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1.1 Background and motivation 

Humanity is experiencing a dramatic shift towards urban living (Grimm et al., 2008). Since 

2007, more than half of the world population lives in cities. As the rapid urbanization 

seems unstoppable, the urban population is projected to reach 68% by 2050 (Cohen, 

2003; United Nations, 2018). The increase of people residing in urban areas obviously 

increases pressure on land and public infrastructure. It leads to urban sprawl, due to the 

expanding demand for living and working space. Meanwhile, the concentration of 

population and industry in urban areas implies a higher consumption of energy, massive 

congestion, air pollution and significant change of the urban morphology, which 

contribute to climatic change and the degradation of environmental quality in city 

regions (Kalnay and Cai, 2003; Mills et al., 2010; Scheuer et al., 2017). More specifically, 

the anthropogenic activities have increased the global temperature and there is a high 

probability of a further increase if the current carbon emissions are unmanaged (IPCC, 

2019). Urban life is facing a host of difficult challenges, including  potential heat waves, 

cold spells, droughts and extreme rainfall that are projected to be more frequent,  more 

severe, and of longer duration (Grimm et al., 2008; Wilson et al., 2008; Gao et al., 2015; 

IPCC, 2019). These prominent urban problems prompt solutions for anticipating and 

designing for uncertain, perhaps rapidly varying, microclimatic conditions (Chappells and 

Shove, 2005).  

The outdoor thermal environment is complex due to the constantly changing 

environmental conditions and the interplay between the human body and the ambient 

environment. People are directly exposed to dynamic and non-uniform microclimates 

and environmental conditions when conducting daily activities. The abovementioned 

consequences of climate change and urban growth stimulated a growing concern about 

sustainable and climate-sensitive adaptation strategies and their implications for 

improved urban environmental quality, and research interests to overcome the adverse 

effects on comfort, health, and well-being of urban residents, especially among urban 

planning and policy making professionals (Lenzholzer et al., 2020). The experience of 

urban public space is highly dependent on microclimate conditions (Nikolopoulou et al., 

2001; Zacharias et al., 2001; Eliasson et al., 2007; Gehl, 2011; Chen and Ng, 2012; Lai et 

al., 2014; Coccolo et al., 2016). Thermal comfort plays an indispensable role in the 

evaluation of urban microclimatic conditions and environment quality (Rupp et al., 2015). 
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In recent years, intense changes in urban microclimates and morphologies have 

endangered urban ecosystems (Gao et al., 2015). The fast pace of urban development 

has caused the replacement of dense greeneries with impermeable pavements and 

buildings which leads to high albedo and lack of natural ventilation (Kondo et al., 2001). 

Unlike the native vegetation counterparts in rural areas, the physical properties of urban 

materials with relatively high volumetric heat capacity generate higher heat storage and 

temperatures (Arnfield, 2003). In addition, urban geometry modifies the radiations and 

wind speed and turbulence which intensifies the heat emission in the urban canopy layer 

and induces thermal stress in outdoor public spaces, so that urban areas experience a 

substantially different meteorology than their rural counterparts (Oke, 1982, 1988; 

Heusinkveld et al., 2014). It has been confirmed that, as a downside to urbanization, the 

land cover of city centers brings more thermal discomfort when compared with 

peripheral and rural areas (Johansson and Emmanuel, 2006). In particular, the threat of 

pronounced additional warming of built-up areas has been well documented, which is 

known as the urban heat island (UHI). This phenomenon was reported not only in cities 

with high radiation, but also in cities of high latitudes characterized by warm or cold 

summers (Peng et al., 2012; Stewart and Oke, 2012; Santamouris, 2020). Urban public 

spaces are vulnerable to UHI and other possible adverse effects of extreme 

biometeorological conditions (Höppe, 2002). Due to the accelerating replacements of 

plants with impervious surfaces in urban growth, a thermal stress of higher temperature 

and less natural ventilation exist in urban areas compared with rural environments, 

which deteriorate the livability and vitality of urban spaces and impede sustainable 

development (Fong et al., 2019).  

Residents in cities of developed countries stay most of the time in indoor environments. 

On average, individuals spend less than 20% of their time outdoors (Klepeis et al., 2001). 

The air-conditioned spaces are intensively used by the urban population to meet their 

thermal comfort requirements by skipping the natural wind and sunshine, adapting to 

avoid the increased vulnerability to climatic challenges in outdoor environments (Niu et 

al., 2015; Golasi et al., 2018). The sedentary lifestyle not only harms the health of people 

but also considerably increases energy consumption (Kumar and Sharma, 2020). 

However, it has been evidenced that physiological and psychological health and well-

being of people depend on outdoor physical and recreational activities such as walking, 

jogging, and cycling. As a salient component of urban systems, where spontaneous and 

unexpected social interactions take place, outdoor public spaces can promote an active 

lifestyle by accommodating urban residents’ daily traffic and outdoor activities (Spagnolo 
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and de Dear, 2003a), and at the same time,  contribute to energy efficiency of 

surrounding buildings (Yang et al., 2014).  

People in outdoor urban environments are often directly exposed to their immediate 

non-uniform microclimatic conditions with variations of sun and shade, and changes in 

wind speed. As an essential factor to quantify the perceived environment, thermal 

comfort may influence people’s usage patterns of urban public space (Nikolopoulou et 

al., 2001; Nikolopoulou and Lykoudis, 2007; Aljawabra and Nikolopoulou, 2010; Rupp et 

al., 2015; Shooshtarian et al., 2020). It has long been recognized that comfortable 

outdoor conditions meeting the occupants’ expectations can attract a greater number 

of people to spend more time in urban public spaces, thus facilitate people’s 

environmental and social interactions and reduce anthropogenic energy consumption of 

air conditioning and lighting in buildings (Nikolopoulou and Lykoudis, 2007; Krüger et al., 

2013; Lai et al., 2014; Li et al., 2016). Although the impact of everyday comfort conditions 

on daily life is less noticeable, the variation throughout an entire year may significantly 

influence residents’ outdoor behavioral patterns. Ensuring provision of high-quality and 

comfortable outdoor environments contributes to promoting an active lifestyle by 

providing spaces for outdoor recreational, commercial, social, and cultural activities 

(Chen and Ng, 2012; Shooshtarian, Rajagopalan, and Sagoo, 2018; Weijs-Perrée et al., 

2019). Therefore, it is important that urban planners and researchers understand human 

comfort in outdoor spaces.  

The objective of creating comfortable outdoor environment has several dimensions, 

from mitigation of adverse microclimatic and environmental effects and reduction of 

urban energy consumption to the improvement of public health and well-being as the 

ultimate goal (Nicol and Roaf, 2017). Applicable outdoor comfort evaluation is of great 

importance to implement adaptation strategies to mitigate adverse effects of climate 

change and ameliorate the microclimate in urban public spaces with respect to meeting 

residents’ everyday demands with thermally comfortable conditions, which can provide 

critical and valuable information for urban planners and policy makers (Nikolopoulou and 

Steemers, 2003; Blocken et al., 2012; Shooshtarian et al, 2018). Taking outdoor comfort 

into account in urban planning and design practice can lead to a more holistic view of 

sustainable urban development. Urban design and planning professionals, therefore, 

have been directed to take microclimatic information into consideration for ensuring the 

provision of comfortable outdoor environments. However, the reconciliation of comfort 

determinants within design and planning processes is lacking a full understanding of 

human comfort.  
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In the past, human thermal comfort in outdoor places was generally not an issue in urban 

design, which is regarded as a neglect and indicates the increased possibility of 

problematic effects of discomfort in urban life (Lenzholzer, 2012). New knowledge on 

comfort assessments in outdoor public spaces that can serve as a basis for urban spatial 

design has been lacking (Lenzholzer and Koh, 2010). Addressing outdoor comfort has 

now become a prevalent focus in urban planning and design. Urban planners have 

become increasingly aware of the biometeorological consequences of planning and 

design practice (Lenzholzer et al., 2020). As a decisive indicator, human comfort requires 

a more comprehensive, structural, and analytical investigation. 

1.2 Problem statement 

Against this background, over the last two decades, an ever-increasing research interest 

in assessing comfort in outdoor urban environments has brought about an expedient 

use of approaches based on rational thermal indices, developed specifically for steady-

state and uniform indoor settings (Johansson et al., 2014; Coccolo et al., 2016). However, 

real-world public spaces within cities are often highly heterogenous with regard to 

alterations in land cover, vegetation, facilities, geometry, and size. Therefore, the 

application of rational thermal indices alone is challenged because the steady state is 

hardly ever reached (Höppe, 2002). According to the recent literature, many empirical 

investigations have been conducted to develop predictive modeling approaches for 

understanding individual assessment of outdoor thermal comfort in different regions 

(Potchter et al., 2018). The direct use of existing rational indices alone has been shown 

inapplicable for outdoor comfort assessment since the non-thermal conditions 

influences human adaptation (Nikolopoulou et al., 2001; Höppe, 2002; Nikolopoulou and 

Lykoudis, 2006). It remains a challenge how to quantitatively describe human comfort 

due to the large number of influences given by the variability in urban microclimate, 

especially wind and solar radiation (Blocken and Carmeliet, 2004; Hondula et al., 2017). 

Previous studies on outdoor comfort modeling mainly focused on objective 

meteorological conditions, the mechanism of heat exchange between human body and 

the ambient environment, and human physiological thermoregulatory responses (Katić 

et al., 2016).The active role of human adaptation and the relating individuals’ socio-

demographic, behavioral and psychological factors have been largely ignored. The 

nature and strength of the relationships between comfort assessment and these 

potential influences cannot be fully captured by considering the objective 
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meteorological variables related to thermal conditions alone. In addition, the manners 

of influences on subjective comfort and the reason for different assessment under the 

similar conditions, need to be addressed and examined using a different methodology. 

The characteristics of the human body vary individually, which implies that the 

standardized methods relying on the heat balance model are insufficient in representing 

the full range of contextual and personal determinants of human outdoor comfort 

assessment (Coccolo et al., 2016). People with different socio-demographic 

characteristics are likely to experience the same environments differently (Saarloos et 

al., 2009). The thermal sensation predicted by rational thermal indices tends to be  

inconsistent with respondents’ actual thermal sensations in urban public spaces, 

(Nikolopoulou et al., 2001; Nikolopoulou and Steemers, 2003; Thorsson et al., 2004; Knez 

and Thorsson, 2006; Pantavou et al., 2013). The general applicability of rational indices 

has been questioned in previous empirical investigations since it was very difficult to 

conclude that the thermal neutrality of human body under the assumption of steady 

state equals to achieving subjective thermal comfort in complex urban microclimates 

(Nikolopoulou et al., 2001; Lin, 2009). As a rational experience, thermal sensation is 

directed towards an objective world in terms of cold and warm, while thermal comfort 

is an emotional experience and relative to expectations (Hensen, 1990). The heat 

balance model might not adequately reflect individuals’ actual comfort assessments of 

outdoor urban environments due to a lacking consideration of high variability of 

individuals’ preferences pertaining to the microclimate and the atmospheric 

environment (Höppe, 2002; Spagnolo and de Dear, 2003b; Knez and Thorsson, 2006; 

Nikolopoulou and Lykoudis, 2006; Oliveira and Andrade, 2007; Lin, 2009).  

1.3 Research objectives 

Many municipal authorities recognize the importance of outdoor comfort and require 

pertinent studies before planning and granting decisions about the development of new 

urban areas. The motivation to improve the quality of urban public spaces and making 

them more comfortable has been driven by escalating needs of sustainable urban 

development and high quality of city life that are difficult to ignore. The Netherlands is a 

densely populated country, with most of population and economic activities 

concentrated in urban areas. Due to UHI being intensified recently, Dutch cities 

experience more days of thermal stress than the countryside (van Hove et al., 2015). In 

the second half of 2010, a research program called Climate Proof Cities (CPC) was 
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launched in the Netherlands intending to strengthen the adaptive capacity of cities and 

to reduce the vulnerability of the urban system against climate change by developing 

strategies and policy instruments for adapting cities and buildings (Albers et al., 2015). 

At that time, the climate-responsive and adaptation strategies in urban planning and 

policy making were emerging topics in the Netherlands. To support decision makers, the 

CPC program has addressed numerous possible adaptation measures with respect to 

applicability in various urban situations. Furthermore, measurements, numerical 

simulations and street surveys have been conducted to gain insight into the effectiveness 

of individuals’ adaptation measures and combinations of measures for different spatial 

scales (Albers et al., 2015).  

Comfortable urban public spaces improve citizen’s quality of life by accommodating 

encounters with fellow citizens, offering recreational opportunities and are of 

considerable social and commercial value (Spagnolo and de Dear, 2003a). The comfort 

that people experience when participating in activities in outdoor environments affects 

their use patterns and the acceptance of the places (Zacharias et al., 2001; Givoni et al., 

2003; Thorsson et al., 2004; Eliasson et al., 2007; Walton et al., 2007; Tseliou et al., 2010; 

Gehl, 2011; Lenzholzer, 2012). Despite extensive theoretical and empirical studies on 

indoor thermal comfort over the last century and the serious challenges of climate 

change and urbanization, research on human comfort in outdoor urban spaces has 

received less attention over the last two decades, although a substantial increase in the 

number of publications can be observed in recent years. From the basic needs and 

requirements of the urban population to a wide range of policy objectives, the study on 

outdoor comfort can provide climate-responsive strategies and guidelines for urban 

planning and municipal policy practices to facilitate sustainable development and 

residents’ well-being. 

Two typical genres of theoretical models dominate comfort research, namely the heat-

balance model (Fanger, 1970; Höppe, 1999; Jendritzky et al., 2001; Bröde et al., 2012) 

and the adaptive model (de Dear and Brager, 1998; Nicol and Humphreys, 2002), which 

provide a theoretical basis for in-depth studies. State-of-the-art outdoor comfort 

modeling defines the objective thermal conditions by rational indices and unravels 

contextualized human adaptation through surveyed subjective thermal sensations, 

considering human psychological factors pertaining to assessments and preferences of 

meteorological conditions (Auliciems, 1981; de Dear and Brager, 1998; Potchter et al., 

2018; de Dear et al., 2020). The last  decade has witnessed a rapid growth of the number 

of in-situ field studies carried out in different geographical regions with distinct climates 
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for calibrating rational indices based on the heat balance model and developing new 

comfort models for applications in outdoor urban spaces by considering subjective 

thermal sensation caused by context-based human adaptations (Kumar and Sharma, 

2020).  

Yet, the dominant comprehensive conceptual framework considering contextual 

influences and the active role of individuals still remains weak. Previous empirical 

investigations have mainly calibrated and localized the heat balance indices based on the 

subjective comfort assessments stemming from local sample population. The systematic 

understanding on how individuals’ socio-demographic, behavioral, and psychological 

differences influence subjective comfort assessments requires more quantitative 

analyses of the pertinent influential factors and the way they affect comfort assessment. 

This PhD study examines relationships between human comfort assessment and an 

expanded set of influential factors. In light of related theoretical models (Knez et al., 

2009; Lenzholzer and de Vries, 2019; Shooshtarian, 2019), the main objective of this 

dissertation is developing a comprehensive understanding of subjective outdoor comfort 

through:  

• Examining the nature and strength of potential nonlinear relationships between 

subjective comfort assessment and an expanded set of influential factors.  

• Exploring the functional structure of exogenous and endogenous variables with 

direct and indirect effects on human comfort assessment in urban public spaces 

instead of the straightforward pathway of causal effects. 

• Introducing and verifying heterogeneity in individuals’ comfort assessments by 

allowing variations in individuals’ preferences, expectations, and adaptations 

instead of generalizing outdoor assessments for the “average person” across all 

conditions.  

1.4 Outline of the dissertation 

This dissertation consists of eight chapters. The outline of the contents is depicted in 

Figure 1.1. The details of each chapter are as follows.  

Having presented in this chapter a brief discussion of the background, motivation, 

problem statement, and research objectives of this doctoral research project, the next 

chapter provides a literature review, which summarizes the development of outdoor 

comfort assessment modeling. A general overview is given with respect to the concept 
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of comfort, the difference between indoor and outdoor applications, the development 

of modeling methodology and field studies in different climate zones all over the world. 

The main gaps in this literature are identified, which constitute the starting point for this 

PhD study.  

A comprehensive conceptual framework is proposed in Chapter 3 with a broader range 

of influential factors which includes both microclimatic and environmental variables and 

individuals’ socio-demographic characteristics, behavioral patterns, and psychological 

factors.  

Chapter 4 introduces the data collection, including study location selection, 

questionnaire design, fieldwork of in-situ measurement and questionnaire-based survey. 

In addition, the results of descriptive statistical analysis on the dataset are presented 

about respondents’ socio-demographic characteristics and behavioral factors related to 

visiting of the study location. 

Chapter 5 explores the relationships between human comfort and the expanded set of 

influential factors, including both meteorological and environmental variables, and 

human factors. The relationships between outdoor comfort assessment and influential 

variables are examined using linear and nonlinear regression models.  

In Chapter 6, a path model is introduced to explore the direct and indirect effects of 

various factors on outdoor comfort assessment. Compared with the linear regression 

model, the path model provides more details of the patterns of how the exogenous and 

endogenous variables impact human comfort assessment 

Chapter 7 studies heterogeneity between different groups of people in terms of comfort 

assessment. The latent classes are identified based on their path structure. 

Finally, Chapter 8 concludes the thesis with a summary of the main findings and 

conclusions. The chapter also discusses the implications and limitations of this study. 

Further, directions for future studies are indicated in this chapter.  
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2.1 Introduction 

As mentioned in the introduction, urban residents are vulnerable to the adverse effects 

in terms of thermal stress, extreme weather and environmental health risks when 

exposed to outdoor urban environments (Kovats and Hajat, 2008; Steeneveld et al., 

2011). Given the rapid urbanization, on the other hand, the associated serious 

degradation of environmental quality and significant decrease in thermal comfort levels 

have a great influence on the number of visitors and activities in urban public spaces 

(Aljawabra and Nikolopoulou, 2010; Fong et al., 2019). Comfortable outdoor spaces 

become a valuable resource and are essential for urban livability and vitality (Mills et al., 

2010; Chen and Ng, 2012).  

Unlike indoor settings, outdoor urban spaces are dynamic and non-uniform, in which 

microclimatic and environmental conditions, especially wind speed, solar radiation, 

sound pressure level and air quality, vary substantially (Höppe, 2002). For many years, 

outdoor thermal comfort has been examined by various thermal indices focusing on 

aggregated thermal effects related to physical and physiological aspects (de Freitas and 

Grigorieva, 2015, 2017; Coccolo et al., 2016; Potchter et al., 2018). In parallel, significant 

differences between objective prediction by rational indices and subjective assessments 

obtained through questionnaire-based surveys on outdoor comfort were found in 

different regions around the world (Potchter et al., 2018). In fact, perceived comfort is 

more than neutral thermal sensation based on heat balance. It is a cognitive process 

involving many factors in terms of physical, physiological, psychological, and other 

processes (ASHRAE, 2017; Binarti et al., 2020). When simulating thermal sensation and 

assessing thermal comfort in urban outdoor environments, the predations using thermal 

indices alone become problematic  (Nikolopoulou et al., 2001; Nikolopoulou and 

Steemers, 2003; Knez and Thorsson, 2006, 2008; Nikolopoulou and Lykoudis, 2006; 

Eliasson et al., 2007; Thorsson et al., 2007; Klemm et al., 2015; Lenzholzer and de Vries, 

2019). 

In recent years, searching for the most suitable approach to predict outdoor thermal 

comfort in a certain climate zone has become a research trend (Johansson et al., 2014; 

Pantavou et al., 2014; Coccolo et al., 2016; Potchter et al., 2018). Field investigations 

have been conducted to define the localized outdoor thermal comfort boundaries for 

improving the local applicability of the rational index and to elaborate the urban 

environments in reference to individuals’ comfort assessment (Johansson et al., 2014; 
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Lam et al., 2018; Potchter et al., 2018; Shooshtarian et al., 2018; Baruti et al., 2019; 

Dunjić, 2019; Shooshtarian, 2019). Hence, it is generally admitted that defining human 

outdoor comfort need to take both microclimatic variables and context-based human 

factors into account (Becker et al., 2003; Givoni et al., 2003; Nikolopoulou and Lykoudis, 

2006; Kántor et al., 2012).  

During the last two decades, research on outdoor comfort modeling has significantly 

increased, which is mainly due to the response to the increasing urban environmental 

stress and heat load (Spagnolo and de Dear, 2003a; Johansson et al., 2014). Since the 

early 2000s, the concerns over climate change and environment matters have been 

widespread to outdoor thermal comfort. Research has been steadily increasing until 

2010 when the number of outdoor comfort studies was exploding (Potchter et al., 2018). 

The field studies using rational indices coupled with surveys of subjective thermal 

sensation and comfort assessment have been extensively documented and reviewed 

with an aim to improve the feasibility of rational thermal indices in outdoor 

environments (Brager and de Dear, 1998; Chen and Ng, 2012; Rupp et al., 2015; Coccolo 

et al., 2016; Potchter et al., 2018; Dunjić, 2019; Elnabawi and Hamza, 2019; Binarti et al., 

2020; Shooshtarian et al., 2020). Because neutral or preferred thermal sensation have a 

varying ranges, the effects of human adaptation have been conceived as depending on 

geographical and seasonal contexts and person-related factors, such as individuals’ age, 

gender, health, socio-cultural backgrounds, experiences, and expectations (Andrade et 

al., 2011; Lin, et al., 2013; Pantavou et al., 2013; Potchter et al., 2018; Kumar and Sharma, 

2020) 

This chapter reviews the well-known thermal indices and a chronological series of 

empirical outdoor comfort research related to human factors (e.g., age, gender, body 

build, clothing, activity, perceptions, and preferences related to thermal condition) and 

in different regions with diverse climatic and cultural contexts. A substantive overview 

of the research articles pertaining to the development of methodologies in modeling 

outdoor comfort through field studies will be reviewed.  

The reminder of this chapter first presents the development of different outdoor 

thermal comfort indices. Then, adaptive models are introduced, which is allocated to the 

key concepts of human thermal adaptation including three dimensions: physiological 

acclimatization, behavioral adjustment, and psychological adaptation. To provide the 

information on how to specify thermal comfort condition using two approaches, the heat 

balance model and adaptive model, comfort studies using a context-based adaptive 
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approach are reviewed. This review reveals the applicability of existing approaches to 

assessing outdoor comfort and the challenges faced, which leads to the important role 

of human and contextual factors in the development of outdoor comfort modeling.  

2.2 Outdoor thermal comfort indices 

According to the classic or deterministic understanding, thermal comfort is driven 

exclusively by physics of the body’s heat exchange with its immediate environment (de 

Dear et al., 2016). Up to now, more than 165 objective thermal indices have been 

developed to assess thermal conditions of the environment, to define human thermal 

comfort and to rank thermal stress (de Freitas and Grigorieva, 2015, 2017). Thermal 

indices have been primarily applied to evaluate thermal sensation and thermal comfort 

in various climatic regions (Singh et al., 2011). Thermal indices can be divided into (1) 

direct index – directly derived from environmental variables, (2) rational index – based 

on the human heat balance model considering meteorological variables along with 

metabolic rate and clothing insulation, and (3) empirical index – define human comfort 

in a specific microclimate, formulated as regressions (linear/ nonlinear) based on data 

observed from the field studies including onsite measurements on meteorological 

variables and questionnaire-based surveys on subjective assessment and human factors  

(Coccolo et al., 2016; de Freitas and Grigorieva, 2017; Dunjić, 2019; Binarti et al., 2020).  

2.2.1 Direct index 

The collective effects of meteorological variables, such as air temperature, humidity, 

wind speed and solar radiation, were used to define thermal comfort level in the form 

of direct indices with simplified formulae. Initially, the direct indices were applied for in 

industries and the military applications with extreme weather conditions that might 

negatively influence people’s productivity, efficiency and even their survival (Epstein and 

Moran, 2006). Since then, the Wet Bulb Globe Temperature (WBGT) was proposed as an 

international standard (Yaglou and Minaed, 1957). The heat index (HI) was designed for 

warm environment and wind chill index (WCI) was designed for cold environment 

(Steadman, 1979a). Several direct indices have been introduced to calculate thermal 

comfort level in various climatic conditions (Coccolo et al., 2016; Sen and Nag, 2019). 

2.2.1.1 Wet Bulb Globe Temperature 
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WBGT is a type of apparent temperature applied to estimate the effect of thermal stress 

in direct sunlight, which takes air temperature, humidity, wind speed and visible and 

infrared radiation. WBGT was used to define appropriate exposure levels to high 

temperatures in different applications, such as sporting events and the military. WBGT 

for the outdoor environment is defined as (ISO 7243, 1989; Budd, 2008): 

𝑊𝐵𝐺𝑇 = 0.7𝑇𝑤 + 0.2𝑇𝑔 + 0.1𝑇𝑎                                                                                  (2.1) 

where 𝑇𝑔 is globe temperature, 𝑇𝑎  is dry-bulb air temperature, while 𝑇𝑤 is the natural 

wet-bulb temperature. 

2.2.1.2 Heat Index 

HI combines the effects of air temperature and relative humidity (Steadman, 1979b) and 

is derived from a multiple regression model (Błażejczyk et al., 2012) expressed as: 

𝐻𝐼 = −0.8784695 + 1.61139411 ⋅ 𝑇 + 2.338549 ⋅ 𝑅𝐻 − 0.14611605 ⋅ 𝑇 ⋅ 𝑅 

   −0.012308094 ⋅ 𝑇2 − 0.016424828 ⋅ 𝑅𝐻2 + 0.02211732 ⋅ 𝑇2 ⋅ 𝑅 

               +0.00072546 ⋅ 𝑇 ⋅ 𝑅𝐻2 − 0.000003582 ⋅ 𝑇2 ⋅ 𝑅𝐻2                               (2.2)  

where 𝑇 is the air temperature (℃) and 𝑅𝐻  is the relative humidity (%). The neutal 

sensation is defined as HI > 27℃. 

 2.2.1.3 Wind Chill Index 

WCI measures how cold people feel when staying in outdoor environments. WCI is based 

on the rate of heat loss from exposed skin caused by wind and cold. Wind draws heat 

from the human body, which drives down skin temperature and eventually the internal 

body temperature. Thus, a new WCI, namely Wind Chill Temperature (WCT) (OFCM, 

2003), was developed, which improves the previous WCI with progresses in knowledge 

of heat exchange. WCT is defined with a thermal scale from “comfortable” (>0℃) to 

“extreme cold risk” (<55℃) and expressed as: 

𝑊𝐶𝑇 = 13.12 + 0.6215𝑇 − 11.37𝑣10
0.16 + 0.3965𝑇𝑣10

0.16                                     (2.3) 

where 𝑇 is the air temperature (℃) and 𝑣10 is the wind speed at 10m of height (km/h). 
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2.2.2 Rational index 

In recent decades, a number of thermal indices based on energy transfer mechanisms 

and the heat balance between human body and environment have been developed to 

assess thermal comfort in outdoor spaces. Fanger (1970) initially proposed a model for 

computing the heat gain and loss of human body in a steady state and uniform thermal 

condition. Since then, the principles of thermodynamics of the Pierce two-node model 

were introduced for predicting thermal comfort condition (Gagge, 1936; Gagge et al., 

1986). For two-node model, it simplifies the human body into a two-layer structure with 

skin and core, which is represented by a concentric cylinder. Later, an increasing number 

of segments of human thermoregulatory model was developed which determine the 

prediction accuracy, since the anatomical structure of human body significantly 

influence the heat exchange between the body and the ambience (Katić et al., 2016). 

The multiple segment model abstracts the human body into multiple segments, and each 

segment is divided into skin, fat, muscle, bone, and other layers. Each layer in each 

segment is regarded as a heat transfer node with thermal physiological parameters and 

is controlled by energy and mass conservation equations. 

With the progress in knowledge on the physics regarding mechanism of energy exchange 

between human body (represented by physiological thermoregulatory system of 

manikin model) and immediate ambient environment as well as the understanding of 

personal factors in terms of clothing level and metabolic rate (Katić et al., 2016), most of 

heat balance-based thermal indices were developed under steady state conditions or 

equivalent temperatures transferred from indoor to outdoor with the equilibrium of the 

thermo-regulation system (Błażejczyk et al., 2012). Multiple segment models have been 

developed to tackle the challenge when outdoor thermal comfort assessment requires 

the simulation of asymmetric boundary thermal conditions and transient environments. 

The apparent limitation of direct indices was improved by the heat balance model that 

have been developed to describe the relationship between thermal environment, 

personal factors, and human thermal sensation. However, the original heat balance 

model is only applicable in the steady-state environments, while the modified rational 

thermal indices based on heat balance models are feasible in the nonuniform and 

transient environments (Katić et al., 2016).  

Since the last two decades, various indices grounded on the heat balance theory have 

been used for linking human thermal comfort assessment to meteorological variables in 

outdoor environment (de Freitas and Grigorieva, 2015, 2017; Binarti et al., 2020). 
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According to an examination of thermal indices (de Freitas and Grigorieva, 2017; 

Potchter et al., 2018), Predicted Mean Vote (PMV) (Fanger, 1970), Physiological 

Equivalent Temperature (PET) (Höppe, 1999), Standard Effective Temperature (SET*) 

(Gagge et al., 1986) and the version for outdoor application (OUT_SET*) (Pickup and de 

Dear, 2000), and Universal Thermal Climate Index (UTCI) (Jendritzky et al., 2001) account 

for most of applications in previous investigations on outdoor thermal comfort. 

Specifically, among others, PET, UTCI, OUT_SET* are designed for outdoor applications. 

2.2.2.1 Predicted Mean Vote 

PMV is a well-known thermal index which is based on one-node human 

thermoregulatory model and defined by six variables, such as air temperature, relative 

humidity, radiation, wind velocity, metabolic rate and clothing insulation (Fanger, 1970; 

Potchter et al., 2018). PMV is represented by the average value of people’s thermal 

sensation vote with 7-point scale (-3 = very cold to +3 = very hot). In addition, the 

Predicted Percentage of Dissatisfied (PPD) was presented to describe the ratio of the 

unsatisfied sample with the studied thermal conditions. The detailed interpretation of 

PMV is given in ISO 7730 (ISO 7730, 2005). The neutral thermal sensation can be archived 

when the heat produced by metabolism equals the heat exchanged to the environment 

through skin and respiration.  

PMV was derived statistically from thermal sensation votes of subjects in a climate 

chamber with steady-state thermal condition. Hence, PMV-PPD was initially applied for 

assessing indoor thermal comfort. PMV is limited to give a realistic prediction on thermal 

condition of human body since the mean skin temperature and sweat rate are 

dependent on human activity alone, not on climatic conditions (Gagge et al., 1986). Later 

on, “Klima-Michel-Modell” (KMM) was introduced in PMV for outdoor applications by 

using easily obtainable meteorological data as inputs and adding the variables regarding 

short and long wave radiations (Jendritzky and Nübler, 1981). KMM stems from the 

thermo-physiological assessment conducted for a 35 years old male with 1.75m height 

and 75kg weight, assuming 172.5W work load corresponds to walking at 4km/h (Kim et 

al., 2009). A calculation program of PMV-PPD is described in ISO7730 (ISO 7730, 2005). 

2.2.2.2 New Standard Effective Temperature  

As an improvement of the Effective Temperature (ET*), SET* was proposed based on 

two-node model, covering heat exchange through radiation, convection and evaporation, 
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and considering clothing insulation and metabolic rate (Gagge et al., 1986). SET* is 

defined as the equivalent temperature of an isothermal environment, in which relative 

humidity is 50%, wind speed is lower than 1.5m/s, and air temperature equals to mean 

radiant temperature. In this isothermal environment, the human body with standard 

clothing based on the metabolic activity would have the same heat stress and thermo-

regulatory strain as in the actual environment. For outdoor applications, SET* has been 

extended to OUT_SET*, which adds the mean radiant temperature as an important 

influential variable.  

2.2.2.3 Physiological Equivalent Temperature 

PET is a widely and frequently used thermal index specially for outdoor applications 

(Johansson et al., 2014; Coccolo et al., 2016). Based on the Munich Energy-Balance 

Model for Individuals (MEMI),  PET is defined as the air temperature at which the heat 

balance of the human body is maintained with core and skin temperature equal to those 

under the conditions being assessed (Höppe, 1999). The equation based on heat balance 

theory is expressed as: 

𝑀 +𝑊 +𝑅 + 𝐶 + 𝐸𝐷 + 𝐸𝑅𝑒 + 𝐸𝑆𝑤 + 𝑆 = 0                                                            (2.4) 

where 𝑀 is the metabolic rate, 𝑊 is the physical work output, 𝑅 is the net radiation of 

the human body, 𝐶 is the convective heat flow, 𝐸𝐷 is the latent heat flow to evaporate 

water into water vapor diffusing through the skin, 𝐸𝑅𝑒  is the sum of heat flow for heating 

and humidifying the inspired air, 𝐸𝑆𝑤 is the heat flow due to evaporation of sweat and 𝑆 

is the storage heat flow for heating and cooling the body mass. The unit of all heat flows 

is the watt. The individual terms have positive signs in this equation if they result in heat 

gain for the human body, or they have negative signs in the case of heat loss (Höppe, 

1999). From the literature, the neutral PET of individuals varies in different climatic and 

cultural contexts (Lin and Matzarakis, 2008; Lin et al., 2010; Cohen et al., 2013). In 

addition, the modified PET (mPET) has been developed based on a multi-segment human 

thermoregulatory model and a multi-layer clothing model, which improves original PET 

to react to the variation of relative humidity and clothing insulation (Chen and Matzarakis, 

2014). 

2.2.2.4 Universal Thermal Climate Index 



Comfort in Urban Public Spaces 

22 

The newly developed UTCI appeared in 1999 and since then its use has constantly 

increased (Coccolo et al., 2016). Defined as the air temperature of reference 

environment given the combination of meteorological variables (air temperature equals 

to mean radiant temperature, wind velocity equals 0.5m/s at the height of 10m, relative 

humidity equals 50% but up to vapor pressure of 20hPa, and metabolic rate equals 135 

W/m2), UTCI aims at reflecting the human physiological response to the multi-

dimensionally defined actual outdoor thermal environment with a one-dimensional 

quantity. The 10-point scale denotes the thermal sensation from -40˚C (extreme cold 

stress) to +46˚C (extreme hot stress) and the neutral sensation falls in the range between 

9˚C and 26˚C (Bröde et al., 2012).  

UTCI is based on the multi-node dynamic thermo-physiological UTCI-Fiala model (Fiala 

et al., 2012) which is regarded as the most advanced thermoregulatory model with both 

passive and active systems. The passive thermo-physiological system of human body is 

comprised of 15 cylindrical body elements in 3 categories in terms of anterior, posterior, 

and inferior. Each element consists of 7 different concentric tissue material layers 

including brain, lung, bone, muscle, viscera, fat, and skin. Furthermore, the skin is divided 

into inner and outer layers. The passive thermo-physiological system of UTCI-Fiala model 

embraces the bio-heat transfer, metabolic heat generation, and blood circulation. The 

heat exchange between human body and environment in the manner of convection, 

evaporation, radiation, and respiration. The thermoregulatory responses of the central 

nervous system, such as vasoconstriction and dilation of the cutaneous blood flow, 

shivering and sweating. The calculation equation of UTCI (Bröde et al., 2012) is expressed 

as: 

𝑈𝑇𝐶𝐼(𝑇𝑎, 𝑇𝑚𝑟𝑡 , 𝑣, 𝑝𝑎) = 𝑇𝑎 + 𝑂𝑓𝑓𝑠𝑒𝑡(𝑇𝑎 , 𝑇𝑚𝑟𝑡 , 𝑣, 𝑝𝑎)                                          (2.5) 

where 𝑇𝑎  denotes the air temperature (℃), 𝑇𝑚𝑟𝑡  denotes the mean radiant temperature 

(℃ ), 𝑣  is the wind speed (m/s), 𝑝𝑎  is the water vapor pressure (hPa) and 𝑂𝑓𝑓𝑠𝑒𝑡 

denotes the deviation from air temperature.  

Clothing insulation is determined as a function of the air temperature and wind speed in 

real-world conditions using an adaptive clothing model (Fiala et al., 2012). UTCI is 

applicable in all climates with the acclimatizing clothing model (Błażejczyk et al., 2012). 
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2.2.3 Empirical indices 

Based on psychological thermal comfort definition given by ASHRAE (ASHRAE, 2017), 

empirical indices have been developed for assessing the human comfort in a certain 

microclimate which expresses thermal comfort condition based on the formula of 

explanatory variables derived from onsite monitoring and surveys (Coccolo et al., 2016). 

The procedures are specifically applied for the selected locations, where the empirical 

indices are defined and validated. The famous empirical indices are Actual Sensation 

Vote (ASV) (Nikolopoulou et al., 2001), Thermal Sensation Vote (TSV) (Givoni et al., 2006; 

Lai et al., 2014).  

2.2.3.1 Actual Sensation Vote  

ASV was firstly employed in European project “RUROS”, which is expressed as a linear 

equation based on onsite measurements of meteorological variables (air temperature, 

global radiation, wind speed and relative humidity, which represent the microclimate) 

and questionnaires of subjective comfort assessment in seven different European cities 

(Nikolopoulou et al., 2001; Nikolopoulou and Lykoudis, 2006). The ASV equation 

(Nikolopoulou, 2004) is expressed as: 

𝐴𝑆𝑉 = 𝑎 ⋅ 𝑇𝑎 + 𝑏 ⋅ 𝑆 + 𝑐 ⋅ 𝑉 + 𝑑 ⋅ 𝑅𝐻 + 𝜀                                                                (2.6) 

where 𝑇𝑎  is the dry bulb air temperature (℃), 𝑆 is the global solar radiation (W/m2), 𝑉 is 

the wind speed (m/s), and 𝑅𝐻  is the relative humidity (%). 𝑎 , 𝑏 , 𝑐  and 𝑑  are the 

coefficients, and 𝜀  denotes the error term, which are different corresponding to 

different climatic zones.  

2.2.3.2 Thermal Sensation Vote 

TSV is an empirical index generated by multiple regression with explanatory variables 

derived from onsite measurements and questionnaire-based surveys. The explanatory 

variables include air temperature, wind speed, relative humidity, horizontal solar 

irradiation, and ground temperature. The collective impacts of these meteorological 

variables are formulated with a linear equation and the sensation scale is different for 

each study location (Givoni et al., 2006; Hwang and Lin, 2007; Krüger and Rossi, 2011; 

Lai et al., 2014; Villadiego and Velay-Dabat, 2014; Ye et al., 2015; Amindeldar et al., 2017; 
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Hou et al., 2017; Krüger et al., 2017; Krüger et al., 2017). The formula of TSV is written 

as: 

𝑇𝑆𝑉 = 𝑎 ⋅ 𝑇𝑎 + 𝑏 ⋅ 𝑅 + 𝑐 ⋅ 𝑉 + 𝑑 ⋅ 𝐻 + 𝜀                                                                   (2.7) 

where 𝑇𝑎  is the dry bulb air temperature (℃), 𝑅 is the global radiation (W/m2) or the 

solar radiation (W/m2), 𝑉 is the wind speed (m/s), and 𝐻 is the absolute humidity (g/kg 

air) or relative humidity (%). 𝑎, 𝑏, 𝑐 and 𝑑 are the coefficients, and 𝜀 denotes the error 

term.  

2.3 Adaptive model 

As an alternative to the rational thermal indices-based comfort modeling, an adaptive 

comfort model has been proposed to overcome the limitation of static heat balance 

models. Adaptive model accommodates the role of human adaptation in indoor thermal 

comfort assessment and posits the comfort within a framework of contextualized 

perceptual relativism (Nicol and Humphreys, 1973; de Dear and Brager, 1998; de Dear 

et al., 2020). Similarly, in outdoor environment which is radically unlike the steady state 

of the controlled indoor setting, the approach using thermal index alone is inadequate 

to assess thermal comfort since it fails to account for the human adaptation (Lin, 2009; 

Chen and Ng, 2012). Beyond physical and physiological dimensions, some non-thermal 

factors were addressed to interact with comfort assessment including regional contexts 

and individuals’ socio-demographics and cognition (de Dear and Brager, 1998). It is 

widely acknowledged that people expected warmer condition in the summer season (or 

hot climate zones), or cooler condition in winter (or cold climate zones) (de Dear and 

Brager, 1998; Nicol and Humphreys, 2002; Lin, 2009).  

However, the adaptive models for indoor setting are too simple to apply in outdoor 

conditions. Recent studies on outdoor comfort have been driven by the failure of “one 

size fits all” approaches based on rational indices and inspired by adaptive models. Hence, 

it is more applicable and efficient to define human comfort and discomfort based on 

unified standards and indices while taking local thermal adaptation into account 

(Nikolopoulou and Lykoudis, 2006; Lin, 2009; Kántor et al., 2012). Due to a wide range 

of urban microclimates in urban outdoor spaces, the subjective response to thermal 

condition in outdoor environment may involve more extensive determinants, which is 

obviously different from the response to indoor thermal condition (Höppe, 2002; Reiter 

and De Herde, 2003). Nevertheless, the adaptive approach has been employed in the 
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non-steady state of outdoor environments, with combined objective thermal factors and 

non-thermal factors pertaining to human behavioral adjustment, and physiological and 

psychological adaptations. More realistic modeling of human comfort in outdoor 

environment related to a certain context and the corresponding human expectations 

and behaviors has been proposed (Oliveira and Andrade, 2007; Lin, 2009; Johansson et 

al., 2018; Heng and Chow, 2019). The adaptive approach was applied to explain the 

varying range of neutral or comfortable temperature between cities with similar weather 

conditions, as well as different locations in the same city.  

Human adaptation is the key concept in adaptive approaches and plays an important 

role in outdoor comfort assessment (Brager and de Dear, 1998). To meet reconciliation 

between the environment and comfort requirements, three assumptions in which 

people adapt themselves to the environment are commonly made, involving (1) 

physiological adaptation, (2) behavioral adjustment, and (3) psychological adaptation 

(Höppe, 2002; Nikolopoulou and Lykoudis, 2006). The role of physiological adaptation to 

the thermal effects has shown a gradual decreasing response resulted from a repeated 

exposure to the environmental and meteorological stimuli (Nikolopoulou and Steemers, 

2003; Reiter and De Herde, 2003). Behavioral adjustment implies an active role of 

individual people in managing the comfort level by physical actions. Psychological 

adaptation refers to an altered perception of sensory information due to experiences 

and expectations.  

2.3.1 Physiological acclimatization 

Physiological acclimatization includes all changes of physiological responses stimulated 

by exposure to meteorological factors related to thermal conditions, which causes a 

gradual diminution in the strain induced by such exposure (Brager and de Dear, 1998). 

The physiological response of the human body to a periodical exposure in a certain 

thermal condition, within a couple of days, would change for tolerance with the given 

stimuli. The physiological acclimatization is based on two principles: genetic adaptation 

and acclimatization. The genetic adaptation is related to the genetic adaptability to the 

prevailing climate rather than acquired adaptation. Acclimatization is defined as the 

changes in the settings of the physiological thermoregulation system over a period of 

days or weeks in response to single or a combination of thermal stimuli. 
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2.3.2 Behavioral adjustment 

Behavioral adjustment is related to all modifications that people undertake consciously 

or unconsciously to avoid discomfort thermal condition by modifying heat and mass 

fluxes influencing thermal balance between the body and ambient environment. Brager 

and de Dear (1998) defined behavioral adjustment in terms of three categories, including 

(1) personal adjustment: adjusting to the surroundings by changing personal variables, 

such as clothing, activity, posture, eating food, drinking hot or cold beverages, and 

moving to a different location, (2) environmental adjustment: modifying the 

environments, when control is available, such as opening or closing windows, staying in 

shades, etc., and (3) cultural adjustment, including scheduling activities, adapting dress 

codes, etc. Behavioral adjustment potentially offers an opportunity for people to play an 

active role in maintaining their own comfort. 

2.3.3 Psychological adaptation 

Psychological adaptation encompasses the effects of cognitive and cultural variables and 

describes the extent to which habituation and expectation change one’s perception of 

and reaction to sensory information (Brager and de Dear, 1998). The repeated or chronic 

exposure to an environmental stressor leads to a diminution of the triggered intensity of 

sensation. It was pointed out that people’s reaction to a thermal condition which is less 

than perfect will depend very much on their expectation, personality and what else they 

are doing at that time (McIntyre, 1981). The psychological adaptation was acknowledged 

to largely account for the discrepancy between surveyed and predicted thermal 

sensation (Nikolopoulou et al., 2001; Nikolopoulou and Steemers, 2003; Lenzholzer and 

Koh, 2010).  

2.4 Context-based adaptive approach 

From the view of adaptive theory, people living in different climates and cultures would 

have different long-term thermal backgrounds and environmental attitudes, which may 

influence their psychological evaluation of comfort in urban spaces despite similar 

thermal conditions (Knez and Thorsson, 2006; Lenzholzer and de Vries, 2019). No real 

fixed universal boundaries of comfortable microclimate exist since the range of 

comfortable condition shifts depending on the geographical and seasonal contexts (Lin 

and Matzarakis, 2008; Cohen et al., 2013). In hot climate, a comfort range may tend to 



Chapter 2 Literature Review 

27 

be on a warmer side, while in cold climate it approaches to the cooler side than in the 

hot climate. The similar tendency is also found that the comfortable setting during winter 

lies a little cooler than in the summer. Various lifestyles, behaviors, socio-economic 

states, cultural backgrounds, thermal experiences, thermal tolerances, and adaptation 

may result in diverse comfort assessments (Li and Liu, 2020).  

The criticism on existing approaches based on rational indices alone, therefore, was 

addressed which led to the research interest in the calibration of thermal comfort scale 

of different rational indices based on subjective thermal perceptions and preferences to 

fulfill the different requirements for various climatic and cultural contexts by taking 

human adaptation into account (Lin et al., 2015; Lucchese and Andreasi, 2017). The 

range of thermal comfort for different rational indices were examined through 

comparison between the predictions by rational indices and the subjective thermal 

comfort assessments (e.g., Thermal Sensation Votes and Actual Comfort Votes) derived 

from questionnaire-based surveys.  

The outdoor comfort studies should be reviewed for various climate zones since 

researchers have been dedicated to defining the local boundaries of neutral thermal 

sensation or thermal comfort scale for different thermal indices. The fieldwork of most 

cases may take place within several days, months or different seasons, which are 

accompanied by physical measurements and questionnaire-based surveys (Johansson et 

al., 2014). The procedures can be elaborated as (1) Real-time meteorological data are 

measured and input to thermal indices calculations; (2) The questionnaire data are 

collected to determine the subjective thermal sensation, thermal comfort, and 

preference on overall thermal conditions and single meteorological variables. In some 

cases, more detailed information of respondents is required such as socio-demographics, 

body build, moods, activity, purpose, time of stay, etc.; (3) Regression analysis is applied 

to reveal the relationship between objective thermal indices and subjective comfort 

evaluations in different study areas. Based on the influence of human adaptation, the 

local neutral or preferred range of thermal indices are calibrated. As shown in Table 2.1, 

up to 151 field studies on outdoor thermal comfort have been carried out in different 

climatic zones from 2001 to 2019, according to Köppen-Geiger climate classification. 

Research interest continues to grow with a considerable boost in the number of recent 

publications (Potchter et al., 2018). Almost all field investigations employed 

questionnaire-based surveys in combination with simultaneous onsite measurements.  
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From the literature, the psychological adaptation is regarded as significantly influencing 

human outdoor thermal comfort, in addition to the microclimatic variables. The human 

factors related to socio-demographic characteristics, clothing insulation, activity, 

purpose, duration of stay, thermal history and experiences, preferences and 

expectations on overall thermal conditions and single meteorological and environmental 

variables were proposed to offset the regional deviations (Lin, 2009).  

2.5 Conclusions 

This chapter summarized the literature on the development of existing mainstream 

outdoor comfort modeling methodologies and presented the state-of-the-art 

knowledge to bridge the gap between the objective thermal indices and subjective 

comfort evaluations based on an understanding of the active role of human adaptation 

and climatic and cultural contexts in a real-world situation. As presented, the direct 

indices based on the combined effect of meteorological variables were initially adopted 

as simplified approaches for assessing and predicting outdoor comfort and discomfort. 

Since then, with the progress in knowledge of human body’s thermoregulation and 

mechanism of heat transfer and advancement of computation capability, rational indices 

dominate research on outdoor thermal comfort and related practices.  

Since the heat balance-based thermal indices lack human specific inputs and contextual 

information, as well as designated thresholds for accurate prediction of human comfort 

assessment in outdoor complex environments, emphasis is placed on the differential 

contextual conditions and human adaptations, and the resulting impacts on outdoor 

comfort assessment. In recent years, more and more research attention and production 

have been focusing on the active role of human acclimatization and adaptation, which 

accounts for the varying outdoor comfort assessment in different geographical and 

seasonal contexts. Field studies have been carried out which is generally comprised of 

on-site field measurements to retrieve the meteorological variables and the surveys on 

subjective comfort votes. 

The review of the mainstream of existing field studies on outdoor comfort indicates that 

an important future research avenue is the survey-based field investigation to link 

human physiology, psychology, and behavior to comfort assessment. Studies have 

evidenced that individuals’ outdoor comfort assessments are strongly related to their 

past experiences and current behaviors. Nevertheless, the commonly used approaches 

for outdoor comfort assessment, e.g., the heat balance-based thermal index, the 
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empirical adaptive approach, or the combination of both, have failed to provide realistic 

and context-specific dataset for analysis and modeling. A significant knowledge gap in 

the field of outdoor comfort assessment still exists. Few studies considered the 

environmental stimuli, such as noise, glare of sunlight and air quality in outdoor spaces. 

Although the subjective assessment is able to define human comfort beyond a “universal” 

neutral thermal sensation, which involves the human thermal preference and adaptation 

based on the regional climate and culture, and the human sensitivity to different 

meteorological and environmental conditions. People’s thermal experiences, 

expectations and perceptions have not been used as inputs in the measurement of 

outdoor comfort. From the adaptive theory point of view, the consideration of a 

complete interaction between human and environment through taking subjective 

sensation of abovementioned environmental stimuli into account in the quantification 

of overall outdoor comfort would potentially improve the reliability of modeling.  

Although a few relevant studies can be found in the literature, the underlying variation 

in the mechanism of comfort assessment among surveyed population is not 

systematically understood and worth exploring (Krüger and Drach, 2017). Attempts to 

understand individual differences in comfort assessment require further elaborating the 

specific effects of human factors, such as socio-demographic characteristics, emotions, 

body build, activity, transport modes, purpose of using outdoor spaces, duration in 

outdoor spaces, etc. Accordingly, the following chapters in this dissertation are designed 

to expand our knowledge horizons on the comprehensive outdoor comfort modeling, 

offering insights on the perspectives of human socio-demographic backgrounds, 

behavior, and psychology. 
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3.1 Introduction 

Outdoor comfort is an interdisciplinary research subject, involving bioclimatology, urban 

physics, physiology, psychology, and social behavior (Nikolopoulou, 2011). As revealed 

in many empirical investigations, the subjective human perceptions of ambient 

environmental conditions are essential in their thermal sensation and overall comfort 

levels. However, two main theoretical models, namely heat balance model and adaptive 

model, that underpin the knowledge of outdoor comfort assessment are not able to 

account for the influences of human psychological perception and adaptation. The heat 

balance model based on the framework of heat exchange and human physiological 

thermoregulation in steady-state and uniform settings ignores the active role and 

reactions of human in response to the outdoor thermal conditions. Although, adaptive 

models based on the framework of perceptual temperature related to contextual 

thermal conditions considers the active role of individual subjects and their thermal 

history and experiences, the limited set of variables considered in the model constraints 

its application for systematically understanding comfort assessment in outdoor 

environments  (Shooshtarian et al., 2020).  

From the perspective of steady state settings, due to the large variability in urban 

microclimates, especially the fluctuating wind speed and solar radiation, the heat flow 

to and from human body cannot be balanced in the real-world dynamic and nonuniform 

outdoor situations (Höppe, 2002). Regardless theory and practice, the assessment of 

human comfort in outdoor urban environments is highly complicated. According to the 

numerous empirical investigations, the rational thermal indices are inadequate to 

understand and assess outdoor comfort alone. The most significant reason is that these 

approaches focus on the thermo-physiological component of comfort but ignore the 

subjective factors pertaining to the perception of environment (Spagnolo and de Dear, 

2003a; Knez and Thorsson, 2006; Lin, 2009; Lenzholzer, 2010, 2012; Andrade et al., 

2011). Moreover, the strong relationship between comfort and usage patterns in 

different outdoor public spaces has been well documented (Nikolopoulou et al., 2001; 

Zacharias et al., 2001, 2004; Thorsson et al., 2004; Aljawabra and Nikolopoulou, 2010; 

Yung et al., 2019b), which shed light on how behavioral factors influence outdoor 

comfort assessment.  

The theory underlying the adaptive model significantly influenced research trends about 

outdoor comfort. Realizing the active role of humans in determining outdoor comfort, 
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explorations on contextual and human factors have been extended to outdoor 

environments in various climatic zones (Potchter et al., 2018; Binarti et al., 2020; Kumar 

and Sharma, 2020; Li and Liu, 2020). Many trials were conducted in different locations 

for calibrating thermal indices based on surveyed human subjective perceptions and 

preferences. Apart from meteorological factors of urban microclimate, individual’s 

behavioral, physiological and psychological adaptations play a significant role in thermal 

comfort assessment (Amindeldar et al., 2017). However, the shortcomings of outdoor 

comfort modeling will not be addressed if the conceptual framework of outdoor comfort 

assessment is not improved. Although several localized standards have been established 

for the evaluation of outdoor thermal comfort, the theoretical knowledge concerning 

human behavioral and psychological factors influencing comfort in outdoor 

environments is still limited. Although the importance of physical, physiological, and 

psychological aspects in comfort assessment has been stressed and retrieved through 

field studies, adequate consideration of human factors in comfort modeling is still lacking, 

which must be taken into account for the systematic understanding of comfort 

assessment (Chen and Ng, 2012).  

This research brings about the necessity of a comprehensive conceptual framework with 

an expanded set of both contextual and human factors on comfort assessment in urban 

public spaces. The conceptual framework is proposed with the identification of 

knowledge gaps for exploring and examining (1) the hypothetical relationships between 

comfort assessment and an expanded set of explanatory variables including 

microclimatic and environmental stimuli and human socio-demographic, psychological 

and physiological factors, (2) the hypothetical nonlinear effects of various factors on 

outdoor comfort assessment, (3) the hypothetical intermediate effects of human 

psychological factors, and (4) the differences in the process of individuals’ comfort 

assessment determined by socio-demographic and past behaviors and experiences, 

given the similar microclimatic and environmental conditions in urban public spaces. 

The remainder of this chapter consists of three sections. Section 3.2 provides an 

overview of important concepts of outdoor comfort. These concepts induce the 

analytical evaluation of human and contextual factors in comfort modeling and 

enlightens the proposed conceptual framework with an expanded set of influential 

factors, which is introduced in section 3.3.  
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3.2 Concepts related to comfort 

3.2.1 Thermal sensation and thermal neutrality 

Thermal sensation refers to sensory unconscious acquiring of environmental stimuli by 

receptors in the skin, which is utilized by human body to obtain information concerning 

the thermal condition of external objects or the environment. Thermal sensation is 

conceptually different from thermal comfort which is the satisfied state of mind. Instead, 

thermal sensation represents the evaluation of immediate feeling which results from 

exposure to a thermal environment (Zhang and Zhao, 2009). Thermal sensation is 

normally evaluated by the ASHRAE 7-point scale (ASHRAE, 2017) which ranges from -3 

to +3 (respectively represented by “cold”, “cool”, “slightly cool”, “neutral”, ”slightly 

warm”, “warm”, “hot”).  

The primary objective in conventional outdoor comfort studies is to obtain thermal 

neutral temperature, which is assumed to equal to the temperature related to comfort. 

Thermal neutrality, as the mostly used definition of comfort, refers to the condition 

where more than 80% of the occupants feel neither cool nor hot (ASHRAE, 2017). 

Regression and probit analysis were applied to predict the neutral temperature in 

different regions based on surveyed subjective comfort assessment. The regression of 

mean thermal sensation over a range of temperatures defines the neutral temperature 

and average of thermal scale at each bin temperature (Humphreys and Nicol, 1998). The 

regression identifies the relationship between mean subjective thermal sensation and 

the predicted thermal comfort while the probit analysis predicts the neutral temperature 

based on respondents’ thermal preference, which is split into two categories: “warmer 

than neutral” and “cooler than neutral”. The neutral responses to thermal preference 

are evenly divided into the abovementioned two categories. The intersection between 

the two curves generated by probit analysis indicates a neutral temperature for the 

target population. 

3.2.2 Thermal preference and preferred temperature 

Thermal preference is a primary measure of thermal satisfaction and is normally 

evaluated with McIntyre preference scale (McIntyre, 1982). Three types of preferences 

have been applied, including “cooler”, “no change” and “warmer”. Thermal preference 

is related to human adaptation and is influenced by thermal experience and expectation.  
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Preferred temperature is a temperature of a thermal condition where most of occupants 

prefer no change in the surrounding environment. It is a criterion of the optimal thermal 

condition, which is also referred to as optimum temperature. In the case of probit 

analysis, the preferred temperature can be predicted according to surveyed thermal 

preference of respondents. A temperature at intersection between the curves of 

“preferring to higher temperature” and “preferring to lower temperature” is defined as 

the preferred temperature (McIntyre, 1978). Field investigations indicates the preferred 

temperature is a better representative of thermal satisfaction and acceptability (Cheung 

and Jim, 2018).  

3.2.3 Overall comfort 

The overall comfort can be assessed with the 7-point scale, which is similar with ASHRAE 

thermal sensation scale, from “very discomfortable” (-3), “discomfortable” (-2), and 

“slightly discomfortable” (-1) in the left side, “neutral or just right” (0) in the middle, to 

“slightly comfortable”, “comfortable”, and “very comfortable” in the right end.  

3.2.4 Comfort zone 

When defining people’s thermal comfort, a single given temperature is not sufficient. 

Hence, the comfort zone, namely the acceptable thermal range, was introduced into 

comfort study and standards (ASHRAE, 2017). The thermal range in which at least 80% 

of occupants are thermally satisfied is assumed to be a comfort zone. To determine the 

comfort zone, two methods are applied, a direct approach and an indirect approach. In 

the direct approach, occupants are asked for their choices on whether accepting the 

thermal variables or not. In the indirect approach, comfort zone is calculated based on 

the three central categories of thermal sensation scales. The indirect approach is mostly 

used in outdoor comfort studies, however, its validity is challenged in outdoor empirical 

investigations since the meteorological and environmental variables are varying quickly 

and the interaction between human and environments is complex (Höppe, 2002; Lai et 

al., 2014; Huang et al., 2016). 

3.3 The human factors 

The physiological difference between comfort and thermal sensation was confirmed by 

experimental investigation a long time ago (Gagge et al., 1969). As a rational experience, 

thermal sensation is directed towards an objective world in terms of cold and warm; 
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thermal comfort, on the other hand, is an emotional experience and relative to 

expectation (Hensen, 1990). Instead of thermal neutrality, an individual’s comfort 

emerges from a desired sensation or satisfaction (Humphreys and Hancock, 2007; Zhang 

and Zhao, 2009; Ning et al., 2016). In contrast to heat balance theory, the mainstreaming 

of adaptive comfort principles assumes that comfort will derive from the standpoint of 

adaptation, which is more than a derivative of neutrality state or an outcome of steady-

state heat balance (Humphreys et al., 2007; Yang et al., 2014). Individuals have the ability 

to be more comfortable through access to opportunities to modify conditions such as 

changing clothing or activity level (Cole et al., 2008). The “average person” comfort has 

been specified individually and extended by taking into consideration dynamic, 

integrated and participatory aspects (Chappells and Shove, 2005; Cole et al., 2008; Nicol 

and Roaf, 2017). The postulation that comfort is the physical state of a passive individual 

recipient has been developed and advanced to the psychological perception derived 

from their experience, expectation, and reaction. The individual’s role is gaining 

increasing importance, therefore drawing more and more attention within comfort 

modeling (Singh et al., 2011). In addition, comfort has been socially determined and 

defined by norms and expectations, shifting from one time, place, and season to the 

other. The context-based individual and social factors on thermal perception have been 

studied through investigation in outdoor spaces, which reveal the specific thermal 

requirements of the occupants and their relationship with the moderating factors 

(Aljawabra and Nikolopoulou, 2010; Shooshtarian and Ridley, 2017). Moreover, the 

culture and climate that people are used to, their emotional state, visiting purpose and 

their use of public spaces may potentially also link to individuals’ subjective evaluation 

of outdoor comfort (Knez and Thorsson, 2006; Thorsson et al., 2007; Knez et al., 2009; 

Aljawabra and Nikolopoulou, 2010). The age, gender, metabolic rate, clothing insulation 

and body build were examined in previous studies (Thorsson et al., 2007; Andrade et al., 

2011; Krüger and Rossi, 2011; Nasir et al., 2012; Lin et al., 2013; Pantavou et al., 2013; 

Lai et al., 2014; Tung et al., 2014; Lam et al., 2018). However, there is no consistency in 

the findings regarding the effects of age, gender, and body build. The socio-economic 

factors, including education, job and self-evaluation, were also investigated with respect 

to their influences on human outdoor behavior and thermal perception (Aljawabra and 

Nikolopoulou, 2010). More sensitive to prevailing outdoor climate was addressed among 

individuals with better education and economic status. Further, individuals with better 

economic status reduced their discomfort given the same thermal conditions (Maras et 

al., 2016).  
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The potential relationships between a wide range of individual factors and outdoor 

comfort are worthy to investigate. Compared with the individual’s physiological and 

socio-economic factors, fewer investigations incorporated individuals’ psychological and 

behavioral factors into numerical modeling. The research focus has shifted to human and 

contextual factors that are conductive to interpreting variations in individuals’ subjective 

outdoor comfort assessments (Nikolopoulou et al., 2001; Nikolopoulou and Steemers, 

2003; Knez and Thorsson, 2006, 2008; Lin, 2009; Lenzholzer and van der Wulp, 2010; 

Lam et al., 2018; Lam et al., 2020). The individuals’ past thermal history has been 

hypothesized as influences on thermal expectations and thus their thermal comfort 

(Brager and de Dear, 1998). Previous studies scratched the surface of human adaptations 

by involving modified expectations as cognitive process directly interacting with 

environmental perceptions and outdoor comfort, which are evidenced at the mercy of 

change relying on variations in states of emotions (Knez and Thorsson, 2006; Lenzholzer, 

2010). Thus, in this study, the effects of psychological and emotional factors are assumed 

to potentially change overall outdoor comfort. As an underpinning of the adaptive model, 

humans play an active role in thermal sensation and comfort assessment rather than 

being a passive recipient. Therefore, the active agent can modify the perception of 

comfort through adjustments in behavior, immediate environments, even social norms 

(Chappells and Shove, 2005).  

3.4 Conceptual framework 

From the perspective of engineering research, comfort assessment is a direct process of 

heat exchange between human body and physical environment. The research 

concerning physiological aspects of comfort indicates that thermal comfort is 

determined by three components, i.e., respondents’ physiological condition, thermal 

attributes of the environment, and the mechanism of heat exchange. This conceptual 

framework is largely accepted and used in thermal comfort standards and modeling 

approaches to define what is a comfortable environment. In fact, especially in a real-

world setting, a comfortable environment is not constrained to thermal attributes. 

Comfort is a complex subjective assessment closely associated with place-related and 

person-related factors in terms of physical, physiological, socio-demographic and 

psychological aspects, that are difficult to model and elaborate (Johansson et al., 2014; 

Shin, 2016). The acceptability and satisfaction of outdoor activities involve the subjective 

assessment of the quality of the given microclimate and environment, which indicates 

how much the outdoor condition fulfils the expectation and needs of the respondent. 
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From the literature, people’s expectations and needs are highly relying on their socio-

demographic background and past experiences, as well as the purpose of being in that 

outdoor environment.  

Thermal comfort is defined as “the state of mind that expresses satisfaction with the 

thermal environment” by ASHRAE (ASHRAE, 2017). As the understanding of comfort is 

constantly evolving, there is more to comfort than physiological response to 

meteorological thermal conditions (Chappells and Shove, 2005). Beyond what is 

described in heat balance models, individuals’ comfort assessment refers to the 

outcome of an interactive process between an individual and the environment. Evidence 

from field investigations prove that individuals’ subjective assessments are much more 

elastic than the predictions of rational indices (Nikolopoulou and Steemers, 2003). 

Findings of previous studies have also acknowledged the role of contextual influences in 

terms of meteorological and socio-cultural conditions, and individual socio-demographic 

characteristics, psychological and behavioral factors in shaping the individuals’ comfort 

expectations and perceptions (Brager and de Dear, 1998; Chappells and Shove, 2005; 

Lam et al., 2018). Assessing individuals’ comfort responses to microclimate and 

environmental conditions of urban public spaces requires measurements of both 

physical conditions and individuals’ assessments. However, no integrated conceptual 

frameworks yet exist to facilitate the implication of the holistic concept of comfort to 

coupled human-place systems (Shooshtarian et al., 2015). To this end, more efforts need 

to focus on conceiving a new conceptual framework of comfort assessment with an 

expanded set of determinants that involves socio-demographic, and behavioral and 

psychological factors apart from meteorological variables. Thereby, a human adaptive 

paradigm is expected to provide more psychological and behavioral insights into the 

process of outdoor comfort modeling. Although substituted by thermal neutrality in the 

heat balance model for engineering simplification, in this thesis, we consider human 

comfort as the research objective and focus on the linkage between outdoor comfort 

assessment in urban public spaces and its influential factors stemming from different 

contextual and individual dimensions. 

Outdoor thermal comfort assessment is reduced to a simplified cause-effect process 

based on a direct relationship between the human body and physical surrounding 

environment. To undertake it, the thermal environment should be evaluated against the 

human thermoregulatory system by thermal indices which are centered on the heat 

balance of the human body. In line with this process, a human is regarded as a passive 

recipient of ambient environmental stimuli with only physiological thermal responses. 
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However, plenty of empirical evidence regarding the deviation and flaw of predictions 

made by thermal indices alone were, to some extent, related to human adaptation in 

the contexts of certain climate and culture.  

Previous conceptual frameworks of outdoor comfort assessment using the heat balance 

model simplify the mechanism of comfort assessment into a straightforward process 

flow from meteorological influences and physiological responses to thermal sensation. 

The primary assumption of steady-state and uniform thermal settings for this 

conventional framework model is violated in the complex outdoor conditions. In order 

to stress the human in the center of the process as an active role interacting with 

environmental stimuli, the framework underlying the adaptive comfort model has been 

proposed based on three dimensions: behavioral adjustment, physiological 

acclimatization, and psychological adaptation (de Dear and Brager, 1998; de Dear, 2011). 

Figure 3.1 presents the widely applied conceptual framework of field studies for thermal 

index modification through subjective assessments. The objective prediction of thermal 

indices based on the measured meteorological data and standardized clothing insulation 

and metabolic rate is calibrated by surveyed subjective thermal sensation for localizing 

thermal sensation scales. The modification of thermal indices with local scales and 

neutral ranges is based on the indirect consideration of the human personal 

characteristics, climatic and socio-demographic backgrounds, previous thermal 

experiences, thermal expectations, and behavioral factors.  

However, comfort assessment is the result of a complex process strongly influenced by 

norms and expectations, which may vary depending on seasons and regions (Chappells 

and Shove, 2005; Nicol and Roaf, 2017). Moreover, people’s expectations of comfort 

change over the years, thus the process of specifying comfort is subject to localized, 

context-dependent considerations (Chappells and Shove, 2005). By this nature, the 

rational indices based on the heat balance model are constantly challenged due to the 

lack of consideration of contextual factors and people’s socio-demographic, behavioral 

and psychological factors. Furthermore, regarded as a cognitive process, outdoor 

comfort assessment is also influenced by physical, physiological, psychological, and other 

processes (Knez and Thorsson, 2006). In this sense, the influence of meteorological 

variables in urban environments only partly accounts for subjective comfort assessment 

(Nikolopoulou and Steemers, 2003). The remaining parts may be explained by the 

contextual factors and individual’s psychological adaptation (Nikolopoulou et al., 2001; 

Knez and Thorsson, 2006; Eliasson et al., 2007; Lin, 2009; Nikolopoulou, 2011). 
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From the theoretical perspective, the structure of the conceptual framework underlying 

outdoor comfort assessment involves three main components dealing with the 

interactions between urban environment drivers, human factors, and behavioral aspects 

(Shooshtarian, 2019). The environmental drivers include urban spatial features, 

microclimatic conditions, and socio-cultural context. Human factors refer to human body 

build, physiological conditions, expectation, preference, and past thermal experience, 

while behavioral aspects involve the type of outdoor activities, and adaptive reactions to 

the outdoor environment. The comprehensive conceptual framework we developed in 

this thesis is rooted in the three components of drivers, given that outdoor comfort 

assessment is a complex and wide-ranging concept. 

Figure 3.2 presents the proposed conceptual framework with an expanded set of place-

related and person-related factors. Besides the factors related to the physical and 

physiological mechanism in the heat balance models, many non-thermal factors are 

incorporated in the expanded conceptual framework of outdoor comfort assessment. 

The physiological and psychological characteristics of respondents vary individually 

which implies errors may be introduced when purely applying the standardized thermal 

indices in outdoor complex situations (Nikolopoulou et al., 2001; Coccolo et al., 2016). 

In our conceptual framework, besides the measured microclimate, people make their 

subjective comfort assessments in urban public spaces mainly based on their 

experiences, preferences, and expectations. Therefore, the mechanism and structure of 

comfort assessment process will be fully speculated involving individual’s psychological 

and behavioral factors. The socio-demographic characteristics of outdoor space users 

are also required in the newly proposed conceptual framework for evaluating their 

outdoor comfort.  

3.5 Conclusions 

Thermal comfort is conceptually described as a state of mind approximating one’s 

satisfaction with the environment, which is difficult to capture through only physical 

factors (Hensen, 1990; van Hoof et al., 2010; ASHRAE, 2017). Given such complexity, 

assessing comfort in outdoor environments is not a simple matter. Despite the 

considerable amount of literature on outdoor comfort, the concept of comfort is still 

ambiguous and lacks consensus in both theoretical models and methodology. This 

chapter has clarified the concept of outdoor comfort and its theoretical background and 

brought insights to the relationship between comfort and its influential factors.  
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As soon as we admit the realm of behavioral and psychological factors to be part of the 

crucial determinants of outdoor comfort assessment, we are courting complexity. 

Advancements have been made in the past decades, however, in acknowledging comfort 

as a condition of the mind expressing holistic satisfaction with the entire environment, 

which should be assessed by subjective evaluation, based on climatic and cultural 

contexts. As presented in this chapter, an expanded research framework incorporating 

psychological, behavioral, and meteorological factors and environmental context is more 

theoretically sound and warrants a comprehensive assessment of outdoor comfort. 
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4.1 Introduction 

The main objective of this doctoral research is to investigate comfort assessment in 

urban public spaces with an expanded set of influential determinants, involving both 

microclimatic and environmental stimuli and human factors, in a certain climatic and 

cultural context. To this end, the data collection was carried out, which consists of four 

sequential parts: Questionnaire design in light of the comprehensive conceptual 

framework, selection of study locations based on an experimental design, detailed plan 

for fieldwork, and administration of simultaneous in-situ measurement and survey. 

Previous empirical investigations which were directly carried out in certain locations 

without experimental design may likely be based on correlated spatial attributes and 

thus result in biased modeling results of comfort assessment. In this study, we therefore 

selected the study locations based on an experimental design for attributes 

combinations of public spaces in terms of urban landscape, vegetation, facilities, and 

services.  

4.2 Study area 

The data collection was conducted in the city center of Eindhoven, The Netherlands. 

Eindhoven is the fifth largest city of the Netherlands with about 230,000 population, with 

abundant high-tech industry. The region ranks high in terms of the number of patents 

per capita across the world. This city is located in the southeast of the country (see Figure 

4.1). 

The study area is located in a mild climate zone, namely Cfb according to the Köppen-

Geiger classification with a typical maritime temperate climate, where summer is 

generally cool and winter is milder than in other climates at similar latitudes  (Kottek et 

al., 2006; van den Hurk et al., 2006). Thus, the UHI effect in Dutch cities has long been 

hypothesized to be relatively insignificant (Heusinkveld et al., 2014). Nevertheless, hot 

summer days with air temperature rising above 30˚C have occurred in the Netherlands, 

and such days are expected to occur more frequently, exacerbated by climate change 

(Huynen et al., 2001).  

The Netherlands is a highly urbanized and densely populated country. Urban 

densification and climate change will affect the livability, especially the human comfort, 

of Dutch cities. Consequently, the UHI effect in Dutch cities becomes increasingly more 
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significant for certain vulnerable groups of the urban population, including the elderly, 

young children, and people with some diseases. Moreover, the climate involves many 

windy and chilly days. The monthly minimum, maximum, and mean air temperatures, 

and monthly precipitation of Eindhoven in 2015 are shown in Figure 4.2.  

 

 

Figure 4.1 Location of Eindhoven in The Netherlands 



Chapter 4 Data Collection and Descriptive Statistics 

63 

 

Figure 4.2 Monthly air temperature and precipitation of Eindhoven in 2015 

4.3 Data collection 

4.3.1 Study location selection 

To avoid bias regarding the influence of attributes and settings of urban public spaces on 

individuals’ outdoor comfort assessments, the related environmental and functional 

attributes should be independent with each other across the study locations. This 

precondition is typically violated in previous studies on outdoor thermal comfort which 

rely on a random selection of locations. To avoid such bias, this study applies the 

principles underlying orthogonal fractional factorial designs to select the locations of the 

field investigations.  

Considering five attributes, each with two levels, including water landscape or fountain 

(W), facility for resting (R), green lawn or land-cover (G), kiosk or catering service (K) and 

trees and shelter proofing sun and wind (S), the full orthogonal experiment design 

involves 32 (=25) possible profile combinations. As shown in Table 4.1, an orthogonal 

fraction of the full factorial design was selected, consisting of eight independent profile 

combinations corresponding with eight different study locations (see Table 4.2) for the 

field investigations. These specific locations (S1 – S8) are marked on the map of 
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Eindhoven city center, as shown in Figure 4.3 with pictures of scene related to different 

locations. 

Table 4.1 The profile combinations of the orthogonal fractional factorial design 

Study area G S K F W 

S1 +1 +1 +1 +1 +1 

S2 +1 -1 -1 -1 +1 

S3 -1 +1 -1 +1 +1 

S4 -1 -1 +1 -1 +1 

S5 -1 -1 -1 +1 -1 

S6 -1 +1 +1 -1 -1 

S7 +1 -1 +1 +1 -1 

S8 +1 +1 -1 -1 -1 

 

Table 4.2 The location of the studied areas 

Study area  Description 

S1  Green space nearby a restaurant “Zwarte Doos” 

S2  Green space nearby landscape water body in “Simon Stevenplein” 

S3  “18 Septemberplein” in Eindhoven city center  

S4  Paved square nearby landscape water body in “Simon Stevenplein” 

S5  Small, paved passageway in “Kennedyplein” 

S6  Aisle and rest zone of central station and bus station in “Neckerspoel” 

S7  Small green space between “Vertigo” building and “Matrix” building 

S8  Green space south of the Auditorium 
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Figure 4.3 The sights and locations of the studied areas (map source: www. mapbox.com) 

4.3.3 Measurement device 

The device used for meteorological measurements was installed and tested in the 

Building Physics Laboratory of the Department of Built Environment in Eindhoven 

University of Technology with the help of technicians two weeks before the in-situ field 

work. All meteorological sensors and the acoustic meter were connected with a data-

logger and charged by a portable power bank. The detailed specifications on sensors for 

meteorological variables, such as air temperature (𝑇𝑎), globe temperature (𝑇𝑔), relative 

humidity (𝑅𝐻) and wind velocity (𝑣) are elucidated in Table 4.3.  

Table 4.3 The specification of sensors for movable microclimate monitor 

Variable Sensor model Resolution Accuracy 

𝑻𝒂 NTC 0.01K ±0.05K 

𝑻𝒈 NTC (in a black ball) 0.01K ±0.05K 

𝑹𝑯 HUMITTER 50U 0.1% ±3%, 10-90% 

𝒗 CLIMA 0.1m/s ±0.3m/s rms, 𝑣 ≤ 5m/s 

±3% rms, 𝑣 > 5m/s 

±5% rms, 𝑣 > 50m/s 
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4.3.4 Field work 

The data collection was carried out in the selected public spaces in Eindhoven from the 

end of March to the beginning of April, during eight inconsecutive days without 

precipitation namely 16, 19, 20, 23, 26 and 27 March and 2 and 3 April, in 2015. The daily 

weather characteristics, including wind velocity (mean: 𝑣𝑚  maximum: 𝑣𝑚𝑎𝑥  and 

minimum: 𝑣𝑚𝑖𝑛 ), temperature (mean: 𝑇𝑚 , maximum: 𝑇𝑚𝑎𝑥  and minimum: 𝑇𝑚𝑖𝑛 ) and 

relative humidity (mean: 𝑅𝐻𝑚, maximum: 𝑅𝐻𝑚𝑎𝑥, and minimum: 𝑅𝐻𝑚𝑖𝑛) in these days 

are listed in Table 4.4. A movable monitoring device was used for measuring all physical 

variables, so the field study altered in different public spaces by time of day. The 

monitoring device had to be tested and set up again when the surveyed location was 

altered. 

Table 4.4 The daily weather characteristics of Eindhoven during the field work 

Date 
𝒗𝒎 𝒗𝒎𝒂𝒙 𝒗𝒎𝒊𝒏 𝑻𝒎 𝑻𝒎𝒂𝒙 𝑻𝒎𝒊𝒏 𝑹𝑯𝒎 𝑹𝑯𝒎𝒂𝒙 𝑹𝑯𝒎𝒊𝒏 

(m/s) (m/s) (m/s) (℃) (℃) (℃) (%) (%) (%) 

16-3-2015 2.3 4.0 0.0 5.8 12.9 -0.8 78 98 50 

19-3-2015 1.8 3.0 0.0 5.7 8.1 1.9 91 99 81 

20-3-2015 1.6 3.0 0.0 3.1 4.9 -0.2 96 99 87 

23-3-2015 1.8 4.0 1.0 4.3 11.9 -3.8 78 98 53 

26-3-2015 4.4 8.0 2.0 4.7 7.2 0.4 90 99 63 

27-3-2015 4.6 8.0 1.0 6.0 11.3 -1.3 76 97 57 

09-4-2015 5.5 8.0 2.0 5.8 9.4 0.6 73 93 48 

10-4-2015 2.1 4.0 1.0 6.3 10.4 -0.3 67 93 41 

 

 

Figure 4.4 The scenes of survey and measurement 
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The portable device with sensors and a data-logger was set up to monitor the 

microclimate conditions and background sound pressure levels automatically. 

Microclimatic variables, including 𝑇𝑎, 𝑇𝑔, 𝑅𝐻 and 𝑣, and sound pressure level (𝑙) were 

measured and recorded automatically by movable devices with sensors and 

corresponding data-logger. The sensors of 𝑇𝑎, 𝑇𝑔 and 𝑅𝐻 were mounted on the tripod 

at the fixed standard height of 1.1m according to ISO7726 (ISO 7726, 1998), and the 

anemometer for 𝑣 was installed at the height of 1.7m. The measuring device was set up 

in the study location and launched 15 min ahead of measurement as a stabilizing period 

in order to obtain reliable results. In addition, an acoustic meter was used for recording 

the background sound pressure level.  

The surveys and measurements were conducted between 10:00 a.m. and 5:30 p.m. with 

the assistance of 54 Master students from the Department of Built Environment in 

Eindhoven University of Technology. Respondents were randomly invited to participate 

in the survey within approximately 2 meters distance around the measurement device. 

The duration of each survey was between 7 and 16 minutes. A scene of the survey is 

shown in Figure 4.4. Some respondents were interviewed while sitting on a bench with 

a monitoring device set nearby. The survey started with a concise explanation of the 

research purpose. The exact start and end time of each survey were recorded by 

research assistants, who monitored the duration of the survey for synchronizing the 

measured variables for the analysis. In general, respondents spent ten to twenty minutes 

to complete the questionnaire. The example of questionnaire form (English version) is 

attached in Appendix. 

More than 1000 questionnaire forms were collected. However, some were discarded 

during the screening process since they were unfinished. Ultimately, the entire dataset 

consisting of 701 effective and intact questionnaires were available for analysis and 

modeling.  

4.4 Descriptive statistics 

4.4.1 Physical conditions of the public spaces 

The mean radiant temperature (𝑇𝑚𝑟𝑡) was calculated for evaluating the solar short-wave 

radiation and the long-wave radiation from the surface ground and surrounding objects. 

The equation is expressed as below based on ISO7726 (ISO 7726, 1998): 
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𝑇𝑚𝑟𝑡 = [(𝑇𝑔 + 273)
4
+
1.10 × 108 × 𝑣0.6(𝑇𝑔 − 𝑇𝑎)

𝜉𝐷0.4
]

0.25

− 273                        (4.1) 

where 𝐷 is the diameter (=150mm in this study) of black ball sensor for 𝑇𝑔 and 𝜉 is the 

emissivity coefficient (=0.95 in this study). 

As shown in Table 4.5, meteorological variables and sound pressure level varied during 

field investigations within a certain range in the study areas. The air temperature was 

relatively low with a minimum value of 4.2˚C and mean value of 11˚C. The wind speed 

was up to 3.9 m/s. The fluctuation of mean radiate temperature was significant during 

fieldwork due to the variation of sunshine exposure and wind conditions in different 

locations of urban public spaces.  

4.4.2 Socio-demographic and behavioral statistics 

The distributions of physiological and socio-demographic characteristics are shown in 

Table 4.6. Males account for 61.1% of all respondents. The majority of respondents have 

the Dutch nationality. Around 86.6% of the respondents are under 40 years old. 

Moreover, the education levels of respondents are mainly in the range from “Secondary 

vocational school” to “Master”. As for the body build of respondents, the Body Mass 

Index (BMI) is widely used as a general indicator of whether a person has healthy body 

weight relative to their height. The new BMI is a simple calculation using a person’s 

height and weight, which is expressed as: 

𝐵𝑀𝐼 =
1.3 ×𝑊

𝐻2.5
                                                                                                               (4.2) 

where 𝑊 is weight of an individual person measured in kilogram, and 𝐻 is height of an 

individual person in unit of meter. The World Health Organization regards a BMI of less 

than 18.5 as underweight, while a BMI equals to or greater than 25 is considered 

overweight. With a BMI over 30, a person is considered obese (World Health 

Organization, 1995; Prospective Studies Collaboration, 2009). The BMI of healthy weight 

is found in range from 18.5 up to 25. Statistics show most respondents’ BMI fall in the 

18.5 to 25 range (75.6%). 
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Table 4.5 The meteorological variables of microclimatic conditions and sound pressure level 

Variables Minimum Maximum Mean Median SD 

𝑇𝑎  (℃) 4.2 24.7 11.0 9.7 4.6 

𝑅𝐻 (%) 24.9 91.2 56.3 55.5 17.6 

𝑣 (m/s) 0.2 3.9 1.5 1.1 0.9 

𝑇𝑚𝑟𝑡  (℃) 4.6 51.7 17.9 15.1 10.3 

𝑙 (dB) 51.0 72.9 64.9 65.7 4.3 

 

Table 4.6 The socio-demographic and physiological characteristics of respondents 

Variable Category Percentage 

Gender 
Female 38.9% 

Male 61.1% 

Age 

< 20 27.0% 

20-40 59.6% 

40-60 7.8% 

≥ 60 5.6% 

BMI 

< 18.5 6.6% 

18.5-25 75.6% 

25-30 15.1% 

≥ 30 2.7% 

Nationality 
Dutch 77.2% 

Non-Dutch 22.8% 

Education 

High school or less 9.6% 

Secondary vocational school 18.3% 

College diploma 13.7% 

Bachelor 30.7% 

Master 24.8% 

PhD 2.9% 
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Table 4.7 The proportions of respondents regarding behavioral factors 

Variable Category Percentage 

Motion before survey Sitting 26.8% 

 Standing 15.8% 

 Walking 57.4% 

Transportation mode By foot 37.7% 

 By bike 22.2% 

 By bus, train, and car 40.1% 

Frequency First time 2.3% 

 Seldom 13.7% 

 Occasionally 18.0% 

 Sometimes 26.1% 

 Often 39.9% 

Duration (entire outdoor activities) < 15 mins 30.5% 

 15 - 30 mins 30.5% 

 30 - 60 mins 17.2% 

 60 - 120 mins 10.7% 

 ≥ 120 mins 11.1% 

Duration (current area) < 15 mins 43.2% 

 15 - 30 mins 30.8% 

 30 - 60 mins 12.9% 

 ≥ 60 mins 13.1% 

Purpose Public transport transfer 21.0% 

 Social activity 6.6% 

 Shopping  16.8% 

 Rest 15.3% 

 Leisure 10.7% 

 Passing by 27.8% 

 Other 1.8% 
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The proportions of respondents about their behavioral factors are shown in Table 4.7. It 

is generally assumed that the more frequently one is in the place the more familiar one 

is with the microclimate conditions and spatial settings. Since all surveys were conducted 

in public spaces of the city center (e.g., shopping area, transportation hub), a large 

proportion of respondents’ visiting frequency is once a week or higher (more frequent 

than “scarcely”). Regarding outdoor duration, we inquired both the total duration of 

outdoor activities and the time spent in the area where the surveys were conducted. 

Over 78.1% of the respondents spent less than 1 hour in the outdoor environment, most 

of which only spent less than half an hour. As for the time spent in the studied areas, 

most respondents stayed less than half an hour. 43.2% of the respondents stayed for 

only 15 minutes.  

The proportions of respondents' sensations of wind, humidity, sunlight, background 

sound pressure level and air quality, and their thermal sensation in the studied public 

spaces during the surveys are depicted in Figure 4.5. According to the diagram, 55.7% of 

the respondents' thermal sensations are on the cold side. 12.8% of the respondents felt 

very cold during the survey. Regarding humidity, 57.8% of the respondents felt dry. The 

number of respondents who thought the ambience was noisy exceeds the number of 

respondents who thought the surroundings were quiet. As for wind, more than half of 

the respondents sensed it was windy to some extent. Approximately 55% of the 

respondents felt the sunlight is not strong enough, more than half of them felt the 

sunlight was weak or even very weak. In addition, the majority of the respondents 

experienced fresh air quality.  

As illustrated in Figure 4.6, respondents who preferred no change in the wind and 

sunlight conditions during their survey account for 30% of the respondents. The 

percentage respondents preferring higher wind speed equals the percentage of 

respondents preferring less wind speed. Respondents who want more sunlight are more 

than those who want to reduce sunlight. Furthermore, the proportions of respondents' 

assessment regarding comfort, and their acceptability and need satisfaction of outdoor 

activities are depicted in Figure 4.7. Most respondents thought the conditions were 

suitable for outdoor activities. Moreover, the majority of the respondents were satisfied 

with their outdoor activities. Although respondents vary in the sensation of 

environmental conditions and preferred wind and sunlight strength, most of their 

comfort assessment is falling on the comfortable side. 
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Figure 4.5 Proportion of respondents’ sensations of microclimatic and environmental conditions 
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Figure 4.6 Continued 

 

 

Figure 4.7 Proportion of respondents’ preference of wind and sunlight 
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Figure 4. 8 Proportions of respondents’ overall comfort assessments, and acceptability and 

need satisfaction of outdoor activity 

4.5 Conclusions 

This chapter provided information on the background of the case study city Eindhoven 

and the orthogonal design for the selection of study locations. Furthermore, the survey 

and measurement administration and the questionnaire design undertaken for survey 

have been introduced. The portable device for measuring meteorological variables and 

background sound pressure level was presented with the specifications and accuracy 

range of sensors.  
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The results of the descriptive statistics from the concurrent two types of data collection 

provide an overview of the microclimatic conditions and sound pressure level at the 

study locations, which is conductive to better understand the contextual conditions of 

respondents’ comfort assessments. Moreover, respondents’ profiles were discussed in 

terms of socio-demographic characteristics, body builds, and behavior related factors. 

The distributions of respondents’ thermal sensations, perceptions and preferences of 

microclimatic and environmental stimuli, acceptability and need satisfaction of outdoor 

activities and their comfort assessments were presented. These data constitute the basis 

of the analyses reported in the next chapters. 
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5.  
Linear and Nonlinear Relationships 1 

 

 

 

 

 

 

 

 

1 This chapter is based on Peng, Y., Feng, T., and Timmermans, H. (2019). Expanded comfort assessment in 

outdoor urban public spaces using Box-Cox transformation. Landscape and Urban Planning, 190, 103594.
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5.1 Introduction 

The heat balance theoretical model simplifies the mechanism of comfort assessment 

into a straightforward process flow from meteorological influences to physiological 

responses (Brager and de Dear, 1998). The importance of other environmental stimuli 

(e.g., sound, air quality and sunlight) as well as psychological and behavioral factors in 

the assessment of outdoor comfort has generally been downplayed (Chappells and 

Shove, 2005; Vischer, 2008; Rossi et al., 2015). Findings of previous field studies indicate 

that individuals’ mitigation or aggravation of discomfort depends on their personal 

background and local meteorological conditions, leading to an context-based adaptive 

modeling approach (Humphreys and Nicol, 1998). In line with this point of view, an 

implicit natural tendency of people to adapt to changing outdoor conditions has been 

addressed. Both psychological adaptation and behavioral adjustment improved the 

tolerance of individuals to a significant wide range of thermal conditions. Much progress 

has been made in terms of theory and practice with the introduction of the context-

based adaptive approaches for different microclimates and environments, which 

indirectly integrates human thermal preference and emphasized the human behavioral 

reactions to avoid discomfort (de Dear and Brager, 1998; Potchter et al., 2018). 

Therefore, it is crucial to fully understand the mechanisms underlying outdoor comfort 

assessments considering both microclimatic and environmental conditions and human 

factors in accordance with conceptual framework with expanded set of explanatory 

variables. 

In the heat-balance model, an individual is assumed as a passive recipient of 

environmental stimuli. From this point of view, the effects of given thermal conditions 

are mediated only by the physics of heat and mass exchanges between the body and the 

surrounding environment as well as physiological thermoregulation of human body. 

Thus, thermal comfort is supposed to emerge from the achievement of heat balance 

between human body and ambient thermal environment. The underlying postulates 

tends to hold in indoor settings. However, they are challenged when faced with outdoor 

situations. Due to the dynamic and non-uniform microclimatic and environmental 

conditions in urban public spaces, the heat flow to and from the human body may not 

be balanced. Heat-balance theory lacks a coherent explanation to account for people's 

responses to outdoor conditions since it ignores the effects of psychological and 

behavioral factors (Stathopoulos et al., 2004; Lin and Matzarakis, 2008). Evidenced by 

the results of numerous field studies, although the effects of microclimatic stresses can 
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in part be predicted by physiological indices, still substantial difference remains between 

actual and predicted comfort assessment one when applying the heat balance-based 

thermal index to naturally ventilated buildings. There are even less reasons to assume 

this will not be the case in outdoor environments. Thus, the heat balance theory and 

related indices have been criticized for the lack of universal applicability and its strict 

reliance on “ideal” conditions along with ignoring contextual attributes and human 

psychological and behavioral processes that influence comfort and the process of 

measuring outdoor comfort. 

In addition, the equivalence of thermal comfort and neutral thermal sensation was 

challenged since the concept of “Alliesthesia” was addressed to differentiate thermal 

pleasure from thermal neutrality (Michel, 1971; Spagnolo and de Dear, 2003a; Liu et al., 

2020). The existing methods which treat a neutral or acceptable thermal condition as a 

substitute of a comfortable condition has also been criticized since evidence was found 

that the temperature that people preferred was different from their neutral 

temperature (Cheung and Jim, 2017). Thus, more broadly, the attainment of 

physiological thermal comfort cannot be simply assumed to be equal to psychologically 

comfortable (Indraganti and Rao, 2010).   

5.2 Conceptual framework 

As mentioned in previous chapters, we argue that a conceptual framework with an 

expanded set of influential factors is required to facilitate comprehensively 

understanding and better predicting the assessment of comfort in complex urban public 

spaces. In more detail, all the potential causal effects of psychological and behavioral 

factors are expected to be incorporated and considered in the modeling process. 

According to the literature, numerical analysis of the integrated impact of diverse non-

thermal behavior factors is still rare. No studies to date have systematically examined 

the influence of individuals' socio-demographic characteristics, emotional status, 

expectations, preferences and outdoor behaviors (Langevin et al., 2013). Furthermore, 

linear effects of multiple variables have been challenged since changes of some variables 

may lead to variance in comfort assessment. Therefore, based on the proposed 

theoretical framework, the linear and nonlinear modeling approaches of comfort 

assessment taking into account a broader range of explanatory factors are presented in 

the following sections of this chapter. Given the diversity of outdoor environments and 

the variability of individuals’ psychological and socio-demographic characteristics, the 
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opportunities and constraints of physical, social, and behavioral contexts may affect 

comfort.  

On the other hand, microclimate in public spaces is characterized by a number of 

physical attributes (e.g., air temperature, relative humidity, wind speed, mean radiant 

temperature) which, in effect, are perceived by occupants individually with their own 

bias. In addition, we suppose that, before getting to a specific public space, an individual 

already formed prospective microclimatic and environmental conditions based on 

his/her own knowledge, experience, and information. This expected scenario was 

accordingly set as a cognitive reference within a local institutional acclimatization and 

experience (Lenzholzer, 2010; Lenzholzer and Koh, 2010; Lenzholzer and van der Wulp, 

2010). Apparently, the physical spatial settings of public spaces offer both potential 

opportunities and constraints for individuals' adaptation. If people feel really discomfort 

in a certain outdoor open space, they will leave immediately. Following this line of 

reasoning, people’s visiting purposes, transportation modes and duration of outdoor 

exposure may affect their comfort assessment. Moreover, with intention and 

forethought, people set goals and anticipate likely outcomes of prospective outdoor 

conditions and their actions. However, these were rarely investigated in existing studies.  

Compared with the traditional heat balance model, the hypothetical relationships 

between comfort assessment and influential factors in the multiple linear model and 

nonlinear model are expanded to consider human comfort from a wider perspective by 

incorporating physiological bodily sensation with a holistic perception in terms of 

person-related and place-related factors. The relative importance of diverse influences 

on comfort assessment was systematically examined. The simple cause-effect process in 

the conventional heat balance model was substituted by taking mediating effects of 

human psychological and behavioral influences into account. When implementing 

outdoor activities, people normally have a special need and preference within a 

particular outdoor setting. Their comfort assessments are the outcome of the interaction 

between individual expectations and preferences and the opportunities and constraints 

induced by specific microclimatic and temporal-spatial settings within a particular socio-

cultural context. 

In summary, comfort assessment in real-world outdoor urban environments represents 

a comprehensive judgment process in which individuals consider and realize their needs 

and preferences within a given urban temporal-spatial setting. The assessments related 

to comfort assessment of occupants in public spaces are based on their own experience 
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and is related to specific purposes and corresponding outdoor behavior. In addition, 

their adaptation takes place with the specific outdoor activities in public spaces. Thus, 

we assume the underlying process of comfort assessment is determined by various 

hypothetical impacts (see Figure 5.1). Some person-related variables, like socio-

demographics, emotional status, visiting purpose, transportation mode and experienced 

thermal condition characterize individual's own expectation and preference. These 

variables are dynamic, and the values may continue updating  

when interacting with their surroundings. The adaptation which makes better comfort 

assessment is also involved from the interaction with environments. In this regard, 

comfort assessment is not treated as a static and independent process, but rather as the 

temporary outcome of a series of experience and consequent adaptation resulted from 

psychological and behavioral aspects. 

5.3 Multiple linear regression 

Based on the comprehensive conceptual framework with an expanded set of influential 

factors, we take both microclimatic and environmental variables and human factors into 

account in the multiple linear regression. The explanatory variables were expanded 

compared with the previous models of thermal sensation or neutral temperature of 

adaptive models. With the multiple linear regression, a quantitative analysis has been 

conducted to reveal the effects of various aspects of outdoor environments and 

respondents themselves. Hence, 

𝑦𝑖 = 𝛽0 +∑𝛽𝑘𝑥𝑖𝑘

𝑛

𝑘=1

+ 𝜀                                                                                                 (5.1) 

where 𝑦𝑘  is the value of overall comfort through the face-to-face interview for person 𝑖, 

𝛽0 is the constant, 𝛽𝑘  is a parameter of the 𝑘th factor, 𝑥𝑖𝑘  denotes the 𝑘th variable for 

person 𝑖  which includes the physical features of a public space and respondents' 

information of socio-demographic, psychological and behavioral aspects. 
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5.4 Nonlinear model with Box-Cox transformation 

To explain and elaborate the effects of explanatory variables on the individuals’ 

responses of comfort assessment, the multiple linear regression was the first choice of 

modeling method. However, this approach is limited in its linearity of the relationship 

between outdoor comfort and explanatory variables. To better understand the potential 

nonlinear relationship between comfort assessment and predictors, the Box-Cox 

transformation (Box and Tidwell, 1962) is employed on explanatory factors. As the 

estimation follows a stepwise procedure, only the variables with a reasonable t-value of 

coefficient 𝛽  and 𝜆  could be transformed and remained. Ultimately, the nonlinear 

regression model with the transformation was developed and estimated using the 

maximum likelihood algorithm. The formulas of the regression model with Box-Cox 

transformation are presented below: 

𝑦𝑘 = 𝛽0 +∑𝛽𝑘𝑥𝑖𝑘
′  

𝑛

𝑘=1

+ 𝜀′                                                                                              (5.2) 

𝑥𝑖𝑘
′  = {

𝑥𝑖𝑘
𝜆 − 1

𝜆
, 𝜆 ≠ 0

𝑙𝑛 𝑥𝑖𝑘 , 𝜆 = 0

                                                                                          (5.3) 

where the dependent variable 𝑦𝑘  is comfort assessment for person 𝑖, 𝛽0 is the constant 

term, 𝛽𝑘  is a coefficient of the 𝑘 th explanatory factor, 𝑥𝑖𝑘
′  is the 𝑘 th Box-Cox 

transformed independent variable for person 𝑖 , 𝜀′  is an error term and 𝜆  is the 

coefficient of the Box-Cox transformation. 

5.5 Results and discussion 

5.5.1 Linear relationships 

The estimates of the multiple linear regression are illustrated in Table 5.1. As important 

variables of outdoor thermal conditions, wind speed and mean radiant temperature 

have a significant influence on comfort assessment in urban public spaces. During the 

fieldwork in the shoulder season of the Netherlands, the average air temperature 

measured is 16 °C, which is far from the state of an uncomfortable hot temperature. The 

negative coefficient of wind velocity indicates that the faster the wind speed, the less 

comfort people feel in outdoor environments. In contrast, the mean radiant 
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temperature has a positive impact on comfort. This is understandable because the mean 

radiant temperature affects the thermal loading, indicating that a higher heat loading 

may lead to more comfort in the context of local climate. However, the effect of mean 

radiant temperature on comfort assessment is not very significant. In case of the air 

temperature and relative humidity, no significant effects were found. With respect to 

the acoustic environment, no linear relation was found between sound pressure level 

and the overall comfort assessment.  

Table 5.1 Estimation results of the multiple linear regression model 

Variable 𝛽 p-value 

(Constant) 2.768 ** 0.04 

Air temperature 0.012  0.78 

Relative humidity 0.001  0.90 

Wind speed -0.175 * 0.07 

Mean radiant temperature 0.011 * 0.09 

Sound pressure level -0.005  0.50 

Age -0.005  0.18 

Gender 0.301 *** 0.01 

BMI 0.012  0.44 

Education -0.136 *** 0.00 

Positive affects 0.042 *** 0.00 

Negative affects -0.039 *** 0.00 

Visiting frequency 0.117 *** 0.01 

Siting 0.059  0.69 

Standing -0.034  0.85 

Expected thermal sensation 0.075 ** 0.04 

Expected humidity 0.093 *** 0.01 

Expected wind velocity -0.100 *** 0.01 

Expected sound pressure level 0.072 ** 0.04 

Perceived openness 0.186 *** 0.00 

Perceived opportunities 0.032  0.34 

Total outdoor duration -0.102 *** 0.01 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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Table 5.2 Continued 

Variable 𝛽 p-value 

Perceived humidity -0.099 *** 0.01 

Perceived wind speed -0.125 *** 0.00 

Perceived sunlight 0.152 *** 0.00 

Perceived sound pressure level -0.082 ** 0.03 

Perceived air quality 0.079 ** 0.03 

Preferred thermal sensation -0.044  0.26 

Preferred humidity 0.010  0.82 

Preferred wind velocity 0.093 *** 0.01 

Preferred sunlight 0.074 ** 0.05 

By foot -0.303 ** 0.02 

By bike -0.089  0.53 

Transit -0.068  0.86 

Resting 0.040  0.92 

Social -0.100  0.81 

Shopping 0.246  0.53 

Leisure -0.062  0.88 

Passing by -0.042  0.92 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 

 

As for the respondents’ socio-demographic characteristics, age, gender, BMI, and 

education level were utilized in the multiple linear regression. According to the result, 

no significant impact of age and BMI were found. The gender of the respondent 

significantly affects their overall comfort assessment, which indicates that males express 

a higher degree of comfort than females. Likewise, the difference in thermal sensation 

between males and females under similar boundary conditions has been explained in 

previous studies (Indraganti and Rao, 2010; Karjalainen, 2012). In addition, the negative 

relationship between education level and overall comfort was identified. People with 

higher education levels are inclined to express a lower degree of overall comfort in 

outdoor conditions. 
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Unlike the previous modeling approach of outdoor comfort assessment, in this study, 

people’s emotions and other psychological variables pertaining to the exposures in 

environments of study locations have been quantitatively introduced and measured in 

line with the comprehensive conceptual framework with the expanded set of effects. 

Results show that both positive affect and negative affect of respondents significantly 

and consistently impact comfort. In other words, a more positive emotion leads to a 

higher level of comfort assessment, while a negative emotion results in a lower comfort 

assessment. From the perspective of human psychological adaptation, a positive 

emotion may promote potential adaptation by enhancing people's tolerance and 

enlarging the range of conditions perceived comfortable.  

More importantly, evidence shows that if people expected warmer thermal sensation, 

higher humidity, and louder background sound pressure level before arrival, they were 

more likely to feel comfortable. Additionally, if people expected higher outdoor wind 

speed, they tend to have a lower comfort assessment. This may be because strong wind 

is always irritating. However, results show the preferred wind speed has a positive 

relationship with comfort assessment, which indicates that those who prefer higher wind 

speed felt more comfortable. In the meantime, respondents’ preference of sunlight is 

positively related to their comfort evaluation. No significant effects on comfort 

assessment were found with respect to respondents’ preference of thermal sensation 

and humidity. 

With respect to behavioral aspects, we considered variables such as visiting frequency, 

transportation modes (categorized as by foot, by bike considering by public transport 

and private car as the reference), purpose of being in the surveyed outdoor space 

(categorized as transit, resting, social or cultural activity, shopping, leisure, passing by 

considering other as the reference), and total duration of outdoor activity. As shown, 

many behavioral variables are statistically significant. The positive estimate of visiting 

frequency indicates that the more frequent a respondent visits the studied area the 

higher the perceived comfort. This is understandable considering the fact that comfort 

assessment could depend on how well people know the place. In addition, respondents 

who either stay longer in the outdoor environment or come by foot tend to have a lower 

comfort assessment. It means that longer duration of the stay or walking a lot has a 

negative effect on comfort assessments.  

Furthermore, the effects of the perceived spatial attributes are revealed. The 

representative variables are subjective evaluation of opportunities provided by urban 
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facilities and perceived openness of the public space. It is found the perceived openness 

has a significant influence on comfort whereas a positive correlation exists between 

acceptable openness and comfort assessment. If the building blocks enclose a public 

space to an unacceptable extent, it may cause a negative effect on users’ comfort. 

Overall, the explanatory variables show an acceptable goodness-of-fit (adjusted R2 = 

0.335). More importantly, results of the expanded linear model show that most 

psychological behavior variables have a significant effect on assessment of outdoor 

comfort. This confirms our original assumption and the expanded conceptual framework.  

5.5.2 Nonlinear effects 

The estimation results of nonlinear modeling using the Box-Cox transformation are 

presented in Table 5.2. It shows that the significance of most explanatory variables is 

improved in the nonlinear model relative to the multiple linear regression model. A 

remarkable boosting of the t-value related to 𝛽 took place for wind velocity and sound 

pressure level related to the physical attributes of public spaces, as well as age and body 

mass index which are related to the respondents. A 𝜆 which is not equal to 1 means that 

the related explanatory variable take on a specific transformation. For example, the 

transformation of wind speed approximates the logarithm (𝜆 =0), while for mean radiant 

temperature it is close to a power function (𝜆 =-2.08). In addition, both age and body 

mass index have significant negative effects on comfort, which indicates that the elderly 

and people with a higher body mass index feel less comfortable. However, in the linear 

regression model, body mass index had little impact on comfort evaluation. Nevertheless, 

the conclusion regarding the negative effects of body mass index is in line with the results 

found in previous studies that also found the increase of body mass index can reduce 

the value of thermal sensation to some extent (Tuomaala et al., 2013). 

The nonlinear model with the Box-Cox transformation yields a slightly better goodness-

of-fit (adjusted R2=0.361) than the multiple linear regression model. This means the 

actual outdoor comfort assessment, as a result of respondents' mental activities and 

judgements, may be better linked to the variables of the environment and human factors, 

in a nonlinear way.  
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Table 5.3 Estimation results of nonlinear regression with Box-Cox transformation 

Variable 𝛽 p-value 𝝀 p-value 

(Constant) 62.389 *** 0.00 1  N/A 

Air temperature 0.028  0.30 1  N/A 

Relative humidity 0.003  0.37 1  N/A 

Wind speed -0.311 *** 0.01 0.00 * 0.06 

Mean radiant temperature 0.011 * 0.06 1  N/A 

Sound pressure level -0.327 *** 0.00 0.02 *** 0.00 

Age -41.468 *** 0.00 -1.49 *** 0.00 

Gender 0.306 *** 0.01 1  N/A 

BMI -45.174 *** 0.00 -2.35 *** 0.00 

Education -0.347 *** 0.00 -0.27 *** 0.00 

Positive affects 15.201 *** 0.00 -0.76 *** 0.00 

Negative affects -49.265 *** 0.00 -1.59 *** 0.00 

Visiting frequency 0.119 ** 0.02 1  N/A 

Siting 0.044  0.38 1  N/A 

Standing 0.077  0.36 1  N/A 

Expected thermal sensation 0.090 * 0.07 0.69  0.24 

Expected humidity 0.088  0.01 1  N/A 

Expected wind velocity -0.030 ** 0.00 1.85 *** 0.00 

Expected sound pressure level 0.061 ** 0.08 1  N/A 

Perceived openness 0.920 *** 0.00 -0.14 *** 0.00 

Perceived opportunities 0.06  0.21 0.50  0.29 

Total outdoor duration -0.083 *** 0.05 1  N/A 

Perceived humidity -0.210 *** 0.00 0.38 ** 0.02 

Perceived wind speed -0.126 *** 0.00 1  N/A 

Perceived sunlight 0.590 *** 0.00 -0.29 *** 0.00 

Perceived sound pressure level -0.260 ** 0.02 0.14 *** 0.00 

Perceived air quality 0.240 ** 0.02 0.21 *** 0.01 

Preferred thermal sensation -0.032  0.28 1  N/A 

Preferred humidity 0.002  0.40 1  N/A 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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Table 5.4 Continued 

Variable 𝛽 p-value 𝝀 p-value 

Preferred wind velocity 0.889 *** 0.00 -0.91 *** 0.00 

Preferred sunlight 0.070 * 0.07 1  N/A 

By foot -0.318 ** 0.02 1  N/A 

By bike -0.144  0.24 1  N/A 

Transit -0.272  0.31 1  N/A 

Resting -0.044  0.40 1  N/A 

Social -0.173  0.37 1  N/A 

Shopping 0.185  0.36 1  N/A 

Leisure -0.142  0.38 1  N/A 

Passing by -0.165  0.37 1  N/A 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 

 

5.5.3 Elasticity analysis 

To further explore the variables’ contribution in predicting outdoor comfort assessment 

in urban public spaces, an elasticity analysis was conducted. The results are shown in 

Table 5.3. We found that some human factors have a relatively larger elasticity, such as 

emotional status, perception of openness of public space, sensation of wind velocity and 

sunlight exposure. This means the change of values of these variables will have a larger 

effect on comfort assessment than other variables. 

5.6 Conclusions 

The comprehensive conceptual framework of comfort assessment in urban public spaces 

with an expanded set of influential factors was estimated using a multiple linear 

regression model and a nonlinear model with the Box-Cox transformation. The models 

incorporate both physical environment attributes and human psychological and 

behavioral factors. The methodology proposed in this chapter can be applied in various 

climate zones and diverse cultural contexts.  

The model results provide convincing evidence that the mechanism of comfort 

assessment is beyond a single energy exchange dimension. The linear relationship 
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between comfort and an expanded set of factors was verified, and later the nonlinear 

relationship was demonstrated using a Box-Cox transformation. To the best of our 

knowledge, this is the first study to develop such a numerical comprehensive model with 

an extended set of explanatory variables in outdoor comfort research. The findings 

provide more insights in the actual assessment of outdoor comfort. The social-economic 

characteristics significantly affect comfort assessment, so does emotional status. The 

psychological and behavioral factors were also found to play an important role in 

comfort assessment.  

Table 5.5 Elasticity of significant explanatory variables 

Explanatory variables Linear Non-linear 

Wind velocity -0.05 -0.06 

Mean radiant temperature 0.06 N/A 

Sound pressure level N/A -0.07 

Age N/A -0.06 

BMI N/A -0.01 

Positive affects 0.24 0.23 

Negative affects -0.12 -0.13 

Visiting frequency 0.09 N/A 

Expected thermal sensation 0.09 0.04 

Expected wind velocity -0.03 -0.09 

Expected humidity 0.06 N/A 

Expected sound pressure level 0.07 N/A 

Total outdoor duration -0.05 N/A 

Preferred wind velocity 0.07 N/A 

Preferred sunlight 0.06 N/A 

Perceived openness 0.20 0.14 

Perceived wind velocity -0.11 N/A 

Perceived humidity -0.06 -0.06 

Perceived sunlight 0.11 0.08 

Perceived sound pressure level -0.07 -0.06 

Perceived air quality 0.08 0.07 
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6.  
Direct and Indirect Relationships 2 

 

 

 

 

 

 

 

 

2 This chapter is based on Peng, Y., Feng, T., and Timmermans, H. (2019). A path analysis of outdoor comfort 

in urban public spaces. Building and Environment, 148, 459–467. 
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6.1 Introduction 

The diverse and complex context of urban public spaces and their spatial settings with 

the corresponding microclimate faced by individuals are driving an increasing need for a 

full understanding of outdoor comfort. Still, people have different perceptions and 

preferences when they are exposed to different environments, despite having identical 

thermal balances indicated by heat balance theory. In this regard, comfort is an outcome 

of the interaction between an individual's preferences and perceived opportunities and 

constraints induced by specific outdoor microclimate and temporal-spatial urban 

settings within a particular institutional and local context.  

A qualitative method linking thermal and spatial information and people’s perceptions 

has been developed (Lenzholzer et al., 2018). The divergence between thermal index 

and actual response in field studies show that an individual’s thermal expectation and 

preference induced by contextual factors are specific to different urban settings and 

corresponding microclimates. The heat-balance indices may not be universally 

applicable across contexts (Lin et al., 2011). The importance of physical, physiological 

and psychological influential aspects have been addressed by several empirical in-situ 

investigations based on either heat balance theory or adaptive approaches (Brager and 

de Dear, 1998; Knez et al., 2009; Lin et al., 2011). However, the direct causal relationships 

between comfort and influences have been modelled without considering 

psychologically mediated effects. Still, the mechanism of the influence on comfort was 

simplified as one single step from the triggering factors to direct assessment. Few studies 

investigate the indirect effects that are different from the cause-effect process (Knez et 

al., 2009; Chan et al., 2017). Systematically investigating the perceptual mechanism of 

comfort assessment therefore becomes necessary and critical (Lenzholzer, 2012).  

This chapter therefore aims to outline an expanded and integrated conceptual 

framework that illustrates comfort assessment in non-uniform and unsteady outdoor 

environments by considering the nature and strength of both direct and indirect 

influences. The simplified causal relationships are modelled through path analysis 

discovering the intermediary function of related psychological factors. The path analysis 

entails the comfort assessment by both physical microclimate conditions and human 

factors in a structured process (e.g., emotional status, perceived meteorological 

situations and urban spatial settings). We contend that outdoor comfort cannot be 

viewed as only a manifestation of neutral status in heat balance, but rather the outcome 
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of a perceptual process associated with respondents’ expectations and preference 

formed by their outdoor behaviour, thermal experience, socio-demographic 

characteristics, and emotional status, which are influenced by experiences implementing 

behavioural adjustments and psychological adaptations. Thus, we utilise the 

acceptability and need satisfaction of outdoor activities as two mediators. The 

microclimate and other environmental stimuli perceived by individuals are related to the 

degree of their acceptability and the satisfaction of outdoor activities. As such, the new 

approach is consistent with the basic premise underlying the development of path 

analysis to replace the traditional methodology by explicitly taking into account both 

direct and indirect effects.  

6.2 Conceptual framework 

Comfort assessment is conceptualized as a process in which individuals attempt to adapt 

themselves and satisfy the particular need in outdoor environments, given a 

microclimate and perceived temporal and spatial constraints with their own experience. 

A conceptual structure of the direct and indirect effects on comfort is presented in Figure 

6.1. Based on the hypothesis, the paths have been set up to include the connections 

between the endogenous variables and the influences from the exogenous variables. 

Through existing investigations, we predefine the relationships between comfort 

assessment and the acceptability and need satisfaction of outdoor activities. In addition, 

the endogenous variables are impacted by the manifold exogenous variables in terms of 

place-related attributes (e.g., microclimate condition, environmental stimuli) and 

human-related factors (e.g., social demographics, preference, and perception of 

environment). The hypothesized connections are illustrated in Table 6.1. Having 

identified the relationships, a maximum likelihood estimation method was used to 

estimate the parameters. 
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Table 6.1 Hypothetical relationships 

Endogenous variables Exogenous variables 

Thermal sensation socio-demographic characteristics 

 behavior factors 

 perception of wind, humidity, and sunlight 

 physical microclimate 

Acceptability of outdoor activity expectation of thermal and wind condition 

 perception of wind, humidity, and sunlight 

 perceived adaptive opportunity 

 physical microclimate 

 Thermal sensation 

Need satisfaction of outdoor activity socio-demographic characteristics 

 emotional status 

 environment propensity 

 behaviour factors 

 preference of wind and sunlight 

 perception of sound pressure level and air 

quality  adaptive preparation 

 Thermal sensation 

 Acceptability of outdoor activity 

Comfort Thermal sensation 

 Acceptability of outdoor activity 

 Need satisfaction of outdoor activity 

 socio-demographic characteristics 

 emotional status 

 expectation of thermal and wind condition 

 perception of sound pressure level and air 

quality   perception of spatial attribute 

 preference of wind and sunlight 

 behaviour factors 
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6.3 Path analysis 

Path analysis is an extension of multiple regression analysis, which is regarded as a 

special case of structural equation modeling (SEM) (Streiner, 2005). As SEM deals with 

both measured and latent variables, path analysis deals with observed variables only. In 

this study, path analysis is utilized to estimate the magnitude and significance of 

hypothetical relationships between comfort and sets of variables related to physical 

microclimate and individuals’ socio-demographic characteristics, emotional status, 

expectations and perceptions of microclimate and environment condition, along with 

relevant behavioral factors. 

The dependent variable in the path analysis is individuals’ outdoor overall comfort 

assessment, which is different from the thermal sensation. Further, we believe that, to 

conduct outdoor activities, individuals need to be involved in active interactions with the 

urban environments. If the experience of a location does not satisfy the expectation, the 

individual will continue to adapt themselves. However, if the adaptation is repetitively 

constrained, the assessment may be negative. Individuals may still be pleased with the 

experience although the unpleasant experiences accumulated could reinforce that 

individual's perception. 

The path analysis aims to overcome the potential shortcoming in conventional models, 

e.g., linear regressions by transforming the causal influences into direct and indirect 

effects. These possible relationships and their strength are cornerstones of the comfort 

assessment mechanism and must be revealed by path analysis. For example, we 

postulate that microclimate affects comfort assessment through thermal sensation and 

the acceptability of outdoor activities. The time individuals spend in outdoor 

environments may have potential impacts on comfort. We assume that there are 

relationships between the overall outdoor comfort and individuals' thermal sensation, 

thermal acceptability and need satisfaction of outdoor activities. In addition, the 

integrated exogenous influences, such as microclimate condition, individuals’ socio-

demographic characteristics, behavior factors, emotional status and subjective 

perception of urban settings and corresponding microclimate and environment 

attributes are also investigated. 
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6.4 Results 

As demonstrated in Table 6.2, the path model is testified as a good-fitting model based 

on the values of the Comparative Fit Index (CFI) and Tucker Lewis Index (TLI), which are 

greater than the empirical cut-off criterion (Bentler and Bonett, 1980). Further, the 

Standardized Root Mean Square Residual (SRMSR) is far less than 0.08. The value of Root 

Mean Square Error of Approximation (RMSEA), which measures the discrepancy per 

degree of freedom, is smaller than the empirical threshold, 0.05. In summary, the 

structure of the direct and indirect relationships is proved as significant.  

Results of the intercepts of endogenous variables are shown in Table 6.3. The 

coefficients of all direct and indirect connections are presented in Table 6.4 with the 

level of significance. Based on the estimation results, a majority of the exogenous 

variables have indirect impacts on comfort assessment through mediators. Still, there 

are some variables that have both significant direct and indirect effects.  

The microclimatic variables, such as air temperature, wind velocity and relative humidity, 

show significant indirect influence on comfort. However, the mean radiant temperature 

has no noteworthy effect. In particular, air temperature significantly impacts an 

individual's outdoor thermal sensation. The direct relationship between air temperature 

and the acceptability of outdoor activity was also investigated, whereas no evident effect 

was found. In contrast, relative humidity slightly influences acceptability of outdoor 

activity in a negative way, but it does not act on thermal sensation. Regarding the 

influence of wind, it is reasonable that wind velocity negatively impacts respondents' 

thermal sensations and their acceptability of outdoor activity because the data 

collections were carried out in the early spring with relatively low average air 

temperature. In addition, in the context of Dutch historical meteorology, wind 

turbulence has been always criticized as an annoying phenomenon, especially in the cold 

and cool seasons. To speak of mean radiant temperature, as a physical meteorological 

influence, although it is the most decisive determinant in some traditional thermal 

indices, in this model, only a negligible effect was revealed with a low significant level 

according to the estimate for both thermal sensation and the acceptability of outdoor 

activity.  

Regarding socio-demographic characteristics, the influences of age, sex and education 

level have been demonstrated through the path model. As shown in Table 6.4, a 

significant negative direct connection was found between age and thermal sensation. In 
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the context of the cold season in Eindhoven, senior interviewees responded to the 

thermal sensation tending to the colder side, as they may have a narrower range of 

neutral thermal sensation than younger respondents and may be more sensitive to any 

deviation from an optimal environment and express more discomfort through thermal 

sensation. Nevertheless, we only interviewed individuals between 13 and 85. The 

influence of age on juveniles and children needs further investigations.  

The education level of respondents is confirmed to have only a direct negative impact 

on comfort assessment, while sex has both direct and indirect connections with comfort 

assessment. The indirect effect is imparted by the mediator of the need satisfaction of 

outdoor activity. Respondents with a higher education level had a lower comfort level. 

In addition, the male was inclined to have a more comfortable feeling than the female in 

an outdoor environment and felt more satisfaction in outdoor activity. A growing 

number of studies have found significant differences in thermal comfort between sexes 

and many field studies showed that females express more discomfort than males, 

especially in cool conditions (Karjalainen, 2012), which is similar to the result of the 

current path analysis. The emotional status of respondents was investigated in the 

survey by the standard method and represented as positively or negatively affecting 

comfort. Both emotional aspects were connected with need satisfaction and comfort 

assessment. Positive effects may increase the satisfaction and comfort, while negative 

effects may reduce com- fort. The preference to urban settings or natural environments 

was taken into account as a determinant. Respondents who prefer an urban setting are 

more satisfied compared with those who are keen on a natural scene.  

Table 6.2  Indices for Goodness of fit of the path analysis 

CFI TLI SRMSR RMSEA 

0.935 0.889 0.014 0.043 

 

Table 6.3 Estimation of the intercepts 

Variable Intercept Standard Error p-Value 

Thermal sensation 2.339 0.816 0.004 

Acceptability of outdoor activity 5.892 0.963 0.000 

Need satisfaction 1.218 0.578 0.035 

Comfort  1.254 0.442 0.005 
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Table 6.4 Estimation results of the path model 

Variable Estimate Standard Error p-Value 

Thermal Sensation      on 

air temperature 0.159 *** 0.039 0.000 

wind speed -0.267 *** 0.083 0.001 

relative humidity 0.004  0.007 0.588 

mean radiant temperature 0.005  0.006 0.378 

Age -0.006 * 0.004 0.097 

sitting 0.263 ** 0.114 0.021 

standing 0.352 ** 0.145 0.016 

by foot -0.308 *** 0.113 0.007 

by bike -0.054  0.128 0.676 

perceived wind speed -0.131 *** 0.032 0.000 

perceived humidity -0.058 * 0.031 0.059 

perceived sunlight 0.249 *** 0.030 0.000 

total outdoor duration -0.197 *** 0.037 0.000 

Acceptability of outdoor activity      on 

air temperature -0.052  0.045 0.249 

wind speed -0.263 *** 0.095 0.006 

relative humidity -0.050 *** 0.008 0.000 

mean radiant temperature 0.004  0.007 0.576 

prospective thermal sensation 0.168 *** 0.040 0.000 

prospective wind speed 0.060 * 0.037 0.106 

perceived opportunity 0.076 ** 0.035 0.032 

perceived wind speed -0.065 * 0.039 0.095 

perceived humidity -0.064 * 0.036 0.075 

perceived sunlight 0.146 *** 0.037 0.000 

Thermal sensation 0.265 *** 0.045 0.000 

Need Satisfaction of outdoor activity      on 

gender 0.205 *** 0.102 0.044 

environmental preference -0.046 * 0.026 0.080 

positive affects 0.026 *** 0.007 0.000 

negative affects -0.033 *** 0.010 0.001 

by foot -0.496 *** 0.122 0.000 

by bike -0.132  0.134 0.326 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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Table 6.4 Continued 

Variable Estimate Standard Error p-Value 

Need Satisfaction of outdoor activity      on 

waiting for bus or train 0.462  0.374 0.216 

resting 1.000 *** 0.385 0.009 

social activity 0.234  0.410 0.569 

shopping 0.901 ** 0.377 0.017 

leisure 0.789 ** 0.390 0.043 

passing by 0.910 ** 0.380 0.017 

perceived spatial openness 0.145 *** 0.036 0.000 

adaptive adjustment 0.491 *** 0.146 0.001 

total outdoor duration -0.128 ** 0.051 0.012 

duration in current place 0.197 *** 0.064 0.002 

perceived air quality 0.096 *** 0.035 0.006 

perceived sound pressure level -0.066 ** 0.032 0.041 

preference of wind speed 0.083 *** 0.034 0.014 

Thermal sensation 0.211 *** 0.035 0.000 

Acceptability of outdoor activity 0.117 *** 0.031 0.000 

Comfort      on 

gender 0.263 *** 0.091 0.004 

education level -0.144 *** 0.034 0.000 

visiting frequency 0.079 ** 0.038 0.037 

positive affects 0.029 *** 0.006 0.000 

negative affects -0.032 *** 0.009 0.000 

prospective thermal sensation -0.074 ** 0.032 0.020 

prospective wind speed -0.101 *** 0.028 0.000 

perceived air quality 0.088 *** 0.031 0.004 

perceived sound pressure level -0.059 ** 0.029 0.040 

preference of wind speed 0.071 ** 0.030 0.020 

preference of sunlight 0.048 * 0.029 0.097 

perceived spatial openness 0.127 *** 0.031 0.000 

Thermal sensation 0.303 *** 0.034 0.000 

Acceptability of outdoor activity 0.130 *** 0.028 0.000 

Need satisfaction 0.246 *** 0.032 0.000 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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In case of behavior-related factors, results show that respondents with a motion state of 

sitting and standing before the interview were inclined to experience a warmer sensation, 

compared with those who were walking. With regard to the transportation mode, in 

particular, walking negatively influenced thermal sensation and the need satisfaction of 

outdoor activities compared with biking and taking private vehicles or public 

transportation. Biking, as a popular transportation mode for daily life, has no observable 

difference compared with taking a private automobile or public transportation. Further, 

the indirect impacts of walking on comfort assessment are through thermal sensation 

and need satisfaction. In addition, in terms of time spent in the outdoor environment, 

the duration of the whole series of outdoor activities influences both thermal sensation 

and the need satisfaction. People who spent more outdoor time rated lower thermal 

sensation and need satisfaction; however, the respondents who stayed longer in the 

studied public space facilitated their rating of need satisfaction of outdoor activity. The 

purpose of people's outdoor activity for resting, shopping, leisure and passing positively 

affects their comfort through need satisfaction. The frequency of visiting was proved to 

have a positive connection with comfort assessment. People who visited the place more 

often are in favor of a more comfortable assessment. According to the results of previous 

investigations, the long-term memory and cognitive schemata of particular spatial 

settings and microclimatic variables play a role in individual's comfort assessment 

(Lenzholzer 2012; Lenzholzer and Koh 2010; Lenzholzer and de Vries 2019).   

We also considered the individuals' perceived microclimate condition, sound pressure 

level, and air quality, which play an important role in modeling comfort assessment. 

When respondents perceived higher wind speed and humidity, they reduced their 

evaluation on comfort. In contrast, higher perceived sunlight positively influences the 

respondent's com- fort. In addition, these influences affect comfort assessment through 

four paths, namely: (1) thermal sensation; (2) acceptability of outdoor activity; (3) 

thermal sensation and need satisfaction of outdoor activity; and (4) acceptability and 

need satisfaction of outdoor activity. The individuals' perception of sound pressure level 

negatively impacts the comfort assessment directly and through need satisfaction 

indirectly. However, the perceived air quality positively influences comfort in both direct 

and indirect ways. Respondents are more satisfied with better air quality for outdoor 

activities. In addition, the perceived openness of the public space, as an indicator of 

spatial setting, positively influences comfort. Through need satisfaction the indirect 

impact of perceived openness is passed on comfort as well.  
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Considering that comfort assessment may rely on individuals' experience, expectation 

and preference, our results show that the expected thermal and wind condition have 

evident connections with the acceptability of outdoor activity and comfort assessment. 

If respondents expect a warmer outdoor thermal condition, they respond with higher 

acceptability but a less comfortable feeling. The influence of expected wind speed 

negatively influences acceptability and comfort assessment. In terms of the impacts of 

respondents’ expectation of thermal and wind condition, individuals who thought the 

outdoor thermal condition to be warm may have a high acceptability of outdoor activity. 

However, when they go out and experience an outdoor thermal condition that is colder 

than their expectation or out of their neutral range, they might respond with a lower 

comfort assessment.  

In the case of wind expectation, the situation is different from the expectation on 

thermal condition. Individuals with high wind speed expectation find outdoor activities 

disagreeable and also degrade their comfort feeling. The effects of the preference of 

wind speed and sunlight on need satisfaction of outdoor activity and comfort assessment 

are positive and significant. Since the data collection was conducted in a cool shoulder 

season, the preference of sunlight naturally drives up the comfort assessment in outdoor 

environments. In addition, people who prefer higher wind speed in general perceive 

more comfort.  

Furthermore, due to the importance of people's adaptation has been addressed in 

existing outdoor comfort studies, we asked people, based on the actual spatial settings 

and facilities, whether they did self-adaptation before outdoor activities and what their 

perceived opportunities of adaptation are in the studied areas. Results signify that the 

need satisfaction of outdoor activity increases if people adapted before going out. 

Similarly, if respondents perceive more adaptive opportunities, they will endorse 

outdoor activities. 

6.5 Conclusions  

Research on outdoor comfort in urban public spaces is of high importance to increase 

the site attractiveness, people's outdoor activities, and the quality of life in general. 

Comfort feeling in urban public spaces not only depends on an achievement of neutral 

thermal sensation, but also on the combined influences of the perceived contextual 

information, service level of infrastructure, and even people's psychological factors. A 

proper method to evaluate the actual comfort of individuals is necessary for various 
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stakeholders in urban management, design, and planning, in order to improve the 

existing infrastructure and outdoor environments.  

Therefore, to enhance the understanding of comfort assessment in urban public spaces, 

this chapter presents a more comprehensive framework for outdoor comfort by 

incorporating physical microclimate, social demographic information and individuals’ 

subjective perceptions, expectations, and preferences. A path analysis method is used 

to examine the direct and indirect effects of various factors on the subjective comfort in 

urban public spaces using the data collected in a field survey. Although our modeling is 

conducted in the context of a Dutch city that is characterized by a temperate ocean 

climate, the methodology proposed is generic and applicable in other contexts, e.g., 

different public spaces, diverse climate zones.  

The results show that people's thermal sensation increases in accordance with air 

temperature but decreases with increasing wind speed. The prospective microclimate of 

outdoor environments in terms of thermal sensation and wind speed influences the 

acceptability of outdoor activity in a positive way. However, their direct effects on 

comfort are negative. Individuals who expected a warmer thermal condition and windy 

outdoor environment had a higher acceptability of being out; in contrast, they have a 

lower comfort assessment. When the real condition did not approximate previous 

expectations, respondents were more likely to lower their assessments of comfort. 

Moreover, preference of wind positively influences the need satisfaction of outdoor 

activity and comfort assessment, which indicates that respondents with a preference for 

windier outdoor conditions were apt to feel more comfortable. The preference for 

sunlight also shows a direct positive effect on comfort.  

When respondents prepared for adaptation to outdoor environments or received more 

information on the adaptive opportunities approved by the public space spatial settings, 

they may perceive more comfort. On the other hand, a better acquaintance with a 

certain space and the positive impression of spatial openness improves an individual's 

comfort assessment. Hence, behavioral adaptation, and good understanding of the 

microclimate and urban settings could influence the acceptance level and satisfaction of 

outdoor activities, as well as comfort assessment.  

Further, we found that comfort assessment got worse with increasing activity duration 

in the outdoor environment because the thermal sensation and satisfaction with 

outdoor activity kept going down. However, the time spent in public spaces positively 
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influenced satisfaction, thereby improving the assessment of comfort. This may be 

attributed to the differences in visiting purpose. For instance, people who are immersed 

in the destination and carry out their own activities may have a higher satisfaction. 

However, the total duration in the outdoor environment normally comprises not only 

the activity time of in the given public space but also the time for travel and for waiting.  

As comfort feeling is fundamentally different from neutral thermal sensation, we 

speculate that the higher comfort assessments of respondents depend on high 

motivation and the acceptance of being outdoors, and the satisfaction with outdoor 

activities. We contend that the direct simplified process from physical condition to 

comfort assessment has to be substituted with an extended framework with more 

complex structure of relationships between comfort assessment and the determinants 

from different aspects. Regarding comfort assessment per se, the majority of 

participants responded with a comfort feeling based on their own condition. If we 

include the respondents who responded neutrally, neither comfort nor discomfort, 

approximately 81.5% of the respondents perceived no discomfort in urban public spaces. 

Thus, to further understand the outdoor comfort issue, more comprehensive data 

collection and more sophisticated modeling approaches are required. Moreover, the 

impact of transportation and urban spatial setting on thermal and comfort related 

experiences might be considered in future studies. 
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7.  
Heterogeneity in Comfort Assessment 3 

 

 

 

 

 

 

 

 

3 This chapter is based on Peng, Y., Feng, T., and Timmermans, H. (2021). Heterogeneity in outdoor comfort 

assessment in urban public spaces. Science of the Total Environment, 790, 147941.
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7.1 Introduction 

Many empirical studies conducted to calibrate rational thermal indices based on the 

local contexts and individual preferences recognized the variability in comfort 

assessments in similar environmental conditions (Lam et al., 2018; Shooshtarian, 2019). 

The characteristics of the human body vary individually, which implies that the 

standardized human physiological model may introduce errors in real-world situations 

(Coccolo et al., 2016). On the other hand, outdoor complex environments are 

characterized by diverse microclimates and environmental stimuli with large temporal 

and spatial variation (Nikolopoulou et al., 2001; Höppe, 2002; Spagnolo and de Dear, 

2003b).  

The discrepancies between the predictions of rational indices and the subjective 

assessments have been revealed in many empirical investigations, questioning the 

general applicability of rational indices in outdoor environments and emphasizing 

individuals’ conscious and unconscious adaptations (Nikolopoulou et al., 2001; 

Nikolopoulou and Steemers, 2003; Thorsson et al., 2004; Knez and Thorsson, 2006; 

Nikolopoulou and Lykoudis, 2006; Pantavou et al., 2013). The pure application of rational 

indices in outdoor comfort assessment leads to a narrow focus on a small number of 

variables which have a physical basis, and to a lack of attention to individuals’ 

psychological factors and inter-individual differences (Nikolopoulou et al., 2001; 

Nikolopoulou and Steemers, 2003; Knez and Thorsson, 2006; Knez et al., 2009; Andrade 

et al., 2011; Lin et al., 2013). In addition, unlike thermal sensation, outdoor comfort 

involves individuals’ perceptions of various non-thermal environmental stimuli (Rossi et 

al., 2015), which are inevitably affected by non-physical factors, such as individuals’ 

socio-demographic characteristics, emotions, preferences, expectations, and 

adaptations (Knez et al., 2009; Lenzholzer and Koh, 2010; Klemm et al., 2015). 

In this context, it is critical to appreciate that thermal comfort is defined as a state of 

mind, which expresses satisfaction with the thermal environment (ASHRAE, 2017). 

Beyond what is described in physiological models, perceived comfort refers to an 

outcome of an interactive process between an individual and his/her environment, 

which may vary from one person to another. Moreover, evidence from field studies 

prove individuals’ subjective outdoor comfort assessments are much more elastic than 

have been predicted through thermal indices (Nikolopoulou and Steemers, 2003). de 

Dear and Brager (1998) introduced adaptive theory to outdoor comfort modeling, which 



Comfort in Urban Public Spaces 

112 

is built on the premise that individuals play an active role to restore comfort by adapting 

to the ambient thermal conditions instead of being simply passive recipients of thermal 

stimuli according to the heat-balance model (Brager and de Dear, 1998; de Dear and 

Brager, 1998). In reality, people may have different preferences about the ideal thermal 

environment, which violates the underlying assumption of the heat-balance model that 

thermal neutrality is equal to thermal comfort (Nikolopoulou and Lykoudis, 2006). The 

uncertainty in uncovering the specifics of thermal interactions are credited to the 

individuals’ acclimatization, behavioral and psychological adaptation and “Alliesthesia” 

(Auliciems, 1981; Nikolopoulou and Lykoudis, 2006; Eliasson et al., 2007; Parkinson and 

de Dear, 2015). The comprehensive conceptual models of outdoor comfort incorporate 

human dimensions which indicates people’s satisfaction under a given thermal condition 

depends on a broad range of individuals’ behavioral and psychological factors in respect 

of adaptations and expectations that are typically context-based (Nikolopoulou and 

Steemers, 2003; Knez et al., 2009; Shooshtarian, 2015; Shooshtarian and Ridley, 2016; 

Lenzholzer and de Vries, 2019; Li et al., 2020; Peng et al., 2021). 

Many on-site investigations revealed the inconsistency of outdoor comfort assessments 

and allude to the major causes referring to individuals’ differences in preferences, 

expectations and adaptations (Nikolopoulou and Lykoudis, 2006; Hwang and Lin, 2007; 

Thorsson et al., 2007; Knez et al., 2009; Lin, 2009). The factors that influence individuals’ 

expectations and the process of adaptations in real contexts are highly complex, and the 

perception of outdoor microclimatic and environmental conditions differs across 

individuals in the sense that the same factor may exert variant effects on subjective 

comfort assessment (Nikolopoulou and Steemers, 2003; Stathopoulos et al., 2004; 

Oliveira and Andrade, 2007; Lin, 2009). For instance, higher temperature may lead to 

discomfort for some people, but not for those who like a warmer environment, while 

someone who is less concerned about temperature may feel discomfort when exposed 

to strong solar radiation or weak wind speed. When intending to go out, individuals 

expect variability in their exposure to outdoor environments, variations of sun and shade, 

and wind speed (Zacharias et al., 2001; Givoni et al., 2003; Gehl, 2011). The potential 

effect of heterogeneity on individuals’ comfort assessments has not been widely 

examined in outdoor comfort modeling, and empirical evidence is needed. 

Given the complexity of the microclimates, environmental stimulus and individuals’ 

behaviors in outdoor comfort studies, heterogeneity is likely to exist in samples that are 

used to develop, test, and refine models. However, both existing rational indices (e.g. 

PMV, PET and UTCI) and empirical models, i.e. ASV models and Ordered models, 
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(Nikolopoulou and Steemers, 2003; Lai et al., 2018) assume the coefficients (parameter 

vectors) of influential explanatory factors are the same for all individuals, which result in 

a lack of insights into the extent of heterogeneity in outdoor comfort assessment. The 

standard method of investigating subjective comfort assessment in outdoor 

environments is to carry out simultaneously interviews and meteorological 

measurements (Kánto et al., 2012; Johansson et al., 2014). Based on the standard 

method, studies have analyzed the effects of urban form, vegetation and personal 

characteristics on comfort assessment in outdoor urban environments (Sharmin et al., 

2015; Krüger and Drach, 2017; Krüger et al., 2017; Johansson et al., 2018; Peng et al., 

2021). Besides the standardization, it is of crucial importance to plan experiments well 

in the sense that valuable information is obtained using only a limited number of samples 

in given environments. In previous cross-sectional field studies, however, subjects were 

not randomly assigned according to attributes of urban public spaces. Moreover, 

individuals experience a wide range of thermal conditions when moving through time 

and space in different urban micro-environments. It is difficult to reconstruct all parts of 

experiences of people in on-site surveys due to time constraints, let alone to thoroughly 

obtain the detailed information on people’s past expectations and preferences for the 

current environment as well as their process of behavioral and psychological adaptations. 

Observed heterogeneity occurs between groups are expected a priori that incorporates 

moderators or contextual factors (Becker et al., 2013). From this point of view, much 

effort has been spent on attempts to account for the inconsistent comfort assessments 

under similar thermal conditions by stratifying individuals into homogeneous groups 

based on observed person-related variables such as socio-demographic characteristics 

(age, gender, education level, job condition, financial situation, lifestyle and cultural 

background), psychological factors (environmental attitude and thermal preference), 

behavioral factors (purpose of visit, past activity, duration of outdoor stay, length of local 

residence, usage of air-conditioner) (Knez and Thorsson, 2006, 2008; Thorsson et al., 

2007; Aljawabra and Nikolopoulou, 2010; Krüger and Rossi, 2011; Karjalainen, 2012; 

Tung et al., 2014; Shooshtarian, 2015; Krüger et al., 2015; Shooshtarian and Ridley, 2016; 

Elnabawi et al., 2016; Amindeldar et al., 2017; Lai et al., 2017; Lam et al., 2018). 

On the one hand, stratification with respect to heterogeneous comfort assessments 

cannot be accurately determined a priori by related observed variables. No consistency 

exists in the findings about the effect of age (Knez and Thorsson, 2006; Krüger and Rossi, 

2011; Pantavou et al., 2013; Shooshtarian and Ridley, 2016). Similarly, conclusions of 

various previous studies on gender difference in assessing outdoor comfort are 
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contradictory. Some studies found insignificant or no effects of gender (Knez and 

Thorsson, 2006; Krüger and Rossi, 2011; Pantavou et al., 2013; Shooshtarian and Ridley, 

2016), others have indicated the influence of gender varies in different contexts (Oliveira 

and Andrade, 2007; Tung et al., 2014). Specially, the females have superior thermal 

physiological tolerance than the males, however, women might fear heat and sun 

exposure and behaviorally adjust themselves using umbrellas and searching for shade. 

Even if the assumption holds, the heterogeneity may be misclassified if stratification is 

performed based on the wrong variables. For instance, it may be assumed that the 

heterogeneity was caused by cultural background, but it may be influenced by 

differences in the past thermal experiences of respondents. On the other hand, it is 

impossible to explore complex high-order interactions among confounding variables. For 

example, females probably feel more discomfort under strong solar radiation than males 

in some Asian regions (Tung et al., 2014). Even two females from the same region may 

still have different comfort assessments under the same conditions due to the difference 

in their experiences. The true distribution of heterogeneity is never known a priori; 

therefore, it is hard to find homogeneous segments of individuals in modeling 

stratification. The unobserved heterogeneity in individuals’ outdoor comfort 

assessments is not necessarily captured by the variables that are preconceived and 

specified by existing theory and the conceptual model as it can exist beyond the 

previously identified variables. 

In addition, the assessment of outdoor comfort may involve a path structure framework 

considering the complicated direct and indirect relationships between endogenous and 

exogenous variables. For example, individuals’ positive emotion impacts directly their 

comfort assessments, while the time individuals spend in the studied area may 

significantly influence their comfort assessment through the intermediate effect of need 

satisfaction of outdoor activity. A path model for outdoor comfort assessment was 

developed, in which explanatory variables such as individual demographic, psychological 

and contextual variables were incorporated in the path’s causal relationships. However, 

based on adaptive theory and previous findings, heterogeneity may exist in the 

relationships (direct and indirect) between endogenous variables and exogenous 

variables, and the relationships among endogenous variables, which implies 

idiosyncratic groups of outdoor comfort assessment. This means that the effects of 

endogenous variables on comfort assessment under the assumed causal structure may 

vary according to different groups of people. However, to the best of our knowledge, 

studies on heterogeneity represented by latent segmentations in the estimated cause-
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effect relationships are still missing in the literature. The knowledge of heterogeneity in 

comfort assessment remains fragmentary. To verify the hypothetical heterogeneity in 

human comfort assessment in urban public spaces, this dissertation introduces a latent 

class analysis based on path model. 

This chapter aims at broadening our knowledge how the different comfort assessments 

correspond to unobserved classes of the population in similar environments. Individuals’ 

inconsistent outdoor comfort assessments are assumed to depend on unobserved 

classes, rather than simply being a function of measured variables. Therefore, we assume 

heterogeneity prevails in individuals’ comfort assessments in outdoor environments and 

estimate path structures for different underlying groups of the population. Latent class 

analysis is used as an alternative to stratification. A model is developed which allows the 

simultaneous estimation of latent classes and path structures of miscellaneous 

influential factors to identify underlying groups with a homogeneous comfort 

assessment and heterogeneous patterns of comfort assessment between groups. The 

latent classes are identified to improve the predictivity of the path model, and the 

membership will be linked with observable individual characteristics. 

7.2 Latent class path model 

The present conceptual framework aims at developing a model to uncover individuals’ 

heterogenous comfort assessment given the complex direct and indirect effects of an 

expanded set of place-related and person-related variables and modify the 

misrepresentations caused by the data aggregation and confounders in the previous 

path model. Figure 7.1, which depicts a diagram of the conceptual framework 

incorporating heterogeneity in comfort assessment, shows the hypothetical conditional 

effects across latent classes and the corresponding influence of membership covariates. 

The latent class path model (LCPM) has been advanced for synthetically considering the 

effects of covariates on the class membership, and the effects varied between classes in 

a path structure (Jiang et al., 2020). As two essential parts of the proposed model, the 

path analysis is used for identifying the structure accounting for the nature and strength 

of relationships among a set of measured variables, while the latent class analysis is 

synchronized with path analysis to unravel class probabilities of individuals (Muthén and 

Muthén, 2000). In general, the estimation of LCPM will be conducted for better 

interpreting the data by searching typical pattern approximately shared by latent classes. 

Theoretically, a latent class characterized by a pattern of conditional probability indicates 
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the chance of certain comfort assessment the respondent evaluated. Accordingly, each 

individual has a specific probability of belonging to a certain class.  

 

Figure 7.1 The conceptual framework of latent class in comfort assessment in urban public 

spaces 

The probability of class membership is allowed to vary as a function of covariates. 

Suppose latent classes in a heterogeneous population are denoted by 𝑐𝑖 and the vector 

of covariates (measured items) for class membership is represented by 𝒁𝑖, for individual 

𝑖. To examine the covariate dependent probability for individual 𝑖 in a given class 𝑐𝑖 =

𝑘 (𝑘 = 1, 2, ⋯ , 𝐾) denoted by 𝜋𝑖𝑘, a multinominal logistic regression is expressed as: 

𝜋𝑖𝑘 = 𝑃(𝑐𝑖 = 𝑘|𝒁𝑖) =
exp(𝜆0𝑘 + 𝒁𝑖𝝀𝑘)

∑ exp(𝜆0𝑘 + 𝒁𝑖𝝀𝑘)
𝐾
𝑘=1

                                                         (7.1) 

where the intercept is denoted by 𝜆0𝑘, and the vector of weight parameter is denoted 

by 𝝀𝑘 . The last class 𝐾  is set as reference, specifically 𝜆𝐾 = 0 . Accordingly, 𝒁𝑖𝝀𝑘 

measures the log-odds of belonging to class 𝑘 instead of class 𝐾 given the vector of 𝒁𝑖. 

The studied population is a mixture of individuals from different latent classes so that 

the scores on a set of indicators are assumed to come from the same probability 

distributions. Suppose the vector of continuous indicators, also known as the 
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endogenous variables (except comfort assessment) in path structure, denoted by 𝛀𝑖𝑚 

indexed by 𝑚 (𝑚 = 1, 2,⋯ ,𝑀 − 1) . The ω𝑖𝑚  is the 𝑚 th endogenous variable 

associated with the vector of influential factors, denoted by  𝑿𝑖𝑚. The probability density 

function of the measured scores of ω𝑖𝑚 is described as:  

𝜃𝑖𝑚 =∑[𝜋𝑖𝑘𝑓(𝜔𝑖𝑚|𝑐𝑖 = 𝑘, 𝑿𝑖𝑚)]

𝐾

𝑘=1

=∑(𝜋𝑖𝑘𝜃𝑖𝑚𝑘)

𝐾

𝑘=1

                                              (7.2) 

where 𝜋𝑖𝑘  is the probability density function of being a member of latent class 𝑘 for 

individual  𝑖, and the class-specific normal density in the path structure denoted by 𝜃𝑖𝑚𝑘. 

The value of 𝜋𝑖𝑘  sums to 1 across 𝐾  classes, and 𝜃𝑖𝑚𝑘  is a class-specific conditional 

probability depending on the mean value and covariance of indicators estimated for 

each latent class. 

Suppose the outcome assessment is denoted by 𝑦
𝑖
, with the ordinal response 𝑦

𝑖
=

𝑗 (𝑗 = 1, 2, ⋯ , 𝐽)  for individual 𝑖 (𝑖 = 1, 2,⋯ , 𝐼) , and 𝑦
𝑖
∗  as the related continuous 

latent reference which is associated with the vector of independent variables 𝑿𝑖𝑀, as 

presented in the regression model 

𝑦𝑖
∗ = 𝑿𝑖𝑀𝜷 + 𝜀                                                                                                                 (7.3) 

where 𝜀 is the normally distributed error term conditioned on 𝑿𝑖𝑀, and 𝜷 is the vector 

of weight parameters. The ordinal comfort assessment 𝑦
𝑖
 is resulted from 

𝑦𝑖 =

{
 

 
 1,                       𝑖𝑓  𝑦𝑖

∗ ≤ 𝜇1
 2, 𝑖𝑓 𝜇𝑗−1 ≤ 𝑦𝑖

∗ ≤ 𝜇𝑗
⋮

  𝐽,                     𝑖𝑓𝑦𝑖
∗ ≥ 𝜇𝐽−1

                                                                               (7.4) 

where 𝜇
𝑗
 is the threshold point of 𝑦

𝑖
∗. The proportional odds of link function is the logit 

transformation. The cumulative ordinal logit model is expressed as: 

𝑙𝑜𝑔𝑖𝑡 [
𝑃(𝑦𝑖 ≤ 𝑗)

𝑃(𝑦𝑖 > 𝑗)
] = 𝜇𝑗 − 𝑿𝑖𝑀𝜷                                                                                   (7.5) 
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where the log of the probability that 𝑦
𝑖
 has a value greater than the lower values given 

𝑿𝑖𝑀  is modeled. The regression coefficient vector 𝜷  is constant across the logits, 

whereas the intercepts 𝜇
𝑗
 are not. 

Regarding comfort assessment 𝑦
𝑖
 which is the 𝑀th endogenous variable but ordinal, the 

vector of all the related influential factors, denoted by 𝑿𝑖𝑀, consists of both exogenous 

and endogenous variables. Based on ordered logit model (Equation 3), the joint 

probability function of the comfort assessment given 𝑿𝑖𝑀  conditional on latent class 𝑐𝑖 

is expressed as: 

𝑃𝑖𝑗𝑘 = 𝑃(𝑦𝑖|𝑐𝑖 = 𝑘, 𝑿𝑖𝑀) 

         =

{
 
 
 

 
 
 

exp(𝜇1𝑘 − 𝑿𝑖𝑀𝜷
′)

1 + exp(𝜇1𝑘 − 𝑿𝑖𝑀𝜷
′)
,                                              𝑗 = 1

exp(𝜇𝑗𝑘 − 𝑿𝑖𝑀𝜷
′)

1 + exp(𝜇𝑗𝑘 − 𝑿𝑖𝑀𝜷
′)
−

exp(𝜇𝑗𝑘 − 𝑿𝑖𝑀𝜷
′)

1 + exp(𝜇𝑗𝑘 − 𝑿𝑖𝑀𝜷
′)
, 𝑗 = 2,⋯ , 𝐽 − 1

1 −
exp(𝜇𝐽𝑘 − 𝑿𝑖𝑀𝜷

′)

1 + exp(𝜇𝐽𝑘 − 𝑿𝑖𝑀𝜷
′)
,                                     𝑗 = 𝐽

     (7.6) 

where the 𝜇
𝑗𝑘

 is the threshold linked with latent class. Assuming conditional 

independence, the probability of ordinal outcome, denoted by 𝑃𝑖𝑗, is expressed as: 

𝑃𝑖𝑗 =∑[𝜋𝑖𝑘𝑃(𝑦𝑖|𝑐𝑖 = 𝑘, 𝑿𝑖𝑀)]

𝐾

𝑘=1

=∑(𝜋𝑖𝑘𝑃𝑖𝑗𝑘)

𝐾

𝑘=1

                                                    (7.7) 

where the joint probability 𝑃𝑖𝑗𝑘  of comfort assessment 𝑦
𝑖
= 𝑗 conditional on class 𝑘 , 

which is indicated by the arrow from the circle of latent class to the rectangle of comfort 

assessment in the diagram of conceptual framework (see Figure 7.1). The conditional 

probability of endogenous variables given the latent class is obtained by a product: 

𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝒊) = 𝑃𝑖𝑗𝑘∏𝜃𝑖𝑚𝑘

𝑀−1

𝑚=1

                                                                       (7.8) 

Further, the manifest endogenous variables probability is expressed as: 
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𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑿𝑖𝑚) = ∑(𝑃𝑖𝑗𝑘∏𝜃𝑖𝑚𝑘

𝑀−1

𝑚=1

)𝜋𝑖𝑘

𝐾

𝑘=1

                                                               (7.9) 

By Bayes’ Theorem, given 𝜋̂𝑖𝑘,  𝑃̂𝑖𝑗𝑘 and 𝜃̂𝑖𝑚𝑘, respectively, the posterior probability that 

each individual belongs to each class, conditional on the observed variables becomes 

𝑃(𝑐𝑖|𝑦𝑖 , 𝜴𝑖𝑚, 𝑿𝑖𝑚 , 𝒁𝑖) =
𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝑖)𝑃(𝑐𝑖|𝒁𝑖)

𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑿𝑖𝑚)
 

                                         =
𝜋̂𝑖𝑘𝑃̂𝑖𝑗𝑘 ∏ 𝜃̂𝑖𝑚𝑘

𝑀−1
𝑚=1

∑ (𝑃̂𝑖𝑗𝑘∏ 𝜃̂𝑖𝑚𝑘
𝑀−1
𝑚=1 )𝜋̂𝑖𝑘

𝐾
𝑘=1

                                             (7.10) 

As an iterative method for estimating the LCPM of comfort assessment conditional on 

latent class membership, the Expectation-Maximization (EM) algorithm has been 

typically employed where the unknown parameters can be estimated as weighted sums 

of latent proportions (Takai and Kano, 2009). Based on log-likelihood, denoted by ln 𝐿, 

the membership probability and the conditional effects on the strength of relationships 

in the path structure are modeled simultaneously. The ln 𝐿 can be written as: 

ln 𝐿 = ln [∏𝑃(𝑐𝑖 = 𝑘|𝒁𝑖)𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝑖)

𝐼

𝑖=1

] 

        = ∑ ln [∏𝜋𝑖𝑘 (∏𝑃𝑖𝑗𝑘

𝐽

𝑗=1

)(∏𝜃𝑖𝑚𝑘

𝑀−1

𝑚=1

)

𝐾

𝑘=1

]

𝐼

𝑖=1

                                                     (7.11) 

The membership of individuals belonging to a latent class is assumed as missing 

information. When estimating the parameters of LCPM, the EM algorithm maximizes 

ln 𝐿 by alternating two steps until convergence, expectation, and maximization, which is 

treated as an estimation problem in the presence of missing data. Hence, the EM 

algorithm is based on the complete log-likelihood, which is denoted by ln 𝐿∗ and written 

as: 

ln 𝐿∗ = 𝛾𝑖𝑘 ln [∏𝑃(𝑐𝑖 = 𝑘|𝒁𝑖)𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝑖)

𝐼

𝑖=1

]  
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         = ∑∑𝛾𝑖𝑘 ln [𝜋𝑖𝑘 (∏𝑃𝑖𝑗𝑘

𝐽

𝑗=1

)(∏𝜃𝑖𝑚𝑘

𝑀−1

𝑚=1

)]

𝐾

𝑘=1

𝐼

𝑖=1

 

        = ∑∑𝛾𝑖𝑘 ln(𝜋𝑖𝑘)

𝐾

𝑘=1

𝐼

𝑖=1

+∑∑∑∑ 𝛾𝑖𝑘 ln(𝑃𝑖𝑗𝑘𝜃𝑖𝑚𝑘)

𝑀−1

𝑚=1

𝐽

𝑗=1

𝐾

𝑘=1

𝐼

𝑖=1

                            (7.12) 

where 𝛾
𝑖𝑘
= 1, if individual 𝑖 belongs to latent class 𝑘, and 𝛾

𝑖𝑘
= 0, otherwise.  

The corresponding conditional expect value of 𝑙𝑛𝐿∗ given the current parameter value 

Φ𝑡−1 (𝑡 is the iteration number) and the observed data, which is obtained as: 

𝐸(𝛷|𝛷𝑡−1) = 𝐸(𝑙𝑛 𝐿∗ |𝑦𝑖 , 𝜴𝑖𝑚, 𝑿𝑖𝑚 , 𝒁𝑖 , 𝛷
𝑡−1 ) 

                      = ∑∑𝛾𝑖𝑘 𝑙𝑛 [𝜋𝑖𝑘 (∏𝑃𝑖𝑗𝑘

𝐽

𝑗=1

)(∏𝜃𝑖𝑚𝑘

𝑀−1

𝑚=1

)]

𝐾

𝑘=1

𝐼

𝑖=1

                                 (7.13) 

The posterior expect value of 𝛾
𝑖𝑘

 based on Bayes’ Theorem is computed as: 

𝛾𝑖𝑘 = 𝐸(𝛾𝑖𝑘|𝑦𝑖 , 𝜴𝒊𝒎, 𝑿𝒊𝒎, 𝒁𝑖 , 𝛷̂
𝑡−1) 

       = 𝑃(𝛾𝑖𝑘 = 1|𝑦𝑖 , 𝜴𝒊𝒎, 𝑿𝒊𝒎, 𝒁𝑖 , 𝛷̂
𝑡−1)  

       =
𝑃(𝑐𝑖 = 𝑘|𝒁𝑖)𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝑖)

∑ 𝑃(𝑐𝑖 = 𝑘|𝒁𝑖)𝑃(𝑦𝑖 , 𝜴𝑖𝑚|𝑐𝑖 , 𝑿𝑖𝑚 , 𝒁𝑖)
𝐼
𝑖=1

                                                     (7.14) 

The E-step computes 𝛾̂
𝑖𝑘

 for individual 𝑖  in latent class 𝑘 . The M-step maximizes 

𝐸(Φ|Φ𝑡−1) with respect to each 𝛾
𝑖𝑘

 substituted by 𝛾̂
𝑖𝑘

 as the new prior probability, 

obtaining Φ𝑡.  

7.3 LCPM estimation 

In order to detect the correct number of latent classes, models were estimated with 

incremental numbers of classes (from 2 to 4). Multiple statistical indices were computed, 

to detect the best fit model. To support the decision on class number, a combination of 

criteria was used (see Table 7.1), including information-based methods, likelihood ratio 
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statistical tests, and entropy. The criteria include Akaike Information Criterion (AIC) 

(Akaike, 1974, 1987), Bayesian Information Criterion (BIC) (Schwarz, 1978), sample-size 

adjusted BIC (SABIC) (Sclove, 1987), Entropy (Celeux and Soromenho, 1996), Lo-Mendell-

Rubin Likelihood Ratio Test (LMR) (Vuong, 1989; Lo et al., 2001) and Bootstrap Likelihood 

Ratio Test (BLRT) (McLachlan and Peel, 2000; Nylund et al., 2007).  

AIC is not consistent and sometimes overestimates the number of classes. By contrast, 

BIC and SABIC has been reported to perform well and consistently (Jedidi et al., 1997; 

Yang, 2006). A lower value indicates the best fitting model (Yang, 2006; Nylund et al., 

2007; Sharma and Tiwari, 2007; Berlin et al., 2014). Entropy is a standardized index of 

model-based classification accuracy. The value of normalized entropy is between 0 and 

1. A value approaching 1 indicates a clear separation of latent classes. Therefore, a higher 

value of normalized entropy represents a better fit. In addition, when an entropy value 

is greater than  0.80, the number of latent classes is identified as the most optimal 

modeling solution for goodness of fit (Celeux and Soromenho, 1996). The LMR and BLRT 

provide a value that can be used to compare the increase in model fit between 

neighboring class models and determine if there is a statistically significant improvement 

in fit for the inclusion of one more class. Based on the values of these criteria, we 

selected the model with two latent classes (denoted by C1 and C2) as the most 

appropriate in this study.  

The membership of each latent class was estimated and shown in Table 7.2. The 

coefficient vectors related to the weight of covariates, including gender, age, education 

level, preceding adaptation, transport mode, and visiting frequency and purpose, for two 

classes are denoted by 𝝀𝐶1 and  𝝀𝐶2. As for gender of respondents, the significant effect 

was found that the males have a higher probability than females to be categorized as 

the members of C2. The potential to be allocated to C2 is increasing when respondents 

are ageing. The BMI, which represents the physical condition of respondent, is not 

working and fall flat in membership prediction. While respondents with a postgraduate 

degree more likely belong to C1 compared to those with undergraduate degree and high 

school education or lower. Respondents who are accustomed to visit the study areas are 

more likely to be members in C1. Moreover, the transport mode and purpose of visit 

significantly affect the latent class membership. It is a high probability of being in C1 if 

respondents walked to the study areas with the purpose of shopping.  
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Table 7.1 The estimate indices for comparison of different number of latent classes 

Class Amount AIC BIC SABIC Entropy LMR BLRT 

2 9047.070 9497.768 9183.423 0.909 0.0016 0.000 

3 8995.171 9705.362 9210.030 0.723 0.7787 1.000 

4 8942.284 9911.968 9235.649 0.703 0.9093 1.000 

 

Table 7.2 The covariates of membership in different latent classes 

Covariate Acronym 𝝀𝐶1 𝝀𝐶2 p-Value 

Gender (Male=1) Gd** -0.346 0.346 0.019 

Age Age** 0.021 -0.021 0.028 

Body mass index BMI -0.058 0.058 0.137 

Education: undergraduate  ED1 -0.131 0.131 0.475 

Education: postgraduate  ED2** 0.552 -0.552 0.017 

Preceding adaptation AD*** -0.558 0.558 0.001 

Visit frequency: occasionally FR1 -0.210 0.210 0.479 

Visit frequency: sometimes FR2*** 0.649 -0.649 0.002 

Visit frequency: often FR3 -0.127 0.127 0.549 

Transport mode: by foot M1*** 0.717 -0.717 0.000 

Transport mode: by bike M2 0.066 -0.066 0.753 

Purpose: transport transferring P1 0.248 -0.248 0.442 

Purpose: social activity P2*** -0.959 0.959 0.004 

Purpose: shopping P3*** 0.822 -0.822 0.009 

Purpose: rest P4 -0.135 0.135 0.669 

Purpose: leisure P5* -0.810 0.810 0.072 

Purpose: passing by P6** -0.578 0.578 0.030 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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Table 7. 3 The estimation results of LCPM. 

 Class 1 Class 2 

Variables Acronym 𝜷𝐶1 p-value 𝜷𝐶2 p-value 

Thermal Sensation      on 

Air temperature Ta 0.098 * 0.072 0.173 *** 0.000 

Wind velocity v -0.344 *** 0.003 -0.237 *** 0.000 

Sensation of wind Sv -0.037  0.646 -0.166 *** 0.000 

Sensation of sunlight Ss 0.275 *** 0.002 0.245 *** 0.000 

Total outdoor time Dt -0.165 * 0.056 -0.173 *** 0.000 

Acceptability of outdoor activities      on 

Relative Humidity RH -0.055 *** 0.000 -0.038 *** 0.000 

Wind velocity v -0.285  0.144 -0.115  0.114 

Expectation of thermal condition Et 0.041  0.680 0.183 *** 0.000 

Sensation of wind Sv -0.047  0.626 -0.076  0.114 

Sensation of sunlight Ss 0.351 *** 0.005 0.087 ** 0.036 

Sensation of air quality Sa -0.134  0.182 0.092 ** 0.046 

Sensation of sound pressure level Sl 0.063  0.503 0.100 ** 0.036 

Perceived adaptive facilities PA 0.091  0.268 0.073 * 0.082 

Thermal sensation  0.271 ** 0.044 0.273 *** 0.000 

Need satisfaction of outdoor activities      on 

Positive affects Pos -0.009  0.453 0.016 *** 0.010 

Negative affects Neg -0.009  0.643 -0.024 *** 0.004 

Total outdoor time Dt -0.256 *** 0.005 -0.083 * 0.076 

Time in current place Dc 0.348 ** 0.018 0.211 *** 0.000 

Sensation of air quality Sa 0.094  0.164 0.056 * 0.079 

Sensation of sound pressure level Sl 0.066  0.285 -0.098 *** 0.000 

Perceived openness PO -0.011  0.875 0.134 *** 0.001 

Thermal sensation  0.079  0.359 0.051 * 0.081 

Acceptability of outdoor activities  0.088  0.223 0.094 *** 0.001 

Comfort      on 

Positive affects Pos 0.103 *** 0.004 0.051 *** 0.000 

Negative affects Neg -0.019  0.626 -0.086 *** 0.000 

Expectation of thermal condition Et -0.239 ** 0.030 -0.106 * 0.086 

Expectation of wind velocity Ev -0.420 *** 0.005 -0.086  0.157 

Thermal sensation  0.815 *** 0.000 0.477 *** 0.000 

Acceptability of outdoor activities  0.092  0.440 0.143 ** 0.035 

Need satisfaction of outdoor activities  0.381  0.295 0.720 *** 0.000 

* 0.05< p < 0.1; ** 0.01< p ≤ 0.05; *** p ≤ 0.01 
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Figure 7.2 Diagram of the estimation result of LCPM 

Drawing on samples from cross-sectional surveys in different urban public spaces, the 

findings of estimation regarding the path coefficients and the corresponding statistical 

significance among two different latent classes are shown in Table 7.3. Consistent with 

the existing literature (Tsitoura et al., 2016, 2017), the measured microclimatic variables, 

including air temperature and wind velocity, and the total outdoor exposure duration of 

respondents significantly influence their thermal sensation in both identified latent 

classes. However, the magnitude of coefficients and significance regarding these direct 
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exogenous effects are different in two latent classes. The air temperature positively 

influences on respondents’ thermal sensation, whereas wind velocity and respondents’ 

total outdoor exposure duration affect respondents’ thermal sensation reversely. 

Meanwhile, the differential path structures of two latent classes regarding the nature 

and strength of relationships among comfort assessment and the arguments, including 

endogenous and exogenous variables, are depicted in the diagrams (see Figure 7.2). The 

obvious variations in path structures across latent classes strengthen the argument of 

heterogeneity in the patterns of comfort assessment. Looking deeper into the 

relationships among endogenous variables and comfort assessment, there is only one 

connection between thermal sensation and comfort assessment in the path structure 

with respect to C1. In contrast, three direct connections in the path structure regarding 

C2 approve the hypothetical relationships respectively between the individual’s comfort 

assessment and thermal sensation, acceptability of outdoor activity and need 

satisfaction. In addition, more significant connections between endogenous variables 

can be observed in C2 than in C1. The results underscore the influence of psychological 

impacts of outdoor activity in C2.  

The effects of exogenous variables on thermal sensation regarding the measured air 

temperature and wind velocity as well as the respondent’s sensations of wind speed and 

sunlight strength and total duration of exposure in outdoor environments are significant 

in C2. The measured air temperature and respondent’s sensation of sunlight are in 

proportion to comfort assessment. However, the contrary is proved that influences of 

measured wind velocity, and respondent’s sensation of wind velocity and total duration 

of exposure in outdoor environments negatively impact comfort assessment. The 

significant exogenous influences on thermal sensation in C1 are only wind velocity and 

respondent’s sensation of sunlight.  

The direct relationships between exogeneous variables and comfort assessment also 

differ across latent classes. Positive emotional affects account for comfort assessment 

regardless of classes membership. However, the individual’s negative emotional affects 

only take effects on comfort assessment in C2. Comfort assessment varies inversely with 

the expectations of outdoor thermal condition in both classes, while the expectation of 

wind velocity negatively influences comfort assessment in C1.  

Aside from the variance in direct impact across latent classes, the estimates of LCPM also 

provide evidence to substantiate the difference in indirect effects between latent classes. 

Moreover, the relationships between exogenous variables and corresponding 
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endogenous variables differ largely across latent classes. As for thermal sensation, 

compared with the structure regarding C1, one more inverse influence from sensation 

of wind is significant in the path structure of C2.  

Wide differences between the two latent classes are found in terms of exogenous effects 

on need satisfaction and acceptability of outdoor activity. According to the estimated 

results related to C1, acceptability of outdoor activity is negatively affected by measured 

humidity and individual’s sensation of sunlight. Moreover, need satisfaction of outdoor 

activity is affected by time spent in the study area and the time spent for all outdoor 

activities. In case of C2, more indirect effects are revealed, which relate to people’s 

perceptions of environment and momentary emotional affects.  

7.4 Conclusions 

With respect to the rational thermal indices based on the heat-balance model, the 

predicted result of thermal comfort is treated as an average estimated outcome of 

individuals’ comfort assessment in a certain thermal condition, no matter what people 

evaluate and their past behaviors and experiences. However, the literatures pertaining 

to empirical outdoor comfort studies have indicated that the modeling of comfort 

assessment should represent the complex nature of the involved person-related 

determinants and acknowledge the heterogeneity in the sampled population. Therefore, 

we remove the implicit assumption of “average person” through extending the 

theoretical framework by introducing heterogeneous outdoor comfort assessment 

across different latent classes. It is conceptually appealing that latent class integrated 

with path analysis exerts the thinking about heterogeneity in comfort model and reveals 

the role of human being more holistically. A finite mixture approach to the path model 

was developed in which latent class estimation improves the understanding of 

systematic heterogeneity in assessment of outdoor comfort.  

The results of the model estimations indicate: 

(1) the paths among exogenous and endogenous variables, and corresponding 

coefficients in structure model vary across two latent classes, which is representing the 

different nature and strength of the relationships between influential factors and 

outdoor comfort assessment. 
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(2) Latent class 1 assesses the comfort mainly based on thermal sensation and 

expectations of thermal and wind conditions. Latent class 2 comprehensively considered 

the non-thermal influences and psychological acceptability and need satisfaction of 

outdoor activity. 

(3) Such a difference may be attributed to the individual’s socio-demographic 

characteristics and behavioral factors, as treated in membership specification. For 

example, the comfort assessment of younger males in class 2 who made preparations 

before going outside are influenced by their acceptability and need satisfaction 

regarding social or leisure outdoor activities. However, such an effect was not found for 

people in class 1.  

In conclusion, the heterogeneity in the process of outdoor comfort assessment modeling 

is persuasive as it stands. The conceptual framework and LCPM present the theoretical 

improvement on outdoor comfort assessment modeling. Methodologically, the 

consideration of heterogeneity in modeling contributes to the outdoor comfort 

literature by allowing researchers to detect unobservable moderating classes which 

account for heterogeneity among the studied population. To examine the pervasiveness 

of heterogeneity and strengthen the effects of individuals’ difference in comfort 

modeling, more empirical investigations are expected to provide supportive evidence in 

different regions and contexts. The findings of this study relied on the cross-sectional 

data where no changes in the latent classes and path structure can be explored. More 

comprehensive studies in future are expected to contribute and support the decision-

making process from a longitudinal perspective for better planning and management of 

outdoor comfort spaces. 
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8.  
Conclusions
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8.1 Summary 

Comfort in urban public space is a goal to be sought through the concerted efforts of 

residents, planners, policy makers and other different stakeholders concerned. 

Comfortable public spaces improve urban residents’ quality of life by accommodating 

encounters with fellow citizens, offering recreational opportunities and considerable 

social and commercial value. This dissertation builds a disruptive conceptual framework 

for providing a better understanding of the expanded set of factors influencing outdoor 

comfort assessment in urban public spaces. The findings of this empirical investigation 

present a discourse of whether and to what extent human behavioral and psychological 

factors are associated with their comfort assessment in a certain geographical context. 

In light of context-based adaptive approach, the findings of this study confirm the active 

role of individual people’s varying perceptions and expectations on different 

microclimatic and environmental variables. Further, some progress has been made in 

exploring the comprehensive conceptual framework with an expanded set of influential 

factors on comfort assessment in urban public spaces. The nonlinear effects of influential 

factors have been addressed, as well as the direct and indirect effects of influential 

factors on comfort assessment were investigated. Moreover, the heterogeneity in 

comfort assessment among individuals has been examined.  

To understand the response of people to the outdoor built environments with respect 

to thermal conditions, sound pressure level and air quality, field investigations were 

carried out in a real-world outdoor setting in the city center of Eindhoven, including a 

questionnaire-based survey and simultaneous measurement of meteorological 

conditions. In total, 701 respondents completed the survey.  Their outdoor comfort 

assessments were analyzed using multiple linear regression, nonlinear regression with 

Box-Cox transformations, path analysis, and a latent class path model.  

This study provides a full perspective of a human-centered paradigm to rethink the 

philosophy of comfort with reference to human preferences, expectations, perceptions, 

acceptability, and satisfaction, among other psychological and behavioral factors. The 

main findings verified the necessity of an expanded set of factors and indicated that the 

relationship between comfort and thermal neutrality is not straightforward. Nonlinear 

effects of microclimatic variables and environmental stimuli on human perceptions and 

comfort assessment were validated. Meanwhile, the mediate effects through 

psychological factors link outdoor comfort and the exogenous influences of external 
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microclimatic and environmental conditions and direct sensations of individuals. The 

results also raise awareness of the need to reconsider variations among different 

individuals in outdoor comfort assessments.   

Although a growing body of literature is arguing the theoretical limitation of existing 

approaches of outdoor comfort assessment, the varying individuals’ expectation and 

adaptation in certain geographical and socio-cultural contexts have been seldomly 

studied from a human-centered perspective. Motivated by this knowledge gap in 

outdoor comfort studies, this doctoral research fills the gap through an integrative 

method, which investigates subjective comfort assessment in urban public spaces with 

an explicit focus on the role of humans with respect to socio-demographic characteristics, 

behavioral factors, and psychological factors, and the corresponding microclimatic and 

environmental stimuli. This study contributes to the literature on modeling human 

outdoor comfort in urban public spaces, especially providing insights into human factors. 

It also stresses the importance of extending the current standards of thermal comfort to 

provide more valid comfort assessing approaches in outdoor environments.  

The other contribution of this study to the theory of comfort assessment in outdoor 

environment is introducing the comprehensive conceptual framework with an expanded 

set of determinants. In formulating the conceptual framework, overall comfort 

assessment is assumed as a function of the place-human interaction, in which the 

importance of human perceptions and adaptations emerges. The discourse was 

presented with regard to the expanded set of influential factors, including microclimatic 

variables and human socio-demographic, behavioral and psychological factors. This 

framework provides the opportunity to explore the influence of contextual factors on 

individuals’ assessments.  

Chapter 5 explored the effects of the measured objective microclimatic variables and 

surveyed personal socio-demographic characteristics, behavioral factors and subjective 

psychological factors using both linear and nonlinear models. The estimation results 

provide convincing evidence that behavioral and psychological dimensions have 

significant effects on human comfort assessment in urban public spaces, beyond the 

single heat exchange dimension. 

Chapter 6, further, addressed the mediate effects of psychological factors through path 

analysis. The results highlighted the intermediate effect of endogenous psychological 

variables. Besides thermal sensation, individual’s comfort assessment heavily relies on 
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acceptability and need satisfaction of conducting outdoor activities. Unlike the direct 

influences in linear and nonlinear models, some exogenous variables indirectly impact 

comfort assessment via the intermediate endogenous variables. The simplified process 

from physical condition to comfort assessment has been substituted with an extended 

framework with verified direct and indirect influences based on the interaction of human 

and environment. 

Chapter 7 focused on heterogeneity in comfort assessment among different individuals, 

providing insight on the unobserved classification in respondents depending on personal 

characteristics and behavioral factors related to long-term and short-term experiences. 

Latent class analysis was applied and integrated into the path structure. Two 

unobservable moderating groups were verified, stressing the underlying individual 

differences pertaining to human thermal history and experience. 

8.2 Implications for urban planning 

Research on outdoor comfort in urban public spaces is of high importance to increase 

the site attractiveness, promote people's outdoor activities, and improve the living 

quality in general. Thereby, outdoor comfort should be an important consideration in 

the process of urban planning, design, policymaking, management, and related practices. 

The raising awareness of human-environment interaction drives more attention on 

responsive urban design and planning in climate and cultural contexts. It is important to 

acknowledge the characteristics of the target populations, understanding how they 

interact with urban microclimates and environments, and to compromise their 

preferences in favor of spending time outdoors. This research aims to introduce the 

comfort assessment methods and contribute to the scientific understanding of 

comprehensive determinants in real-world urban settings. 

This study, thereby, provides a disruptive conceptual framework with an expanded set 

of influential factors for outdoor comfort assessment modeling, meanwhile, presents an 

integrated approach to ravel the underlying diversity of population in comfort 

assessment. The findings shed light on to what extent people’s preferences, 

expectations and adaptations influence their comfort in a complex outdoor urban 

environment. The expanded conceptual framework also brought insights of context-

based adaptation into comfort modeling, which beyond the way of only incorporating 

the effect of thermal conditions. The socio-demographic characteristics and behavioral 

factors are proved to affect people’s expectations and preferences, therefore, the 



Comfort in Urban Public Spaces 

134 

practices of developing or redeveloping urban public spaces should take the influence of 

diverse users and the main driver of their backgrounds into account. In addition, the 

results of this study regarding locations with different features will help implementing 

the measures of improvement in various urban settings. 

When it comes to the municipal management on urban public spaces, the methodology 

and findings of this study imply that better solutions may be obtained if the nature and 

strength of the relationship between comfort and its determinants are fully informed. 

Higher quality of public spaces incorporating the provision of facilities and opportunities 

for adaptation will also encouraging more outdoor attendance. For design and planning 

in practice, planners should not only consider the microclimate environment but also the 

characteristics of public spaces and behavioral factors, such as transport modes, 

frequency of visit, durations, and purposes.  

8.3 Limitations and future research 

Due to limited human resources and budget, a relatively small sample size was obtained 

in one city in this study. It implies that the generalizability of the results is rather limited, 

although the methodology, which has some innovative components, is generic. In 

particular, the selection of locations using orthogonal design and the use of the latent 

class path model solved the problem of bias estimates in most previous applications of 

regression models of outdoor comfort assessment and offer a different perspective on 

heterogeneity from latent classes of comfort assessment equations to heterogeneity in 

causal structures leading to outdoor comfort assessments. Longitudinal surveys and 

measurements in different spaces with similar thermal conditions could provide more 

useful information regarding the interactions between people and their immediate 

environments.  

In addition, time limitations in the survey to some extent hindered acquiring in-depth 

descriptions concerning respondents’ thermal history, and their full course of past 

activity experiences, which could have provided adaptation insights into the dynamics of 

outdoor comfort in different urban public spaces. 

The findings of this study widen our understanding of comfort assessment in urban 

public spaces from the perspective of a human-centered paradigm. Based on this study 

in the Netherlands, it is important to draw a more general conclusion through 

investigations in different climatic and cultural contexts. Furthermore, rather than 
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relying on data collected in one season, future studies are highly recommended to be 

carried out in different seasonal contexts.  

Finally, further research concerning the people’s expectations of diverse predictors on 

comfort assessment and the corresponding ameliorations of outdoor settings is worth 

to examine. Such investigation may explore people’s need-based preferences that 

encourage them to spend more time on outdoor activities, which may contribute to 

developing incentives and policies to improve urban livability and vitality and residents’ 

well-being.
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Questionnaire 

 

Intro: We are carrying out research about thermal comfort in this public space and how it is related to your 

behavior and the microclimatic, environmental, and spatial attributes of this space. Do you mind if I invite 

you to take part in the survey of a few questions? It will take you about 10 minutes. Thank you!  

No.  Location  Date  Begin  End  

PART 1 

Age  Gender  

Race  Hometown  

Height  Education  

Weight  Health condition  

Time in outdoor  Time in this place  

 

Motion state  □Sitting □Standing □Walking 

Stay □Sun □Shade □Wind shield 

 

PART 2 

The following scale consists of a number of words that describe different feelings and emotions. Read each 

item and then list the number from the scale next to each word. Indicate to what extent you feel this way 

right now, that is, at the present moment OR indicate the extent you have felt this way over the past week.  

1 = Not at all 2 = A little 3 = Moderately 4 = Quite a bit 5 = Extremely 

 

Interested Distressed Excited Upset Strong 

Guilty Scared Hostile Enthusiastic Proud 

Irritable Alert Ashamed Inspired Nervous 

Determined Attentive Jittery Active Afraid 
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Questionnaire 

 

PART 3 

*0 means neutral feeling or condition, similarly hereinafter 

1. What were your expectations for this place before your current outdoor sojourn? 

Cold □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Hot 

Calm □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Windy 

Dry □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Humid 

Quiet □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Noisy 

Dusty □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Fresh 

2. Which type of building were you in before your current outdoor sojourn? 

□ Air-conditioned □ Free running 

3. What is your general preference to the type of environment? 

Urban facilities □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Natural landscape 

4. How you think this place are good for outdoor activity? 

Unacceptable □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Acceptable 

5. How do you think the openness of this place? 

Unsuitable □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Suitable 

6. How familiar are you with this place? 

Unfamiliar □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Familiar 

7. How often do you come to the current outdoor space? (f: frequency of visit, w: week, m: month) 

□ First time □ Seldom □ Occasionally □ Sometimes □ Often 

0 f < 1/m f ≤ 1/w 1/w < f ≤ 3/w 3/w < f 

8. What is your purpose for coming or sojourning in this outdoor place now? 

□  Transfer □ Social activity □ Shopping □ Rest □ Leisure 

□ Passing-by Other: 

9. How do you think other people’s activities influence on your position choice and comfort? 

Not at all □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Extremely 
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Questionnaire 

 

PART 3 

*0 means neutral feeling or condition, similarly hereinafter 

10. How do you think you can make yourself comfort by the opportunities provided in this place? 

Not at all □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Extremely 

11. How do you want to change your original planned time schedule? 

Reducing □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Extending 

12. What are your preferences regarding the conditions of this place? 

Colder □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Warmer 

Calmer □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Windier 

Drier □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Wetter 

Cloudier □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Sunnier 

13. What kind of measures have you taken for more comfortable feeling? 

□  Add clothing □  Reduce clothing □  Wear hat □  Wear scarf □  Wear gloves 

□  Use umbrella □  Wear sunglasses □  Have food □  Drink warm □  Drink cold 

□  Change posture □  Change position □  Change schedule Other: 

14. How do you think this place fulfill your needs for outdoor activity? 

Not at all □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Extremely 

15. How do you perceive the microclimate and environment of this place? 

Cold □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Hot 

Calm □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Windy 

Dry □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Humid 

Cloudy □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Sunny 

Quiet □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Noisy 

Dusty □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Fresh 

16. How do you assess the overall comfort of this place at present? 

Uncomfortable □ -3 □ -2 □ -1 □ 0 □ 1 □ 2 □ 3 Comfortable 
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Comfort in Urban Public Spaces
This dissertation builds a disruptive conceptual framework for 
providing a better understanding of the expanded set of factors 
influencing outdoor comfort assessment in urban public spaces. 
A full perspective of a human-centered paradigm is provided to 
rethink the philosophy of comfort with reference to human 
preferences, expectations, perceptions, acceptability, and 
satisfaction, among other psychological and behavioral factors.
To understand the response of people to the outdoor built 
environments with respect to thermal conditions, noise level and 
air quality, field investigations were carried out in a real-world 
outdoor setting in the city center of Eindhoven, including a 
questionnaire-based survey and simultaneous measurement of 
meteorological conditions. In total, 701 respondents completed 
the survey. Their outdoor comfort assessments were analyzed 
using multiple linear regression, nonlinear regression with Box-
Cox transformations, path analysis, and a latent class path 
model.
The main findings verified the necessity of an expanded set of 
factors and indicated that the relationship between comfort and 
thermal neutrality is not straightforward. Nonlinear effects of 
microclimatic variables and environmental stimuli on human 
perceptions and comfort assessment were validated. 
Meanwhile, the mediate effects through psychological factors 
link outdoor comfort and the exogenous influences of external 
microclimatic and environmental conditions and direct 
sensations of individuals. The results also raise awareness of the 
need to reconsider variations among different individuals in 
outdoor comfort assessments.
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