

Dynamic Ad Network Ordering Method Using Reinforcement
Learning
Citation for published version (APA):
Refaei Afshar, R., Zhang, Y., & Kaymak, U. (2022). Dynamic Ad Network Ordering Method Using Reinforcement
Learning. International Journal of Computational Intelligence Systems, 15, Article 27.
https://doi.org/10.1007/s44196-022-00077-6

Document license:
CC BY-NC

DOI:
10.1007/s44196-022-00077-6

Document status and date:
Published: 19/04/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1007/s44196-022-00077-6
https://doi.org/10.1007/s44196-022-00077-6
https://research.tue.nl/en/publications/38d8f40b-c147-421c-ba04-9a01f486f807

Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:27
https://doi.org/10.1007/s44196-022-00077-6

RESEARCH ARTICLE

Dynamic Ad Network Ordering Method Using Reinforcement Learning

Reza Refaei Afshar1 · Yingqian Zhang1 · Uzay Kaymak1

Received: 2 September 2021 / Accepted: 21 March 2022
© The Author(s) 2022

Abstract
Real time bidding is one of the most popular ways of selling impressions in online advertising, where online ad publish-
ers allocate some blocks in their websites to sell in online auctions. In real time bidding, ad networks connect publishers
and advertisers. There are many available ad networks for publishers to choose from. A possible approach for selecting ad
networks and sending ad requests is called Waterfall Strategy, in which ad networks are selected sequentially. The ordering
of the ad networks is very important for publishers, and finding the ordering that will provide maximum revenue is a hard
problem due to the highly dynamic environment. In this paper, we propose a dynamic ad network ordering method to find
the best ordering of ad networks for publishers that opt for Waterfall Strategy to select ad networks. This method consists of
two steps. The first step is a prediction model that is trained on real time bidding historical data and provides an estimation
of revenue for each impression. These estimations are used as initial values for the Q-table in the second step. The second
step is based on Reinforcement Learning and improves the output of the prediction model. By calculating the revenue of our
method and comparing that with the revenue of a fixed and predefined ordering method, we show that our proposed dynamic
ad network ordering method increases publishers’ revenue.

Keywords Reinforcement learning · Prediction model · Waterfall strategy · Ad network ordering · Real time bidding

Abbreviations
RTB Real time bidding
ads Advertisements
SSP Supply side platform
DSP Demand side platform
HB Header bidding
RL Reinforcement learning
MDP Markov decision process
GDPR General data protection regulation
DAO Dynamic ad network ordering

1 Introduction

Online advertising is one of the most important sources
of income for website owners, and its turnover is growing
every year [11]. The process of online advertising consists
of placing blocks like iframe in a website and selling them
to the advertisers of services or products [31]. These blocks
are called ad slots and they generate impressions upon the
webpage is viewed by an end user [16]. Advertising revenue
is important for publishers, and increasing this revenue is an
important task of publishers.

The traditional approach for a publisher to sell impres-
sions is to directly interact with advertisers through guar-
anteed contracts. This approach is not efficient because a
publisher has to put extra effort into searching and finding
appropriate advertisers, and the number of available adver-
tisers is large. Programmatic Advertising is another way that
computer programs perform the process of advertising for
a publisher. In this way, Artificial Intelligence and Machine
Learning methods help to develop data driven approaches
for decision making tasks, and the process of selling ad slots
is performed in a few milliseconds [5].

Real Time Bidding (RTB) is a programmatic adver-
tising approach in which an ad network is responsible

 * Reza Refaei Afshar
 r.refaei.afshar@tue.nl

 Yingqian Zhang
 YQZhang@tue.nl

 Uzay Kaymak
 U.Kaymak@tue.nl

1 Industrial Engineering Department, Eindhoven University
of Technology, Eindhoven, The Netherlands

http://orcid.org/0000-0003-1558-8380
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00077-6&domain=pdf

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 2 of 15

to connect publishers and advertisers [41]. Ad networks
run auctions to sell publishers’ ad slots to the advertis-
ers [15]. Ad networks receive the ad requests containing
impression information from the publishers and perform
online auctions in which the advertisers place their bids
for the impressions. The advertiser with the highest bid
is selected to show its advertisement (ads) on the pub-
lisher’s website [38]. Basically, Demand Side Platforms
(DSPs) and Supply Side Platforms (SSP) assist advertisers
and publishers, respectively, to participate in the auctions
[43]. Ad networks mostly run a second price auction with
reserve price to sell the ad impressions [5]. The reserve
price (also called the floor price) determines the minimum
amount of money that the publisher expects to gain by
selling the impression [43]. If the highest bid is less than
the floor price, the impression remains unsold. Otherwise,
the highest bidder is the winner, and it pays as much as
the maximum of second highest bid and the floor price.
If the auction of the current ad network has a winner, the
process finishes, and the ad slot is filled with the winner’s
advertisement.

Different ad networks are available for a publisher to run
auctions and sell a particular impression. Each ad network
is connected to many advertisers with different preferences
in buying an impression. Waterfall Strategy and Header
Bidding (HB) are possible approaches for selecting ad net-
works. In Waterfall Strategy, the ad networks are selected
sequentially, and in Header Bidding, all the ad requests are
sent simultaneously. Although Header Bidding has become
popular in the last few years, Waterfall Strategy is still used
as an advertising approach for many websites because its
latency can be significantly lower than HB [24]. According
to [21], around 25% of websites in the US still use Water-
fall Strategy as a standard advertising approach. Besides, in
some recent RTB systems, HB is combined with Waterfall
Strategy, and it is not completely replaced by HB [3]. We
focus on the Waterfall Strategy to improve its performance

as an existing approach, and the purpose of this paper is not
to compare Waterfall Strategy and HB.

Waterfall Strategy is illustrated in Fig. 1. In the Waterfall
Strategy, when a website is visited, an ad request is gener-
ated and is sent to the first ad network [9]. If the response
of the first ad network is not successful, i.e., it cannot find
an advertisement, the publisher should initialize and send
another ad request to the second ad network. This process
continues until selling the impression or consuming all of
the ad networks and reaching a timeout [2].

This fixed ordering is not efficient in terms of revenue.
The revenue comes from the winning bidder. This bidder
is not necessarily the bidder with the maximum valuation
for the impression because the possible higher bidders have
never been approached. Therefore, the ordering of ad net-
works is very important for a publisher [23].

The results presented in this paper improve and extend
upon earlier work by the same authors [1, 2]. In this paper,
we develop a decision support system based on Reinforce-
ment Learning (RL) to help publishers in selecting the ad
networks in the Waterfall Strategy. Typical Waterfall Strat-
egy relies on a predefined and fixed ordering of ad networks.
We modify this framework and present a new strategy in
which the ordering of ad networks is determined dynami-
cally per impression. Our proposed method consists of a
prediction model based on a supervised learning idea that
is inspired from [33], in which a Deep Neural Network is
initialized by a prediction model and further trained by RL.
Unlike [33], in our method, first, the prediction model is
trained using historical data and then initial value of each
state action pair is calculated by the output of the predic-
tion. The initialization step solves the sparsity of the reward
function, because all combinations of ad requests and ad
networks could not be observed in the Waterfall Strategy. In
terms of latency, our method trains offline and provides an
ad network using impression information only by looking
at table Q-table. Therefore, our proposed method would not

Publisher

Advertiser

Ad Network 1

Supply Side
Platform

(SSP)

DSP

Ad Network 2

Ad Network N

DSP

Advertiser

Advertiser

……

…
AdvertiserDSP

DSP

Advertiser

Advertiser

…
…

Fig. 1 The structure of the Waterfall Strategy from the publisher’s point of view

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 3 of 15 27

take more than few milliseconds in theory. In particular, our
contributions are as follows:

• Modeling the ad network selection procedure as a
Markov Decision Problem (MDP) and developing an
ad network ordering approach by integrating supervised
learning and RL to solve the sparsity of the reward func-
tion.

• Introducing new benchmarks, including a set of prede-
fined ordering and the output of the prediction model as
a decision support tool, and demonstrating the effective-
ness of our approach by comparing with these bench-
marks.

In [1] we presented the preliminary work that contained the
basic RL idea. In [2], the prediction model is added to the
method as a separate step, and we showed that the RL frame-
work improved the decision making. In this paper, we extend
these works by introducing new benchmarks including pre-
defined orderings and two ordering approaches based on the
output of the prediction model, elaborating the experiments
by analyzing the data to show the distribution of successful
ad requests for each ad network, considering a new dataset
to show the stability of the method in different time periods,
and formally presenting the methodology that can be eas-
ily implemented and followed. Furthermore, the process of
deriving the sequences and episodes is elaborated in detail.
Therefore, this work is a substantial extension of the previ-
ous works.

2 Related Work

The literature contains extensive studies on revenue maxi-
mization for ad publishers. This section reviews literature
related to RTB. Various methods have been developed for
determining the floor price. Xie et al. introduce a method
to set the floor price dynamically without any information
about the bids [40]. In this method, a family of classifiers
is used to predict whether the bid of a particular impression
is high. The next level of prediction predicts the difference
between the highest bid and second highest bid, and the floor
price is set if this difference is high. In [4], a model param-
eter vector is learned by gradient descent, and the floor price
is obtained by the inner product of this parameter vector and
a feature vector containing auction information. In [20], the
authors set the floor price in multi-channel real time bidding
markets using separate mathematical models for setting up
the floor price in offline and online channels. The online
channel is the RTB auctions, and the offline channel is direct
contracts with the advertisers. The methods introduced in
[28–30] are useful in non-stationary environments. The price
setting is based on considering the gap between the top bid

and the second bid in the second price auction. In [42] pro-
poses a pricing strategy by modeling the real time bidding
environment as a dynamic game. In [32, 37], the contracts
between publishers and advertisers are considered, which
determine how many impressions should be sold offline
and online. In our work, the reserve price is set using a
fixed strategy derived from historical data, and this value is
decreased constantly after each unsuccessful attempt.

RL has highly attracted researchers’ attention in recent
years, and it is also used in the context of real time bidding.
In [36] an RL method is proposed to support the sellers in
the dynamic pricing decisions where the auctions are not
real time auctions. In this method, a learning algorithm tunes
the parameters of a seller’s dynamic pricing policy. In [6] an
RL modeling of RTB is introduced to help advertisers in set-
ting their bid price. In [39], the authors formulate the budget
constraint bidding as a Markov Decision Process and pro-
pose a model-free RL framework to derive the optimal bid-
ding strategy for the advertisers. In [18], the RTB environ-
ment is modeled as a multi-agent RL problem. Based on this
modeling, the bidders learn how to act by considering other
bidders as competitors. Unlike these previous approaches,
in this paper, we model the problem of ad network ordering
as an RL problem from the seller’s side. Most of the work
in this direction models the environment from advertisers’
point of view, which is different from ours.

Despite its importance, the ad network ordering prob-
lem has gained less attention in recent years in comparison
to dynamic pricing. In [19], the problems of ad network
ordering and pricing are modeled as a multi-armed ban-
dit problem, and a variant of the Upper Confidence Bound
algorithm is used to derive the optimal strategy. In this
modeling, a joint action consisting of a floor price and ad
network ordering is considered in the bandit modeling. Our
proposed method is different because we utilize contextual
data, and the action is ad network ordering. Based on [14]
the revenue is the most important factor when a publisher
wants to select one ad network. However, there is no single
ad network that can work well for all impressions. Therefore,
dynamic ordering is necessary. In our preliminary works, we
proposed two versions of the ad network ordering method
based on RL [1, 2]. In this paper, the idea is elaborated, and
complete experimentation is presented.

3 Problem Definition

As mentioned before, the typical Waterfall Strategy relies
on the predefined and fixed ordering of ad networks, and
this fixed ordering is not efficient in terms of revenue. Upon
loading a webpage of a website containing an ad slot, the
website owner or the publisher deals with a decision mak-
ing problem. The problem is selecting an ad network at each

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 4 of 15

decision moment among a list of possible ad networks to
send an ad request. This ad network runs an auction to sell
the ad slot, and the response is either successful or unsuc-
cessful. Based on the response, the next decision moment
occurs, or the process finishes. In our formulation, n is the
number of ad networks, and a = 1,… , n is an ad network. In
order to develop the dynamic ad network ordering method,
a set of ad requests and their responses are used in training
and testing. Dataset D contains the set of all ad requests that
are divided into p sequences. Each sequence contains the
set of ad requests for filling a certain ad slot. li is the number
of ad requests in the ith sequence. D is the union of three
disjoint datasets D1 , D2 and D3 where D1 is used in the first
step of the proposed method, D2 is used in the second step,
and D3 is the test dataset. Each ad request is denoted by
xij, i = 1,… , p , j = 1,… , li which is the jth ad request of the
ith sequence and it contains a certain number of features. Let
eij be a binary value that determines whether an ad request
is successful. Using this notation, p(eij = 1|xij) = p(eij|xi,j)
is the success probability of sending xij to ad network a.
Likewise, p(eij = 0|xij) = 1 − p(eij = 1|xij) is the probability
of receiving an unsuccessful response by sending xij to a.
Considering these features, each ad request xij is formally
defined as follows:

where, the descriptions of the features are elaborated in
Table 1.

The problem of selecting ad networks in Waterfall Strat-
egy is a sequential decision making problem [26]. At each
attempt, the publisher decides to send an ad request to a par-
ticular ad network, and then a response is received. Based on
this response, the next state is determined, and the publisher
knows whether it should send another request to a new ad
network or not. This setting follows the Markov property in
which the next state and received reward are independent of

(1)
xij =(�ij, �ij,�ij, a,Υij,�ij, fij, oij),

i =1,… , p j = 1,… , li

all previous states [34, 35]. Therefore, we model the problem
as an RL problem and try to learn state action values using
initial state action values provided by the prediction model.

Our method is based on tabular RL. Tabular RL is used
for solving ad network ordering problem, which is explained
in Sect. 4 because the states and actions representations are
finite and countable. In other words, we propose a modeling
of dynamic ordering problem as an RL problem in which
the states space and actions space are discrete and finite.
Furthermore, the problem is episodic, and there is no prior
information about the model of the environment. Hence, the
Monte Carlo algorithm as a model-free RL algorithm is used
for learning the state-action values. In the RL modeling of
the ad network ordering problem, deriving a state represen-
tation is hard because not all features in an ad request are
useful for representing the states. For instance, it has been
observed that features like page URL are almost independ-
ent of the revenue, and it is better to be removed from the
states. Furthermore, as shown in Sect. 4.1, features like floor
price are highly important in the success of an ad request
and the revenue. In Sect. 4.2.1, we will select a subset of
features which represent the ad requests well and retain their
important properties. The selected features are determined
by using the feature importance listed in Table 2.

The historical ad requests that are obtained by following
Waterfall Strategy are not sufficient for learning because,
for many pairs of ad requests and ad networks, there is no
information in the historical data. In other words, the data is
sparse in terms of ad requests and ad networks pairs. In order
to solve the sparsity, a prediction model is developed on a
part of the data, and the output of the prediction model gives
us the initial state-action values that will later be updated
by using another part of the data. This prediction model is
the first step of our proposed method, and the Monte Carlo
algorithm is the second step. Figure 2 illustrates an overview
of the method.

Our goal is to utilize the historical data to develop a
decision support tool for ad publishers that follow Waterfall

Table 1 Features of jth ad request of ith sequence

Field name Notation Definition Type

Event state eij The result of attempt: 0: fail, 1: success Binary
Timestamp �ij time of ad request (hour of a day) Numerical
Country code �ij A code specify country of the user visiting publisher’s website. Nominal
Ad tag id �ij A unique string corresponds to an advertisement slot Nominal
Ad network id a Id of each ad network (Ad exchange, AdSense, AOL,…) Nominal
Page URL Υij URL of the webpage containing the ad slot Nominal
User properties �ij Information related to the end user Nominal
(OS, browser, device, etc)
Floor price fij The amount of floor price (reserve price) Numerical
Request order oij Order of current attempt in a sequence of attempts Numerical

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 5 of 15 27

Strategy. Generally, our method is trained on a set of ad
requests, and after training, it could be used as a decision
support system. For each coming ad request, the model
decides the best ad network that can provide the maximum
revenue.

4 Dynamic Ad Network Ordering Method

In this section, we present our method for dynamically
ordering the ad networks in the Waterfall Strategy. We are
aiming to obtain an ordering by choosing the ad network at
each decision moment that maximizes the estimated rev-
enue. Our method consists of two steps. The first step is a
prediction model, and it provides a lower bound of the esti-
mated revenue for each combination of ad requests and ad
networks. The second step is an RL modeling of the problem
to improve the initial values obtained from the prediction
model.

The first step of our proposed method is an offline pro-
cess. Once this step is finished, the lower bound of the rev-
enue is used as an initial value for the second step, which is
the Monte Carlo algorithm. The second step could be per-
formed either online or offline. In the online version, the
value function is continuously updated for each coming ad

request. In other words, before sending an ad request, the
proper ad network is selected based on the value function,
and upon receiving the response, the same value is updated.
In the offline version, a set of ad requests are used for deriv-
ing the Q values, and this Q table is used as a lookup table
for each coming ad request to decide the best ad network.
The two steps are explained in the following subsections.

4.1 Prediction Model

The prediction model is a binary classifier that receives ad
request xij and determines whether it is successful in finding
advertisements or not. Vector xij is the feature vector shown
in (1). The event state is the target feature that is used as the
true label in supervised learning. We construct the predic-
tion model such that it outputs probability values for the
successful case, i.e. p(eij|xij).

The success probability has not the same unit as the rev-
enue. Since the main goal is to increase the revenue, we
estimate the revenue by multiplying the floor price and the
success probability. Based on the second price auction, the
revenue of each ad impression is obtained by (2).

where, b(1) and b(2) are the highest bid and the second highest
bid, respectively. Normally, the highest and the second high-
est bids for ad request xij and ad network a are not observable
for the publisher. Hence, the actual revenue is unknown,
and we need to estimate that. To find a value proportional to
the actual revenue, we use the multiplication of the success
probability and the floor price. This value is the estimated
lower bound of revenue of xij when it is sent to a. Equa-
tion 3 shows this estimated revenue which is the output of
the first step.

(2)R(xij) =

{
0 if fij > b

(1)

ij

max{fij, b
(2)

ij
} if fij ≤ b

(1)

ij

Fig. 2 An overview of our proposed method

Table 2 Top seven most
important features

Rank Feature Importance

1 fij 0.303459
2 a 0.200992
3 oij 0.184083
4 Υij 0.060835
5 �ij 0.059338
6 �ij 0.052920
7 �ij 0.027170

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 6 of 15

where �[R(xij)] is the estimated lower bound of revenue
when xij is sent to a which is a feature of xij.

Different features of xij have different impacts on the pre-
diction performance. In other words, the importance of the
features is different, and the most important features deter-
mine the predicted class. The feature importances are com-
puted as the mean deviation of accumulation of the impurity
decrease within each tree of a random forest classifier1 [13,
25]. Table 2 illustrates top seven important features with
their importance values. This table shows that the total
importance of floor price, ad network, and request order is
around 0.7, and this value means that these three features
are highly informative for learning. As it is explained in
Sect. 4.2.1, the state representation of each ad request is
obtained by considering this feature importance table. These
values are provided by the prediction model [12].

4.2 Modeling with Reinforcement Learning
Framework

In the following sub-sections, the components of a Markov
Decision Process (MDP), including states, actions, and
rewards, are defined. The agent in this setting is the pub-
lisher, and the environment contains the RTB partici-
pants from the publisher’s point of view. In our case, the
environment contains publishers, ad networks, and their
interactions.

4.2.1 States

In our modeling, states are derived from ad requests. The
combination of user information and impression properties
construct ad request xij . The ad request xij also contains an
integer number, namely Request Order (oij) that determines
the number of unsuccessful attempts to fill the current ad
slot. In other words, oij shows the number of ad networks that
have been tested so far and cannot provide an advertisement.
This information in xij is used to define the states.

A straightforward approach to define states is to use the
combination of all features shown in (1). Since there are
around 500,000 ad requests per day in our study case and no
two ad requests are the same because each ad request has a
specific time, defining states in this way results in large state
space. Two possible solutions for coping with this state-
space are removing the time feature or reducing the unique
values of this feature by grouping them. However, after per-
forming both approaches, the number of states is still large.

(3)�[R(xij)] = p(eij|xij)fij User characteristics (Υij) are removed due to GDPR2 and
the values of other features are grouped to reduce the size of
state space. Among these features, the country code is irrele-
vant because the data is specifically for the The Netherlands.
Timestamp induces slight separation according to Table 2.
Page URL is initially included in the state representation;
however, this entailed a large state space that the agent can-
not be trained properly using the current configuration. This
modeling requires function approximation methods such as
REINFORCE, where the data is insufficient for that. Hence,
the selection of the features is managed by removing these
features from the state representation. Finally, the combi-
nation of the floor price, request order, and ad tag id pro-
vides a state space. This state space is not only small enough
but also contains important information of the ad requests
because they are selected based on the importance of the
features illustrated in Table 2.

Table 2 shows the seven most important features. Floor
Price and Request Order are selected from the top three. As
it is explained in Sect. 4.2.2, ad networks are actions, and ad
tag id (�ij) is the unique identifier of each ad slot which is
important in determining the states. The sum of the impor-
tance of the selected features shows that they are the most
informative features. We use the information of Table 2 to
select the features for modeling states and actions. The total
importance of the selected features for states and actions is
around 0.7. The other features have many unique values, and
they increase the size of state space, while the importance is
less than 0.05 for each of them. Since the number of unique
values of other features is large and they are not very impor-
tant, we discard them to reduce the state space.

To further reduce the size of the space, the values of
request order and floor price are converted to binary val-
ues. This technique is usually used for converting images to
binary images [22]. For this purpose, two thresholds named
�f and �r are defined. These two values are the medians over
the values of the floor price and request order in the dataset
D2 . We use medians because they balance the number of
values in each group. This process reduces the number of
unique states from 5 × 105 to 1245. Let Fij and Oij be the
new binary values corresponding to the floor price and the
request order, and they are shown in (4) and (5) respectively.
The states are defined in (6).

(4)Fij =

{
0 if fij < 𝜃f
1 if fij ≥ 𝜃f

(5)Oij =

{
0 if oij < 𝜃r
1 if oij ≥ 𝜃r

1 sklearn.ensemble.RandomForestClassifier 2 General Data Protection Regulation

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 7 of 15 27

where sij is the corresponding state of xij.

4.2.2 Actions

At each decision moment, an ad network is selected to send
an ad request. This ad network is an action in our mode-
ling that is denoted by an integer a ∈ {1,… , n} , where n
is the number of available ad networks. The set of actions
contains available ad networks that are modeled by integer
numbers for simplicity. By sending an ad request and receiv-
ing the response, the environment transitions to a next state
whose floor price is reduced, its ad tag id is the same, and
its request order is incremented. In this way, the transition
function modifies the request order and the floor price based
on the response of the auction performed in the selected ad
network.

4.2.3 Rewards

Two possible responses could be received by sending an ad
request to an ad network. When the ad network is successful
in finding a bidder for the ad slot, it is filled, and the pub-
lisher earns revenue that is at least equal to the floor price.
Otherwise, the publisher needs to resend another request to
another ad network. In order to reduce the number of unsuc-
cessful attempts, a penalty is necessary for the algorithm
to avoid unsuccessful attempts. Hence, a minus reward is
chosen for the unsuccessful responses. The average of all
floor prices of successful ad requests is around one, and a
publisher will lose this value on average when it fails to
find an advertiser. Therefore, for each xij we define fij as
the reward of successful responses and −1 for the reward of
unsuccessful responses. In other words, the rewards of all
transitions in an episode except the last one are −1 , and the
reward of transiting to a terminal state is fij . Equation (7)
shows the reward in our modeling.

where r(sij, a) is the instant reward when the publisher selects
a as an action for the state sij and eij is the event state of xij .
The Return of sij is the cumulative instant rewards obtained
from sij to the end of sequence i, i.e. given by (8).

where, li is the length of current sequence, G(sij, a) is the
return that follows sij and a ∈ {1, 2,… , n} is the observed
ad network of kth ad request of the sequence i.

(6)sij =(Fij,Oij,�ij)

(7)r(sij, a) =

{
fij if eij = 1

−1 if eij = 0

(8)G(sij, a) = Σ
li
k=j

r(sik, a) = −(li − j) + fi,li

If the publisher gets an advertisement in a certain state, this
state is called a terminal state, and the ad network selection
is completed. Otherwise, the next state is a new state with
different values of request order and floor price. Normally,
when publishers follow a Waterfall Strategy and face unsuc-
cessful responses, they decrease the floor price and resend the
request to the following ad network. The new request order is
one more than the previous value, and this is a property of the
environment in state transition.

4.2.4 Learning Action Values

An episode in our modeling is the sequence of ad requests to
fill a certain ad slot. Usually, there is no explicit information
about the episodes in the RTB data. As mentioned in Sect. 3,
the Monte Carlo method is selected for learning the action
values because the length of each episode is short, and exact
returns of episodes could be obtained easily. Sect. 5 explains
how to obtain the episodes.

Equation (9) is the updating rule of the Monte Carlo algo-
rithm [34]. In a typical Monte Carlo algorithm, the initial val-
ues are set to zero. We modify this initialization and use the
values provided by the prediction model as the initial state-
action values. The sample averaging of the Monte Carlo algo-
rithm is a weighted average over all ad requests that are used
in both steps. The first step processes the ad requests, and the
second step deals with the states. They should be consistent
in the updating rule.

The output of the first step is the estimated revenue of an
ad request, and the second step expects to receive states-action
initial values as input. In order to make them consistent, the
request-based estimated revenue should be mapped to a state-
based revenue. For this purpose, for each set of ad requests that
are mapped to a single state, the average estimated revenue is
calculated. This average is considered as the estimated revenue
of the single state, as shown in (10).

where n1
sij,a

 is the number of ad requests used in the first step
which corresponding state and action are sij and a. n2

sij,a
 is the

number of ad requests used in the second step which corre-
sponding state and action are sij and a respectively. Let
Gq(sij, a) be the qth element of the list of returns that are
observed when a is selected for sij , and �(sij, a) be the

(9)
Q(sij, a) =

n2
sij ,a∑
q=1

Gq(sij, a) + �(sij, a)n
1

sij,a

n1
sij,a

+ n2
sij,a

(10)�(sij, a) =

∑
sij=(Fij,Oij,�ij)

�[R(xij)]

n1
sij,a

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 8 of 15

average of all estimated lower bound of revenues for those
ad requests xij where s(xij) = sij . In order to compute Q(sij, a)
using (9) more efficiently, (12) shows the incremental ver-
sion of (9). This equation can be easily obtained by modify-
ing (9) in the way that is explained in [34].

(11)Q0(sij, a) =�[R(xij)] ∀i, j, a

(12)

Qt+1(sij, a) =Qt(sij, a)+

1

n1
sij,a

+ n2
sij,a

+ 1
(G(sij, a) − Qt(sij, a))

where t is the timestep. At each iteration, this value denotes
the number of times that sij and a are observed so far in
the second step. Now, we are ready to present our two-step
algorithm. The pseudo-code of our proposed method is listed
in Algorithm 1.

Algorithm 1 could be used in two different ways. The first
one is an offline method. In this method, the final outputs
of the algorithm are the Q values to be used with a greedy
policy. If we have another dataset named D3 containing new
ad requests, we can determine the best ad network for each
ad request by looking at the corresponding state in Q table
and finding the action that corresponds to its maximized rev-
enue. The second one is an online method. In this approach,
the first step is performed separately, and the second step is
run in a real environment, and it continuously updates the
Q table for each coming ad request. In this version, while
receiving a new ad request, first, the publisher decides the
best ad network based on Q values. Then, the response is
received, and the corresponding Q value is updated accord-
ingly. We leave the online approach to future publications,
and we focus on the offline method in this paper.

5 Data Description

In our experiments, we use two weeks of historical
data. We define two datasets D = D1 ∪ D2 ∪ D3 and
D� = D�

1
∪ D�

2
∪ D�

3
 that each corresponds to a particular

period. D consists of the ad requests from 20th to 26th of
November 2017 and D′ contains the ad requests of the first
six days of July 2018. Table 3 shows the properties of each
dataset. The features in a typical ad request are shown in
Table 1 [1]. These two datasets are used to evaluate the
dynamic ad network ordering method. The purpose of using
these two datasets is to show that although the properties of
an RTB system are subject to change over time, the dynamic
ad network ordering method stays helpful in maximizing
revenue.

As data pre-processing, we perform data cleaning and
sequence extraction. The ad requests of D and D′ are grouped
into p sequences, where each sequence consists of the ad
requests to sell a particular impression. The sequences are
very important in our modeling because they are considered
as episodes in the Monte Carlo algorithm. However, nor-
mally there is no explicit information about the sequences

Table 3 Datasets that are used
in each step of the dynamic
ordering method

Dataset Ad requests of Dataset Ad requests of Purpose

D 20–26 November 2017 D′ 01–06 July 2018 All the historical data
D1 20–22 November 2017 D′

1
01–03 July 2018 Training the prediction model

D2 23–25 November 2017 D′
2

04–05 July 2018 Training the RL part
D3 26 November 2017 D′

3
06 July 2018 Evaluating the method

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 9 of 15 27

in the RTB data. We assume that for two ad requests that
aim to fill a single ad slot, features like user characteristics,
ad tag id, and URL are the same. Furthermore, the time
difference between these two ad requests may not be more
than a few milliseconds. Our sequence extraction algorithm
iterates over all ad requests of both D and D′ once, and the
output is the set of detected sequences. At each step, an ad
request x is selected, and it is compared with the last ad
request of all sequences that have been found so far. If there
is an ad request that its request order is one less than the
request order of x, and other features except time and floor
price are the same, the current ad request is appended to the
corresponding sequence. The pseudo-code is illustrated in
Algorithm 2.

There are two types of sequences. A complete sequence
ends with an ad request whose request order is one. It means
that the sequence is successful in finding an advertisement
for a certain ad slot. The other type is incomplete sequences.
This kind of sequence cannot find an advertisement due to
various possible reasons like a timeout. Since it is not clear
why a sequence is incomplete, the incomplete sequences
are not helpful in predicting the event state. Therefore, all
of these sequences are removed from the first step. The
next necessary pre-processing step is dealing with nominal
features.

The last column of Table 1 shows the type of features in
an ad request. Some of the features are nominal, and they
should be converted to numerical values. We use One Hot
Encoding to convert each value of each feature to a binary
value [17]. One hot encoder assigns a column for each

feature value. For example, if a feature contains 1000 unique
values, the corresponding one hot feature vector contains
1000 columns. Since the number of unique values of features
like URL is very large, using all of these values in the feature
vector results in a large vector which is hard to manage. To
solve this problem, all feature values with more than 100
unique values are sorted in descending order based on their
frequency. The top 100 values are selected to be converted to
numerical features. All the other values with lower frequen-
cies are aggregated into a single feature value. Therefore, for
each feature with more than 100 unique values, 101 feature
columns are assigned in one hot encoding. We used 100
because the total frequency of the top 100 unique values
is more than 90% of all values for each feature. Finally, the
feature vector contains 666 features.

Since the number of unsuccessful ad requests is far more
than the number of successful ones, the dataset is not bal-
anced. Oversampling methods like SMOTE are not suitable
for our problem because they may produce incorrect data
samples [8]. For example, it is possible that SMOTE pro-
duces a data sample with a float value for request order.
We use the random under-sampling method to balance the
dataset because the successful ad requests are more impor-
tant, and we try to keep them intact [7]. For this purpose,
a subset of unsuccessful ad requests is selected, which its
size is equal to the number of successful ad requests. Based
on this process, the dataset is balanced, and it has an equal
number of data instances for each target class.

Preliminary analysis on the relations between features
like floor price and the revenue are discussed in [27]. We

1 2 3 4 5 6 7 8

Request order

0

1

2

3

4

5

6
N

um
be

r
of

 s
en

t a
d

re
qu

es
ts

105

Ad network 1
Ad network 4
Ad network 2
Ad network 5
Ad network 3

1 2 3 4

Request order

0

2

4

6

8

10

12

N
um

be
r

of
 s

en
t a

d
re

qu
es

ts

105

Ad network 1
Ad network 4
Ad network 2
Ad network 5
Ad network 3

(a) (b)

Fig. 3 The number of ad requests that are sent to each ad network for
each request order and for the ad requests of a dataset D and b data-
set D′ . The predefined ordering of ad networks can be observed from

these figures, and the majority of ad requests at each request order are
sent to a certain ad network

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 10 of 15

extend this analysis by focusing on the predefined orderings
and the number of ad requests for each ordering. In order
to show the predefined orderings that are observed in the
dataset, for each request order, the frequencies of observed
ad networks are calculated, and they are shown in Fig. 3a, b.
As shown in these figures, ad network 1 is the most popular,
and the publisher prefers to test it again after an unsuccessful
attempt. The frequencies of other ad networks are very low,
and they are hardly observable in the figures.

6 Experiments

In this section, the performance of the proposed method is
discussed. First, the prediction model is evaluated in terms
of how well it can predict the revenue of each ad request.

Then the estimated revenue of using the two-steps method
is compared with the real revenue to show the benefits of
our method. In order to understand the added value of
each step, we select ad networks based on the output of
the first step. These experiments are performed by using
historical RTB data.

6.1 Evaluation Metrics

To evaluate the prediction model, we employ ROC Curve
and area under ROC curve (AUC) as they demonstrate the
quality of the binary classification models well. Since the
Waterfall Strategy relies on the predefined ordering of ad
networks, we calculate the revenue of different permuta-
tions of ad networks as a baseline to show that no prede-
fined ordering of ad networks can provide more revenue.
Thus, the second step and the combined model are evalu-
ated by comparing the total revenue with the baselines,
including the first step and the predefined ordering.

6.2 Evaluation of the Prediction Model

In order to build the prediction model, different classi-
fication algorithms, i.e. Decision Tree, Support Vector
Machine, Gaussian Naive Bayes, and Random Forest, are
tested. The hyper-parameters of these algorithms, like the
number of trees in Random Forest, are found by random
search. We used ROC Curve to compare the performance
[10]. The ad requests of D are used for identifying the
proper classifier. The classifier is trained on the ad requests
of D1 , and the obtained prediction model is tested on the
ad requests of D3 . Figure 4 compares the classification
algorithms. As it is illustrated in this figure, Random For-
est works best in terms of AUC. Therefore, the random
forest method with a maximum depth of 10 and 100 trees
is selected as the prediction model.

Although the distributions of ad requests of varying
days are different, the classifiers are not biased to a cer-
tain day. In order to show that the prediction model works
almost the same for different days, the ad requests of each
day of D2 ∪ D3 and D�

2
∪ D�

3
 are used to test the two predic-

tion models, respectively. Figure 5a, b illustrate the ROC
Curves for each prediction model. The prediction model
could be trained once and is useful for predicting the suc-
cess probability of future ad requests without any retrain-
ing. However, it is observed that the prediction model that
is trained on D does not work well for D′ . Figure 5a, b
show that by training the prediction model on a set of ad
requests, we can predict the success probability of the ad
requests of coming days with a good performance.

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 11 of 15 27

6.3 Evaluation of Dynamic Ad Network Ordering
Method

The output of the proposed two-steps method is an ordering
of ad networks that aims to provide the maximum revenue
for a publisher. In order to evaluate this method, two con-
cepts are defined: Real Revenue and Estimated Revenue. The
real revenue is the sum of floor price of those xij where eij
is one. Similarly, the estimated revenue is the revenue that

is obtained by applying the dynamic ad network ordering
method. This revenue is the sum of the maximum Q value of
the first ad request of each sequence. In other words, for the
first ad request of all sequences, the Q values corresponding
to the ad network that provides the maximum revenue are
summed. By summing these values, an estimation of the
revenue is obtained. The other ad requests of each sequence
are ignored because the Q values are the average of episode
returns, and if the first ad request is successful, the process
finishes. Therefore, the Q values of the first ad requests con-
tain the revenue of other ad requests in this sequence.

As illustrated in Table 3, two datasets are used for evalu-
ating the method. The dynamic ad network ordering method
is tested on D and D′ separately. D1 and D′

1
 are used for

training the prediction model. D2 and D′
2
 are used in RL

step. The output of the Monte Carlo algorithm is a Q(s, a)
for each possible s and a. The estimated revenue is obtained
by applying the method on D3 and D′

3
 . The cumulative rev-

enue curves that are obtained from the data (real revenue)
and from applying the method (estimated revenue) are illus-
trated in Fig. 6a, b. Based on these figures, we can conclude
that using the two-steps method can increase the revenue
drastically.

By comparing Figs. 6a, b in terms of the difference
between the real revenue and the estimated revenue of our
method, one can see that this difference is reduced in D′

3
 .

In other words, the real revenue is closer to the estimated
revenue in the recent dataset. We explored the reason and
found out that in the newer dataset, the ordering of the ad
networks is not completely fixed. The strategy is still water-
fall. However, the policy of selecting an ad network after

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

Using the data of 3 days for training and one day for testing

Decision Tree, AUC=0.6587
Naive Bayes, AUC=0.5990
Random Forest (10,30), AUC=0.7490
Random Forest (100,15), AUC=0.8585
Support Vector Machine, AUC=0.8551

Fig. 4 A comparison between different classification methods. The
prediction model is trained using D1 and tested on D3 . The numbers
in the parentheses of Random Forest indicate the number of trees and
the maximum depth of each tree respectively

(a) (b)

Fig. 5 ROC Curves for evaluating the prediction models in case that how well they can predict the success probability of the ad requests of two
datasets. a Is trained on D1 and is test on each day of D2 ∪ D3 . b Is trained on D′

1
 and is tested on D�

2
∪ D

�
3

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 12 of 15

getting an unsuccessful response is different. Table 4 shows
the topmost frequent orderings and their frequencies. As we
can see from this table, the policy of deciding the ad net-
works has been changed in the new dataset. In D, the first
ad network is the main one, and the publisher prefers it as
the second attempt for almost 90% of impressions. However,
in D′ , the first ad network is chosen to send the second ad
request for less than 80%. This is the reason behind the dif-
ference in the total revenue because the system does not fol-
low the predefined ordering for around 20% of ad requests,
and this leads to increase the revenue. The dynamic ordering
method in this paper aims to completely replace the prede-
fined ordering.

A question that can be arisen here is why the publisher
sends the next ad request to the first ad network when it
was already unsuccessful. Actually, each ad network sets
the floor price and runs an auction. If the ad network cannot
find a bidder, one possible way is to reduce the floor price
and run the auction again. That is why we see sequences that
contain several attempts to a certain ad network. Apparently,
the first ad network is the most popular for the publisher, and
they reduce the floor price before sending the next ad request
to the same ad network.

6.4 Prediction Model as an Ordering Method

In order to find out the most important step in dynamic ad
network ordering method, we test each step for decision
making. If the power of the method is due to the prediction
model, we can use it as an ordering method, and there is no
need for any improvement by the RL step. This question is
answered by using the output of the prediction as an order-
ing strategy.

For evaluating this method, two different approaches are
followed. The first one is to consider the first ad request of
each sequence. This definition is similar to the way that is
followed for finding the total revenue in Sect. 6.3. However,
it does not make sense here to just keep the first ad request
and ignore the rest because the revenue that is obtained
from the prediction model is not the return of the episode.
The estimated revenue is the sum of �[R(xij)] for the first ad
request of all sequences. The blue curve in Fig. 7 shows this
revenue. Based on this figure, this ordering method does not

(a) (b)

Fig. 6 Real revenue vs. estimated revenue

Table 4 Frequencies of the orderings of ad networks in D and D′

More than 98% of observed orderings in D start with 1 and then 2.
However, D′ has more different predefined orderings and this is the
reason that higher revenue is obtained in D′ than D

Observed in D Frequency Observed D′ Frequency

1 737, 601 1 1, 306, 297
1, 1 542, 038 1, 1 757, 304
1, 1, 2 341, 503 1, 1, 5 580, 019
1, 1, 1 112, 088 1, 1, 5, 2 451, 638
1, 1, 1, 1 95, 418 1, 5 246, 286
1, 1, 2, 1 68, 799 1, 5, 1 159, 646
1, 1, 1, 1, 2 44, 609 1, 5, 1, 2 141, 567
1, 1, 2, 1, 2 38, 037 5 87, 715
1, 5 14, 804 1, 5, 5 48, 196
5 13, 073 1, 5, 5, 2 46, 142

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 13 of 15 27

outperform the predefined ordering. Nevertheless, it can be
a good estimation of the real revenue.

The second approach for defining the estimated revenue is
to find the estimated revenue of the sequences. As mentioned
in Sect. 3, p(eij|xij) is the success probability of sending xij
to a and the revenue is found by (3). With the probability
of 1 − p(eij|xij) , a cannot provide an advertisement and xij
should be sent to another ad network. An estimated revenue
can be found in this way. Equation (13) shows this estimated
revenue.

where i is an episode or sequence of ad requests to fill a
certain ad slot and xij is the jth ad request of sequence i. fij
is the floor price of xij . The red curve in Fig. 7 illustrates
this revenue.

The revenue obtained based on different strategies is illus-
trated in Fig. 7. Using the output of the prediction model for
selecting ad networks provides less revenue in comparison to
the two-step method. Therefore, the RL part really improves
the decision approach and increases the revenue.

6.5 Comparing Different Predefined Orderings

In the dataset, there are five different ad networks. To iden-
tify them easily, we assign integer numbers starting from
1 to these ad networks. Therefore, there are 120 different
predefined orderings. The cumulative revenue of all of them

(13)

E(i) = p(eij|xi0)fi0 + (1 − p(eij|xi0))p(eij|xi1)fi1

+⋯ + (

li−1∏

j=1

(1 − p(eij|xij)))p(eij|xili)fili ,

is computed and then sorted based on descending ordering
of the total revenue. In order to show that none of these pre-
defined orderings can do better than our method, the top two
orderings that are started with each ad network are selected
and illustrated in Fig. 8. Hence, the figure shows twelve dif-
ferent orderings. In other words, these ad network selection
policies work as a benchmark to clarify the superiority of
our proposed method. The 1, 4, 2, 3, 5 sequence is the pre-
defined ordering with the maximum revenue among others.
As it is clear from this figure, the maximum revenue that can
be obtained from the predefined ordering is almost half of
the revenue of our two-step method.

7 Conclusion

Since online advertising is growing rapidly and its turnover
becomes larger and larger every year, website owners and
online publishers find it suitable for increasing their rev-
enue. For websites that provide free services, online adver-
tising is a substantial source of income. Therefore, revenue
maximization in online advertising is of great importance
for online publishers. As mentioned before, ad networks are
responsible for running ad auctions, and they serve as inter-
faces between publishers and advertisers. In order to connect
with the ad networks, Waterfall Strategy is a common way
in which the ad requests are sent to a set of ad networks
sequentially until an advertisement is acquired. Typically,

Fig. 7 Comparison between the revenue obtained from different
ordering methods

(1,2,3,5,4)

(1,4,2,3,5)

(2,1,4,5,3)

(2,5,4,1,3)

(3,1,4,5,3)

(3,2,5,4,1)

(4,1,2,3,5)

(4,5,2,1,3)

(5,1,2,4,3)

(5,2,3,1,4)

DAO Method

Real R
evenue

0

1

2

3

4

5

6

7

T
ot

al
 R

ev
en

ue
 in

 o
ne

 d
ay

105

Fig. 8 Comparing the highest revenue obtained from predefined
ordering with the revenue of dynamic ad network ordering (DAO)
method. Since there are five ad networks, 120 different predefined
orderings are possible. For each ad network a, we found the top two
orderings that start with a and provide the maximum revenue. The
revenue of these ten orderings and also the real revenue and the esti-
mated revenue of our proposed method are shown as 12 bars

 International Journal of Computational Intelligence Systems (2022) 15:27

1 3

 27 Page 14 of 15

the ordering of ad networks is predefined and fixed, which
affects the revenue of ad publishers. Hence, deriving a policy
to decide the best ad network ordering in Waterfall Strategy
is crucial for ad publishers.

This paper proposed a two-step method that can be used
as a decision support system for ad publishers who decide to
participate in the auction via a Waterfall Strategy. We con-
sidered the ad network selection procedure as a sequential
decision making problem and utilized RL to derive the most
profitable ordering of ad networks. Our method might help
publishers to find the best ad network for each impression.
The selected ad network could provide a higher estimated
revenue in comparison with other ad networks. If the first ad
network is not successful in finding an advertisement, our
method recommends the second best ad network. Therefore,
the output of the two-step method for each impression is an
ordering of ad networks that is dynamically provided per
impression.

In recent research, the applications of RL in the RTB
environment have mainly considered the advertisers as pri-
mary agents. Although significant, few researchers have
focused on the system from the publisher’s point of view.
Our proposed method is a decision support tool for ad
publishers to decide the ordering of ad networks for each
generated impression. Using historical data for evaluating
our proposed method, the revenue of ad publishers is sig-
nificantly increased in theory. Although latency in real-time
environment may lead to different performance than the
theoretical result, our proposed method does not take more
than few milliseconds for deciding an ad network because
the ad network is obtained by looking at Q-table which can
be performed in constant time.

The main limitation of this work is using the available
data. The data is acquired from a waterfall strategy system
based on predefined ordering, and that limits exploration
because the reward function is sparse. For this reason,
we employed tabular RL and handled this issue by using
a prediction model; however, a dataset with fewer unseen
state-action pairs would improve the quality of the model.
Besides, accessing an actual RTB environment would allow
the agent to explore, and we did not have this access for
this work. Another limitation of this work is induced by the
highly dynamic environment, which makes the methods less
effective after some time. In this case, we have to retrain
our approach frequently to adapt to the new environment
properties.

Acknowledgements The authors would like to thank Azerion and Trio-
dor for sharing the data used in this research, and Surfsara - the Dutch
national High-Performance Computing and e- Science support centre,
for providing high-performance systems.

Author Contributions Modeling the ad network selection procedure as
a Markov Decision Problem (MDP) and use Reinforcement Learning

to solve it; Introducing new benchmarks including a set of predefined
ordering and the output of the prediction model as a decision support
tool, and demonstrating the effectiveness of our approach by compar-
ing to these benchmarks. Providing initial values for Q-table using
prediction model.

Funding This work was supported EU EUROSTARS (Project E!
11582).

Availability of data and material The data is uploaded along with the
manuscript.

Declaration

Conflict of interest The author(s) declare(s) that they have no compet-
ing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Afshar, R.R., Zhang, Y., Firat, M., Kaymak, U.: A reinforcement
learning method to select ad networks in waterfall strategy. In:
Proceedings of the 11th International Conference on Agents and
Artificial Intelligence. SCITEPRESS-Science and Technology
Publications (2018)

 2. Afshar, R.R., Zhang, Y., Firat, M., Kaymak, U.: A decision sup-
port method to increase the revenue of ad publishers in waterfall
strategy. In: IEEE Conference on Computational Intelligence for
Financial Engineering and Economics (CIFEr) (2019)

 3. Afshar, R.R., Zhang, Y., Firat, M., Kaymak, U., Metin, A.I.,
Tarakçıoğlu, G.S., Baş, C.: Reserve price optimization with
header bidding and ad exchange. In: 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE,
pp. 830–835 (2020)

 4. Austin, D., Seljan, S., Monello, J., Tzeng, S.: Reserve price opti-
mization at scale. In: 2016 IEEE 3rd International Conference
on Data Science and Advanced Analytics (DSAA). IEEE, pp.
528–536 (2016)

 5. Busch, O.: The Programmatic Advertising Principle, pp. 3–15.
Springer, Cham (2016)

 6. Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y., Guo,
D.: Real-time bidding by reinforcement learning in display adver-
tising. In: Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining. ACM, pp. 661–670 (2017)

 7. Chawla, N.V.: Data mining for imbalanced datasets: an overview.
In: In Data Mining and Knowledge Discovery Handbook, pp.
875–886. Springer, Berlin (2009)

http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2022) 15:27

1 3

Page 15 of 15 27

 8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
Smote: synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321–357 (2002)

 9. Dinodia, P.: Header bidding vs waterfall: How the two revenue
optimisation hacks differ (2017)

 10. Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett.
27(8), 861–874 (2006)

 11. Fuchs, C.: The Online Advertising Tax as the Foundation of a
Public Service Internet. University of Westminster Press, London
(2018)

 12. Garreta, R., Moncecchi, G.: Learning Scikit-Learn: Machine
Learning in Python. Packt Publishing Ltd, Birmingham (2013)

 13. Géron, A.: Hands-On Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems. O’Reilly Media, Inc., Newton (2017)

 14. Ghosh, A., McAfee, P., Papineni, K., Vassilvitskii, S.: Bidding for
representative allocations for display advertising. In: International
Workshop on Internet and Network Economics. Springer, Berlin,
pp. 208–219 (2009)

 15. Graham, R.: A brief history of digital ad buying and selling (2010)
 16. Ha, L.: Online advertising research in advertising journals: a

review. J. Curr. Issues Res. Advert. 30(1), 31–48 (2008)
 17. Harris, D., Harris, S.: Digital Design and Computer Architecture.

Morgan Kaufmann, Burlington (2010)
 18. Jin, J., Song, C., Li, H., Gai, K., Wang, J., Zhang, W.: Real-time

bidding with multi-agent reinforcement learning in display adver-
tising. In: Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management. ACM, pp.
2193–2201 (2018)

 19. Kveton, B., Mahdian, S., Muthukrishnan, S., Wen, Z., Xian, Y.:
Waterfall bandits: learning to sell ads online (2019). arXiv pre-
print arXiv:1904.09404

 20. Li, J., Ni, X., Yuan, Y.: The reserve price of ad impressions in
multi-channel real-time bidding markets. IEEE Trans. Comput.
Soc. Syst. 5(2), 583–592 (2018)

 21. Loebbecke, C., Cremer, S., Richter, M.: Header bidding as smart
service for selling ads in the digital era. J. Inf. Syst. Eng. Manag.
5(4), em0123 (2020)

 22. McAndrew, A.: An introduction to digital image processing with
Matlab notes for scm2511 image processing. Sch. Comput. Sci.
Math. Vic. Univ. Technol. 264(1), 1–264 (2004)

 23. Muthukrishnan, S.: Ad exchanges: research issues. In: WINE ’09
Proceedings of the 5th International Workshop on Internet and
Network Economics, pp. 1–12 (2009)

 24. Pachilakis, M., Papadopoulos, P., Markatos, E.P., Kourtellis, N.:
No more chasing waterfalls: a measurement study of the header
bidding ad-ecosystem. In: Proceedings of the Internet Measure-
ment Conference on—IMC ’19, pp. 280–293 (2019)

 25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., et al.: Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

 26. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, New York (2014)

 27. Refaei Afshar, R., Zhang, Y., Firat, M., Kaymak, U.: Reinforce-
ment learning method for ad networks ordering in real-time bid-
ding. In: van den Herik, J., Paula Rocha, A., Steels, L. (eds.)
Agents and Artificial Intelligence, pp. 16–36. Springer, Cham
(2019)

 28. Rhuggenaath, J., Akcay, A., Zhang, Y., Kaymak, U.: A PSO-based
algorithm for reserve price optimization in online ad auctions. In:
2019 IEEE Congress on Evolutionary Computation (IEEE CEC)
(2019)

 29. Rhuggenaath, J., Akcay, A., Zhang, Y., Kaymak, U.: Fuzzy logic
based pricing combined with adaptive search for reserve price
optimization in online ad auctions. In: IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE) (2019)

 30. Rhuggenaath, J., Akcay, A., Zhang, Y., Kaymak, U.: Optimizing
reserve prices for publishers in online ad auctions. In: 2019 IEEE
Conference on Computational Intelligence for Financial Engineer-
ing and Economics (CIFEr) (2019)

 31. Ryan, K.M., Graham, R.S.: Digital Display Advertising, pp.
85–100. Palgrave Macmillan US, New York (2014)

 32. Sayedi, A.: Real-time bidding in online display advertising. Mark.
Sci. 37(4), 553–568 (2018)

 33. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershel-
vam, V., Lanctot, M., et al.: Mastering the game of go with deep
neural networks and tree search. Nature 529(7587), 484 (2016)

 34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT, Cambridge (2018)

 35. Szepesvári, C.: Algorithms for reinforcement learning. Synth.
Lect. Artif. Intell. Mach. Learn. 4(1), 1–103 (2010)

 36. Vengerov, D.: A gradient-based reinforcement learning approach
to dynamic pricing in partially-observable environments. Futur.
Gener. Comput. Syst. 24(7), 687–693 (2008)

 37. Wang, J., Chen, B.: Selling futures online advertising slots via
option contracts. In: Proceedings of the 21st International Confer-
ence on World Wide Web. ACM, pp. 627–628 (2012)

 38. Wang, J., Zhang, W., Yuan, S., et al.: Display advertising with
real-time bidding (rtb) and behavioural targeting. Found. Trends®
Inf. Retriev. 11(4–5), 297–435 (2017)

 39. Wu, D., Chen, X., Yang, X., Wang, H., Tan, Q., Zhang, X., Xu,
J., Gai, K.: Budget constrained bidding by model-free reinforce-
ment learning in display advertising. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge
Management. ACM, pp. 1443–1451 (2018)

 40. Xie, Z., Lee, K.C., Wang, L.: Optimal reserve price for online ads
trading based on inventory identification. In: Proceedings of the
ADKDD’17. ACM, pp. 6 (2017)

 41. Yuan, S., Wang, J., Zhao, X.: Real-time bidding for online adver-
tising: measurement and analysis. In: Proceedings of the Seventh
International Workshop on Data Mining for Online Advertising.
ACM, p. 3 (2013)

 42. Yuan, S., Wang, J., Chen, B., Mason, P., Seljan, S.: An empiri-
cal study of reserve price optimisation in real-time bidding. In:
Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, pp. 1897–1906
(2014)

 43. Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for
display advertising. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. ACM, pp. 1077–1086 (2014)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Dynamic Ad Network Ordering Method Using Reinforcement Learning
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Dynamic Ad Network Ordering Method
	4.1 Prediction Model
	4.2 Modeling with Reinforcement Learning Framework
	4.2.1 States
	4.2.2 Actions
	4.2.3 Rewards
	4.2.4 Learning Action Values

	5 Data Description
	6 Experiments
	6.1 Evaluation Metrics
	6.2 Evaluation of the Prediction Model
	6.3 Evaluation of Dynamic Ad Network Ordering Method
	6.4 Prediction Model as an Ordering Method
	6.5 Comparing Different Predefined Orderings

	7 Conclusion
	Acknowledgements
	References

