa secretion by pDCs in microtiter plate cultures. A. 

PDCs were stimulated with CpG-C in microtiter plates at varying cell densities or varying CpG-C 

concentrations. After incubation, cells were fixed, permeabilized, and stained for viability and cytokine 

expression. B. IFNα- and TNFα-expressing cells were detected using flow cytometry. C. PDCs were 

stimulated at a density of 25.000 cells/well. Shown is the fraction of cytokine-expressing pDCs plotted 

against incubation time. n>=5. At 50 µg/mL CpG-C less cells produce IFNa. Previous studies showed that 

an initial lag-phase before the onset of IFNα secretion is crucial to prime pDCs via autocrine or paracrine 

mechanisms.2 The early onset of IFNα production by pDCs stimulated with 50 µg/mL CpG-C most-likely 

undercuts this threshold. In accordance with this, we observed robust IFNa responses when pre-treating 

pDCs for 2h with 500U/mL of IFNb (Supplementary Figure 10). D. Supernatant was analyzed using 

ELISA. Shown is the concentration of IFNα and TNFα plotted against the incubation time. n>=5. E. 

Cytokine concentration from D) was combined with the number of cytokine-expressing cells, as 

determined via flow cytometric analysis in duplicate cultures (C), to calculate the average secretion rate 
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of a single cell. Shown is the number of molecules, added to the supernatant every two hours by a single 

cell, plotted against the incubation time. n>=5 F) PDCs were stimulated at different cell density and 

cytokine-expressing cells were detected using flow cytometry. n[5 µg/mL] = 3, n[50 µg/mL] = 1). B - F) 

Dots indicate mean, error bars indicate SEM. 

 

 

 

Supplementary Figure 10 – Cytokine capture-reagents can be exchanged between two cells 

encapsulated in the same droplet but not between two cells encapsulated in different droplets. PDCs 

were coated with capture reagent or left untreated and mixed at a 1:1 ratio. Subsequently, cells were 

encapsulated in picoliter droplets with either 0.1 or 7.6 cells per drop on average, and stimulated 

individually with 50 µg/mL CpG-C. A. Next to viability and surface marker expression, pDCs were also 

stained for cytokine capture reagent-coating using an antibody against mouse IgG1. B. Shown is the 

distribution of the fluorescence intensity of the capture reagent at each time point. 



 Chapter 5 - Single cell analysis  of pDCs 

179 
 

 

Supplementary Figure 11 – Effect of priming with different cytokines on IFNα production by pDCs. A, 

B) PDCs were incubated with fresh medium, conditioned medium or different cytokines (0.01 µg/ml IL-

3, 60 μg/ml IL-4, 50 μg/ml IL-7, 20 μg/ml IL-15, 500 U/mL IFNb) for two hours or left untreated. In some 

cases, cells were pre-incubated with blocking antibodies against IFNAR2 and CM was supplemented 

with neutralizing serum against IFNa and IFNb (block). Subsequently, pDCs were stimulated with CpG-

C in microtiter plates for 12h at varying cell densities, and cytokine concentration in supernatants was 

measured using ELISA. Shown is the log cytokine concentration relative to the number of seeded cells 

plotted against cell density and priming condition. A: n=1, B: n=3 C) PDCs were incubated with fresh 

medium, conditioned medium or 500 U/mL recombinant IFNb for 2h or left untreated. Subsequently, 

pDCs were stimulated with CpG-C for 6h in microtiter plates at varying cell densities. After incubation, 

cells were fixed, permeabilized, and stained for viability and cytokine expression. IFNα- and TNFα-

expressing cells were detected using flow cytometry. Shown is the fraction of IFNα-expressing cells 

plotted against the number of seeded cells. Values were compared to non-primed pDCs using the Mann-

Whitney test. * p < 0.05, ** p=6 Dots indicate mean, error bars indicate SEM. 
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Supplementary Figure 12 – IRF7 expression dynamics in primed and stimulated pDCs. PDCs were 

incubated with fresh medium or 500 U/mL recombinant IFNb for 2h or left untreated. Subsequently, 

pDCs were stimulated with CpG-C in microtiter plates at a density of 25.000. After incubation, cells were 

fixed, permeabilized, and stained for viability, cytokine expression and IRF7 expression. A, B. IFNα-, 

TNFα-, and IRF7-expressing cells were detected using flow cytometry. C. The fraction of cytokine 

producing cells or the fluorescence intensity of IRF7 was plotted against the incubation time. D.  The 

25% pDCs that had the lowest or highest expression of IRF7 were further selected and cytokine 

expression in those cells was analyzed separately. The fraction of cytokine producing cells for each 

group was plotted against the incubation time. 
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Supplementary Figure 13 – Expression of interferon stimulated genes in individually activated, sorted 

pDCs. PDCs were incubated with 40% conditioned medium for 2h or left untreated. Subsequently, cells 

were coated with capture reagent, encapsulated in picoliter droplets, and stimulated individually with 

50 µg/mL CpG-C for 12h. Control cells were stimulated with 5 µg/mL CpG-C for 12h in a microtiter plate 

at a density of 25.000 cells (bulk) or left at 4°C (0h). A. After staining for viability and cytokine secretion, 

IFNα+ and IFNα- cells were isolated using fluorescence activated cell sorting. Sorted cells were lysed, 

RNA was isolated, and the expression of the interferon stimulated genes OAS2, RIG1, MDA-5, and IRF7 

as well as the house keeping gene GAPDH was determined via quantitative PCR. B. Shown are the 

expression levels relative to GAPDH plotted against treatment conditions. 
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Supplementary Figure 14 – Effect of blocking paracrine type I IFN signaling on IFNα production by 

bulk cultured pDCs. A. PDCs were incubated with fresh medium (- block) or pre-incubated with blocking 

antibodies against IFNAR2 and the medium was supplemented with neutralizing serum against IFNa 

and IFNb (+ block). Subsequently, pDCs were stimulated with CpG-C in microtiter plates for 6h or 8h at 

a density of 25.000 cells/well. After incubation, cells were fixed, permeabilized, and stained for viability 

and cytokine expression. IFNα-expressing cells were detected using flow cytometry. n=5 B. PDCs were 

coated with capture reagent, were pre-incubated with blocking antibodies against IFNAR2 and medium 

was supplemented with neutralizing serum against IFNa and IFNb (block) prior to activation with 5 

μg/mL CpG-C in bulk (25.000 cells/well) for 14h. IFNα-secreting cells were detected via flow cytometry. 

Shown is the fraction of IFNα-secreting cells plotted against treatment condition. n=5 A – B) Bars 

indicate mean, error bars indicate SEM. 
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Supplementary Figure 15 – Effect of Cytokine Catch Reagents on cellular function and viability of bulk 

cultured pDCs. PDCs were coated with capture reagent or left untreated and subsequently activated 

with 5 μg/mL CpG-C in microtiter plates for 6h, 8h or 12h at a density of 25.000 cells/well. A. IFNα- and 

TNFα-secreting cells were detected via intracellular cytokine staining and flow cytometry after 8 hours 

and the result of 1 representative donor is shown. B, C. Shown is the fraction of IFNα- or TNFα-secreting 

cells plotted against treatment condition and stimulation for either 6 hours or 8 hours. Circles indicate 

mean, error bars indicate SEM, n=5. D. The expression of CCR7, CD40 and CD86 by differently treated 

pDCs was assessed after 12 hours of activation using flow cytometry. One representative experiment is 

shown. E. Shown is the viability and the expression of CCR7, CD40 and CD86 plotted against treatment 

condition. Circles indicate mean, error bars indicate SD, n=3.  
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CHAPTER 6 

POTENT CROSSTALK BETWEEN A SINGLE 

PLASMACYTOID DENDRITIC CELL AND A 

NATURAL KILLER CELL THROUGH IFN-α 

DEPENDENT MANNER 

 

This chapter is under preparation as: 

Potent crosstalk between a single Plasmacytoid Dendritic Cell and a Natural 

Killer Cell through IFNα dependent manner 

Nikita Subedi, Laura Van Eyndhoven, Jurjen Tel 
  



 Chapter 6 - Potent crosstalk between a single pDC and a NK cell 

188 
 

Abstract 

The interaction between NK cells and dendritic cells (DC) has been suggested to play a 

crucial role in their functional regulation, but most studies are limited to conventional DCs. 

Plasmacytoid dendritic cells (pDCs) represent a specialized cell population producing type I 

interferon (IFN-I) that acts as a natural killer (NK) cell modulator. Limited studies have shown 

a bidirectional talk between these immune cells, while these studies could not encompass 

the wide range of functional heterogeneity displayed by each of these cell types. Here, we 

report a microfluidic droplets-based single-cell study to investigate the consequences of the 

interaction upon functions of these cells. We showed CpG-C activated pDCs could induce 

IFN-γ secretion in NK cells and showed the implications of IFN-α on regulating the function of 

NK cells. To increase our understanding of cellular communication between NK cells and 

pDCs can provide crucial information for clinical use. 

Graphical Abstract 
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1. Introduction 

The innate immune system, with the rapid ability to mount an immune response against 

pathogenic threats, is crucial to modulate the response of the adaptive immune system[1]. 

Natural killer (NK) cells and dendritic cells (DCs) represent two distinct innate immune 

components that also act as liaisons between innate and adaptive responses. Several studies 

showed the bi-directional talk between these cell types to regulate each other's functions[2–

4]. Dendritic cells, specifically Plasmacytoid DCs (pDCs) upon viral recognition, can secrete 

large amounts of type 1 interferon (IFN-I), which can function as a NK cell activity 

modulator[5]. In term, NK cells regulate the maturation of pDCs and have also been shown to 

assist in pDCs mediated T cell priming in vivo[6,7]. 

The NK/pDCs crosstalk plays an important role in tumor cell lysis and antiviral immune 

responses, especially during Cytomegalovirus infection[8–10]. The ability of TLR-9 stimulated 

pDCs to activate NK cells, enhancing the CD56bright phenotypes, has been shown by Romagnani 

and colleagues[11]. Contact-dependent activation of NK cells via OX40-OX40L interactions has 

been found to promote induction of IFN-γ secretion by NK cells[6]. An important role of pDCs 

on enhancing the functional capability of NK cells to induce anti-tumor cytotoxicity against 

hematological malignancies have been shown is several studies[12,13].  Thus, the NK/pDCs 

crosstalk is pivotal in bridging the innate immune response with adaptive immune responses. 

However, the mechanisms involved in the crosstalk remains largely uncharacterized. Although 

some studies have attempted to study these interactions, they lack to appreciate the 

heterogeneity existing within both cell types. To improve the fundamental understanding of 

NK/pDCs interaction, a zoomed-in study at a single-cell level is required.  

We designed a microfluidic droplets-based study, which on single-cell level allowed 

investigating the crosstalk between the cells. By utilizing microscopy and FACS-based analysis 

tools, we studied the percentage of NK cells and pDCs secreting IFN-γ and IFN-α as a measure 

of their activation. Our preliminary data suggest a potent crosstalk between the cell types 

however requires additional experiments to strengthen the findings. 
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2. Materials and methods 

2.1 Cell isolation and culture  

K562 cells were cultured in 1:1 (v/v) mixture of RPMI 1640 (Gibco, Catalog no. 22400089) 

and IMDM (Gibco, Catalog no.12440053) supplemented with 10% fetal bovine serum (FBS; 

Gibco) and 1% penicillin/streptomycin (PS; Gibco). Primary human NK cells and pDCs were 

obtained from buffy coats of healthy donors (Sanquin) after written informed consent 

according to the Declaration of Helsinki and all experimental protocols concur to 

institutional guidelines. In short, peripheral blood mononuclear cells (PBMCs) were isolated 

from donor blood via density gradient centrifugation using Lymphoprep Density Gradient 

Medium (Stem cell). The NK cells were subsequently isolated using magnet-activated cell 

sorting (MACS) by negative selection using the NK cell isolation kit (Miltenyi Biotech,  

Catalog no. 130-092-657) following the manufacturer’s instructions. PDCs were isolated by 

positive selection using the CD304 Microbeat Kit (Miltenyi Biotec, 130-090-532). Cells were 

counted and purity was routinely assessed using flow cytometry by cell surface marker 

staining for 10 minutes at 4°C, using PE-CY7-labeled anti-CD56 (Biolegend, Catalog no. 

362509), PE-labeled anti-CD16 (Biolegend, Catalog no. 302007), and PerCP-labeled anti CD3 

(Biolegend, Catalog no. 300328) antibodies in 50 μL FACS buffer (2% FBS in PBS). The NK 

cells were identified as CD16+CD56+CD3−, and purity was on average 91%. Subsequently, 

isolated NK cells were encapsulated into droplets with K562 pair in presence of 1400 ng/mL 

IL-2, as stimulant (Peprotech, Catalog no. 200-02). For pDCs FITC-labeled anti-CD123 and 

APC-labeled anti-CD303 were used for purity. The pDCs were identified as CD123+CD303+ 

with an average purity of 92%.  

 

2.2 Microfluidic chip for droplet production 

The three-inlet and four-inlet microfluidic devices were developed following the protocols 

as described in Sinha et. al[14]. The microfluidic device was molded using an SU-8 photo 

resist structure on a silicon wafer and a commercially available polydimethylsiloxane 

silicone elastomer (Sylgard 184, Dow Corning), mixed with curing agent at the ratio 10:1 

(w/w) and allowed to cure for 3 hours at 60oC. The surface of the Sylgard 184 was activated 

by exposure to plasma and sealed with a plasma-treated glass cover slide to yield closed 

micro channels. Channels were subsequently treated with a 5% (v/v) silane (1H,1H,2H,2H-
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Perfluorooctyltriethoxysilane; Fluorochem, Catalog no.  S13150) solution in fluorinated oil 

(Novec HFE7500, 3M, Catalog no.  51243) and thermally bonded for 12 hours at 60 oC. The 

dimensions of the microfluidic channels are 40 µm × 30 µm at the first inlet, 60 µm × 30 µm 

at the remaining three inlet and the production nozzle, and 100 µm × 30 µm at the 

collection channel. 

 

2.3 Assembly of Droplet observation chamber   

Glass microscopy slides (76 × 26 × 1 mm; Corning) were used as top and bottom covers (76 

× 26 × 1 mm). Two access holes of 1.5 mm diameter were drilled in the top glass. Both slides 

were thoroughly cleaned using soap, water, and ethanol, and were exposed to air plasma 

(60 W) for 5 minutes. A cutout sheet of 60 μm thick double-sided tape (ORAFOL) was 

carefully placed above the bottom glass slide. Afterwards, the glass slides were stacked on 

top of each other, and the assembly was pressed using Atlas Manual 15T Hydraulic Press 

(Specac) for 5 minutes at 155°C at 400 kg per m2 pressure load. Next, two nano ports (Idex) 

were attached to the holes using UV curable glue (Loctite 3221 Henkel) which was cured 

under UV light for 5 min. Subsequently, the surface of the 2D chamber was treated with 5% 

(v/v) silane solution. Lastly, the chamber was dried, filled with fluorinated oil, and sealed 

until use. The chamber was reused multiple times and cleaned after each experiment by 

flushing fluorinated oil to remove droplets and was stored filled until the next use.  

 

2.4 Cell loading in microfluidic chip 

Droplets were produced with a three-inlet microfluidic device. The protocol for loading cells 

in the microfluidic chips using pipette tips is described in Sinha et al. and Subedi et al[14,15]. 

The droplets of ~102 µm diameter were generated using 3 inlet droplet devices at flow ratio 

of 1:2 ( 20 µL/min for oil and 5 µL/min for each sample). Droplet production using 4-inlet 

droplet devices was performed at the flow ratio of 1:2 (20 µL/min for oil and 0.33 µL/min  

for each sample. The droplets were produced for around 5-10 minutes, thereby generating 

~700,000 droplets in total. For the stability of droplets, 2.5% (v/v) Pico-Surf® surfactant 

(Sphere Fluidics, Catalog no. C024) was used in fluorinated oil.  

 

2.5 Bulk Interaction Assay 

Peripheral blood pDCs were primed with IFN-β (1000IU/ml; Peprotech) for 2 hours. NK cells 

and pDCs were incubated in 100 µL per 1 million cells PBA containing the IFN-γ Catch 
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Reagent (Miltenyi Biotec, 130-092-605) and IFNα  Catch Reagent (Miltenyi Biotec, 130-092-

605) respectively at 4 oC for 20 minutes. Next, cells were washed and resuspended in X-vivo 

culture medium (Lonza) + RPMI culture medium (Gibco) (at 1:1 ratio) supplemented with 

2% HS, 1% PS, at 25,000 cells per 100 µL in U-bottom microwell plates together with CpG C 

(TLR9 Ligand; ODN M362; Enzo life sciences ) at 1:1 NK:pDC ratio. The cells were incubated 

at 5% CO2 and 37 oC temperature for 20 hours. 

 

2.6 Single-NK/pDC Interaction Assay 

Peripheral blood pDCs were primed with IFN-β (1000IU/ml; Peprotech) for 2 hours. NK cells 

and pDCs were incubated in 100 µL per 1 million cells PBA containing the IFN-γ Catch 

Reagent (Miltenyi Biotec, 130-092-605) and IFN-α Catch Reagent (Miltenyi Biotec, 130-092-

605) respectively at 4 oC for 20 minutes. The cells were then washed and resuspended in X-

vivo culture medium+ RPMI culture medium (1:1) supplemented with 2% HS and 1%PS, at 

2 million cells/mL for single-cell encapsulation. Next the NK cells (5 million cells/mL) were 

encapsulated into 1.2 nL (~130 µm) droplets together with primed or unprimed pDCs (15 

million cells/mL) loaded from another inlet. TLR9 ligand CpG C (150 µg/ml) was mixed with 

NK cells. Droplet production and encapsulation rates were carefully monitored using a 

microscope (Nikon) at 10x magnification and a high-speed camera. The droplet emulsion 

was collected and covered with culture medium to protect droplets from evaporation. The 

encapsulated cells were incubated in Eppendorf tubes with a few punched holes to allow 

gas exchange, at 5% CO2 and 37 oC temperature. After 20 hours of incubation, the droplets 

were de-emulsified by adding 100 µL 20 v/v% 1H,1H,2H,2H-Perfluoro-1-octanol (Sigma 

Aldrich, 370533) in HFE-7500 for cell retrieval and the cells were then stained for FACS 

analysis. 

 

2.7 FACS-Antibody Staining 

Cells were washed once with PBS and dead cells were stained with Zombie NIR fixable 

viability dye (Biolegend, 423111), 1:10.000 in PBS, 50 µL) at 4oC for 20 minutes. 

Subsequently, cells were washed once with PBS and incubated with anti-human antibodies 

against IFNγ (FITC, Miltenyi), IFNα (PE, Miltenyi) and CD303 (APC, Biolegend) at 4 oC for  30 

minutes. Next the cells were washed twice with PBS buffer with 0.5% BSA and analyzed via 

BD FACS AriaII. 

 



 Chapter 6 - Potent crosstalk between a single pDC and a NK cell 

193 
 

2.8 Bulk cytotoxicity assay 

The K562 cells were stained with CMAC, Cell tracker Blue (Invitrogen) for 30 minutes. NK 

cells (5×105 cells/mL), pDCs (5×105 cells/mL)and K562 (5×105 cells/mL) cells were loaded 

into the microwells at different E:T ratio (0:1:1; 1:0:1; 1:1:1; 2:2:1;1:1:2)  to make total of 

0.6×105  cells/100 µL  and incubated for 6 hours at 37 at 5% CO2 and 37 °C temperature. 

After 6 hours, 7ADD  (1 µL in 105 cells, Stem cell) was added to the culture as viability dye 

and the cells were analysed with by flow cytometry on a BD FACS Canto.  

 

2.9 Single cytotoxicity assay 

The NK cells, pDCs and K562 cells were stained with Lysotracker deep red (Invitrogen), 

Calcein red (ATT Bioquest) and CMAC, Cell tracker Blue (Invirtogen) for 30 minutes. The 

labelled cells were loaded into different inlets of a 4-inlet device at the concentration of 20 

million cells/mL for all the cell types. Thus, generated droplets were collected in an 

observation chamber and monitored for 16 hours. 

 

2.10 Nanoparticle functionalization 

50 µg of Paramagnetic nanoparticles (Bio-Adembeads Streptavidin Plus 300nm, Ademtech) 

were washed with 50 µg PBS (Gibco) using a magnet. The supernatant was removed, and 

the nanoparticles were resuspended in 990 µL PBS with biotinylated anti-IFN-γ (Biolegend) 

antibodies and incubated for 30 min at room temperature while mixing. 10 µL Biotin was 

added with a final concentration of 1mM in the solution and incubated for 10 min at room 

temperature. The beads were washed again with PBS using magnets and resuspended in 

5% Pluronic F-68 (Gibco) PBS solution and incubated for 30 min at room temperature. The 

beads were washed and resuspended in assay buffer containing RPMI 1640 (Gibco, life 

technologies), 5% Human Serum (HS) (Sanquin), and 25 mM HEPES (Gibco) and incubated 

for 10 min at room temperature. The nanoparticles were washed again and finally 

resuspended in the 100 µL of assay buffer containing fluorescently labeled AF568-detection 

antibodies for IFNγ (Biolegend).  

When performing time-lapse experiments with cells, the final nanoparticle suspension 

contained 700 ng/ml IL-2 stimuli (Peprotech) and 10 μM Sytox Green (Invitrogen) 

additionally. For experiments concerning the calibration curve and optimization steps, IFN-

γ (Peprotech) cytokine samples ranging from 0.001 - 100 nM were prepared in assay buffer. 

All calculations were made considering the final concentration inside the droplets.  
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2.11 Image acquisition and analysis 

Fluorescence imaging was performed using a Nikon Eclipse Ti2 microscope, using a 10X 

objective and mCherry, DAPI, and FITC/YFP filters every hour. The images were viewed 

using NIS Element and Image J. Automated Image analysis was performed using custom-

made in-build MATLAB script (Mathworks), DMALAB (available on request). The script 

generated droplet mask that was overlaid onto the fluorescence images, and each droplet 

was analyzed separately. The output received are in terms of droplet index, cell count, 

fluorescence intensity and dead cell count. Detailed description of image analysis script is 

provided in Subedi et al.[15]. 

 

2.12 Statistics and software 

The Graphs were generated using GraphPad Prism 9.0.0.  The results are expressed as 

mean ± SEM. Significant differences between two groups were analyzed by two-tailed 

unpaired Student’s t-test. P values < 0.05 were considered statistically significant.  

3. Results 

3.1 TLR-9 Activated pDCs induced IFN-γ secretion in NK cell in population-based assay 

The bi-directional interaction between pDC and NK cell plays an important role in host 

defense[2,16]. Plasmacytoid DC promotes NK cell-mediated cytotoxicity mostly through 

secretion of IFN-α, whilst juxtracrine interaction via surface receptors such as OX40-OX40L 

enhances the IFN-γ secretion. Activated NK cells enhance the release of IFN-α by pDCs via 

LFA-1 mediated interaction, thus promoting pDC maturation[17] (Figure 1A).  
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Figure 1. NK/pDCs crosstalk: A. Schematics of bi-directional interaction between pDC and NK cell. 

Plasmacytoid DC promotes NK cell-mediated cytotoxicity mostly through secretion of IFN-α, whilst 

juxtracrine interaction via surface receptors such as OX40-OX40L enhances the IFN-γ secretion. 

Activated NK cells enhance the release of IFN-α by pDCs via LFA-1 mediated interaction, thus 

promoting pDC maturation. B. The graph depicting IFN-γ secretion by NK cells when stimulated at 

different conditions (no stimulus, pDCs, IL-2 and IFN-α) in population level. Results are shown as the 

mean ± SEM of 3 independent experiments with different donors. 

 

To optimize the experimental approach for single cell pDCs/NK cell interaction, NK cells 

were co-cultured with pre-activated pDCs in the presence of CpG-C (TLR9 agonist) 

overnight. Four hours of incubation was not enough to induce IFN-γ secretion, while 

overnight activation led to around 60% NK cells positive for IFN-γ (Figure 1B). Even though 

the percent of IFN-γ positive NK cells was lower than what had been observed for IL-2 

activated NK cells, a similar percentage was observed when they were activated with pDCs 

conditioned media or IFN-α. Taken together, we showed TLR-9 activated pDCs could induce 

IFN-γ secretion in NK cells. 

 

3.2 pDCs induces IFNγ secretion in NK cells via IFNα dependent manner  

Assessment of pDC/NK cell interaction in population-based assays can be affected by 

paracrine and juxtacrine interactions, thus hiding the actual mechanism involved. To 

understand the intrinsic behavior of the interaction, we used droplet-based microfluidics 

to facilitate the crosstalk between cells excluding the influence of the microenvironment. 

NK cells and pDCs were labelled with cytokine catch reagents for IFN-γ and IFN-α to allow 

for capturing and monitoring cytokine secretion by a single cell.  We used pipette tips for 

loading cells in microfluidic chips to increase the probability of cellular encapsulation, and 

to achieve the optimal cell pairing at a ratio of 1:1 in the oil-water droplets (~1.2nL)[14]. 

After overnight activation, the cells were retrieved from the droplets by breaking the 

emulsion with PFO and prepared for downstream FACS analysis (Figure 2A). Like our 

previous studies with other cell types, the viability of cells after culturing in droplets was 

warranted (Figure 2B)[15,18]. 
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 Figure 2. NK/pDCs interaction at single cell level: A. Experimental schematics of interaction between 

pDC and NK cell in 1.2 nL droplets. NK cell and pDCs (IFN-β primed or not primed) were labelled with 

INF-γ and IFN-α catch reagent respectively and loaded into the 3-inlet droplet chip with the height 30 

µm from different inlets. After 20 hours of incubation, droplets were demulsified using PFO solution 

with HFE oil and the cells were stained for IFN-γ and IFN-α for FACs. B. The viability of cells after bulk 

and droplet stimulation is shown in the graph. C. Percentage of positive pDCs for IFN-α at different 

conditions (droplets-based experiments with primed and non primed pDCs in presence or absence of 

CpG-C. D. Percentage of positive NK cells for IFN-γ at different conditions (droplets-based experiments 

with primed and non primed pDCs in presence or absence of CpG-C. Results are shown as the mean ± 

SEM of 3 independent experiments with different donors. 

 

During encapsulation, CpG-C was mixed with NK cells and was loaded from another inlet to 

ensure in-droplet activation of pDCs. Priming with IFN-β 2 hours prior to encapsulation 

enhanced the percentage of pDCs secreting IFNα (Figure 2C). Similar effect of priming was 

observed with the percentage of IFNγ positive NK cells while the percentage for IFNγ 

positive NK cells with unprimed or unstimulated activated pDCs were observed to be 

minimal (Figure 2D). In summary, we showed that pDC mediated activation of NK cells at 

single-cell level is IFN-α dependent. 



 Chapter 6 - Potent crosstalk between a single pDC and a NK cell 

197 
 

3.3 Co activation of NK cells with pDCs augments IFNγ secretion in NK cells  

Previously, we presented an integrated platform for studying single cell secretion upon 

interaction with other cells. In this study, we used a 4-inlet device with 30 µm height to 

facilitate efficient cell encapsulation and paring without overcrowding the inlets (Figure 

3A). Two cell types and nanoparticles were loaded from three different inlets using tip 

loading method as described in Sinha et al[14]. At optimal loading concentration of 20 

million cells/ml for both the cells, we achieved 7% cell pairing, of which 80% contained 1:1 

pairing ratio (Figure 3B,C). Around 23% NK cell, that have been paired with primed pDCs 

showed positive IFN-γ secretion while only 6% unpaired NK cells was observed to be 

positive (Figure 3D). 

In this way, our results showed that the activated single pDCs enhance IFN-γ secretion in 

NK cells. 
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Figure 3. In-droplet IFNγ secretion assay upon NK/pDCs interaction : A. A 4-inlet droplet chip with 

30 µm height was used to generate droplets containing functionalized nanoparticles for IFN gamma 

catch, NK-pDC pairs , CpGc and detection dye encapsulated within the 1.2 nL droplets. NK cells and 

pDCs were loaded from two different inlet while nanoparticle, CpGc and detection antibody was 

added from the innermost inlet. The outermost inlet was used to flow HFE oil with 2.5% Picosurf. 

Thus, generated droplets were immobilized in the observation chambers that was placed within the 

magnetic field . The droplets were monitored for 16 hours’ time frame under fluorescent microscope 

B. The graph showing cell pairing efficiency within droplets C. The graph showing the percentage of 

droplets with different E:T ratio in the droplets D. The graph showing percentage of droplets with 

NK cells positive for IFNγ in presence or absence of pDCs. Results are shown as the mean ± SEM of 

2 independent experiments with different donors. 

 

3.4 Monitoring cytotoxic function of NK cells upon interaction with pDCs 

It has previously been shown that NK cells cocultured with activated pDCs showed 

enhanced ability to kill tumor cells[7,11]. To investigate similar behavior at single cell level, 

we utilized the four-inlet droplet to encapsulate the immune cell together with K562 at the 

optimal concentration of 20 million cells/ml. All the cells were loaded into the chip through 

different inlets  and the flow rate of oil and cells were maintained at the ratio 2:1 

respectively (Figure 4A). Approximately 8% of the droplets with cells contained all three 

cells at 1:1:1 ratio (Figure 4B,C).  
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Figure 4. In-droplet cytotoxicity assay upon NK/pDCs interaction: A.  A 4-inlet droplet chip with 30 

µm height was used to pair NK cell together with pDC and K562 . NK cells and pDCs  and K562 were 

stained with lysotracker deep red, calcein red and cell tracker blue and were loaded from three 

different inlet at the concentration of 20 million cell/mL. The viability dye mixture (sytox green and 

cell event capsase 3/7) was added to the cell culture medium prior to encapsulation. The outermost 

inlet was used to flow HFE oil with 2.5% Picosurf. The droplets were monitored for 16 hours’ time 

frame under fluorescent microscope. B. The graph showing cell pairing efficiency within droplets. C. 

The microscopic overview of NK cells (blue), pDCs (red, small) and K562 (red, big) pairing at different 

ratios in the droplets. D. The graph showing percentage of droplets with percentage of target cell 

lysis in population-based cytotoxicity assay. E. Microscopic overview of positive and negative 

cytotoxic event within droplets with pDCs (red), NK cells (purple) and K562 cells (blue). F.  Graph 

showing the percentage of cell lysis in droplets at different condition. G. Graph showing the 

contribution of different conditions (NK:K562, pDC:NK:K562 and pDC:K562) in total observed 

cytotoxic events. The experiment has been performed once. 

 

The pDCs were primed for 2 hours before the cytotoxicity assay and later were stimulated 

with CpG C. At population level, we did not observe any variation in the cytotoxicity with 

or without pDCs (Figure 4D). At a single cell level, around 20% of droplets with all three 

cells showed positive lysis when monitored for 10 hours. We observed total 30% positive 

cytotoxic events in droplets of which 24% was meditated by only NK cells while 3% was 

observed when NK cells were paired together with pDCs. Plamacytoid DCs on their own also 

showed around 3% target cell lysis as had been observed in the bulk-based assay. 

Taken together, we did not observe enhanced cytotoxic ability of NK cells upon interaction 

with activated pDCs in both bulk and single cell level. 

4. Discussion and Conclusion 

Both DCs and NK cells are effector innate immune cells that can trigger and orient the 

immune responses against pathogens and tumors[19,20]. Even though these cells possess 

an extraordinary ability to induce a response on their own, several studies showed their 

regulatory effect on each other’s activity[7,21]. In this study, we explored the interplay 

between pDCs and NK cells at a single cell level to decipher the effect of underlying cellular 
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heterogeneity. Based on cytokine based functional output, we showed that activated pDCs 

could induce NK cell activation also at the single-cell level. 

Similar to our earlier findings, we showed that IFN-α secretion by pDCs is highly regulated 

by its microenvironment. In the absence of paracrine signaling, only a few percent of cells 

showed IFN-α secretion,  whereas upon priming with IFN-β, the IFN-α positive pDCs also 

increased [18,22]. By co-encapsulating NK cells with primed or unprimed pDCs we showed 

the association of IFN-α secretion in pDCs and IFN-γ secretion in NK cells since primed pDCs 

could spike the percentage of IFN-γ positive NK cell. Blocking of the IFN-α receptor in NK 

cells could provide a definitive information regarding the mechanism involved for future 

research. 

Interaction of activated pDCs with NK cells have shown to boost the cytotoxic ability of NK 

cells in mice cells [6]. In contrast, in our preliminary experiments we were unable to find 

any augmented cytolytic ability with human peripheral blood NK cells. Both in our 

population-based assay as well as in our droplet based single cell assay, we did not observe 

differences in cytotoxic ability of NK cells upon interacting with pDCs. By increasing the 

interaction time between pDCs and NK cells and studying different E:T ratios for incubation, 

we could test the hypothesis more accurately in the future. Furthermore, by optimizing the 

setup, the regulatory effect of individually activated NK cells onto single pDCs could also be 

explored which had only been studied in population level [7,23]. 

The implication of NK/pDCs bidirectional crosstalk has been found in viral infections  and 

autoimmune conditions [5,24]. Understanding the fundamentals of the interaction can 

therefore provide crucial information for clinical as well as research purposes.  
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As Plato had rightly said, “Necessity is the mother of invention”. The necessity to understand 

variation in cellular responses and minute functional nuances missed by population-based 

assays led to advancement in single cell technologies. Innovation in microsystems and 

microfluidics facilitated the integration of numerous complex functions on-chip that were 

earlier not feasible. At the same time, the ability of these platforms to dynamically acquire 

information from immune cells and monitor immune cell activities in real time made them 

popular among researchers[1]. These high-throughput analysis platforms allow both real-time 

and end-point measurements and can facilitate one to one cell pairing for decoding 

communication between immune cells, e.g., for monitoring cytotoxic cellular function[2,3]. 

Droplet-based microfluidics facilitates compartmentalization of immune cells in a closed 

environment to understand cellular behavior with high sensitivity and high throughput[4]. 

Cellular heterogeneity is speculated to be a fundamental property of the immune system 

enabling it to recognize myriads of antigens. This is achieved in various ways. Immune cells 

leverage wide diversity either by rearranging their receptors or maintain it during their 

development and maturation. Understanding cellular heterogeneity in immune cell 

populations aid in development of superior cell-based immunotherapies to treat infection, 

inflammation, and cancer[5].   

 

The objective of this thesis was to successfully integrate different adaptations of droplet-

based microfluidic technology to investigate the underlying heterogeneity in human 

plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells, ultimately aimed at improving 

cell-based immunotherapeutic strategies. In the following sections, I provide an overview of 

the technological innovations presented in this thesis and the results that enhance the 

understanding of functional cellular heterogeneity.  

1. Technological developments, challenges, and limitations: 

One of the major challenges of adopting micro-systems/microfluidics technology with 

interaction-based immunoassays is efficient cell pairing to facilitate cellular communication. 

The hydrodynamic trap-based system could meet this challenge by delivering the highest cell 

pairing efficiency; however, they were limited by the possibility of paracrine signaling between 

neighboring cells[2,6]. Cell pairing in isolated setups was made possible by implementing 

micro and nano wells-based platforms, but these were not very efficient in terms of cell 
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loading and cellular distribution into the wells[3,7,8]. Alternatively, droplet-based 

microfluidics provided the ability to tune the cellular encapsulation and the adaptation of tip 

loading technique (Chapter 2). Thereby it allowed encapsulating a desired number of cells 

enabling different effector:target cell ratios in a droplet. Droplets with only either effector or 

target cells served as an internal negative control for viability, while droplets with multiple 

effector cells were used to examine the effect of intercellular interactions and paracrine 

stimulation. The tip loading technique provided an elegant solution to cellular sedimentation 

and cell clumping problems; however, a limitation was observed while encapsulating cells 

from a larger suspension. An example could be, encapsulating pDCs directly from PBMCs since 

it may take a relatively long time, ultimately affecting the functional state of the cells. 

Engineering a parallel droplet device that allows cellular encapsulation from multiple inlets 

could solve this problem. Despite droplets-based microfluidic platforms being well known for 

their high throughput ability, the studies involving real-time immunoassays could not fully 

exploit this characteristic. In the lack of proper droplets docking system, only a few hundred 

droplets were being monitored while over 100,000 droplets with cells could be produced 

within a few minutes[9,10]. Application of a glass immobilization chamber was therefore 

useful in enhancing the number of droplets visualized under the microscope and allowing 

incorporation of different in-droplet immunoassays (cytotoxicity and ELISA) (Chapter 3 and 

4). Since droplets constitute a lower volume than micro/nano wells, they could detect a small 

number of proteins secreted by a single cell. Currently, the platform detects up to 1nM of IFNγ 

secreted by a single NK cell upon stimulation. Even though the sensitivity is higher compared 

to other existing studies[11,12], it could further be enhanced by optimizing the microscopy 

settings and the thickness of the observation chamber, allowing uniform focus all over the 

chamber[4]. Controlled labeling of catch (with biotin) and detection (with fluorescent dye) 

antibodies, respectively, would also help enhance the sensitivity of the assay[4].   

 

In this way, the droplet-based real-time platforms have enhanced the functionality of the 

single-cell immunoassays by incorporating the temporal aspect in the overall assay. However, 

it lacks in terms of further downstream analysis. Application of sortable hydrogel-based 

droplets together with real-time immunoassays could, therefore, provide an exciting 

opportunity to identify and characterize the cells based on their functional responses. 
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2. Harnessing the power of single immune cells: Paving the way to superior 

immunotherapy  

Decades of technological advancements have facilitated studying immune cells in a 

segregated environment with minimal noise. However, it still seems that the major 

achievement of single cell immunology has still not surpassed the level of technological 

developments and subsets identification, while bigger promises were made. Extending the 

field of single cell immunology requires a multi-parametric approach by integrating 

proteomics, secretion dynamics, nucleic acid analysis, cell-cell interactions, and functional 

attributes (such as migration, lysis, apoptosis) at a single cell level. Only then it will be possible 

to decipher the relevance of heterogeneity within the immune cell population. Combining the 

“omics-based” approach with single cell stimulation and interaction would therefore be an 

important “next step” for the research presented in this thesis. 

 

Since the immune response is a cumulative output of well-balanced coordination between 

multitudes of cells, understanding the functional heterogeneity also requires an in-depth 

analysis of this intracellular interaction[13]. While there are multiple instances where immune 

cells talk with each other, only a few single cell-based studies are available that have voyaged 

into this futuristic investigation[6]. One limitation is the inability to monitor the functional 

output and relate them to specific cell types. Although as a preliminary study, I have initiated 

an approach towards implementation of single cell tools into fundamental understanding of 

cellular coordination in the immune system. Cellular crosstalk, such as NK/macrophages 

interaction during inflammation and tissue regeneration; NK/DCs crosstalk while viral 

infections; NK/T cells or DC/T cells interaction against cancer could provide an excellent way 

to understand immune coordination while also generating interesting therapeutic strategies 

that have potential to work in vivo[14–16]. By pairing NK cells with pDCs, I investigated their 

cross talk, showing that interaction with activated pDCs is enough to induce IFNγ secretion in 

NK cells (Chapter 6). The preliminary findings presented in this chapter aligned with the earlier 

findings regarding cross talk mediated secretion by NK cells, however, was not able to provide 

many insights regarding the cytotoxic abilities of NK cells. It was only possible to assess NK 

cells, while more optimization is required for measuring the functional parameters (IFN-α; 

cytotoxicity; T cells priming markers) for studying how this crosstalk influences activation of 
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pDCs. Since the cross talk has also been observed to play an important role in enhancing the 

priming of T cells via pDCs, it would also be an interesting aspect to investigate. The results 

obtained from these studies can develop a combinatorial approach involving these cells to 

enhance the cytotoxic ability of immune cells. For example, TLR 9 activated pDCs could 

enhance tumor infiltration and activation of NK cells, which could also be a strategy to 

investigate in the future.  

 

The insights gained from studying single immune cells have a broad implication, especially in 

immunotherapy. NK cells provide a promising alternative to T cell-based therapy because of 

their fierce ability to lyse tumor cells. Different strategies have been developed that aimed at 

increasing the lytic ability of NK cells against tumor cells, such as the use of cytokines; adoptive 

transfer of allogeneic NK cells; monoclonal antibodies targeted against cancer cells to exploit 

the antibody-dependent cytotoxic ability of NK cells, and antibodies against inhibitory 

receptors of NK cells[17]. Adaptation of these different strategies has improved disease-free 

survival and lowered cancer relapse rates, especially for leukemic patients[18]. Several 

companies like Kiadis Pharmaceuticals and Gycostems in the Netherlands, XNK Therapeutics 

in Sweden, Cellectis in France, US-based Cytovia, etc. have realized this potential and are 

investing heavily towards the development. One of the main bottlenecks in NK cell therapies 

remains the varied interactions between the NK cell and the target cancer cell since it 

determines the effectiveness of the treatment. It also provides information on potential 

undesired effects, such as life-threatening levels of inflammation. The cytotoxicity and 

secretion platforms presented in this thesis could provide an innovative approach for 

understanding the interaction and treatment prognosis for NK cell-based therapy.  

 

The vast heterogeneity of immune cells at a steady state in individuals has become clear using 

single cell technologies that can be used for enhancing immunotherapy[19–21]. The allogenic 

infusion of NK cells derived from different sources is a popular mode of NK cell-based therapy 

with an optimistic outlook. However, the clinical outcomes showed that this approach could 

not deliver in coherence with what was promised. By monitoring thousands of droplets with 

NK cell paired together with different cancer cells in real time, I showed that NK cell population 

is composed of cells with different cytotoxic strength and efficacy (Chapter 4). Along with their 

binary killing behavior (either kill or not kill), I also showed that the NK cell cytotoxicity 

dynamics also varies within different target cells. Therefore, the biggest shortcoming of this 
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approach is the use of the whole NK cell component without understanding the distribution 

of different functional subsets. This approach could benefit by using functionally superior cells, 

for example, serial killers. By increasing the droplet size and the cell concentration, I increased 

the number of target cells inside the droplets thus allowing identification of the serial killers 

NK cells (Chapter 4). Characterizing the phenotypical markers and surface regulation of these 

serial killers could further guide in engineering "serial-killer CAR NK cells" thus enhancing the 

potential of NK-based products. I also showed that NK cell in a confined space (as inside the 

droplets), operate independently to mediate the lysis of a single target cell and do not show 

cumulative cytolytic effect by cooperating with neighboring NK cell as in bulk-based co-

culture. Using the information related to how NK cells are functionally shaped by their 

microenvironment in both healthy and diseased states will allow harnessing the full potential 

of tissue-resident NK cells and peripheral blood NK cells.  

 

The temporal function of the assay suggested that NK cells can kill their target cell in fast or 

slow manner. However, this study could not identify the exact mechanism (Perforin-granzyme 

B based or TRAIL based) involved that could be associated with variation in cytotoxic dynamics.  

An easiest approach for studying NK cell lytic pathways could be in-droplet proteolytic 

degradation of perforin to prevent granzyme-mediated killing or blocking the TRAIL-Death 

receptors on the target cells to identify the pathways involved[22]. Other approaches like 

using a reporter NK cell lines, confocal microscopy have also been applied to study the synaptic 

factors and exocytosis of lytic granules,  however, they might not be applicable for real time 

study using primary NK cells[22]. On a larger perspective, transcriptomic profiling of NK cells 

with varying killing abilities will also provide a wider information on the relevance of the NK 

cell heterogeneity. 

 

Similarly, the results shown in this thesis are also beneficial for optimizing the parameters for 

effective pDC-based vaccination. One of the key features of pDCs is to produce large amounts 

of type I interferons (IFNs) upon TLR7 or TLR9 ligation[21]. By activating pDCs at single cell 

level in droplets, I showed that stimulation induces functional diversification of pDCs. The IFN-

I pathway is controlled by stochastic gene regulation and amplified by environmental signals 

in pDCs rather than subsets-based division of labor (Chapter 5). The knowledge regarding 

paracrine signaling of IFN-I and its regulatory effect on pDCs could enhance the functional 

output of the vaccination, for example, an extra dose of IFN-α together with the vaccine to 
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ensure the response from maximum cells. Understanding the dynamics of pDCs activation 

could guide on optimizing the parameters for pDCs vaccination such as an optimal number of 

pDCs that could deliver the effective response in vivo, stimulation time before injection, and 

the optimal stimulating agent for activation. To this date, only two studies have tested 

peripheral blood pDCs as cell-based cancer therapy[19,20]. Both the trials yielded positive 

outcomes however, a differential ability of pDCs to prime T cells was observed in melanoma 

and prostate cancer. Since pDCs comprise highly diverse cells that could perform ranges of 

functions, it would be beneficial to exploit this diversity cleverly rather than just hoping for 

optimal performance. My research could provide the ability to study the interaction between 

pDCs and T cells on a single cell level to identify the ability of each pDCs in T cell priming. 

Moreover, this study could be expanded to pDCs/T cells infiltrating different cancer 

microenvironments to test the efficacy of vaccination in clinic.   

 

One of the most common drawbacks of using primary immune cells for cell-based therapies is 

its availability. While it is difficult to harvest the adequate number of cells of interest from 

patients, it is also painstaking to prepare them for therapy every single time. Hence, the 

prospects of CD34+ hematopoietic stem cells for developing more “off-the shelves” products 

are becoming popular. Several groups have successfully differentiated these cells into the 

immune cells of interest; however, the optimal potential of individual cells remains elusive. 

This study and several other microfluidic-based approaches have evaluated the potential of 

CD34+ derived immune cells of interest[23]. Proper characterization of these cells could 

therefore open ways to enhance the prospects of cell-based therapy immensely. 

In conclusion, the results presented in this thesis showed that by deconstructing the 

immunological responses of a single immune cell, we could build an effective toolbox for 

designing and developing effective treatment strategies to enhance the pre-existing natural 

potential of immune cells. 
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