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Abstract
Real time bidding is one of the most popular ways of selling impressions in online advertising, where online ad publish-
ers allocate some blocks in their websites to sell in online auctions. In real time bidding, ad networks connect publishers 
and advertisers. There are many available ad networks for publishers to choose from. A possible approach for selecting ad 
networks and sending ad requests is called Waterfall Strategy, in which ad networks are selected sequentially. The ordering 
of the ad networks is very important for publishers, and finding the ordering that will provide maximum revenue is a hard 
problem due to the highly dynamic environment. In this paper, we propose a dynamic ad network ordering method to find 
the best ordering of ad networks for publishers that opt for Waterfall Strategy to select ad networks. This method consists of 
two steps. The first step is a prediction model that is trained on real time bidding historical data and provides an estimation 
of revenue for each impression. These estimations are used as initial values for the Q-table in the second step. The second 
step is based on Reinforcement Learning and improves the output of the prediction model. By calculating the revenue of our 
method and comparing that with the revenue of a fixed and predefined ordering method, we show that our proposed dynamic 
ad network ordering method increases publishers’ revenue.

Keywords Reinforcement learning · Prediction model · Waterfall strategy · Ad network ordering · Real time bidding

Abbreviations
RTB  Real time bidding
ads  Advertisements
SSP  Supply side platform
DSP  Demand side platform
HB  Header bidding
RL  Reinforcement learning
MDP  Markov decision process
GDPR  General data protection regulation
DAO  Dynamic ad network ordering

1 Introduction

Online advertising is one of the most important sources 
of income for website owners, and its turnover is growing 
every year [11]. The process of online advertising consists 
of placing blocks like iframe in a website and selling them 
to the advertisers of services or products [31]. These blocks 
are called ad slots and they generate impressions upon the 
webpage is viewed by an end user [16]. Advertising revenue 
is important for publishers, and increasing this revenue is an 
important task of publishers.

The traditional approach for a publisher to sell impres-
sions is to directly interact with advertisers through guar-
anteed contracts. This approach is not efficient because a 
publisher has to put extra effort into searching and finding 
appropriate advertisers, and the number of available adver-
tisers is large. Programmatic Advertising is another way that 
computer programs perform the process of advertising for 
a publisher. In this way, Artificial Intelligence and Machine 
Learning methods help to develop data driven approaches 
for decision making tasks, and the process of selling ad slots 
is performed in a few milliseconds [5].

Real Time Bidding (RTB) is a programmatic adver-
tising approach in which an ad network is responsible 
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to connect publishers and advertisers [41]. Ad networks 
run auctions to sell publishers’ ad slots to the advertis-
ers [15]. Ad networks receive the ad requests containing 
impression information from the publishers and perform 
online auctions in which the advertisers place their bids 
for the impressions. The advertiser with the highest bid 
is selected to show its advertisement (ads) on the pub-
lisher’s website [38]. Basically, Demand Side Platforms 
(DSPs) and Supply Side Platforms (SSP) assist advertisers 
and publishers, respectively, to participate in the auctions 
[43]. Ad networks mostly run a second price auction with 
reserve price to sell the ad impressions [5]. The reserve 
price (also called the floor price) determines the minimum 
amount of money that the publisher expects to gain by 
selling the impression [43]. If the highest bid is less than 
the floor price, the impression remains unsold. Otherwise, 
the highest bidder is the winner, and it pays as much as 
the maximum of second highest bid and the floor price. 
If the auction of the current ad network has a winner, the 
process finishes, and the ad slot is filled with the winner’s 
advertisement.

Different ad networks are available for a publisher to run 
auctions and sell a particular impression. Each ad network 
is connected to many advertisers with different preferences 
in buying an impression. Waterfall Strategy and Header 
Bidding (HB) are possible approaches for selecting ad net-
works. In Waterfall Strategy, the ad networks are selected 
sequentially, and in Header Bidding, all the ad requests are 
sent simultaneously. Although Header Bidding has become 
popular in the last few years, Waterfall Strategy is still used 
as an advertising approach for many websites because its 
latency can be significantly lower than HB [24]. According 
to [21], around 25% of websites in the US still use Water-
fall Strategy as a standard advertising approach. Besides, in 
some recent RTB systems, HB is combined with Waterfall 
Strategy, and it is not completely replaced by HB [3]. We 
focus on the Waterfall Strategy to improve its performance 

as an existing approach, and the purpose of this paper is not 
to compare Waterfall Strategy and HB.

Waterfall Strategy is illustrated in Fig. 1. In the Waterfall 
Strategy, when a website is visited, an ad request is gener-
ated and is sent to the first ad network [9]. If the response 
of the first ad network is not successful, i.e., it cannot find 
an advertisement, the publisher should initialize and send 
another ad request to the second ad network. This process 
continues until selling the impression or consuming all of 
the ad networks and reaching a timeout [2].

This fixed ordering is not efficient in terms of revenue. 
The revenue comes from the winning bidder. This bidder 
is not necessarily the bidder with the maximum valuation 
for the impression because the possible higher bidders have 
never been approached. Therefore, the ordering of ad net-
works is very important for a publisher [23].

The results presented in this paper improve and extend 
upon earlier work by the same authors [1, 2]. In this paper, 
we develop a decision support system based on Reinforce-
ment Learning (RL) to help publishers in selecting the ad 
networks in the Waterfall Strategy. Typical Waterfall Strat-
egy relies on a predefined and fixed ordering of ad networks. 
We modify this framework and present a new strategy in 
which the ordering of ad networks is determined dynami-
cally per impression. Our proposed method consists of a 
prediction model based on a supervised learning idea that 
is inspired from [33], in which a Deep Neural Network is 
initialized by a prediction model and further trained by RL. 
Unlike [33], in our method, first, the prediction model is 
trained using historical data and then initial value of each 
state action pair is calculated by the output of the predic-
tion. The initialization step solves the sparsity of the reward 
function, because all combinations of ad requests and ad 
networks could not be observed in the Waterfall Strategy. In 
terms of latency, our method trains offline and provides an 
ad network using impression information only by looking 
at table Q-table. Therefore, our proposed method would not 
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Fig. 1  The structure of the Waterfall Strategy from the publisher’s point of view
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take more than few milliseconds in theory. In particular, our 
contributions are as follows:

• Modeling the ad network selection procedure as a 
Markov Decision Problem (MDP) and developing an 
ad network ordering approach by integrating supervised 
learning and RL to solve the sparsity of the reward func-
tion.

• Introducing new benchmarks, including a set of prede-
fined ordering and the output of the prediction model as 
a decision support tool, and demonstrating the effective-
ness of our approach by comparing with these bench-
marks.

In [1] we presented the preliminary work that contained the 
basic RL idea. In [2], the prediction model is added to the 
method as a separate step, and we showed that the RL frame-
work improved the decision making. In this paper, we extend 
these works by introducing new benchmarks including pre-
defined orderings and two ordering approaches based on the 
output of the prediction model, elaborating the experiments 
by analyzing the data to show the distribution of successful 
ad requests for each ad network, considering a new dataset 
to show the stability of the method in different time periods, 
and formally presenting the methodology that can be eas-
ily implemented and followed. Furthermore, the process of 
deriving the sequences and episodes is elaborated in detail. 
Therefore, this work is a substantial extension of the previ-
ous works.

2  Related Work

The literature contains extensive studies on revenue maxi-
mization for ad publishers. This section reviews literature 
related to RTB. Various methods have been developed for 
determining the floor price. Xie et al. introduce a method 
to set the floor price dynamically without any information 
about the bids [40]. In this method, a family of classifiers 
is used to predict whether the bid of a particular impression 
is high. The next level of prediction predicts the difference 
between the highest bid and second highest bid, and the floor 
price is set if this difference is high. In [4], a model param-
eter vector is learned by gradient descent, and the floor price 
is obtained by the inner product of this parameter vector and 
a feature vector containing auction information. In [20], the 
authors set the floor price in multi-channel real time bidding 
markets using separate mathematical models for setting up 
the floor price in offline and online channels. The online 
channel is the RTB auctions, and the offline channel is direct 
contracts with the advertisers. The methods introduced in 
[28–30] are useful in non-stationary environments. The price 
setting is based on considering the gap between the top bid 

and the second bid in the second price auction. In [42] pro-
poses a pricing strategy by modeling the real time bidding 
environment as a dynamic game. In [32, 37], the contracts 
between publishers and advertisers are considered, which 
determine how many impressions should be sold offline 
and online. In our work, the reserve price is set using a 
fixed strategy derived from historical data, and this value is 
decreased constantly after each unsuccessful attempt.

RL has highly attracted researchers’ attention in recent 
years, and it is also used in the context of real time bidding. 
In [36] an RL method is proposed to support the sellers in 
the dynamic pricing decisions where the auctions are not 
real time auctions. In this method, a learning algorithm tunes 
the parameters of a seller’s dynamic pricing policy. In [6] an 
RL modeling of RTB is introduced to help advertisers in set-
ting their bid price. In [39], the authors formulate the budget 
constraint bidding as a Markov Decision Process and pro-
pose a model-free RL framework to derive the optimal bid-
ding strategy for the advertisers. In [18], the RTB environ-
ment is modeled as a multi-agent RL problem. Based on this 
modeling, the bidders learn how to act by considering other 
bidders as competitors. Unlike these previous approaches, 
in this paper, we model the problem of ad network ordering 
as an RL problem from the seller’s side. Most of the work 
in this direction models the environment from advertisers’ 
point of view, which is different from ours.

Despite its importance, the ad network ordering prob-
lem has gained less attention in recent years in comparison 
to dynamic pricing. In [19], the problems of ad network 
ordering and pricing are modeled as a multi-armed ban-
dit problem, and a variant of the Upper Confidence Bound 
algorithm is used to derive the optimal strategy. In this 
modeling, a joint action consisting of a floor price and ad 
network ordering is considered in the bandit modeling. Our 
proposed method is different because we utilize contextual 
data, and the action is ad network ordering. Based on [14] 
the revenue is the most important factor when a publisher 
wants to select one ad network. However, there is no single 
ad network that can work well for all impressions. Therefore, 
dynamic ordering is necessary. In our preliminary works, we 
proposed two versions of the ad network ordering method 
based on RL [1, 2]. In this paper, the idea is elaborated, and 
complete experimentation is presented.

3  Problem Definition

As mentioned before, the typical Waterfall Strategy relies 
on the predefined and fixed ordering of ad networks, and 
this fixed ordering is not efficient in terms of revenue. Upon 
loading a webpage of a website containing an ad slot, the 
website owner or the publisher deals with a decision mak-
ing problem. The problem is selecting an ad network at each 
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decision moment among a list of possible ad networks to 
send an ad request. This ad network runs an auction to sell 
the ad slot, and the response is either successful or unsuc-
cessful. Based on the response, the next decision moment 
occurs, or the process finishes. In our formulation, n is the 
number of ad networks, and a = 1,… , n is an ad network. In 
order to develop the dynamic ad network ordering method, 
a set of ad requests and their responses are used in training 
and testing. Dataset D contains the set of all ad requests that 
are divided into p sequences. Each sequence contains the 
set of ad requests for filling a certain ad slot. li is the number 
of ad requests in the ith sequence. D is the union of three 
disjoint datasets D1 , D2 and D3 where D1 is used in the first 
step of the proposed method, D2 is used in the second step, 
and D3 is the test dataset. Each ad request is denoted by 
xij, i = 1,… , p , j = 1,… , li which is the jth ad request of the 
ith sequence and it contains a certain number of features. Let 
eij be a binary value that determines whether an ad request 
is successful. Using this notation, p(eij = 1|xij) = p(eij|xi,j) 
is the success probability of sending xij to ad network a. 
Likewise, p(eij = 0|xij) = 1 − p(eij = 1|xij) is the probability 
of receiving an unsuccessful response by sending xij to a. 
Considering these features, each ad request xij is formally 
defined as follows:

where, the descriptions of the features are elaborated in 
Table 1.

The problem of selecting ad networks in Waterfall Strat-
egy is a sequential decision making problem [26]. At each 
attempt, the publisher decides to send an ad request to a par-
ticular ad network, and then a response is received. Based on 
this response, the next state is determined, and the publisher 
knows whether it should send another request to a new ad 
network or not. This setting follows the Markov property in 
which the next state and received reward are independent of 

(1)
xij =(�ij, �ij,�ij, a,Υij,�ij, fij, oij),

i =1,… , p j = 1,… , li

all previous states [34, 35]. Therefore, we model the problem 
as an RL problem and try to learn state action values using 
initial state action values provided by the prediction model.

Our method is based on tabular RL. Tabular RL is used 
for solving ad network ordering problem, which is explained 
in Sect. 4 because the states and actions representations are 
finite and countable. In other words, we propose a modeling 
of dynamic ordering problem as an RL problem in which 
the states space and actions space are discrete and finite. 
Furthermore, the problem is episodic, and there is no prior 
information about the model of the environment. Hence, the 
Monte Carlo algorithm as a model-free RL algorithm is used 
for learning the state-action values. In the RL modeling of 
the ad network ordering problem, deriving a state represen-
tation is hard because not all features in an ad request are 
useful for representing the states. For instance, it has been 
observed that features like page URL are almost independ-
ent of the revenue, and it is better to be removed from the 
states. Furthermore, as shown in Sect. 4.1, features like floor 
price are highly important in the success of an ad request 
and the revenue. In Sect. 4.2.1, we will select a subset of 
features which represent the ad requests well and retain their 
important properties. The selected features are determined 
by using the feature importance listed in Table 2.

The historical ad requests that are obtained by following 
Waterfall Strategy are not sufficient for learning because, 
for many pairs of ad requests and ad networks, there is no 
information in the historical data. In other words, the data is 
sparse in terms of ad requests and ad networks pairs. In order 
to solve the sparsity, a prediction model is developed on a 
part of the data, and the output of the prediction model gives 
us the initial state-action values that will later be updated 
by using another part of the data. This prediction model is 
the first step of our proposed method, and the Monte Carlo 
algorithm is the second step. Figure 2 illustrates an overview 
of the method.

Our goal is to utilize the historical data to develop a 
decision support tool for ad publishers that follow Waterfall 

Table 1  Features of jth ad request of ith sequence

Field name Notation Definition Type

Event state eij The result of attempt: 0: fail, 1: success Binary
Timestamp �ij time of ad request (hour of a day) Numerical
Country code �ij A code specify country of the user visiting publisher’s website. Nominal
Ad tag id �ij A unique string corresponds to an advertisement slot Nominal
Ad network id a Id of each ad network (Ad exchange, AdSense, AOL,…) Nominal
Page URL Υij URL of the webpage containing the ad slot Nominal
User properties �ij Information related to the end user Nominal
(OS, browser, device, etc)
Floor price fij The amount of floor price (reserve price) Numerical
Request order oij Order of current attempt in a sequence of attempts Numerical
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Strategy. Generally, our method is trained on a set of ad 
requests, and after training, it could be used as a decision 
support system. For each coming ad request, the model 
decides the best ad network that can provide the maximum 
revenue.

4  Dynamic Ad Network Ordering Method

In this section, we present our method for dynamically 
ordering the ad networks in the Waterfall Strategy. We are 
aiming to obtain an ordering by choosing the ad network at 
each decision moment that maximizes the estimated rev-
enue. Our method consists of two steps. The first step is a 
prediction model, and it provides a lower bound of the esti-
mated revenue for each combination of ad requests and ad 
networks. The second step is an RL modeling of the problem 
to improve the initial values obtained from the prediction 
model.

The first step of our proposed method is an offline pro-
cess. Once this step is finished, the lower bound of the rev-
enue is used as an initial value for the second step, which is 
the Monte Carlo algorithm. The second step could be per-
formed either online or offline. In the online version, the 
value function is continuously updated for each coming ad 

request. In other words, before sending an ad request, the 
proper ad network is selected based on the value function, 
and upon receiving the response, the same value is updated. 
In the offline version, a set of ad requests are used for deriv-
ing the Q values, and this Q table is used as a lookup table 
for each coming ad request to decide the best ad network. 
The two steps are explained in the following subsections.

4.1  Prediction Model

The prediction model is a binary classifier that receives ad 
request xij and determines whether it is successful in finding 
advertisements or not. Vector xij is the feature vector shown 
in (1). The event state is the target feature that is used as the 
true label in supervised learning. We construct the predic-
tion model such that it outputs probability values for the 
successful case, i.e. p(eij|xij).

The success probability has not the same unit as the rev-
enue. Since the main goal is to increase the revenue, we 
estimate the revenue by multiplying the floor price and the 
success probability. Based on the second price auction, the 
revenue of each ad impression is obtained by (2).

where, b(1) and b(2) are the highest bid and the second highest 
bid, respectively. Normally, the highest and the second high-
est bids for ad request xij and ad network a are not observable 
for the publisher. Hence, the actual revenue is unknown, 
and we need to estimate that. To find a value proportional to 
the actual revenue, we use the multiplication of the success 
probability and the floor price. This value is the estimated 
lower bound of revenue of xij when it is sent to a. Equa-
tion 3 shows this estimated revenue which is the output of 
the first step.

(2)R(xij) =

{
0 if fij > b

(1)

ij

max{fij, b
(2)

ij
} if fij ≤ b

(1)

ij

Fig. 2  An overview of our proposed method

Table 2  Top seven most 
important features

Rank Feature Importance

1 fij 0.303459
2 a 0.200992
3 oij 0.184083
4 Υij 0.060835
5 �ij 0.059338
6 �ij 0.052920
7 �ij 0.027170
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where �[R(xij)] is the estimated lower bound of revenue 
when xij is sent to a which is a feature of xij.

Different features of xij have different impacts on the pre-
diction performance. In other words, the importance of the 
features is different, and the most important features deter-
mine the predicted class. The feature importances are com-
puted as the mean deviation of accumulation of the impurity 
decrease within each tree of a random forest classifier1 [13, 
25]. Table 2 illustrates top seven important features with 
their importance values. This table shows that the total 
importance of floor price, ad network, and request order is 
around 0.7, and this value means that these three features 
are highly informative for learning. As it is explained in 
Sect. 4.2.1, the state representation of each ad request is 
obtained by considering this feature importance table. These 
values are provided by the prediction model [12].

4.2  Modeling with Reinforcement Learning 
Framework

In the following sub-sections, the components of a Markov 
Decision Process (MDP), including states, actions, and 
rewards, are defined. The agent in this setting is the pub-
lisher, and the environment contains the RTB partici-
pants from the publisher’s point of view. In our case, the 
environment contains publishers, ad networks, and their 
interactions.

4.2.1  States

In our modeling, states are derived from ad requests. The 
combination of user information and impression properties 
construct ad request xij . The ad request xij also contains an 
integer number, namely Request Order ( oij ) that determines 
the number of unsuccessful attempts to fill the current ad 
slot. In other words, oij shows the number of ad networks that 
have been tested so far and cannot provide an advertisement. 
This information in xij is used to define the states.

A straightforward approach to define states is to use the 
combination of all features shown in (1). Since there are 
around 500,000 ad requests per day in our study case and no 
two ad requests are the same because each ad request has a 
specific time, defining states in this way results in large state 
space. Two possible solutions for coping with this state-
space are removing the time feature or reducing the unique 
values of this feature by grouping them. However, after per-
forming both approaches, the number of states is still large. 

(3)�[R(xij)] = p(eij|xij)fij User characteristics ( Υij ) are removed due to GDPR2 and 
the values of other features are grouped to reduce the size of 
state space. Among these features, the country code is irrele-
vant because the data is specifically for the The Netherlands. 
Timestamp induces slight separation according to Table 2. 
Page URL is initially included in the state representation; 
however, this entailed a large state space that the agent can-
not be trained properly using the current configuration. This 
modeling requires function approximation methods such as 
REINFORCE, where the data is insufficient for that. Hence, 
the selection of the features is managed by removing these 
features from the state representation. Finally, the combi-
nation of the floor price, request order, and ad tag id pro-
vides a state space. This state space is not only small enough 
but also contains important information of the ad requests 
because they are selected based on the importance of the 
features illustrated in Table 2.

Table 2 shows the seven most important features. Floor 
Price and Request Order are selected from the top three. As 
it is explained in Sect. 4.2.2, ad networks are actions, and ad 
tag id ( �ij ) is the unique identifier of each ad slot which is 
important in determining the states. The sum of the impor-
tance of the selected features shows that they are the most 
informative features. We use the information of Table 2 to 
select the features for modeling states and actions. The total 
importance of the selected features for states and actions is 
around 0.7. The other features have many unique values, and 
they increase the size of state space, while the importance is 
less than 0.05 for each of them. Since the number of unique 
values of other features is large and they are not very impor-
tant, we discard them to reduce the state space.

To further reduce the size of the space, the values of 
request order and floor price are converted to binary val-
ues. This technique is usually used for converting images to 
binary images [22]. For this purpose, two thresholds named 
�f  and �r are defined. These two values are the medians over 
the values of the floor price and request order in the dataset 
D2 . We use medians because they balance the number of 
values in each group. This process reduces the number of 
unique states from 5 × 105 to 1245. Let Fij and Oij be the 
new binary values corresponding to the floor price and the 
request order, and they are shown in (4) and (5) respectively. 
The states are defined in (6).

(4)Fij =

{
0 if fij < 𝜃f
1 if fij ≥ 𝜃f

(5)Oij =

{
0 if oij < 𝜃r
1 if oij ≥ 𝜃r

1 sklearn.ensemble.RandomForestClassifier 2 General Data Protection Regulation
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where sij is the corresponding state of xij.

4.2.2  Actions

At each decision moment, an ad network is selected to send 
an ad request. This ad network is an action in our mode-
ling that is denoted by an integer a ∈ {1,… , n} , where n 
is the number of available ad networks. The set of actions 
contains available ad networks that are modeled by integer 
numbers for simplicity. By sending an ad request and receiv-
ing the response, the environment transitions to a next state 
whose floor price is reduced, its ad tag id is the same, and 
its request order is incremented. In this way, the transition 
function modifies the request order and the floor price based 
on the response of the auction performed in the selected ad 
network.

4.2.3  Rewards

Two possible responses could be received by sending an ad 
request to an ad network. When the ad network is successful 
in finding a bidder for the ad slot, it is filled, and the pub-
lisher earns revenue that is at least equal to the floor price. 
Otherwise, the publisher needs to resend another request to 
another ad network. In order to reduce the number of unsuc-
cessful attempts, a penalty is necessary for the algorithm 
to avoid unsuccessful attempts. Hence, a minus reward is 
chosen for the unsuccessful responses. The average of all 
floor prices of successful ad requests is around one, and a 
publisher will lose this value on average when it fails to 
find an advertiser. Therefore, for each xij we define fij as 
the reward of successful responses and −1 for the reward of 
unsuccessful responses. In other words, the rewards of all 
transitions in an episode except the last one are −1 , and the 
reward of transiting to a terminal state is fij . Equation (7) 
shows the reward in our modeling.

where r(sij, a) is the instant reward when the publisher selects 
a as an action for the state sij and eij is the event state of xij . 
The Return of sij is the cumulative instant rewards obtained 
from sij to the end of sequence i, i.e. given by (8).

where, li is the length of current sequence, G(sij, a) is the 
return that follows sij and a ∈ {1, 2,… , n} is the observed 
ad network of kth ad request of the sequence i.

(6)sij =(Fij,Oij,�ij)

(7)r(sij, a) =

{
fij if eij = 1

−1 if eij = 0

(8)G(sij, a) = Σ
li
k=j

r(sik, a) = −(li − j) + fi,li

If the publisher gets an advertisement in a certain state, this 
state is called a terminal state, and the ad network selection 
is completed. Otherwise, the next state is a new state with 
different values of request order and floor price. Normally, 
when publishers follow a Waterfall Strategy and face unsuc-
cessful responses, they decrease the floor price and resend the 
request to the following ad network. The new request order is 
one more than the previous value, and this is a property of the 
environment in state transition.

4.2.4  Learning Action Values

An episode in our modeling is the sequence of ad requests to 
fill a certain ad slot. Usually, there is no explicit information 
about the episodes in the RTB data. As mentioned in Sect. 3, 
the Monte Carlo method is selected for learning the action 
values because the length of each episode is short, and exact 
returns of episodes could be obtained easily. Sect. 5 explains 
how to obtain the episodes.

Equation (9) is the updating rule of the Monte Carlo algo-
rithm [34]. In a typical Monte Carlo algorithm, the initial val-
ues are set to zero. We modify this initialization and use the 
values provided by the prediction model as the initial state-
action values. The sample averaging of the Monte Carlo algo-
rithm is a weighted average over all ad requests that are used 
in both steps. The first step processes the ad requests, and the 
second step deals with the states. They should be consistent 
in the updating rule.

The output of the first step is the estimated revenue of an 
ad request, and the second step expects to receive states-action 
initial values as input. In order to make them consistent, the 
request-based estimated revenue should be mapped to a state-
based revenue. For this purpose, for each set of ad requests that 
are mapped to a single state, the average estimated revenue is 
calculated. This average is considered as the estimated revenue 
of the single state, as shown in (10).

where n1
sij,a

 is the number of ad requests used in the first step 
which corresponding state and action are sij and a. n2

sij,a
 is the 

number of ad requests used in the second step which corre-
sponding state and action are sij and a respectively. Let 
Gq(sij, a) be the qth element of the list of returns that are 
observed when a is selected for sij , and �(sij, a) be the 

(9)
Q(sij, a) =

n2
sij ,a∑
q=1

Gq(sij, a) + �(sij, a)n
1

sij,a

n1
sij,a

+ n2
sij,a

(10)�(sij, a) =

∑
sij=(Fij,Oij,�ij)

�[R(xij)]

n1
sij,a
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average of all estimated lower bound of revenues for those 
ad requests xij where s(xij) = sij . In order to compute Q(sij, a) 
using (9) more efficiently, (12) shows the incremental ver-
sion of (9). This equation can be easily obtained by modify-
ing (9) in the way that is explained in [34].

(11)Q0(sij, a) =�[R(xij)] ∀i, j, a

(12)

Qt+1(sij, a) =Qt(sij, a)+

1

n1
sij,a

+ n2
sij,a

+ 1
(G(sij, a) − Qt(sij, a))

where t is the timestep. At each iteration, this value denotes 
the number of times that sij and a are observed so far in 
the second step. Now, we are ready to present our two-step 
algorithm. The pseudo-code of our proposed method is listed 
in Algorithm 1.

Algorithm 1 could be used in two different ways. The first 
one is an offline method. In this method, the final outputs 
of the algorithm are the Q values to be used with a greedy 
policy. If we have another dataset named D3 containing new 
ad requests, we can determine the best ad network for each 
ad request by looking at the corresponding state in Q table 
and finding the action that corresponds to its maximized rev-
enue. The second one is an online method. In this approach, 
the first step is performed separately, and the second step is 
run in a real environment, and it continuously updates the 
Q table for each coming ad request. In this version, while 
receiving a new ad request, first, the publisher decides the 
best ad network based on Q values. Then, the response is 
received, and the corresponding Q value is updated accord-
ingly. We leave the online approach to future publications, 
and we focus on the offline method in this paper.

5  Data Description

In our experiments, we use two weeks of historical 
data. We define two datasets D = D1 ∪ D2 ∪ D3 and 
D� = D�

1
∪ D�

2
∪ D�

3
 that each corresponds to a particular 

period. D consists of the ad requests from 20th to 26th of 
November 2017 and D′ contains the ad requests of the first 
six days of July 2018. Table 3 shows the properties of each 
dataset. The features in a typical ad request are shown in 
Table 1 [1]. These two datasets are used to evaluate the 
dynamic ad network ordering method. The purpose of using 
these two datasets is to show that although the properties of 
an RTB system are subject to change over time, the dynamic 
ad network ordering method stays helpful in maximizing 
revenue.

As data pre-processing, we perform data cleaning and 
sequence extraction. The ad requests of D and D′ are grouped 
into p sequences, where each sequence consists of the ad 
requests to sell a particular impression. The sequences are 
very important in our modeling because they are considered 
as episodes in the Monte Carlo algorithm. However, nor-
mally there is no explicit information about the sequences 

Table 3  Datasets that are used 
in each step of the dynamic 
ordering method

Dataset Ad requests of Dataset Ad requests of Purpose

D 20–26 November 2017 D′ 01–06 July 2018 All the historical data
D1 20–22 November 2017 D′

1
01–03 July 2018 Training the prediction model

D2 23–25 November 2017 D′
2

04–05 July 2018 Training the RL part
D3 26 November 2017 D′

3
06 July 2018 Evaluating the method
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in the RTB data. We assume that for two ad requests that 
aim to fill a single ad slot, features like user characteristics, 
ad tag id, and URL are the same. Furthermore, the time 
difference between these two ad requests may not be more 
than a few milliseconds. Our sequence extraction algorithm 
iterates over all ad requests of both D and D′ once, and the 
output is the set of detected sequences. At each step, an ad 
request x is selected, and it is compared with the last ad 
request of all sequences that have been found so far. If there 
is an ad request that its request order is one less than the 
request order of x, and other features except time and floor 
price are the same, the current ad request is appended to the 
corresponding sequence. The pseudo-code is illustrated in 
Algorithm 2.

There are two types of sequences. A complete sequence 
ends with an ad request whose request order is one. It means 
that the sequence is successful in finding an advertisement 
for a certain ad slot. The other type is incomplete sequences. 
This kind of sequence cannot find an advertisement due to 
various possible reasons like a timeout. Since it is not clear 
why a sequence is incomplete, the incomplete sequences 
are not helpful in predicting the event state. Therefore, all 
of these sequences are removed from the first step. The 
next necessary pre-processing step is dealing with nominal 
features.

The last column of Table 1 shows the type of features in 
an ad request. Some of the features are nominal, and they 
should be converted to numerical values. We use One Hot 
Encoding to convert each value of each feature to a binary 
value [17]. One hot encoder assigns a column for each 

feature value. For example, if a feature contains 1000 unique 
values, the corresponding one hot feature vector contains 
1000 columns. Since the number of unique values of features 
like URL is very large, using all of these values in the feature 
vector results in a large vector which is hard to manage. To 
solve this problem, all feature values with more than 100 
unique values are sorted in descending order based on their 
frequency. The top 100 values are selected to be converted to 
numerical features. All the other values with lower frequen-
cies are aggregated into a single feature value. Therefore, for 
each feature with more than 100 unique values, 101 feature 
columns are assigned in one hot encoding. We used 100 
because the total frequency of the top 100 unique values 
is more than 90% of all values for each feature. Finally, the 
feature vector contains 666 features.

Since the number of unsuccessful ad requests is far more 
than the number of successful ones, the dataset is not bal-
anced. Oversampling methods like SMOTE are not suitable 
for our problem because they may produce incorrect data 
samples [8]. For example, it is possible that SMOTE pro-
duces a data sample with a float value for request order. 
We use the random under-sampling method to balance the 
dataset because the successful ad requests are more impor-
tant, and we try to keep them intact [7]. For this purpose, 
a subset of unsuccessful ad requests is selected, which its 
size is equal to the number of successful ad requests. Based 
on this process, the dataset is balanced, and it has an equal 
number of data instances for each target class.

Preliminary analysis on the relations between features 
like floor price and the revenue are discussed in [27]. We 
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Fig. 3  The number of ad requests that are sent to each ad network for 
each request order and for the ad requests of a dataset D and b data-
set D′ . The predefined ordering of ad networks can be observed from 

these figures, and the majority of ad requests at each request order are 
sent to a certain ad network
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extend this analysis by focusing on the predefined orderings 
and the number of ad requests for each ordering. In order 
to show the predefined orderings that are observed in the 
dataset, for each request order, the frequencies of observed 
ad networks are calculated, and they are shown in Fig. 3a, b. 
As shown in these figures, ad network 1 is the most popular, 
and the publisher prefers to test it again after an unsuccessful 
attempt. The frequencies of other ad networks are very low, 
and they are hardly observable in the figures.

6  Experiments

In this section, the performance of the proposed method is 
discussed. First, the prediction model is evaluated in terms 
of how well it can predict the revenue of each ad request. 

Then the estimated revenue of using the two-steps method 
is compared with the real revenue to show the benefits of 
our method. In order to understand the added value of 
each step, we select ad networks based on the output of 
the first step. These experiments are performed by using 
historical RTB data.

6.1  Evaluation Metrics

To evaluate the prediction model, we employ ROC Curve 
and area under ROC curve (AUC) as they demonstrate the 
quality of the binary classification models well. Since the 
Waterfall Strategy relies on the predefined ordering of ad 
networks, we calculate the revenue of different permuta-
tions of ad networks as a baseline to show that no prede-
fined ordering of ad networks can provide more revenue. 
Thus, the second step and the combined model are evalu-
ated by comparing the total revenue with the baselines, 
including the first step and the predefined ordering.

6.2  Evaluation of the Prediction Model

In order to build the prediction model, different classi-
fication algorithms, i.e. Decision Tree, Support Vector 
Machine, Gaussian Naive Bayes, and Random Forest, are 
tested. The hyper-parameters of these algorithms, like the 
number of trees in Random Forest, are found by random 
search. We used ROC Curve to compare the performance 
[10]. The ad requests of D are used for identifying the 
proper classifier. The classifier is trained on the ad requests 
of D1 , and the obtained prediction model is tested on the 
ad requests of D3 . Figure 4 compares the classification 
algorithms. As it is illustrated in this figure, Random For-
est works best in terms of AUC. Therefore, the random 
forest method with a maximum depth of 10 and 100 trees 
is selected as the prediction model.

Although the distributions of ad requests of varying 
days are different, the classifiers are not biased to a cer-
tain day. In order to show that the prediction model works 
almost the same for different days, the ad requests of each 
day of D2 ∪ D3 and D�

2
∪ D�

3
 are used to test the two predic-

tion models, respectively. Figure 5a, b illustrate the ROC 
Curves for each prediction model. The prediction model 
could be trained once and is useful for predicting the suc-
cess probability of future ad requests without any retrain-
ing. However, it is observed that the prediction model that 
is trained on D does not work well for D′ . Figure 5a, b 
show that by training the prediction model on a set of ad 
requests, we can predict the success probability of the ad 
requests of coming days with a good performance.
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6.3  Evaluation of Dynamic Ad Network Ordering 
Method

The output of the proposed two-steps method is an ordering 
of ad networks that aims to provide the maximum revenue 
for a publisher. In order to evaluate this method, two con-
cepts are defined: Real Revenue and Estimated Revenue. The 
real revenue is the sum of floor price of those xij where eij 
is one. Similarly, the estimated revenue is the revenue that 

is obtained by applying the dynamic ad network ordering 
method. This revenue is the sum of the maximum Q value of 
the first ad request of each sequence. In other words, for the 
first ad request of all sequences, the Q values corresponding 
to the ad network that provides the maximum revenue are 
summed. By summing these values, an estimation of the 
revenue is obtained. The other ad requests of each sequence 
are ignored because the Q values are the average of episode 
returns, and if the first ad request is successful, the process 
finishes. Therefore, the Q values of the first ad requests con-
tain the revenue of other ad requests in this sequence.

As illustrated in Table 3, two datasets are used for evalu-
ating the method. The dynamic ad network ordering method 
is tested on D and D′ separately. D1 and D′

1
 are used for 

training the prediction model. D2 and D′
2
 are used in RL 

step. The output of the Monte Carlo algorithm is a Q(s, a) 
for each possible s and a. The estimated revenue is obtained 
by applying the method on D3 and D′

3
 . The cumulative rev-

enue curves that are obtained from the data (real revenue) 
and from applying the method (estimated revenue) are illus-
trated in Fig. 6a, b. Based on these figures, we can conclude 
that using the two-steps method can increase the revenue 
drastically.

By comparing Figs. 6a, b in terms of the difference 
between the real revenue and the estimated revenue of our 
method, one can see that this difference is reduced in D′

3
 . 

In other words, the real revenue is closer to the estimated 
revenue in the recent dataset. We explored the reason and 
found out that in the newer dataset, the ordering of the ad 
networks is not completely fixed. The strategy is still water-
fall. However, the policy of selecting an ad network after 
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getting an unsuccessful response is different. Table 4 shows 
the topmost frequent orderings and their frequencies. As we 
can see from this table, the policy of deciding the ad net-
works has been changed in the new dataset. In D, the first 
ad network is the main one, and the publisher prefers it as 
the second attempt for almost 90% of impressions. However, 
in D′ , the first ad network is chosen to send the second ad 
request for less than 80%. This is the reason behind the dif-
ference in the total revenue because the system does not fol-
low the predefined ordering for around 20% of ad requests, 
and this leads to increase the revenue. The dynamic ordering 
method in this paper aims to completely replace the prede-
fined ordering.

A question that can be arisen here is why the publisher 
sends the next ad request to the first ad network when it 
was already unsuccessful. Actually, each ad network sets 
the floor price and runs an auction. If the ad network cannot 
find a bidder, one possible way is to reduce the floor price 
and run the auction again. That is why we see sequences that 
contain several attempts to a certain ad network. Apparently, 
the first ad network is the most popular for the publisher, and 
they reduce the floor price before sending the next ad request 
to the same ad network.

6.4  Prediction Model as an Ordering Method

In order to find out the most important step in dynamic ad 
network ordering method, we test each step for decision 
making. If the power of the method is due to the prediction 
model, we can use it as an ordering method, and there is no 
need for any improvement by the RL step. This question is 
answered by using the output of the prediction as an order-
ing strategy.

For evaluating this method, two different approaches are 
followed. The first one is to consider the first ad request of 
each sequence. This definition is similar to the way that is 
followed for finding the total revenue in Sect. 6.3. However, 
it does not make sense here to just keep the first ad request 
and ignore the rest because the revenue that is obtained 
from the prediction model is not the return of the episode. 
The estimated revenue is the sum of �[R(xij)] for the first ad 
request of all sequences. The blue curve in Fig. 7 shows this 
revenue. Based on this figure, this ordering method does not 

(a) (b)

Fig. 6  Real revenue vs. estimated revenue

Table 4  Frequencies of the orderings of ad networks in D and D′

More than 98% of observed orderings in D start with 1 and then 2. 
However, D′ has more different predefined orderings and this is the 
reason that higher revenue is obtained in D′ than D

Observed in D Frequency Observed D′ Frequency

1 737, 601 1 1, 306, 297
1, 1 542, 038 1, 1 757, 304
1, 1, 2 341, 503 1, 1, 5 580, 019
1, 1, 1 112, 088 1, 1, 5, 2 451, 638
1, 1, 1, 1 95, 418 1, 5 246, 286
1, 1, 2, 1 68, 799 1, 5, 1 159, 646
1, 1, 1, 1, 2 44, 609 1, 5, 1, 2 141, 567
1, 1, 2, 1, 2 38, 037 5 87, 715
1, 5 14, 804 1, 5, 5 48, 196
5 13, 073 1, 5, 5, 2 46, 142
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outperform the predefined ordering. Nevertheless, it can be 
a good estimation of the real revenue.

The second approach for defining the estimated revenue is 
to find the estimated revenue of the sequences. As mentioned 
in Sect. 3, p(eij|xij) is the success probability of sending xij 
to a and the revenue is found by (3). With the probability 
of 1 − p(eij|xij) , a cannot provide an advertisement and xij 
should be sent to another ad network. An estimated revenue 
can be found in this way. Equation (13) shows this estimated 
revenue.

where i is an episode or sequence of ad requests to fill a 
certain ad slot and xij is the jth ad request of sequence i. fij 
is the floor price of xij . The red curve in Fig. 7 illustrates 
this revenue.

The revenue obtained based on different strategies is illus-
trated in Fig. 7. Using the output of the prediction model for 
selecting ad networks provides less revenue in comparison to 
the two-step method. Therefore, the RL part really improves 
the decision approach and increases the revenue.

6.5  Comparing Different Predefined Orderings

In the dataset, there are five different ad networks. To iden-
tify them easily, we assign integer numbers starting from 
1 to these ad networks. Therefore, there are 120 different 
predefined orderings. The cumulative revenue of all of them 

(13)

E(i) = p(eij|xi0)fi0 + (1 − p(eij|xi0))p(eij|xi1)fi1

+⋯ + (

li−1∏

j=1

(1 − p(eij|xij)))p(eij|xili)fili ,

is computed and then sorted based on descending ordering 
of the total revenue. In order to show that none of these pre-
defined orderings can do better than our method, the top two 
orderings that are started with each ad network are selected 
and illustrated in Fig. 8. Hence, the figure shows twelve dif-
ferent orderings. In other words, these ad network selection 
policies work as a benchmark to clarify the superiority of 
our proposed method. The 1, 4, 2, 3, 5 sequence is the pre-
defined ordering with the maximum revenue among others. 
As it is clear from this figure, the maximum revenue that can 
be obtained from the predefined ordering is almost half of 
the revenue of our two-step method.

7  Conclusion

Since online advertising is growing rapidly and its turnover 
becomes larger and larger every year, website owners and 
online publishers find it suitable for increasing their rev-
enue. For websites that provide free services, online adver-
tising is a substantial source of income. Therefore, revenue 
maximization in online advertising is of great importance 
for online publishers. As mentioned before, ad networks are 
responsible for running ad auctions, and they serve as inter-
faces between publishers and advertisers. In order to connect 
with the ad networks, Waterfall Strategy is a common way 
in which the ad requests are sent to a set of ad networks 
sequentially until an advertisement is acquired. Typically, 

Fig. 7  Comparison between the revenue obtained from different 
ordering methods
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Fig. 8  Comparing the highest revenue obtained from predefined 
ordering with the revenue of dynamic ad network ordering (DAO) 
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orderings that start with a and provide the maximum revenue. The 
revenue of these ten orderings and also the real revenue and the esti-
mated revenue of our proposed method are shown as 12 bars



 International Journal of Computational Intelligence Systems           (2022) 15:27 

1 3

   27  Page 14 of 15

the ordering of ad networks is predefined and fixed, which 
affects the revenue of ad publishers. Hence, deriving a policy 
to decide the best ad network ordering in Waterfall Strategy 
is crucial for ad publishers.

This paper proposed a two-step method that can be used 
as a decision support system for ad publishers who decide to 
participate in the auction via a Waterfall Strategy. We con-
sidered the ad network selection procedure as a sequential 
decision making problem and utilized RL to derive the most 
profitable ordering of ad networks. Our method might help 
publishers to find the best ad network for each impression. 
The selected ad network could provide a higher estimated 
revenue in comparison with other ad networks. If the first ad 
network is not successful in finding an advertisement, our 
method recommends the second best ad network. Therefore, 
the output of the two-step method for each impression is an 
ordering of ad networks that is dynamically provided per 
impression.

In recent research, the applications of RL in the RTB 
environment have mainly considered the advertisers as pri-
mary agents. Although significant, few researchers have 
focused on the system from the publisher’s point of view. 
Our proposed method is a decision support tool for ad 
publishers to decide the ordering of ad networks for each 
generated impression. Using historical data for evaluating 
our proposed method, the revenue of ad publishers is sig-
nificantly increased in theory. Although latency in real-time 
environment may lead to different performance than the 
theoretical result, our proposed method does not take more 
than few milliseconds for deciding an ad network because 
the ad network is obtained by looking at Q-table which can 
be performed in constant time.

The main limitation of this work is using the available 
data. The data is acquired from a waterfall strategy system 
based on predefined ordering, and that limits exploration 
because the reward function is sparse. For this reason, 
we employed tabular RL and handled this issue by using 
a prediction model; however, a dataset with fewer unseen 
state-action pairs would improve the quality of the model. 
Besides, accessing an actual RTB environment would allow 
the agent to explore, and we did not have this access for 
this work. Another limitation of this work is induced by the 
highly dynamic environment, which makes the methods less 
effective after some time. In this case, we have to retrain 
our approach frequently to adapt to the new environment 
properties.
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