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Dense active matter is gaining widespread interest due to its remarkable similarity with conventional
glass-forming materials. However, active matter is inherently out of equilibrium and even simple models
such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave
markedly differently from their passive counterparts. Controversially, this difference has been shown to
manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics.
Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the
ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital
and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of
both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all
studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides
with the corresponding short-time length scale of the system, which is either the persistence length for
athermal systems or a combination of the persistence length and a diffusive length scale for thermal
systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile
and explain the manifestly disparate departures from equilibrium reported in many previous studies of
dense active materials.

DOI: 10.1103/PhysRevLett.127.278002

Introduction.—Throughout the previous decade, active
matter has attracted increasingly wide attention in the field
of soft matter and biophysics [1–3]. Consisting of par-
ticles that continuously convert energy into mechanical
work or autonomous motion, active materials are naturally
outside the realm of thermodynamic equilibrium and as a
result exhibit a plethora of surprising features. Although
initial active matter studies have spanned mostly from the
single-particle level up to the moderate-density regime
[1], more recent interest has shifted toward high-density
active matter systems [4,5]. This has already yielded a
significant amount of work on monodisperse systems in
the context of crystallization and phase separation [6–10].
Another important catalyst for this refocused interest is
the striking similarity between dense disordered active
matter and conventional (passive) glassy materials
[4,11,12]. Indeed, glassy phenomenology in active matter
has been observed in, e.g., experiments of synthetic
colloids [13,14] and living cells [15–19], as well as in
simulation and theory [20–40]. Although dense systems
are dominated by interactions and could, in principle, be
expected to be fairly similar across passive and active
matter, activity still plays a nontrivial role [22,26–30].
What this role precisely is and to what degree active
systems can be mapped onto passive ones has therefore
emerged as an important new area of research.

Two simple model systems, which are widely used in
theoretical and simulation studies of dense active matter,
are so-called active Brownian particles (ABPs) [21,41–45]
and active Ornstein-Uhlenbeck particles (AOUPs) [46–48].
These models differ in the manner in which they model
active forces, either describing them as forces with a
constant magnitude undergoing rotational diffusion
(ABPs) or letting them evolve in time via an Ornstein-
Uhlenbeck process (AOUPs). However, even for these
relatively simple model active particles, the departure from
equilibrium in dense systems is confounded by surprising
and seemingly contrasting results. Notably, in several
studies, the long-time particle dynamics has been shown
to change nonmonotonically upon increasing the persist-
ence of the constituent particles [22,25,27,30], while other
works find either monotonically enhanced [20,26,27,49] or
decreased [27,29] dynamics. To account for the change in
dynamics, it was recently proposed by Liluashvili et al.
[20] that the so-called cage length lc [50,51], i.e., the space
each particle is permitted before encountering its neighbor-
ing particles, might be a crucial length scale that provides
an offset beyond which active motion influences glassy
behavior in thermal hard-sphere systems.
Here we show that the cage length is an even more

important parameter than previously suggested and, in
fact, holds the key to rationalizing and reconciling the
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apparently disparate views on the departure from thermal
equilibrium for both thermal and athermal dense active
systems. Briefly, we explore the dynamics of interacting
ABPs and AOUPs upon increasing the persistence time,
while at the same time fixing their effective temperature.
For all considered settings, we retrieve a nonmonotonic
dependence of the long-time diffusion coefficient whose
qualitative shape, consisting of an initial increase and later
decrease, also remains the same. By replacing the persist-
ence time by the ratio of the relevant short-time length scale
(either the sole persistence length for athermal systems or a
combination of the persistence length and a diffusive length
scale for thermal systems) to the cage length as our control
parameter, we find the optimum of the dynamics in all cases
to coincide with a value equal to 1. We discuss how this can
explain a large number of previous findings and thus
establish this ratio as the central and unifying dimension-
less length scale for active glassy materials.
Simulation details.—As our model system, we take

a three-dimensional (3D) Kob-Andersen binary mixture
consisting of NA ¼ 800 and NB ¼ 200 quasihard self-
propelling spheres of type A and B, respectively. Each
particle i is described by the following overdamped
equation of motion [24,26,52]:

_ri ¼ ζ−1ðFi þ fiÞ þ ξi; ð1Þ

where ri denotes the position of particle i, ζ is the friction
coefficient, Fi and fi are the interaction and self-propulsion
force acting on particle i, respectively, and ξi is a Gaussian
noise with zero mean and variance hξiðtÞξjðt0Þinoise ¼
2kBTζ−1Iδijδðt − t0Þ, with kBT ≡ T as the thermal energy
(temperature), t as the time, and I as the unit matrix.
The interaction force Fi ¼ −

P
j≠i ∇iVαβðrijÞ is derived

from a quasihard-sphere power-law potential VαβðrÞ ¼
4ϵαβðσαβ=rÞ36 [53,54] and the interaction parameters,
i.e., ϵAA ¼ 1, ϵAB ¼ 1.5, ϵBB ¼ 0.5, σAA ¼ 1, σAB ¼ 0.8,
and σBB ¼ 0.88, are, in combination with setting the
friction coefficient to unity ζ ¼ 1, chosen to give good
glass-forming mixtures [55,56].
The distinction between ABP and AOUP models rests in

their time evolution of the self-propulsion force fi. For
ABPs the absolute value of the force f remains constant
in time, i.e., fi ¼ fei, while the orientation ei undergoes
rotational diffusion [24,52],

_ei ¼ χ i × ei; ð2Þ

subject to a Gaussian noise process with zero mean and
variance hχ iðtÞχ jðt0Þinoise¼2DrIδijδðt− t0Þ, whose ampli-
tude is determined by the rotational diffusion coefficient
Dr. In comparison, for AOUPs, the self-propulsion force
evolves in time according to [22–24,27,29,30]

_fi ¼ τ−1fi þ ηi; ð3Þ

Here, τ depicts the characteristic decay time of the self-
propulsion and ηi is an internal Gaussian noise process
with zero mean and variance hηiðtÞηjðt0Þinoise ¼
2DfIδijδðt − t0Þ governed by a diffusion coefficient Df.
If we neglect particle interactions, both models yield a

persistent random walk (PRW) with mean-square displace-
ment (MSD) [24]

hδr2ðtÞi ¼ 6Ttþ 6Ta½τpðe−t=τp − 1Þ þ t�: ð4Þ

Such a PRW is characterized by a persistence time τp ¼
ð2DrÞ−1 (ABP), τp ¼ τ (AOUP), an active temperature
Ta ¼ f2τp=3 (ABP), Ta ¼ Dfτ

2
p (AOUP), and the

(passive) temperature T. In particular, at short times
(t ≪ τp), the motion comprises a diffusive and ballistic
contribution hδr2ðtÞi ≈ 6Ttþ 3Tat2=τp, and in the long-
time limit (t ≫ τp), it becomes fully diffusive with an
enhanced diffusion coefficient hδr2ðtÞi ≈ 6ðTa þ TÞt≡
6Tefft. Moreover, in the limit τp→0 (with Ta ∼
constant), both models become equivalent to a Brownian
system at a temperature equal to the effective temperature
Teff ¼ Ta þ T. To compare both models, we will take
as our control parameters T, τp, Teff , and the number
density ρ.
Simulations are carried out using LAMMPS [57]. We

impose periodic boundary conditions, fix the cubic box size
to set the number density, let the system run sufficiently long
to ensure that no significant aging takes place, and afterward
track the particles over time. All results are presented in
reduced units where σAA, ϵAA, ϵAA=kB, and ζσ2AA=ϵAA
represent the units of length, energy, temperature, and time,
respectively [58]. For more details on the simulation pro-
tocol, we refer to the Supplemental Material [59].
Athermal active particles.—For simplicity, we initially

focus on athermal systems (T ¼ 0, Teff ¼ Ta), choose three
state points [Teff ¼ 2.448, ρ ¼ 1.25], [Teff ¼ 1.5, ρ ¼ 1.2],
and [Teff ¼ 0.528, ρ ¼ 1.1], where the systems exhibit
mildly supercooled behavior, and vary the persistence time
τp to study the departure from equilibrium. An additional
advantage of the chosen state points resides in the self-
similar nature of the power-law potential. This implies that
for such a potential the behavior of a passive Brownian
system is fully characterized by the parameter Γ ¼ Tρ−12

[53,56,60]. More concretely, since Γ (using Teff instead of
T) is the same for all three studied state points, they should
yield equivalent dynamics when we take the limit τp → 0,
allowing for a convenient comparison.
Starting with the ABP model, we study its T ¼ 0

dynamics by retrieving the MSD, which is shown for a
subset of values of τp in Fig. 1(a). It can be seen that for
long times the particles migrate diffusively (MSD ∝ t),
while, for all state points, they are fastest (largest MSD)
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when τp ¼ 0.005, indicating that the departure from
equilibrium occurs in a nonmonotonic fashion. Such non-
monotonic dependence on the persistence time is also
consistent with previous results for quasihard-sphere athe-
rmal AOUPs [27,29]. However, we note that for the studied
state points the particles are slowest (smallest MSD)
at different persistence times (either τp ¼ 0.0002 or
τp ¼ 0.05). One might be tempted to interpret this as their
equivalency being lost upon departing from equilibrium,
but this is, in fact, not the case.
To demonstrate that there is indeed a large degree of

universality hidden in the chosen state points, we explore
the dependence of the dynamics on τp in more detail by
calculating (based on the MSDs) the self-diffusion coef-
ficient D ¼ limt→∞hδr2ðtÞi=6t and plotting the resulting
values normalized by Teff in Fig. 1(b). Interestingly, the
results now seem almost identical except for an offset in the
persistence time (explaining the differences in the MSDs).
We may additionally note that for small τp the self-
diffusion coefficients approach, as expected, the value
obtained from passive Brownian dynamics simulations
(at T ¼ Teff ), while for large τp it drops below this value,
implying that, on average, the particles migrate more
slowly than their passive counterparts. Because of the
similar shapes of the plots in Fig. 1(b), we anticipate that
a different control parameter might be able to correct for the
observed offset. Fortunately, the ABP model system comes
naturally equipped with a length scale, namely, the per-
sistence length lp ¼ fτp; indeed, when we plot the results
as a function of lp=lc, they fully collapse [see Fig. 2(a)].
Inspection of Fig. 2(a) then shows that the optimum value
of D coincides with a value lp ∼ 0.12σAA, which is entirely
consistent with the size of the “cage length” lc (estimated
via a nearest-neighbor analysis at a density ρ ¼ 1.2,
see Supplemental Material [59] for details; note that the
Lindemann rule yields 0.13 times the particle diameter for

monodisperse hard spheres [60]). Since we are at relatively
high densities, and therefore the cage length is approx-
imately the same for ρ ¼ 1.1, 1.2, 1.25 (see Supplemental
Material [59]), this also explains why the results collapse
almost perfectly. Moreover, we have verified that this
collapse is robust when changing to a different Γ value
deeper in the supercooled regime [see [59], Fig. S3(a)]. We
may also qualitatively rationalize the central role of the
cage length by picturing particles trying to escape from
their cage formed by neighboring particles. This process
should proceed most effectively when particles can scan all
the edges for an opening as fast as possible, which occurs
when the persistence length is of the same order as the cage
length. In contrast, when lp ≪ lc it would take much longer
to reach the edges of the cage, while for lp ≫ lc a particle
tends to stick in one edge of the cage for a relatively
long time.
Next, we test whether the observed behavior persists for

the athermal AOUP model. For the AOUPs, one can invoke
the equivalency of the MSDs [see Eq. (4)] to define a
persistence length as lp ¼ ð3DfτpÞ1=2τp, where ð3DfτpÞ1=2
may be interpreted as the approximate average self-
propulsion force. Using lp=lc as our control parameter,
we have plotted the calculated values of D=Teff (for the
same state points as used for the ABPs) in Fig. 2(b).
Remarkably, the results once more collapse and the
differences with the ABP model appear to be only
marginal. This suggests that the specific microscopic
details of these active self-propulsion mechanisms are
of lesser importance in high-density systems. Intuitively,
given that the particle motion becomes more impeded by
repulsion at high densities and the system is starting to
approach an arrested state, one would also expect the
precise single-particle dynamics to become less relevant.
Finally, we mention that, in previous work involving

softer interaction potentials, the initial increase in D

(a) (b)

FIG. 1. (a) MSDs of athermal ABPs for different persistence
times τp. The results for [Teff ¼ 2.448, ρ ¼ 1.25] (blue), [Teff ¼
1.5, ρ ¼ 1.2] (red), and [Teff ¼ 0.528, ρ ¼ 1.2] (orange) are
multiplied by a factor 1, 10, and 200, respectively, for visibility.
(b) The corresponding self-diffusion coefficients normalized by
the effective temperature. Upon increasing τp, the dynamics
initially speeds up before slowing down and dropping below the
value obtained from equivalent (T ¼ Teff ) passive Brownian
dynamics simulations (dashed line).

(a) (b)

FIG. 2. The normalized self-diffusion coefficient D=Teff as a
function of the ratio of the persistence to the cage length lp=lc for
(a) athermal ABPs and (b) athermal AOUPs. Both models yield
almost identical results for all state points, with an optimum
around the cage length lp=lc ∼ 1.0 (with lc ∼ 0.12σAA). The result
from passive Brownian dynamics simulations (lp ¼ 0) is the
same for all state points and is added as a reference (dashed line).
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vanishes and only the drop after passing a critical value of
τp remains [29]. We have verified that, when we change the
power in our interaction potential from 36 to either 18 or
12, the initial increase in D is indeed strongly suppressed
[see [59], Fig. S3(b)], but the subsequent drop still occurs at
approximately the same persistence length (albeit slightly
smaller for increasing softness, which we believe is due to
the longer range of a softer power-law potential). A follow-
up study along these lines is planned for future work.
Thermal active particles.—To establish whether the

observed behavior undergoes qualitative changes when
thermal motion is added to the active-particle models,
we now compare the following three state points:
[Teff ¼ 3.0, T ¼ 0.0, ρ ¼ 1.2], [Teff ¼ 3.0, T ¼ 1.5,
ρ ¼ 1.2], and [Teff ¼ 3.0, T ¼ 2.0, ρ ¼ 1.2]. Note that
all points have an equal effective temperature, but in one
case only active motion adds to this value, while in the
other two both active and passive motion contribute.
Again starting with the ABP model, we have calculated

the MSDs for the mentioned state points; the corresponding
values of D=Teff are plotted as a function of τp in Fig. 3.
Upon first glance, the qualitative shape of the thermal ABP
curves look similar to its athermal counterpart. In particu-
lar, all results approach the anticipated value of Brownian
particles at T ¼ 3.0 for small τp and show the same
nonmonotonic behavior.
There are, however, also some notable differences. In the

limit of large τp, for instance, the thermal results seem
to approach the same dynamics as a Brownian particle at
either T ¼ 1.5 or T ¼ 2.0 (which suggests that super-
imposing active onto passive motion always enhances

the dynamics), whereas the self-diffusion coefficient of
the athermal particles manifestly goes to zero. We can
explain these observations by noting that, for a fixed Ta,
taking the limit of very large τp also implies that the
average self-propulsion force becomes very small. As a
result, the athermal particles take increasingly long to break
out of their cages, resulting in progressively slow dynam-
ics, while the motion of the thermal particles becomes
completely dominated by the passive contribution.
Another difference is the smaller height of the peak value

for the thermal ABPs, which is simply due to the active
motion contributing not as much to Teff in comparison to
the athermal ABPs. More interesting is the location of
the peak values. For athermal systems, we find that a
smaller active (or effective) temperature Ta will result in
an optimum self-diffusion at a larger persistence time
[see Fig. 1(b)]. One might therefore expect that the
optimum value in our considered thermal systems, which
have a smaller value of Ta ¼ 1.0, 1.5 compared to its
athermal analog (with Ta ¼ 3.0), would also be at a larger
value for τp. Surprisingly, Fig. 3 shows the opposite. This
suggests that taking lp=lc as a control parameter will not
result in the peak value being at the same location.
To resolve this discrepancy, we realize that thermal

active systems are, in fact, governed by an additional
source of motion that is inherently absent in athermal
systems. Explicitly, for athermal active systems, only the
self-propulsion contributes to the motion of the particles
and thus the short-time length scale is the persistence
length. In contrast, for thermal systems, the added thermal
motion enhances the length scale at short times. For t < τp
we may expand the single-particle MSD up to second order
to give hδr2ðtÞi ≈ 6Ttþ 3Tat2=τp. We can then introduce
leff ¼ ½hδr2ðτpÞi�1=2 (using the second-order MSD) as an

FIG. 3. The normalized self-diffusion coefficient D=Teff as a
function of τp for thermal (T ¼ 1.5, 2.0) and athermal (T ¼ 0.0)
ABPs at fixed values of Teff ¼ 3.0, ρ ¼ 1.2. Increasing τp
initially yields faster, but eventually slower, dynamics than
Brownian particles at T ¼ 3.0 (dashed line); in the limit of large
τp, thermal ABPs approach the T ¼ 1.5, 2.0 passive Brownian
limit (dash-dotted, dotted lines) while athermal ABPs yield
D=Teff → 0. The inset shows the persistence time τpeakp corre-
sponding to the peak value of D, which decreases as a function
of T.

(a) (b)

FIG. 4. Normalized self-diffusion coefficient D=Teff as a
function of the normalized effective short-time length scale
leff=lc for (a) the ABP and (b) the AOUP model, at fixed values
Teff ¼ 3.0, ρ ¼ 1.2. Both the thermal T ¼ 1.5, 2.0 and athermal
T ¼ 0.0 results have an optimum value around the cage length
leff=lc ∼ 1.0. The passive Brownian reference at T ¼ 1.5 (dash-
dotted line), T ¼ 2.0 (dotted line), and T ¼ 3.0 (dashed line) is
shown for comparison.
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enhanced effective (short-time) length scale and use
it as our control parameter for thermal systems (note
that, for T ¼ 0, we still have leff ¼ lp). Indeed, when
we plot the values of D=Teff as a function of leff=lc [see
Fig. 4(a)], we find that not only do the optima coincide,
but the point at which they do is again fully consistent
with the cage length, i.e., leff=lc ∼ 1.0. It thus seems
that the addition of thermal motion changes the relevant
short-time length scale, but it does not alter the physical
picture of particles exhibiting the strongest enhanced
dynamics when they can explore their cage as effectively
as possible.
We finalize our results by mentioning that the observed

behavior is once more unaltered when we interchange
the thermal ABP for the thermal AOUP model. In particu-
lar, the differences in the obtained values for D=Teff
and their dependence on leff=lc are only minute
(see Fig. 4).
Conclusion.—To summarize, our work demonstrates that

the cage length plays a vital role in the context of high-
density active glassy materials. In particular, its relation to
the relevant short-time active length scale, i.e., the sole
persistence length for athermal systems or a combination of
the persistence length and a diffusive length scale for
thermal systems, fully determines whether the relaxation
dynamics is enhanced or suppressed with respect to a
Brownian system at an equal effective temperature. Indeed,
an inspection of several previous findings [22,27,29,30],
which have reported different departures from equilibrium,
shows that their seemingly contrasting findings can be fully
reconciled by identifying whether the studied parameter
regimes corresponded to short-time length scales on either
side or around the cage length. Moreover, our results are
robust to the microscopic details of the self-propulsion,
rendering the ratio of the short-time active length scale to
the cage length the crucial control parameter in both ABPs
and AOUPs. We also observe that, consistent with previous
work on hard-sphere ABPs [20,26], superimposing active
onto thermal motion always speeds up the relaxation
dynamics. To further establish the importance of this ratio,
it will be interesting to study its role in more detail for strict
hard-sphere systems, whose passive dynamics should be
independent of temperature. In comparison, our prelimi-
nary simulations with softer interaction potentials show
the same the physical picture as sketched in this Letter,
although the initial enhancement of the dynamics becomes
more suppressed. The question how this picture extends to
more complex and attractive interaction potentials, as well
as biologically relevant active glasses such as confluent cell
models [4,15,39,61], should be investigated in future work
to ultimately fully elucidate the rich nonequilibrium glassy
dynamics of active matter.
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