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ABSTRACT
Model-agnostic explainable AI tools explain their predictions by
means of ’local’ feature contributions. We empirically investigate
two potential improvements over current approaches. The first one
is to always present feature contributions in terms of the contri-
bution to the outcome that is perceived as positive by the user
(“positive framing”). The second one is to add “semantic label-
ing”, that explains the directionality of each feature contribution
(“this feature leads to +5% eligibility”), reducing additional cogni-
tive processing steps. In a user study, participants evaluated the
understandability of explanations for different framing and labeling
conditions for loan applications and music recommendations. We
found that positive framing improves understandability even when
the prediction is negative. Additionally, adding semantic labels elim-
inates any framing effects on understandability, with positive labels
outperforming negative labels. We implemented our suggestions
in a package ArgueView[11].
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• Human-centered computing → Empirical studies in HCI ; In-
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1 INTRODUCTION
While AI systems are increasingly applied to inform a broad array
of real-world recommendation and decision-making processes, in-
cluding financial decision making, medical recommendations, and
personnel selection, many AI systems are notorious for their black
box nature, leaving users to guess how or why certain decisions
have been reached. The field of Explainable AI (XAI) has emerged to
address challenges associated with interpreting black box models,
for instance by coming up with ways in which to present model
outcomes that are easier to interpret. The growing effort in the
Explainable Artificial Intelligence (XAI) domain has resulted in
several explanation tools such as Shap [18], LIME [25], and Anchor
[26]. These interpretability tools take one of two approaches. Some
approaches exploit a model’s inner workings. This is feasible when
models are fairly simple such as linear systems [5] and point sys-
tems [4, 32]. Other techniques are model agnostic. Such techniques
often probe the actual model in the neighborhood of a prediction
of interest to generate a simpler model that behaves similar to the
black-box model (e.g. [18, 25, 26]).

As we will show, the state-of-the-art interpretability tools have
several characteristics that make interpretation more difficult than
it needs to be, especially for users that are less experienced with
statistical or machine-learning models. We discuss two adaptations
that can improve the users’ understanding of algorithmic sugges-
tions. The first one is to use positive framing and the second is to
offer semantic feature contributions.

In some cases, decisions are inherently positive or negative for a
user. For instance, when applying for a loan, getting the loan granted
is the obvious positive outcome for the consumer. However, current
interpretability tools do not consider whether the decision-class is
positive (“consumer gets the loan”) or negative (“consumer does
not get a loan”). Instead, these tools label feature contributions
as positive when they contribute to the suggested decision-class.
When a model suggests an outcome that is negative for a user
("no loan granted"), this can lead to the confusing situation where

https://orcid.org/0003-1367-8286
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3491102.3517650
https://doi.org/10.1145/3491102.3517650


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hadash, Willemsen, Snijders, and IJsselsteijn

positively displayed contributions are in fact negative experiences
for a user. To prevent this, we propose to frame explanations as
contributing to the class that is conceived as the positive outcome
(“positive framing”).

The second improvement is also aimed at reducing the cogni-
tive load of users. Currently, state-of-the-art tools use positive or
negative values, or bars, to represent the contributions that fea-
tures make to a decision. However, interpretation of those values
requires that users make an additional cognitive step to understand
what these values or bars imply. For example, in the case of loan
applications, users must deduce whether a contribution of "+5%"
implies an increase or a decrease in loan applicability. We therefore
propose to explicitly label (using text, not numbers) what a feature
contributes to the decision, making it easier for users to interpret
the importance of a given feature correctly (“semantic labeling”).
We give examples of positive framing and semantic labeling in the
next section.

We tested these two improvements in a user study where we
show explanations with and without these potential improvements
to (lay) participants. We found that explanations that use positive
framing, without semantic labels, lead to higher understandability
compared to explanations with a negative framing (irrespective
of the decision-class). When semantic labels are used, the effect
of framing on understandability disappears, with positive labels
always being more effective than negative labels, irrespective of
the decision class.

In what follows, we first review the state-of-the-art explanation
tools and the improvements we propose in more detail. We then
report the design and results of our study. A discussion about the
implications of our results for the design of explainability tools and
the solutions we provide in the ArgueViewcompletes this paper.

2 STATE-OF-THE-ART EXPLANATION TOOLS
While the field of explainable AI (XAI) really took off around 2015
(consider, for instance, the strong increase in frequency of search
terms such as "explainable AI" [22]), trying to explain models has a
longer history. Linear regression models are an example of inter-
pretable models which were used by Gauss, Legendre, and Quetelet
[2] as early as the beginning of the 19th century. Especially linear
regression (type) models allow for relatively easy interpretations,
although even then it is easy to misinterpret model results [13].
In machine learning, there is a (much) less obvious connection be-
tween model input and output as they often relate in a non-linear
way. This causes machine learning models to be less interpretable
than regression type models and they can be considered “black-box”
even to the most knowledgeable of model-makers. There are several
publicly available tools to interpret model output from black-box
models (see [1] for a review). Some of these tools are model-specific,
for example to interpret deep neural networks [15, 17, 33] or tree
ensembles [7, 12, 20, 28]. Other tools (e.g. [6, 18, 21, 23, 25–27])
are model-agnostic and can be used to explain decisions indepen-
dent of the type of model used [24]. To explain the output for a
certain set of inputs, the model-agnostic interpretability tools typi-
cally construct a simpler surrogate model by sampling the original
(black-box) model near the inputs of interest, and then offering
an explanation based on this simpler model. We focus on these

model-agnostic interpretable AI tools that use surrogate models
and their functionality towards explaining singular decisions.

A commonality in model-agnostic explanation tools is that, to
construct explanations, most of the tools supply in their output a
list of input features and their ’importance’ for a given decision
(see e.g. [18, 21, 25, 27]). These feature importance values are com-
puted in different ways, depending on the tool, but these values
always represent the extent to which a feature ’contributes’ to a
decision. Besides computing these feature importance values, some
tools provide visualizations of these values using bar charts, wa-
terfall plots, or “force plots” [18, 25]. While it is certainly useful
to have interpretability tools for people who work with machine
learning outputs, the usefulness of these tools can reach beyond
those with technical skills. Explanations may also help people who
use the model or people whose lives are affected by a model’s
output ([3, 30]). One could think of examples in the legal domain
[16] for issues of accountability, in the medical domain for medical
decision-making [8], or of all recipients of (algorithmic) decisions
who would want to know how a certain decision that affects them
(e.g. a mortgage decision, a job application) came about. In fact,
since May 2018, consumers have the "right to explanation" by law
in Europe [10]. The explanations that the tools provide should be
as clear as possible, given that one cannot count on the fact that the
user is tech-savvy enough to figure out what the technical output
conveys.

3 ISSUES AND IMPROVEMENTS
LIME and Shap are two of the most commonly used interpretability
tools in XAI (e.g. see its implementations [1]). LIME is a model-
agnostic explanation tool developed by Ribeiro, Singh, and Guestrin
[25]. It generates its explanations using a surrogate linear model and
proximity sampling. The generated explanation is in the format of
a feature-importance list and a visualization. Similar to LIME, Shap
[18] is another popular explanation framework that provides tools
to interpret model output. Shap uses a different approach to calcu-
late the surrogate model, but it also outputs a feature-importance
list and visualizations, similar to LIME (Shap is also able to provide
global explanations and visualizations, but these are outside the
scope of this paper). We focus on Shap’s waterfall plot, arguably the
most straightforward and easiest to understand local explanation
visualization.

Figure 1 shows the visualizations of LIME (top) and Shap (bottom)
of an example case in the loan application domain. The underlying
machine-learning model predicts whether a user is eligible or ineli-
gible for a loan. We chose a case in which the algorithm decided
that the user is ineligible for the loan. Because we picked a case
where the decision class was negative to the user, the contribu-
tions that LIME and Shap show use positive values when features
contribute towards not getting the loan. This may seem logical
and straightforward for data scientists who work with prediction
models regularly. But users unfamiliar with visualizations from in-
terpretability tools and regression models may find it more intuitive
when positive values imply a contribution to the outcome that is
perceived as positive. We find evidence for this idea in cognitive
psychology. A running theme in cognition is that people are better
in handling positive information than negative information [19].
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(a) LIME’s map visualization

(b) Shap’s waterfall visualization

Figure 1: Example visualizations generated by LIME [25] (a)
and Shap [18] (b). In this example, both visualizations use
positive bars and numbers for contributions that are nega-
tive for the user, i.e. counter-intuitive framing. The example
is from the OpenML credit-g dataset (case 496). The Shap vi-
sualization is generated using the waterfall visualization of
Shap’s perturbation explainer.

For example, we understand sentences better if they use affirmative
wording ("Mary is honest") than in negative wording ("Mary is not
dishonest") [14]. Furthermore, Hearst found that we tend to perform
better on various tasks if the information is emotionally pleasant
rather than unpleasant, which is called the “Pollyana principle”. It
even seems to be the case that our cognitive system first makes
people accept or believe information that comes in, before rejecting
it when it appears to be false [9]. These observations suggest that
we should frame explanations positively whenever possible and
avoid (double) negatives in the cognitive interpretation process. In
LIME and Shap, contributions are always framed as adding to the
current decision-class, irrespective of whether the user perceives
this as positive or negative. Thus, when a decision-class is perceived
as negative for a user (“loan not granted”), positive numbers and
bars are used for contributions with implications that are perceived
as negative, and negative numbers result in implications that are
perceived as positive. We propose to change this by framing feature
contributions such that positive values imply positive outcomes
(see the change from Figure 2a to Figure 2b). We hypothesize that
(H1) framing explanations positively even when a decision has a

(a) Alignment as in LIME/Shap (based on decision-class)

(b) Contributions aligned with outcome

(c) Explicit contribution implications

Figure 2: Explanation changes according to the proposed im-
provements shown for an explanation of a negative decision-
class. (a) Explanation similar to current LIME and Shap
where contribution implications are based on the decision-
class. (b) Proposal 1: framing contributions such that posi-
tive contributions imply positive outcomes. (c) Proposal 2:
explicit contribution implications using labels.

negative implication improves the understandability of explana-
tions.

There is, however, a more general underlying issue. Good expla-
nations should be self-explanatory and depend as little as possible
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on implied knowledge. We therefore propose to remove the ambigu-
ity of how contributions are interpreted by making the implications
of feature contributions explicit, by adding semantic labels to each
feature contribution. For instance, this would imply changing “+5%”
to “+5% eligibility” (see Figure 2c), making the direction of the contri-
bution even more explicit. We hypothesize that (H2a) explanations
with semantic labels are more understandable than explanations
without semantic labels. When choosing the labels, we can opt for
positively framed labels (“eligibility”) or negatively framed labels
(“ineligibility”). Since research suggests positive information can
be cognitively handled more easily [19], we anticipate that (H2b)
positively framed labels result in a better understandability com-
pared to negatively framed labels. Furthermore, making the feature
implications explicit might reduce the need for positive framing.
Users no longer need to correctly deduce what contributions im-
plicate. As such, we hypothesize that (H3) effects of contribution
framing on understandability will be smaller when semantic labels
are introduced. An implementation of both improvements has been
implemented in a package1 which also resolves some additional
issues with LIME and Shap’s visualizations, such as visual additiv-
ity, the inclusion of additional information about the features, and
readability issues.

4 STUDY
A user study was designed to evaluate our proposed improvements.
The study was reviewed and approved by the institutional review
board. Participants received a number of loan application and music
recommendation cases with explanations that varied in terms of
the predictions, labels and framing. Participants interpreted the
explanations and rated their understandability. The visualizations
used in the study are shown in Figure 3.

4.1 Design
The study used a 3x2x2 mixed-effects design: labels x domain x
framing. Semantic Labels (none / positive /negative) were varied
between-subjects to avoid any confusion when labels change and
to prevent carry-over effects due to this. Domain and framing were
varied within-subject to increase the number of observations and
statistical power as we did not expect these variations to cause
confusion or carry-over effects. Each within-subjects condition (2
framing x 2 domains, total 4) consisted of 6 trials (i.e. explanations)
of which 3 had a positive prediction and 3 had a negative prediction.
The order of the within-subjects conditions was randomized.

4.1.1 Label condition. The label conditionwas chosen as a between-
subjects condition (e.g. each participant only sees one type of label).
The options for the labels are "none" for no labels (which is simi-
lar to LIME and Shap), "eligible/like" for positive semantic labels
("eligible" in the loan application condition, "like" in the music rec-
ommender condition), and "ineligible/dislike" for negative semantic
labels. The example explanation in Figure 3 shows the positive label
condition.

1package is available in our open-source PyPi and NPM package ArgueView. It can be
used in conjunction with LIME and Shap to generated explanations with adjustable
contribution framing and contribution labels.

4.1.2 Domain condition. In the loan application domain, partici-
pants were required to interpret explanations of a loan application
prediction system. The system would predict for a number of cases
whether someone is loan eligible or loan ineligible. In the music
recommender domain participants could choose one of four pro-
files: "hiphop", "jazz", "pop", "rock". Based on their selected profile
they received music recommendations with various predictions
(e.g. "you like this" or "you dislike this"). An explanation showed
why the prediction was made based on the audio features of the
song and their similarity to the selected profile. Participants started
with trials in a randomly chosen domain. After all the trials for that
domain were completed (12, 2 conditions x 6 trials), they continued
to the trials for the other domain.

4.1.3 Framing condition. Framing was a within-subjects condition
that affects the explanation underneath the prediction (i.e. "Blue
properties contribute towards the applicants loan (in)eligibility"),
see Figure 3. Depending on the framing condition, the sentencemen-
tioned the color that contributes towards the positive or negative
decision-class. Furthermore, in the absence of labels the framing
condition also affected the directionality of the feature contribu-
tions. In the positive framing condition, positive contributions in-
dicated positive implications (i.e. ’increased eligibility’) whereas
in the negative framing condition positive contributions indicated
negative implications (i.e. ’increased ineligibility’). When labels
were presented the framing manipulation was less strong, because
then the direction is determined by the labels and the framing solely
manipulated the explanation underneath the prediction (Figure 3).

4.2 Measurements
4.2.1 Perceived understandability. The primary (dependent) vari-
able of interest in this study was the perceived understandability of
the explanations which was measured using two scales during the
study: at the trial-level, and at the condition-level. The trial-level
scale consisted of one item: "How well do you understand the expla-
nation of how the properties contribute to the prediction (i.e. the
contribution column)?", which was answered on a 4-pt Likert scale
("Not at all", "Somewhat", "Mostly, "Completely"). At the condition
level (i.e., after every 6 trials), we used a four item questionnaire
that measured the overall understandability of the condition. The
items were combined into one scale using factor analysis, see Table
1.

4.2.2 Co-variates. Apart from several demographic variables, the
main co-variate that was measured was user agreement. User agree-
ment might affect understandability through confirmation bias [29].
People tend to conform their beliefs rather than disprove them, so
when a decision is in line with their beliefs, they are more likely
to accept it, which might influence their perceived understanding.
User agreement was measured at the trial level using the item "Do
you agree with this prediction? (No-Yes)".

4.3 Participants
The study sample consisted of 133 participants (male = 61). Par-
ticipants were sampled from the university database (n = 91) and
convenience sampling (n = 42). 79% of participants were younger
than 34. Participants from the database were rewarded using a raffle
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Figure 3: Examples of explanations as shown to participants. The loan application domain is shown in the background. On
the left side from top to bottom: prediction panel, contribution explanation sentence, visualization panel, regression intercept.
On the right side: additional information panel. Uses the OpenML credit-g dataset (case 496). The visualization for the music
recommendation domain is shown in the foreground, where the only difference is the playback bar in the bottom and the
different features and decision-classes.

Item Factor
Loading

Specific
Variance

Com-
munality

The explanations helped me
get more insight into the
given prediction.

0.44 0.60 0.19

The explanation felt clear to
me.

0.77 0.48 0.60

I felt that the explanations
tookme a lot of time to com-
prehend.

1.17 0.65 1.37

The explanations were con-
fusing to me.

1.13 0.53 1.28

Table 1: The perceived understandability scale (condition
level). Cronbach’s α = .73. The items used a 5-pt Likert scale
and were preceded by the question "To what extent do you
agreewith the following statements". Factor loadings are cal-
culated using a principal component analysis without rota-
tion. PCA was appropriate for this scale as shown by Kaiser-
Meyer-Olkin’s MSA = 0.71 and Bartlett’s test of sphericity
χ2(6) = 531,p < .001 [31].

with a 20% chance to win 25 euro. The other participants received
a 5 euro gift card.

4.4 Procedure
After agreeing with the informed consent, participants were di-
rected to a demographics form and explained the study procedure.
Participants were to either start with the loan application domain

or with the music recommender domain. In the loan application
domain, participants were instructed to imagine a scenario where
they are loan auditors tasked with evaluating the understandability
of a new decision-support system for loan applications. In the music
recommender domain, participants were instructed to select one
out of four genres (rock, pop, hip-hop, or jazz). Then, they were
instructed that an AI system would use their preferred genre to
predict songs based on audio features.

After the instructions the participants were directed to the trials.
The trials consist of a decision, an explanation, an information panel,
and a question panel. The explanation consists of three elements.
The primary component is the list visualizer from the ArgueView-
package (Figure 3). On top of the visualizer there was a sentence
explaining the contribution of the features. This sentence and the
color direction were manipulated by the framing condition. Below
the visualizer was an indicator for the contribution that could not be
explained by the features (i.e. unexplained variance). The question
panel asked about perceived understandability and agreement (one
question at a time). After every condition with six trials participants
received the perceived understandability scale and an (objective)
understandability check, before moving to the next condition. Fi-
nally, after the 4 conditions (24 trials) were presented, participants
were thanked for their participation.

4.5 Results
The study ran online between 19 March and 18 April of 2021. Par-
ticipants with incomplete submissions (n = 12) or with < 10 min
completion time (n = 7) were excluded. Several trials were deleted
because of coding error in the visualizations that were shown. These
errors were mostly in the negative framing condition in the music
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(a) trial-level

(b) condition-level

Figure 4: Perceived understandability for the various study
conditions: decision-class x framing x latent continuous
variable label. (a) Trial-level understandability metric. (b)
Condition-level understandability metric. Error bars indi-
cate one standard error of the mean.

domain in the hip-hop, jazz, and pop profiles. Fortunately, a large
proportion of people (46%) chose the rock profile which was free
of errors. The results did not change significantly with inclusion
or exclusion of these trials, and we observed similar effects when
only analyzing the trials of the loan domain that did not have this
coding error.

The data analysis consists of two multi-level regression analyses,
for the trial-level understandability (Model 1) and for the condition-
level understandability (Model 2), see Table 2. The estimated means
across the conditions of both regression analyses are visualized in
Figure 4.

The variables in the regression are coded as follows. The decision
class and the framing are mean centered (positive decision/framing
is coded positively) while the three label conditions are dummy
coded. Using this coding, we can easily compare the baseline model
(the no-label condition) against the label conditions that are rep-
resented by interactions with the label dummies. In our results
section we first look at the data for the conditions without labels,
which will be used to answer H1. After this we look at the effects
of adding feature labels and answer H2 and H3.

4.5.1 Co-variates. Each regression analysis includes the following
co-variates: unexplained model contribution, domain, user agree-
ment, and whether it is the first trial of a condition (as understand-
ability might be lower in the first trial when all information is new).
Additionally, models that use the condition-level understandability
metric include the understandability check as a co-variate.

There are several significant main effects of the co-variates. The
explanations in the loan application domain are more understand-
able compared to the music domain, β = −0.106,p < 0.001, but
this effect is only seen in the trial-level understandability metric.
When a user agreed with the explanation, they found the expla-
nation more understandable, β = 0.434,p < 0.001 (trial-level),
β = 0.187,p < 0.001 (condition-level). Whether it was the first trial
or whether the understandability check was answered correctly
did not have an effect on perceived understandability.

4.5.2 Does positive framing improve understandability? (H1). For
this analysis we only consider the no-label condition to measure the
pure effect of framing. We hypothesized in H1 that using positive
framing improves understandability, even if the decision class is
negative. Figure 4, suggests this is the case, as the center columns
of both the trial and condition-level show higher perceived under-
standability for the positive frame than the negative frame. Indeed
our regression (Table 2) shows a positive main effect of framing
for model 1 (trial) and model 2 (condition level). At the trail level2
the effect seems slightly stronger for the positive than negative
decision class, but we do not observe a significant interaction (β =
-0.031, p = 0.224), indicating that positive framing leads to higher un-
derstandability irrespective of decision-class. Both LIME and Shap
are currently framing explanations based on the decision-class,
which can lead to explanations where contributions with positive
outcomes are actually framed negatively (i.e. with negative val-
ues/bars), and hence our finding shows that changing the framing
in these situations to positive would improve understandability.

4.5.3 Do feature labels increase understandability? (H2). We hy-
pothesized that adding feature contribution labels to the visual-
ization would increase understandability. Figure 4 shows a mixed
picture. Comparing across both framing conditions, positive labels
(right bars in the graphs) seem to be a bit more understandable
than the no-labels at the condition level, which is supported by
a positive significant main effect of positive labels (β = 0.267, p
= 0.024). However, for the trial-level the differences seem much
smaller and no effect of positive label on understandability is ob-
served. The negative label conditions (leftmost bars in Figure 4)
seem to result in somewhat lower understandability than the no
label condition (middle bars), but mostly for the trial-level results.
Indeed only Model 1 shows a negative effect of the negative label
on understandability at the trial level (β = -0.225, p = .039). Taken
together, we do not find strong support for H2a that stated that any
type of labels improves understandability compared to no-labels.
A post-hoc contrast analysis combining the effects of both label
conditions confirms that using any label compared to not using a
label does not lead to higher understandability (Model 1, β = -0.142,
tratio (128) = -0.773, p = 0.441).

2The condition-level metric was measured across three negative and three positive
decision trials, so no interactions with decision-class can be modeled
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Model 1 Model 2
Trial-level Condition-level
β SE t β SE t

H1: pos. framing improves understandability
decision (c) 0.047 0.047 1.480
framing (c) 0.190∗∗∗ 0.027 7.123 0.236∗∗∗ 0.061 3.855
decision (c) x framing (c) -0.031 0.026 -1.217

H2: feature labels improve understandability
positive label 0.083 0.104 0.801 0.267∗ 0.117 2.288
negative label -0.225∗ 0.108 -2.090 0.013 0.120 0.111
decision (c) x positive label 0.007 0.035 0.197
decision (c) x negative label -0.069 0.037 -1.854

H3: labels reduce framing usefulness
framing (c) x positive label -0.184∗∗∗ 0.035 -5.235 -0.144 0.079 -1.820
framing (c) x negative label -0.259∗∗∗ 0.037 -7.037 -0.297∗∗∗ 0.082 -3.610
decision (c) x framing (c) x positive label 0.054 0.034 1.563
decision (c) x framing (c) x negative label 0.034 0.036 0.938

Co-variates
unexplained (c) -0.017 0.021 -0.822 -0.004 0.046 -0.092
music domain -0.106∗∗∗ 0.030 -3.472 0.086 0.083 1.039
agreement 0.434∗∗∗ 0.034 12.681 0.187∗∗∗ 0.038 4.922
first trial 0.026 0.037 0.708
correct understandability check 0.029 0.074 0.393

Intercept 1.629∗∗∗ 0.081 20.144 3.280∗∗∗ 0.105 31.202
Statistics

N 2490 532
Log likelihood -2769.2 -662.2
R2GLMM (c) 0.381 0.311

Random effects
# of participants 128 133
Participant SD 0.455 0.408

Table 2: Multi-level regression analysis results. (c) = centered, unexplained = the amount of unexplained variance in the expla-
nation shown to the user (normalized, centered), agreement = user agreement scale (yes/no), first trial = observation is the first
trial in a session (yes/no), correct check = understandability check was answered correctly (yes/no), N = number of observa-
tions, R2

GLMM (c) = R2 statistic of the full model (fixed+random effects), # = number, SD = standard deviation, cond. = condition,
pos. = positive. ‘agreement‘ and ‘unexplained‘ are averaged over all the trials in the condition and normalized. ∗∗∗p < .001; ∗∗p
< .01; ∗p < .05.

We do find support for H2b, that states that positively framed
labels work better than negatively framed ones. Figure 4 shows
that understandability is higher for positive labels than for negative
labels. A post-hoc contrast analysis supports this: positive labels
are more understandable than negative labels (trial-level: β = 0.308,
tratio (127) = 2.959, p = 0.004; condition-level: β = 0.254, tratio (132)
= 2.176, p = 0.031).

4.5.4 Does positive framing still have additional benefits when labels
are added? (H3). When labels are added, users do not need to deduce
the implication of a value anymore, which we expected to reduce
the advantage of positive over negative framing. Indeed, 4 shows
that at both the trial level and the condition level, we do not observe
large differences anymore between the red and blue bars for the

label conditions (outer columns), as we do for the no-label condition
(middle columns).

Our trial-level regression model corroborate this finding as the
framing effect we found for the no labels condition (β = 0.190, p <
0.001) is completely counteracted by negative interaction of framing
with positive labels (β = -0.184, p < 0.001) and negative labels (β =
-0.259, p < 0.001). A post-hoc contrast analysis confirms this as we
find no significant total effect of framing (main effect + interaction
effect positive labels: β = 0.048, tratio (2369) = 1.409, p = 0.159; main
effect + interaction effect negative labels: β = -0.026, tratio (2365) =
-0.701, p = 0.483).

The condition-level model (Table 2, Model 2) shows similar re-
sults with a positive main effect of framing (β = 0.236, p < 0.001),
counteracted by a negative interaction effect with positive labels
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(β = -0.144, p = 0.070), and negative labels (β = -0.297, p < 0.001).
Post-hoc contrast analysis yields that the effect of framing is re-
duced but not completely eliminated for positive labels: main effect
+ interaction effect positive labels (β = 0.18, tratio (410) = 2.149, p
= 0.0322), but it is completely eliminated for negative labels: main
effect + interaction effect negative labels (β = 0.0269, tratio (404) =
0.312, p = 0.756).

In summary, the effect of framing on understandability is largely
eliminated when labels are introduced (with the exception of the
condition-level metric with positive labels). We find support for
H3: positive framing is no longer any better than negative framing
when labels are added.

5 DISCUSSION AND CONCLUSION
In this paper we identified and addressed several issues in the most
popular interpretability tools, LIME and Shap. Both tools use fram-
ing based on the decision-class which can cause counter-intuitive
explanations in which positive contributions imply outcomes that
are perceived as negative. We proposed to address this issue by
always framing feature contributions with respect to the class that
is perceived by the user as positive. The results showed that it is
always better to frame the explanation using the positive decision
class, even when the prediction class is negative. This result builds
on existing evidence in cognitive psychology, where there are many
studies that show people are better at handling positive information
(see [19]). As obvious as this may seem, positive framing is not the
default in many local interpretability tools (e.g. [18, 21, 23, 25]), in
all likelihood because the software itself cannot determine what
the positive outcome is. Allowing the model-maker or the user to
set which of the outcomes is perceived to be the positive one can
significantly improve the understandability of explanations. In ad-
dition, we proposed it may be even better to make the implications
of feature contributions explicit using semantic labeling. Current
interpretability tools display their results using (positive or nega-
tive) numeric feature contributions that can be hard to interpret.
Hence, we proposed that semantically labeling the feature contribu-
tions improves understandability, while reducing the importance of
positive framing. The results showed that labeling indeed improved
understandability, but only when positive labels are used (e.g. ’el-
igibility’ instead of ’ineligibility’). However, the more prominent
finding is that when semantic labels were used, the positive framing
no longer affected understandability. We anticipate that the reason
for this is the removal of a cognitive step. Without labels partici-
pants had to deduce the meaning of feature contributions from the
context, but with the labels they could directly see what a contribu-
tion implies and hence did not need to spend the cognitive effort to
deduce the meaning. Although understandability was highest in the
positive semantic label conditions, it was not substantially higher
than the understandability in the (non-labeled) positive framing
conditions. So both solutions seem equally effective in improving
understandability: positive framing of the contributions or using
positive semantic labels. Further research is needed to understand
better whether and how cognitive effort is reduced when using
labels.

Our study has several limitations. First, the decisions had a lim-
ited direct importance to the participants. The loan applications

were for imaginary people with no relation to the participant, hence
participants might have been indifferent to the actual prediction.
Similarly, in the music domain, though the predictions were person-
alized based on their preferred genre, there was no consequence for
the participant to whether the prediction was positive or negative.
Another issue is that we presented participants with 24 trials which
might have caused some learning effects or decreased attention dur-
ing the trial. Then again, the entire study did not take longer than
20-25 minutes and our randomization of domains and conditions
balances any effects of fatigue on our data. Also, including a variable
’first trial’ in our model did not show systematic effects of fatigue or
learning across the 6 trials in each condition. While acknowledging
the above-mentioned limitations, our work addresses an important
challenge of the CHI community: designing AI decision tools in
such a way that their decisions or recommendations are easily inter-
pretable, not just by experts but also by non-experts. This requires
a more explicit connection between the XAI design community
and the significant body of work in cognitive psychology and deci-
sion sciences. Our empirical contribution has highlighted the added
value of positive framing and (positive) semantic labeling in aiding
AI understandability. Positive framing should of course only be
used in situations where there is a decision-class that users value
positively as it might otherwise backfire. It is also complicated to
have the software automatically deduce which decision-class is the
positive one. Additionally, frequent users of interpretation tools
may have come to expect positive contributions to imply positive
contribution to the decision-class. Semantic labeling of feature con-
tributions, on the other hand, can and should always be used to
reduce user error and improve the understandability of feature
contributions, so we propose to always include such labeling in
future implementations.
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