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In this paper, we consider a simplified model of
turbulence for large Reynolds numbers driven by
a constant power energy input on large scales. In
the statistical stationary regime, the behaviour of the
kinetic energy is characterized by two well-defined
phases: a laminar phase where the kinetic energy
grows linearly for a (random) time tw followed by
abrupt avalanche-like energy drops of sizes S due to
strong intermittent fluctuations of energy dissipation.
We study the probability distribution P[tw] and
P[S] which both exhibit a quite well-defined scaling
behaviour. Although tw and S are not statistically
correlated, we suggest and numerically checked that
their scaling properties are related based on a simple,
but non-trivial, scaling argument. We propose that the
same approach can be used for other systems showing
avalanche-like behaviour such as amorphous solids
and seismic events.

This article is part of the theme issue ‘Scaling the
turbulence edifice (part 1)’.

1. Introduction
It is well known that homogeneous and isotropic
turbulence is characterized by strong intermittent bursts
of energy dissipation. An extensive literature exists on
the subject and we recommend [1] for an excellent
introduction. Turbulence is not the only physical system

2022 The Author(s) Published by the Royal Society. All rights reserved.
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where energy dissipation occurs intermittently. Amorphous materials, for example, subject to
constant shear rate, show avalanche-like events, which dissipate energy intermittently [2–4].
Analysis of their intermittency mostly focused on the statistical properties of the avalanche size S
which usually shows a probability distribution P[S] ∼ S−γ where γ ∈ [1.25 : 1.5] depending on the
material and its physical properties. Similarly, earthquake dynamics have been discussed in terms
of earthquake magnitude or more properly in terms of the seismic moment M, which exhibits the
celebrated Gutenberg–Richter Law P[M] ∼ M−(1+2b/3), with b ∼ 1 [5]. Another interesting quantity
to consider is the interevent time tw between avalanches [6,7], which has been poorly investigated
in the past. Obviously, both S and tw depend on the definition of the avalanche, a crucial point we
will consider below.

The concept of avalanche or avalanche-like dynamics is not usually taken into account in
turbulence for many reasons: energy dissipation is intermittent both in space and time; the
statistical properties of energy dissipation are usually related to the intermittent fluctuations of
energy transfer within the inertial range of turbulence; an avalanche does not seem appropriate
to discuss energy transfer in the inertial range or in the dissipation range and so on. Thus,
discussing turbulence in the framework of avalanche dynamics seems at least a rather exotic
if not useless approach. However, we suggest that in some cases the dynamics of turbulent
events may be investigated in terms of avalanche dynamics. In this paper, we provide an
example based on a very simplified model of turbulence, namely a shell model. For this very
special model, we show that avalanche dynamics can be identified and we are able to provide
a well-defined meaning to the avalanche size S. Not surprisingly, S is related to the rate of
energy dissipation. Also, we provide evidence that, for our case, both tw and S should be
considered bulk quantities: they are related to the forcing mechanism and do not depend on
the statistical properties characterizing inertial range fluctuations. We explore similarities and
differences in the statistics of avalanche dynamics in our model compared to results mostly
observed in amorphous materials and for earthquakes. Among the similarities, we observe in
our shell model a scaling behaviour of both S and tw although with different scaling exponents
compared to amorphous materials and earthquakes. More importantly, we observe a rather
unusual scale invariance in our system which is also observed in other cases. To be precise,
we look at the probability distribution P[tw|Sth] of the interevent times tw for avalanches bigger
than some threshold Sth. Upon increasing Sth, P[tw|Sth] remains invariant although tw explicitly
depends on Sth. This is also observed for amorphous materials [7–9] and it was first pointed
out by Corral [6] by analysing earthquake catalogues (see [10] for a review). We also show
strong evidence that, if scale invariance holds, then the scaling properties of S and tw should
be related, although both quantities are statistically independent in our model as well in the
case of amorphous materials and earthquakes. These relations, obtained here for the first time,
apply to our system and amorphous materials despite the difference in the scaling exponents.
A speculative conjecture can then be made for earthquake dynamics with excellent agreement
with the Corral results. Let us finally highlight that the concept of avalanche is quite general
and that different approaches (such as the one proposed in [2,11]) are worthwhile exploring
for various physical phenomena depending on the statistical properties of the system under
consideration.

From the point of view of turbulence or turbulent flows, our approach may be generalized to
describe other intermittent behaviours shown by bulk quantities whose physical description may
be improved by exploiting the same approach outlined in this paper. As an example, we refer
to the instability of a thermally driven system in a vertically elongated convection cell. Such a
system can be mathematically modelled in terms of a fully periodic thermally driven Rayleigh–
Benard cell where the presence of the so-called elevator modes leads to the growth of the kinetic
energy associated with vertical motions. This exponential growth is then followed by sudden
dissipation events mediated by a shear flow instability that redistributes such energy horizontally
[12]. Another example can be found in the study of solar flares which, sometimes, are statistically
investigated using models derived in the framework of self-organized criticality [11], i.e. in the
framework of avalanche dynamics, see also [13] for a different point of view.
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Our paper is organized as follows: in §2, we introduce our model and define the forcing
mechanism. In §3, we discuss our definition of event or avalanche size S. In the §3(a),(b), we
show that using a different definition of S based on level-crossing, no scale invariance is observed
and illustrate the relevance of the forcing mechanism, respectively. All the numerical results are
discussed in §3. In §4, we provide a theoretical analysis of our system and we show that if scale
invariance holds, then there must be a relation between the scaling properties of tw and S. We also
discuss how our approach can be generalized to amorphous materials and earthquake dynamics
with excellent agreement with experimental and/or numerical results. Some general conclusion is
provided in §5. We further want to emphasize that our investigation provides a different point of
view on turbulent flows complementary to the well-known properties of inertial range dynamics.
We suggest that it represents a preliminary step in a new direction which is interesting to study.

2. Model equations
We consider a shell model [14] to describe our turbulent system which is defined by the equations:

∂tun = i(knun+2u∗
n+1 − δkn−1un+1u∗

n−1 + (1 − δ)kn−2un−1un−2) − νk2
nun + fn, (2.1)

where un are complex variables, kn = 2n and δ = 0.4. This choice of δ is known to reproduce the

scaling behaviour of 〈|un|p〉 ∼ k−ζ (p)
n with anomalous exponents ζ (p) in close agreement with the

ones observed in three-dimensional turbulence. Thus the statistical properties of the inertial range
in the models may be considered close to realistic. The crucial point in our case is the forcing term.
We apply fn to n = 1, 2 (i.e. large-scale forcing) with

fn = A
u∗

n
n = 1, 2. (2.2)

Using (2.2) the rate of energy input φ in the system is simply given by 4A and it is constant. The
equation for the kinetic energy E(t) = Σn|un|2 takes the form:

dE
dt

= φ − ε(t), (2.3)

where ε(t) = νΣnk2
n|un|2 is the rate of energy dissipation. For the numerical simulations discussed

hereafter we chose ν = 10−9 and A = 10−3. We emphasize that the following results are
independent of the choice of ν and A. By injecting a constant power into our system, the signal
for kinetic energy (figure 1b) shows two clearly different dynamical regimes, one in which the
energy grows linearly in time (referred to as ‘laminar’ phase) and one in which abrupt energy
losses occur (referred to as ‘turbulent’ phase). Here laminar and turbulent are used in a naive
way just to distinguish between the two different regimes. One can formally use equation (2.3)
to highlight an analogy between our model and similar studies done in amorphous solids. In the
latter case, the system is driven by a constant shear rate Γ̇ . In amorphous solids, driven by a
constant shear rate Γ̇ , the energy grows as Γ Σ , where Γ is the strain, whereas Σ is the internal
stress. It follows that energy grows quadratically in time. One can use the Maxwell model to relate
Σ and Γ̇ usually written as

dΣ

dt
= G0(Γ̇ − fΣ), (2.4)

where G0 is the elastic modulus and f is referred to as ‘fluidity’ (dimension 1/time). The fluidity
f can also be interpreted as the rate of plastic events in the system. Thus during the elastic branch
(where the fluidity can be neglected) the stress Σ grows linearly in time. Obviously, the equation
for the fluidity f should be provided to complete the problem description. In turbulence, at least
within our simplified model, there is no ‘global’ variable such as stress Σ and there exists no
equation (2.4). An analogy with equation (2.4) can nevertheless be found using the total energy
E as a global quantity. Writing ε(t) = FE the similarity between (2.4) and (2.3) is more apparent.
Here the definition of as F = ε/E does not provide any new physics and it is just a way to make a
simple analogy. This analogy is just formal because the two systems (turbulence and amorphous
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Figure 1. (a) Rate of energy dissipation ε(t) as a function of t corresponding to equation (2.1) at constant power input.
(b) Behaviour of the kinetic energy E(t) for the same time window. Looking at E(t), we can easily distinguish two different
dynamical phases in the system: a laminar phase where E(t)∼ t and an avalanche phase where we observe drops of E(t)
corresponding to the bursts in the energy dissipation. (Online version in colour.)

solid) obey completely different physics and the variable F is not at all related to any plastic flow.
In fact, as we shall see, the scaling observed for the avalanche sizes and their interevent time are
completely different with respect to the one observed in amorphous solid.

In figure 1a, we also report the signal corresponding to the energy dissipation for the same time
window, which shows, as expected, a strongly intermittent behaviour. Notice the link between the
strong fluctuations occurring in the upper signal and the kinetic energy loss in the lower signal.

3. Event definition and scale invariance
Having in mind the signal shown in figure 1, we define an avalanche as the event for which
dE/dt < 0. The starting point of an event is identified by a change in the sign of the derivative
of kinetic energy in time, from positive to negative; meanwhile, the opposite change in sign of
dE/dt identifies the end of the avalanche or energy drop. In figure 2, we illustrate our definition.

For each event we compute the avalanche size as S(k) = − ∫tf (k)
ti(k) dt(dE/dt), where k is a label for the

event (k = 1, 2, . . .), ti(k) is the initial time of the k event and tf (k) its corresponding final time. For
t ∈ [ti(k), tf (k)], we require that dE/dt < 0. Thus ti(k) is identified by the condition ε(ti(k)) > φ and
tf (k) by the condition ε(tf (k)) ≤ φ. S(k) thus represents the total energy release during avalanche
event k.

Having thus defined avalanches, we can look at the probability distributions of the avalanche
size S and the interevent times tw The latter is defined as tw(k) = ti(k) − tf (k − 1). In figure 3, we
show P[S] (b) and P[tw] (a): both probability distributions show very clear scaling regions over
several decades. We indicate the corresponding scaling exponents by γ and α:

P[tw] ∼ 1
tαw

and P[S] ∼ 1
Sγ

. (3.1)

A best fit estimate gives α = 1.65 and γ = 0.35 with an accuracy of the order of a few per cent.
It is important to understand that both tw and S are not trivially linked to the scaling properties

of the inertial range fluctuations in the system. The value of tw is dictated by the onset of some
instability occurring at relatively large scales, whereas the avalanche of size S depends on the
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Figure 2. Thefigure illustrates our definition of event.Wedefine an avalanche S(k), k = 1, 2, . . ., as the event in time forwhich
dE/dt < 0 in the time interval t ∈ [ti(k), tf (k)] where the times ti(k) and tf (k) correspond to the initial time and final time of
the avalanche. The interevent time tw(k) is indicated by the two arrows: tw(k)= ti(k) − tf (k − 1). (Online version in colour.)
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Figure 3. Probability distribution of the interevent time P[tw] (a) and avalanche size P[S] (b) observed for modelling equation
(2.1) with a constant power input. In both cases, well-defined scaling laws are observedwith P[tw]∼ t−1.65

w and P[S]∼ S−0.35.
The accuracy in the exponents is of the order of 5%. (Online version in colour.)

short intermittent bursts of energy dissipations. Although the initial and the final times of an
avalanche occur when ε(t) > φ and ε(t) < φ, respectively, its size does not necessarily correspond
to large or small values of ε − φ. In other words, large values of ε can occur for both small
and large values of the avalanche size S. More precisely, the size S(k) of the avalanche can

be computed from equation (2.3) to give S(k) = ∫tf (k)
ti(k) ε(t) dt − φ(tf (k) − ti(k)) with ε(t) ≥ φ for t ∈

[ti(k), tf (k)]. Upon denoting the event duration by τ (k) = tf (k) − ti(k), the probability distribution

of S(k) can be obtained from the probability distribution of ε̃(τ (k)) ≡ ∫tf (k)
ti(k) ε(t) dt constrained by

the previously mentioned conditions on ε(t). Furthermore, ε̃(τ (k)) should be computed in the
dissipation range and its fluctuations are correlated (with some non-trivial lag time depending on
τ (k)) to the probability distribution of the large-scale velocity fluctuations, i.e. to the kinetic energy.
In summary, besides the fact that the statistical properties of S(k) depend on the inertial range
fluctuations in a complicated way, the probability distribution of P[S] should be self-consistent
with the fluctuations of the kinetic energy. Thus, the knowledge on the statistical properties of
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Figure 4. In the figure, we show a two-dimensional map for the PDF of both log(S) and log(tw). The figure highlights the
statistical independence of the avalanche size and the interevent times. By looking at the figure, there is no evidence of any
correlation between the two variables, and by a numerical check, their correlationwas found of the order of 7%. (Online version
in colour.)

the inertial range velocity fluctuations does not provide any short cut to estimate the probability
distributions of both tw and S.

We shall see later (in §3(b)) that the statistical properties of both tw and S depend on the way
we force our system, i.e. on the physical mechanism of energy input in the system. From this
point of view, both tw and S may be considered as bulk quantities which characterize the random
dynamics of the energy behaviour with respect to the (given) external forcing. There is no reason
for a priori for P[tw] and/or P[S] to be scaling functions of their arguments. The results shown in
figure 3 are therefore non-trivial.

An important observation is that there exists no statistical correlation between tw and S. In
figure 4, we show the joint probability distribution of tw and S which does not provide any
significant hint of correlations between tw and S. The statistical independence of tw and S is
also observed in other systems, such as amorphous solids and/or soft glasses, where avalanche
dynamics are also characterized by scaling functions of P[tw] and P[S], albeit with completely
different scaling exponents [7,9]. Furthermore, a detailed analysis of seismic events [15] shows
that no significant correlations exist between their interevent times and earthquake magnitudes.
Thus, the statistical independence of tw and S is a rather common feature observed in systems
characterized by avalanche-like dynamics.

Following [6], we investigate a rather intriguing property of the interevent time statistics.
Using our definition of avalanche, its size S spans from some minimum, say S0, to some maximum
SM. Analogously, the interevent times tw spans from some minimum t0 and some maximum tM.
Let us now consider the interevent times tw occurring for avalanches greater than λS0, where λ

is some real positive number. The interevent times are modified as illustrated in figure 5. The
figure shows the energy behaviour E(t) during a relatively short time window: the continuous
line represents E(t) and the red points highlight the avalanches occurring during the selected time
window. One can see two relatively large avalanches occurring at the beginning and at the end of
the time window with rather small events in between. Here large and small refer to the avalanche
size. We also highlight the interevent times between avalanches. Once we consider avalanches
bigger than λS0 (λ > 1), for some value of λ, the two avalanches in the middle are neglected and
the interevent time (corresponding now to the dashed line in the figure) becomes longer and
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Figure 5. The figure illustrates the change in the quantitative definition of the interevent time by looking at avalanches whose
sizes S are larger than some threshold Sth. The continuous line corresponds to E(t). The red dots indicate when dE/dt < 0. We
observe four avalanches. The vertical continuous arrow shows the size S of the first avalanche on the left. If we assume the two
middle avalanches to be smaller than Sth, the interevent time between the first and the next avalanche becomes t1 + t2 + t3.
(Online version in colour.)

is approximatively equal, in this particular example, to t1 + t2 + t3. Obviously, the probability
distribution P[S] remains unchanged and we may further assume that t0 remains unchanged as
well as SM. However, clearly, this is not the case for tM, which we expect to increase. Thus we
should wonder how the probability distribution of the interevent times changes. We denote this
new probability distribution by P[tw|Sth] where Sth = λS0 is the size of the avalanches disregarded
for the computation of tw.

In figure 6, we show P[tw|Sth] for different values of Sth spanning almost two orders of
magnitude. A rather striking result is observed: P[tw|Sth] is invariant, i.e. it is a scaling function
with the same exponent α ∼ 1.65. We notice that the very same results are observed in the
interevent times of avalanches for amorphous materials [7,9] and earthquakes [6,10], although
α < 1 and the scaling range is smaller compared to what is observed in figure 6. In the model
presented in this paper, the invariance of P[tw|Sth] is quite clear and striking. P[tw|Sth] can
therefore be considered invariant with respect to the transformation S0 → λS0.

What is the physical meaning behind the results shown in figure 6? This is a non-trivial
question which we will try to answer qualitatively. The scaling transformation S0 → λS0 should be
considered equivalent to a kind of coarse grained transformation in the system: upon considering
larger avalanche sizes we study the dynamics of the system on a longer time scale. Thus we may
consider the invariance of P[tw|Sth] as the signature of a scale invariance of the system dynamics.
This would be somehow trivial if P[tw|Sth] were a scaling function of both tw and Sth. However,
this is not the case in our system (nor in amorphous materials nor for earthquakes) simply because
interevent times are statistically independent of the avalanche sizes. Thus, we are looking at a
rather peculiar case of scale invariance, which deserves a deeper investigation. In §4 we make the
first step in this direction.

(a) A different statistical analysis
First, we illustrate how the definition of P[tw|Sth] gives different results using different approaches
usually employed in the analysis of intermittent or random processes. In particular, we consider a
rather common approach based on the statistical properties of level-crossing. Given the dynamics

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 M

ar
ch

 2
02

2 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210074

...............................................................

P[tw]
P[tw]|Sth = 2e3S0

P[tw]|Sth = 2e4S0

P[tw]|Sth = 2e5S0

slope = 1.65

10−7

10−8

10−6

10−5

10−4

10−3

10−2

10−1

1

10

10−310−4 10−2 10−1 1 10

interevent time tw

Figure 6. The figure illustrates the behaviour of the probability distribution P[tw|Sth] which is the probability distribution of
the interevent times tw occurring between avalanches of size S > Sth. Here we show the results for three different values of Sth
which is defined with respect to the smallest size we found in our system, S0, by Sth = λS0. Upon changing Sth for over two
orders of magnitude the probability distribution of the interevent times preserves its scaling behaviour with the same scaling
exponents as shown in figure 3. (Online version in colour.)

of energy dissipation ε(t) one can define an avalanche event as the time interval [ti(k), tf (k)]

for which ε(t) > ε∗. The size S of the event is defined as S(k) = ∫tf (k)
ti(k) ε dt while the interevent

times are defined as usual tw(k) = ti(k) − tf (k − 1). This definition of event refers to level-crossing
because it depends on ε∗. The statistical properties of level crossing are relevant quantities worth
investigating in many physical and mathematical problems and there exists an extensive literature
on the subject [16,17]. In the framework of level-crossing, both P[S] and, more importantly, P[tw]
depend on ε∗. We now use this approach using our model and the very same dataset as employed
in figure 6. In particular, we focus on the probability distribution of the interevent times P[tw|ε∗]
for different values of ε∗ in figure 7. Different to figure 6 P[tw|ε∗] is no longer invariant, i.e. it
is still a scaling function of tw but with scaling exponents α which decrease upon increasing ε∗.
We argue that the different results shown in figures 6 and 7 can be explained by noticing that
upon increasing ε∗ we are changing the physical meaning of the event. This is because in the
ε based definition of size, the term φ(tf (k) − ti(k)) is missing. Consider, for instance, a relatively
large event selected with the level-crossing at some value ε∗. Upon increasing ε∗ the initial time of
the event is shifted and the corresponding interevent time increases or event duration decreases.
This implies that tw and S may acquire non-negligible correlations for large enough ε∗. On the
contrary, the scale invariance shown in figure 6 is based on the same definition of the event
regardless of the threshold Sth. It is true that the definition of event used in figure 6 is also based
on a threshold, namely φ, however, looking at the interevent times for avalanches S > Sth we
retain the same definition (i.e. the events for which ε(t) ≥ φ) while neglecting the computation
of tw avalanches smaller than Sth. Thus P[tw|Sth] and P[tw|ε∗] refers to two different statistical
properties of the system that are not related to one another. This example highlights the fact
that the scale transformation ε∗ → λε∗ cannot be considered a coarse-grained transformation in the
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f

Figure 7. In this figure, we compute the probability distribution of P[tw , ε∗] which represents the probability distribution of
interevent times between consecutive events where ε(t)> ε∗ where ε(t) is the rate of energy dissipation and ε∗ is defined
with respect to the constant injected power φ = 4A. Contrary to what we observe in figure 6, the probability distribution
P[tw , ε∗] is not invariant upon increasing ε∗. (Online version in colour.)

sense previously discussed. We are still looking at longer time scales but we are also considering
different events. This is a crucial point often not properly taken into account in various statistical
analyses.

Finally, let us remark that the results shown in figure 7 beautifully illustrate that the property
of scale invariance shown in figure 6 is not trivially linked to the probability distribution of ε(t)
which is the same for both cases.

(b) A different forcing
Another important issue to clarify is the relevance of the large-scale forcing. We have previously
argued that the statistical properties of both tw and S should be considered as bulk quantities of
our system, i.e. quantities linked to the way the system is forced and describing the dynamics with
respect to the forcing mechanism. We now considered exactly the same model given by equation (2.1)
but we assume fn to be a random Gaussian process δ correlated in time and acting for n = 1. We
use the same definition of event size introduced in the first part of this section, namely S(k) =
− ∫tf (k)

ti(k) dt(dE/dt) and we look at the probability distribution of P[tw] and P[S].
There is no evidence of P[tw] being a scaling function of tw, see figure 8. Actually, we observe

that P[tw] can be very well approximated by an exponential distribution. Notice that the scaling

properties of the shell model, i.e. the anomalous scaling 〈|un||p〉 ∼ k−ζ (p)
n , remain unchanged using

the stochastic forcing. Thus, figure 8 illustrates the point raised at the beginning of this section,
namely that the statistical properties of tw and S are not linked to the inertial range dynamic, but
a different forcing gives different statistical properties of the avalanche events. This also implies
that scale invariance shown in figure 6 is not due to the scaling properties of the inertial range
dynamics.
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P[tw]

Figure 8. Probability distribution P[tw] of the interevent times tw obtained for a random forcing acting on the shell 1. Notice
that P[tw] does not show any scaling behaviour and it can be approximated as an exponential distribution. (Online version in
colour.)

4. A tentative theory for scaling exponents
We will provide a theoretical framework to discuss the results illustrated in §3 and in particular
the property of scale invariance of P[tw|Sth] shown in figure 6. To fix our theoretical analysis, we
assume that the probability distributions of the avalanche size S and interevent time tw are scaling
functions of their arguments, i.e.

P[S] = ZS

Sγ
S ∈ [S0, SM] (4.1)

and
P[tw] = Zt

tα
tw ∈ [t0, tM], (4.2)

where ZS and Zt are normalization factor. Note that we focus only on the scaling part of P[tw]
and P[S] neglecting regions where no scaling is observed. For our analysis this approximation is
reasonable. Upon assuming tM � t0 and SM � S0, for γ < 1 and α > 1 (as in our case) we have to
the leading order ZS = Sγ−1

M and Zt = tα−1
0 .

We now consider the quantity:

X ≡ Estored

Ereleased
, (4.3)

where Estored is energy input in the system during the interevent time and Ereleased = S is the
energy released during an avalanche. Because we are forcing the system with a constant power
input φ = 4A, Estored is well approximated by the quantity 4Atw. Hereafter, we can disregard the
factor 4A and we write

X = tw

S
, (4.4)

where X is a random variable that describes the fluctuations of the dynamical process in the
energy behaviour of the system, namely the stored energy in the system with respect to the energy
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released. Now, let us consider the scale transformation

S0 → λS0. (4.5)

As we argued in §3 , the scale transformation (4.5) does not change t0 whereas SM is not changed
by definition. Because we expect tM to increase, we can write

tM → λHtM, (4.6)

where H is yet unknown. In general we expect that P[tw] will change because of the scale
transformation (4.5) and the exponent α may become a function of λ, i.e.

P[tw] = tα(λ)−1
0

tα(λ)
w

. (4.7)

We are interested in the probability distribution P[X]. Under the scale transformation (4.5), we
expect that X and P[X] depend on λ. The scale transformation (4.5) can be interpreted as a ‘coarse-
grained’ transformation following our discussion in §3. From this point of view, scale invariance
in the system should be equivalent to saying that P[X] does not depend on λ. Because tw and S
are independent variables, we can easily compute the moments 〈X−n〉 and 〈Xn〉 for any n, where
〈..〉 is the average over P[X]. Using (4.1) and (4.7) we obtain:

〈X−n〉 =
[

SM

t0

]n
. (4.8)

Since neither t0 nor SM depends on λ, we obtain that 〈X−n〉 is independent of λ. To simplify the
following computation, we can assume t0 = 1 and SM = 1 without loss of generality. To find 〈Xn〉
with n > 0, a little algebra gives:

〈Xn〉 = tn−α(λ)+1
M S1−n−γ

0 . (4.9)

Under the scale transformation (4.5), we then obtain

〈Xn〉 → 〈Xn〉λ[n(H−1)+1+H−Hα(λ)−γ ]. (4.10)

For scale invariance to hold, we must require that for any n > 0 the following equation is satisfied:

n(H − 1) + 1 + H − Hα(λ) − γ = 0.

This implies that H = 1, α(λ) is independent of λ and:

α + γ = 2. (4.11)

This tells us something interesting: first of all, the scale invariance of P[X] is equivalent to the scale
invariance of P[tw|Sth]] under the scale transformation (4.5) and α does not depend on λ; secondly,
we obtain a non-trivial result relating the scaling exponents γ and α and expressed by equation
(4.11). It is important to note that our results do not ‘prove’ scale invariance in our system. What
we can prove is that if the statistical properties of the system are scale-invariant with respect to (4.5) then
the scaling exponents α and γ are not independent and satisfy equation (4.11). The numerical values of α

and γ obtained in the previous section, see figure 3, are in excellent agreement with (4.11) within
a few per cent. As a side product of equation (4.11), we observe that the probability distribution
of Ξ = 1/S should be a scaling quantity with scaling exponent α. Using this observation, we can
provide a direct test of equation (4.11) by comparing the probability distribution of 1/S with
respect to the probability distribution P[tw]. This is done in figure 9 which shows an excellent
agreement with (4.11). Thus, besides the numerical estimate of α and γ , we can check the validity
of equation (4.11) directly in figure 9.

It is tempting to investigate whether the same argument can be applied to other systems. In
a soft glass and/or in an amorphous solid driven by a constant shear rate Γ̇ , the internal energy
grows as σΓ where σ is the internal stress and Γ = ∫

Γ̇ dt is the applied strain. Since σ ∼ Γ the
internal energy of the system, during the time between two consecutive avalanches, grows as t2

w
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slope = 1.65
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Figure 9. Quantitative check of our theoretical approach. According to our theoretical interpretation of scale invariance, the
probability distribution ofΞ ≡ 1/S should show the scaling properties of the interevent time probability distribution P[tw]
(here conveniently shifted). This is checked in the figure where we compute P[Ξ ]. (Online version in colour.)

P[tw]|n = 10–9

P[tw]|n = 10–11

P[tw]|n = 10–7

slope = 1.65

10−310−4 10−2 10−1 1 10

interevent time tw
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10−4

10−3

10−2
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1

10

Figure 10. Probability distribution P[tw] of the interevent times tw obtained equations (2.1) and (2.2) for different values of ν .
Upon changing the Re number, the scaling properties of the P[tw] does not change. (Online version in colour.)
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under the (usual) assumption that Γ̇ is constant. For the systems where both γ and α have been
measured [7,9] (α < 1 and γ ∼ 1.33 > 1), the same reasoning introduced above in this section gives:

〈X−n〉 =
[

t2
M

S0

]n

(4.12)

and

〈Xn〉 =
[

S0

SM

]γ−1
Sn

M

[
tM

t0

]α 1

tMt2n−1
0

. (4.13)

Equation (4.12) tells us that upon scaling tM → λ1/2tM (i.e. H = 1/2) for scale invariance to hold.
Equation (4.13) then implies that:

α = 3 − 2γ . (4.14)

For γ ∼ 1.33 we obtain α ∼ 0.33 in very good agreement with the numerical and experimental
results discussed in [7]. Thus, it seems that our argument can be considered rather general and
independent of the detailed physical mechanisms behind the avalanche dynamics. Notice that in
amorphous solids, and in particular in the framework of a lattice mesoscopic elasto-plastic model
[3], the exponent γ characterizing the scaling of P(S) has been related in [18] to the probability
distribution P(x) of the local distance x to instabilities. Then, equation (4.14) suggests that from
the knowledge of P(x), one should be able to compute tw. How this may occur is an interesting
yet open question.

The common assumption in deriving equations (4.11) and (4.14) is that the system is scale-
invariant under the transformation (4.5). Physically, in both cases, we can argue that the system
approaches some kind of critical dynamics where two different phases (laminar/turbulent in our
case) or (no flow/flow for amorphous systems) are dynamically competing. The scale invariance,
if it occurs, then implies that the scaling exponents of avalanche size and interevent times are
linked. This is a rather non-trivial outcome of our analysis.

It is equally tempting to address the case of earthquakes where the Gutenberg-Richter scaling
implies γ = 5/3. For earthquakes, however, we have no idea how stored energy depends on the
time between two consecutive events. For γ = 5/3 we have α = 0.33 using (4.11) in agreement with
the results obtained in [6] and, interestingly, close to the one obtained in amorphous solids. This
suggests that the stored energy grows linearly in time. How reasonable is this? We can speculate
that energy stored is still given by σΓ as in amorphous materials. Then, following [19] we can
assume that σ is equal to the so-called apparent stress, which is commonly assumed to be constant.
The strain Γ is due to tectonic motion and, in a very first approximation, we may argue that it is
proportional to time. Using these (strong) assumptions on the stress and the strain, we can write
X ∼ tw/S and we can repeat the same reasoning leading to (4.11), which leads of course to the
same relation α + γ = 2. Although exciting, we should consider our finding very preliminary and
very speculative and the argument definitively deserves more rigorous investigations.

5. Conclusion
This paper discusses avalanche dynamics in a shell model of turbulence forced with a constant
power input φ. The avalanche-like events are characterized by a sharp negative decrease of
the kinetic energy E. We investigated two relevant statistical properties, namely the probability
distribution P[S] of the avalanche size S, corresponding to the energy drop during an event, and
the probability distribution P[tw] of the interevent time tw between two consecutive avalanches.
Both probability distributions show a clear scaling behaviour P[S] ∼ S−γ , γ = 0.35, and P[tw] ∼
t−α
w , α = 1.65. We have provided numerical evidence that the probability distribution of tw

shows scale invariance: upon computing tw between events of size S ≥ Sth, P[tw] shows the same
scaling behaviour independently of Sth, while importantly tw and S are statistically independent
variables.

This scale invariance is similar to what has been observed in amorphous materials and
in the analysis of earthquake catalogues. Assuming scale invariance to hold, we provide a
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simple theoretical argument stating that the scaling exponents α and γ must satisfy the relation
α + γ = 2 in excellent agreement with the numerical results. We have generalized our approach
for amorphous materials with very good agreement against numerical and experimental results,
giving α + 2γ = 3. Relations (4.11) and (4.14) are here derived for the first time. Once again,
we remind the reader that, in our view, both relations are consequences of scale invariance in
the system, and they do not necessarily hold for all systems showing avalanche-like dynamics.
For instance, in [7] it was shown that the statistical properties of tw in amorphous materials
depend critically on the material stiffness. In particular, scale invariance is observed for very
‘rigid’ systems, whereas this is not true for softer materials. When scale invariance holds, then
the scaling exponents of P[tw] and P[S] are related to one another. This is something new and
somehow unexpected.

One important point highlighted in the paper is that neither P[S] nor P[tw] can be obtained
using statistical properties of inertial range (intermittent) fluctuations. For this reason, we
consider both P[S] and P[tw] as bulk quantities related to the forcing mechanism. An important
possible question to address is whether the scaling exponents depend on the Re number.

We numerically checked that neither α nor γ are functions of Re. In figure 10, we show P[tw]
for ν = 10−7, 10−9 and 10−11: upon changing Re by 4 orders of magnitude, the scaling exponent α

does not change (the same is true for γ , not shown). The only relevant change in P[tw] concerns
the range where scaling is observed which seems to decrease with Re.

Another important point is how to properly define scale invariance for the probability
distribution P[tw]. Interevent times (sometimes referred to as return times or waiting times) are
important statistical variables discussed for many theoretical frameworks in physics. Given a
random (intermittent) process v(t), one can study P[tw, L] as a function of the time at which
v(t) is larger than some level L. In the case discussed in this paper, P[tw, L] does not show any
scale invariance. In fact, upon changing L, we are also changing our definition of event size. Our
approach, following [6], is to fix the definition of event and then disregard it in the computation
of tw events of size larger than some threshold Sth: we are looking at some longer time for the
same set of events. One may argue that this is a minor detail, but we have clearly shown that this
is not the case in our system and we argue the same is true for other physical systems.

There is no a priori reason to assume that the interevent time distribution P[tw] is scale-invariant
in the sense discussed in this paper (see also the discussion at the end of §4 and [7]). However,
it is a remarkable result, here presented for the first time, that if scale invariance holds then the
scaling exponents of size and interevent time distributions must be related.
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