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Abstract

The capabilities of the electronic system in cars have grown over the course of the
years. The limitations of mechanical systems led to the widespread introduction
of Electronic Control Units (ECUs) in the 1970s. Today, a commercial vehicle
uses more than a hundred ECUs. With a combination of ECUs, software, sensors,
and actuators the electronic system enables Advanced Driving Assistance Systems
(ADASs) or even Autonomous Vehicles (AVs).

Complex functionality used in a safety-critical context is followed by a growing
number of requirements, especially related to reliability. Safety requirements
are a key factor in the development of a vehicle, especially when the driver
responsibilities are shifted from the human to the electronic system. However, the
road towards fully automated fail-operational vehicles is still long: while nowadays
the prototypes are being built and tested, design and processes standardization is
still required. The automotive system architecture is not standardized, and the
manufacturers develop new automotive systems based on the experience of the
designers, availability of components, and pre-existing techniques.

With this work, we discuss the modelling of automotive systems to qualify and
quantify different implementations with safety as the main design goal, following
the recommendation of current functional safety standards such as ISO26262.

Our first contribution is a three-layer model to describe the application, the
resources, and the physical aspects related to the automotive system. We focus on
safety-oriented designs, in which redundancy is used for fail-operational systems.
An explicit notation for elements that define redundancy is used: two elements
delimit redundant parts of the system, defined as splitter and merger, which have
a safety-oriented functionality. We develop a framework in which an automotive
system can be modelled and evaluated on multiple parameters: cost, application
failure probability, total cable length, and application functional and communica-
tion loads.

Our second contribution is the development of model transformations which,
based on the ISO26262 standard Automotive Safety Integrity Level (ASIL) decom-
position, allow the introduction of redundancy in selected parts of the modelled
system. After each transformation, the obtained system can be re-evaluated and
compared by using the calculated parameters. We generate fault trees from the
system description to perform a Common Cause Fault (CCF) analysis to validate
the independence required by redundant parts of the system.

i
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As a third contribution, we model and perform the analysis on typical auto-
motive systems. To validate our transformation techniques we use automotive
use-cases and compare our method with results obtained with a manual design
process. We utilize our framework to analyse the different automotive architecture
topologies that are foreseen to become the most prevalent in future vehicles. An
extensive analysis of domain-based and zone-based architectures is performed
to identify the strengths and weaknesses of the two topologies. The impact of
redundancy is tested with the automated techniques introduced in our tools to
understand in which scenarios the manufacturer should opt for one or the other
architecture topology.

Finally, we discuss how mixed-critical applications, which are common in au-
tomotive systems, impact automotive architectures. Isolation is required, and
to obtain it either physical separation or virtualization techniques are used. Each
technique comes with a different cost, and we can quantify them in our framework.
We calculate the effects of these two isolation techniques on example applications
in which mixed-criticality and redundancy are present.
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1
Introduction

1.1 Advanced driving assistance systems and au-
tonomous vehicles

Modern high-end vehicles have more than 100 Electronic Control Units (ECUs) [32]
to provide advanced functionality. The vehicle Electrical and Electronic (E/E)
system executes various functions. While the previous generation of vehicles used
electronics mostly for vehicle control, nowadays Advanced Driving Assistance
Systems (ADASs) are common practice and will be even more used in future
vehicles. The European Parliament established that some ADASs, e.g. lane-
keeping assistant and warning of driver distraction, will be mandatory starting
from 2022 [31]. To help the driver, an ADAS collects information from the
surrounding environment via sensors or communication and uses actuators to
either control the vehicle or inform the driver about a specific situation.

The automotive industry interests do not stop at assisting the driver: on the
path to increase road safety and minimize the number of accidents, Autonomous
Vehicles (AVs) are being developed. Many studies indicate that the main reason for
road accidents is human error [65], which could be avoided by shifting the driving
responsibility to the car electronic system. However, this leads to many technical
and safety concerns, next to ethical discussions such as the trolley problem [173],
where the AV must choose between two driving paths that both could lead to
severe injuries or death of the passengers or other people involved.

To understand these concerns, we describe an Adaptive Cruise Control (ACC)
system. We then use this example to describe the model that we propose in

1



2 CHAPTER 1. INTRODUCTION

Chapter 3. An ACC functionality is divided into two parts:

1. Detect the distance from the forward obstacle and compute the ego-vehicle
current speed and acceleration;

2. Control the ego-vehicle dynamics to adjust the speed to the desired value
while maintaining a safe distance from the forward obstacle.

For the first step, sensors such as cameras, radars, and LiDARs are used [98,116,
172]. The environment, the road, and the obstacles can widely vary, but the ACC
system must work safely in all conditions. For safety reasons, more than one sensor
is used since each sensor has a different optimal working condition, and one or more
sensors may not provide correct information to the system at a particular moment
in time (e.g. due to occlusions) [69,70,124]. Sensor redundancy and sensor fusion
reduce the risk of faults due to malfunctioning or misdetection. Moreover, wheel
speed sensors, accelerometers, gyroscopes, and GPS systems are used [30, 131] to
compute the ego-vehicle speed and acceleration. For the second step, the ACC
system must calculate the necessary vehicle speed. It then requires direct access
to the vehicle throttle and brake actuators to adjust the current vehicle speed.

The ACC operations must all be performed reliably: the forward obstacles
must be detected in all driving conditions, and correct distance values must be
measured; the ego-vehicle speed and acceleration must be obtained accurately;
the necessary vehicle speed must be calculated without faults; and the vehicle
actuators must receive correct and reliable signals.

While safety is a clear requirement, many technical aspects interest ADASs.
The extensive use of sensors results in a vast amount of data, that not only must be
processed by the ECUs but must also be transmitted via the In-Vehicle Network
(IVN). The vehicle actuators require real-time inputs, meaning that an ADAS has
a limited time to process the sensor information and provide the actuation signals.
The space in the vehicle is limited, and the software applications are executed on
embedded platforms that have constrained resources.

For a single ADAS such as the ACC system, the safety and technical require-
ments are strict and require verification. This is true for all the other electronic
applications that are installed in a vehicle. When multiple applications interfere
with each other, a system-level verification is required. The different systems can
interfere directly via communication, or indirectly, for example by sharing sensors
or other hardware resources. In the most complex vehicles, such as AVs, the
system-level analysis to ensure system reliability and efficiency is one of the most
complex parts of the development.

1.2 System requirements for ADASs and AVs
One of the main differences between modern ADASs and AVs from legacy vehicles
is the use of a perception module. ADASs and AVs use perception sensors such
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as cameras, radars, LiDARs, and ultrasonic sensors to reconstruct the surround-
ing environment. For example, Figure 1.1 shows the sensors used by a modern
Volkswagen Golf for ADAS. Complex classifiers, usually neural-network-based
as in [50, 62, 99, 163], are used for object detection, depth estimation, and other
perception-based applications. Figure 1.2 shows the reconstructed front view of an
NVIDIA autonomous vehicle prototype [145], in which pedestrians, other vehicles,
traffic signs, and lanes are detected and classified.

Figure 1.1: Perception sensors for ADASs mounted on a Volkswagen Golf 8 in
2021 [44], from System Plus Consulting.

Figure 1.2: Reconstructed front view from an AV prototype [145].
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Figure 1.3: Sensors and actuators in automotive domains [112].

Other than perception sensors, many other sensors are used for advanced
functionality. Figure 1.3 shows an overview of the classification of the different
sensors based on the application domain they belong to. In this classification, we
identify five application domains: connectivity, ADAS and autonomy, powertrain
and vehicle dynamics, body and comfort, and connected infotainment. This
classification is not standardized, and in literature it is possible to find different
conventions [127].

Sensor redundancy is necessary for fail-operational automotive systems. In the
example AV prototype from Figure 1.4, multiple sensors are used to cover the same
environment areas but with different ranges and characteristics. Each of these
sensors transfers data to computational platforms such as NVIDIA Drive PX2,
NXP Bluebox, or dSPACE MicroAutoBox II. The data rates of perception sensors
are high [37], and the software applications often require hardware accelerators
to meet the real-time requirements. Because of the high data rates, part of the
traditional in-vehicle networks such as CAN buses, LIN, and FlexRay are replaced
by automotive Ethernet networks. At the same time, safety-critical signals such
as actuator commands require real-time network capabilities, and often legacy
IVNs are used for them. The combination of redundancy and the high number
of sensors leads to complex IVNs and E/E architectures, e.g. Figure 1.5 shows
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the cable harness of a Cruise AV test vehicle. To satisfy the different network
requirements, the IEEE 802.1 working group is developing the Time-Sensitive
Networking (TSN), a set of standards aiming to improve the standard Ethernet
protocol, consisting of three main components: time synchronization, scheduling
and traffic shaping, and selection of communication paths [53].

Alessandro Frigerio – ICTOpen 2017 2

Laser Scanner Long Range Radar

Camera Short Range Radar

Figure 1.4: Perception sensors coverage in an AV prototype [2].
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iterative design and comprehensive risk management are grounded 
in the vehicle’s deep integration.

Comprehensive Risk Management is a key component of our System 
Safety process. Throughout the design, development and testing 
processes, our Comprehensive Risk Management approach thoroughly  
identifies and addresses risks, and validates solutions to address 
them. This is a constant element of our Systems Safety process, 
which prioritizes elimination, not just mitigation, of safety risks 
wherever possible. 

Our self-driving vehicles, including all the hardware and systems 
necessary for self-driving operation, meet all our standards for 
performance, crash protection, reliability, serviceability, security and 
safety. That rigorous process means we manufacture our self-driving 
vehicles with the same high-quality standards as the millions of 
vehicles we build for our customers around the world each year.

Safety through Iterative Design

Our design continuously improves with each iteration of the vehicle 
and its systems. For example, the Cruise AV is the fourth generation 
of our self-driving vehicle. Our teams design and create technologies 
and systems, test them in the field and in simulations, and then feed 
the results back into the design process. This way we incorporate 
learnings, especially safety data, into future generations so they 
will be even safer. We do this over and over again, leading to new 
technologies and systems at the heart of our self-driving vehicle. 
This iterative design process is strengthened by our Deep Integration, 
which makes the self-driving system an integral part of the vehicle 
from the outset. This integrated approach enabled us to build our 
vehicle with diverse technology and redundant vehicle functionality. 

Safety through Comprehensive Risk Management 
and Deep Integration

We believe that a truly safe self-driving car cannot be built by simply 
adding a self-driving system onto an existing vehicle in a plug-
and-play fashion. It must be built from the ground up, seamlessly 
integrating the self-driving system into the vehicle. The benefits of 

Figure 1.5: Cable harness of the Cruise AV test vehicle [60].
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1.3 SAE automation levels
The Society of Automotive Engineers (SAE) has defined the intelligence level and
automation capabilities of vehicles in the document J3016 [133]. Figure 1.6 shows
the overview of the six automation levels.
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Figure 1.6: SAE J3016 levels of driving automation [133].

ADASs are usually categorized between levels 1 and 3, since they do not provide
complete automation and still require a human driver to control the vehicle. The
current commercial vehicles reach up to level 3 automation, in which the electronic
system provides full control of the vehicle but may require a human driver to take
control of the car in specific situations. These systems are fail-safe, meaning
that in the presence of a fault, the system reaches a safe state. The shifting
of driving responsibility from the driver to the electronic system pushed for new
road regulations [165]. Levels 4 and 5 are considered fully AVs, in which no human
driver is necessary. In the presence of a fault, a level 4 or 5 AVs can cope, either
with a backup or a recovery mechanism, without human intervention. A system
that provides full functionality even in the presence of a fault is defined as fail-
operational [138,140]. Automotive safety-critical systems, of any automation level,
often require fail-operational capabilities. For example, a brake-by-wire system, a
safety-critical ADAS, requires fail-operational capabilities [152]. Figure 1.7 shows
the fail-operational E/E brake-by-wire system of [152], in which redundant fail-
silent units are used for the electric brake control module and sensors and actuators
are connected with redundant CAN and FlexRay connections.
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Brake Pedal Interface 
Unit

Brakes Control Unit
FL

Brakes Control Unit 
FR

Brakes Control Unit 
RR

Brakes Control Unit 
RL

Star Coupler 1 Star Coupler 2

Electronic Brake Control Module

Fail-Silent 
Unit

Fail-Silent 
Unit

Diode Bridge Switch 
Arrangement

Power Signal 
Distribution 1

Power Signal 
Distribution 2

CAN Bus 2

CAN Bus 1

CAN Bus 3

FlexRay 2

FlexRay 1

Power 
Supply 

Network

Figure 1.7: A fail-operational brake-by-wire E/E architecture. Reproduced
from [152].

1.4 Functional safety
Functional Safety for automotive is defined in the ISO26262 Road Vehicles -
Functional Safety standard [81] as “the absence of unreasonable risk due to hazards
caused by malfunctioning behaviour of electrical/electronic systems”. The stan-
dard aims to eliminate the risk in electronic and electrical components in vehicles,
which can result in injuries or damage to the overall health of people. It defines
the Automotive Safety Integrity Level (ASIL), which is a risk-based parameter
that determines the severity, controllability, and probability of exposure related to
a specific Functional-Safety Requirement (FSR). Many safety-critical industries
follow strict functional safety standards:
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Table 1.1: Comparison of SIL levels of functional-safety standards.

FuSa Standard Safety Levels (lowest to highest)
IEC 61508 - SIL 1 SIL 2 SIL 3 SIL 4
ISO26262 ASIL A ASIL B ASIL C ASIL D -
DO-178C Level E Level D Level C Level B Level A
IEC 62304 Class A Class B Class C
EN 50128 SSIL 0 SSIL 1 SSIL 2 SSIL 3 SSIL 4

• IEC 61508 Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems [79] is the main functional safety standard
applicable to all industries. It defines the safety life cycle, a process that aims
to discover design errors and omissions. It also defines the Safety Integrity
Level (SIL), a parameter associated with a component that is based on the
frequency and severity of hazards. It determines the safety requirements of
each component and indicates its probability of failure.

• EN 50128 is the functional safety standard used in the rail industry that
“specifies the process and technical requirements for the development of
software for programmable electronic systems for use in railway control and
protection applications” [51]. It also has a definition of SIL, different from
the main standard.

• IEC 62304 focuses on medical devices, defining software safety classification
to set the device requirements based on risk parameters [78].

• DO-178C Software Considerations in Airborne Systems and Equipment Cer-
tification is the primary functional safety standard for commercial software-
based aerospace systems [52]. It defines the Design Assurance Level (DAL)
based on the effect of a failure condition on the aircraft.

While all the SIL or the equivalent parameters are not interchangeable, in
Table 1.1 we compare them to clarify the relationship between them.

In Chapter 2 we discuss in more detail the ISO26262 standard and its impact
on automotive systems.
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1.5 From fail-safe to fail-operational architectures
With increasing automation in the vehicle functionality, the responsibility of safely
driving the vehicle shifts from the driver to the E/E system, as shown in Figure 1.8.
The system switches from fail-safe requirements, in which the system can fail and
reach a safe state (in this case by using the driver as the fallback mechanism),
to fail-operational requirements, in which the system must function even in the
presence of a fault.
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Figure 1.8: Driving responsibility in the different SAE autonomation levels.
Reproduced from [162].

The failures in automotive systems can come from two main categories [38]:
failures related to the infrastructure and failures related to the vehicle components.
The first category is shown in Figure 1.9 and contains failures related to elements
external to the vehicle, e.g. other road users or environmental conditions. The
second category, shown in Figure 1.10, contains the failures that are related to the
vehicle E/E architecture.

The infrastructure related failures can be mitigated with robust system design,
e.g. using multiple sensors to collect information from the surroundings of the
vehicle. For example, in case of adverse weather conditions (e.g. too much light
pointing towards a camera) at least one of the redundant sensors can provide
correct data, e.g. a radar. The more information the vehicle can collect from
its surroundings, the lower the chance of failures related to the infrastructure can
happen.

The vehicle component failures focus instead on what happens inside the
vehicle: the hardware or software components can fail, or mechanical failures
can happen. Similar to the previous scenario, robust and safety-oriented design
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Figure 1.9: Possible failures related to transportation infrastructure. Reproduced
from [38].
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Figure 1.10: Possible failures related to AV components. Reproduced from [38].

is key to avoid these types of failures. Redundancy in the E/E architecture helps
to provide fail-operational capabilities. In this work, we focus on how to add
redundancy when needed and on how to analyse redundant automotive systems.

1.6 Problem statement and contributions
Developing an ADAS or an AV is a complex task. The many requirements, both
safety and technical, result in an intricate design phase. Many developer teams
working on different aspects of the vehicle are involved. With our research, we want
to bridge the gap that exists between the development of the automotive electronic
system and the functional safety analysis. In this thesis, we describe how to model
and transform an automotive system to validate its cost and FSRs. The high-level
research question in this thesis is: A) How to model an automotive system B) so
that we can evaluate quantitative architecture and functional safety metrics and
C) so that we can introduce safety patterns and components iteratively. D) The
model shall be proven on current and future or emerging automotive architecture.



1.6. PROBLEM STATEMENT AND CONTRIBUTIONS 11

Our first contribution is a model that describes a complex automotive system
such as ADASs (Chapter 3). The application, resources, and physical space are
modelled each in a separate layer. The mapping between different layers establishes
the relationships between them. An evaluation framework is developed to analyse a
modelled system, quantifying high-level values such as cost, the failure probability
of the applications, total functional load, total communication load, and total
cable length. ASIL parameters are annotated in the model for traceability of the
FSRs and are used to evaluate the parameters of interest.

As second contribution, we then define specific architectural elements that
manage the redundant parts of the system: the splitters and mergers (Chapter 3).
We analyse how these safety-oriented elements are implemented in existing auto-
motive redundant systems, focussing on explicit design patterns used to achieve
high system reliability. We propose model transformations that use these elements
to introduce spatial redundancy (opposed to temporal redundancy, as discussed in
Section 2.4). The goal is to achieve the required fail-operational status for ADAS
and AV. The transformations are based on the ISO26262 ASIL decomposition
technique, which is used to lower FSRs ASIL values (Chapter 4). The transformed
model can be evaluated again in our framework to compare different solutions. The
ASIL decomposition is verified with a Common-Cause Fault (CCF) analysis that
analyses the independence of the obtained redundant parts of the system.

The many requirements of ADAS and AV have a great impact on the E/E
architecture. While in previous-generation vehicles ad-hoc networks and ECUs
were used, in modern systems more standardized solutions are needed. Current
researchers anticipate Domain-based and Zone-based solutions as future-proof au-
tomotive architectures. As a third contribution, we use our evaluation framework
and model transformations to analyse the two main architecture topologies in
different conditions. We quantify the differences between the two topology types
in the presence of redundant and mixed-critical applications. With our framework,
we can guide the automotive system designer towards the correct architectural
choice for a specific ADAS or AV system (Chapter 5).

As a final contribution, we analyse the effect of isolation techniques on the
system-level analysis of an ADAS or AV system. Mixed-criticality can potentially
lead to interferences, and non-critical applications can modify the behaviour of
safety-critical ones if no isolation is present. Physical separation and virtualization
techniques are analysed, and their impact is quantified in different architecture
topologies scenarios (Chapter 5). Table 1.2 highlights the contributions of the
thesis compared to the main research question.
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Table 1.2: Contributions related to the research question.

Research
question

Thesis
chapter(s) How

A) Modelling of
automotive
systems

3
Three-layer model of automotive
systems with safety-oriented elements
(Contrib. 1)

B) Quantitative
evaluation of the
system to allow
comparison of
different E/E
implementations

3
Quantitative analysis of reliability,
cost, physical space, and resource
utilization (Contrib. 2)

C) Introduction of
safety patterns and
components in the
system

4

Transformations of the system
architecture to introduce redundancy
(Contrib. 3)

D) Applicability to
future architecture
trends and case
studies

4 and 5
Analysis of current and future
automotive architecture topologies
(Contrib. 4)

To validate our framework, all the contributions are supported by real-life or
synthetic use cases. Our experiments provide insights for the development of safe
ADASs and AVs. The results are system dependent, but our framework is a key
point in the analysis of different implementations.

1.7 Thesis outline
The remainder of the thesis is organized as follows: Chapter 2 introduces the
necessary background information related to the automotive safety standards, the
safety life cycle, and the architecture safety patterns. Chapter 3 describes the
details of the proposed three-layer model and introduces the splitter and merger
components. Moreover it describes the quantified analysis that is performed in our
framework. Chapter 4 characterizes the procedure for model transformations to
introduce redundancy in the system. An example application and the EcoTwin II
Platooning System [23] lateral control application are evaluated as use cases in this
chapter. The work in Chapters 3 and 4 has been previously published in [55, 56].
The Domain-based and Zone-based EE architectures are defined and evaluated in
Chapter 5. The impact of redundancy is quantified in each architecture scenario.
Isolation techniques are evaluated in Chapter 5 as well, in which physical sepa-
ration and virtualization are implemented in the previous-mentioned architecture
topologies to quantify their respective impact. Chapter 5 was partially published
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in [57,58]. Last, Chapter 6 concludes the thesis and provides an overview of future
direction for safety-oriented ADASs and AVs system analysis.





2
Background and related work

2.1 Introduction

The research field of automotive systems is vast. In this thesis, we focus on the
functional safety aspects defined in Chapter 1. Many safety-oriented techniques
are used, e.g. the data stored in memories can be monitored by using Error-
Correcting Code (ECC), Built-In Self-Test (BIST) capabilities, watchdog timers
used to monitor the state of processors. At the architecture level instead, the
most common technique to obtain highly reliable systems is redundancy [166]. For
example in the avionic field, where the electronic system has many responsibilities
in the control of the aircraft, multiple levels of redundancy are present [68,86,142,
154].

The automotive industry’s goal is to obtain fail-operational systems, in which
even in the case of a failure of part of the system, the full functionality can still
be provided. In this scenario, a redundant system is necessary to substitute the
failed part. However, simply duplicating the full system might not be the correct
solution: the source of the failure can be present in a duplicated identical system
as well, and if the two redundant parts are not independent the system reliability
may not be improved [81]. Moreover, more components lead to a more complex
system, where more sources for faults are present.

This is why we focus our attention on redundant automotive systems and the
management of redundant elements. In this chapter, we provide the necessary
background information to understand the modelling and analysis framework that
is proposed in the following chapters. First, we introduce the de facto standards

15
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used in the automotive industry for Advanced Driving Assistance System (ADAS)
and Autonomous Vehicles (AVs). We then discuss the building of the Safety Case
for a new system. The Automotive Safety Integrity Level (ASIL) decomposition
technique of the ISO 26262 standard is described and is used in our model trans-
formations to introduce redundancy in selected parts of the system in Chapter 4.
We then describe general redundancy techniques and architecture patterns that
are used in safety-critical automotive systems.

2.2 Automotive functional safety standards

2.2.1 ISO 26262
ISO 26262 “Road vehicles - functional safety” [81] is an automotive functional-
safety standard derived from IEC61508 [79]. The standard is divided into 12
parts:

1. Vocabulary
2. Management of functional safety
3. Concept phase
4. Product development at the system level
5. Product development at the hardware level
6. Product development at the software level
7. Production, operation, service and decommissioning
8. Supporting processes
9. ASIL-oriented and safety-oriented analysis

10. Guidelines on ISO 26262
11. Guidelines on application of ISO 26262 to semiconductors
12. Adaptation of ISO 26262 to motorcycles
While part 1 defines the terminology used in the standards, parts 2 to 8

construct the safety life cycle of an automotive electronic system, as shown in
Figure 2.1.

Figure 2.2 shows the multiple V-Models that are implemented in the standard:
the design, validation, and testing is done in parts 4, 5, and 6, at the system,
hardware, and software level respectively.

In part 3, during the concept phase, the item is defined. An item is a specific
system, or combination of systems, to which the safety life cycle is applied. During
the Hazard Assessment and Risk Analysis (HARA) step, a comprehensive set of
hazards is identified for the item. Each hazard is classified according to three
parameters: severity, probability of exposure, and controllability. The severity
parameter is assigned based on the potential harm caused to each endangered
person, including the driver or the passenger of the vehicle causing the hazardous
event and other external endangered people such as cyclists or pedestrians. The
probability of exposure is the probability of an event occurring during the operating
time. The controllability parameter is based on the ability of the driver or other
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Figure 2.1: ISO 26262 safety lifecycle [81].

traffic participants to mitigate the hazard. Table 2.1 shows the values that can be
assigned to each hazard and their description.

An Automotive Safety Integrity Level (ASIL) is determined for each hazardous
event. Four ASILs are defined: ASIL A, ASIL B, ASIL C, and ASIL D, where ASIL
A is the lowest safety integrity level and ASIL D the highest one. Additionally,
the class Quality Management (QM) denotes no safety requirement in accordance
with ISO 26262. Table 2.2 shows the ASIL definitions based on the three risk
parameters. Note that the highest ASIL is assigned only in case of S3, E4, and
C3 (maximum value of each risk parameter).

Once the hazardous event has been evaluated, a Safety Goal (SG) shall be
determined. A SG is a top-level safety requirement for the item, expressed in
terms of functional objectives. The ASIL determined for the hazardous event is
inherited by the corresponding SG.

From the SGs, Functional-Safety Requirements (FSRs) are derived and al-
located to the preliminary architectural elements. They inherit the ASIL of
the SG, and if an FSR is related to multiple SGs, it will inherit the highest
ASIL between them. The FSRs are furthermore refined into Technical Safety
Requirements (TSRs), lower-level requirements allocated to hardware and software
elements and so on. A summary of the structure of the safety requirements derived
in the ISO 26262 standard is shown in Figure 2.3.

A comprehensive study on functional safety and the application of the ISO
26262 standard to automotive systems is found in [132]. In this work, the author
proposes new models and tools to model the work flow of the safety lifecycle
and to model safety analysis specifications, investigates safety patterns for safety-
critical systems (see Section 2.5), and discusses the safety culture in automotive
organizations. The holistic safety domain model presented in [132] focusses on



18 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: Risk parameters assigned to hazards.

Severity (S)
S0 No injuries
S1 Light and moderate injuries
S2 Severe and life-threatening injuries (survival probable)
S3 Life-threatening injuries (survival uncertain), fatal injuries
Probability of exposure (E)
E0 Incredible
E1 Very low probability
E2 Low probability
E3 Medium probability
E4 High probability
Controllability (C)
C0 Controllable in general
C1 Simply controllable
C2 Normally controllable
C3 Difficult to control or uncontrollable

Table 2.2: ASIL definition based on the risk parameters.

C1 C2 C3
E1 QM QM QM
E2 QM QM QM
E3 QM QM AS1

E4 QM A B
E1 QM QM QM
E2 QM QM A
E3 QM A BS2

E4 A B C
E1 QM QM A
E2 QM A B
E3 A B CS3

E4 B C D
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Figure 2.2: ISO 26262 structure based on a V-Model [81].

specifying system design and safety process aspects, and uses UML as the notation
language. Moreover, it analyses the HARA process for the described system.
In our model, we describe instead the interactions between the application, the
hardware resources, and the physical space. We assume that the results of the
HARA procedure are known. We then focus on an automated design processes to
introduce redundancy in the system and describing different architecture topolo-
gies with the model, to understand the costs and benefits of future automotive
trends.

Complementary to the ISO 26262 standard, the ASPICE [169] standard is
the current standard for software best practices in the automotive industry. It
addresses non-safety related concerns, such as cost and scheduling impacts on the
system, and it focuses on the process implementation.
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Figure 2.3: Summary of requirements specification in ISO 26262.

2.2.2 ASIL decomposition
A safety requirement can be decomposed into redundant safety requirements dur-
ing the ASIL allocation process to allow the implementation of higher ASIL ele-
ments with lower ASIL ones. This procedure is referred to as ASIL decomposition.
This technique can be applied to a safety requirement of any level (functional,
technical, hardware, or software safety requirement). Benefits can be obtained by
using ASIL decomposition in case of the existence of independent architectural
elements (e.g. redundant resources with separate power supplies and separate
communication networks), offering the opportunity to implement safety require-
ments redundantly and assign potentially lower ASIL to these redundant safety
requirements. The elements must be independent, otherwise, the ASIL cannot be
lowered.

Elements are independent when there is no dependent failure leading to a
SG violation. To understand the meaning of this, we describe the two types of
dependent failures that can occur. Dependent failures can either be Common-
Cause Fault (CCF) or Cascading Fault (CF).

A CCF is a failure due to a single specific event that causes multiple elements
to fail, as shown in Figure 2.4. The fail event leads to a fault in both elements A
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A CF is a failure that causes an element to fail, which in turns causes a
successive element to fail, as shown in Figure 2.5
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Figure 2.5: Cascade failure of elements A and B caused by a single fail event [41]

The standard defines freedom from interference when there is no CF that would
lead to the violation of a SG between two or more elements. Figure 2.6 summarizes
the conditions in which independence is achieved.

Figure 2.7 shows the ASIL decompositions permitted by the standard. For
example, an ASIL D requirement can be decomposed into:

• An ASIL C and an ASIL A requirements;

• Two ASIL B requirements;

• An ASIL D and a QM requirements;

The ASIL decomposition can be applied recursively to already decomposed
requirements, to further lower their ASIL. However, the standard specifies that
the confirmation measurements, such as review of the safety, integration, and
validation plans, must be applied in compliance with the ASIL of the SG, which
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corresponds to the ASIL of the safety requirement before the ASIL decomposition.
This is why the original ASIL is annotated in the ASIL decomposition table of
Figure 2.7, e.g. ASIL B(D).

In literature, we find different works related to ASIL decomposition. The
authors of [171] discuss how to apply the technique correctly and common mistakes
that are made in the industry when implementing redundancy, focusing on the
independence requirements for redundant elements. The works [13,14,43,105,106,
118,134] perform automatic ASIL allocation after the decomposition on a specific
system, using different types of automated techniques to achieve correct allocation.
Other works instead try to minimize cost functions by decomposing the safety
requirements [175,176]. Our experiments use concepts from related work, such as
cost metrics related to the ASIL specifications, but use the ASIL decomposition
technique in a different way. Instead of allocating the ASIL requirements on the
different parts of an existing system, we modify the current implementation by
adding redundancy elements. These elements are, by design, following the ASIL
decomposition rules, and the decomposed FSR can be assigned to them. The new
and redundant system is then evaluated in our analysis framework. In Chapter 4
we describe the model transformations that introduce these redundant elements.

2.2.3 ISO/PAS 21448 - SOTIF
While the focus of this thesis is on the ISO 26262 standard, it is worth mentioning
additional functional safety standards related to ADAS and AV.

The ISO/PAS 21448 “Road vehicles - safety of the intended functionality”
focuses on the absence of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or by reasonably foreseeable misuse by
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Figure 2.7: Possible ASIL decompositions from the ISO 26262 standard.

persons. A malfunction can occur even in absence of a fault in the architectural
elements, and this scenario is not covered by the ISO 26262 standard. An example
scenario is not detecting another vehicle on the road, which could cause fatal
consequences [120].

In response, companies involved in AV research developed a set of rules for safe
vehicle behaviour. Intel released the Responsibility-Sensitive Safety (RSS) rules
that formalize the human notion of safe driving into five rules [59]:

1. Do not hit the car in front (longitudinal distance)

2. Do not cut in recklessly (lateral distance)

3. Right of way is given, not taken

4. Be cautious in areas with limited visibility

5. If a vehicle can avoid a crash without causing another one, it must

The implementation of this ruleset in the AV decision-making software leads
to decisions that are safe and predictable. Each rule corresponds to specific
calculations done by the software to plan a safe trajectory. For example, Figure 2.8
shows the distance required to maintain safe longitudinal distance from a vehicle
moving in the same direction, where ρ is the response time, αmax is the maximum
acceleration during the response time, vr and vf are the longitudinal velocities of
the two cars, βmin and βmax are the minimum and maximum brake forces applied
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by the vehicle. The RSS ruleset is implemented by various industry peers and
standard organizations. For example, it is adopted in the Apollo autonomous
driving platform [16,77].

Figure 2.8: Minimum distance to maintain from the successive vehicle [144].

Similar to the RSS, NVIDIA promotes the Safety Force Field (SFF) [108,109],
to provide the basic mechanisms between actors on the road to avoid collisions.

In our work, we limit the research to ASIL-oriented analysis, and we do not
further discuss the ADAS or AV intentions.

2.2.4 UL4600
While ISO 26262 and ISO/PAS 21448 expect a human driver as a fall-back safety
mechanism (up to autonomy level 3), the UL4600 standard for the evaluation
of autonomous products [164] has fully autonomous systems as a target [89]. It
includes topics such as safety case construction, risk analysis, testing, validation,
metrics and conformance assessment. It is intended as a supplement to the other
standards, providing more detailed treatment regarding fully autonomous
systems. Compliance with this standard includes other safety standards such as
the previously mentioned two.

Figure 2.9 shows the landscape of the functional-safety standards and the tasks
of an automotive electrical system that they influence [88].

2.3 Faults and safety mechanisms
In this section, we define what types of faults we analyse in this thesis, and what
sort of safety mechanisms are used in automotive systems.

The ISO 26262 defines a fault as an abnormal condition that can cause an
element or an item to fail. In part 5, the standard specifies different types of
faults for a safety-oriented element [33]:
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Figure 2.9: Overview of safety standards related to the automotive system [88].

• Safe fault (λS): the fault does not cause the safety-oriented element to fail.
Either a safety mechanism protects the element from failure or the fault is
harmless for the system.

• Single-point fault (λSPF): a fault that causes the failure of an element
because no safety mechanism is present. In an ASIL C or D system, these
faults are not tolerated.

• Residual fault (λRF): a fault that causes the failure of the safety-oriented
element (same as single-point fault). However, in this scenario, a safety
mechanism is present in a safety-oriented element but has a limited coverage.
The residual fault is part of the faults that are not covered by the safety
mechanism. In an ASIL C or D system, these faults are tolerated if their
probability is low.

• Multiple-point fault (λMPF,D, λMPF,L): a fault that in combination with
other independent faults leads to a multiple-point failure. The individual
multiple-point fault does not cause the violation of the SG of the element by
itself, but it does when it occurs in combination with the other independent
faults it is linked to. A multiple-point fault can be perceived, in which case a
safety mechanism detects the multiple-point fault and reacts, or latent, where
no safety mechanism detects the fault (e.g. a failure in the safety mechanism
itself which remains undetected and non-perceived until the related multiple-
point faults occur).

The fault rate λ of a safety-oriented element is calculated by combining the
failure rates related to each fault, according to Equation 2.1 [63]. Figure 2.10
summarizes the possible failure modes of a hardware element.

λ = λS + λSPF + λRF + λMPF,D + λMPF,L (2.1)
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Figure 2.10: Summary of failure modes of a hardware element.

The fault rates are dependent on the safety mechanisms that are implemented
in the system. A safety mechanism enhances the safety of electric and electronic
systems. There are a variety of safety mechanisms that can be implemented in
automotive systems, either in hardware or software form. We can categorize the
safety mechanisms in [35]:

1. Detect and correct: a safety mechanism that monitors an element, and
when a fault is identified, it can correct it. The fault does not turn into
a failure of the element, functionality is maintained and the fault is not
perceived by the other elements of the system in a fail-operational way.

2. Detect and inhibit: a safety mechanism that monitors an element, and
when a fault is identified, it stops the element. The functionality is not
maintained in this case and the fault is perceived. The fault becomes a
failure of the element, but it is set to a defined inhibited state. The failure
will not affect other elements of the system, avoiding e.g. babbling idiot
scenarios [27] or byzantine failures [45], in a fail-silent way.

A safety mechanism is always formed by two parts: a detection and an actua-
tion. Examples of safety mechanisms are:

• redundancy; e.g. lockstep [17, 155], triple modular redundancy [39, 177],
redundant multithreading [129,137];

• self-test; e.g. built-in self-test [47,174], software-based self-test [19,126], logic
built-in self-test [121]), watchdogs [34,158];

• error correcting codes [87,143,170].
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The diagnostic coverage is one of the parameters that measures the effectiveness
of a safety mechanism. It represents the percentage of faults that can occur in the
monitored elements that are detected and solved by a safety mechanism [63,107].
High diagnostic coverage leads to a lower residual fault rate λRF . The possibility
of failure of a safety mechanism is included in the failure rate calculation as a
multi-point fault: in the case of a simultaneous failure of the safety mechanism
and a fault that is part of its diagnostic coverage, the system fails because of a
multi-point fault. Multiple layers of safety mechanisms can exist: in the case of
extremely safety-critical systems, additional safety mechanisms can monitor the
first level safety mechanisms.

In this work, we focus on architectural safety mechanisms that are based on
the use of redundancy and monitoring elements. We do not discuss hardware and
software safety mechanisms further, however, we capture them in our model with
the failure rates described in Chapter 4.
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2.4 Fault tolerant schemes
As mentioned in the previous section, our focus on obtaining fault-tolerant and
fail-operational automotive systems is on architectural safety mechanisms, and in
particular on redundancy. The use of redundancy, if applied correctly, improves
the system reliability. In a redundant system, the failure rate of a redundant
application is not based only on the reliability of the components, but also on
their architectural configuration [170].

Many different types of redundancy can be used, and we can distinguish be-
tween hardware, time, and information redundancy [91]:

• Hardware redundancy is divided into static (also called passive), dynamic
(also called active), and hybrid. In static hardware redundancy the system
masks faults by selecting correct outputs from the redundant parts [90]. In
dynamic hardware redundancy, the system is reconfigured in the presence of
a fault to switch to a fault-free spare element [115]. In hybrid redundancy
both approaches are combined, the faults are masked and the system can be
reconfigured [100].

• Time redundancy does not require additional hardware, but it can only
detect and correct temporary faults. However, temporary faults happen
more frequently than permanent faults [178], meaning that time redundancy
can be a cost-efficient safety mechanism to reduce temporary-fault-induced
failures, at the expense of performance because of the repeated executions.
Time redundancy techniques are divided into repeated execution [104], mul-
tiple sampling of outputs at a different moment in time [54], and diverse
recomputation on the same hardware [113].

• Information redundancy is based on error detecting and correcting codes,
using fewer hardware resources compared to fully redundant elements. Upon
detection of an error, the system can either correct it with the redundant
information or roll back to a previous fail-safe state. These techniques are
divided into error detection and error correction ones.

Moreover, when the functionality is executed more than once to compare its
outputs, we encounter two scenarios:

1. Homogeneous redundancy: the functionality is replicated with identical
redundant hardware and software elements. If these multiple replications
are independent, the availability of the system is improved.

2. Heterogeneous redundancy: the functionality is replicated with different
hardware and software elements. If the multiple replications are independent,
both the system availability and reliability are improved since the failure
modes of the multiple implementations are different.



2.5. ARCHITECTURE SAFETY PATTERNS 29

In this work, we analyse redundancy at an architectural level, meaning that we
consider hardware implementations that use multiple redundant elements. Safety
mechanisms such as time and information redundancy are captured by the failure
rates of the elements. For example, the failure rate of a memory that uses memory
self-test for error detection and correction will be lower than a memory with no
safety mechanism.

2.5 Architecture safety patterns
The ISO 26262 standard recommends to adhere to well-established architecture
principles, also called architecture patterns. The concept of architecture pattern
is also mentioned in the ISO/IEC/IEEE 42010 standard [80] as a way to describe
and classify system designs. In the next paragraphs, we describe safety-related
architecture patterns from the literature [9, 101, 135, 136], starting from a base
channel and building up towards more complex and safe architectures.

A channel, shown in Figure 2.11, is a path via which data flows, usually from
sensors to actuators. The inputs are processed in the input processing block, which
translates sensors and signals from other systems to usable information. The data
processing block analyses the input data to generate an output for the actuators.
Finally, the output processing block translates the high-level output data to low-
level control signals for the actuators. No architectural safety measure is present
in the single-channel architecture.
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Figure 2.11: Single channel functional view [8].

The first architecture pattern, the protected single channel, is shown in Fig-
ure 2.12. The actuation channel is formed by the processing channel of the single-
channel architecture plus actuation monitoring and data validation blocks. In
this non-redundant pattern, feedback and feed-forward loops are used to detect
possible failures. When an unsafe fault is detected, the system output is not
valid. No additional measure can be taken, other than shutting down this part of
the system for a fail-silent behaviour towards the other applications. Moreover,
a permanent failure that compromises one of the steps in the actuation channel
cannot be recovered, since no backup is available.

The second architecture pattern is shown in Figure 2.13. This advanced pattern
is called safety executive, in which a fail-safe processing channel is paired to the
actuation channel. A safety coordinator monitors the two channels and selects
which one to use to send the actuation control signals. The safety channel provides
degraded functionality: simpler operations are executed to reach a safe state of
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Figure 2.12: Protected single channel architecture pattern [8].

the vehicle, such as an emergency brake. In this case, the ASIL decomposition
can be applied to decompose a safety requirement over the two channels. The
safety executive module, which is a single point of failure element of the pattern,
inherits instead the ASIL of the original SG. This system is fail-safe since the
safety channel only provides degraded functionality, but it is not fail-operational.
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Figure 2.13: Safety executive architecture pattern [8].

The third architecture pattern, shown in Figure 2.14, is redundancy with full
functionality, thus fail-operational. In case a failure is present in the primary
channel, the fault detector can identify it and switch to the secondary channel.
These two channels can be identical duplicates (same hardware and software) of
a function or diverse implementations that use different hardware resources and
different software. The fault detector and the switch are in common between
the different channels, and inherit the ASIL of the original SG, while ASIL de-
composition can be applied to the safety requirements related to the processing
channel, to be decomposed over the multiple redundant channels. An example
of the homogeneous redundancy is the M-out-of-N (MooN) voting [36], shown
in Figure 2.15: the outputs of N duplicates of the system are compared and if
M values coincide they are considered correct. The typical implementation of
this is in the triple modular redundancy, a 2oo3 architecture pattern. Note that
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Figure 2.14: Homogeneous / Heterogeneous redundancy architecture pattern [8].
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Figure 2.15: M-out-of-N architecture pattern.

in MooN patterns with homogeneous redundancy, the availability of the system
increases, while the reliability is not impacted since it would require heterogeneous
redundancy.

In Chapter 3 we use our proposed model to describe these and other architec-
ture patterns, focussing on redundancy-related elements and their impact on the
reliability of the system.

2.6 Resource sharing and fail-silent systems
As presented in Section 2.2.2, independence is a strict requirement for redundancy
when applying the ASIL decomposition technique. However, CF and CCF are
problems even when redundancy is not used. The hardware and software elements
of the system can interfere with each other, and the failure of one of them could
lead to the failure of others. For example, a function executed on a hardware
resource could accidentally overwrite part of the memory space reserved for another
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function, or it could lead to the failure of the hardware element itself. Another
typical failure event is the babbling idiot [27], in which the element that fails
continuously sends random data to its communication outputs, overloading the
network and leading to the failure of the other connected parts of the system.
When a failure of an element can interfere with other parts of the system, the
element is not fail-silent. A fail-silent element recognizes that it is receiving the
wrong information due to a fault, and either shuts down its operation or switches
to a degraded mode to not propagate the fault further.

If multiple functions with different SGs are present, the failure of a non-fail-
silent element can lead to the failure of an unrelated SG. Especially when the
ASILs assigned to the SGs is different, a safety-critical SG can fail because of less
critical elements, which follow a different and simpler process in terms of safety
analysis. For this reason, interferences from other parts of the system must be
avoided when developing safety-critical systems.

Since we focus on architectures and related design-choices, we discuss two
techniques that avoid interferences due to the sharing of hardware elements by
multiple functions. The simplest solution is to physically separate all the functions,
removing all sorts of hardware sharing dependencies in the system. This includes
not only sharing a resource by multiple software elements, but also resource-related
dependencies, e.g. separate power supplies. We call this technique physical separa-
tion. To be independent, the different hardware elements are mapped to different
physical locations and have a physical distance between them. With physical
separation, the number of required hardware elements in advanced systems is high
and it might not be feasible to install all of them in a single vehicle.

The second technique is virtualization. A middleware layer, such as a hyper-
visor, is used to safely share hardware elements and isolate different functions. In
this way, fewer hardware elements are required in the system.

Hypervisors are classified into two types. Type 1 hypervisors are the most pop-
ular, they run directly on top of the hardware elements as shown in Figure 2.16a,
they are also known as bare-metal hypervisors. Type 2 hypervisors run on top
of an operating system, as shown in Figure 2.16b. The guest operative systems
running in the Virtual Resources (VRs) created by the hypervisor do not have
direct access to the hardware and access them via the virtualization mechanism.
Further categorization is possible [167], but it is out of the scope of the current
work.

Popular automotive hypervisors, such as QNX Hypervisor [25] and Green Hills
INTEGRITY Multivisor [66], follow the ISO 26262 software code guidelines and
are ASIL D certified.

When referred to communication elements, virtualization is used to separate
different application domains and run multiple independent networks on the same
physical network. This can provide individual Quality of Service (QoS) configura-
tions in terms of bandwidth and latency, and isolation between the different virtual
networks. For example, automotive Ethernet can use Virtual Local Area Networks
(VLANs) [157]. VLAN-based isolation is performed on the data link layer, which
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Figure 2.16: Type 1 (a) and type 2 (b) hypervisors.

may involve hardware elements, ensuring separation of the communication in
the network. Other network virtualization mechanism are used, for example
Virtual Controller Area Networks (VCANs) can be used to provide fault isolation,
reserved bandwidth guarantees and small temporal interference [72]. Even wireless
networks can be virtualized, for example automotive-oriented configuration of 5G
network slices can be used for vehicle-to-everything communication [29].

In Chapter 5 we describe the effects of the two techniques on the automotive
system in combination with redundancy. Interferences due to other dependencies,
for example proximity to other failing hardware elements or sharing of a power
supply, are not address in this work and will be considered in future work.





3
Model and functional-safety analysis of

automotive systems

3.1 Introduction and related work

The introduction of Advanced Driving Assistance Systems (ADASs) and Autonomous
Vehicles (AVs) will impact the Electrical and Electronic (E/E) architecture of
vehicles. ADASs and AVs are complex cyber-physical systems, with many require-
ments related not only to performance, but also to safety, security, power efficiency,
and cost. With our work, we model such a system to perform a quantitative eval-
uation that will guide the system architect to compare possible implementations.
The system characteristics derive from multiple aspects of the vehicle related to
the software applications, the hardware resources that execute the applications,
the sensors that collect the environment data, the actuators that interact with the
physical parts of the vehicle, and the communication infrastructure between them.

When describing these systems from a safety-oriented point of view, it is
important to analyse the independence of system elements, as mentioned in the
ISO 2626 standard, especially when focusing on redundant parts of the system.
Only if independence is verified, Automotive Safety Integrity Level (ASIL) decom-
position can be applied to the Functional-Safety Requirements (FSRs), hence the
requirements on the separate elements can be lowered. The independence analysis
involves many aspects of the vehicle. To perform it in an automated fashion,
a model of the system must include a description of the relations between the
application, the hardware elements, and physical characteristics of the environment

35
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of the car. The standard recommends that each identified potential for dependent
failure shall be evaluated in operational situations as well as in the different
operating modes, and shall consider [81]:

1. hardware failures;
2. development faults, e.g. those related to item or element requirements,

software design and implementation, hardware design and implementation;
3. manufacturing faults, e.g. those related to processes or procedures;
4. installation faults, e.g. those related to wiring routing, failures of adjacent

items or elements;
5. repair faults, e.g. those related to processes or procedures;
6. environmental factors, e.g. temperature, vibration, pressure, pollution, Electro-

Magnetic Interference (EMI);
7. failures of common external resources, e.g. power supply, input data;
8. stress due to specific situations, e.g. wear, ageing.

We analyse the aspects that are related to the implementation of the vehicle
E/E architecture and the relationships between the applications (2 and 7), the
hardware resources (1, 2, and 7), and the environment (6 and 8), while we do
not focus on processes and procedures-related faults (3 to 5). In the literature,
we identify various methods to describe an automotive system, some with safety-
oriented, others with performance-oriented points of view.

For example, PTIDES [42] is a programming model that provides a framework
to analyse time-synchronized distributed real-time embedded systems. In this
model, the actors are event-driven and Worst-Case Execution Times are assigned
to them. The Dataflow model of computation is also an event-based model, in
which actors can be executed when all their inputs are available [94]. Compared
to the PTIDES model, each actor has a fixed production and consumption rate,
and it is possible to derive schedules for the actor’s execution to analyse static
performances of the system, such as maximum throughput [46]. PTIDES and
Dataflow models are used for performance analysis of the applications. Our model
uses directed (a)cyclic graphs as well, but instead of focusing on scheduling and
performance, we perform a functional-safety analysis in which the connections
between the nodes are used to identify the logical connections in the system and
evaluate possible sources of faults for the applications.

Specific commercial tools are used to analyse the network performance, such
as OMNeT++ [114]. This tool is a component-based C++ simulation library
and framework, that allows real-time simulation, network emulation, etc. The
faults can be simulated, but it is not possible to compute the failure probability
of the system. The INET Framework [75] is a standard protocol model library
of OMNeT++, which provides models and support for different communication
protocols, from CAN to more recent Ethernet Time-Sensitive Networking (TSN).

In terms of functional safety analysis, commonly used models that describe
automotive systems are Unified Modeling Language (UML) based models. UML is



3.1. INTRODUCTION AND RELATED WORK 37

a general-purpose modelling language that allows representing a system software
architecture in diagram-based models. SysML [159] is an extension of the base
UML model that adds hardware and system engineering concepts to it, allowing
for performance analysis and requirements engineering [7,20]. From these models
additional safety analysis on the system can be performed, as in [93] where fault
trees are synthesised from UML models for reliability analysis. Open-source
tools such as Papyrus [48] and commercial ones such as IBM Rhapsody [74]
fully support SysML and UML-based models. They provide the functionality
to help accelerate the application of functional safety standards in industry by
allowing tracking and documenting of Safety Goals (SGs) and FSRs, model-based
simulation, and safety analysis. However, the models used in these tools can only
be manually modified, compared to the automated transformations that we use
in our framework with which we generate redundant elements and re-evaluate the
new system for architecture exploration.

Many other commercial tools support functional safety analysis of automotive
systems. For example, Vector PREEvision [1] can be used to implement the
requirements of the ISO26262 standard, using a specific description language to
describe the E/E architecture.

An example standardized automotive software architecture for safe automo-
tive systems is the AUTomotive Open System Architecture (AUTOSAR) [10].
It is a development partnership created by major automotive industry Original
Equipment Manufacturers (OEMs), suppliers, and tool and software vendors to
combine these concepts into a platform fit for safety-critical automotive appli-
cation development. The goal of the partnership is to standardize the software
architectures of automotive Electronic Control Units (ECUs) and improve their
performance, safety, and security. As shown in Figure 3.1, AUTOSAR uses
a layered software architecture in which the application is separated from the
hardware by a middleware layer, defined as Runtime Environment (RTE), that
provides drivers and services. With the hardware abstraction provided by the
Basic Software, the software components are modular and ECU-independent. The
AUTOSAR framework provides an UML profile to describe AUTOSAR-based
applications [11].

In our work, we decide to develop our lightweight system model inspired
by the existing techniques and tools. Our goal is to analyse the reliability of
the system. We want to evaluate systems that contain redundancy to enable
the ISO26262 ASIL decomposition technique, and we want to calculate system-
related parameters to compare different implementations. Moreover, we want
to be able to modify the system by introducing redundancy in selected parts
with automated system transformations, by applying the standard guidelines for
independence (Chapter 4). With a custom model we can focus on these functional
safety aspects, with the flexibility to introduce additional evaluation parameters or
custom rules. Moreover, we can manipulate the model with custom transformation
processes to introduce redundancy and re-evaluate the new system all in a single
non-commercial framework. In comparison, other available options only provide
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Figure 3.1: AUTOSAR layered software architecture.

evaluation of a described input system.
After modelling the system, we need to extract information that can be used

in the design phase to optimize the design of an application, analyse its safety
aspects and possible variations in the mapping of the application to the hardware.
In literature, we find analyses of automotive systems performed from many points
of view. For this work, we focus on the system-level safety-oriented analysis of
an automotive system. System-level analysis of an automotive system includes
many different aspects of the vehicle [97]. We calculate system-level parameters
from the system model that help us compare different architecture choices and
implementations, described in Section 3.4. In particular, we evaluate the failure
probability, the cost, the total communication cable length, the functional load,
and the communication load of a system.

In a functional-safety analysis, the system is tested and the FSRs are verified.
In literature, the use of design patterns is suggested to simplify the functional
safety analysis by using well-known methodologies, e.g. in [156] the authors suggest
patterns such as the monitor-actuator pattern [8] to re-use available knowledge.
In safety-critical systems, even well-known elements must be validated in the new
context, but previous knowledge helps in reducing the effort for the new validation.
Other methods to ensure the fulfilment of the FSRs use formal methods, e.g. [4,
22, 85, 102], or ensure that they are valid by design [156]. In our model, the
applications are associated with FSRs and inherit their ASIL requirements. The
model transformations that we use ensure that we satisfy the FSRs at design time.

Fault trees are a widely used instrument in functional safety analysis [92, 130]
that logically connects the fault events to the different parts of the system. For
example, in [40,61] fault tree analysis is used to ensure that the failure probability
of the system does not exceed the limits imposed by the ASIL requirements. Fault
trees can also be used to derive the FSR, as in [141]. In our quantitative analysis,
we generate the fault trees from the model and perform a static fault tree analysis
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to calculate the failure probability of applications and compare non-redundant with
redundant systems.

Many commercial and open source tools support this analysis [84], e.g. isograph
FaulTree+ [82], HiP-HOPS [117], XFTA [3], or Storm Checker [71]. In our work,
we use SCRAM [122] to calculate the failure probability of the system in a single-
point in time, as described in Section 3.4.2.

In terms of cost calculation of a system, in literature, we find the allocation of
the applications to the resources with safety constraints such as in [73, 161]. In
our work instead, we calculate a bill of material type of cost on the resource layer,
associated to the ASIL values of each resource, similarly to [14]. We analyse the
cost of redundancy based on different cost metrics and model transformations that
are used.

The cumulative length of electrical wires in modern cars is more than 4km [12].
The wiring harness is one of the three heaviest subsystems in many vehicles [123],
weighting more than 70kg in a high-end car, comparable to an additional passen-
ger. This factor impacts the vehicle fuel consumption or the usage of the battery
charge. It is important to make design decisions that will minimize the total
cable length, as in [96] with a combination of routing and cable size optimizations.
However, redundancy goes in the opposite direction: more resources bring more
communication cables that are used to connect the system, and more complex
networks must be used. In our work, we will use the total communication cable
length as one of the metrics to compare different solutions, as well as the total
functional and communication load of an application.

Compared to the related work, in our framework, we can calculate the various
parameters with a single model. We can modify the parameters metrics to better
describe any automotive system, e.g. our cost metric is an input of the analysis
framework that can be tailored to a specific scenario. Moreover, we can modify
the system with automated model transformations, as we describe in Chapter 4,
and re-evaluate it to compare different redundancy levels.

In the next section, we describe our three-layer model, that we use to describe
automotive systems. In Section 3.3 we discuss how we model redundancy and how
it can be implemented. In Section 3.4 we describe our analysis framework that
calculates quantitative parameters for the modelled automotive system, and we
conclude the chapter in Section 3.5. The proposed model has been presented in
our publications [55–58].

3.2 Three-layer model
For this work, we chose to create a new system model that contains all the
information necessary for our quantitative analysis. We introduce redundancy in
the modelled system by following the ISO26262 ASIL decomposition rules. With
the model and the tools that we developed, we modify and track the system
characteristics, both concerning logical connections of the applications and hard-
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ware, and for functional safety analysis. While other models exist that permit
ASIL-oriented functional-safety analysis, our proposal is a lightweight model that
allows us to focus on specific parts of the analysis and modify the system with the
introduction of automated transformations that introduce redundancy following
the ASIL decomposition requirements. In this section, we describe the layered
structure of the model.

To describe the automotive system, in our model we separate it into three
layers: application, hardware resources, and physical space. This allows us to sep-
arate the different requirements and specifications into multiple layers depending
on their characteristics. Each layer contains information that is used in the analysis
for the system reliability and cost parameters, which is described in Chapter 4.
Redundancy is modelled with explicit elements, explained in detail in Section 3.3,
and graph transformations are used to introduce redundancy in selected parts of
the system, as explained in Chapter 4.

As an example system to highlight the capabilities of the proposed model and
tools we use an Adaptive Cruise Control (ACC) System [168]: a cruising speed is
selected by the driver and the speed of the vehicle is adjusted based on the desired
speed and the distance from the preceding vehicles, which are detected via a radar
system. The functional partitioning of this ADAS system is shown in Figure 3.2.
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Figure 3.2: Functional partitioning of an ACC ADAS.

During the building of the Safety Case, as explained in Chapter 2, the results
of the Hazard Assessment and Risk Analysis (HARA) are used to identify the
Safety Goals that cover the possible hazardous events. One of the possible Safety
Goals is the following:

SG1. The vehicle must maintain enough distance from the preceding vehicle to be
able to execute an emergency brake at any cruising speed without a collision.

The Safety Goal SG1 is then translated into multiple FSRs [81], for example:



3.2. THREE-LAYER MODEL 41

FSR1. The system should not transfer excess power to the wheels where it causes
unintended acceleration.

FSR2. The system should not reduce the supplied power to the wheels where it causes
unintended deceleration.

In this scenario, unintended acceleration refers to violating the distance rule
from the preceding vehicle. Unintended deceleration refers instead to not maintain-
ing the desired vehicle speed when the system does not violate the distance rule.
During the Failure Mode and Effect Analysis (FMEA) stage, the risk parameters
(Exposure, Severity, Controllability) [81] are assigned to each of the FSRs, as
shown in Table 3.1.

Table 3.1: Risk parameters assigned during the FMEA.

Exposure Severity Controllability ASIL
FSR1 E4 S3 C3 D
FSR2 E4 S3 C3 D

The two FSRs have the most critical levels for each of the risk parameters,
resulting in the highest ASIL (ASIL D), as shown in Table 2.2. The FSRs are
then refined into the Technical Safety Requirements (TSRs) [81], which inherit
their ASIL requirements.

In the following sections, we describe the three layers of the model and show
each layer for the ACC example.

3.2.1 Application layer
The application layer contains multiple fully connected directed graphs: each fully
connected graph Ga = (Va, Ea) represents one application and contains a set of
application nodes Va and a set of edges Ea connecting them. In our description,
the edges connecting the application nodes are only logical connections. They
represent the data transfers between the nodes and do not contain information
related to the communication between the source and the target nodes: this
information is contained in explicit communication nodes. Cycles can exist in
the application graph. They are often required e.g. by feedback loops in control
applications.

When describing ADAS or AV related applications, the sense-think-act paradigm
is generally used [148]. It is a common concept used originally in robotics, which
separates an application into three main parts:

a) Sense: an application always begins by collecting information about the
surrounding environment or the vehicle status from one or more sensors.

b) Think: the collected data is then processed. Different design approaches can
be used to determine if it happens, for example, in a centralized architecture,
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where a single module analyses the data, or in a distributed fashion, in which
multiple modules analyse the different sensor data.

c) Act: the final part of an application involves the actuators, which modify
the state of the vehicle.

The application layer follows this paradigm. Sensor nodes do not have inputs
(other than virtual splitters, Section 3.3). Actuator nodes do not have outputs
(other than virtual mergers, Section 3.3).

One or more FSRs are linked to each graph Ga: the nodes Va of a graph inherit
the highest ASIL requirement between the related FSRs. In the ACC example,
the FSR1 and FSR2 can be assigned to the same set of nodes. The FSRs are
related in both cases to the detection of the preceding vehicle, the sensing of the
current vehicle speed, the calculation of the desired vehicle speed, and the throttle
and brakes actuation.

The application layer for the ACC example described in Section 3.2 is shown
in Figure 3.3. In the picture the sensing nodes are yellow: the radars that
provide information about the vehicles in front of the car, the in-vehicle sensors
that provide current speed and acceleration information, and the Human-Machine
Interface, in which the user selects the desired speed. The radar sensor is used to
detect the objects in front of the vehicle, while the Cruise Control node performs
data fusion between the objects detected by the radar and the in-vehicle sensors
to obtain the signals required by the brakes and throttle actuators. All the nodes
present in the graph inherit the ASIL D value from FSR1 and FSR2.

Since the goal of the model is to describe systems that include redundant
elements for higher reliability, we now show an example of this: we assume that
the detection of the objects in front of the vehicle in the ACC system is redundant.
Two different radars with different characteristics (e.g. with different ranges) are
used to detect preceding vehicles, and only one of the two input data is used at the
time. Figure 3.4 shows how we model the application graph of such a (simplified)
system.

In the redundant system, the radar sensors data is preprocessed and the pre-
ceding objects are identified (nodes Object detect 1 and 2 ). Note that the nodes
Object detect 1 and Object detect 2 can have diverse implementations and are
not necessarily duplicates. The merger, a redundancy-specific node, selects which
output to forward to the central Cruise Control node. Here, the required speed is
calculated and the correct actuator signals are generated.

We can apply the ASIL decomposition technique described in Chapter 2. The
two paths formed by the radar, its data, the object detection step, and the
detected objects, are redundant. We can apply the ASIL D → ASIL A(D) +
ASIL C(D) decomposition of Figure 2.7 and lower the ASIL requirements on
the two paths. Note: the system-level ASIL requirement (D) does not change
with ASIL decomposition. The management of the redundancy performed by the
safety-oriented splitter and merger nodes must be performed at the original ASIL
requirement, so they maintain the ASIL D requirement [95].
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Each node in the application layer has a list of properties. The properties are
the following:

• Node type: a node can be a sensor, actuator, functional, communication,
splitter, or merger node. This property allows to analyse the mapping of
the node and ensuring that the used resource can fulfil the node’s purpose.
Splitter and merger nodes are described in more detail in Section 3.3.

• ASIL requirement: inherited from the original FSR, each node has an ASIL
requirement. The possible values are QM, A, B, C, and D as seen in Table 2.2.
Our failure rate metrics, that we describe in Section 4.5, are based on the
ASIL requirement of the nodes.

• ASIL of the SG: the ASIL value of the original SG, to track the system-level
requirement when applying ASIL decomposition.

• Functional or communication load: we assign a parameter (a positive integer
number) to the functional or communication nodes that states their resource
usage. In our analysis, the functional load represents the memory usage of
the resource, while the communication load the bandwidth requirement of
the node. In a different analysis, these values can represent other parameters
such as the application execution time, the utilization of a specific resource,
the periodicity of the communication signals, the latency of the communica-
tion, etc. The values that are assigned are tailored to the specific analysis
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Figure 3.3: A simplified ACC application graph. All the nodes have ASIL D
requirements.
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Figure 3.4: A simplified redundant ACC application graph. Part of the ASIL
requirements are decomposed into A and C with the ASIL decomposition technique.

that is performed and can be either relative weights between the different
application nodes, or can be absolute numbers obtained for example from
timing analysis.

• Failure rate: a failure rate λa-x, expressed in failures per hour, is a positive
number assigned to an application node x. In Chapter 2 we have identified
the different failure modes for hardware elements: similarly, the failure of
an application node can happen due to a Single-Point of Failure fault, a
Multi-Point of Failure fault, or a Residual fault as shown in Figure 3.5. The
value of the parameter is calculated as the sum of each of them, according
to Equation 3.1 [81]. While not explicitly present in the model, using an
application-level safety mechanism changes the values of the three failure
rates, modifying the overall λa-x for application node x.

λa-x = λaSPF-x + λaRF-x + λaMPF-x (3.1)

We define for later usage the successor and the predecessor of an application
node:

• A node y is the successor of node x if ∃ea ∈ Ea so that ea = (x, y).

• A node y is the predecessor of node x if ∃ea ∈ Ea s.t. ea = (y, x).
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Figure 3.5: Faults leading to the failure of an application nodes related to the
Safety Mechanisms.

3.2.2 Resource layer
The resource layer is a directed graph Gr = (Vr, Er, Edep). Vr is the set of physical
and Virtual Resources (VRs). Er is the set of edges that represents the logical
directed connections between the resources. Physical wires, communication cables,
wireless connections, and power lines are also part of the Vr set. In the case of
bidirectional communication resources, one edge per direction is present in the
graph. A resource can either be a physical resource or a virtual resource, as we
describe later. Edep is the set of resource-resource dependencies, which we use
to model power dependencies and virtualization dependencies. Each dependency
is captured with an edge edep ∈ Edep : Vr → Vr, and the resource-resource
dependencies are N-to-1, since multiple resources can use the same power supply,
or multiple VRs can be virtualized on the same physical resource. While multiple
application graphs Ga can exist, there is only one resource graph Gr that contains
all the physical resources and VRs used in the system on which the applications
run. The graph Gr may be not fully connected.

Figure 3.6 shows the resource layer for the example of the ACC system in
its redundant version. In this scenario, a single ECU executes both the object
detection and the data fusion parts of the application. A hypervisor is used to
obtain isolation between the redundant parts by providing VRs on the physical
ECU resource. In our model, application nodes can be mapped either to the
VRs or to the original physical resource. However, depending on the type of
virtualization mechanism that is used, it may only be possible to run applications
in the VRs.

Note that in our model, the resource ECU is not connected to the commu-
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Figure 3.6: A simplified redundant ACC resource graph. The resource-resource
dependency between VRs and the original resource is shown with the dashed blue
arrows. The power network resource-resource dependency is shown with the dashed
red arrows.

nication resources directly, but through the VRs VR1, VR2, and VR3. The
communication ports of the physical resource are not modelled explicitly in the
proposed model, but their number can be inferred by the connections of the VRs.
In this way, we identify which VR has access to each communication resource.

VRs and the power system create resource-resource dependencies: each VR
has a link to the physical resource that is running the virtualization mechanism,
while each resource is connected to the power network to function. While the
virtualization resource-resource dependency is a one-step connection, the power
network is a multi-step, acyclic connection between a resource, the power lines, and
the power supply. We model these two types of resource-resource dependencies,
but any other shared resource can be modelled in the same way and is included
in the later fault tree generation and Common-Cause Fault (CCF) analysis.

A hardware resource can be of one or multiple types:

• Functional: a resource that can process functional application nodes, like a
processor or a controller;
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• Communication: a resource that represents the different types of automotive
cabled communication (LIN, CAN, FlexRay, MOST, Ethernet) or wireless
connections. In case of multi-type resources, the communication type means
that the resource has communication capabilities;

• Sensor: a resource that collects data from the physical environment, like a
camera or a wireless receiver;

• Actuator: a resource that interacts with the physical environment by exe-
cuting the desired operations, for example, the braking actuator;

• Splitter: a resource that can provide the necessary functionality for a split
operation, described in detail in Section 3.3;

• Merger: a resource that can provide the necessary functionality for a merge
operation, described in detail in Section 3.3;

• Power Source: a resource that provides the power supply for other resources,
for example, a battery;

• Power Line: a resource that distributes the power supply to other resources.

Other than the resource types, the following properties are assigned to each
resource:

• ASIL specification: the maximum ASIL that the resource can provide. This
parameter is often referred to in the industry as an ASIL-X ready resource.
Our cost and failure rate metrics, that we describe in Section 3.4.4 and
Section 4.5 respectively, are based on the ASIL of the resources.

• Maximum load: the maximum functional or communication load that the
resource can handle. The maximum load is a positive integer number. This
parameter represents the maximum utilization of the resource and limits the
number of nodes that can be implemented on a single resource.

• Cost: a cost parameter is attributed to each resource. The cost is a positive
integer number. We consider this parameter as a bill of material cost.
However, depending on the analysis that is performed, the cost can be
related to other parameters, such as the development or manufacturing
cost. It can be a relative value representing the proportions between the
different resources or the absolute numbers obtained by an initial study. In
Section 3.4.4 we present the cost metric that we used in this work. In the
proposed framework, it is also possible to assign a separate cost value to each
resource without following a specific metric.

• Failure rate: a failure rate λr-y, expressed in failures per hour, is a positive
number assigned to a resource y. The failure rate of a resource is related
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to the failure modes described in Chapter 2. Similarly to the λa−x, λr−y
represents the possibility of system failure due to the occurrence of a Single-
Point Fault, a Multi-Point Fault, or a Residual Fault. This value is used
in Section 3.4.1 to calculate the failure probability of the system. We use
a failure rate metric based on the ASIL specifications of the resources, as
described in Section 4.5. Alternatively, each resource can be assigned a
different failure rate.

• Virtualized: a boolean parameter is assigned to each resource to identify
the utilization of a virtualization mechanism. Each VR is connected with a
resource-resource dependency edge to the physical resource on which they are
virtualized (N-to-1 connection, where N is the number of VRs virtualized on a
resource). A VR does not have a power supply resource-resource dependency,
but the physical resource that virtualizes it has one. In Figure 3.6 the
resources VR1−3 are VRs created in the resource ECU by a hypervisor. Each
virtual resource has all the properties of other resources (ASIL specification,
cost, failure rate, etc.). In particular, when using VRs, the additional failure
possibility of each VR present in the generated fault tree contributes to the
failure probability of the system, while without virtualization only the failure
probability of the physical resource is present.

While virtualization generally increases the cost and the failure probability of
the system, it provides an isolated environment for the application nodes. With
this mechanism, the application nodes that fail in a VR are isolated from nodes
mapped to other VRs on the same physical resource. Virtualization forces a fail-
silent behaviour between VRs.

As we did for the application nodes, we define the successor and predecessor
of a resource:

• A resource b is the successor of resource a if ∃er ∈ Er s.t. er = (a, b).

• A resource b is the predecessor of resource a if ∃er ∈ Er s.t. er = (b, a).

We define purely-communication resources as resources which have only the
communication type.

3.2.3 Physical layer
The physical layer is formed by a graph Gp = Vp, with no set of edges. We assume
that every other location is reachable from any point. A location represents the
physical point in the vehicle in which the hardware resources can be placed. In our
abstraction, the physical volume in which the hardware resources can be placed is
reduced to a single point in two dimensions. Two properties are assigned to the
physical locations:

• 2D coordinates: normalized between −1.00 and 1.00, that identify the phys-
ical location as a relative position in the car.
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Figure 3.7: A simplified physical layer.

• Failure rate: a failure rate λp-z, expressed in failures per hour, is assigned to
a location z. A failure rate is a positive number. This parameter is related to
the environmental factors that are mentioned in the dependent fault analysis
of the ISO26262 standard (e.g. temperature, vibrations, electromagnetic
interferences). We categorize these faults as external faults, which may or
may not be covered by a safety mechanism. λp−z represents the probability
of a failure due to environmental conditions, that would lead to the failure
of all the resources mapped to that location.

Figure 3.7 shows the example locations in which we can map the hardware
resources of our simplified ACC application.

3.2.4 Mapping: inter-layer connections
The mapping functions Mar : Va → Vr and Mrp : Vr → Vp complete the model.

Each non-communication application node is mapped to only one resource.
A communication node can be mapped to multiple communication resources, for
example to cables and switch resources. Virtual splitters and virtual mergers,
described in Section 3.3, are an exception, as they are application nodes that are
not mapped to any resource: they represent elements external to the electronic
system (e.g. redundant camera collecting data of the same part of the environ-
ment). Multiple application nodes can be mapped to the same resource, and, as
discussed in Section 2.6, this can lead to interferences and high failure probability
when the application nodes are not fail-silent.

Figure 3.8 shows the mapping of the application nodes to the resources in the
ACC example.

Non-purely-communication resources are mapped to only one location, while
purely communication resources, such as communication cables, can be mapped
to multiple locations.

In our model, simultaneous mapping of different application nodes to the VRs
and to the physical resource that runs the virtualization mechanism is allowed,
as shown in Figure 3.9a. In practice, this possibility is limited by the type of
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Figure 3.8: The application layer mapping to the resource layer in the ACC
example.

virtualization mechanism that is used, which can either allow or not the use of
non-virtualized parts of the resource.

When multiple nodes are mapped to the same VR, as shown in Figure 3.9b,
they share it in the same way as they would share a physical resource: in the case
they do not have a fail-silent behaviour, they will interfere with each other.

3.2.5 Analysable input graphs
To perform the functional safety analysis of the later sections and the model
transformations of Chapter 4, the input model must follow these rules:

Each application node is reached by at least one sensor and reaches at least
one actuator.

1. Applications must follow the sense-think-act paradigm, meaning that sensors
and actuators do not have inputs or outputs respectively (other than virtual
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Figure 3.9: Application nodes mapped to a VR and the corresponding physical
resource (a) and multiple application nodes mapped to a VR (b).

splitters or virtual mergers). Each application requires at least one sensor
and one actuator. Accordingly, each resource graph has at least one sensor
and one actuator resources.

2. Each functional, communication, splitter, and merger application node is
reached by at least one sensor node and reaches at least one actuator node.

3. Predecessors and successors of functional, splitter, and merger nodes are
communication nodes.

4. Predecessors and successors of functional, splitter, and merger resources are
purely communication resources.

5. All the properties of the application, resource, and physical layers are defined
between their boundaries.

6. The ASIL requirements of application nodes do not exceed the values of the
ASIL specification of the resource the nodes are mapped to.

7. The sum of the functional and communication loads of the nodes mapped
on a resource does not exceed its maximum utilization.

8. Each communication node is mapped to one or more consecutive resources.
Consecutive resources are series of successive resources.

9. Each non-communication application node is mapped to one resource.

10. Virtual splitter and virtual merger application nodes are not mapped to any
resource.

11. Predecessors (successors) of a node are mapped to a predecessor (successor)
of the resource the node is mapped to, or to the same resource.
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12. Each pure communication resource is mapped to one or more physical loca-
tions, while other resources are mapped to one location.

13. Each purely communication resource is mapped to one or more physical
locations.

14. Each non-purely communication resource is mapped to one physical location.

15. VRs are mapped to the same physical location as the physical resource that
runs the virtualization mechanism.

16. VRs have a resource-resource dependency with the physical resource, and
each physical resource has a resource-resource dependency with at least one
power line that leads to a power supply.

Before performing the analysis, our tools test these rules on the input graphs.
In Appendix B we show how we implemented the input files to be read by our
framework. The tools are implemented in python and use the graph-tool [119]
library.

3.3 The splitter and the merger concepts
A variety of safety mechanisms are used to improve the reliability of safety-critical
systems. However, we focus on redundancy to obtain fail-operational automotive
systems. To describe redundancy in the model, we introduce the splitter and
merger concepts, which are the explicit elements that identify the redundant parts
of the system.

While it is possible to use temporal redundancy to improve reliability, e.g. by
saving a copy of the initial data and executing a processing function twice on
the same resource, we focus on spatial redundancy, in which separate functions
are executed in parallel on independent resources. In our model, we consider
temporal redundancy as a generic safety mechanism, that will influence the values
of the failure rate λa−x since it is an application-related technique rather than
an architecture solution. In all spatial redundancy patterns, we can identify two
specific steps:

1. The initial data is sent along multiple redundant channels;

2. The outputs of the redundant channels are used to compute a single output
value (e.g. by selecting only one of them, or by combining their values).

We define two application nodes that provide this functionality as splitter and
merger nodes:

• A splitter node replicates its input data to its output ports.
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Figure 3.10: A splitter node (a) and a merger node (b) in an application graph.

• A merger node ensures that only correct data out of its redundant inputs is
forwarded once.

We also define virtual splitters and mergers application nodes. In case multiple
sensors collect the same information and transmit the data on parallel redundant
paths and then only one of the outputs is used in later stages, we identify the split
operation in the selection of the different input types. We model the application
graph with a virtual splitter with the correct ASIL requirement, which allows us to
identify the pattern splitter - redundant paths - merger, even if there is no explicit
software or hardware component performing the split operation. This happens
for example in the ACC system of Figure 3.4, in which the inputs of the two
redundant paths are obtained by two different radar systems. Similarly, we can
insert a virtual merger in case multiple actuators are providing the same function,
e.g. an independent braking system [26].

Being able to identify the redundancy pattern in a graph is important to
separate redundant parallel paths from paths that are just working in parallel
without redundancy. For example, in Figure 3.4 the HMI and the in-vehicle sensors
are in parallel to the object detection part of the application but are not redundant.
Without the explicit splitter and merger nodes, it is not possible to understand
only from the graph if the application has functional parallelism or redundancy.

The split and merge operations can be implemented on many different levels,
e.g. in the OSI model they can be implemented from the application layer to
the physical layer. They can depend on application-specific information or can be
independent of the application. They can use the input data or additional informa-
tion to perform decisions. In the following sections, we provide some examples of
splitter and merger implementations in common architecture redundancy patterns,
each of which can be modelled in our framework.
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3.3.1 Splitter implementations
A splitter is an element that replicates its input data to all its output ports, which
are connected to the redundant channels. It can be implemented in multiple ways,
e.g.:

1. Broadcast/Multicast message: the redundant channels are connected to the
same network component that has broadcasting or multicasting capability,
e.g. broadcast message in a CAN bus in Figure 3.11.

2. Individual connections: the input node is mapped on a resource that is
connected to the redundant channels via separate output ports and separate
network components. The message is sent on each of the output ports in se-
quence or parallel, depending on the input generation node implementation.
An example is shown in Figure 3.12.

3. Subsequent transmissions in a network: the input node sends the same data
to the redundant channels in separate transmissions, using the same network,
e.g. a switched Ethernet network as in Figure 3.13.

For example, in the M-out-of-N (MooN) pattern shown in Figure 3.14, which is
an example of homogeneous redundancy, the splitter functionality is identified in
the part of Figure 3.14a highlighted by the dashed ellipse. The splitter is used to
send the same data to the three systems. In this example, the merger corresponds
to a voter.
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Figure 3.11: The splitter sends the messages to the redundant channels via a
broadcast message. Note that the CAN bus is a possible source of a CCF, thus its
ASIL D specification.
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Figure 3.12: The splitter sends the messages to the redundant channels by using
separate communication resources.
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Figure 3.14: Identification of the splitter functionality in the MooN architecture
pattern (a) and the application layer in the modelled version of a MooN pattern
(b).

Figure 3.14b shows the application layer of a modelled MooN architecture
pattern.

3.3.2 Merger implementations
While the splitter functionality is simple, even if it can be implemented in a variety
of ways, the merger functionality is not straightforward. The decision that the
merger must take about which output data to generate is based on multiple aspects,
which can depend for example on the application, input types, synchronization, or
external information. Its implementation can be either in software or hardware.
We identify five types of mergers based on the data that they use to make the
decision:

1. Data oriented: the merger directly compares the input values.

2. In-band oriented: the merger uses additional information contained in the
transmitted packets to generate its outputs.
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Figure 3.15: Merger types and data that is transmitted by each redundant
channel. (a) Functional Data (FD), (b) In-band Data (ID), (c) Side-band Data
(SD), (d) Out-band Data (OD), and (e) Data Evaluation (EV).

3. Side-band oriented: the merger uses additional information sent separately
from the transmitted data to decide how to generate its output.

4. Out-band oriented: additional external information is sent to the merger to
generate its output.

5. Data evaluation: the merger analyses the transmitted data and decides if it
is valid.

Figure 3.15 summarizes the possible merger implementation based on the data
they use.

The voter of the MooN architecture pattern falls into the first category, as it
compares the values of the input data to vote which should be forwarded as correct.
In a more general implementation, the (redundant) data may arrive at different
times, and even out of order, or not arrive at all. The merger functionality must
then include storing, resynchronization mechanisms, reordering, etc. before it can
compare the data.

In a different scenario, a merger can use in-band or side-band information to
make a decision. With the term in-band we refer to data that is contained in
the transmitted packets, e.g. Error Correction Codes (ECCs). With side-band we
refer to additional information that can be related to the received data, e.g. the
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Figure 3.16: Example of Out-band oriented checks: a health monitor node sends
information to the merger to decide which output to forward.

number of objects that should correspond to the number of objects present in the
actual data.

Out-band data is external information that is usually sent by a different node
to the merger. For example, in Figure 3.16 the Health Monitor node collects
status information from the redundant paths and sends additional information to
the merger. In this case, the paths health status node is only used as additional
information to make the correct decision, and not as an input to be forwarded.
Note that the Health Monitor node is in common between the two redundant
paths, and could violate the independence requirements for the safety analysis.
As a single point of failure, it inherits the original FSR ASIL value in the same
way that splitters and mergers do.

Data evaluation type instead evaluates the output data of each channel by using
additional inputs. In contrast to data-oriented checks, in this case, the redundant
channels are not compared with each other, but evaluated according to a specific
set of rules, e.g. the Intel Responsibility Sensitive Safety ruleset [59].

3.3.3 Splitter and merger in the safety-executive architec-
ture pattern

In Chapter 2 we have discussed different safety-oriented architecture patterns, in
particular the protected single channel, the safety executive, and the homoge-
neous/heterogeneous redundancy patterns. The splitter and merger functionality
are necessary only in the presence of redundancy, which means that they are absent
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in the protected single-channel pattern. In the previous sections, we described
the ACC system as an example of heterogeneous redundancy, in which a virtual
splitter is used. In this section, we identify the splitter and merger in the other
safety-oriented architecture pattern, the safety executive.

In the previous section we have already encountered a safety executive pattern
when describing the out-band oriented merger, in Figure 3.16. The health monitor
sends to the merger the information it requires to select the correct data.

Figure 3.17a shows a general safety executive architecture pattern and the
highlighted parts correspond to the splitter and merger functionalities. Two paths,
the nominal and the safety channels perform redundant data processing to obtain
an output signal for the actuators. A safety coordinator monitors the channels and
data integrity to establish which outputs should be used in the actuators. The
splitter node is part of the input source block. It can either be a virtual splitter,
as in the previous example of the ACC system, or a real splitter in which the same
input source sends the data to the different channels in one of the three previously
mentioned ways.

The merge operation is performed by the safety coordinator and the actuator
block: based on the health status of the nodes in the nominal and the safety
channels, the safety coordinator determines which output is forwarded to the
actuator node.

The implementation of the safety executive architecture pattern can vary. For
example, we assume that the health status that is collected by the safety coordi-
nator in each processing step of the two channels. The merger functionality is a
multiplexer one, controlled by the Arbitration message that the Safety Executive
node sends. In Figure 3.17b we show the modelled application layer for this
scenario.

The splitter and merger operations can be found also in other types of re-
dundancy, for example in communication protocols. In the IEEE 802.1CB Frame
Replication and Elimination for Reliability (FRER) in the TSN stack [76], we
identify the splitter operation when the Ethernet frame is sent on multiple com-
munication paths. The merger operation is performed at the receiver, where the
first of the two frames that arrives is selected and the other will be discarded on
arrival.

3.3.4 Splitter and merger and virtual resources
In Section 2.6 we discussed how virtualization helps when sharing a resource to
isolate nodes that are not fail-silent. However, it can also be used for the isolation
of redundant parts of an application. If only one non-virtualized resource with a
higher ASIL level is used, as shown in Figure 3.18a, when the nodes are not fail-
silent they will interfere with each other, and the resulting failure probability of
the system may be higher than the required one. If we instead use VRs, as shown
in Figure 3.18b, the two nodes do not interfere with each other despite being both
executed by the same resource ECU, and the resulting ASIL level of the system is
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Figure 3.17: In the safety executive pattern the splitter operation is performed
in the Input Source block and the merger is part of the Safety Coordinator and
actuator blocks, receiving arbitration signals from the safety executive block (a),
the model for a specific safety executive implementation is shown in (b).

the expected one. The resource ECU, being a single point of failure, inherits the
ASIL of the original FSR.

When virtualization is used to map redundant parts of an application to VRs,
we can identify three scenarios related to the position of the splitters and mergers:

1. Splitters and mergers are mapped to separate VRs but on the same hardware
resource.

2. Splitters and mergers are part of the virtualization kernel.

3. Splitters and mergers are mapped to separate hardware resources.
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Figure 3.18: Two redundant nodes mapped on non-redundant resources (a) or
to two VRs (b).

In the first scenario, direct communication must be allowed between different
VRs. While theoretically possible, this could potentially break the isolation mech-
anism between the VRs. Moreover, the VRs on which the splitter and merger
operations are performed must have an ASIL specification that matches the non-
decomposed ASIL requirement, since these operations are performed at the pre-
decomposition FSR ASIL. However, if the virtualization mechanism allows this,
no additional resources are necessary, separate and isolated VRs are used for the
safety-critical splitters and mergers nodes, and the overhead for the additional
communication is low.

In the second scenario, the virtualization mechanism itself must provide the
tools to perform the splitter and merger operations. These operations are often
application-dependent, meaning that the user would require direct access to the
virtualization kernel. A modification of this would invalidate any previous ASIL
certificate that the virtualization mechanism had. Again, if the virtualization
mechanism has this built-in functionality, the splitters and mergers have a mini-
mum overhead and no additional resources or VRs are necessary. One can envision
that several standard splitters and mergers could be offered at the highest ASIL
by the virtualization mechanism, e.g. FRER [76] or MooN [36].

In the last scenario, no modification of the virtualization mechanism is required.
Moreover, no inter-communication between VRs is necessary. Because of these
reasons, we are using this splitter and merger implementation in the following
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analysis, using the VRs only for mapping the redundant branches of the application
layer. While this is the simplest solution, it is also the one with the most overhead,
because it uses additional resources to run the splitter and merger nodes. If the
first two options are available at a reasonable cost in the virtualization mechanism,
they should always be preferred.

3.4 Quantitative analysis of the model
The analysis that we perform in our framework consists of the calculation of five
metrics: failure probability of an application, cost of the system, total commu-
nication cable length, total functional load, and total communication load. Each
metric is calculated with an analysis of the three-layers model and by using either
input values or metrics related to the ASIL level of the elements.

3.4.1 Fault tree generation and failure probability calcula-
tion

The first step of our evaluation is to assess the failure probability. We use a fault
tree, which has to be generated for each application graph. A fault tree is a diagram
that represents the modelled system, in which a top-level event corresponds to the
failure of the whole system. In static fault trees, AND and OR gates connect the
basic events and the events to the top-level event. Basic events correspond to
the failure of an element of the system, while events (or intermediate events) are
intermediate points in the fault tree. Failure rates are associated with the basic
events, allowing for the calculation of the failure probability of the top-level event.
In particular, we assume an exponential failure probability P (t) associated to the
base events, that follows Equation 3.2. For a given mission time t, P (t) represents
the probability of the base event fails before t. The failure rate λ correspond to
the associated failure rates described in Section 3.2. For simplicity, in the rest of
the thesis we will consider t = 1h in all the failure probability calculations.

P (t) = 1− eλt (3.2)

Many techniques have been used for the evaluation of a fault tree [130]. We
chose to use the open source tool SCRAM [122] a we describe later in Section 3.4.2.

Before we can evaluate the fault tree, we must generate it from the three-layer
model. The very first step is to apply a graph transformation to enforce one-
to-one mapping of the application and the resources. This makes sure that each
communication node is mapped to one resource, and each resource is mapped to
one location. We will describe the details of this transformation in Section 4.2.3
in the next chapter.

Our fault tree generation method is a recursive procedure based on [103] and
extended by us in [55]. We assume that the violation of an FSR related to an
application graph corresponds to the failure of at least one of the actuators. To
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Figure 3.19: Sub-tree structure for the node x with the fail-silent assumption.
The events are marked with the names they have in Algorithm 3.1 and the basic
events are annotated with the corresponding failure rate.

compute the failure of an actuator in the fault tree, all nodes providing it with data
are inserted in the tree. The application graph is traversed recursively starting
from each actuator node until the sensors are reached. With the assumption of
the sense-think-act paradigm and fully connected applications, all the nodes in
the application graph are visited. Whenever a node is visited for the first time, a
sub-tree structure is created. Cycles are often present in automotive applications
and can exist in our model, e.g. feedback loops in control applications. When a
node is visited for a second time, its sub-tree, already present in the fault tree, is
connected to the parent event, and the recursion is interrupted.

In Section 2.6, we referred to the assumption of fail-silent elements. The
assumption has an impact on how the fault tree is generated. We focus on the
behaviour of the application nodes, and we assume that they are either fail-silent
or not. The generated fault tree patterns are different in the two scenarios.

Figure 3.19 shows the generated sub-tree for node N when we assume that the
nodes are fail-silent. Because of this assumption, the failure of the application,
marked as ea, depends only on the failure rate of the application node N. In the
figure, rectangles correspond to fault tree events, while circles represent fault tree
basic events.

In the case nodes are not fail-silent, the basic event ea turns into an event,
connected via an OR gate to the failure of all the application nodes that share
the same resource, as shown in Figure 3.20. If nodes with the same ASIL require-
ment share a resource, their failure rates will be similar. If a relevant number
of same-ASIL nodes is sharing the resource it could invalidate the system-level
requirements, as we will describe later in this section. When mixed-critical nodes
(i.e. with different ASIL requirements) share a resource, the failure rates of the
nodes with the lower ASIL requirements will differ from the higher ASILs by orders
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Figure 3.20: Sub-tree structure for the application node x without the fail-silent
assumption. The event ea−x depends on the failure rates of all nodes that shares
the same resource as x.

of magnitude. The failure probabilities of the higher ASIL applications are in this
case negatively impacted by that. Note that this can happen even with a single
application after the ASIL decomposition process has been applied.

In the experiments of Chapter 4 we assume that the nodes are fail-silent. In
Chapter 5 we will first analyse different architecture topologies with the fail-silent
assumption and then see what differences not using it makes. Virtualization or
physical separation techniques are used to avoid resource-sharing problems.

In this work we assume that the other elements of the system are fail-silent:
for example, a failing VR does not affect the physical resource that runs the
virtualization mechanism, or a failing resource does not affect its power supply.
The fail-silent discussion can be extended to these other elements as well. However,
these scenarios are less likely to arise compared to application-level failures, and
we leave this topic open for future investigation.

The failure rates described in Section 3.2 are assigned to each basic event:

• λa−x is assigned to the failure of an application node x (basic event ea−x);

• λr−y is assigned to the failure of a resource y (basic event er−y);

• λp−z is assigned to the failure of a location z (basic event ep−z);

The power line and power source are resource-resource dependencies. No
application nodes are mapped on these types of resources. They appear in the
fault tree in relation to the resources to which they supply power. Each power line
or power supply has an associated λr, similar to the other resources. In Figure 3.19
the power line connection is dashed because only physical resources are connected
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Figure 3.21: Sub-tree structure for the power supply resource-resource depen-
dency. Each power line resource has a failure corresponding to the resource failure
and one corresponding to the location failure. The dependency chain continues
until a power source resource, which is a resource without dependencies on another
resource, is found.

to a power supply. One or more power lines can connect the power supply to
a physical resource. Figure 3.21 shows the expansion of the event in the power
supply resource-resource dependency. Similarly, a VR has a resource-resource
dependency with the physical resource that runs the virtualization mechanism,
and the sub-tree contains the failure of the resource and the failure of the location
as shown in Figure 3.22.
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Figure 3.22: Sub-tree structure for the virtualization resource-resource depen-
dency. The physical resource itself has a power supply dependency.

From each input node, a new sub-tree is developed in the same way, until the
sensors are reached. The sensor nodes do not have additional predecessor nodes
other than virtual splitters. Figure 3.23 shows an example of the results of the
fault tree generation on a simple sensor-communication-actuator graph.
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Algorithm 3.1 describes the fault tree generation procedure. The inputs of
the fault tree generation procedure are an application graph Ga, the mappings
between the three layers Mar and Mrp, and the set of resource dependencies edges
Edep. The output of the algorithm is the fault tree representing the application
described by Ga. A new mapping function is constructed while traversing the tree
application graph: Mae maps the nodes in Ga to the corresponding event in the
fault tree. The set of starter nodes Nstart is populated on lines 5 to 7 by selecting
either the actuators or the corresponding virtual mergers present in the application
graph. On line 14, from each starting node, the sub-tree patterns are created by
travelling the application graph with the DevelopSubTree function. The functions
Successor(n,Ga) and Predecessor(n,Ga) return the set of successor or predecessor
nodes of n respectively. The events connected to the actuators (or virtual mergers)
are then connected with an OR gate to the top-level event of the fault tree (line
17) with the CreateGateOR() function. CreateGateOR(e, E) creates an OR gate
with its output connected to the event e and its inputs connected to the events
in the set E. The function CreateGateAND(e, E) behaves in a similar way, but
creates an AND gate instead.

Algorithm 3.1 Fault Tree Generation

Inputs: Application graph Ga, Applications mapping Mar, Resources
mapping Mrp, Resource dependencies Edep

Output: Fault Tree Graph
1: procedure GenerateFT(Ga,Mar,Mrp, Edep)
2: Eft = ∅
3: Mae : Ga → Eft
4: Nstart = ∅
5: for ni ∈ Ga s.t. NodeType(ni) == actuator do
6: if Successor(ni, Ga) == ∅ then
7: Nstart = Nstart ∪ ni
8: else
9: for nsucc in Successor(ni, Ga) s.t. NodeType(nsucc ==)

10: virtual merger do
11: Nstart = Nstart∪ Successor(ni, Ga)
12: Eact = ∅
13: for n ∈ Nstart do
14: eact = DevelopSubTree(n,Ga,Mar,Mrp, Edep,Mae, Eft)
15: Eact = Eact ∪ eact
16: eT = CreateTopLevelEvent()
17: CreateGateOR(eT , Eact)
18: return eT

Algorithm 3.2 shows the procedure that travels through the application graph
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to create and connect the sub-tree patterns. An event is created and the applica-
tion node is mapped to it with the function Mae on line 3. If a node has already
been visited, it is connected to the parent event and the recursion is interrupted,
breaking eventual cycles in the application graph. The resource on which the node
is mapped and the location on which the resource is mapped are found with the
function Map(x,Mxy) on lines 4 and 5. For non-sensor nodes, the inputs failure
event is created (line 7).

The base events are created with the CreateBaseEvent() functions. These
functions create the base event object and add the respective failure rate to each
of them. If the application nodes are fail-silent (line 8), the base event ea is
created, with the failure rate associated to the node n. If the application nodes
are not fail-silent, an event ea is created. The base events associated with the
failure of all the application nodes mapped to the resource r are connected with
an OR gate to the event ea (line 16).

The resource-resource dependency set of events is created and populated re-
spectively on lines 20 and 23. Each resource dependency is developed with the De-
velopResourceSubTree() function described in Algorithm 3.3, and then connected
to the erdep event with an OR gate (line 22).

On line 25 Algorithm 3.2 finds the predecessors of the node n. If they have
already been visited (line 26), their sub-tree pattern is added to the set of input
events (line 27). If not, for each predecessor a new sub-tree pattern is created
recursively (lines 28 to 31). If the predecessor node is a virtual splitter, no
additional sub-tree patterns are created, as we assume that a virtual splitter does
not have base failure events.

When the current application node is a merger, a distinction must be made
in the fault tree depending on the merger implementation. The algorithm shows
the resulting fault tree for a data oriented with two channels, a in-band, or a data
evaluation merger. The only inputs come from the predecessor nodes, and belong
to the redundant channels. In this case, the input failure event happens only if all
of the merger’s predecessor nodes fail, hence the use of an AND gate in place of
the OR gate after the input failure event ein (line 33).

Finally, on line 36, the OR gate that connects the top-level event of the sub-tree
pattern is created and connected to the events ea, er, ep, erdep, and ein.

Algorithm 3.2 Fault Tree Generation, sub-tree pattern

1: procedure DevelopSubTree(n,Ga,Mar,Mrp, Edep,Mae, Eft)
2: Fsub = CreateNodeEvent(n,Eft)
3: Mae(n) = Fsub
4: r = Map(n, Mar)
5: p = Map(r, Mrp)
6: if NodeType(n) ! = sensor then
7: ein = CreateInputFaultEvent(n)
8: if Fail-silent application nodes then
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9: ea = CreateAppBaseEvent(n)
10: else
11: ea = CreateAppEvent(n)
12: Ea = ∅
13: for w ∈ AppNodesMappedToResource(r, Mar) do
14: ea−w = CreateAppBaseEvent(w)
15: Ea = Ea ∪ ea−w

16: CreateGateOR(ea, Ea)
17: er = CreateResourceBaseEvent(r)
18: ep = CreateLocationBaseEvent(p)
19: erdep = CreateResDepEvent(r)
20: Ek = ∅
21: for rk ∈ ResDep(r, Edep) do
22: ek = DevelopResourceSubTree(rk,Mrp, Edep)
23: Ek = Ek ∪ ek
24: CreateGateOR(erdep, Ek)
25: for nj ∈ Predecessor(n,Ga) do
26: if Map(nj ,Mae) then
27: Epred = Epred ∪ Map(nj ,Mae)
28: else
29: if NodeType(nj)! = virtual splitter then
30: epredj

= DevelopSubTree(nj , Ga,Mar,Mrp, Edep,Mae, Eft)
31: Epred = Epred ∪ epredj

32: if NodeType(n) == merger || NodeType(n) == virtual merger then
33: CreateGateAND(ein, Epred)
34: else
35: CreateGateOR(ein, Epred)
36: CreateGateOR(Fsub, {ea, er, ep, erdep, ein})
37: return Fsub

Algorithm 3.3 describes the last procedure that generates the resource-resource
dependency structure in the fault tree. The procedure is similar to the DevelopSub-
Tree one, but no application node is present. The resource dependency contains
the failure of the resource and the location on which it is mapped on. The recursive
function will continue until no resource-resource dependencies are present.

Algorithm 3.3 Fault Tree Generation, resource-resource dependency

1: procedure DevelopResourceSubTree(r,Mrp, Edep)
2: p = Map(r,Mrp)
3: erdep = CreateResDepEvent(r)
4: Ek = ∅
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5: for rk ∈ ResDep(r, Edep) do
6: ek = DevelopResourceSubTree(rk,Mrp, Edep)
7: Ek = Ek ∪ ek
8: CreateGateOR(erdep, Ek)
9: er = CreateResourceBaseEvent(r)

10: ep = CreateLocationBaseEvent(p)
11: FresSub = CreateResourceEvent(r)
12: CreateGateOR(FresSub, {er, ep, erdep})
13: return FresSub

In case of data oriented mergers with more than two redundant channels, side-
band, and out-band mergers, additional predecessor nodes are sending information
to the merger to take its decision. In this case, if the additional signals are
not redundant, they can cause a direct failure of the merger. For example, in
Figure 3.24 the fault tree relative to a 2oo3 merger is shown: only when any of the
two predecessor nodes fail does a failure of the merger occur. Figure 3.25 shows
the fault tree structure for an out-band merger: in this case, the input failure of
the merger is caused either by the failure of both the redundant channels or by the
failure of the out-band data. In the fault tree generation algorithm and in the rest
of the experiments in this work, we use only mergers belonging to the first group
(data oriented with two channels, in-band, or data evaluation mergers). To support
the other merger types, an addition to the fault tree generation is required, in which
the type of the merger is identified and the fault tree is generated accordingly.

Once the fault tree is obtained, we can calculate the failure probability of
the application. Note that the failure rate is given as failures/hour, and in our
calculations we use t = 1h.
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Figure 3.24: Fault tree structure for a 2oo3 merger.
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Figure 3.25: Fault tree structure for a out-band oriented merger.

3.4.2 Static fault tree analysis
Once the fault tree is generated, we perform static fault tree analysis with the
open source tool SCRAM [122]. SCRAM is a command line tool for probabilistic
analysis. It capable of performing static fault tree analysis by using state of the
art techniques, and can calculate single-time failure probabilities for our model in
matters of milliseconds. We export our the fault tree model into the Open-PSA
Model Exchange Format [49], a XML-based format used to exchange fault trees
and event trees between various tools. For each application graph Ga a separate
fault tree file is generated, and analysed with the tool by setting the mission time
to 1. The format does not allow for OR and AND gates with a single input. In
our model, it is possible to obtain OR gates with a single input in some parts of
the fault tree. For example, when only one input node is connected to the current
node, only one epred is connected via an OR gate to ein. In this case, we add a
dummy event with P (t) = 0 (λdummy event = 0).

Listing 3.1 shows the definition of the OR gate that defines the event fail-
ure_app_n. In this example, the node n is mapped to the resource r, which
in turn is mapped to the location p. Listing 3.2 shows an example of a base
event definition in the input format of the tool. In this case, the failure rate
λbase_event_name = 1 ∗ e−9.

1 <define -gate name =" failure_app_n ">
2 <or >
3 <basic - event name =" event_0_sw_n "/>
4 <basic - event name =" event_1_res_r "/>
5 <basic - event name =" event_4_loc_p "/>
6 <gate name =" failure_app_n_inputs "/>
7 <gate name =" failure_res_r_dependencies "/>
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8 </or >
9 </define -gate >

Listing 3.1: Gate definition in Open-PSA Model Exchange Format

1 <define -basic - event name =" base_event_name ">
2 <sub >
3 <float value ="1.0"/ >
4 <exp >
5 <mul >
6 <neg >
7 <parameter name =" lambda - base_event_name "/>
8 </neg >
9 <system -mission -time/>

10 </mul >
11 </exp >
12 </sub >
13 </define -basic -event >
14 <define - parameter name =" lambda - base_event_name ">
15 <float value ="1e -09"/ >
16 </define - parameter >

Listing 3.2: Base event definition with exponential failure probability in Open-
PSA Model Exchange Format

3.4.3 Approximation of the fault tree

When analysing the redundant parts of the application with the fault trees analy-
sis, the failure probability associated to the redundant block is dependent on both
the splitter and merger and a combination of the failure rates of the nodes in the
redundant branches. In the fault tree, the merger has an AND gate that combines
its inputs. If the nodes in separate redundant branches are independent, their
combined contribution to the redundant block failure probability is proportional
to a multiplication of the individual failure probability of each branch. When the
failure rates are in the order of 10−5 to 10−10, the contribution of the redundant
branches is up to 105 to 1010 times smaller compared to that of the splitter and
merger.

By approximating the fault tree as shown in Figure 3.26, the difference in
the calculated failure probability can be negligible, as we will demonstrate in Sec-
tion 4.5.1. In the experiments in Chapter 4, we will use failure rates proportional to
the ASIL values: a decomposition that does ASIL D → ASIL A(D) + ASIL C(D)
and they have failure rates of 10x, 10x−3, and 10x−1 respectively (x is −9 in
the experiments). With these values, with N being the number of nodes in each
redundant branch, and with two redundant branches, the approximation holds
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Figure 3.26: Fault tree approximation that considers only single-point of failure
elements.

when:

2N ∗ 10x−3 ∗ 10x−1 � 2 ∗ 10x

N ∗ 102x−4 � 10x

N � 10−x+4

N � 1013

(3.3)

Note that on the first line of Equation 3.3, the 2∗10x refers to the combination
of the failure rates of the splitter and of the merger. In this case both have the
same value 10x.

Moreover, the approximation holds when the nodes in the separate branches
are independent, as required by the standard ISO26262 for redundant elements
of the system. We assume that nodes are independent in the modelled system if
they do not share any basic event in the fault tree. We perform a CCF analysis on
the application by checking that redundant branches do not share basic events
to validate the approximation. If a basic event is found in both branches, a
warning for a potential CCF is issued. The warning informs the user that the ASIL
decomposition is not valid in this case, as well as the results obtained by using
the approximation in the failure probability calculation. The approximation is not
necessary for the static fault tree analysis, as the complexity of the generated fault
trees is not a concern for the used tools. However, this result is meaningful in terms
of design of the system: the elements that are part of the redundant branches will
not influence the system failure probability, as long as the redundant branches are
independent and Equation 3.3 is valid. The splitters and mergers instead, together
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Table 3.2: Measures for the avoidance of systematic failures recommended by the
ISO26262 standard. "++" means that the method is highly recommended for this
ASIL, "+" that it is recommended, "o" that the method has no recommendation for
or against its usage for this ASIL.

ASIL
Methods A B C D

Deductive analysis (e.g. FTA, reliability block diagrams) o + ++ ++
Inductive analysis (e.g. FMEA, ETA, Markov modeling) ++ ++ ++ ++

with the other single-point of failure elements of the system, contribute directly
to the system failure probability, and should be optimized for safety.

3.4.4 Cost calculation
We assign a cost parameter to the resources in the resource layer. This parameter
is related to the bill of material cost of the resource. Depending on the type of
the analysis and at the stage in which it is performed, it can be a representative
number or the actual cost of using the resource. In our case, we use an ASIL-
based metric, in which the cost of a specific type of resource is proportional to its
ASIL. We can find other works in literature that associate the cost of a resource
to its ASIL specification, for example [13, 14, 106]. Each ASIL requires different
procedures for validation and certification, for example the avoidance of latent
faults is recommended for ASIL A and B in accordance to sound engineering
practice, while the latent failure metric is an evaluation criterion for ASIL C
and D [81]. Another example of different methods for validation applied to the
system at different ASILs is shown in Table 3.2 [81]. Most of the methods that are
suggested in the standard are highly recommended for ASIL C and D, while low or
no recommendation is given for ASIL A and B. Because of this, we suggest a cost
metric that has identical numbers for the pairs ASIL A and B, and ASIL C and
D, as shown in Table 3.3. Compared to our criteria, in the previously mentioned
works, a different cost was assigned to each ASIL value.

Table 3.3: Resources cost metric (arbitrary unit).

Resource Type QM A B C D
Functional 5 500 500 50000 50000
Communication 4 400 400 40000 40000
Sensor / Actuator 8 800 800 80000 80000
Splitter / Merger 1 100 100 10000 10000

In the case of VRs, we assign an individual cost of 0, and we consider only the
cost of the resource on which they are virtualized. The cost of the virtualization
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mechanism is part of the cost of the physical resource that runs it. This cost value
depends on the ASIL specification of the virtualization mechanism itself and the
ASIL specification of the VRs that it can virtualize, according to Table 3.4.

Table 3.4: Hypervisor cost metric (arbitrary unit).

VRs
QM A B C D

QM 1 - - - -
A 10 100 - - -
B 10 100 100 - -
C 100 100 100 1000 -

H
yp

er
vi
so
r

D 100 100 100 1000 10000

In our tools, we give the cost metric as an input in the form of an editable
Microsoft Excel table. For the total cost calculation, all the resources on which
at least one application node is mapped are considered and their cost is added to
the cost parameter. In case a resource has multiple types, the cost associated with
each type is added up.

3.4.5 Communication cable length calculation

In our framework, the total cable length is calculated by using the properties
of the resource and the physical layers. We assume that from each location in
the physical layer we can reach any other location. This is a simplification of a
real system, in which some points in the car are accessible only through specific
paths, for example, the cables connecting sensors and ECUs cannot be in the
passenger compartment for safety reasons. With an extension of the framework,
routing of the communication cables and power lines is possible for a more accurate
calculation of the total harness.

To calculate the total communication cable length of a system, we identify all
the purely communication resources present in the resource layer. A cable (either
Ethernet, CAN bus, or any other type of wired communication) is represented in
the resource layer as a purely communication resource. Note that resources such
as a gateway are not purely communication resources.

Once the list of purely communication resources is selected the calculation of
this parameter can start. The two resources that are connected by each resource
in the list are identified, and the distance between the locations in which they
are mapped is calculated. In the case of a bus or a power line that connects
more than two resources, only the longest distance is considered, which is an
approximation of the actual routing of the communication resource. Given p1 =
(x1, y1) and p2 = (x2, y2) the locations on which the resources are mapped, the
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Figure 3.27: Functional and communication loads for the application nodes of
the ACC example.

distance is calculated in two ways: Euclidean distance, according to Equation 3.4,
and Manhattan distance, according to Equation 3.5.

‖p1 − p2‖ =
√

(x1 − x2)2 + (y1 − y2)2 (3.4)

‖p1 − p2‖ = |x1 − x2|+ |y1 − y2| (3.5)

Because of the restriction with the placement of the wires in the vehicle, the
Manhattan formula may provide more realistic results. However, we approximate
the physical space by using two coordinates. The result of the total cable length
calculation performed in this way is intended to have a relative comparison between
different implementations.

3.4.6 Functional and communication loads calculation
In Section 3.2.1 and 3.2.2 we introduced the functional load and communication
load for application nodes, and the maximum functional load and maximum
communication load for the resources.

In Figure 3.27 we show the functional and communication loads used on the
example application used in the previous chapter. The number inside the paren-
thesis is either the functional or the communication load depending on the type of
the node. In the case of resources, the maximum functional load and the maximum
communication load are two separate parameters.

For each application Ga the total functional load and total communication load
is calculated, as well as the distribution of the loads on the different resources.
By using the information contained in the three layers, we can create a load
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distribution map, as shown in Figure 3.28, to identify how the different parts
of an application are distributed. In the figure, the circles correspond to the
functional loads, and the lines correspond to the communication load. The size
of a circle corresponds to the number of resources mapped to that location, while
the colour is proportional to the sum of the functional load on all the resources at
that location, scaling from green to red. Similarly, the width of the edges scales
with the number of communication resources that connects two locations, while
its colour scales with the total communication load between the two locations.

Figure 3.28: Example load distribution map in the physical space.

Functional and communication loads are the last two metrics that are evalu-
ated, however, our framework allows the addition of new metrics.

3.5 Conclusions
In this chapter, we have introduced the three-layer model that we use to describe
an automotive application and its relationship with the hardware resources and
the physical space of the car. An overview of the symbols and the properties of the
elements used in the model is shown in Appendix A. We focussed on describing
redundancy with the use of special nodes, the splitter and the merger, that allow
us to identify redundancy patterns in the application and resource graphs. We
discussed possible implementations of these safety-oriented functionalities and
their characteristics related to the ASIL decomposition technique of the ISO 26262
standard.

We then described our analysis framework, which allows us to evaluate a
modelled system.The fault tree generation algorithm has been explained, and the
resulting fault trees have been analysed with static fault tree analysis with the
SCRAM tool. The fault-tree generation algorithms that are used to calculate the
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failure probability of an application are explained. The cost metric is described.
The communication cable length is calculated in the physical space with either
Euclidean or Manhattan distance calculations. The total communication and total
functional load are evaluated from the load values of the input model and the
mapping of the application. The metrics used to evaluate these parameters are
input to the framework and can be tuned to a specific project or system. Similarly,
additional metrics such as weight, volume, etc. can be added to the model.

In the next chapter, we describe the model transformations that we use to
introduce redundancy based on the pattern described by the splitter and merger
nodes. We analyse then two use-cases in both redundant and non-redundant
implementations.



4
Model transformations to introduce

redundancy

4.1 Introduction
In this chapter we present the Automotive Safety Integrity Level (ASIL)-decomposition-
based model transformations that we use to automatically introduce redundancy
in the system. We identify five main transformations in Section 4.2: Substitute,
Connect, Separate, Reduce, and Collapse.

The substitute and the connect transformations generate non-fully-mapped
graphs as they modify a single layer in the model. Additional steps to complete
the transformation process, such as remapping the newly introduced application
nodes, are required to obtain analysable graphs. In turn, the additional steps may
require further modification of the application or resource layers. The separate,
reduce, and collapse transformations modify instead the mapping of either the
application nodes to the resources or the resources to the physical locations. The
output of these transformations are fully mapped graphs and are analysable.

In Section 4.3 we describe the full transformation process to introduce redun-
dancy in a selected application node and generate an analysable graph that can be
evaluated in our framework. In Section 4.4 we describe a different transformation
process in which the user selects a resource instead of an application node.

In Section 4.5 we discuss experiments and examples of our transformation
process and analysis framework. This chapter has been partially published in [55,
56].

79
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4.2 Bottom-up ASIL decomposition
In this section, we discuss how we introduce redundancy in the system model.
Our goal is safety by design, in which we develop the system with redundancy and
ASIL decomposition technique in mind. As introduced in Chapter 2, the ASIL
decomposition technique goal is to decompose an Functional-Safety Requirement
(FSR) into multiple lower-level requirements. An FSR can be associated with
redundant parts of a system with this technique. This is a top-down process,
in which the FSRs are decomposed and assigned to existing parts of the system
implementation, with independence requirements.

In [55] we introduced a bottom-up approach to the ASIL decomposition tech-
nique. We modify the system so that it can accommodate decomposed FSRs: we
transform the application and the resource layers so that the redundant elements
are independent of each other. We add the redundancy management parts to the
system with the use of splitters and mergers, which have non-decomposed ASIL
values according to the system level analysis for the FSR.

In the following subsections, we present the model transformations that we use
to introduce redundancy. First, we describe five main transformations. Second, we
describe the full transformation process, then apply it to an illustrative example
first and to a real use-case second.

4.2.1 Transformation 1: substitution
The main transformation that we apply to a node or a resource in the graph is
substitution. The user selects a communication or a functional node or resource
and this transformation is applied to it. The four different types of substitution
(application node, communication node, functional resource, and pure commu-
nication resource) are similar to each other. We describe the application node
substitution rules and the communication node substitution rules, that are identical
to the functional resource substitution rules and pure communication resource
transformation rules respectively.

With respect to the ASIL decomposition, a substitution can be of two types.
If we assign a value of 0 to QM, 1 to ASIL A, 2 to ASIL B, 3 to ASIL C, and 4 to
ASIL D, we can describe the two types of transformation as follows:

Type 1
{
ASIL_1 = ceil(ASILorig/2)
ASIL_2 = floor(ASILorig/2)

(4.1)

Type 2
{
ASIL_1 = floor(ASILorig/2) + 1
ASIL_2 = ceil(ASILorig/2)− 1

(4.2)

Table 4.1 shows which ASIL decomposition possibilities (part of Figure 2.7)
are covered by each transformation type. Note that we are not interested in the



4.2. BOTTOM-UP ASIL DECOMPOSITION 81

Table 4.1: ASIL decomposition and transformation types.

Orig. req. Decomp. req. 1 Decomp. req. 2 Transformation type
ASIL D ASIL B (D) ASIL B (D) Type 1
ASIL D ASIL C (D) ASIL A (D) Type 2
ASIL C ASIL B (C) ASIL A (C) Type 1 and 2
ASIL B ASIL A (B) ASIL A (B) Type 1

decomposition scenarios in which an ASIL is decomposed into the same level + a
QM requirement since it does not lower the original ASIL value.

Figure 4.1 shows an example of a substitution applied to a node in the appli-
cation layer. Its predecessor and successor nodes must be communication nodes.
The new application graph is obtained by duplicating the node f after selecting
one of the two transformation types. The functional node substitution rules are:

1. For each predecessor of the selected node f, a splitter node is added to
the graph. The ASIL value of the new splitter node corresponds to the
ASIL value of the selected node. A load parameter equal to the load of
the predecessor communication node is assigned to the splitter, to represent
the amount of data that the splitter has to replicate over the redundant
communication channels.

2. Two communication nodes follow each splitter. Their ASIL values follow
the Equations 4.1 or 4.2 depending on the type of the transformation. The
load assigned to the two communication nodes is the same as the load of the
predecessor communication node.

3. Two functional nodes (n1_f and n2_f) are generated to represent the re-
dundant functionality. Their ASIL values follow the Equations 4.1 or 4.2
depending on the type of the transformation. The load assigned to the two
functional nodes is the same as the selected functional node.
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Figure 4.1: Type 1 node substitution applied to a functional node.

4. An successor communication node follows n1_f and n2_f for each of the
original successors of the node f. Their ASIL values follow Equations 4.1
or 4.2 depending on the type of the transformation. The load assigned to
these nodes is the same as the load of the successor communication node.

5. For each successor of the selected node f, a merger is added to the graph. Its
ASIL value is the same as the ASIL of the selected node. The load assigned
to the merger is the same as the load of the successor communication node.
The merger is connected to the related successor communication node.

In case the selected node is a communication node, we use a different pattern
as shown in Figure 4.2. The communication node substitution rules are:

1. For each predecessor of the selected node c, a communication node is added
to the graph. The ASIL value of the new communication node corresponds
to the ASIL value of the selected node. A load parameter equal to the load
parameter of the selected communication node is assigned to the new node.

2. For each predecessor of the selected node c, a splitter node is added to the
graph. The ASIL value of the new splitter node corresponds to the ASIL
value of the selected node. A load parameter equal to that of the predecessor
communication node is assigned to the splitter.

3. Two communication nodes are generated to represent the redundant com-
munication. Their ASIL values follow Equations 4.1 or 4.2 depending on
the type of the transformation. The load assigned to these nodes is the load
assigned to the selected communication node.
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Figure 4.2: The node substitution applied to a communication node with type 2.

4. For each successor of the selected node c, a merger is added to the graph. Its
ASIL value is the same as the ASIL of the selected node. The load assigned
to the merger is the load assigned to the selected communication node. The
communication nodes com_a1_c and com_b1_c are connected to the each
merger.

5. For each merger, a successor communication node is added to the graph.
The ASIL value of the new communication node corresponds to the ASIL
value of the selected node. A load parameter equal to that of the selected
communication node is assigned to the new node.

The communication node substitution is counter-intuitive: the new nodes
comm_1 and comm_2 maintain the original ASIL of the selected node and,
together with the splitters and mergers, they are the single point of failure nodes.
In a functional node transformation instead only the safety-oriented splitters and
mergers are the single-point of failure nodes. At first impression, the new graph
is more complex and less reliable than the original, but the important difference
will be in the successive mapping step. The new redundant graph allows for
more advanced application mapping compared to the original graph. For example
the nodes f_in, comm_1_f_in_to_c, and split_f_in_to_c can be mapped to the
same high-ASIL Electronic Control Unit (ECU) resource which sends two separate
data transmissions with two separate communication resources, on which the nodes
comm_a1_c and comm_b1_c are mapped.

The substitution transformation is applied to the resource layer in the same
way. However, since resources can have multiple types, the functional resource
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type is dominant when applying the substitution. The communication substitution
pattern shown in Figure 4.2 is obtained only in the case of pure communication
resources. Moreover, when a resource is substituted, all the nodes that were
mapped to it are unmapped.

For both application and resource substitutions, the newly inserted element
require mapping to the next layer. After substitution, the obtained graph is
not analysable, and additional mapping steps are necessary, as we describe in
Section 4.3.

4.2.2 Transformation 2: connect consecutive redundant pat-
terns

The second transformation is used to connect consecutive redundant patterns
either in the application or in the resource layer. The prerequisites for the connect
transformation are:

1. Two consecutive redundant patterns are present.

2. The number of redundant branches must be equal in the two patterns.

3. The ASIL requirements of the nodes in the redundant branches must be
compatible between the two patterns.

4. The ASIL of all the splitters and mergers must be equal.

Equation 4.3 describes the branch compatibility rules for redundancy patterns
with two redundant paths. The term branchxy refers to the x-pattern and y-
branch. The ASIL values of the two patterns must correspond to use the connect
transformation:

ASIL(branch11) = ASIL(branch21) &ASIL(branch12) = ASIL(branch22)
OR

ASIL(branch11) = ASIL(branch22) &ASIL(branch12) = ASIL(branch21)
(4.3)
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Figure 4.3: The connect transformation connects consecutive redundant patterns
with functional-communication nodes.

The connect transformation consists in removing the middle nodes between
two redundant patterns, the splitter-communication-merger single-point of failure
part, and connect the compatible redundant branches, as shown in Figure 4.3.
In the figure, we show the connect transformation applied to a functional redun-
dant pattern followed by a communication redundant pattern. It is possible to
apply the transformation also to communication-functional and communication-
communication patterns, obtaining similar output graphs.

With fewer single-point of failure elements, the new graph has a different failure
probability and cost. Each redundant block appears in the approximated fault tree
as two single points of failure events, the failure of the merger and the failure of the
splitter. Each of these events is formed by a combination of basic events, as shown
in Chapter 3 in Section 3.4.1. The pre-transformation fault tree has five single-
point of failure events, corresponding to the failure of the splitter and the merger
for each of the two consecutive redundant patterns and the middle communication
node. The post-transformation fault tree only has two single-point of failure events,
as a single redundant pattern.
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Figure 4.4: The connect transformation in the presence of multiple predecessors
or successors nodes of the two redundant patterns.

The two redundant patterns can have additional predecessors or successors,
each with a separate splitter or merger. In this case, those are not modified by
the connect transformation, as shown in Figure 4.4.

Two-point failures and the connect transformation

From a single point of failure perspective, the transformed system benefits from
the connect transformation since it has fewer events that contribute to the failure
of the system. However, if we consider instead multiple-point faults, there is a
significant difference between the pre-transformation and the post-transformation
systems: in Figure 4.5a, the two faults can occur (at the same time), and the
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Figure 4.5: Two faults happening in a pre-transformed graph that do not lead
to a system failure (a) and the same two faults in the post-transformed graph that
lead to a system failure (b).

system will maintain its functionality because there is sufficient redundancy. After
the transformation, as shown in Figure 4.5b, the occurrence of the same two faults
causes the failure of the system, since both redundant branches fail. However,
the probability of a simultaneous fault in both branches is negligible compared to
single-point faults, as we have discussed in Section 3.4.3.

4.2.3 Transformation 3: separation of communication ele-
ments mapped to multiple resources or locations

The separate transformation is an auxiliary transformation used to separate the
nodes or resources that are mapped to more than one resource or location into
multiple communication elements. In an analysable graph, if a communication
node is mapped to multiple resources, those are consecutive, meaning that they
are either predecessors or successors of each other.

Communication nodes can be mapped over multiple consecutive resources to
express a data transmission that travels over a complex network, and communi-
cation resources can be mapped over multiple locations, e.g. a communication
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Figure 4.6: A communication node mapped to multiple resources (a) and the
transformed application graph with the separate transformation (b).

bus. We generally use this transformation as an initial step before starting the
transformation process described in the next section, to force a 1 to 1 mapping of
the application layer to the resource layer and of the resource layer to the physical
layer. This is beneficial because of two main reasons. First, we can select the
individual part of a communication to apply substitution. Second, when applying
a resource-oriented transformation process (Section 4.4), if the selected resource is
part of the resources on which a communication node is mapped, only the correct
part of the application node is consequentially substituted.

Figure 4.6a shows the pre-transformation graph of a communication node
that is mapped to multiple resources. The communication node reaches the
functional node mapped to ECU2 via an Ethernet switched network composed
of the resources Ethernet 1, Ethernet Switch, and Ethernet 2. In Figure 4.6b we
see the effect of the separate transformation, separating the node into multiple
parts, one for each resource on which it is mapped. Part 1 is connected to the
predecessor of the communication node, and part 3 is connected to the successor.
The new communication nodes have the same properties as the original node.
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4.2.4 Transformation 4: reduce the number of resources in
the resource layer with optimized mapping

The reduce transformation reduces the number of resources necessary in the re-
source layer by collapsing the splitter resource with the predecessor communica-
tion and functional resources. The application nodes that were mapped to the
three separate resources are now mapped to the single new resource. The reduce
transformation can be similarly applied to the merger resource and the successive
communication and functional resources. Figure 4.7b shows the results of the
transformation applied to both sides of a redundancy pattern. Note that the new
resources require multiple communication ports to interact with the redundant
branches. In the pre-transformation system the splitter and the merger resources
had multiple ports to interact with the redundant branches.

While the previous three transformations are necessary for a transformation
process, the reduce transformation is an optimization one. We apply this transfor-
mation in our truck platooning lateral control application use-case of Section 4.5.2.
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Figure 4.7: Part of an application graph and the mapping on the corresponding
resources before the reduce transformation (a) and after the reduce transformation
(b).
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4.2.5 Transformation 5: collapse consecutive communica-
tion nodes

The collapse transformation is used when consecutive communication nodes are
mapped to the same resource. In this case, there is no need for duplicate commu-
nication nodes, and the excess ones are removed.

This scenario can be an effect of the previous transformations. In particular,
when substituting communication nodes, if the predecessor or the successor of the
selected communication node is a communication node itself, the newly introduced
communication nodes from point 2 and point 4 of the communication node substi-
tution rules respectively are unnecessary. With the collapse transformation, they
are removed from the graph, and the splitter or merger are connected directly to
the predecessor or the successor of the node.

Another scenario in which we use the collapse transformation is after a con-
nect transformation. The connect transformation generates a redundancy pattern
which has consecutive communication nodes that correspond to the same data
transport. With the collapse transformation we can remove these nodes to simplify
the graph. Figure 4.8 shows the collapse transformation in this scenario.
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Figure 4.8: The application graph obtained after a connect transformation is
transformed with the collapse transformation to remove the consecutive communi-
cation nodes.

4.3 Application-oriented transformation process
In this section, we describe the full transformation process that uses a series of the
previously described transformations to introduce redundancy in a system, by se-
lecting which part of the application shall become redundant. The process consists
of selecting an application node to be substituted by redundant counterparts. The
new application nodes must be mapped to the resource layer, and modifications
to the resources may be necessary. With modifications of the resource layer,
predecessors and successors of the node require substitution too. It is possible
to modify the resource layer in various ways. We define three strategies to do so.
Depending on the selected strategy, additional modifications to the other layers
may be necessary. Figure 4.9 summarizes the transformation process, which
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Figure 4.9: The transformation process to introduce redundancy from a selected
application node.

generates from an analysable input graph an analysable output graph with redun-
dancy in the selected application node and in the resources that concern it. Note
that the individual application of the substitute or connect transformations does
not generate an analysable output graph, as the nodes or resources require to be
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Figure 4.10: The node f is selected for substitution in this example.

mapped to the layer below and do not match yet with the graph characteristics
described in Section 3.2.5.

4.3.1 Selection of the application node to substitute
The first step of the transformation process is the selection of the application node
to substitute. We can select either a functional or a communication node, and the
transformation described in Section 4.2.1 is applied to it. The resulting redundant
nodes are not yet mapped, and the resource layer might require modification
to accommodate the new nodes and to respect their ASIL and independence
requirements. In the example shown in Figure 4.10 we select the functional node
f for substitution. In this example, other nodes from a different application than
the one node f is part of, are mapped on the same resource ECU.

If predecessors and successors of the selected node are mapped to the same
resource, they are substituted and their redundant branches are connected to the
ones of the selected node. These additional transformations allow the series of
nodes to be remapped on the newly introduced resources without adding extra
connectivity elements.

4.3.2 Modification of the resource layer and mapping of the
new nodes

After the application layer has been modified with the application node substi-
tution, the new application nodes must be mapped to the resource layer. We
describe three alternative strategies. Depending on which strategy is used, the
resource layer will be modified differently:

Strat. 1 (physical separation) For each new application node, a dedicated new
resource is added in the resource layer. The new resources are connected
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to the others so that the new application nodes can be reached by their
predecessors and can reach their successors. A number of resources equal
to the number of the application nodes introduced by the substitution
are added to the system. As we discuss later in this section, this strategy
requires the original resources to have additional communication ports
to be connected to the newly introduced resources.

Strat. 2 (physical separation) The substitute transformation is applied to the
resource the selected application node was mapped to. The new appli-
cation nodes are mapped to the new resources. The other nodes that
were mapped to the original resource require remapping as well since
the original resource is not present anymore in the graph. Later in this
section, we describe the additional details to remap the other application
nodes.

Strat. 3 (virtualization) The resource on which the selected node is mapped is
virtualized: the redundant parts of the application are then mapped to
the Virtual Resources (VRs), while the splitters and mergers are mapped
to external additional resources. The obtained pattern is similar to the
one obtained with a substitute transformation applied to the resource
(Strat. 2), but the main redundant part is formed by VRs. Other nodes
are mapped to a third VR that keeps the original ASIL specification.

If the ASIL requirement of the selected node was lower than the ASIL specifi-
cation of the resource it mapped to and the nodes are fail-silent, no modification of
the resource layer is necessary, independently of the chosen strategy. All the new
nodes are mapped to the original resource. The independence of the redundant
nodes is justified by using a resource with higher ASIL specification than necessary
in the original system, while the application nodes do not interfere with each
other because they are fail-silent. Since the original resource already had an ASIL
specification exceeding the application requirements, introducing redundancy does
not provide any advantage in this case. In any other case, the resource layer is
modified.

Strategy 1: additional resources

Figure 4.11 shows the results of the first strategy applied to the previous example
(Figure 4.10). The node f is substituted, as in Figure 4.1. For each of the new
nodes, a new resource is added to the resource layer. For example, for functional
nodes, four communication resources, two functional resources, a splitter for each
predecessor, and a merger for each successor node are added to the resource layer.
The new splitters and mergers are then connected to the corresponding external
resource. This adds a requirement of a free communication port on both the
predecessor and successor resources, making the first strategy dependent on the
system and resources used (e.g. if the predecessor resource is a point-to-point



96 CHAPTER 4. MODEL TRANSFORMATIONS TO INTRODUCE REDUNDANCY

communication cable, such as automotive Ethernet, it cannot be connected to
multiple resources).

A direct mapping of the new nodes to the resource layer is possible, as the
patterns in the application and the resource layers are identical. The original
resource, ECU, still exists in the resource graph, and other nodes that were
originally mapped to this resource, such as funct node app2 are not affected by
the transformation process.
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Figure 4.11: Strategy 1: Additional resources are added to the resource layer.
For visual clarity, part of the application nodes are drawn below the resources.
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Strategy 2: part 1 - Substitution of the resources

The second strategy uses fewer extra resources, at the expense of a more complex
transformation and mapping process. For clarity, we divide this strategy into three
parts: the first one is the substitution of the resource, the second and the third parts
handle the additional nodes that were mapped to the original resource. Figure 4.12
shows an example of the second strategy applied to the previous example. The
original resource ECU has in this case the same ASIL value as the selected node
and must be substituted.

A direct mapping of the transformed nodes is possible. However, the original
resource (in the example, ECU ) is substituted by the two redundant resources,
causing a problem for the other application nodes that were originally mapped to
it. As indicated by the question mark in the figure, the other nodes such as func
node app2 need to be mapped to a new resource, but which one?

Figure 4.13 shows the decision process that is taken for each node that was
originally mapped to the resource that has been substituted. We separate the
additional nodes into two categories: the nodes that can be remapped without
substitution (Case 1 in the figure, using one of the redundant resources) and the
nodes that require substitution. (Case 2).
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Figure 4.12: Strategy 2: Substitution of the original resource. Other nodes such
as funct node app2 are not yet remapped.
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Figure 4.13: Flow chart to remap the additional nodes that were mapped to the
original resource.
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Strategy 2: part 2 - Remapping of additional nodes that do not require
substitution

For each of the additional nodes that were mapped to the original resources, if
their ASIL requirement is lower or equal than the one of the redundant resources,
they do not require substitution. However, an additional remapping step shall be
taken: the predecessors and successors of these nodes must be connected to them
via the new splitter and merger resources. Two scenarios are possible:

1. The predecessor (or successor) of the node is mapped to a different resource.

2. The predecessor (or successor) of the node is mapped to the original resource.

In the first scenario: the predecessor and successor of the node, as in the
example of Figure 4.14 with input app2 and output app2, must be mapped to
resources that can reach either ECU_r1 or ECU_r2. In this scenario, we map the
communication nodes to multiple resources: the Splitter resource becomes a pass-
through for the communication node (in our model it requires the communication
resource type other than the splitter type) and the communication resources
internal to the redundant pattern are used to reach the redundant ECU. Symmet-
rically, the successor node uses the Merger as a pass-through. The final mapping
configuration for this scenario is shown in Figure 4.14. The communication nodes
mapped to multiple resources are then separated into parts with the separation
transformation as discussed in Section 4.2.3.
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Figure 4.14: Remapping of the node funct_node_app2 and its predecessor and
successor nodes to the new resources when the predecessors and successors are
mapped to external resources (scenario 1).
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Figure 4.15: Remapping of the node funct_node_app2 and its predecessor and
successor nodes to the new resources (scenario 1 on the predecessor and scenario
2 on the successor).

In the second scenario: the predecessors and/or successors of the additional
node were mapped to the same resource. They are mapped together with the
current node (funct node app2 in the example) to the same redundant resource.
Figure 4.15 shows an example of this scenario, in which the nodes inter-comm
app2 and second funct node app2 were mapped to the same original resource. The
nodes input app2 and output app2 follow the same rules as the first case.

Strategy 2: part 3 - Remapping of additional nodes that require sub-
stitution

If the ASIL requirement of the additional nodes is higher than the ASIL specifica-
tion of the new resources, they are substituted. Again, two scenarios are possible
when remapping these nodes:

1. The predecessor and successor of the node are mapped to a different resource.

2. The predecessor and/or successor nodes of the current node are mapped to
the original resource.

The first scenario is simple: the new redundant pattern is mapped directly to
the new resources, as we have seen in the example in Figure 4.12 for the result of
the substitution of the node f.

In the second scenario, the predecessor and/or successor nodes are substituted
and then connected to the redundant pattern of the additional node. Finally, the
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Figure 4.16: Two consecutive nodes are duplicated, connected, collapsed, and
mapped to the new resources.

connected redundancy pattern can be mapped on the new resources. However,
depending on the type of the nodes next to the splitter and the node next to the
merger, additional steps may be required, as we have discussed in Figure 4.14.

When the resource has the functional and the communication types, we can find
both communication or functional nodes next to the splitters and mergers. When
a communication node is at one of the extremities of the redundancy pattern, the
redundant communication nodes that are obtained must not be mapped to the
functional resource, but to the communication resources that are connected to the
splitter or merger, and then separated into parts with the separate transformation.
In Figure 4.16 we see the result of the substitution of a functional node f and the
consequent substitution of its neighbour node, the communication node c. The
two redundant patterns are connected and mapped to the resulting resources.

Strategy 3: virtualization and remapping of application nodes

If virtualization is chosen over physical separation, the resource on which the node
is mapped will, if not doing it already, run a virtualization mechanism such as a
hypervisor. Two VRs are added to the resource layer, with a resource-resource
dependency with the original resource. Their ASIL specifications correspond to
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the ASIL values obtained with the substitute transformation in the application
layer. The splitter and merger nodes are mapped to the new external splitter
and merger resources, as described in Section 3.3.4, and connected to the VRs
by new communication resources. Moreover, we assume that the resource has
enough space for additional VRs, and we introduce another VR with the same
ASIL specification as the original resource. In this way, fewer nodes will require
substitution to be mapped to the new resource layer, similarly to the Additional
resources strategy, where the original resource was kept.

Other nodes are mapped to the VR with the original ASIL specification and
do not require modifications. Note that the original resource requires enough
communication ports to connect to the new communication resources connected
to the splitter and mergers. Figure 4.17 shows the results of the third strategy
applied to the previous example.

Note that we virtualize only functional resources that can run a virtualization
mechanism, while pure communication resources, such as Ethernet cables, must
still be physically separated.
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Figure 4.17: Strategy 3: VRs are added to the original resource, and the nodes
are mapped accordingly.

4.3.3 Mapping of the new resources to the physical layer
When using physical separation strategies, the newly introduced resources must
be mapped to the physical layer. We choose to minimize the distance between
the resources by positioning them in the location in the physical space closest
to the location of the connected resources. However, to maintain isolation and
independence of the redundant resources, we introduce a constraint to map the
resources belonging to each separate redundant branch in a different location,
providing physical separation in the physical layer. For the virtualization strategy,
this applies only to the external communication resources that connect to the
splitters and mergers.

In our framework, the user only selects the node to substitute, the type of
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the transformation, and the strategy to modify the resource layer. The tools will
automatically generate the new application and resource graphs, and map the
new application nodes and the new resources to the respective layer. By following
the mapping steps, the redundant parts of the application have no Common-
Cause Fault (CCF) sources with insufficient ASIL values, so they are considered
independent for ASIL decomposition purposes.

Note that more remapping strategies can be implemented, for example, the
tools can search the resource graph for suitable existing resources to map the
new redundant nodes instead of inserting new ones. We use the three described
strategies in the rest of this work to limit the mapping problem, as it is not
our current focus to optimize it. The transformation process can be part of
an automatic design-space exploration that optimizes the mapping of the new
redundant application nodes, minimizing the cost and failure probability of the
system. However, this is out of our current scope, and we leave a possible design-
space exploration implementation for future work.

4.4 Resource-oriented transformation process
The system developer may want to introduce redundancy not on the application,
but on the resource layer: for example, if a resource with an ASIL D specification
is not available, the developer can choose to substitute it with ASIL A(D) and
ASIL C(D) resources. With a variation of the transformation process, this is
possible. If instead of selecting an application node, the user of our framework
selects a resource, a different transformation process is used:

1. The substitute transformation is applied to the selected resource.

2. The application nodes mapped on the resource may require substitution as
well, following the flow chart of Figure 4.13.

3. The new resources are mapped to physical locations, as described in Sec-
tion 4.3.3.

This process follows the same steps as the previous ones, but consider all
application nodes as other nodes. Moreover, variations of this process can be
used to, for example, introduce VRs instead of physically separated resources. For
the rest of this work, we use the application transformation process, while the
proposed framework can be modified to use different processes depending on the
needs of the developer.

4.5 Experiments
In this section, we assume that the application nodes are fail-silent and that
the fault tree is generated with this assumption, as explained in Section 3.4.1.



4.5. EXPERIMENTS 105

We first provide a base scenario in which the application is analysed and then
transformed and re-evaluated. Then we perform a complete analysis with multiple
transformation processes on a complex application, the lateral control application
of the EcoTwin truck platooning system, to discuss the results obtained in our
automated framework compared to the manual design process performed by the
designers of the original system.

Failure rates used in the experiments

In this section, we select a failure rate metric based on the ASIL value of each
element. Table 4.2 shows the failure rates that are assigned to the basic events of
the fault tree. The failure rates are related to the type of the basic event and the
ASIL value associated with that event.

Table 4.2: Basic events failure rates (failures/hour).

Basic Event Type QM A B C D
Location 10e-11
Splitter/Merger/VR 10e-6 10e-7 10e-8 10e-9 10e-10
Other basic event 10e-5 10e-6 10e-7 10e-8 10e-9

In case of the failure of a location z (λp−z) we assign a value that is not related
to ASIL requirements or specifications, and we assign to it a lower failure rate
compared to the other event types. As mentioned in Chapter 3, this value is
related to vibrations, temperature, and other environmental conditions. In this
work, this type of failure condition is an important element for the CCF analysis
to identify violations of the independence requirements of redundant nodes.

The failure rates λa−x and λr−y are instead associated with the ASIL value of
the node x or resource y from which they are generated. In our experiments, we
separate each ASIL level by an order of magnitude, to align with the ISO26262
standard (Part 5, Annex E) [81]. Moreover, we assume that splitter, merger,
and virtualization are always aimed to improve the reliability and isolation of the
system. Because of their safety-oriented purpose, we assign to these basic events a
failure rate that is one order of magnitude lower compared to non-safety-oriented
elements.

These values are used for the experiments of the following sections, but different
metrics can be used in our model. The failure rates can be assigned individually
to each basic event or a different metric can be used, for example, to differentiate
different types of hardware resources.

4.5.1 Simple application example
The purpose of the first experiment is to describe the analysis and the full trans-
formation process on a simple scenario, observing the changes in the fault tree and
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Figure 4.18: An example application mapped on a resource layer ([D]).

in the analysis parameters. For the experiments in this chapter, we assume that
the nodes are fail-silent, meaning that a failing node will not interfere with others
mapped to the same resource as discussed in Section 2.6.

The example system (application and resources) has a simple ASIL D appli-
cation and is shown in Figure 4.18. The power supply and the physical layer are
not shown for simplicity, but each resource is powered by the same ASIL D power
supply and mapped to a different location. By using the above-mentioned failure
rates, marked in this experiment as Failure Probability (Reliable), the cost metric
of Table 3.3, marked as Cost (Cheap), and by assigning the coordinates to the
locations (not shown in the figure), we obtain the results shown in Table 4.3 in
the column [D].

To see how the effects can vary depending on the failure rate and cost metrics
that are selected, we modify our metrics by changing the values related to the
splitter and merger elements. With the variation, we assign to the splitter and
merger an unreliable failure rate value, and we obtain the parameter Failure
Probability (Unreliable). The unreliable failure rates metric gives the splitter and
merger a failure rate 10 times higher than the original reliable metric, i.e. the same
value as other ASIL D elements. In terms of cost, with the variation we assign
to the splitter and merger resources a cost 10 times higher than in the previous
metric, obtaining the parameter Cost (Expensive) as opposed to the previous value
Cost (Cheap). By combining the results, we can analyse the effect of using a lower
cost but less reliable solution for splitter and merger resources or a more reliable
but more expensive implementation. Note that in non-redundant scenarios, the
different metrics have no effect since no splitters and mergers are present in the
system.
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Table 4.3: Analysis parameters calculated on the initial applications with different
redundancy transformations applied.

[D] [B(D)+B(D)] [A(D)+C(D)]
type 1 type 2

F. Probability (Rel.) 1.005e-08 8.440e-09 8.440e-09
Cost (Expensive) 290000 442600 453130
F. Probability (Unrel.) 1.005e-08 1.204e-08 1.204e-08
Cost (Cheap) 290000 262600 291190
Functional load 100 200 200
Communication load 70 210 210
Cable length 1.695 2.704 2.704

We then start the transformation process by selecting the node n for sub-
stitution. In the substitute transformation we use either the type 1 or type 2
transformations, obtaining the columns [B(D) + B(D)] and [A(D) + C(D)] in
Table 4.3. The effects on the resources are obtained using the Substitution of
resources strategy, described in Section 4.3.2, which substitutes the resources if
necessary. After completing the transformation process, we observe that with non-
reliable splitters and mergers (F. Probability Unreliable), the failure probability
of the application increases with redundancy. This effect might be acceptable, e.g.
the transformation reduces the cost of the system while failure probability is still
below the maximum failure probability for the ASIL requirement of the system.

We also observe that the cost of the splitter and merger has a great significance
in the final cost of the system by comparing the two cost parameters in the
redundant scenarios. When using the expensive metric that increases their cost
by 10 times, the cost of the system is almost doubled. Their impact on the
cost is reduced when applying the connect transformation to reduce the number
of consecutive redundant blocks. However, the connect transformation is not
applicable in this small example since only one redundant block exists.

We then evaluate the example after adding two other applications. First, we
add an ASIL B application, mapped on the same resources as the original one
([D]+[B]). The analysis of this scenario is shown in Table 4.4. Note that the shown
failure probability in the tables is the one of the initial application, which, when
assuming fail-silent nodes, is not influenced by additional applications. When
evaluating this scenario before the transformation process, the only difference is
found in the functional and communication loads, since the resource layer is not
changed by the addition of other applications. When we apply the transformation
process and select the node n, in both substitution types ([B(D) + B(D)] + [B]
and [A(D) + C(D)] + [B]) the nodes of the ASIL B application do not require a
substitution, since they can always be mapped on part of the redundant resources,
as discussed in Part 2 of the Strategy 2 description in Section 4.3.2. The resulting
system is shown in Figure 4.19.



108 CHAPTER 4. MODEL TRANSFORMATIONS TO INTRODUCE REDUNDANCY

T
able

4.4:
A
nalysis

param
eters

calculated
on

variations
of

the
base

exam
ple

with
redundancy

in
the

m
ain

application
and

extra
A
SIL

B
application.

Each
application

is
indicated

by
its

A
SIL

inside
square

brackets.
T
he

m
ain

application
is

transform
ed

either
with

Type
1
([B

(D
)+

B
(D

)]),or
with

Type
2
transform

ations
([A

(D
)+

C
(D

)]).

[D
]+

[B
]

[B
(D

)+
B
(D

)]
+

[B
]

[A
(D

)+
C
(D

)]
+

[B
]

type
1

type
2

F
.
P
robability

(R
el.)

1.005e-08
8.440e-09

8.440e-09
C
ost

(E
xpensive)

290000
442600

453130
F
.
P
robability

(U
nrel.)

1.005e-08
1.204e-08

1.204e-08
C
ost

(C
heap)

290000
262600

291190
Functional

load
140

240
240

C
om

m
unication

load
220

410
410

C
able

length
1.695

2.704
2.704

T
able

4.5:
A
nalysis

param
eters

calculated
on

variations
of

the
base

exam
ple

with
redundancy

in
the

m
ain

application
and

extra
A
SIL

C
application.

Each
application

is
indicated

by
its

A
SIL

inside
square

brackets.
T
he

m
ain

application
is

transform
ed

either
with

Type
1
([B

(D
)+

B
(D

)]),or
with

Type
2
transform

ations
([A

(D
)+

C
(D

)]).

[D
]+

[C
]

[B
(D

)+
B
(D

)]
+

[C
]

[A
(D

)+
C
(D

)]
+

[C
]

type
1

type
2

F
.
P
robability

(R
el.)

1.005e-08
8.440e-09

8.440e-09
C
ost

(E
xpensive)

1.005e-08
442600

453130
F
.
P
robability

(U
nrel.)

290000
1.204e-08

1.204e-08
C
ost

(C
heap)

290000
262600

291190
Functional

load
140

280
240

C
om

m
unication

load
220

660
410

C
able

length
1.695

2.704
2.704



4.5. EXPERIMENTS 109

Node act failure

Input Failure Location 
p5 

failure

Res 
actuator 
failure

App act 
failure

Input Node c out 
Failure

Input FailureLocation 
p4 

failure

Res 
CAN 

failure

App c 
out 

failure

Input Node n 
Failure

Location 
p3 

failure

Res 
ECU 

failure

App n 
failure

c in

Ethernet

sense n

sensor ECU

c out act

CAN actuator

com_a1
_c 

in_to_n

split_c 
in_to_n

merger_
n_to_c 

out
c outc in

com_b1
_c 

in_to_n

com_a2
_n_to_c 

out

com_b2
_n_to_c 

out

n1_n

n2_n

Ethernet CAN

Ethernet 
a1

ECU_r1 CAN a2

ECU_r2
Ethernet 

b1
CAN b2

Splitter Merger

sense act

actuatorsensor

c in 
app2

sense 
app2

n app2
c out 
app2

act app2

com_a1
_c 

in_to_n

split_c 
in_to_n

merger_
n_to_c 

out
c outc in

com_b1
_c 

in_to_n

com_a2
_n_to_c 

out

com_b2
_n_to_c 

out

n1_n

n2_n

Ethernet CAN

Ethernet 
a1

ECU_r1 CAN a2

ECU_r2
Ethernet 

b1
CAN b2

Splitter Merger

sense act

actuatorsensor

com_a1
_c in 

app2_to
_n app2

split_c in 
app2_to
_n app2

merger_
n 

app2_to
_c out 
app2

c out 
app2

c in 
app2

com_b1
_c in 

app2_to
_n app2

com_a2
_n 

app2_to
_c out 
app2

com_b2
_n 

app2_to
_c out 
app2

n1_n 
app2

n2_n 
app2

sense 
app2 act app2

c in

Ethernet

sense n

sensor ECU

c out act

CAN actuator

TLE

Input Node c in 
Failure

Input FailureLocation 
p2 

failure

Res 
Ethernet 
failure

App c in 
failure

Input Failure

Input Node 
sensor Failure

Location 
p1 

failure

Res 
sensor 
failure

App 
sensor 
failure

Input Node 
merger Failure

Input FailureLocation 
p4 

failure

Res 
merger 
failure

App 
merger  
failure

Input c b2 
Failure

Input FailureLocation 
p6 

failure

Res 
CAN b2 
failure

App c b2  
failure

Input c a2 
Failure

Input Failure
Location 

p3 
failure

Res 
CAN a2 
failure

App c a2  
failure

Input n2 Failure

Input Failure
Location 

p6 
failure

Res 
ECU r2 
failure

App c b2  
failure

Input n1 Failure

Input Failure
Location 

p3 
failure

Res 
ECU r1 
failure

App n1 
failure

Input c b1 
Failure

Input Failure
Location 

p6 
failure

Res 
Ethernet 

b1 
failure

App c b1  
failure

Input c a1 
Failure

Input Failure
Location 

p3 
failure

Res 
Ethernet 

a1 
failure

App c a1  
failure

Input splitter 
Failure

Input Failure
Location 

p2 
failure

Res 
splitter 
failure

App 
splitter  
failure

App act 
failure

Res 
actuator 
failure

Location 
p5 

failure

App c 
out 

failure

Res 
CAN 

failure

Location 
p4 

failure

Res 
merger 
failure

App 
merger  
failure

Location 
p3 

failure

Res 
CAN a2 
failure

App c a2  
failure

Res 
ECU r1 
failure

App n1 
failure

Res 
Ethernet 

a1 
failure

App c a1  
failure

Location 
p2 

failure

Res 
splitter 
failure

App 
splitter  
failure

Res 
Ethernet 
failure

App c in 
failure

Res 
sensor 
failure

App 
sensor 
failure

Location 
p6 

failure

Res 
CAN b2 
failure

App c b2  
failure

Res 
ECU r2 
failure

App c b2  
failure

Res 
Ethernet 

b1 
failure

App c b1  
failure

Location 
p2 

failure

Res 
splitter 
failure

App 
splitter  
failure

Res 
Ethernet 

failure

App c in 
failure

Res 
sensor 
failure

App 
sensor 
failure

1

0

Location 
p1 

failure

1

App act 
failure

Res 
actuator 
failure

Location 
p5 

failure

App c 
out 

failure

Res 
CAN 

failure

Location 
p4 

failure

Res 
merger 
failure

App 
merger  
failure

Location 
p2 

failure

Res 
splitter 
failure

App 
splitter  
failure

Res 
Ethernet 
failure

App c in 
failure

Res 
sensor 
failure

App 
sensor 
failure

1

0

Location 
p1 

failure

D D D D D

D D D D D
D D D D D D

D D D D D D

B(D) B(D) B(D)

B(D)B(D)B(D)

B(D)B(D)B(D)

B(D)B(D)B(D)

B B B B B

D D D

B(D)B(D)B(D)

B(D)B(D)B(D)

D D D

D D D D D D

B(D) B(D) B(D)

B(D)B(D)B(D)

D D D D D D

B(D) B(D) B(D)

B(D)B(D)B(D)

Figure 4.19: The transformed example application mapped to the substituted
resource layer together with the extra ASIL B application after using type
1 substitution ([B(D)+B(D)]+[C]). The ASIL B application does not require
substitutions.

In the last version, we add instead of the ASIL B application, an additional
ASIL C one ([D] + [C]). The analysis of this scenario is shown in Table 4.5. As
seen in Case 3 of Section 4.3.2, the ASIL C nodes mapped on the same resource
as the node that is being substituted may require substitution to be remapped
on the new resource layer: in type 1 substitutions ([B(D) + B(D)] + [C]) no
ASIL C or higher resource is available, while in type 2 ([A(D) +C(D)] + [C]) the
additional application is remapped on the ASIL C(D) part of the resource layer.
The result of the transformation process when using type 1 substitution is shown
in Figure 4.20, where the additional application nodes are substituted as well. In
the [B(D) + B(D)] + [C] scenario we observe higher increment of the functional
and communication loads compared to [A(D)+C(D)]+ [C], since every node that
was originally mapped on ECU has been substituted. The conclusion to be drawn
from these two cases is that the type of decomposition used influences the system
parameters based on which applications are present on the modified resources.
The choice of the substitution type is even more relevant in complex systems,
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in which multiple applications share the same resources. The correct choice can
minimize the increment of the functional and communication loads, and ultimately
the cost of the system: higher functional and communication loads translate to
higher requirements for the resources, or to requiring more resources to perform
the communication or the computation of the nodes.

By adapting the metrics to the system under evaluation, with our framework,
we can quantitatively express the trade-offs between redundant and non-redundant
implementations, and identify the best choices to implement redundant parts for
the ASIL decomposition rules.
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Figure 4.20: The transformed example application mapped to the substituted
resource layer together with the extra ASIL C application, after using type 1
substitution ([B(D)+B(D)]+[C]). The ASIL C application requires substitution.



4.5. EXPERIMENTS 111

The effect of the transformation process on the fault tree

The fault tree for the base version of the initial example is shown in Figure 4.21.
For visual clarity, the power supply part is hidden. The circled area represents
the part that is modified in the transformation process, and in particular, in
Figure 4.22, we observe the fault tree part related to the redundant nodes in
the transformed version, while Figure 4.23 shows the approximated fault tree.

In this simple example, we can analyse the effect on the estimated failure
probability due to the fault tree approximation described in Section 3.4.3. In the
approximated fault tree, for the system to function correctly, no basic event can
happen: the redundant parts are approximated, and the remaining events are all
the single point of failure events of the system.

In the non-approximated fault tree, the events related to the splitter and
the merger contribute directly to the system failure probability, while the failure
probabilities of the redundant nodes are multiplied between the two redundant
branches. With the failure rates that we are using, mentioned in Section 4.5, the
failures related to the redundant part of the application are in the order of 10−14

(two times the ASIL B failure rate of each of the two redundant branches), while
the events related to the splitter and merger have a failure rate of 10−10. With
these numbers, approximating the fault tree corresponds to an underestimation
of the failure probability of 0.01%. The absolute value of the underestimation
is related to all the redundancy patterns present in the application graph, to the
number of nodes present in each redundant branch, and to the failure rates related
to the base events connected to the failure of these nodes, as seen in Section 3.4.3.
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Figure 4.21: The fault tree generated from the simple example application of
Figure 4.18. For visual clarity, the power supply failures are hidden.
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Figure 4.22: The redundant part of the duplicated example application in the
fault tree. For visual clarity, the power supply failures are hidden.
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Figure 4.23: The approximated fault tree for the redundant example application.
For visual clarity, the power supply failures are hidden.
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4.5.2 Use case: ECOTWIN II platooning system

In this section, we apply the analysis and transformations to the lateral control
of the truck platooning project of the EcoTwin consortium [23], a collaboration
between NXP, TNO, DAF, and Ricardo. In a truck platoon trucks autonomously
follow a primary vehicle with a short distance, allowing significant fuel savings.
The EcoTwin project focused on the development of a SAE level 2 autonomous
system architecture by using a safety executive pattern, in which two channels,
a main and a safety backup, work in parallel and are monitored by a health
management system.

The starting point of the truck platooning project consisted of a non-redundant
system that did not satisfy the functional safety requirements because of the non-
availability of ASIL-D-ready resources to execute the self-driving algorithms. From
this starting point, a redundant system that uses the safety executive pattern
was designed, meeting the ASIL D requirements via ASIL decomposition on the
redundant implementation. We retrace the manual design process that creates
the redundant architecture starting from the non-redundant system with our
automated framework. We analyse the architecture providing cost and reliability
information at each consecutive redundancy step. Our framework’s input is an
analysable graph, which models the ideal system where ASIL D resources are
available. Our model transformations automate the previously manual steps and
evaluate the cost and reliability of each step. This example is presented in our
publication [56], and we report our results in the following sections.

System model

The truck platooning system is a combination of cooperative Adaptive Cruise
Control (ACC) and a lane-keeping assist system. The first system controls the
headway time between the following truck and the leading truck, while the second
system keeps the following truck between the lane markings on the road. In
addition, safety modules monitor the state of the system. In Figure 4.24 the
functional architecture of the truck platooning system is shown.

We focus our analysis on the lateral control application and its safety monitor,
which are used in the lane-keeping assist system. The analysis can be extended to
the full truck platooning system. The application graph in Figure 4.25 represents
the initial lateral control application. Partial redundancy is present in the sens-
ing part of the application: virtual splitters are used when multiple sensors are
acquiring information about the same objects, which are then used in data fusion
nodes. However, a single non-redundant path analyses sensors data to create a
world model and provides the steering control signal for the steering actuator.
This part of the application is safety-critical and requires redundancy to satisfy
the ASIL requirements. In our step-by-step analysis, we select each node that is
part of the world modelling and vehicle control parts for substitution, highlighted
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Figure 4.24: EcoTwin truck platooning system functional architecture, adapted
from [24]. Highlighted, the Lateral control application modelled in our experiments.

in blue in Figure 4.25. We analyse the cost versus failure probability graph for
each transformation step.

Transformation steps to introduce redundancy

The transformation process is applied sequentially to each of the highlighted nodes
in the application graph of Figure 4.25. After each transformation step, a new
system is generated that includes redundancy in the selected part. The new system
is evaluated with the framework to obtain the new cost and failure probability.
After the system is fully redundant, the connect and collapse transformations are
applied to reduce the number of splitter, merger, and communication nodes.
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Figure 4.25: Initial EcoTwin lateral control application graph. The nodes that
are substituted in the experiments are highlighted.
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Analysis results

The transformation steps that introduce redundancy in the lateral control appli-
cation of the truck platooning system transform the application of Figure 4.25 into
the redundant one of Figure 4.26. First, all the highlighted nodes are substituted
and remapped to new resources. After all these nodes are substituted, the connect
transformation is used to connect consecutive redundant application nodes and
resources. Finally, the reduce transformation is used to improve the final mapping
of the application. In this experiment, we use the Additional resources strategy to
remap the new nodes, which adds a new resource for each new application node.
Moreover, we use type 1 substitutions, which for example transform an ASIL D
requirement into ASIL B(D) redundant ones.

After each transformation, the system is re-evaluated and the five analysis
parameters are re-calculated. In this section, we focus on the cost and failure
probability of the application.

Figure 4.27 shows the results of the analysis for each transformation step. Each
substitution adds to the cost and the failure probability of the system, despite the
splitter and mergers having lower failure rates and lower costs compared to other
ASIL D resources. After applying the connect transformation to the application
and resource layers, the cost and failure probability of the system are lowered.
Finally the reduce transformation reaches the point C in the figure.

The obtained cost and failure probability are higher than the original values,
however, the system now uses specific safety-oriented resources to perform the
split and merge operation, while the main part of the application is executed
redundantly in resources with at most ASIL B specification. Despite the slightly
higher parameters, we have an advantage in terms of the availability of such
resources. In particular, it is difficult to have general-purpose ASIL D resources
that can provide high enough computing performance for self-driving applications.
On the other hand, safety-oriented resources that deal with specific tasks are
easier to develop and certify at a high ASIL specification. That is the case in
the truck platooning prototype, in which redundancy patterns were necessary to
achieve the ASIL requirements obtained from the Hazard Assessment and Risk
Analysis (HARA) [23].

Figures 4.28a and 4.28b show the number of elements in the generated fault
trees after each substitution without and with the approximation respectively. On
average, each transformation adds 20 new basic events without the approximation
and 7 with it. In the final system, point C in Figure 4.27, the non-approximated
fault tree has 288 basic events and the approximated fault tree has 159 basic
events. In Appendix C we show the graphs and the fault trees generated with our
framework.
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Figure 4.26: Redundant EcoTwin lateral control application graph. Highlighted,
the transformed part of the application graph.
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Figure 4.27: Step by step cost vs failure probability analysis of the transforma-
tions applied to the modelled lateral controller application.

The engineers that designed the original platooning system manually modified
and evaluated the system to be redundant and ASIL D compliant [23]. With
our framework instead, we introduce redundancy semi-automatically by manually
selecting parts of the system and automatically transforming them, with step-by-
step re-evaluations of the system. The only difference in the system model between
the manually obtained system and the one generated with our transformations
is that in the original project the merge operation is performed by a health
monitoring subsystem, which controls an arbiter to select either the nominal or the
safety channel. In our model, this operation is performed by a merger that uses
Side-Band information, as described in Chapter 3. We can modify the substitute
transformation to obtain the same result as the original project: by introducing
an Out-Band merger instead of a Side-Band one, and by adding the health status
of the nodes in the redundant branches as out-band data that the merger uses for
its decision.
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Figure 4.28: The number of elements in the fault tree after each substitution
transformation without approximation (a) and with approximation of the tree (b).
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Table 4.6: Alternative cost metric 1: ASIL separation.

Resource Type QM A B C D
Functional 5 50 500 5000 50000
Communication 4 40 400 4000 40000
Sensor / Actuator 8 80 800 8000 80000
Splitter / Merger 1 10 100 1000 10000

Table 4.7: Alternative cost metric 2: expensive functional resources.

Resource Type QM A B C D
Functional 8 80 800 8000 80000
Communication 2 20 200 2000 20000
Sensor / Actuator 1 10 100 1000 10000
Splitter / Merger 3 30 300 3000 30000

Variations of the substitution transformation types and cost metrics

In the previous experiment, we showed how our framework can introduce redun-
dancy and analyse a real use-case scenario. However, we have only used a limited
part of the framework functionality. In the next experiments, we vary cost metrics
and use different types of substitution transformations. Tables 4.6, 4.7, and 4.8
show the cost metric alternatives that we use. In the first one, we separate the
cost for ASIL A and B and ASIL C and D, but we leave the B and D values
the same as the original cost metric (Table 3.3). In the second one, functional
resources are more expensive compared to the first, while communication, splitter,
merger, sensor, and actuator resources are cheaper. In the third alternative,
functional, splitter, and merger resources are cheaper compared to the first, while
communication resources are more expensive.

Moreover, we use the type 2 substitution as well. While with type 1 substi-
tutions an ASIL D requirement is transformed in two ASIL B(D) ones, with type
2 it is transformed into an ASIL C(D) and an ASIL A(D) requirements. We can
apply the two types consistently throughout all the substitutions or mix the two
types. In Figure 4.29, the lines marked as BB use type 1 substitutions, AC use

Table 4.8: Alternative cost metric 3: expensive communication resources.

Resource Type QM A B C D
Functional 3 30 300 3000 30000
Communication 8 80 800 8000 80000
Sensor / Actuator 8 80 800 8000 80000
Splitter / Merger 2 20 200 2000 20000
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Figure 4.29: Step by step cost vs failure probability analysis of the transforma-
tions applied to the modelled lateral controller application.

type 2 substitutions, while RND randomly selects between the two types at each
substitution step. The order in which the nodes are selected for the substitution is
not important, and even if connect and substitute transformations are interleaved,
the final result would be the same. This is because each selected node is mapped
on a different resource in this use-case, and it is not modified by the previous
transformations.

We observe how the cost metric 3, with expensive communication resources and
sensors/actuators, increases the overall cost of the system the most. This result
is expected, as the number of communication resources (8), sensors (15), and
actuators (9) is higher than the number of functional resources (7). Moreover, as
discussed in Section 4.2.1, the substitution of a communication element generates
communication elements predecessor of the splitter and successor of the merger
with the original ASIL value. This means that even in the transformed system,
part of the communication still requires ASIL D resources. With the reduce trans-
formation we limit this problem, using as ASIL D resource the already existing
resource in which the predecessor (or successor) nodes are mapped. However, since
this requires that the existing resource has communication and splitter or merger
capabilities, the transformation is not always possible.

Varying the type of substitution instead has different effects: if type 1 or type 2
substitutions are applied consistently, the connect transformation is applied to all
consecutive redundant patterns. If the type of substitution is chosen inconsistently,
the ASIL values of the redundant branches in consecutive patterns do not always
match. The connect transformation is then not always possible. In this use-
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Figure 4.30: Variation in cost and failure probability after the full transformation
process in each experiment.

case, we are considering a single application, and so transforming the system
with inconsistent substitution types does not have any positive outcome (e.g. not
requiring substitution of additional nodes mapped on the same resources).

Note that the BB-1 curve corresponds to the one discussed in the previous
section, as the cost values for ASIL B and D resources does not vary compared to
the original cost metric.

Figure 4.30 shows the cost and failure probability variations of each setup from
a normalized initial position to the final position at the end of the transformation
process. We observe how the randomized substitution types lead to higher failure
probabilities since not all redundant parts can be connected. Only the BB2
combination, which has a high cost for functional resources and a low cost for
communication, splitter, and merger resources, leads to a reduction in cost. The
second cost metric works well when using type 1 substitutions, but in case of type
2 (AC2 ) the additional cost of ASIL C expensive functional resources still leads
to a higher cost compared to the starting point.

4.6 Discussion of the transformation process

To conclude the chapter, we discuss some final aspects of our proposed transfor-
mation process:
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• Completeness: as seen in the EcoTwin truck platooning use case, the
proposed transformation process does not reach the same solution as the
manual design. In particular, the manual design uses a safety-executive
redundancy pattern, with a health-monitoring system that sends out-band
information to the merger, as discussed previously in Section 3.3.3. In our
case instead, we use a heterogeneous redundancy pattern, with an in-band
data merger. However, with variations of the substitute transformation, we
can introduce different nodes, e.g. the health-monitor or a third redundant
branch for triple-modular redundancy, and implement the different redun-
dancy patterns. With a different substitute transformation, the successive
mapping steps require re-adaptation, but the process steps remain the same.
Our open framework allows for the modification or the addition of different
transformations and transformation processes to obtain different results,
such as the safety-executive redundant pattern.

• Order of transformations: after each transformation process, a new node
can be selected to introduce additional redundancy in the application, as we
did in the EcoTwin truck platooning use-case. Switching the order in which
the substitutions are executed does not change the final result. Moreover,
the new transformation process can be applied inside an already redundant
pattern by selecting one of the nodes in the redundant branches. Note that
with the fault tree approximation, this transformation does not have an
effect on the failure probability of the application, as it is already part of a
redundant branch.

• Optimal solutions: in the proposed framework, the transformed graph is
analysed and the values of the five parameters are re-calculated. To identify if
the new implementation is optimal in terms of the parameters, an automated
design-space exploration algorithm should be introduced. Our framework
can be used to explore the possible implementations and redundancy levels
to find optimal solutions in such an algorithm. To develop an automated
design-space exploration, additional studies are required: first, meaningful
optimization functions must be identified. Second, the system constraints
that limit the exploration must be defined. In our tool, we use resource
utilization as a system constraint, and additional parameters can be used,
e.g. spatial limitations of the physical locations, cost limitations, etc. Finally,
a scalable algorithm that chooses in which parts of the system redundancy
shall be introduced must be developed. Mathematical models are needed
to understand if minima in the optimization functions are local or absolute
minima.

• User manual input: the only input required by the user is to select the
application node (or a resource) in which redundancy is necessary. The
result of the transformation process is a new analysable graph that can be
evaluated or further modified.



126 CHAPTER 4. MODEL TRANSFORMATIONS TO INTRODUCE REDUNDANCY

4.7 Conclusions
In this chapter, we described the transformations that we use to introduce re-
dundancy in the model. The transformations are used to substitute elements,
connect consecutive redundant patterns, separate elements that are mapped to
multiple resources or locations, and improve the mapping by reducing the number
of utilized resources in the resource layer. Not all the main transformations
generate analysable graphs, as an additional mapping step is necessary to map
the newly introduced nodes or resources. The full transformation process applies
a sequence of main transformations and remaps the new nodes and resources to
the respective layer, generating an analysable output graph.

In the second part of the chapter, we apply the analysis and the transformation
process to two examples: in the first one a simple application is evaluated and
transformed to see the effects of varying the analysis metrics and to analyse the
resulting fault tree; in the second one, a real-life use-case scenario, the lateral
control application of the EcoTwin II truck platooning project, is analysed and
multiple transformation steps are taken to obtain a fully redundant system. The
results of our transformation process are compared to the manual design pro-
cess that the designers of the original project did to identify the similarities and
differences with our automated process. Overall, the results obtained with our
process are positive and show the flexibility of our analysis framework, which can
be adapted to different automotive systems and scenarios.
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Automotive electrical and electronic

architectures

5.1 Introduction and related work

As the functionality provided by the vehicle software grows, the automotive archi-
tectures, often defined as automotive Electrical and Electronic (E/E) architectures,
evolve with it. While in the past the focus was on electromechanical components,
nowadays one of the most important aspects for the development of the new
architectures is the computing part. Powerful computers are used to process the
huge amount of data coming from the new sensors such as cameras, radars, and
lidars. The networks that interconnect these components are evolving from being
ad-hoc solutions into more structured and hierarchical versions.

The automotive companies that are investing in the research on autonomous
vehicles are also looking at how the future architectures will look like, to develop
scalable systems that can meet all the requirements related to level 3+ autonomous
vehicles. In the technology trend analysis made by McKinsey [28], fourth and fifth
generations of Autonomous Vehicles (AVs) will use first domain-based and then
zone-based and centralized architecture topologies, as shown in Figure 5.1.

The view from other authors might slightly differ, for example Figure 5.2 illus-
trates what Siemens consider to become the main types of future E/E architecture
topologies [150]. Siemens highlights the difficulties of an integrated development
process in which multiple applications are designed to run at the same time on
the vehicle by different development teams, flexibility and possibility for updates

127
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Figure 5.1: Vision of future automotive architecture trends from McKinsey [28].

in the software are required, and safety-critical applications run in parallel to QoS
oriented applications [149]. They also refer to the fact that the current automotive
systems have a high number of ECUs and that in future vehicles they will be
consolidated into a smaller number of powerful control units, but how to do the
consolidation for each OEM to decide for themselves.

Elektrobit [64] discusses an architecture with a central powerful computing unit
connected mostly via Ethernet, with the TSN protocols for safety-critical data, to
the sensors and actuators. GuardKnox [67] presents a zone-oriented architecture
in which the hardware consolidation process is based on the physical position of the
elements inside the vehicle: it connects the sensors and actuators to the closest zone
controller, which in turn are connected to centralized vehicle servers and computing
units via a backbone Ethernet network. The resulting architecture is modular and
optimizes the wiring costs. Multiple approaches in terms of network topologies
are discussed: ring, tree, star, or hybrid backbone networks to understand which
are the trade-offs in terms of network performances and reliability. The authors
of [127] discuss a domain-oriented architecture in which the sensors, actuators,
ECUs, and communication resources are grouped based on their functionality.
Classic domains are infotainment, chassis, powertrain, and body and comfort. A
special ECU, called domain controller, is established for each domain. The domain
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Today, vehicles are rarely developed from a clean sheet. 
Even new market entrants, who lack legacy architec-
tures to re-use, often purchase ECUs for less strategic 
locations in the architecture. Most programs will carry 
forward at least some of the elements or philosophy of 
earlier architectures (figure 1). The move from architec-
tures with a central gateway towards those with func-
tional domains connected by a backbone network, and 
next into a world of centralized compute with zonal 
outstations, often comes in stages. 

The result is that the topology often comes with a base-
line set of assumptions, leaving engineers to manage 
the details of optimization (figure 2). Examples could 
include:

• Moving a secondary network connection of an ECU 
between domain-focused networks and a private link 
between a sub-set of ECUs

• Upgrading an ECU to support a higher baud rate  
network on one or more connections

• Moving to a new domain to support advanced or 
additional functions

The transition from a central gateway to a functional 
domain-oriented architecture is, in most cases, rela-
tively easy at a topology and connectivity level. Most 
ECUs are still connected to a functional sub-network in 
either scenario, but to realize the benefits of a domain-
oriented architecture functions need to be hosted in the 
domain controllers. This reduces the need to constantly 
add more processing resources to most of the ECUs. 
Additional benefits are realized when this enables con-
solidation of ECUs. Rather than adding more ECUs, 
domain controllers are usually an upgrade or new gen-
eration of one of the higher power ECUs within each 
domain. The result is fewer individual ECUs are needed 
over time with such consolidation.
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Figure 1: An illustration of the 
main types of E/E architectural 
philosophies. Multi-bus gateway 
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domain controller architectures 
and, eventually, zonal architec-
tures with centralized computing.
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Figure 5.2: Vision of future automotive architecture trends from Siemens [150].
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Figure 5.3: A domain-based architecture topology [125].

controller controls the domain network components and communicates with the
backbone network. In [18] the authors propose a domain-oriented architecture in
which a domain gateway is placed in parallel to the domain controller to access
directly the internal domain networks. Different divisions in terms of domains
can be found in the literature: for example, Figure 5.3 shows a domain-based
architecture topology, in which the functionalities are divided into six domains as
in [125]. For a more complete description of different domains and automotive
functionalities, we refer to [15].

In Figure 5.4 the trends of future automotive vehicles architecture from NXP
point of view are shown [151]. Starting from domain-based architectures, hybrid
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Figure 5.4: Vision of future automotive architecture trends from NXP [151].

and then full zone-based architectures with virtualized domains for isolation of
critical applications are expected to become the main architecture trends.

As identified by the various architecture trends, domain-based and zone-based
topologies are foreseen to be the main solutions for E/E architectures. In this
chapter, we focus on the analysis of these architecture topologies, which are the
opposite ends in the spectrum of future E/E architectures. Understanding their
differences and their advantages and disadvantages with our quantitative method
provides useful insights for future product development, in which the decision of
the architecture topology helps in optimizing the system parameters. This chapter
is based on our publication [57].

In Section 5.2 we provide definitions for the analysed architecture topologies.
Each topology is based on the resource layout and how each application is mapped
on them. In Section 5.3 we define an example case consisting of three applications
that are implemented using the different architecture topologies that we defined.
In Section 5.3.1 we apply the model transformations to introduce redundancy via
the ASIL decomposition-based technique and analyse the impact of redundancy
on the different architecture topologies with the five analysis parameters described
in Chapter 3. We first assume that all the application nodes fail silently. We then
discard this assumption in Section 5.4, in which we analyse the system with the
use of either physical separation or virtualization. Finally we conclude this chapter
in Section 5.5.
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5.2 Architecture topologies and definitions
In this work we define an architecture topology as a combination of a category
and a mapping. We consider two possible architecture categories: Domain-Based
(D) and Zone-Based (Z). In both categories, the sensors and actuators have a
fixed position related to their functionality (e.g. front radar), while the rest of
the hardware resources can be positioned freely in the vehicle. The two categories
follow these rules to connect the sensors and actuators to the rest of the system:

• Domain-Based (D) groups the resources into domains. Resources that
belong to the same domain will provide specific functionality, e.g. driver-
replacement-related applications are mapped to the driver replacement do-
main resources. Each domain has a domain controller, a resource that bridges
the domain to the backbone network, which is connected to a central resource
and the other domain controllers. The sensors and actuators of a specific
domain are connected to the corresponding domain controller either with a
direct connection or by using a domain network.

• Zone-Based (Z) groups the resources according to their physical position
in the vehicle. Several zones have to be selected and a zone controller is posi-
tioned in every zone. Each zone controller connects its zone to the backbone
network. The backbone network is then connected to a central resource.
Each sensor and actuator is connected to the nearest zone controller either
with a direct connection or a zone network.

Separating the architectures into domain-based and zone-based is not enough
to distinguish the different possibilities available when designing the E/E archi-
tecture. For example, the mapping of the application could be more or less
centralized. For this reason, for each of the two categories, we consider two possible
mapping rules of the application to the hardware resources:

• Vehicle-Centralized (VC): all the functional nodes are mapped to the
central resource. The sensors feed their data to the central unit (passing
through the domain or zone network, the controller, and the backbone
network), which then provides signals for the actuators. The domain or
zone controllers perform only networking functions between the domain or
zone network and the central unit.

• Controller-Based (CB): when possible, the functional nodes are mapped
to the controllers in the domain or zone, which in this case require com-
putational capabilities. The central resource performs only the tasks that
require data from or provide data to multiple domains or zones and thus are
executed centrally.

We will abbreviate the architecture topologies with the four combination of the
category and mapping: D-VC, D-CB, Z-VC, Z-CB.
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As we discuss in Section 5.3.2, other variations over the four topologies that
we analyse exist. With our framework, we can analyse the different scenarios to
identify the system characteristics. In the following analysis, we use backbone
networks with a star topology, and we do not allow inter-domain or inter-zone
communication. This means that when inputs from or outputs to multiple domains
or zones are necessary, a function must be executed in the central unit, which
communicates with all the domains or zones via the backbone network.

5.3 Modeling and analysis of architecture topolo-
gies with fail-silent assumption

In this section, we show an example of the usage of our proposed framework to
analyse the different architecture topologies in an illustrative system. First, we
analyse three applications in the four topologies with our framework, then we
introduce redundancy in two separate points in each topology, to evaluate how
redundancy impacts the different implementations. We assume that the applica-
tion nodes are fail-silent, thus the fault tree is generated with this assumption, as
described in Section 3.4.1.

We define three illustrative applications that we use for our experiments. Each
application is described by a separate graph in Figure 5.5, showing their functional
and communication nodes and their logical connections. We divided the appli-
cations into a safety-critical one, in orange, and two non-safety-critical ones, in
green. The safety-critical application contains typical operations that a self-driving
vehicle performs, such as environment modelling and vehicle control, while the
non-safety-critical applications provide additional information with a surround-
view application that shows the back and front camera views to the vehicle pas-
sengers, and a comfort application that interacts with the heat, ventilation, and
air conditioning system. We assume that only the central resource can meet high
computational requirements in our experiments, as it is often true for a self-driving
application that requires powerful computing resources, such as NXP Bluebox [111]
or NVIDIA PX Drive [110]. The central part of the safety-critical application,
which has high computational requirements, is therefore always executed in the
central resource. In the experiments, this means that part of the data is always
transmitted through the backbone network, and the safety-critical application
cannot be fully isolated, e.g. in the driving replacement domain resources in
Domain-based topologies. An alternative to this would be to utilize the high-
performance computing resources as domain or zone controllers, which would
distribute the application over multiple resources, but increasing the number of
costly resources. By using a central resource to execute part of the application, we
distribute it over multiple resources and obtain more meaningful analysis results,
while if the application is contained in its safety-critical domain its analysis can
be performed individually and separated from the rest of the system.
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Figure 5.5: The set of applications used for the topologies evaluation.

For the simpler non-safety-critical application we use the common Sense-Think-
Act paradigm [148]. For the safety-critical application, we extend it, dividing the
Think block into Preprocessing, Data Fusion, and Postprocessing steps. This
enables a realistic function mapping over multiple components. The applications
have high bandwidth requirements on the sensing side (mostly in the safety-critical
application), high computational requirements in the central data fusion node,
and low bandwidth and computational requirements in the post-processing and
actuation sides.

For quantitative analysis, we annotate the functional and communication loads
on each node to reflect these requirements, as shown in Figure 5.5. In our
example, we use realistic load proportions between the nodes for the sake of a final
comparison of the load distributions over the different architecture topologies.

Nodes A and B are selected for redundancy for the experiments of Section 5.3.1.
With the selection of these two nodes, we analyse the effects of introducing re-
dundancy in either the post-processing part or in the communication between
the post-processing and the actuators. These nodes have lower functional and
communication loads compared to the sensing and pre-processing part (e.g. the
Throttle Signal communication load is 30 times lower than that of the Camera
Front Stream node). Nevertheless, the effect of introducing redundancy in these
nodes is relevant in the results, as the modification of part of the resource layer
leads to additional transformations in the application layer.

Moreover, we assume that the lidar and the radar are smart sensors that locally
convert raw data into output objects. This means that the pre-processing part of
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Figure 5.6: Non-redundant Domain-based hardware resources.

these sensors is mapped to the sensor resource itself. Traditional sensors’ output
is pre-processed in separate functional resources instead.

We use a representative non-redundant hardware architecture formed by two
domains (or zones) and a central unit. In the domain-based architectures, one
domain contains all the safety-critical resources, sensors, and actuators, while the
other domain contains the non-safety-critical resources, sensors, and actuators. In
the zone-based architectures, the two zones divide the vehicle into a front and a
rear part, and sensors and actuators are connected to the zone controllers based
on their position inside the vehicle. Figure 5.6 shows the chosen architecture for
domain-based categories. The domains are connected to the central unit via a star
switched-Ethernet network, while the domain networks are a combination of buses,
switched-Ethernet networks, and direct connections. Figure 5.7 shows instead the
non-redundant zone-based architecture and its networks configurations.

Each sensor and actuator has a fixed position in the physical space, while other
resources can be placed with some freedom inside the vehicle. The central unit is
placed in a central position with respect to the vehicle. The domain controllers are
placed in an available location in a central position with respect to the domain’s
sensors and actuators, to minimize the total communication cable length between
them. Figure 5.8 shows the positioning of these resources in the D-VC topology.
The zone controllers are placed instead in a central position in the respective zone,
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Figure 5.7: Non-redundant Zone-based hardware resources.
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Figure 5.8: Positioning of the sensors, actuators, domain controllers, and central
unit in the D-VC topology.

again for cable length optimization.
The initial resource layer for the topologies D-VC and D-CB is identical, but

there will be differences in the redundant scenario due to the different mapping of
the application. In the same way, the zone-based topologies resource layers will
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show differences only in the redundant scenarios.
Complete mappings of the application to the four architecture topologies are

complex graphs and are shown for reference in Appendix D.
In the experiments, we analyse first the topologies without introducing redun-

dancy in the system. The three applications of Figure 5.5 are mapped to the
different architecture topologies based on VC or CB rules, and each solution is
analysed.

We observe in Figure 5.9 that the cost of the domain-based topologies is lower
than the cost of the zone-based ones, assuming the cost metric of Table 3.3.
Since the zones have mixed-critical application nodes (both ASIL D and QM),
the zone controllers and the dedicated units need to be more expensive ASIL-
D ready resources to satisfy the safety-critical requirements. The difference in
failure probabilities of the safety-critical application between domain-based and
zone-based topologies is related to how the internal networks are configured: both
categories use Automotive Safety Integrity Level (ASIL) D (or equivalent after
ASIL decomposition) resources for the safety-critical application, which have the
same failure rates, but in this case, the zone-based categories have one less com-
munication resource. The VC and CB mappings differ in terms of communication
paths and the number of utilized resources. For example, in the D-CB topology,
the non-safety-critical part of the application does not reach the Central Electronic
Control Unit (ECU) resource, and the Ethernet 8 resource is not used.

Figure 5.10a shows the calculated total communication cable length, which
is lower in the zone-based topologies, as expected since they connect sensors and
actuators to the closest controller. The resource layers for VC and CB mappings
are identical, however, the resource Ethernet 8 is not used, and thus we do not
add the length of this connection to the calculation.

Figure 5.10b shows the total functional and communication loads of the
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Figure 5.10: Total communication cable length (a) and total communication and
functional loads (b) for the non-redundant scenario.

topologies. In the non-redundant scenarios, the total functional load does not
vary as it is related only to the applications, but it is distributed differently over
the architecture. The communication load varies instead based on the topology.
The D-CB topology has the lowest communication load since all the processing
steps are executed in the domain controller and the sensor or actuator data is sent
only through the local domain network and not through the backbone network.
The output data size of the post-processing step is highly reduced compared to
the initial input raw sensor data. VC mappings instead require all the processing
steps to be done in the central unit. This means that the raw sensor data has
to be transmitted not only inside the domain or zone network but also through
the backbone network. The Z-CB topology instead can perform only part of the
functionality locally. Since we do not allow communication between the zones, the
tasks which require inputs from or send outputs to multiple zones are executed in
the central resource.

By combining the results of the communication load and total cable length
calculations, we observe, as shown in Figure 5.11, that a) the D-VC topology
has longer total communication cable length with higher bandwidth requirements,
b) the D-CB topology has longer total communication cable length with lower
bandwidth requirements, and c) zone-based topologies have shorter total commu-
nication cable length with higher bandwidth requirements.

5.3.1 Impact of redundancy on different topologies
In our experiments we introduce redundancy by using the transformation process
explained in Section 4.3, following the ASIL decomposition rules to lower the
ASIL requirements of the original application and the ASIL specifications of the
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resource layer. While in the truck platooning use-case of Section 4.5.2 we applied
the transformation process to multiple consecutive application nodes, here we
transform a single application node in each experiment, and the results of this
transformation are analysed in the different topologies. Each architecture topology
is affected differently and our analysis framework can identify and highlight the
differences. We observe that the key difference is made by the number of nodes that
share the same resource as the node that is selected for the transformation process:
when the resource is shared by many different nodes and different applications,
additional substitutions are necessary and the analysis parameters such as total
functional load and total communication load increase. The mapping of each node
depends on the architecture topology that is chosen.

Transformation of the node Low-level Speed Control

For the first modification, we apply the node transformation to the Low-Level
Speed Control (LLSC) node, marked with the dashed circle A in Figure 5.5. This
allows us to observe how introducing redundancy in the low-level control part of
the safety-critical application impacts the system. Low-level control nodes are the
ones that interact directly with the vehicle dynamics, being able to provide signals
to the actuators. They are a very critical part of the system, despite being less
computationally intensive than higher-level functions [83, 160]. The redundancy
transformation affects different parts of the system based on its topology since the
LLSC node’s mapping varies. Figure 5.12 shows the effects of the transformations
on the application layer for the D-VC and the Z-VC topologies after following
the transformation process described in Chapter 4. We use in this experiment
the resource modification strategy that uses the substitute transformation on the
resource layer, removing the original resource on which the selected application
node is mapped. This strategy was described as Strategy 2 in Section 4.3.2.
The preprocessing, data fusion, and post-processing parts of the safety-critical
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application are all mapped to the central unit, which is duplicated because of
the redundancy in the LLSC node. All these parts become redundant as well,
obtaining the redundant branches a and b in Figure 5.12. The non-safety-critical
applications are not affected by the transformation since they can be mapped on
one of the two redundant central ECUs because of their lower ASIL requirement. In
the D-CB and Z-CB architecture topologies, the transformation modifies a smaller
part of the application, as seen in Figures 5.13 and 5.14. This is because fewer
nodes are mapped to the same resource as the LLSC node, as seen in Figure 5.15.
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Figure 5.13: Safety-critical application in the D-CB topology: application layer
after the transformation of the LLSC node. The nodes with a dashed red line are
changed compared to the non-redundant version.
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Figure 5.15: The nodes mapped on the Central ECU with the node LLSC in the
D-VC topology (a) and the nodes mapped on the safety critical domain controller
with the node LLSC in the D-CB topology.
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Figure 5.16: Failure probability vs Cost for redundant LLSC node compared to
the non-redundant version.

We observe that the architectures with a redundant LLSC have similar cost
values compared to non-redundant ones, e.g. the D-VC topology costs 0.4% less
and the Z-CB topology is 2.6% more expensive than their non-redundant versions,
as seen in Figure 5.16. While non-redundant architectures must use ASIL-D ready
resources, redundant architectures can use ASIL-D ready splitters and mergers
in combination with parallel lower-level resources, e.g. two ASIL-B ready ones.
The cost of an ASIL D splitter or merger combined with ASIL B functional and
communication resources is similar to the cost of the original ASIL D resource
when following Table 3.3 (10000 for each spitter and merger, 500 for each of the two
new redundant functional resources, 400 for each new redundant communication
resource, compared to a single ASIL D resource with a cost of 50000), but can
vary with the cost metric that is selected. In the redundant scenario, the main
contribution to the final cost is due to the ASIL D splitter and merger resources.
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the duplication of the LLSC node.

If lower-cost splitter and merger ASIL D resources would be available, redundancy
would come also at a lower cost compared to non-redundant ASIL D solutions.

Compared to the non-redundant case, the failure probability is lower for VC
mappings, e.g. D-VC topologies have a 9.4% lower failure probability, as shown in
Figure 5.16. This effect is due to more nodes being mapped to the now redundant
central ECU (as seen in Figure 5.15). The system can benefit from the lower
failure rates of the safety-oriented splitter and merger resources. In CB mappings
instead, this effect is hidden by the more complex communication interfaces that
are connected to the now redundant controllers. The central ECU only has one
Ethernet port, meaning that only one splitter and one merger resource will be
required. The controllers are connected instead to multiple network components,
and on each port, a splitter and/or a merger resource is required. For example,
from Figure 5.6, the domain controller Dom ctrl D will have with the D-CB
topology in LLSC-redundant scenarios four splitters (one for each input port)
and three mergers (one for each output port), as shown in Figure 5.17.

When analysing the total communication cable length in this redundant sce-
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Figure 5.18: Total communication cable length (a) and total communication and
functional loads (b) for redundant LLSC node scenario.

nario, we notice how the CB mappings have a greater impact on this parameter,
shown in Figure 5.18a. Redundant controllers lead to an increase in the number
of communication resources since the controllers are connected to both the local
and the backbone networks.

Figure 5.18b shows the total functional and communication loads after intro-
ducing redundant hardware for the redundant LLSC nodes. The functional load
varies between the topologies because of a different number of application nodes
mapped to the original resource. The VC mappings lead to a high communication
load when redundancy is introduced in the LLSC node (or in any other processing
node, since they are all mapped to the central ECU). In the case of the Z-CB
topologies, the expansion of the resources does not involve additional functional
node transformations, since the LLSC is the only node mapped to the zone con-
troller while the other nodes are mapped to the central unit. Figure 5.19 combines
the results of the total communication load and the total communication cable
length calculations.

The D-CB topology is still better than the D-VC topology in terms of failure
probability, but has now slightly higher cost. We observe a similar situation for
Z-CB and Z-VC, but for them the gap between the failure probabilities is closer.
Overall, the zone-based topologies have lower total communication cable length,
at the cost of increasing communication load.

To conclude, when a functional node of the safety-critical application is substi-
tuted, we observe greater differences between the different mappings compared to
the non-redundant scenario. The D-CB topology performs better than the others,
since only the domain controller of the safety-critical domain is substituted in our
system, and a lower number of nodes related only to the safety-critical application
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Figure 5.19: Communication load vs Total communication cable length (Man-
hattan) for redundant LLSC node scenario.

are mapped there. However, in case the goal of our design is to minimize the weight
of the wire harness, Z-VC solutions provide better results in this parameter.

Transformation of the node Throttle Signal

Our third experiment and second modification of the system consists of applying
the transformation process to the communication node Throttle Signal (TS), as
marked with the dashed circle B in Figure 5.5. It is a low-level signal with a small
communication load but with critical importance since it controls the throttle
actuator. Depending on the topology it is mapped to different communication
resources and more than one resource is affected by the transformation of the
node. In CB mappings the signal comes from the domain or zone controller, while
in VC mappings it comes from the central unit through the backbone and the
domain or zone network.

Figure 5.20 shows the total cost and failure probabilities of the topologies for a
redundant TS node. The VC mappings have a significantly higher cost and failure
probability compared to the non-redundant scenario: the cost increases by 46.4%
and 43.6% while the failure probability increases by 24.2% and 26.4% for the D-
VC and the Z-VC topology respectively. This effect is due to the transformation
of all the communication resources that carry the throttle signal, which in VC
mappings are both parts of the backbone and of the domain or zone network.
The CB mappings cost and failure probability also increase, despite the control
signals being transmitted locally, but to a lower degree since fewer communication
resources are involved.

As shown in Figure 5.21a, the zone-based topologies have a lower total com-
munication cable length, and the CB mappings result in lower values compared to
the other mappings. This happens because only part of a local network becomes
redundant, which is reflected in Figure 5.21b in the form of a lower communication
load. The results of these calculations are combined in Figure 5.22.
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Figure 5.21: Total communication cable length (a) and total communication and
functional loads (b) for redundant TS scenario.

The functional load is constant since only communication resources are ex-
panded. The communication load of the TS node is low, but when making it
redundant most of the communication nodes that are mapped on the same re-
sources are consequently transformed following the rules of Chapter 4. In the case
of the VC mappings and the zone-based topologies, higher-level communication
data is mapped on these resources, such as raw camera streams or lidar and radar
detected objects, with high communication loads. The transformation of a single
low-level control signal leads to the modification of many parts of the system.

When making a low-level signal redundant, D-CB topologies are again recom-
mended, since they lead to a smaller modification of the system since the low-
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Figure 5.22: Communication load vs Total communication cable length (Man-
hattan) for redundant TS node scenario.

level signals are transmitted only inside the domain networks, as it happens in
our use-case. Based on our experiments, only in case cable length is the target
optimization, Z-CB topologies should be preferred to D-CB.

Final comparison

We observed in the previous experiments how redundancy applied in two different
application nodes impacts the system properties. We observed how the D-CB
topology has better load and cost results than the other topologies. However, in
some scenarios, zone-based topologies are better in terms of failure probabilities
and total communication cable length.

Figure 5.23 shows the distribution of the functional load over the computa-
tional resources. Note that the different topologies have different requirements:
the VC mappings require only the central unit to process the data, while the
CB mappings require the central unit to process the data fusion part of the
application, but also require the controllers to have computational power for pre
and post-processing. Figure 5.24 shows the communication load distributions in
the topologies. The zone-based topologies show more balanced communication
loads between the zones (Network 1 and Network 2 ), as a result of having sensors
from a specific domain, for example, the front and back cameras, distributed over
the car. In this case, a significant part of the total communication load is placed in
the backbone network, since most computation is performed centrally and a large
part of the data generated inside a zone is sent via the backbone network to the
central unit.

A final comparison between the topologies in the different redundancy scenarios
is shown in Figure 5.25.

The parameters for each scenario are normalized over the topologies, where a
0.00 corresponds to the lowest parameter value across all topologies and a 1.00
corresponds to the highest (for each analysis parameter, the lower the better).
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Figure 5.23: Total functional load distribution

The zone-based topologies show a lower cable length. The good results in terms
of the functional load of the Z-CB topology for the LLSC-Redundant scenario
are related to the isolation of the LLSC node to the front zone controller, which
is a result of the specific configuration and not a general characteristic of these
topologies. To conclude, when the application requires redundancy, in the presence
of high communication loads, and the controllers provide enough computational
power to execute the application nodes a CB mapping is highly recommended.
Instead, sharing of centralized processing should be considered in the presence of
reasonable communication load requirements and when no functional redundancy
is necessary.

The redundant scenarios are obtained by selecting the nodes LLSC and TS,
but what would have happened by selecting different parts of the application?
First of all, selecting non-safety-critical nodes for redundancy is not a relevant
choice, as they have QM requirements and there is no necessity for redundancy.
As for the safety-critical functional nodes, selecting any functional node of the
pre-processing or post-processing part would have lead to the same results, as
they are all mapped on the same ECU (either the controller or the central ECU,
based on the topology). The only exception is for Z-CB topologies, as the camera-
preprocessing node is mapped to the central ECU since it receives data from both
the front and the back zone, compared to the selected LLSC node which is mapped
on the zone controller. As for the central data fusion node, by design decision it
is always mapped to the central ECU, and making it redundant would illustrate
fewer differences between the topologies. If another actuator signal was selected
instead of the TS node, the same results would have been obtained, as these nodes
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D-VC D-CB Z-VC Z-CB D-VC D-CB Z-VC Z-CB D-VC D-CB Z-VC Z-CB
Fprob 0.37 0.01 0.45 0.24 0.19 0.00 0.26 0.25 0.85 0.19 1.00 0.51

Cost (EXP) 0.04 0.00 0.36 0.36 0.01 0.02 0.34 0.37 0.57 0.17 1.00 0.64
Cable (Man) 0.14 0.14 0.00 0.00 0.17 0.53 0.03 0.27 1.00 0.22 0.48 0.09
Func Load 0.00 0.00 0.00 0.00 1.00 0.23 1.00 0.04 0.00 0.00 0.00 0.00

Comm Load 0.20 0.00 0.20 0.18 0.88 0.57 0.88 0.86 1.00 0.00 0.81 0.60
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Fprob - - + + + - + - - / - +
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Func Load 0.00 0.00 0.00 0.00 1.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00

Comm Load 1.00 0.00 1.00 0.90 1.00 0.00 1.00 0.93 1.00 0.00 0.81 0.60
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Figure 5.25: Final comparison tables. For each parameter in each of the three
scenarios, 1 corresponds to the maximum value and 0 to the minimum value
between the architecture topologies.

are all mapped to the same resources. If sensor data or pre-processed data was
selected, different communication resources would have been changed in the local
domain or zone networks. However, the effect on the backbone network would
be the same (except for the back and front camera streams), especially for the
vehicle-centralized topology where all the communication passes through it.

5.3.2 Discussion of the architecture topologies variations
Hybrid topologies

In the previous section, we have identified the advantages and disadvantages of
Domain-based and Zone-based solutions, with a focus on redundant systems.
The optimal architecture topology depends on the application characteristics.
Even in the same system, different applications benefit from different architecture
topologies.
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We expect that future AVs and Advanced Driving Assistance Systems (ADASs)
will use hybrid solutions. We have discussed how safety-critical applications have
better results for some metrics in D-CB topologies, in which their cost, failure
probability, functional load, and communication load are minimized. This effect
is mostly related to the isolation of the safety-critical application to its separate
safety-critical domain, keeping the communication from the sensors and to the
actuators inside the safety-critical domain networks. When introducing redun-
dancy, only the safety-critical domain is affected, and no other application is
modified. Non-safety-critical applications instead have different requirements: the
cost related to the non-safety-critical resources is lower, and there is no strict
requirement on their failure probability. However, it is important to minimize
their total cable length, functional load, and communication load, both to reduce
the weight of the cables and to reduce the requirements they have on the resources,
especially when shared with safety-critical applications. Zone-based solutions are
efficient in this case, as the many non-safety-critical applications can be mapped
to the zones independently of their domain.

In our use case, a hybrid architecture would use a safety-critical domain con-
troller for the safety-critical application, and all the sensors and actuators related
to this application would be connected to it via the domain networks. The other
two applications would be implemented with two zone controllers, one in the
front and one in the back of the vehicle, connected to the central resource via
the backbone network. This hybrid solution is shown in Figure 5.26 focuses on
isolating safety-critical applications, while optimizes the analysis parameters for
non-safety-critical ones.

In future work, a more complex system with many applications is needed to
study a hybrid solution like this one, as its advantages are clearer with a higher
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number of applications. In our example scenario, the three applications would
be mapped to three controllers: two zone and one domain controllers. These
controllers would be underutilized, as only small applications are executed on
them. The cost and the failure probability of such an implementation are always
higher than, for example, the Zone-based topologies, as it adds additional domain
resources compared to it.

Configuration of the communication networks

In the previous examples we have used CAN buses, switched Ethernet, and direct
Ethernet connections in the domains or zones, and a switched Ethernet connection
in the backbone network. In particular, the backbone network had a star configu-
ration. Variations of these configurations are possible: for example, the backbone
network can be configured as a ring, as shown in Figure 5.27 for a zone-based
topology. In this case, each resource in the backbone network is connected to the
central unit and to two other resources in the network. This solution has intrinsic
redundancy in the backbone network, which can be used for decomposing the ASIL
requirements of the communication nodes that use it. The splitter and merger are
in this case part of the backbone network itself, positioned in the entrance point
of each controller or central ECU to the network.

The central ECU can be substituted by one of the controllers: for example,
Figure 5.28 shows a zone-based architecture topology with no central unit and a
ring backbone network, in which each zone controller is connected to two other
zones. One of the controllers, for example, the Front Right Zone controller, acts
as a central unit and receives data from multiple zones. Also in this scenario
redundancy in the backbone network can be used to send redundant data via
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Figure 5.28: Zone-based architecture topology with ring backbone network and
no central unit.

redundant paths.
As a future direction, our transformation process described in Section 4.3 can

benefit from the intrinsic redundancy of the system by using mapping and task
allocation algorithms such as [21] and [147] with additional constraints related to
the independence of the redundant tasks.

5.4 Analysis of redundant architecture topologies
without fail-silent assumption

In this section, we analyse the effects of non-fail-silent application nodes on the
system. As described in Section 3.4.1, the application failure event of the fault tree
is now a combination of the basic events related to all application nodes mapped
to the resource, reproduced here in Figure 5.29.

In this scenario, sharing a resource between nodes with different ASIL re-
quirements will drastically affect the failure probability of the more safety-critical
applications. As discussed in Section 2.6, two techniques are used to isolate
the non-fail-silent nodes: physical separation and virtualization. With physical
separation, nodes are mapped to different resources to not interfere with each
other. With virtualization, a virtualization mechanism provides isolated Virtual
Resources (VRs) in a single physical resource, making the separate VRs fail-silent
with respect to each other. We map the application nodes with different ASIL
requirements to different VRs so that mixed-critical nodes do not interfere with
each other. Even by using the two techniques, if different applications but with
the same ASIL requirements are mapped to the same resource, they affect each
other’s failure probability and the system requirements might not be met. In this
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Figure 5.30: Illustrative applications before redundancy is introduced with the
transformation process in the LLSC node, circled in red.

case, an analysis is required to calculate the failure probability of each application
and compare it to its requirements.
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5.4.1 Illustrative system implementation - application and
resource layers

As in the previous section, we use three illustrative applications with different
ASIL requirements, shown in Figure 5.30. The only variation with the previous
experiments is the separation of the brakes actuator into two parts: a front brake
actuator and a rear brake actuator. This variation modifies the mapping of the
Low-Level Speed Control (LLSC) node in zone-based architectures since it must
now deliver actuator signals to both the front and the rear zone. As seen in
Figure 5.29, if a node fails, also the other nodes sharing the same resource fail.
Without the use of a proper isolation technique and the fail-silent assumption for
application nodes, lower ASIL applications could interfere with safety-critical ones,
effectively leading to a high failure probability of the safety-critical application due
to mixed-criticality on a shared resource.

In this experiment, we analyse the difference between the two isolation tech-
niques in the presence of both sharing resources and redundancy. Redundancy
is used in the LLSC application node, which is part of the ASIL D application.
The transformation process is applied to the LLSC node. Note that the standard
transformation process described in Section 4.3 uses physical separation since it
introduces new separate redundant resources. When using physical separation, the
transformation process uses strategy 2 when deciding how to modify the resource
layer, which substitutes the original resource with new redundant ones. When we
use virtualization, we use instead strategy 3, which adds VRs with the decomposed
ASIL specification, and adds one VR with the original one to reduce the number
of application nodes that are modified. In this case, we assume that keeping
the original virtual resource is not an expensive solution, as long as the original
resource has enough space to host the VRs.

In terms of resource layer, we choose two architecture topologies: domain-
based and zone-based architectures. In both cases, we consider a controller-based
approach, which means that the controllers have some computational power and
the application nodes are processed by them when possible. The backbone network
is implemented again with a star topology.

In our domain-based architecture scenarios, nodes with different ASIL require-
ments do not share the same resources: the non-safety critical applications are
confined to their domain, while only part of the safety-critical application, the
data fusion node, is executed in the central ECU. The isolation is only required
by the redundant nodes of the application (the redundant LLSC nodes). The
resource layer for domain-based architectures before the transformation process is
the same as the previous experiments, with the modification of the front and rear
brakes actuator. Physical separation or virtualization is only used in the safety-
critical domain controller after the transformation process. Figure 5.31 shows the
part of the domain-based resource layer that is modified by the transformation
process when using virtualization.

Figure 5.32 shows our zone-based hardware resources implementation with
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Figure 5.31: Two virtualized domain controllers are used to execute the
redundant LLSC node, while a third virtualized domain controller executes the
non-redundant safety-critical nodes.

physical separation. The system is divided into two zones (front and back) plus a
star backbone network and physically separated central units. Each zone contains
parts of both safety-critical and non-safety critical applications, compared to the
domain-based topology in which the domain controllers only have application
nodes belonging to the same domain and so with the same ASIL requirement.
For this reason, the zone controllers, the Ethernet switch 1 and 2, the Ethernet 3
and 6, the backbone network, the central ECU, and the CAN buses 1 and 2 are
physically separated.

Figure 5.33 shows instead the resource layer of the zone-based architecture
when using virtualization.

Figure 5.34 shows the part of the zone-based architectures with virtualization
that is transformed with the transformation process that substitutes the LLSC
node with redundant ones. Four different virtual resources are used: one for the
non-safety-critical applications, one for the safety-critical non-redundant applica-
tion nodes, and two for the safety-critical redundant application nodes.
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Figure 5.32: Resource layer in the zone-based architecture with physical separa-
tion after applying the transformation process to the LLSC node.
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Figure 5.33: Resource layer in the zone-based architecture with virtualization
before applying the transformation process to the LLSC node.
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Figure 5.34: Four virtualized ECUs are used to execute the application nodes in
zone-based virtualized architectures.

Table 5.1 summarizes the effects of the transformation to the applications in
the different scenarios.

5.4.2 Evaluation of the four implementations
We evaluate the four different implementations by using the analysis described
in Chapter 4. The first parameters that we analyse are the failure probability of
the safety-critical application and the cost of the system. Their values are shown
in Figure 5.35. The zone-based topology with physical separation is the most
expensive since all the controllers and the central unit must be duplicated for
both redundancy and mixed-criticality, which in the virtualized solution become
Virtual Resources on the same resource.

In terms of failure probability, the best architecture topology is in this case the
Zone Phys, which executes redundantly on the central ECUs most of the safety-
critical application (pre-processing, processing, and post-processing parts). Since
in this scenario the splitter and the merger failure events are dominant in the fault
tree, the failure probability of the Zone Phys is lower than the non-redundant
solution. This is because of the failure rate metric chosen in Chapter 4: splitters
and mergers have a failure rate 10 times lower than other resources. In case
of virtualization instead, part of the safety-critical application is executed non-
redundantly in the ASIL D virtual central ECU, which has a higher failure rate
compared to the splitter and merger resources, and thus the failure probability is
in Zone Virt 3.7% higher than Zone Phys, while being 14.5% cheaper.

For domain-based topologies, part of the application (the central data fu-
sion node) is always executed in the central ECU, in a non-redundant and non-
virtualized way. The failure rates of these topologies are always higher than the
zone-based ones since this part of the application does not benefit from using
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Table 5.1: Summary of the system modifications in physical separation and
virtualization scenarios in the presence of redundancy in the LLSC application
node.

Architecture Physical separation Virtualization

Domain-
based

(Dom Phys) The nodes
that require isolation are
mapped to the physically
separate redundant
safety-critical controllers,
which have lower ASIL
specifications due to the
ASIL decomposition
technique. The other nodes
executed in the controller
are redundant as well and
require substitutions during
the transformation process.

(Dom Virt) The
redundant LLSC nodes are
mapped to separate virtual
domain controllers, which
are generated by a
safety-critical domain
controller that runs a
virtualization mechanism
and have lower ASIL
specification thanks to the
ASIL decomposition. The
other nodes executed by the
original domain controller
are mapped to a third
virtual resource with ASIL
D (original) specifications.

Zone-based

(Zone Phys) Multiple
zone controllers and central
ECUs are present in the
resource layer because of
mixed-criticality. The
safety-critical central ECU
is substituted during the
transformation process and
the nodes that were
mapped on it require
substitution during the
transformation process.

(Zone Virt) Virtual
resources are used for both
mixed-criticality and
isolation of redundant
nodes. Four virtual central
ECUs are used: one for the
non-safety-critical
applications, one for the
safety-critical
non-redundant nodes, and
two redundant ones for the
redundant safety-critical
nodes. Note: if more ASILs
were present, even more
VRs would be required.
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Figure 5.35: Failure probability (failures/hour) versus Cost of the four imple-
mentations.

safety-oriented resources with a lower failure probability. Compared to the zone-
based topologies, when using physical separation the failure probability is higher
than when using virtualization: this effect appears because when the domain-
controller is substituted with redundant ones, an additional splitter or merger
is necessary for each predecessor or successor of the resource, and the domain
controller is connected to many different communication resources. While for zone-
based topologies the central ECU is connected only to the backbone network and a
single splitter and a single merger are needed, in our domain-based topologies four
splitters and two mergers are needed. In the case of virtualization, again only one
splitter and one merger are used since we introduce a third virtual resource with
ASIL D to map the non-redundant safety-critical application nodes. In general,
when the resource that is being substituted has a lot of connectivity, virtualization
helps in reducing the complexity and the number of splitter and mergers necessary
in the system (even when they are mapped to separate resources as described in
Section 3.3.4), and those are directly contributing to the failure probability of the
application.

Figure 5.36 shows the communication and functional loads of the system based
on the values given to each application node. The zone-based topologies, despite
their lower failure probabilities, have higher total communication and functional
loads: more raw data (with high bandwidth) from the sensors is transmitted
towards the redundant central units, which are also performing the most computa-
tional heavy tasks redundantly. Virtualization does reduce these two parameters in
zone-based topologies since the preprocessing and the central data fusion parts are
executed non-redundantly in the virtual ASIL D central ECU. The communication
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Figure 5.36: Total communication load and total functional load of the four
implementations.

load is still higher than in the respective domain-based topology. The functional
load is instead equal to that of the respective domain-based topology since the
same number of functional nodes is redundant.

In the domain-based scenario, the sensor raw data stops at the domain con-
trollers to be processed, resulting in lower utilization of the backbone network
and thus lower total communication load. Moreover, virtualization allows keeping
part of the application that was mapped on the original safety-critical domain
controller in a non-redundant way on a virtual ASIL D resource, lowering both
the functional and the communication load.

Figure 5.37 shows the total cable length based on the normalized 2D co-
ordinates associated with the physical layer. Another advantage of zone-based
topologies is a lower total cable length. Moreover, virtualization removes the need
to duplicate communication links, thereby requiring fewer resources, and hence a
lower total cable length.

With these experiments, we show that depending on the characteristics of
the system, one of the two isolation techniques is preferable to the other. In
our scenario, virtualization has clear advantages in terms of the cost of the final
system, since the cost of the virtualization mechanism is lower compared to the
use of multiple separate resources. Moreover, by using virtual resources to isolate
the part of the application that requires redundancy from the rest of the nodes
mapped on the same resource, the modifications that are required to be made to
the application are contained and the total functional and communication loads
are lower compared to using physically separated resources. With fewer resources,
also the total cable length is lower when using virtualization. However, depending
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Figure 5.37: Total communication cable length of the four implementations.

on the system configuration, the failure probability of virtualized systems can be
higher than physically separated ones. For example, this happens in our zone-
based scenario: the combined failure probability of the additional virtualization
mechanism and the splitter and merger resources is higher than the failure proba-
bility of the physically separated system, which only required one splitter and one
merger.

5.5 Conclusions
In this chapter, we presented an analysis of domain and zone-based automotive
architecture topologies, with vehicle-centralized or controller-based mappings. The
automotive system is modelled and analysed with the three-layer model presented
in Chapter 3. The developed framework allows a system designer to introduce
redundancy in selected nodes of the system, with an automated procedure that
follows the ISO26262 ASIL decomposition guidelines, as described in Chapter 4.

We first assume that the application nodes are fail-silent so that sharing a
resource does not impact the failure probability of an application. Our results
show how introducing redundancy impacts the chosen architecture topologies.
In our experiments, when redundancy is required, the domain-based controller-
based (D-CB) topology offers the best balance between the analysed parameters
in the case of fail-silent nodes. The zone-based topologies excel instead in terms of
total communication cable lengths. We expect hybrid solutions to appear in the
future with zones for some applications (non-safety-critical, e.g. body and comfort
functions) and separate domains with their isolated domain controller for others
(safety-critical, e.g. driver replacement ADAS).

We then discard the fail-silent assumption, and use two isolation techniques,
physical separation and virtualization, to separate non-fail-silent application nodes
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so that they do not interfere with each other. Moreover, we use virtualization
to isolate the redundant nodes with decomposed ASIL requirements, since VRs
provide independence that is necessary for the redundancy. Two architecture
topologies with redundant applications are analysed when using these two tech-
niques. We identify trends in the different topologies when introducing redundancy
or applying isolation techniques. For example, virtualization results in a reduction
of the total communication cable length, the functional load, and the communi-
cation load. In our experiments, the Zone Virt topology is the best in terms of
total communication cable length and cost, while if the optimization parameter
is different, another topology is recommended, e.g. Dom Virt for the minimum
communication load.

Based on the architecture topology and the system configuration, the effects
of physical separation and virtualization can vary. A complete analysis must be
performed, as we did in this chapter for our systems, before choosing which type
of isolation technique and architecture topology is better for a different system
since many factors will impact the final results.

Note that the results of our experiments are obtained with the cost and failure
rates metrics described in Chapter 4. For example, the failure probability of
the system in domain-based topologies when virtualization is applied is reduced,
despite introducing additional Common-Cause Fault (CCF) possibilities due to
the use of virtualization. For example, with a higher failure rate of the application
nodes mapped to the VRs (i.e. due to an increased sharing of the VRs), the results
of the analysis would change and could, for example, exceed the maximum failure
probability that an ASIL D application can have. However, our method is general
and by analysing each system we can evaluate and quantify the different solutions.





6
Conclusion and future directions

6.1 Conclusions

With this work, we discussed multiple topics related to emerging automotive
systems. We defined a model to describe an automotive system and created a
tool to analyse it with a quantitative analysis. The evaluation consists of the
calculation of five parameters: failure probability of an application, cost of the
system, total communication cable length, total functional and communication
loads. Moreover, a Common-Cause Fault (CCF) analysis is performed on the
generated fault trees to validate the independence requirements of redundant
elements (Chapter 3). By following the guidelines of the ISO26262 standard we
can modify a modelled system and obtain redundant applications and hardware
resources in compliance with the ASIL decomposition technique (Chapter 4). The
insights gained with this work help us define the benefits and costs of upcoming
automotive systems and give us intuitions for characteristics necessary in future
automotive resources. The discussion about the splitter and merger elements
emphasises the similarities between redundancy techniques, which are necessary for
fail-operational safety-critical systems. We use our framework to evaluate different
use-cases. An in-depth analysis of different architecture solutions is performed to
identify which architecture topologies will be prevalent in the future. Last, we
analyse how, without a fail-silent assumption, mixed-criticality nodes could be a
problem for safety-critical systems, and we describe isolation techniques to satisfy
the Functional-Safety Requirement (FSR) of safety-critical systems (Chapter 5).

While developing our framework we encountered many challenges. First of all,
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the variety of automotive applications, with completely different requirements in
terms of performance, safety, bandwidth, etc. makes it difficult to generalize them
with a single model. The key challenge is choosing the correct abstraction level, in
which enough details are available to perform meaningful analysis, but some of the
more specific technical details are left out. For example, we encountered this when
we generalized the failure rates of applications and resources, since the low-level
parts that form the final failure rate are very specific technical details that are often
dependent on the actual components that are used. Moreover many different types
of resources are available: multi-core Electronic Control Units (ECUs), network
components, communication cables, power supplies, sensors, actuators, etc. With
our analysis, we abstract from the real component that is used, and for example,
we do not differentiate the cores in a multi-core processor. The resource layer can
be expanded with more technical details if the functional safety analysis requires
it, however the lower the level of details, the higher the number of special cases in
the analysis and the introduction of redundancy with the model transformations.

The model transformations that we use to introduce redundancy in the system
are intuitive when applied to small-scale projects, but once the system has multiple
applications and many resources with possibly multiple domains and controllers,
manually tracking all the modifications that the system requires when making
part of it redundant becomes a difficult task. Our automated framework allows
the user to immediately see the effects of such transformations even in a more
complex system, and the analysis provides insightful numbers to understand if the
transformation improves the current system or not. While the proposed transfor-
mations do not cover the vast range of redundancy patterns that one can imagine,
the transformation process describes all the steps that are necessary to generate a
new and redundant valid graph. With adaptations of the base transformations and
the transformation process, even different redundancy patterns can be obtained,
as described in Chapter 4.

Discussion over the high-level research question

At the beginning of this thesis, our initial research question was: How can we model
fail-operational and mixed-critical automotive systems so that 1) the Electrical and
Electronic (E/E) architecture is evaluated together with the functional safety of the
system, 2) quantitative metrics can be used to compare different solutions, and 3)
fail-operational capabilities can be introduced in the system at need?

The answers to these questions are found in the different chapters that describe
our model and analysis framework. First of all, we propose a model that allows for
the evaluation of different parameters of an automotive system, while at the same
time performing a functional safety evaluation related to the Automotive Safety
Integrity Level (ASIL) requirements of the applications and the resources specifi-
cations. The parameters that we choose to calculate allow us to provide system-
level details related to different system implementations. With our discussion, we
highlight the necessary details that the model requires to provide a meaningful
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analysis. While we focus on functional safety and system-level properties of the
system, other analyses can be performed, e.g. performance analysis. Our open
framework is adaptable and additional properties can be added to the different
layers to perform different types of analyses.

In terms of fail-operational capabilities, our transformations model heteroge-
neous redundancy in the system and introduce splitters and mergers with safety-
critical characteristics to manage the redundancy. As discussed in Chapter 2, there
are many redundancy patterns and different ways to implement fail-operational
systems. With the proposed transformation process, we provide the details for one
of them, and with minor adaptations to the process even different patterns can be
introduced in the system.

We have analysed mixed-critical applications with no fail-silent application
nodes separately from the rest of the experiments. The effects of sharing the same
resource between applications with different ASIL requirements are critical when
the fail-silent assumption is not valid. The techniques that are used to isolate
the safety-critical applications affect the E/E architecture by either increasing the
number of resources or by requiring virtualization. The five analysis parameters
vary depending on the topology and isolation technique that is used.

While abstracting from the low-level technical details of the implementations,
the system model must remain realistic and usable. The decisions that we made
in its description are made to generalize as much as possible and describe all types
of automotive systems, while still generating interesting and non-trivial results.

We have discussed how most of the analysis parameters are highly dependent
on the system configuration, both in terms of applications and resources that
are used, their mapping, the architecture topology that is chosen, and the input
metrics. Even generic and intuitive assumptions are not always correct: for
example, we have seen how zone-based architecture topologies, which are built
to minimize the total cable length, do not always achieve that objective in the
presence of redundancy. For these reasons, we strongly believe that a complete
analysis framework is necessary to analyse the different implementations of an
Advanced Driving Assistance System (ADAS) or Autonomous Vehicle (AV) sys-
tem, to provide quantitative and correct results.

6.2 Future directions and possible extensions of
the framework

While in this work we created a stand-alone framework, its extension or integration
with other tools can be done to improve and extend the analysis that is currently
performed:

• Fail-silent system elements: in this work we have analysed applications
with and without fail-silent nodes. However, a similar behaviour can be
expected by resources sharing locations or other common dependencies such
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as the power supply. Moreover, in the current model, the failure of a
dependency propagates to the successor elements, but we are not considering
the scenario in which the failure of an element affects its predecessors. In
essence, each edge present in the three-layer model creates a dependency
that allows faults to propagate to the rest of the system, and each edge can
have a fail-silent or non-fail-silent behaviour. While it is possible to capture
failure rates of application nodes, it is more difficult to define failure rates
for failure of the resources that would lead to structural problems affecting
other elements (e.g. short-circuits or explosion of batteries). For a complete
functional-safety analysis of a safety-critical system, all these dependencies
shall be taken into account.

• Performance analysis of an application: while the current analysis
evaluates five system-level parameters, the model allows for the addition
of other parameters, such as latency or throughput of an application. The
model uses directed graphs, which are used in other models of computations
such as Dataflow. Another option would be to integrate the safety analysis
and the transformation process developed in this work with a tool that
performs timing analysis, e.g. the network simulator OMNeT++.

• Generation of fault tree pattern for different types of mergers: as
mentioned in Section 3.4.1, the implemented fault tree generation algorithm
assumes that all mergers are data oriented, in-band, or data evaluation merg-
ers. To support the generation of the fault tree pattern of additional merger
types, an extension of the framework is required. The absolute numbers in
the results of the experiments would change, but the considerations related
to the architecture topologies remain valid.

• Automatic design space exploration: in the described framework, we
manually select the points in the applications in which we want to introduce
redundancy, then the system is automatically transformed with the transfor-
mation process. However, by using the analysis parameters as optimization
metrics, an automatic design space exploration process can be performed.
Such a procedure could identify implementations with a specific number
of redundant elements that correspond to minima in the optimization cost
metric. While this procedure is trivial for very small applications, the lack
of scalability of automated design space exploration techniques is one of the
main limitations of such methods.

• Optimized mapping of transformed elements: many works in the
literature focus on the mapping and assignment of tasks to the hardware
resources. Automating this process is a complex problem in terms of scala-
bility, but in our case, only a limited number of nodes or resources require
remapping during the transformation process. Currently, we add or mod-
ify existing resources to accommodate the new redundant nodes, but this
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process can be optimized to identify existing resources to which the nodes
can be mapped, respecting the resource utilization limitations, the ASIL
requirements of the nodes compared to the specification of the resource,
and the ASIL decomposition independence requirements. By optimizing the
mapping of the applications, no unnecessary resources are used and the cost
of the system is lower than unoptimized implementations.
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List of abbreviations

ADAS Advanced Driving Assistance System

ACC Adaptive Cruise Control

ASIL Automotive Safety Integrity Level

AV Autonomous Vehicle

BDD Binary Decision Diagram

CCF Common-Cause Fault

CF Cascading Fault

ECC Error Correction Code

ECU Electronic Control Unit

E/E Electrical and Electronic

EMI Electro-Magnetic Interference

FMEA Failure Mode and Effect Analysis

FRER Frame Replication and Elimination for Reliability

FSR Functional-Safety Requirement

HARA Hazard Assessment and Risk Analysis

IVN In-Vehicle Network

ITE If-Then-Else

LLSC Low-Level Speed Control

MooN M-out-of-N

OEM Original Equipment Manufacturer

QM Quality Management
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188 LIST OF ABBREVIATIONS

QoS Quality of Service

RTE Runtime Environment

RTOS Real-Time Operating System

SG Safety Goal

SIL Safety Integrity Level

SoP Sum of Products

TLE Top-level Event

TS Throttle Signal

TSN Time-Sensitive Networking

TSR Technical Safety Requirement

UML Unified Modeling Language

VCAN Virtual Controller Area Network

VLAN Virtual Local Area Network

VR Virtual Resource



List of Terminology

The entries with a citation are reported directly from the source.

• architecture: representation of the structure of the system. Includes the
functions to application and resource layers.

• ASIL decomposition: Apportioning of redundant safety requirements
to elements, with sufficient independence, for the same safety goal. The
objective being reducing the ASIL of the redundant safety requirements that
are allocated to the corresponding elements [81].

• basic event: in a fault tree, an error or a failure in an element. A failure
rate is associated to a basic event.

• binary decision diagram: a directed acyclic graph composed of terminal
and non-terminal vertices (nodes) which are connected by edges. Terminal
vertices correspond to the final state of the system, failure (1) or success
(0), and non-terminal vertices correspond to the basic events of the fault
tree. Each non-terminal vertex has a 1 branch, which represents basic event
occurrence, and a 0 branch, which represents basic event non-occurrence [6].

• event: in a fault tree, an intermediate step that is expanded into lower levels
via gate symbols.

• element: system or part of a system including components, hardware,
software, hardware part, and software units [81].

• fail-safe: in the presence of a failure, the system reaches a safe condition.

• fail-silent: in the presence of a failure, the element does not cause harm or
interferences with other elements of the system.

• failure: termination of the ability of an element or an item to perform a
function as required [81].

• fault: abnormal condition that can cause an element or an item to fail [81].

• fault-tolerant: an element that continue operating properly in the event of
one or multiple faults.
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• fault tree: a directed acyclic graph that shows the logical connections
between the failure of individual basic events and the failure of a top-level
event. It uses a combination of type of events (basic, external, intermediate)
and boolean gates (OR, AND, XOR). Advanced fault trees use additional
elements, e.g. priority AND gates.

• hazard: potential source of harm [81].

• independence: absence of a dependent failure between two or more ele-
ments that could lead to the violation of a safety requirement [81].

• merger: redundancy-related element that ensures that only correct data
out of its redundant input ports is forwarded to the next part of the system.

• multi-point fault: individual fault that, in combination with other inde-
pendent faults, leads to a multiple point failure [81].

• residual fault: a (part of a) fault that is outside the diagnostic coverage of
a safety mechanism.

• safe fault: a fault that does not lead to the violation of a safety goal.

• safety case: a document that provides proofs that a system is safe and
follows the correct safety guidelines.

• single-point fault: a fault not covered by safety mechanisms that leads to
the failure of an element.

• splitter: a redundancy element that replicates the data on its input ports
to its output ports.
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Table A.1: Overview of the three-layer model symbols

Symbol Meaning

Ga
Application graph. A system contains one or more application
graphs.

Va Set of application nodes, part of an application graph Ga.

Ea
Set of edges connecting the application nodes, part of an
application graph Ga.

Gr Resource graph. A system contains a single resource graph.
Vr Set of resources, part of the resource graph Gr.

Er
Set of edges connecting the resources, part of the resource graph
Gr.

Edep
Set of edges connecting the resource to the resources on which
they depend.

Gp
Physical space graph. A system contains a single physical space
graph.

Vp Set of physical locations, part of the physical space graph Gp.
Mar Set of mapping edges from application nodes to resources.
Mrp Set of mapping edges from resources to physical locations.
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Table A.2: Overview of the layer properties

Property Layer Description

Type Application
Sensor, actuator, functional, communication,
splitter, merger. Value assigned to application
nodes.

ASIL
requirement Application ASIL requirement of an application node. The

possible values are QM, A, B, C, D.

Original ASIL Application
System-level ASIL requirement of an
application node, before ASIL decomposition.
The possible values are QM, A, B, C, D.

Functional load Application Positive integer value, representing the
resource usage of a functional node.

Communication
load Application Positive integer value, representing the

resource usage of a communication node.

λa-x Application Failure rate of the node x expressed in failures
per hour.

Type Resource
Sensor, actuator, functional, communication,
splitter, merger, power source, power line.
Each resource has one or multiple types.

ASIL
specification Resource ASIL specification of a resource. The possible

values are QM, A, B, C, D.

Maximum load Resource
Positive integer value, representing the
maximum functional or communication load
that a resource can handle.

Cost Resource The cost of a resource.

λr-y Resource The failure rate of the resource y expressed in
failures per hour.

Virtualized Resource Boolean value. True if the resource is a
Virtual Resource (VR), false otherwise.

2D Coordinate Physical 2D coordinates of the physical location in the
vehicle. Normalized between −1.00 and 1.00.

λp-z Physical Failure rate of the location z expressed in
failures per hour.





B
Input format

The structure of the input file that is passed to the analysis tools is shown in
Listing B.1. Listing B.2 shows an example input file for a system with one
application composed by three nodes, one multifunctional resource on which all the
application nodes are mapped, and one physical location on which the resource
is mapped. The input files can be manually written or generated from other
sources: a python parser that uses the xlrd package is used to parse Microsoft Excel
tables into the textual input format, while a macro function is used to extract the
Microsoft Excel table from a visual graph designed in Microsoft Visio. Figure B.1
shows part of a Microsoft Excel table that can be parsed into the textual input
format, taken from the table used for one of the experiments in Chapter 5. The
Microsoft Excel file contains one tab for each layer of the model, plus an additional
tab for each set of edges: Ea, Er, Edep, Mar, and Mrp. Figure B.2 shows a part of
the Microsoft Visio file that is used for generating the Microsoft Excel tables. The
parameters are inserted as a string in the name of each figure. The file contains
a separate tab for each layer, plus two additional tabs for the mapping sets Mar

and Mrp.
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1 create
2 # --- APP
3 # addV add Vertex
4 # nodeLevel app
5 # appName
6 # nodeName
7 # OrigNode , "stop" when done
8 # nodeType - sensor , actuator , splitter , merger , functional ,

communication
9 # ASIL

10 # original ASIL
11 # load
12

13 # --- APP_CONN
14 # addE
15 # source
16 # target
17

18 # --- RES
19 # addV add Vertex
20 # nodeLevel res
21 # nodeName
22 # Types - sensor , actuator , splitter , merger , functional ,

communication , powerline , powersource - stop when you are done
23 # ASIL
24 # Virtualized
25 # maxLoad
26

27 # --- RES_CONN
28 # addE
29 # source
30 # target
31

32 # --- APP_MAP
33 # addE
34 # source
35 # target
36

37 # --- PHY
38 # addV Add Vertex
39 # nodeLevel phy
40 # nodeName
41 # x_pos
42 # y_pos
43

44 # --- RES_MAP
45 # addE
46 # source
47 # target
48

49 leave
50 save

Listing B.1: Structure of the input file in textual format.
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1 create
2

3 addV
4 app
5 main
6 app_sensor
7 stop
8 sensor
9 D

10 D
11 100
12

13 addV
14 app
15 main
16 app_communication
17 stop
18 communication
19 D
20 D
21 100
22

23 addV
24 app
25 main
26 app_actuator
27 stop
28 actuator
29 D
30 D
31 100
32

33 addE
34 app_sensor
35 app_communication
36

37 addE
38 app_communication
39 app_actuator
40

41 addV
42 res
43 res_multifunctional
44 sensor
45 actuator
46 communication
47 functional
48 stop
49 D
50 0
51 100
52

53 addE
54 app_sensor
55 res_multifunctional
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56

57 addE
58 app_communication
59 res_multifunctional
60

61 addE
62 app_actuator
63 res_multifunctional
64

65 addV
66 phy
67 phy_p1
68 -0.4
69 0
70

71 addE
72 res_multifunctional
73 phy_p1
74

75 leave
76 save

Listing B.2: Example input graph in textual format.

nodeName nodeLevel resType resASIL maxLoad
res_temperature_sensor res sensor QM 100
res_central_ecu res functional&communication D 100
res_dom_ctrl_comf res functional&communication D 100
res_ethernet_switch_3 res functional&communication D 100
res_direct_ethernet_1 res communication D 100
res_ethernet_10 res communication D 100
res_ethernet_8 res communication D 100
res_surrView_f res sensor QM 100
res_surrView_r res sensor QM 100

Figure B.1: Part of a Microsoft Excel-based input file used for the experiments
in Chapter 5.
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Figure B.2: Part of a Microsoft Visio-based input file used for the experiments
in Chapter 5.
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Figure C.1: The application graph of the EcoTwin lateral control example used
in Chapter 4, after the full transformation process. Generated from the developed
framework.
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Figure C.2: The resource graph of the EcoTwin lateral control example used in
Chapter 4, after the full transformation process. Generated from the developed
framework.
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Figure C.3: The full graph of the EcoTwin lateral control example used in
Chapter 4, after the full transformation process. Generated from the developed
framework.
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Figure C.4: The fault tree graph of the EcoTwin lateral control example used
in Chapter 4, after the full transformation process. Generated from the developed
framework.



208 APPENDIX C: ECOTWIN LATERAL CONTROL APPLICATION GRAPHS

Figure C.5: The approximated fault tree graph of the EcoTwin lateral control
example used in Chapter 4, after the full transformation process. Generated from
the developed framework.
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Name:app
_camera_fr
ont, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_b
ack, ASIL:D, 
Type:senso
r, Load:100

Name:app
_high_level
_trajectory
, ASIL:D, 
Type:com
munication
, Load:10

Name:app
_screen, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
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ters, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
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Type:com
munication
, Load:100

Name:app
_rear_heat

ers, 
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Type:actua
tor, Load:1

Name:app
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ters_data, 
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Type:com
munication
, Load:1

Name:app
_in‐

vehicle_te
mp_sensor
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Type:senso
r, Load:100

Name:app
_surround
_view_f, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_HVAC_co
ntrol_signa

ls, 
ASIL:QM, 
Type:com
munication
, Load:1

Name:app
_HVAC_co
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ASIL:QM, 
Type:functi

onal, 
Load:2

Name:app
_surround
_view_b, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surr_view
_complete, 
ASIL:QM, 
Type:functi

onal, 
Load:20

Name:res
_tempera
ture_sens

or, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_central_

ecu, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_direct_et
hernet_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_10, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_8, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_surrView

_f, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_surrView

_r, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_ethernet

_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_fwd_cam

, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_back_ca

m, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_radar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_ethernet

_4, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_5, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_6, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_2

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_lidar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_ethernet

_7, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_throttle_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_brakes_a
ctuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_steering_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_can_bus

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_rear_hea
ters_actu
ator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:res
_front_he
aters_act
uator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:res
_screen, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_direct_et
hernet_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:app
_radar_fro
nt, ASIL:D, 
Type:senso
r, Load:100

Name:app
_radar_str

eam, 
ASIL:D, 

Type:com
munication
, Load:50

Name:app
_radar_pre
processing, 
ASIL:D, 

Type:functi
onal, 

Load:40

Name:app
_radar_obj

ects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_lidar, 
ASIL:D, 

Type:senso
r, Load:100

Name:app
_lidar_prep
rocessing, 
ASIL:D, 

Type:functi
onal, 

Load:80

Name:app
_lidar_stre
am, ASIL:D, 
Type:com
munication
, Load:100

Name:app
_lidar_obje
cts, ASIL:D, 
Type:com
munication
, Load:20

Name:app
_brakes_ac
tuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_throttle_a
ctuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_steering_
ctrl_signal, 
ASIL:D, 

Type:com
munication
, Load:5

Name:app
_throttle_s

ignal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:app
_brakes_si

gnal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:app
_steering_s

ensor, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_camera_b
ack_stream
, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_camera_fr
ont_strea
m, ASIL:D, 
Type:com
munication
, Load:60

Name:res
_ethernet
_switch_3

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:app
_surround
_view_f_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_surround
_view_b_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_surr_view
_final_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:res
_dom_ctrl
_comf, 

Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet
_switch_1

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_dom_ctrl
_driv_repl
acement, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_9, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:app
_surround
_view, 

ASIL:QM, 
Type:functi

onal, 
Load:30

Name:app
_surround
_view_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:app
_camera_p
reprocessin
g, ASIL:D, 
Type:functi

onal, 
Load:50

Name:app
_data_fusi
on_and_pr
ocessing, 
ASIL:D, 

Type:functi
onal, 

Load:200

Name:app
_camera_o
bjects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_desired_v
ehicle_stat
e, ASIL:D, 
Type:com
munication
, Load:5

Name:app
_low_level
_speed_co

ntrol, 
ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_low_level
_lateral_st
ate_contro
l, ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_surr_view
_enchance
d_objects, 
ASIL:QM, 
Type:com
munication
, Load:10

Non-safety-critical 
application node

Safety-critical 
application node

Non-safety-critical 
resource

Safety-critical 
resource

Backbone 
network and 
central ECU

Name:app
_in‐

vehicle_te
mp_sensor
_data, 

ASIL:QM, 
Type:com
munication
, Load:1

Figure D.1: Mapping of the applications in the Domain-based Vehicle-Centralized
architecture (D-VC).
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Name:app
_camera_fr
ont, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_p
reprocessin
g, ASIL:D, 
Type:functi

onal, 
Load:50

Name:app
_camera_fr
ont_strea
m, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_data_fusi
on_and_pr
ocessing, 
ASIL:D, 

Type:functi
onal, 

Load:200

Name:app
_camera_b
ack, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_o
bjects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_high_level
_trajectory
, ASIL:D, 
Type:com
munication
, Load:10

Name:app
_desired_v
ehicle_stat
e, ASIL:D, 
Type:com
munication
, Load:5

Name:app
_low_level
_speed_co

ntrol, 
ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_low_level
_lateral_st
ate_contro
l, ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_rear_heat
ers_data, 
ASIL:QM, 
Type:com
munication
, Load:100

Name:app
_front_hea
ters_data, 
ASIL:QM, 
Type:com
munication
, Load:1

Name:res
_central_

ecu, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_surrView

_r, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_back_ca

m, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_lidar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_rear_hea
ters_actu
ator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:app
_radar_fro
nt, ASIL:D, 
Type:senso
r, Load:100

Name:app
_radar_str

eam, 
ASIL:D, 

Type:com
munication
, Load:50

Name:app
_radar_pre
processing, 
ASIL:D, 

Type:functi
onal, 

Load:40 Name:app
_radar_obj

ects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_lidar, 
ASIL:D, 

Type:senso
r, Load:100

Name:app
_lidar_prep
rocessing, 
ASIL:D, 

Type:functi
onal, 

Load:80

Name:app
_lidar_stre
am, ASIL:D, 
Type:com
munication
, Load:100

Name:app
_brakes_ac
tuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_throttle_a
ctuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_steering_
ctrl_signal, 
ASIL:D, 

Type:com
munication
, Load:5

Name:app
_throttle_s

ignal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:app
_brakes_si

gnal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:res
_ethernet

_10, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_5, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_2

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100Name:res

_ethernet
_7, 

Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_9, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

   

 

 

 

   

 

 

Name:app
_steering_s

ensor, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:res
_zone_ctrl
_back, 

Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:app
_camera_b
ack_stream
, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_lidar_obje
cts, ASIL:D, 
Type:com
munication
, Load:20

Name:res
_ethernet

_8, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_3

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Non-safety-critical 
application node

Safety-critical 
application node

Back zone

Front zone

Backbone 
network and 
central ECU

Name:app
_screen, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
_front_hea

ters, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
_surr_view
_final_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:app
_rear_heat

ers, 
ASIL:QM, 
Type:actua
tor, Load:1

Name:app
_in‐

vehicle_te
mp_sensor
, ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surround
_view_f, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surround
_view, 

ASIL:QM, 
Type:functi

onal, 
Load:30

Name:app
_surround
_view_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:app
_HVAC_co
ntrol_signa

ls, 
ASIL:QM, 
Type:com
munication
, Load:1

Name:app
_HVAC_co

ntrol, 
ASIL:QM, 
Type:functi

onal, 
Load:2

Name:app
_surround
_view_b, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surr_view
_enchance
d_objects, 
ASIL:QM, 
Type:com
munication
, Load:10

Name:app
_surr_view
_complete, 
ASIL:QM, 
Type:functi

onal, 
Load:20

Name:app
_surround
_view_b_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_surround
_view_f_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_in‐

vehicle_te
mp_sensor
_data, 

ASIL:QM, 
Type:com
munication
, Load:1

Name:res
_tempera
ture_sens

or, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_surrView

_f, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_radar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_throttle_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_brakes_a
ctuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_steering_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100
Name:res
_front_he
aters_act
uator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:res
_screen, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_zone_ctrl
_front, 

Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_direct_et
hernet_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_1

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_fwd_cam

, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_can_bus

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_direct_et
hernet_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_4, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_6, 
Type:com
municatio
n, ASIL:D, 
Load:100

Figure D.2: Mapping of the applications in the Zone-based Vehicle-Centralized
architecture (Z-VC).
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Non-safety-critical 
application node

Safety-critical 
application node

Non-safety-critical 
resource

Safety-critical 
resource

Backbone 
network and 
central ECU

Name:app
_screen, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
_front_hea

ters, 
ASIL:QM, 
Type:actua

tor, 
Load:100

Name:app
_rear_heat
ers_data, 
ASIL:QM, 
Type:com
munication
, Load:100

Name:app
_surr_view
_final_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:app
_rear_heat

ers, 
ASIL:QM, 
Type:actua
tor, Load:1

Name:app
_front_hea
ters_data, 
ASIL:QM, 
Type:com
munication
, Load:1

Name:app
_in‐

vehicle_te
mp_sensor
, ASIL:QM, 
Type:senso
r, Load:100

Name:app
_in‐

vehicle_te
mp_sensor
_data, 

ASIL:QM, 
Type:com
munication
, Load:1

Name:app
_surround
_view_f, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surround
_view_f_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_surround
_view_stre

am, 
ASIL:QM, 
Type:com
munication
, Load:35

Name:app
_HVAC_co
ntrol_signa

ls, 
ASIL:QM, 
Type:com
munication
, Load:1

Name:app
_HVAC_co

ntrol, 
ASIL:QM, 
Type:functi

onal, 
Load:2

Name:app
_surround
_view_b, 
ASIL:QM, 
Type:senso
r, Load:100

Name:app
_surround
_view_b_st

ream, 
ASIL:QM, 
Type:com
munication
, Load:20

Name:app
_surr_view
_enchance
d_objects, 
ASIL:QM, 
Type:com
munication
, Load:10

Name:app
_surr_view
_complete, 
ASIL:QM, 
Type:functi

onal, 
Load:20

Name:app
_surround
_view, 

ASIL:QM, 
Type:functi

onal, 
Load:30

Name:res
_tempera
ture_sens

or, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_dom_ctrl
_comf, 

Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_direct_et
hernet_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_surrView

_f, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_surrView

_r, 
Type:sens

or, 
ASIL:QM, 
Load:100

Name:res
_ethernet

_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_1

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_3, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_rear_hea
ters_actu
ator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:res
_front_he
aters_act
uator, 

Type:actu
ator, 

ASIL:QM, 
Load:100

Name:res
_screen, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_direct_et
hernet_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:app
_camera_fr
ont, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_p
reprocessin
g, ASIL:D, 
Type:functi

onal, 
Load:50

Name:app
_camera_fr
ont_strea
m, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_data_fusi
on_and_pr
ocessing, 
ASIL:D, 

Type:functi
onal, 

Load:200

Name:app
_camera_b
ack, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_b
ack_stream
, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_camera_o
bjects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_high_level
_trajectory
, ASIL:D, 
Type:com
munication
, Load:10

Name:app
_desired_v
ehicle_stat
e, ASIL:D, 
Type:com
munication
, Load:5

Name:app
_low_level
_speed_co

ntrol, 
ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_low_level
_lateral_st
ate_contro
l, ASIL:D, 

Type:functi
onal, 
Load:5

Name:app
_radar_fro
nt, ASIL:D, 
Type:senso
r, Load:100

Name:app
_radar_str

eam, 
ASIL:D, 

Type:com
munication
, Load:50

Name:app
_radar_pre
processing, 
ASIL:D, 

Type:functi
onal, 

Load:40

Name:app
_radar_obj

ects, 
ASIL:D, 

Type:com
munication
, Load:10

Name:app
_lidar, 
ASIL:D, 

Type:senso
r, Load:100

Name:app
_lidar_prep
rocessing, 
ASIL:D, 

Type:functi
onal, 

Load:80

Name:app
_lidar_stre
am, ASIL:D, 
Type:com
munication
, Load:100

Name:app
_lidar_obje
cts, ASIL:D, 
Type:com
munication
, Load:20

Name:app
_brakes_ac
tuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_throttle_a
ctuator, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:app
_steering_
ctrl_signal, 
ASIL:D, 

Type:com
munication
, Load:5

Name:app
_throttle_s

ignal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:app
_brakes_si

gnal, 
ASIL:D, 

Type:com
munication
, Load:2

Name:app
_steering_s

ensor, 
ASIL:D, 

Type:actua
tor, 

Load:100

Name:res
_fwd_cam

, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_back_ca

m, 
Type:sens
or, ASIL:D, 
Load:100

Name:res
_radar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_dom_ctrl
_driv_repl
acement, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_4, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_5, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_6, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_2

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_lidar, 

Type:sens
or&comm
unication
&function
al, ASIL:D, 
Load:100

Name:res
_ethernet

_7, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_1, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_can_bus

_2, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_throttle_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_brakes_a
ctuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_steering_
actuator, 
Type:actu

ator, 
ASIL:D, 
Load:100

Name:res
_central_

ecu, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet
_switch_3

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

Name:res
_ethernet

_10, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_8, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet

_9, 
Type:com
municatio
n, ASIL:D, 
Load:100

Figure D.3: Mapping of the applications in the Domain-based Controller-Based
architecture (Z-VC).
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Name:res
_ethernet

_5, 
Type:com
municatio
n, ASIL:D, 
Load:100

Name:res
_ethernet
_switch_2

, 
Type:func
tional&co
mmunicat

ion, 
ASIL:D, 
Load:100

 

 

   

 

 

 

 
 

Non-safety-critical 
application node

Safety-critical 
application node

Back zone

Front zone

Backbone 
network and 
central ECU

Name:app
_camera_fr
ont, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_p
reprocessin
g, ASIL:D, 
Type:functi

onal, 
Load:50

Name:app
_camera_fr
ont_strea
m, ASIL:D, 
Type:com
munication
, Load:60

Name:app
_data_fusi
on_and_pr
ocessing, 
ASIL:D, 

Type:functi
onal, 

Load:200

Name:app
_camera_b
ack, ASIL:D, 
Type:senso
r, Load:100

Name:app
_camera_b
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Figure D.4: Mapping of the applications in the Zone-based Controller-Based
architecture (Z-VC).
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