
 

Transformational supervisor synthesis for evolving systems

Citation for published version (APA):
Thuijsman, S., & Reniers, M. (2022). Transformational supervisor synthesis for evolving systems. Discrete Event
Dynamic Systems, 32(2), 317-358. https://doi.org/10.1007/s10626-021-00354-0

Document license:
CC BY

DOI:
10.1007/s10626-021-00354-0

Document status and date:
Published: 01/06/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jul. 2024

https://doi.org/10.1007/s10626-021-00354-0
https://doi.org/10.1007/s10626-021-00354-0
https://research.tue.nl/en/publications/4954ffe8-b13b-4ad3-8f10-e96f0f8721b0


https://doi.org/10.1007/s10626-021-00354-0

Transformational supervisor synthesis for evolving
systems

Sander Thuijsman1 ·Michel Reniers1

Received: 8 January 2021 / Accepted: 22 October 2021
© The Author(s) 2022

Abstract
Supervisory controller synthesis is a means to compute correct-by-construction controllers
for discrete event systems. As these systems and their requirements evolve over time, an
updated supervisor needs to be computed each time an adaptation takes place. We con-
sider the case that a supervisor has been synthesized for a given model, after which this
model is (slightly) adapted. We investigate how we can make use of the previous synthesis
result, in order to more efficiently compute the supervisor for the adapted model. We intro-
duce model deltas as a means to describe the difference between pairs of models. Using the
model deltas, a notion of atomic adaptations is introduced. For these atomic adaptations,
algorithms are provided to compute the supervisor for the adapted model in a transforma-
tional manner from the previous synthesis result, rather than performing a completely new
synthesis. These atomic adaptations can be iterated over, to transformationally compute a
supervisor for model deltas that contain a number of atomic adaptations. To improve effi-
ciency, it is shown how atomic adaptations can be grouped together based on their required
computations and be processed at the same time. A running example is used to support the
explanations on the functioning of the algorithms. The efficiency of the method is evaluated
by means of both an academic and an industrial use case.

Keywords Discrete event systems · Supervisory control theory · Supervisor synthesis ·
Software product line engineering · Delta modeling · Software evolution

1 Introduction

Supervisory control theory, as introduced by Ramadge and Wonham (1987) and Ramadge
and Wonham (1989), is a model-based approach to control discrete event (dynamic)
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systems. Given a plant model (that defines all possible system behavior) and a requirement
specification (which defines what plant behavior is allowed), a supervisor can be computed
algorithmically (synthesized) that restricts the plant’s behavior so that it is in accordance
with the requirements. Depending on the synthesis algorithm, the supervised system has
some useful properties, such as safety, nonblockingness, controllability and maximal per-
missiveness. The benefit of supervisory control theory has been shown in literature for
varying fields of industry. Some examples where it is applied to controller design are; A
patient support table of a magnetic resonance imaging scanner in Theunissen et al. (2014),
chemical process control in Rawlings et al. (2014), lithography machines in van der Sanden
et al. (2015), a waterway lock and movable bridge combination in Reijnen et al. (2020),
construction robotics in Rosa et al. (2020), and tactical planning for automated vehicles in
Krook et al. (2020). Despite the advantages of applying this technique, and the examples
thereof shown in case studies, industrial acceptance is still scarce compared to other top-
ics of control theory. Wonham et al. (2018) point to the state space explosion as one of the
barriers to industrial acceptance. When the size of the system grows, the time and space
(memory) required for synthesis grows exponentially.

We consider the situation sketched in Fig. 1; A supervisor has been synthesized for a
particular specification of plant and requirements. Later, a (slight) adaptation is made to the
specification, so that we are going to need a new supervisor. In state of practice, a completely
new synthesis would be performed on the adapted model. We investigate how to reuse the
initial model and synthesis result, in order to more efficiently synthesize a new supervisor,
while the supervisor’s desired properties are retained.

The reuse of artifacts during (software) development is considered in (software) Product
Line Engineering (PLE). Pohl et al. (2005) define: ‘Software product line engineering is
a paradigm to develop software applications using platforms and mass customisation.’ By
reusing domain artifacts and exploiting product line variability, companies can employ PLE
to increase product individualization, reduce development costs, reduce time-to-market, and
enhance product quality. Pohl et al. (2005) point to model-based software development as
an ideal candidate for employing PLE.

Within the context of PLE, Schaefer et al. (2012) characterize Delta Modeling as a mod-
ular approach to model the variability of a system using transformations. A model delta
explicitly specifies an adaptation that can be applied to some base model, in order to form a
variant model. A particular variant model can be obtained by selecting one or more model
deltas and applying them to the base model one-by-one.

Fig. 1 Schematic overview synthesis for evolving system
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Regarding adaptations that are made to software over time, Lehman (1996) has defined
the laws of software evolution; these describe what changes typically occur during a soft-
ware’s lifetime. The laws themselves have evolved over the years, but the law of continuing
change has consistently been a part of them. This law states that software controlling
a cyber-physical system must continually be adapted, otherwise its functioning becomes
progressively less satisfactory.

In this paper, we elaborate on a Transformational Supervisor Synthesis (TSS) method.
This type of synthesis uses a base model, its synthesis result and model delta to obtain a
supervisor. This supervisor is the same as the would-be supervisor if a completely new syn-
thesis was performed for the variant model, which is defined by the base model and model
delta. Note that in this problem statement the model delta is unknown before performing
synthesis on the base model. This is a realistic constraint, following from Lehman’s law of
continuing change, as well as in the case of iterative and incremental development (Larman
and Basili 2003), where system and requirement definitions are adapted during controller
development. We introduce a supervisor synthesis algorithm that outputs relevant data that
can be used for TSS. We present a notion for model delta, which defines adaptations made
between two models, and use this notion to identify atomic adaptations, that are the smallest
possible model deltas. For different types of atomic adaptations, we provide TSS algorithms
that use the result from a previous synthesis to transformationally compute a supervisor. We
show how we can iterate over these atomic adaptations to transformationally obtain a super-
visor when multiple atomic adaptations specify the difference between any base and variant
model. To improve the efficiency, we will then present an algorithm that groups atomic adap-
tations together based on their required computations and processes them at the same time.
These algorithms are then first applied in an academic experiment in order to analyze their
effectiveness. Next, an industrial case study is presented for evolution of a controller that is
used in lithography machines. Finally, conclusions are provided based on these results.

1.1 Related work

This paper is strongly based on, and can be seen as an extension to, Thuijsman and Reniers
(2020), where the TSS method was first introduced. The extension we present here includes
more elaborate examples and explanations, an additional industrial case study, as well as
theorems and their accompanying proofs. The algorithms we present here have been updated
with respect to Thuijsman and Reniers (2020), some modifications were made on account of
obtaining correct results, others for the sake of improving computational efficiency. Tijsse
Claase (2020) is also closely related, in which a first attempt of applying TSS to symbolic
supervisor synthesis is made, where binary decision diagrams are used to represent the
system for efficient supervisor synthesis (Fei et al. 2014).

Within the research area of discrete event systems, PLE is mostly considered in the topic
of formal verification or model checking. For example, efficient verification of linear-time
temporal logic for variability-intensive systems in Classen et al. (2010) or feature-oriented
modular verification of software product lines in ter Beek and de Vink (2014). Khan (2013)
investigates evolving Algebraic Petri Nets, how to perform verification on the parts of the
system that are affected by the property that is analyzed, and how to identify evolutions that
require verification. In ter Beek et al. (2016) and Reniers and Thuijsman (2020), PLE has
been applied in supervisory control. In these works a supervisory controller is synthesized
for all possible product configurations given by a feature model. The output is one controller
with multiple initial locations, were each initial location corresponds to a product configu-
ration. In Reniers and Thuijsman (2020), runtime evolution of the system behavior over the
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configurations is studied. In contrast to this work, we do not assume a priori knowledge of
the possible system configurations and the evolution takes place at design time.

2 Preliminaries

We consider finite state automaton A defined as a 5-tuple: A = (X,Σ, −→, X0, Xm),
where X is the finite set of states, of which X0 ⊆ X is the set of initial states and Xm ⊆ X

is the set of marked states. Σ is the finite set of events, also called the alphabet, which is
partitioned into sets of controllable and uncontrollable events, respectively Σc and Σu. Σ∗
denotes all possible finite strings using events in Σ . −→ is the finite set of transitions, a
transition is a 3-tuple: (xor, σ, xtar) ∈ X×Σ×X, specifying a transition from origin state xor
to target state xtar over event σ . We denote the existence of a transition (xor, σ, xtar) ∈−→
by: xor

σ−→ xtar. Likewise, the existence of a sequence of transitions over intermediate
states can be addressed by: xor

s−→ xtar, for s ∈ Σ∗.
The synchronous product of automata A1 = (X1,Σ1, −→1, X0,1, Xm,1) and A2 =

(X2,Σ2,−→2, X0,2, Xm,2) is defined as: A1||A2 = (X1 × X2,Σ1 ∪ Σ2, −→12, X0,1 ×
X0,2, Xm,1 × Xm,2), where −→12 is constructed by:

((xor,1, xor,2), σ, (xtar,1, xtar,2)) ∈−→12,

if σ ∈ Σ1 ∩ Σ2, xor,1
σ−→1 xtar,1, xor,2

σ−→2 xtar,2

((xor,1, x2), σ, (xtar,1, x2)) ∈−→12,

if σ ∈ Σ1 \ Σ2, xor,1
σ−→1 xtar,1

((x1, xor,2), σ, (x1, xtar,2)) ∈−→12,

if σ ∈ Σ2 \ Σ1, xor,2
σ−→2 xtar,2

(1)

For a given automaton A, we apply supervisor synthesis to generate a supervisor subau-
tomaton S of A that is reachable, coreachable, controllable, and maximally permissive.

An automaton S = (Y,ΣS,−→S, Y0, Ym) is a subautomaton of A = (X,Σ, −→,

X0, Xm) if Y ⊆ X, ΣS = Σ , −→S ⊆−→, Y0 ⊆ X0, and Ym ⊆ Xm. In this work, the
subautomata we encounter are restricted to −→S =−→∩(Y × Σ × Y ), Y0 = Y ∩ X0, and
Ym = Y ∩ Xm.

A state xr ∈ X is reachable if it can be reached from some initial state; x0
s−→ xr for

some x0 ∈ X0, s ∈ Σ∗. A state xcr ∈ X is coreachable if from it a marked state can be
reached; xcr

s−→ xm for some xm ∈ Xm, s ∈ Σ∗. Supervisor automaton S is called (co-)
reachable for plant automaton A, if all its states can be defined as such. An automaton for
which all reachable states are coreachable is commonly called nonblocking in literature. We
say that for automaton A = (X,Σ, −→, X0, Xm), supervisor automaton S = (Y,ΣS,−→S,

Y0, Ym) is controllable if −→∩(Y × Σu × X) ⊆ −→S . If S is controllable, the states in Y

are also called controllable. Maximally permissive says that S is the maximal subautomaton
of A for which coreachability, reachability, and controllability are ensured. Meaning the
supervisor does not disable any transitions that do not strictly need to be disallowed.

In addition to the properties of the supervisor mentioned above, problem formulations for
supervisor synthesis often include a safety constraint; Along with the plant, some require-
ment specification on the plant’s behavior is given. The supervisor should restrict the
behavior of the plant so that the requirement specification is always satisfied. In such a case,
a plantified requirement automaton can be constructed by introducing a non-coreachable
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p0 p1 p2 p3 p4
a

b

b c d

Fig. 2 Plant automaton P

sink state. Transitions that are not in accordance with the specification are redirected to
this sink state. Given a requirement automaton R = (X,Σ, −→, X0, Xm), the plantified
requirement automaton is obtained as follows (Flordal et al. 2007):

R⊥ = (X ∪ {⊥},Σ, −→⊥, X0, Xm), (2)

where ⊥ 	∈ X is the new sink state and

−→⊥=−→∪{(x, σu,⊥)|x ∈ X, σu ∈ Σu, �(xtar ∈ X)x
σu−−→ xtar}.

A safe supervisor can be obtained by synthesizing a coreachable and controllable supervisor
on the synchronous product of the plant automata and plantified requirement automata, as
proven in Flordal et al. (2007). Other ways of specifying requirements can be plantified
as well. For example state exclusion requirements discussed in Markovski et al. (2010) are
plantified by removing excluded controllable transitions from the plant, and directing the
excluded uncontrollable transitions to the sink state. Therefore, in this work we will consider
synthesizing a coreachable supervisor for a single automaton, without loss in generality
regarding safety constraints or networks of automata.

We allow automata to be non-deterministic. In the case of non-determinism, we allow the
supervisor to be able to disable individual controllable transitions as a result of the removal
of unsafe states. So if in the plant a state has two outgoing transitions over the same con-
trollable event, the supervisor subautomaton may contain this state with only one of these
outgoing transitions. This is unlike some traditional supervisory control definitions, by for
example (Ramadge and Wonham 1989) or (Cassandras and Lafortune 2008), where mul-
tiple outgoing events over the same event can not be disabled individually. The distinction
between these paradigms is further discussed in Flordal et al. (2007).

2.1 Running example

We will consider the plant automaton P of Fig. 2 and requirement automaton R of Fig. 3
as a running example throughout this paper. A solid or dashed arrow respectively indicates
a transition by a controllable or an uncontrollable event. The initial states are indicated by
the incoming arrows, and the marked states are indicated by a double circle. Requirement
automaton R has been plantified, resulting in the plantified requirement automaton R⊥ in
Fig. 4. Constructing the synchronous product P ||R⊥ yields automaton A of Fig. 5. Note
that for the remainder of this paper, when we discuss model deltas to this example, they are
always to automaton A directly, not to P and R with an implied delta on A.

r0 r1
a

b

Fig. 3 Requirement automaton R
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Fig. 4 Plantified requirement
automaton R⊥

r0 r1
a

b

b

2.2 Supervisor synthesis algorithm

In Algorithm 1 a supervisor synthesis algorithm is presented. It is based on the algorithm
introduced in Ouedraogo et al. (2011). However, we consider Finite State Automata rather
than Extended Finite Automata for sake of simplicity. We also omitted the use of forbidden
states in the algorithm, as we plantify the requirements. In case the plant behavior is given by
multiple plant automata, the input automaton for this algorithm can be obtained by calculat-
ing the synchronous product of the plant automata. We present this algorithm using function
calls to other algorithms to facilitate reuse of these (sub-)algorithms later in this paper. The
algorithm uses a fixpoint computation, provided in Algorithm 2, which iteratively calculates
a set of coreachable states G, followed by a set of bad states B, that are non-coreachable
or have a sequence of uncontrollable transitions to a non-coreachable state. The calculation
to obtain G and B is done by the means of a Backward Reachability Search (BRS), given
in Algorithm 3, for which Lemma 1 holds. This is a Breadth First Search algorithm taken
from Kleinberg and Tardos (2005) that has a linear runtime complexity. All found states are
added to Xω. The state space is searched in layers. For each state in the current layer, all
undiscovered states that have a transition to this state are added to the next layer. After all
states in the current layer have been evaluated, the algorithm moves to evaluating the states

p0r0 p1r0 p2r0 p3r0 p4r0

p0r1 p1r1 p2r1 p3r1 p4r1

p0 p1 p2 p3 p4

a

b

b c d

b b

c d

c d

Fig. 5 Automaton A = P ||R⊥
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in the next layer. These steps are repeated until no more new states are found. The algorithm
is slightly adapted from Kleinberg and Tardos (2005) to allow a set of starting states, instead
of a singular starting state. Also, at the start of the algorithm the transitions are pruned, so
that only transitions between states in the input state set X are considered. Transitions from
states in the starting set Xα are also removed, as these states are already discovered as the
starting set, so analyzing these transitions is not necessary. The functioning of this algorithm
is well known so Lemma 1 is not proven here.

Lemma 1 For state set X, alphabet Σ , set of transitions −→, and starting state set Xα;
BRS(X,Σ, −→, Xα) contains all states in X from which a state in Xα ∩X can be reached,
using transitions in −→, over states in X, that have an event in Σ .
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The bad states B are removed from G. The removal of these states can induce other states
to become non-coreachable. Therefore, the algorithm repeats these steps until no further
states get removed. At this point, the set of remaining states is defined as good states G,
which is the maximal set of controllable and coreachable states, see Lemma 2. Proof for
Lemma 2 is provided in Ouedraogo et al. (2011).

Lemma 2 For automatonA=(X,Σ,−→,X0, Xm), and (Y,G)=computeFixpoint(A);
G is the maximal controllable and coreachable set of states in X.

Then, in order to generate a reachable supervisor, a Forward Reachability Search (FRS)
(Algorithm 4, Lemma 3) is carried out from the set of initial states, resulting in states Y .
Essentially BRS is performed with all transitions reversed to search forward instead of back-
ward. Same as for BRS, the accompanying lemma is not proven here. Y is the maximal
controllable, coreachable, and reachable subset of X, see Lemma 4.

Lemma 3 For state set X, alphabet Σ , set of transitions −→, and starting state set Xα;
FRS(X,Σ, −→, Xα) contains all states in X that can be reached from a state in Xα ∩ X,
using transitions in −→, over states in X, that have an event in Σ .

Lemma 4 For automatonA=(X,Σ,−→,X0, Xm),and(Y,G)=computeFixpoint(A);
Y is the maximal controllable, coreachable, and reachable set of states in X.

Proof Y is the maximal reachable set in G, following from Lemma 3. It is shown by Lemma 2
that G is the maximal controllable and coreachable subset of X. Thus, the maximal reachable
subset Y in G is the maximal controllable, coreachable, and reachable subset of X.

Together, Y , alphabet Σ , the transitions of A between the states in Y , the initial states in
Y , and the marked states in Y define the supervisor automaton S. Supervisor S is the max-
imal subautomaton of A that is reachable, coreachable, controllable; see Theorem 1. The
algorithm always computes a supervisor automaton. If there are no reachable, coreachable,
and controllable states then the supervisor automaton will contain no states, and hence no
transitions.

Theorem 1 For automaton A, and (S,G) = SS(A); S is maximally permissive, control-
lable, coreachable, and reachable with respect to A.

Proof By construction, S is the maximal subautomaton of A over states in Y . Y is the maxi-
mal controllable, coreachable and reachable set of states in A (Lemma 4). It follows that S

is maximally permissive, controllable, coreachable, and reachable with respect to A.
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Fig. 6 Supervisor S, for
(S,G) = SS(A)

p0r0 p2r0

b

Next to supervisor S, the synthesis algorithm outputs good state set G, in order to facil-
itate reuse of this set in other computations. Note that this state set is computed anyways
during synthesis, it is not computed specifically for the facilitation of reuse.

2.2.1 Example

When applying the supervisor synthesis algorithm to automaton A of Fig. 5, first the super-
visor states and good states are calculated by computeFixpoint (Algorithm 2). The
supervisor states are {p0r0, p2r0}, the good states are {p0r0, p1r0, p2r0, p3r0, p2r1, p3r1}.
Next, the supervisor automaton is constructed, which provides the supervisor automaton
given in Fig. 6.

For convenience we also provide a visualization of automaton A, where the states are
color coded depending on their containment in the state sets resulting from synthesis, in
Fig. 7. Supervisor states (Y ) (that are also good states by definition) are displayed white,
good states that are not supervisor states (G \ Y ) are displayed grey, and non-good states
(X \ G) are displayed black.

3 Model delta

For the purpose of TSS we wish to model the difference between the base and variant model.
We can represent any adaptation from base to variant automaton as model delta as 10-tuple:
Δ = (X+, X−, Σ+, Σ−, −→+, −→−, X+

0 , X−
0 , X+

m, X−
m), which for each of the sets in

the 5-tuple definition of automaton A, defines the added (+) and removed (−) elements of
that set. Σ+ and Σ− are both partitioned into sets of controllable and uncontrollable events
that are added or removed. The following constraints apply to the model delta:

– All removed elements within the model delta, must exist in the base model: X− ⊆
X, Σ− ⊆ Σ, ....

– All added elements within the model delta, must not yet exist in the base model: X+ ∩
X = ∅, Σ+ ∩ Σ = ∅, ....

p0r0 p1r0 p2r0 p3r0 p4r0

p0r1 p1r1 p2r1 p3r1 p4r1

p0 p1 p2 p3 p4

a

b

b c d

b b

c d

c d

Fig. 7 Automaton A, color coded by synthesis result
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– Elements can not simultaneously be added and removed X− ∩ X+ = ∅, Σ− ∩ Σ+ =
∅, ....

– The initial and marked states of the variant model must exist in the variant state set:
X+

0 ⊆ (X ∪ X+) \ X−, X+
m ⊆ (X ∪ X+) \ X−.

– Transitions must go to-and-from states, by defined events: −→′ ⊆ X′ ×Σ ′ ×X′, where
X′ = (X ∪ X+) \ X−, Σ ′ = (Σ ∪ Σ+) \ Σ−, and −→′= (−→∪ −→+)\ −→−.

When these constraints are met, we call the model delta valid.
Given base automaton A and model delta Δ, variant automaton A′ is constructed by:

A′ = (X′, Σ ′,−→′, X′
0, X

′
m), where: X′ = (X ∪ X+) \ X−, Σ ′ = (Σ ∪ Σ+) \ Σ−,

−→′= (−→ ∪ −→+)\ −→−, X′
0 = (X0 ∪ X+

0 ) \ X−
0 , X′

m = (Xm ∪ X+
m) \ X−

m . For a
valid model delta, and well-defined base automaton, the constructed variant automaton is
well-defined.

Furthermore, for any pair of well-defined automata (A = (X,Σ, −→, X0, Xm),A′ =
(X′,Σ ′,−→′, X′

0, X
′
m)), a valid model delta is constructed as follows: X+ = X′ \ X,

X− = X \ X′, Σ+ = Σ ′ \ Σ , Σ− = Σ \ Σ ′, −→+=−→′ \ −→, −→−=−→ \ −→′,
X+

0 = X′
0 \ X0, X−

0 = X0 \ X′
0, X+

m = X′
m \ Xm, X−

m = Xm \ X′
m.

The change of controllability of an event can be modeled by removing all transitions
that are labeled by this event, and adding these transitions back with an added event with
modified controllability.

We may address a model delta with only its non-empty part. So if we mention a model
delta with X+

0 = {xδ}, and no other information, this implies that the other elements in the
model delta tuple are empty. In the remainder of this paper, when considering a model delta
Δ it is implied that this is a model delta from base automaton A to variant automaton A′.

4 Atomic adaptations

In this section we consider atomic adaptations, where the difference between the base
and variant model can be described by a single, indivisible change in the automaton
specification. Formally we can say that a model delta Δ is an atomic adaptation when
only one of the tuple-elements is a set of size one, and all other elements are empty;
|X+| + |X−| + |Σ+| + |Σ−| + | −→+ | + | −→− | + |X+

0 | + |X−
0 | + |X+

m| + |X−
m| = 1.

We consider several types of atomic adaptations, e.g., removing a transition, or adding
the marked property to a state, for which we provide an atomic TSS algorithm. The pur-
pose of these algorithms is to calculate the supervisor states and good states of the variant
automaton, using the base automaton, its synthesis result, and model delta. Theorem 2 holds
for the algorithms. Essentially, the properties of the supervisor ((co-)reachability, controlla-
bility, and maximal permissiveness) are retained during atomic TSS. For sake of cohesion,
proofs of Theorem 2 for each algorithm are given separately in Appendix A.

Theorem 2 Given base automaton A, fixpoint result (Y,G) = computeFixpoint(A),
and atomic adaptation Δ for which the atomic TSS algorithm is given, the atomic TSS
algorithm provides a supervisor state set Y ′ and good state set G′ such that they are equal
to the fixpoint result of the variant automaton; (Y ′,G′) = computeFixpoint(A′).
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Base Automaton

A
Variant Automaton

A'

Base Supervisor

Fixpoint

Y, G

Variant Supervisor

Fixpoint

Y', G'

Variant Supervisor

Fixpoint

Y', G' =
atomic

Fig. 8 Inputs and outputs for atomic TSS for atomic adaptation Δ

Figure 8 shows an overview of the atomic TSS method. It is similar to Fig. 1, only
now the names of the artifacts and algorithms that have been introduced are shown. The
figure shows that the fixpoint for the variant supervisor can be computed in two ways,
either by (1) performing computeFixpoint on the variant automaton directly, or by
(2) performing atomic TSS using the base automaton, base supervisor fixpoint, and atomic
model adaptation. Either way, the fixpoint result is the same.

In the following subsections we consider adding or removing the initial property to some
state, adding or removing the marked property to some state, and adding or removing a
transition respectively. For the cases of removed or added states and events no algorithms are
provided. These atomic adaptations are discussed in Section 4.7. After presenting the atomic
TSS algorithms in this section, we will show how we can iterate over them in Section 5,
where we are also going to group atomic adaptations together to process them at once.

The algorithms are strongly based on Thuijsman and Reniers (2020). In some places
minor modifications are made for sake of correctness and efficiency. Some of these mod-
ifications are discussed in Tijsse Claase (2020). The authors note that these modifications
influence the experimental results presented in Thuijsman and Reniers (2020), however only
to a small enough extent that they do not influence the conclusions made on those results.
All algorithms are also modified to compute the supervisor state set Y instead of the super-
visor S, leading to shorter notations. S can simply be computed from Y , as in line 2 of
Algorithm 1.

4.1 Added initial property

We assume the situation that (Y,G) = computeFixpoint(A) has been calculated for
base automaton A. Some state of base automaton A has been made an initial state, which is
the only adaptation to create variant automaton A′. In Algorithm 5 the atomic TSS algorithm
is provided to compute supervisor states Y ′ and good states G′ for the variant model, given
A, Y , G, and the state with added initial property xδ . The algorithm uses a switch statement,
where the value of a variable, in this case xδ , is tested for multiple cases. Once a case match
is found, the statements associated with the particular case are executed. In case no match is
found, the default statements are executed. For all atomic TSS algorithms the switch cases
are mutually exclusive, which means that for the given atomic adaptation only one switch
case holds, or none and then the default statement is executed.
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In Algorithm 5 it can be seen that two cases are considered, the first being that xδ is
in G \ Y . A state in G \ Y is coreachable and controllable in the base model. It was not
reachable in the base model, as in that case it would be part of Y . Due to addition of the
initial property, we now know that xδ is reachable, so it should become part of Y ′. It is
possible that more states in G \ Y have become reachable due to xδ being reachable, so an
FRS is carried out over states G. We already know that states in Y were reachable, and they
will remain reachable in the variant model. As we do not want to reinvest computational
effort in finding these states in Y again, the FRS is already initiated with states Y in the
starting set along with xδ , essentially we already start closer to the fixpoint that we wish to
find. States in X\G are not considered, as they remain non-coreachable or non-controllable
in the variant model. In our running example, we can consider the adaptation to make p3r1
initial, which would fit under this particular case. As p2r1 is a reachable good state from
p3r1, both p3r1 and p2r1 will be added to the supervisor states Y to construct the supervisor
states for the variant model Y ′.

Alternatively, xδ may be in X \ G. As we just noted, the adaptation of initial states does
not influence the set of coreachable and controllable states. So in this case, we already
performed the FRS over the same set G to compute Y . As G did not change, the supervisor
and good states remain the same for the variant model. In our example we can consider
making p4r1 an initial state as such an adaptation. In that variant model, p4r1 will remain a
non-good state in X \ G′.

Finally, xδ may be in Y . If this is the case, just like in the previous example the default
statement will be executed. xδ was already found in the FRS of the base model, so also all
reachable states from xδ in G are included in Y . Thus, the supervisor states and good states
remain the same for the variant model. In the running example, making p2r0 an initial state
would be of this case.

4.2 Removed initial property

We consider a similar situation as the previous section, only this time the initial property
has been removed from a state instead of added. The atomic TSS algorithm for this case is
shown in Algorithm 6.
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In the first case of the algorithm, an initial state in Y is removed. This might lead to
some states in Y being unreachable in the variant model. However the good states G are
not influenced by the initial states, so they remain the same. Also unreachable states will
remain unreachable. So an FRS is carried out over the previously reachable states Y , from
the new set of initial states for the variant model to compute Y ′. In the running example,
the removal of initial property from p0r0 would fit in this case. Consequently, there are no
initial states left in Y , so for the variant model there are no supervisor states; Y ′ = ∅. The
good states remain the same.

The other case is that the removed initial state is not in Y , considered under the
default statement of Algorithm 6. Actually we know that in this case the removed ini-
tial state is in X \ G, as states in G \ Y could not be an initial state, they would
already have been in Y as a reachable state in G. As xδ is not in the maximal con-
trollable and coreachable set in this case, it does not matter if it is reachable, or
initial. It will not be part of the good states and supervisor states. In the running
example this could be demonstrated by the removal of the initial property from state
p4r0.

4.3 Addedmarked property

In Algorithm 7 the atomic TSS algorithm is provided for the case that a state was given the
marked property in the model delta from A to A′.
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In the first case the circumstance is considered that a non-good state is now marked.
This means that some non-good states may become good and/or supervisor states because
they are coreachable in the variant model. All states that were supervisor states and good
states will remain so. So a fixpoint computation is instantiated where the supervisor states
are already added as marked states and initial states, so this part of the states does not
have to be found again in the reachability searches. In the running example we could con-
sider the case that p1r1 was made a marked state. During the first iteration of the fixpoint
computation it will be found as a good state, as it is marked. It will however be removed
from the good states since it has an uncontrollable transition to a bad state. So for this
specific example the supervisor and good states will remain the same from base to variant
model.

If the state with added marked property is a good state, it was already coreachable, as
well as all good states that can reach this state. So giving it a marked property is not going to
change the coreachability. Thus the supervisor states and the good states remain the same.
In the running example, this would be the case if for instance p1r0 was added to the set of
marked states.

4.4 Removedmarked property

Now the case is considered that a marked state in the base model, is not a marked state in
the variant model. The atomic TSS algorithm for this case is given in Algorithm 8.

In the first case the removal of a marked state in G \ Y is considered. The supervisor
states Y will remain the same, as xδ is not reachable from such a state, the removal of its
marked property does not influence their coreachability. Some good states might not be
good states for the variant model, as they may not be coreachable anymore. Therefore a
fixpoint computation is performed, with all supervisor states already added as initial states
and marked states, so this part of the state space does not have to be searched anymore. In the
running example we can consider removing the marked property from p2r1. Consequently,
the supervisor for the variant model will remain the same, but p2r1 and p3r1 are not good
states for the variant model as they are not coreachable anymore.

The second case considers the situation that the removed marked state is in Y . A new
fixpoint computation is performed for the variant model, only the non-good states are not
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taken into account, as the removal of a marked state will not increase the maximal set of
coreachable and controllable states. In the example we can consider removing the marked
property of state p2r0. As a result, there will be no supervisor states in the variant model,
Y ′ = ∅, and only p2r1 and p3r1 remain in G′.

The final case will occur when the marked property is removed from a non-good state.
This does not influence the coreachability and controllability of the good states, as they must
be coreachable for marked states in G. Also the reachable part of the good states remains
the same. So the variant model has the same supervisor states and good states as the base
model.

4.5 Added transition

Now we consider the case that only a single transition has been added to the base automaton
A to create variant automaton A′. So all elements in Δ are empty except −→+ which only
contains the transition (xor, σ, xtar). Algorithm 9 computes the supervisor and good states
for the variant model according to the type of adaptation that is made.

The first case considers an added transition from a state in Y to a state in G \ Y . The
target and origin state where already coreachable and controllable, so this is not influenced
by the addition of the transition. However the target state is now reachable, which it wasn’t
before. To find all good states that are now reachable, an FRS is performed to compute the
variant supervisor states. The good states remain the same. In the running example we can
consider the addition of a transition from p0r0 to p3r1. In that case, p3r1 and p2r1 would
become supervisor states in the variant model in the addition to the states already in Y . The
good states remain unchanged.

Next, the addition of an uncontrollable transition from a good state to a non-good
state is considered. The target state was non-coreachable or non-controllable, so transi-
tions to this state need to be disabled. Because an uncontrollable transition is added, it
can not be disabled by the supervisor. This means that the origin state is not a good
state anymore, and we wish to remove it for the variant model. The state is made non-
coreachable by removing all outgoing transitions from it, and removing it from the set of
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marked states in case it was a marked state. The fixpoint computation is then performed
on the state space spanned by the good states, with the origin state of the added tran-
sition as non-coreachable. In the running example this could be an added uncontrollable
transition from p2r1 to p2⊥. For that adaptation p2r1 and p3r1 would be removed from
the good states to construct the variant good states, and the supervisor states remain the
same.

In case the origin state is not a good state, adding the transition that is not a self-loop
(xor 	= xtar) might influence the coreachability of this and other non-good states. States
that were supervisor states in the base model will remain so. Thus, a fixpoint computation
is performed over the entire state set, where the supervisor states are added to the marked
and initial states so that this part of the state space does not need to be searched to reduce
computational effort. For the running example we can consider the case that a transition is
added from p4r1 to p2r0, in that case the supervisor states will remain the same, and p4r1
is added to the good states to construct the variant good states.

In all other cases, the supervisor states and good states remain the same. For example
the addition of a transition from-and-to a supervisor state, all states that are good states will
remain coreachable and controllable, and states in G \ Y will remain non-reachable. In the
example this could be a transition from p2r0 to p0r0. Another example is adding a self-
loop to a non-good state not influencing its non-coreachability or non-controllability. In the
running example this may be a transition from p4r1 to p4r1.

4.6 Removed transition

Here we consider the case that only a single transition has been removed from base automa-
ton A to create variant automaton A′. Algorithm 10 computes the supervisor states and good
states for the variant model according to the state sets the origin and target state of this
transition belong to, and the controllability of the transition.
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Let us consider a removed transition, that is not a self-loop, for which xor and xtar
both were in Y . This case is considered first in Algorithm 10. It is possible that due
to the removal of this transition, xor and other states in G might not be coreachable
anymore. Also xtar might not be reachable anymore. However, bad states and non-
reachable states will remain as such. Therefore, a fixpoint computation is performed
for the variant model, only for the states in G of the base model. As this synthe-
sis is on a reduced state-set, it will require less effort to perform than a completely
new synthesis on the variant model. In the running example this could be the removal
of transition (p0r0, b, p2r0), which would lead to no supervisor states for the variant
automaton. p0r0 would also be removed from the good state set to construct the good
states G′.

Next, we consider a removed transition from a state xor in G \ Y to a state xtar in G, that
is not a self-loop. xor, and other good states, might become non-coreachable after removal
of this transition. However, as these states are not reachable from the supervisor states, these
will remain the same for the variant model. To find the set of good states for the variant
model, a fixpoint computation is performed over the good states, where the supervisor states
are added to the marked and initial states so that this part of the state space is not searched.
For the running example, removing transition (p3r1, c, p2r1) would fall under this case. As
a result the supervisor states remain the same from the base to the variant model, but p3r1
is removed from the good states to construct the variant good states G′.

As a third case in Algorithm 10, an uncontrollable transition is removed with origin and
target state as not good states. It is possible that the origin state and other states were not
good states due to the existence of this transition. We need to perform some additional fix-
point computation in order to find these states. However, we know that all good states that
have been found already, will remain good states for the variant model. The same goes
for supervisor states. Therefore, computeFixpoint is instantiated with the good states
added as marked states, and the supervisor states added as initial states. In the running exam-
ple the removal of transition (p0r1, b, p2⊥) would fall under this case. In that circumstance,
the supervisor states and good states would remain the same for the variant model as the
base model.

Finally, for all other cases the supervisor states and good states remain the same between
variant and base model. For example, we remove transition (xor, σ, xtar) from base model
A, for which xor ∈ X \ G and xtar ∈ Y . We know that in A, the state xor was core-
achable, as the removed transition existed to a state in Y . As (coreachable state) xor does
not exist in the set of good states G, it must be non-controllable. We can reason that
the removal of this transition is not going to make it controllable. Thus, Y and G of
the base automaton remain the same for the variant automaton. This is also observed in
Algorithm 10.

4.7 Other atomic adaptations

Some atomic adaptations were not discussed in the algorithms above. These atomic adapta-
tions are: adding a state, removing a state, adding an event, and removing an event. When
these model deltas occur as an atomic adaptation, they do not influence the supervisor states
or good states. For example, an added state only influences the synthesis result if there are
added transitions towards or from it. Or an event can only be removed, if there are no tran-
sitions that are labeled by that event. Otherwise the model delta is not an atomic adaptation,
or it is not a valid model delta. Proofs for Lemma 5 are provided in Appendix A.
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Lemma 5 For an atomic adaptation that is an: added state, removed state, added event,
or removed event, the supervisor states Y ′ of the variant model are equal to the supervisor
states Y of the base model, and the good states G′ of the variant model are equal to the
good states G of the base model.

5 Transformational Supervisor Synthesis for anymodel delta

In this section we will not restrict the model delta to atomic cases anymore; any valid model
delta of any size is allowed. A method that iterates over all atomic adaptations is discussed in
Section 5.1. A method that groups these atomic adaptations together based on their required
computation and processes them at the same time is shown in Section 5.2.

5.1 Iterative Transformational Supervisor Synthesis

In Fig. 9 a modified version of Fig. 8 is shown, which provides a visualization of the idea
on which Iterative TSS (ITSS) is based. A non-atomic model delta describes the difference
between the base and the variant model. This model delta is split into atomic adaptations,
on which the atomic TSS algorithms can be applied, and the variant supervisor fixpoint is
computed by iterating over these atomic adaptations.

Algorithm 11 provides an ITSS algorithm, that iterates over the atomic adaptations in
the model delta one-by-one. Each time an atomic adaptation is applied using the results of
Section 4, and Y ′ and G′ are computed accordingly. After an adaptation has been applied,
the tuples X′

0, X′
m, −→′ are updated, so that if we were to construct an intermediate

automaton A′ = (X′,Σ ′,−→′, X′
0, X

′
m), this automaton is up-to-date for the adaptations

applied until that point. This intermediate automaton is then used in the input for the next
atomic TSS algorithm. Before iterating over the atomic TSS algorithms, the added states
and events are added to the base supervisor and automaton. After the iterations, the set of
removed events is removed from the supervisor, as at this point no transitions with this event
are left in the supervisor, following from the restrictions specified in Section 3. Because A′
will not have transitions to-or-from the removed states, and the removed states are not initial
or marked, the set of removed states will not be a part of Y ′ (or G′) at this point of the algo-
rithm. So they do not need to be removed from the supervisor. Algorithm 11 also outputs
the variant automaton A′ of which it produces the synthesis result.
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Theorem 3 holds for Algorithm 11. It is similar to Theorem 2 for the atomic model adap-
tations, only modified to apply for a supervisor automaton S, rather than supervisor states
Y . It also considers that the algorithm provides the correct variant automaton as output. The
proof for Theorem 3 on Algorithm 11 can be found in Appendix B.

Theorem 3 Given base automaton A, model delta Δ, synthesis result (Y,G) =
computeFixpoint(A), and (Ŝ, Ĝ, Â) = ITSS(A, Y,G,Δ); then Ŝ = S′, Ĝ = G′, and
Â = A′, for (S′, G′) = SS(A′).
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5.1.1 Order of applying atomic adaptations

There are some restrictions to the order in which the atomic adaptations can be applied dur-
ing iterative TSS. Essentially, when an atomic adaptation is applied, this atomic adaptation
needs to be a valid model delta. Let us consider the following model delta for the running
example:

– X+ = {p5r0},
– Σ+ = {e},
– −→+= {(p4r0, e, p5r0)},
– X− = ∅,Σ− = ∅,−→−= ∅, X+

0 = ∅, X−
0 = ∅, X+

m = ∅, X−
m = ∅.

This model delta represents an added transition with an added event (e) to an added state
(p5r0) from an existing state (p4r0). The model delta can be split into three atomic parts.
We observe that the added state and added event need to be added to the automaton first,
before the added transition can be added. Otherwise, the transition goes to an undefined
state, or uses an undefined event, which means the model delta is not valid.

Therefore, the added states and added events are added first. Now, any state with added
or removed initial property and any state with added or removed marked property will exist
in this intermediate automaton. Also all added and removed transitions will go between
defined states by defined events. Thus these atomic adaptations can be applied in any
order. Once these adaptations have been applied, there will be no more transitions towards
removed states, or transitions over removed events. Then finally the removed states and
removed events can be removed, resulting in the final variant automaton.

The functioning of the atomic TSS algorithms is based on the assumption that the atomic
adaptation is a valid model delta by the definitions in Section 3. To support the correct
functioning of Algorithm 11, proof that each atomic adaptation that is applied is a valid
model delta is given in Appendix B.

The authors note that even though the atomic adaptations of added/removed initial prop-
erty, added/removed marked property, and added/removed transition can be applied in any
order to come up with the same supervisor, the order in which they are applied may impact
the computational efficiency. We do not optimize this order here, as the optimal order is
likely highly dependent on the particular model and model delta. Therefore the adaptations
are applied in the order shown in Algorithm 11, where the atomic TSS algorithms appear in
the order in which they are introduced in Section 4.

5.2 Grouped Transformational Supervisor Synthesis

We observe that Algorithm 11 might not be very efficient when many atomic adaptations
need to be considered. The main issue is that the SS and FRS algorithms are repeatedly
called for input sets that are considerably similar to each other. This may notably occur
when the plant description is given by a set of automata {P1, P2, ..., Pn}. For our synthesis
purpose, we take the synchronous product A = P1||P2||...||Pn, as mentioned in Section 2.
If one of the automata Pi is adapted in an atomic manner, this might result in the model
delta Δ to contain many atomic adaptations, due to synchronicity. A lot of these atomic
adaptations in the synchronous system will be of the same type, e.g., an added transition in
Pi can induce many added transitions in A. Therefore, we want to consider some adaptations
at the same time as a group, rather than applying them one-by-one.

We partition the model delta into two disjoint subsets; Δ× � Δ◦ = Δ, where � denotes
the disjoint union of the sets that are in the same field of both tuples. Δ× contains all atomic
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adaptations that, when applying the respective atomic TSS algorithm, require the SS or
FRS algorithm. Δ◦ contains all other possible atomic adaptations outside Δ×, these require
no reachability searches. As a result of the construction of the atomic TSS algorithms, all
atomic adaptations in Δ◦ fit under the default cases of these algorithms, and all adaptations
in Δ× match one of the (non-default) case statements in these algorithms. Formally, we
can compute Δ× = (X+,×, X−,×, Σ+,×, Σ−,×, −→+,×, −→−,×, X

+,×
0 , X

−,×
0 , X

+,×
m ,

X
−,×
m ) for a model delta Δ = (X+, X−, Σ+, Σ−, −→+, −→−, X+

0 , X−
0 , X+

m, X−
m) as

follows:

– X+,× = ∅, X−,× = ∅, Σ+,× = ∅, Σ−,× = ∅
– −→+,×= {(xor, σ, xtar)|(xor ∈ Y ∧ xtar ∈ G \ Y ) ∨ (xor ∈ G ∧ xtar ∈ X \ G ∧ σ ∈

Σu) ∨ (xor ∈ X \ G ∧ xor 	= xtar)}
– −→−,×= {(xor, σ, xtar)|(xor ∈ Y ∧ xtar ∈ Y ∧ xor 	= xtar) ∨ (xor ∈ G \ Y ∧ xtar ∈

G ∧ xor 	= xtar) ∨ (xor ∈ X \ G ∧ xtar ∈ X \ G ∧ σ ∈ Σu ∧ xor 	= xtar)}
– X

+,×
0 = X+

0 ∩ (G \ Y )

– X
−,×
0 = X−

0 ∩ Y

– X
+,×
m = X+

m ∩ (X \ G)

– X
−,×
m = X−

m ∩ G

Δ◦ is then constructed by all atomic adaptations in Δ outside Δ×.
When performing Grouped TSS (GTSS), we first want to apply all atomic adaptations in

Δ◦, as we can observe in the atomic TSS algorithms that no reachability searches need to
be performed, and the supervisor states and good states remain unchanged. After all atomic
adaptations in Δ◦ have been applied, we find the first atomic adaptation in Δ× for which,
if we were to apply ITSS with model delta Δ×, one of the case conditions in Algorithms
5-10 holds. Instead of performing the corresponding case statements on only this atomic
adaptation, within the case operation we first construct a set Δ∼, that contains all atomic
adaptations in Δ× for which that same case condition in the same atomic TSS algorithm
holds. So for example, if we have Δ× with nonempty set X+,×

0 ∩(G\Y ), then X
+,×
0 ∩(G\Y )

is a set Δ∼. In addition to just atomic adaptations, the rationale applied in Algorithms 5-10
still holds for sets Δ∼. So, we take set Δ∼, and apply the respective case operation on this
set, rather than doing this for each atomic adaptation one-by-one. This might influence the
supervisor states and good states. Because the partitioning in Δ× and Δ◦ of Δ depends on
those state sets, Δ◦ might be nonempty if we recompute it for the atomic adaptations in Δ

that have not been applied yet. Thus, we once more apply adaptations in Δ◦, and reiterate
until all adaptations have been applied.

Figure 10 visualizes the grouped TSS method. First, all atomic adaptations are applied
that require no reachability search. Then, a set of atomic adaptations Δ∼ is applied at once.
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This repetition continues until the entire model delta is applied. At this point, the fixpoint
for the variant supervisor has been found.

Algorithm 12 functions as described above. The added events and added states are added
in line 1. After these have been applied, they are removed from the model delta. As stated
in Section 4.7, these adaptations do not influence the supervisor states and good states,
seen in line 3. The model delta is partitioned in Δ× and Δ◦ as specified earlier in this
section. All adaptations in Δ◦ are applied in line 6, and subsequently removed from the
model delta in line 7. Note that Y ′ and G′ remain unchanged. In line 8 a set of atomic
adaptations Δ∼ is applied; Y ′ and G′ are calculated accordingly, and −→′, X′

0, and X′
m

are consequently updated. The calculation of Y ′ and G′ is done by using slightly modified
versions of Algorithms 5-10 that accept sets of atomic adaptations. To avoid redundancy,
we only provide the modified version of Algorithm 5 in the example below. The other
atomic TSS algorithms are converted in the same manner. The set of atomic adaptations
that has been applied, is removed from Δ in line 9. Now Δ× and Δ◦ are calculated once
again, because the partitioning of the model delta is dependent on Y ′ and G′ which are now
modified. The steps are repeated until all atomic adaptations to −→′, X′

0, and X′
m have been

applied. Finally, the supervisor automaton for the variant model and the variant automaton
are constructed in lines 11 and 12 respectively.

Theorem 4 is proven for Algorithm 12 in Appendix C. In Appendix C also the proof is
given that Algorithm 12 respects the order of applying adaptations discussed in Section 5.1.

Theorem 4 Given base automaton A, model delta Δ, synthesis result (Y,G) =
computeFixpoint(A), and (Ŝ, Ĝ, Â) =GTSS(A, Y,G,Δ); then Ŝ = S′, Ĝ = G′, and
Â = A′, for (S′, G′) =SS(A′).
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5.2.1 Example

Let us consider the case that Δ contains three atomic adaptations, all are states with added
initial property; X+

0 = {xδ,1, xδ,2, xδ,3}, with xδ,1 ∈ G \ Y , xδ,2 ∈ G \ Y , xδ,3 ∈ Y . In
our running example this could be states p3r0, p3r1, and p2r0 respectively. xδ,1 and xδ,2

require FRS, seen in line 3 of Algorithm 5, so they are in Δ×. xδ,3 triggers the default case
in Algorithm 5, and thus it is in Δ◦. Therefore, xδ,3 is applied first, resulting in:

– X′
0 = X′

0 ∪ {xδ,3}
– X+

0 = X+
0 \ {xδ,3}

Note that Y ′ and G′ are not influenced as xδ,3 is in Δ◦.
Now all adaptations in Δ◦ have been applied. X+

0 = {xδ,1, xδ,2} remains in the model
delta. As xδ,2 and xδ,3 are both of the same case (line 2 of Algorithm 5), they are in a set
Δ∼ = {xδ,1, xδ,2}. Consequently, these atomic adaptations will simultaneously be applied.
Y ′ and G′ are calculated in a modified version of Algorithm 5, given in Algorithm 13. X′

0
and X+

0 are updated as follows:

– X′
0 = X′

0 ∪ Δ∼
– X+

0 = X+
0 \ Δ∼

After applying these adaptations, all atomic model adaptations in the model have been
applied and the model delta is empty, and Y ′ and G′ are the fixpoint result for the variant
automaton A′. For the running example, the good states would remain the same, G′ = G,
and Y ′ would be {p0r0, p2r0, p3r0, p3r1, p2r1}.

6 Experiments

As stated before, we can deal with any valid base automaton and model delta, so the
TSS algorithm will always find a supervisor for the variant model. However, there are no
guarantees that by applying TSS, we will find the supervisor more efficiently relative to
simply performing a completely new synthesis. Therefore, we perform some experiments
to investigate the potential reduction in computational effort by applying TSS.
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For the experiments, a proof-of-concept implementation of the above synthesis algo-
rithms and models of the case studies we describe below have been made in Matlab.1

Before discussing case studies, we provide some practical notes in Section 6.1. In
Section 6.2 we consider the Transfer Line model as an academic case study, and in
Section 6.3 we consider a Lithography Machine Wafer Logistics controller as an industrial
case study.

6.1 Practical notes

A proof-of-concept Matlab implementation of the above algorithms has been made. One
modification from Thuijsman and Reniers (2020) to this paper, is that now a linear com-
plexity reachability search algorithm is used instead of quadratic. This is to enable a more
realistic effort comparison between SS and TSS since linear search algorithms are more
widely used than quadratic. In Thuijsman and Reniers (2020), a counter in the reachabil-
ity search algorithms was introduced to express and compare the time effort of performing
synthesis. After implementing the new reachability search algorithms, it was found that the
previously used metric was not representative anymore of the time effort of performing syn-
thesis. Experiments were performed with counters at several locations in the code, however
none of these counters gave a proper representation of the time effort. Therefore, wall-clock
time is used here to represent the time effort of performing synthesis. In order to enable
fair comparisons between running times, obvious inefficient parts of the algorithm were
improved. Still, the authors note that by using wall clock time instead of a counter makes
the results more dependent on the implementation. The experiments were performed on an
HP ZBook Studio G4 laptop, using an Intel i7 processor clocked at 2.8 GHz. Regarding
memory, Matlab used around 1 GB of memory, regardless of the model size. Filesizes to
store the automata and model deltas ranged from a few KB to a few MB.

Each synthesis algorithm requires a monolithic automaton as input, and the transforma-
tional synthesis algorithms require a model delta to the variant automaton. In practice, these
inputs may not be readily available. E.g., the monolithic automaton A needs to be con-
structed from a component-wise specification, as discussed in Section 2. This is also the case
for the conducted experiments. The inputs are computed in preparation of the experiments.
We assume that for the transformational method, the input automaton A is maintained for
the next iteration. For each transformational synthesis, A′ is constructed beforehand in order
to compute the model delta. Note that A′ also needs to be constructed for the baseline case
of performing a completely new synthesis. Computing the model delta is done by simple
matrix subtractions and requires negligible computational effort. The preparatory computa-
tions are not included in the computational effort measurements, because this matches the
experiments to the monolithic level discussed in the theoretical part and because computing
the synchronous composition is required for all methods.

The construction of A can be done by computing the complete synchronous composition
as shown in Eq. 1. Practically however, often only the reachable part of A is constructed.
Note that the computed supervisor is the same, as it only contains reachable states. The good
state set G is influenced by only using the reachable part of A. Even when all states in X are
reachable, it is still beneficial to store set G next to Y . When states are removed from G dur-
ing synthesis, not all states in G may be reachable anymore through states in G. The model
delta may be impacted by considering only the reachable parts of the automata or not. Also

1The algorithms and models can be found here: https://github.com/sbthuijsman/JDEDS TSS
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the computational effort of performing transformational or non-transformational supervi-
sor synthesis may be impacted. Note that the transformational synthesis method works for
both cases, as it allows for any pair of automata A and A′, independent of how they are
constructed. We consider both options in the case studies below.

6.2 Transfer Line

We first consider the Transfer Line model from Wonham and Cai (2019) as an academic
case study. In this model, products are being processed by two machines. Machine M1
takes products from the environment, and processes them. After processing, M1 places the
product in buffer B1, which can hold up to three products. Machine M2 takes products from
B1, processes them, and places them in buffer B2, which can hold only one product. Test
unit TU takes products from B2, and tests them. If the product is accepted, it is released
from the system. If the product is rejected, it goes back to B1. M1, M2, and TU start by a
controllable event, and terminate by an uncontrollable event. Same as in Wonham and Cai
(2019), M1, M2, and TU are modeled by plant automata and B1 and B2 by requirement
automata. These automata are shown in Fig. 11. The synchronous product over all automata
is taken. For plantification, a single sink state is added to this synchronous product, to which
all uncontrollable transitions are created whenever one of the requirement automata blocks
an uncontrollable event of the plant. The resulting base automaton TL has 65 states and
200 transitions. Supervisor synthesis (Algorithm 1) for this base automaton requires 1.4
milliseconds, which is the mean runtime of 100 executions of SS.

The following five variant automata, TL′
1 to TL′

5, have been generated by making
adaptations to TL.

– TL′
1: Reduced capacity of B1 to two products; state x3 of automaton B1 removed, and

transitions (x2, 2, x3), (x2, 8, x3), (x3, 3, x2) removed.
– TL′

2: Increased capacity of B2 to two products; added a state x2 and transitions
(x1, 4, x2), (x2, 5, x1) to B2.

– TL′
3: B1 initially holds one product instead of zero; removed initial property of state x0,

and added initial property to state x1 in automaton B1.
– TL′

4: TU may send the product to B2 upon completion; added uncontrollable event 9,
added transition (x1, 9, x2) to TU, and added transition (x0, 9, x1) to B2.

– TL′
5: Capacity of B1 and B2 is two products each; removed state x3 and transi-

tions (x2, 2, x3), (x2, 8, x3), (x3, 3, x2) from B1, state x2 and transitions (x1, 4, x2),
(x2, 5, x1) are added to B2.

x0 x1

1

2

(a) M1

x0 x1

3

4

(b) M2

x0 x1

5

6, 8

(c) TU

x0 x1 x2 x3

2, 8

3

2, 8

3

2, 8

3

(d) B1

x0 x1

4

5

(e) B2

Fig. 11 Transfer Line automata; (a), (b), and (c) are plant automata, (d) and (e) are requirement automata
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As the TSS methods are on a monolithic state space, these adaptations for the individual
automata are converted to adaptations on the synchronous state space for the experiments,
as discussed in Section 6.1. For the base model and each variant model, all states con-
structed during the synchronous composition (1) are reachable. Therefore, for these results
it does not matter if A is completely constructed as in Eq. 1, or only the reachable part. The
experiment cases we presented are the same as presented in Thuijsman and Reniers (2020),
however the experiments are executed differently as pointed out in Section 6.1.

For each of the variant automata, the number of states and transitions, as well as the sizes
of the nonempty sets in the model delta, are given in Table 1. One might expect that for
constructing TL′

1 only states and transitions would be removed. However, it can be observed
that some transitions have been added. These are new transitions towards the sink state, as
the buffer now may overflow from different states. For each variant model, a supervisor
has been synthesized three times. First, doing a completely new synthesis by applying SS
given in Algorithm 1, the second and third by using the synthesis result of the base automa-
ton and applying ITSS (Algorithm 11), and GTSS (Algorithm 12) respectively. For each
model, the three synthesized supervisors have the exact same automaton specification. For
each of the syntheses, the runtime is shown in milliseconds in Table 1. This is the mean
over 100 runs for each synthesis. The Coefficient of Variation (CV), calculated by dividing
the sample standard deviation over the mean, is shown in between brackets underneath each
runtime value as a percentage. Because this example is small, the runtimes are low. There-
fore slight absolute variations in runtime result in a high relative variation. The rightmost
column shows the percentage change in runtime of using GTSS compared to SS. A positive
value indicates an increase in computational effort, and a negative value indicates a reduc-
tion. Note that the efficiency of the TSS algorithms will be influenced by the order in which

Table 1 Experimental results of performing SS, ITSS, and GTSS on five variant models of the Transfer
Line model

Evolution Variant
model size

Model delta
size

Var. model runtime [ms]
(Sample CV %)

% change
GTSS
from SS

SS ITSS GTSS

TL to TL′
1 |X′| = 49 |X−| = 16 1.1 43.2 2.4 115

| −→′ | = 148 | −→+ | = 16 (18) (6) (9)

| −→− | = 68

TL to TL′
2 |X′| = 97 |X+| = 32 1.6 140.2 2.9 83

| −→′ | = 308 | −→+ | = 124 (18) (4) (11)

| −→− | = 16

TL to TL′
3 |X′| = 65 |X+

0 | = 1 1.4 0.2 0.2 −84

| −→′ | = 200 |X−
0 | = 1 (19) (27) (20)

TL to TL′
4 |X′| = 65 |Σ+| = 1 1.3 19.3 1.6 27

| −→′ | = 232 | −→+ | = 32 (19) (7) (12)

TL to TL′
5 |X′| = 73 |X+| = 24 1.3 154.2 3.8 180

| −→′ | = 228 |X−| = 16 (17) (5) (12)

| −→+ | = 108

| −→− | = 80
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the adaptations are applied, this has not been optimized for the experiments as this would
entail a complete new study.

We observe that in some cases applying ITSS requires considerably more runtime than
applying SS. This was already addressed in Section 5, and led to the introduction of the
GTSS algorithm. We observe that for this use case, for most variant models GTSS requires
considerably less runtime than ITSS, but still requires more runtime than SS in most cases.
The aim of GTSS is to use smaller synthesis calls and reachability searches by using the
model delta and previous synthesis result. To do so, GTSS prepares these smaller synthesis
calls and reachability searches by operations such as iterating over the model delta and
evaluating the switch case statements. Because the model is very small, relatively speaking
GTSS requires a lot of time to do the preparation steps, and little time performing the smaller
synthesis calls and reachability searches. Therefore GTSS performs poorly compared to SS,
that can just perform synthesis directly to the small model. It is expected that for a larger
system, GTSS spends relatively less time on the preparation steps, and more on the smaller
synthesis calls and reachability searches. Therefore GTSS could be more competitive to SS
for these larger systems, since SS will require more runtime as well for the larger systems.
We will study a larger system next, in Section 6.3. From a user perspective the runtime
differences for the Transfer Line case would be insignificant.

6.3 LithographyMachineWafer Logistics

Next we present an industrial case study. This case study is performed using models from
ASML. ASML is the world-leading manufacturer of lithography machines, which are used
in the semiconductor industry to produce integrated circuits. These circuits are printed on
silicon wafers. The movement of these wafers through the machine is called the Wafer
Logistics, which is studied in van der Sanden et al. (2015) and (van der Schriek 2018). The
controller of the Wafer Logistics is constructed using Analytical Software Design (ASD)
((Broadfoot and Hopcroft 2003)). van der Schriek (2018) presents a study on how these
ASD models of the components of the Wafer Logistics controller evolve over time. In this
study equivalent automata models are constructed in CIF ((van Beek et al. 2014), CIF is part
of the Eclipse Supervisory Control Engineering Toolkit�), that are suitable for supervisory
controller synthesis. These automata models are constructed for the variation points that the
ASD models evolved to over a number of years. We use these automata models here, to
investigate the efficiency of TSS in this industrial setting.

Component B of (van der Schriek 2018) is selected to perform the experiments on, based
on its large but manageable state space size, the number of variation points, and the variety
within the model deltas. The first 11 variation points of this model are taken, to investigate
10 adaptations. Opposed to the Transfer Line experiment, where each variant model was an
adaptation of the same base model, we now consider incremental adaptations. So we start
with the evolution from B1 to B2, then from B2 to B3, from B3 to B4, and so on. To provide
an indication of the model size, B1 contains 5 plant automata, that respectively have:

1. 2 states and 2 transitions,
2. 2 states and 1 transition,
3. 2 states and 3 transitions,
4. 15 states and 72 transitions,
5. 16 states and 128 transitions.
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Model B1 also contains 4 requirement automata, that respectively have:

1. 2 states and 2 transitions,
2. 2 states and 2 transitions,
3. 3 states and 5 transitions,
4. 3 states and 5 transitions.

Additionally 3 state transition exclusion invariant requirements (Markovski et al. 2010) are
specified. After computing the synchronous composition (1), and adding a sink state for
plantification, B1 has 69 121 states and 1 038 228 transitions. Performing SS (Algorithm 1)
requires 46.2 seconds, which is the mean over 20 executions of SS.

Unlike the Transfer Line model, for the models of Component B not all states are reach-
able when automaton A is constructed by Eq. 1. We perform two studies, in Section 6.3.1
we consider the case that the complete automaton is used as an input to the synthesis algo-
rithms and in Section 6.3.2 we consider that only the reachable part of the automaton is used
as input.

6.3.1 Complete state space

In this section we perform synthesis on the complete state space that is constructed by
performing synchronous composition on the Component B Wafer Logistics model. The
experimental results are presented in Table 2. ITSS has not been performed, as its ineffi-
ciency compared to GTSS has been discussed in Section 5.2, and shown in the Transfer Line
experiments. Note that the runtime is now displayed in seconds instead of milliseconds.
Each runtime value is the mean over 20 syntheses. Because of the higher absolute runtimes
compared to the Transfer Line use case, the CV is lower in these experiments. Compared
to the Transfer Line experiment, we observe that the number of states for Component B
increased by three orders of magnitude, for the number of transitions it is four orders of
magnitude. Due to this increase in model size, the required runtime has also increased by
four orders of magnitude. We observe that for all evolutions in this case study, applying
GTSS is more efficient than applying SS to compute the supervisor for the variant model.
The efficiency gain ranges from 9 to 29%, and is 20% on average.

6.3.2 Reachable state space

In this section we perform synthesis using only the reachable part of synchronous compo-
sition of the Component B Wafer Logistics model. The complete state space of model B1
consists of 69 121 states and 1 038 228 transitions. The reachable part of this automaton has
59 185 states and 888 780 transitions. Note that also the model delta sizes are influenced
by only considering the reachable part of the base and variant model automata. The results
are shown in Table 3. Each runtime value is the mean over 20 syntheses. Once more, for
all evolutions in this experiment applying GTSS is more efficient than applying SS to com-
pute the supervisor for the variant model. Compared to the experiment on the complete state
space, discussed in Section 6.3.1, the absolute computational effort to perform synthesis is
reduced for both SS and GTSS. Furthermore, the relative efficiency of using GTSS com-
pared to SS was also improved. The efficiency gain ranges from 17 to 36%, and is 27% on
average. The authors note that even though in this case study the transformational synthesis
method works better when only the reachable states are considered, this may not be so for
other models.
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Table 2 Experimental results of performing SS and GTSS for evolution of the complete Component B Wafer
Logistics model

Evolution Variant Model delta Var. model runtime [s] % change GTSS

model size size (Sample CV %) from SS

SS GTSS

B1 to B2 |X′| = 6 9 21 |Σ+| = 1 49.4 35.0 −29

| −→′ | = 1 042 548 | −→+ | = 4 320 (1.2) (1.1)

B2 to B3 |X′| = 77 761 |X+| = 8 640 62.9 44.8 −29

| −→′ | = 1 154 772 |Σ+| = 8 (0.8) (0.7)

| −→+ | = 112 224

B3 to B4 |X′| = 73 441 |X−| = 4 320 56.4 48.0 −15

| −→′ | = 1 102 980 |Σ−| = 1 (0.9) (0.9)

| −→− | = 51 792

B4 to B5 |X′| = 73 441 |Σ+| = 4 57.3 40.5 −29

| −→′ | = 1 121 412 | −→+ | = 18 432 (0.9) (0.8)

B5 to B6 |X′| = 73441 |Σ+| = 1 57.3 49.2 −14

| −→′ | = 1 121 412 |Σ−| = 1 (0.8) (0.7)

| −→+ | = 4 320

| −→− | = 4 320

B6 to B7 |X′| = 73 441 |Σ+| = 3 57.7 49.6 −14

| −→′ | = 1 130 052 |Σ−| = 1 (0.8) (0.9)

| −→+ | = 12 960

| −→− | = 4 320

B7 to B8 |X′| = 78 337 |X+| = 4 896 65.7 60.1 −9

| −→′ | = 1 200 980 |Σ+| = 5 (0.9) (0.7)

|Σ−| = 1

| −→+ | = 75 824

| −→− | = 4 896

B8 to B9 |X′| = 73 441 |X−| = 4 896 56.2 48.6 −14

| −→′ | = 1 200 980 |Σ−| = 10 (0.8) (1.1)

| −→− | = 98 000

B9 to B10 |X′| = 78 337 |X+| = 4 896 65.7 50.1 −24

| −→′ | = 1 200 980 |Σ−| = 10 (0.9) (1.0)

| −→+ | = 98 000

B10 to B11 |X′| = 83 233 |X+| = 4 896 74.2 56.0 −25

| −→′ | = 1 267 012 |Σ+| = 4 (0.9) (0.9)

| −→+ | = 66 032
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Table 3 Experimental results of performing SS and GTSS for evolution of the reachable part of the
Component B Wafer Logistics model

Evolution Variant Model delta Var. model runtime [s] % change GTSS

model size size (Sample CV %) from SS

SS GTSS

B1 to B2 |X′| = 59 185 |Σ+| = 1 2.36 15.7 −33

| −→′ | = 892 460 | −→+ | = 3 680 (1.4) (1.6)

B2 to B3 |X′| = 66 545 |X+| = 7 360 29.8 20.7 −30

| −→′ | = 988 252 |Σ+| = 8 (1.0) (1.1)

| −→+ | = 95 792

B3 to B4 |X′| = 62 865 |X−| = 3 680 26.7 22.1 −17

| −→′ | = 944 036 |Σ−| = 1 (0.7) (1.6)

| −→− | = 44 216

B4 to B5 |X′| = 62 865 |Σ+| = 4 27.1 18.1 −33

| −→′ | = 959 732 | −→+ | = 15 696 (0.9) (1.6)

B5 to B6 |X′| = 62 865 |Σ+| = 1 27.2 20.6 −24

| −→′ | = 959 732 |Σ−| = 1 (0.8) (1.2)

| −→+ | = 3 680

| −→− | = 3 680

B6 to B7 |X′| = 62 865 |Σ+| = 3 27.3 20.6 −24

| −→′ | = 967 092 |Σ−| = 1 (0.7) (2.0)

| −→+ | = 11 040

| −→− | = 3 680

B7 to B8 |X′| = 67 033 |X+| = 4 168 31.1 23.9 −23

| −→′ | = 1 027 520 |Σ+| = 5 (0.6) (1.3)

|Σ−| = 1

| −→+ | = 64 596

| −→− | = 4 168

B8 to B9 |X′| = 62 865 |X−| = 4 168 26.8 22.2 −17

| −→′ | = 944 036 |Σ−| = 10 (1.6) (2.2)

| −→− | = 83 484

B9 to B10 |X′| = 67 033 |X+| = 4 168 31.2 21.3 −32

| −→′ | = 1 027 520 |Σ+| = 10 (1.2) (1.0)

| −→+ | = 83 484

B10 to B11 |X′| = 71 201 |X+| = 4 168 37.1 23.7 −36

| −→′ | = 1 083 780 |Σ+| = 4 (1.0) (1.1)

| −→+ | = 56 260

346 Discrete Event Dynamic Systems (2022) 32:317–358



7 Conclusions

Supervisory controller synthesis is a means to compute correct-by-construction controllers
for discrete event systems. As these systems evolve over time, we want to be able to effi-
ciently generate a supervisor each time the system is adapted. We consider the case that
a supervisor has been synthesized for a given base model, after which this base model is
adapted to some variant model. Model deltas are used to describe the difference between the
base and the variant model. A notion of atomic adaptations is introduced, where the model
delta can be described by a single, indivisible change in the automaton specification. For
these atomic model adaptations, algorithms are provided to compute the supervisor for the
variant model in a transformational manner. The atomic model adaptations can be iterated
over to transformationally compute a supervisor for any model delta that contains a num-
ber of atomic model adaptations. It is discussed why, and shown in experiments that, only
purely iterating over these atomic adaptations is not efficient. Therefore a method is pre-
sented where groups of adaptations are considered. By means of both an academic and an
industrial case study, we show that in some, but not all, cases the method of GTSS can more
efficiently compute the variant model supervisor than SS. The best results for GTSS were
found for the larger, industrial, use case.

The methods we presented are based on monolithic synthesis of a fully enumerated state
space. To tackle industrial-sized systems, commonly modular methods that split the synthe-
sis problem into smaller sub-problems are applied. It would be interesting to see how the
transformational synthesis method we present here translates to those methods. The perfor-
mance of transformational synthesis could further be improved by, for example, evaluating
the adaptations in a smart order, or by imposing restrictions on the model delta. It might
also be possible to obtain better results by relaxing the problem constraints, for example
not requiring full equality between the results of TSS and SS, but only requiring them to
be bisimilar. At the moment we have no way to tell if TSS will be more efficient than sim-
ply performing a new synthesis. Optionally, one could run both algorithms in parallel, and
stop as soon as on of them is finished. It might also be valuable to have a method that pre-
dicts which algorithm will be more efficient. Moreover, perhaps it is possible to have a TSS
algorithm that is guaranteed to require less effort than a new synthesis.

Appendix A

In this appendix, we provide the proofs of Theorem 2 for the atomic TSS algorithms pro-
vided in this paper. Subsequently the proofs for Lemma 5 are provided for an added state,
removed state, added event, and removed event.

A.1 Added initial property (Algorithm 5)

We denote automaton A = (X,Σ, −→, X0, Xm), A′ = (X,Σ, −→, X0 ∪
{xδ}, Xm). Additionally, we denote (Y,G) = computeFixpoint(A), (Y ′, G′) =
computeFixpoint(A′), and (Ŷ , Ĝ) = TSSAIP(A, Y,G, xδ).

• For any (X0, X
′
0) ⊆ X × X it holds that G = G′ when comput-

ing (Y,G) = computeFixpoint(X,Σ, −→, X0, Xm), (Y ′,G′) =
computeFixpoint(X,Σ, −→, X′

0, Xm), as the initial state does not influence the

347Discrete Event Dynamic Systems (2022) 32:317–358



computation of G. We also observe that for all switchcases in Algorithm 5, Ĝ = G is
computed. It follows that Ĝ = G′.

• Y ′ are all reachable states in G′. Since we have proven that Ĝ = G′, it suffices to prove
that Ŷ are all reachable states in Ĝ to show that Ŷ = Y ′.

– In case that xδ is in Y , the state xδ will already have been found in the FRS
(line 8 Algorithm 2), so in this case Ŷ = Y = Y ′, which is also found by
Algorithm 5.

– In case that xδ is in X \ G, it will also be in X \ G′. As xδ is not in G′, the
change of initial property can not influence the reachable part of G′, so Y =
Y ′. This is also found in Algorithm 5. So Ŷ = Y = Y ′.

– In case that xδ is in G\Y , for the supervisor synthesis of A′, the reachable part
is determined by Y = FRS(G′,Σ, −→, X′

0), where we know that G′ = G

and X′
0 = X0 ∪{xδ}. Ŷ is calculated by FRS(G,Σ, −→, Y ∪{xδ}). The result

of these FRSs is the same, as we know that all states in Y are reachable in G

from X0 from the base synthesis. So Ŷ = Y ′.

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any xδ ∈ X \ X0, so Theorem 2 holds for
Algorithm 5. �

A.2 Removed initial property (Algorithm 6)

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0\{xδ}, Xm). Additionally,
we denote (Y,G) = computeFixpoint(A), (Y ′, G′) = computeFixpoint(A′), and
(Ŷ , Ĝ) = TSSRIP(A, Y,G, xδ).

• For any (X0,X
′
0) ⊆ X × X it holds that G = G′ when computing (Y,G) =

computeFixpoint(X,Σ, −→, X0, Xm), (Y ′, G′) = computeFixpoint
(X,Σ, −→, X′

0, Xm), as the initial state does not influence the computation of G. We

also observe that for all switchcases in Algorithm 6, Ĝ = G is computed. It follows
that Ĝ = G′.

• Y ′ are all reachable states in G′. Since we have proven that Ĝ = G′, it suffices to prove
that Ŷ are all reachable states in Ĝ to show that Ŷ = Y ′.

– In case that xδ is not in Y , the state xδ was not in the reachable part of G.
Thus, the set of reachable states in G is not influenced by xδ being initial. So
in this case Ŷ = Y = Y ′, which is also found by Algorithm 6.

– In case that xδ is in Y , for the supervisor synthesis of A′, the reachable part is
determined by Y = FRS(G′, Σ, −→, X′

0), where we know that G′ = G and

X′
0 = X0 \ {xδ}. Ŷ is calculated by FRS(Y,Σ, −→, X0 \ {xδ}). The result of

these FRSs is the same, as we know that all states in G \ Y are not reachable
from the base synthesis. So Ŷ = Y ′.

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any xδ ∈ X0, so Theorem 2 holds for
Algorithm 6. �

A.3 Addedmarked property (Algorithm 7)

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0, Xm ∪
{xδ}). Additionally, we denote (Y,G) = computeFixpoint(A), (Y ′,G′) =
computeFixpoint(A′), and (Ŷ , Ĝ) = TSSAMP(A, Y,G, xδ).
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• In case that xδ is in G, it was already in the maximal coreachable and controllable set
of states. It will remain so after making it marked, so G′ = G. We observe Ĝ = G is
computed in Algorithm 7, so Ĝ = G′. As the initial states did not change, and G′ = G,
the reachable part Y will remain the same. So Ŷ = Y = Y ′.

• In case that xδ is in X \ G, states in Y remain reachable, coreachable, and
controllable. So, computeFixpoint((X,Σ, −→, Y ∪ X0, Y ∪ Xm ∪ {xδ})) =
computeFixpoint((X,Σ, −→, X0, Xm ∪ {xδ})).

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any xδ ∈ X \ Xm, so Theorem 2 holds for
Algorithm 7. �

A.4 Removedmarked property (Algorithm 8)

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0, Xm\{xδ}). Additionally,
we denote (Y,G) = computeFixpoint(A), (Y ′, G′) = computeFixpoint(A′), and
(Ŷ , Ĝ) = TSSRMP(A, Y,G, xδ).

• We know that xδ ∈ Xm (model delta is valid). And all states in Xm are
coreachable by definition. G was the maximal controllable coreachable set to
Xm. After removing xδ as a marked state; G′ ⊆ G and Y ′ ⊆ Y . So X \
G ⊆ X \ G′. Therefore computeFixpoint((G,Σ, −→, X0, Xm \ {xδ})) =
computeFixpoint((X,Σ, −→, X0, Xm\{xδ})). Thus, in case xδ ∈ Y , then Ŷ = Y ′
and Ĝ = G′.

• In case that xδ is in G \ Y , all states in Y are coreachable and controllable
for Xm \ {xδ}, as xδ is not reachable from Y , otherwise it would be con-
tained in Y . Therefore computeFixpoint((G,Σ, −→, X0, (Y ∪ Xm) \ {xδ})) =
computeFixpoint((X,Σ, −→, X0, Xm \ {xδ})). So in case xδ ∈ G \ Y , Ŷ = Y ′
and Ĝ = G′.

• In case that xδ 	∈ G, xδ must have an uncontrollable path to a non-coreachable state, as
it is coreachable as a marked state, it would have been in G if it were controllable. States
that uncontrollably reach xδ were removed from G in the base synthesis. G remains the
same, and consequently Y will also remain the same, so Ŷ = Y = Y ′ and Ĝ = G = G′,
which is also found by Algorithm 8.

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any xδ ∈ Xm, so Theorem 2 holds for
Algorithm 8. �

A.5 Added transition (Algorithm 9)

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→ ∪{(xor, σ, xtar)}, X0, Xm).
Additionally, we denote (Y,G) = computeFixpoint(A), (Y ′,G′) =
computeFixpoint(A′), and (Ŷ , Ĝ) = TSSAT(A, Y,G, (xor, σ, xtar)).

• In case xor ∈ Y and xtar ∈ Y , all states in Y remain reachable, coreachable, reachable,
and controllable. Also the (co-)reachability and controllability of the states in X \ Y

remains the same. So Ŷ = Y = Y ′ and Ĝ = G = G′.
• In case xor ∈ Y and xtar ∈ G \ Y , the coreachability an controllability of all

states remains unchanged. So Ĝ = G = G′. All states in Y remain reachable, so
FRS(G,Σ, −→∪{(xor, σ, xtar)}, Y ) = FRS(G,Σ, −→∪{(xor, σ, xtar)}, X0).
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• In case xor in X \ G and xor 	= xtar, then all states in Y remain (co-)reachable and con-
trollable. Therefore, computeFixpoint((X,Σ, −→ ∪{(xor, σ, xtar)}, Y ∪ X0, Y ∪
Xm)) = computeFixpoint((X,Σ, −→∪{(xor, σ, xtar)}, X0, Xm)).

• In case xor ∈ G and xtar ∈ X \ G. The states in X \ G remain non-coreachable or
non-controllable. In case that

– σ ∈ Σc. The supervisor can disable the added transition. So Ŷ = Y = Y ′ and
Ĝ = G = G′.

– σ ∈ Σu. The supervisor can not disable the added transition. Thus xor
is non-controll-able. Because also states in X \ G remain non-coreachable
or non-controllable, computeFixpoint((G,Σ, −→ ∩((G \ {xor}) ×
Σ × G),X0 \ {xor}, Xm \ {xor})) = computeFixpoint((X,Σ, −→
∪{(xor, σ, xtar)}, X0, Xm)).

• In case xor ∈ G \ Y and xtar ∈ G the coreachability and controllability of all states
does not change; Ĝ = G = G′. xor is non-reachable, so the added transition does not
change the reachability of any state. Thus, Ĝ = G = G′.

• In case xor = xtar, the (co-)reachability and controllability of any state does not change.
So Ĝ = G = G′ and Ŷ = Y = Y ′.

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any (xor, σ, xtar) ∈ (X × Σ × X)\ −→, so
Theorem 2 holds for Algorithm 9. �

A.6 Removed transition (Algorithm 10)

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→ \{(xor, σ, xtar)}, X0, Xm).
Additionally, we denote (Y,G) = computeFixpoint(A), (Y ′,G′) =
computeFixpoint(A′), and (Ŷ , Ĝ) = TSSRT(A, Y,G, (xor, σ, xtar)).

• In case xor ∈ Y , xtar ∈ Y , and xor 	= xtar, states in X \ G remain non-coreachable
or non-controllable. Therefore computeFixpoint((G,Σ, −→ \{(xor, σ,

xtar)}, X0, Xm)) = computeFixpoint((X,Σ, −→ \{(xor, σ, xtar)}, X0, Xm)).
• In case xor ∈ G \ Y , xtar ∈ G, and xor 	= xtar, states in X \ G remain

non-coreachable or non-controllable. Also, states in Y remain (co-)reachable and con-
trollable. Therefore, computeFixpoint((G,Σ, −→ \{(xor, σ, xtar)}, Y ∪ X0, Y ∪
Xm)) = computeFixpoint((X,Σ, −→ \{(xor, σ, xtar)}, X0, Xm)).

• In case xor ∈ X \ G, xtar ∈ X \ G, and xor 	= xtar, states in Y remain (co-)reachable
and controllable. States in G remain coreachable and controllable. In case that

– σ ∈ Σc, the non-coreachablity or non-controllability of xor and xtar do not
change. So Ĝ = G = G′ and Ŷ = Y = Y ′.

– σ ∈ Σu, then xor may have been non-controllable, but may be controllable in
the variant model. Because states in Y remain (co-)reachable and controllable,
and states in G remain coreachable and controllable; Y ⊆ Y ′ and G ⊆ G′.
Therefore computeFixpoint((X,Σ, −→ \{(xor, σ, xtar)}, Y ∪ X0,G ∪
Xm)) = computeFixpoint((X,Σ, −→ \{(xor, σ, xtar)}, X0, Xm)).

• A removed transition from xor ∈ Y to xtar ∈ G \ Y can not exist, as xtar was reachable
in the base model by this transition, and xtar would have existed in Y .

• In case xor ∈ Y and xtar ∈ X \ G, then states in Y remain (co-)reachable and con-
trollable, states in G remain coreachable and controllable, but not reachable, and states
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in X \ G remain non-coreachable or non-controllable. Therefore Ĝ = G = G′ and
Ŷ = Y = Y ′.

• In case xor ∈ X \ G and xtar ∈ G, then xor was coreachable in the base model. As it
is not in G, xor must be non-controllable. It will remain as such after removal of the
transition (xor, σ, xtar). Thus, states in Y remain (co-)reachable and controllable, states
in G remain coreachable and controllable, but not reachable, and states in X \G remain
non-coreachable or non-controllable. Therefore Ĝ = G = G′ and Ŷ = Y = Y ′.

• In case xor = xtar, the (co-)reachability and controllability of any state does not change.
So Ĝ = G = G′ and Ŷ = Y = Y ′.

We can conclude that Ŷ = Y ′ and Ĝ = G′ for any (xor, σ, xtar) ∈−→, so Theorem 2 holds
for Algorithm 10. �

A.7 Added state

In case a state xδ is added as an atomic model adaptation, there are no transitions to or
from this state, because for the base model it holds that −→⊆ X × Σ × X, and xδ 	∈
X It is also not an initial state or marked state because for the base model it holds that
X0 ⊆ X and Xm ⊆ X. Therefore the added state xδ is non-coreachable and non-reachable
in the variant model. Therefore Y ′ = Y , and G′ = G, proving Lemma 5 for an added
state. �

A.8 Removed state

In case a state xδ is removed as an atomic model adaptation, there are no transitions to or
from this state, because for the variant model it holds that −→⊆ (X\{xδ})×Σ ×(X\{xδ}).
It is also not an initial state or marked state because for the variant model it holds that
X′

0 ⊆ X \ {xδ} and X′
m ⊆ X \ {xδ}. Therefore the removed state xδ is non-coreachable and

non-reachable in the base model. Therefore Y ′ = Y , and G′ = G, proving Lemma 5 for a
removed state. �

A.9 Added event

In case an event σ is added as an atomic adaptations, there are no transitions over this event,
because for the base model it holds that −→⊆ X × Σ × X, and σ 	∈ Σ . Therefore, adding
the event is not going to influence the (co-)reachability or controllability of any state. Thus,
Y ′ = Y , and G′ = G, proving Lemma 5 for an added event. �

A.10 Removed event

In case an event σ is removed as an atomic adaptations, there are no transitions over this
event in the base model, because for the variant model it holds that −→′⊆ X×(Σ\{σ })×X,
and −→′=−→. Therefore, removing the event is not going to influence the (co-)reachability
or controllability of any state. Thus, Y ′ = Y , and G′ = G, proving Lemma 5 for a removed
event. �
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Appendix B

The lemmas in this appendix support Theorem 3 for Algorithm 11. Following from the
lemmas, Theorem 3 is proven at the end of this appendix.

Lemma 6 Following each line in Algorithm 11 that directly follows a call to an atomic
TSS algorithm (i.e., lines 5,9,13,17,21,25), it holds for the intermediate automaton that is
formed by Â = (X′,Σ ′, −→′, X′

0, X
′
m) that computeFixpoint(Â) = (Y ′,G′), where

(Y ′,G′) is the result of the atomic TSS algorithm in the line above.

Proof The correct result (by Theorem 2) of each atomic TSS algorithm is proven in
Appendix A. Â correctly constructs the variant model after applying the atomic model delta,
following the definitions in Section 3.

Lemma 7 Each time an atomic TSS algorithm is initiated by Algorithm 11, the atomic
adaptation is a valid model delta for the automaton that is input.

Proof We subdivide the proof over all calls to the atomic TSS algorithms, Algorithms 5 - 10:

– From Section 3, we know that X+
0 ⊆ (X ∪ X+) \ X−, and X+

0 ∩ X0 = ∅. At the
time Algorithm 5 (TSSAIP) is initiated with xδ ∈ X+

0 , this is with an automaton with
state set X′ = X ∪ X+ and initial state set X′

0. It holds that {xδ} ⊆ X′. It holds that
{xδ} ∩ X′

0 = ∅, as xδ is only added to X′
0 after the call to Algorithm 5 with xδ as added

initial state. We can conclude that X+
0 = {xδ} is a valid model delta for the automaton

that is input when Algorithm 5 is initiated.
– From Section 3, we know that X−

0 ⊆ X0. At the time Algorithm 6 (TSSRIP) is initiated
with xδ ∈ X−

0 , this is with an automaton with initial state set X′
0 ⊆ X ∪ X+. xδ is in

X′
0 when Algorithm 6 is called with xδ , as xδ is only removed from X′

0 after this call.
We can conclude that X−

0 = {xδ} is a valid model delta for the automaton that is input
when Algorithm 6 is initiated.

– From Section 3, we know that X+
m ⊆ (X ∪ X+) \ X−, and X+

m ∩ Xm = ∅. At the
time Algorithm 7 (TSSAMP) is initiated with xδ ∈ X+

m , this is with an automaton with
state set X′ = X ∪ X+ and marked state set X′

m. It holds that {xδ} ⊆ X′. It holds that
{xδ}∩X′

m = ∅, as xδ is only added to X′
m after the call to Algorithm 7 with xδ as added

marked state. We can conclude that X+
m = {xδ} is a valid model delta for the automaton

that is input when Algorithm 7 is initiated.
– From Section 3, we know that X−

m ⊆ Xm. At the time Algorithm 8 (TSSRMP) is initi-
ated with xδ ∈ X−

m , this is with an automaton with initial state set X′
m ⊆ X ∪ X+. xδ

is in X′
m when Algorithm 8 is called with xδ , as xδ is only removed from X′

m after this
call. We can conclude that X−

m = {xδ} is a valid model delta for the automaton that is
input when Algorithm 8 is initiated.

– From Section 3, we know that: −→∪[−−] −→+⊆ X′ × Σ ′ × X′, and −→+ ∩ −→=
∅. At the time Algorithm 9 (TSSAT) is initiated with (xor, σ, xtar) ∈−→+, this is with
an automaton with state set X′ = X ∪ X+ and event set Σ ′ = Σ ∪ Σ+. It holds that
{(xor, σ, xtar)} ⊆ X′×Σ ′×X′. It holds that {(xor, σ, xtar)}∩ −→′= ∅, as {(xor, σ, xtar)}
is only added to −→′ after the call to Algorithm 9 with (xor, σ, xtar) as added transition.
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We can conclude that −→+= {(xor, σ, xtar)} is a valid model delta for the automaton
that is input when Algorithm 9 is initiated.

– From Section 3, we know that −→−⊆−→. At the time Algorithm 10 (TSSRT) is initi-
ated with (xor, σ, xtar) ∈−→−, this is with an automaton with state set X′ = X ∪ X+
and event set Σ ′ = Σ ∪ Σ+. (xor, σ, xtar) is in −→′ when Algorithm 10 is called with
(xor, σ, xtar), as (xor, σ, xtar) is only removed from −→′ after this call. We can con-
clude that −→−= {(xor, σ, xtar)} is a valid model delta for the automaton that is input
when Algorithm 10 is initiated.

Together, the above cases proof Lemma 7.

Lemma 8 Each time states are added or removed, or events are added or removed in
Algorithm 11, this adaptation is a valid model delta for the automaton it is performed on.

Proof From Section 3, we know that X+ ∩ X = ∅ and Σ+ ∩ Σ = ∅ The added states
and added events are only added once to state set X in Algorithm 11, at the point they are
added, this is a valid model delta. The removed states and removed events are removed from
automaton A′ = (X′,Σ ′, −→′, X′

0, X
′
m) in line 28. At this point, all added transitions are

added to −→′ and removed transitions are removed from −→. Also all states with added
marked property are added to X′

m, all states with removed marked property are removed
from X′

m, all states with added initial property are added to X′
0, and all states with removed

initial property are removed from X′
0. So in automaton A′, X− ∩ X′

m = ∅, X− ∩ X′
0 = ∅,

and −→′ ⊆ ((X ∪ X+) \ X−) × ((Σ ∪ Σ+) \ Σ−) × ((X ∪ X+) \ X−). In other words, the
removed states are not initial or marked, there are no transitions to-or from removed states,
and there are no transitions over removed events. Thus, Lemma 8 is proven for Algorithm
11.

Lemma 9 If final fixpoint result Y in SS is equal to fixpoint result Y ′ in ITSS, then
supervisor S is also the same.

Proof From Lemma 6 it follows that the final fixpoint result Y ′ in ITSS is equal to the final
fixpoint result Y in SS. By following the steps of Algorithm 11, it follows that at line 27;
Σ ′ = (Σ ∪ Σ+). Line 27 of Algorithm 11 is equal to line 2 of Algorithm 1 when Y ′ = Y

and Σ ′ = (Σ ∪ Σ+) \ Σ−, thus computing the same automaton S. �

From Lemmas 6-8 it follows that each intermediate result (Y ′,G′) is cor-
rectly constructed in Algorithm 11, so that the final result (Y ′,G′) is equal to
computeFixpoint(A′). From Lemma 9 it follows that the supervisor automaton com-
puted by Algorithm 11 is the same as the supervisor automaton computed by Algorithm 1,
for the same supervisor states in Y . Together, the lemmas show that Theorem 3 holds.

Appendix C

First we proof the application of a set Δ∼ atomic model adaptations in Δ×, defined in
Section 5.2, in the same manner as Appendix A. Following, we provide the proof for
Theorem 4 for Algorithm 12.
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Lemma 10 For a set Δ∼, the same statements associated with a case statements of
Algorithms 5 - 10 can be applied, as long as ∀δ ∈ Δ∼ the same case condition holds.
Proof We structure our proof the same way as Appendix A, for each atomic TSS algo-
rithm the possible Δ∼ in Δ× is discussed. We denote (Y,G) = computeFixpoint(A),
(Y ′,G′) = computeFixpoint(A′), and (Ŷ , Ĝ) is calculated by the TSS algorithm.

• We consider Δ∼ = X+
0 ∩ (G \ Y ).

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0 ∪ Δ∼, Xm).

– For any (X0, X
′
0) ∈ X × X it holds that G = G′ when comput-

ing (Y,G) = computeFixpoint(X,Σ, −→, X0, Xm), (Y ′, G′) =
computeFixpoint(X,Σ, −→, X′

0, Xm), as the initial state does not influ-
ence the computation of G. We also observe that for all switchcases in
Algorithm 5, Ĝ = G is computed. It follows that Ĝ = G′.

– As Δ∼ ⊆ G \ Y , for the supervisor synthesis of A′, the reachable part is
determined by Y = FRS(G′, Σ, −→, X′

0), where we know that G′ = G and

X′
0 = X0 ∪ Δ∼. Ŷ is calculated by FRS(G,Σ, −→, Y ∪ Δ∼). The result of

these FRSs is the same, as we know that all states in Y are reachable in G

from X0 from the base synthesis. So Ŷ = Y ′.
• We consider Δ∼ = X−

0 ∩ Y .
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0 \ Δ∼, Xm).

– For any (X0, X
′
0) ∈ X × X it holds that G = G′ when comput-

ing (Y,G) = computeFixpoint(X,Σ, −→, X0, Xm), (Y ′, G′) =
computeFixpoint(X,Σ, −→, X′

0, Xm), as the initial state does not influ-
ence the computation of G. We also observe that for all switchcases in
Algorithm 5, Ĝ = G is computed. It follows that Ĝ = G′.

– In case that Δ∼ ⊆ Y , for the supervisor synthesis of A′, the reachable part is
determined by Y = FRS(G′, Σ, −→, X′

0), where we know that G′ = G and

X′
0 = X0 \ Δ∼. Ŷ is calculated by FRS(Y,Σ, −→, X0 \ Δ∼). The result of

these FRSs is the same, as we know that all states in G \ Y are not reachable
from the base synthesis. So Ŷ = Y ′.

• We consider Δ∼ = X+
m ∩ X \ G.

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0, Xm ∪ Δ∼).

– In case that Δ∼ ⊆ X \ G, states in Y remain reachable, coreachable, and con-
trollable. So, computeFixpoint((X,Σ, −→, Y ∪ X0, Y ∪ Xm ∪ Δ∼)) =
computeFixpoint((X,Σ, −→, X0, Xm ∪ Δ∼)).

• We consider Δ∼ = X−
m ∩ Y .

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0, Xm \ Δ∼).

– We know that Δ∼ ⊆ Xm (model delta is valid). And all states in Xm are
coreachable by definition. G was the maximal controllable coreachable set to
Xm. After removing Δ∼ as marked states; G′ ⊆ G and Y ′ ⊆ Y . So all states
in X \ G ⊆ X \ G′. Therefore computeFixpoint((G,Σ, −→, X0, Xm \
Δ∼)) = computeFixpoint((X,Σ, −→, X0, Xm\Δ∼)). So in case Δ∼ ⊆
Y , Ŷ = Y ′ and Ĝ = G′.
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• We consider Δ∼ = X−
m ∩ G \ Y .

Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→, X0, Xm \ Δ∼).

– In case that Δ∼ ⊆ G \ Y , all states in Y are coreachable and controllable for
Xm \ xδ , as states in Δ∼ are not reachable from Y , otherwise they would be
contained in Y . Therefore computeFixpoint((G,Σ, −→, X0, (Y ∪Xm)\
Δ∼)) = computeFixpoint((X,Σ, −→, X0, Xm\Δ∼)). So in case Δ∼ ⊆
G \ Y , Ŷ = Y ′ and Ĝ = G′.

• We consider Δ∼ =−→+ ∩Y × Σ × Y .
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→∪Δ∼, X0, Xm).

– The coreachability an controllability of all states remains unchanged. So
Ĝ = G = G′. All states in Y remain reachable, so FRS(G,Σ, −→
∪{(xor, σ, xtar)}, Y ) = FRS(G,Σ, −→∪Δ∼, X0).

• We consider Δ∼ =−→+ ∩G × Σu × X \ G.
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→∪Δ∼, X0, Xm).

– The states in X \ G remain non-coreachable or non-controllable. The
supervisor can not disable the added transitions. All states in Xor are non-
controllable, where Xor = {xor|(xor, σ, xtar) ∈ Δ∼, σ ∈ Σu, xtar ∈ X}.
Because also states in X \ G remain non-coreachable or non-controllable,
computeFixpoint((G,Σ, −→ ∩((G \ Xor) × Σ × G),X0 \ Xor, Xm \
Xor)) = computeFixpoint((X,Σ, −→∪{(xor, σ, xtar)}, X0, Xm)).

• We consider Δ∼ = {(xor, σ, xtar) ∈−→+ |xor ∈ X \ G ∧ xor 	= xtar}
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→∪Δ∼, X0, Xm).

– All states in Y remain (co-)reachable and controllable. Thus we conclude,
computeFixpoint((X,Σ, −→ ∪{(xor, σ, xtar)}, Y ∪ X0, Y ∪ Xm)) =
computeFixpoint((X,Σ, −→∪Δ∼, X0, Xm)).

• We consider Δ∼ = {(xor, σ, xtar) ∈−→− |xor ∈ Y ∧ xtar ∈ Y ∧ xor 	= xtar}
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→ \Δ∼, X0, Xm).

– States in X \ G remain non-coreachable or non-controllable.
Therefore computeFixpoint((G,Σ, −→ \Δ∼, X0, Xm)) =
computeFixpoint((X,Σ, −→ \Δ∼, X0, Xm)).

• We consider Δ∼ = {(xor, σ, xtar) ∈−→− |xor ∈ G \ Y ∧ xtar ∈ G ∧ xor 	= xtar}
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→ \Δ∼, X0, Xm).

– States in X \ G remain non-coreachable or non-controllable. Also,
states in Y remain (co-)reachable and controllable. It follows that
computeFixpoint((G,Σ, −→ \Δ∼, Y ∪ X0, Y ∪ Xm)) =
computeFixpoint((X,Σ, −→ \Δ∼, X0, Xm)).

• We consider Δ∼ = {(xor, σ, xtar) ∈−→− |xor ∈ X\G∧xtar ∈ X\G∧σ ∈ Σu∧xor 	=
xtar}
Automaton A = (X,Σ, −→, X0, Xm), and A′ = (X,Σ, −→ \Δ∼, X0, Xm).

– States in Y remain (co-)reachable and controllable. States in G remain
coreachable and controllable. The origin states of the removed transition
may have been non-controllable, but may be controllable in the variant
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model. Because states in Y remain (co-)reachable and controllable, and
states in G remain coreachable and controllable; Y ⊆ Y ′ and G ⊆ G′.
Therefore computeFixpoint((X,Σ, −→ \Δ∼, Y ∪ X0,G ∪ Xm)) =
computeFixpoint((X,Σ, −→ \Δ∼, X0, Xm)).

For any possible Δ∼ Lemma 10 is proven.

Lemma 11 Each time X′, Σ ′, −→′, X′
0, or X′

m is constructed in Algorithm 12 (i.e.,
lines 1,6,8,12), it holds that computeFixpoint(X′,Σ ′,−→′, X′

0, X
′
m) = (Y ′,G′), for

(Y ′,G′) computed at that point in Algorithm 12.

Proof We structure our proofs over the different lines where automaton A′ is constructed.

– Lines 1,12: In case states are added or removed, or events are added or removed in
Algorithm 12, the same proofs as for Lemmas 5 and 8 hold here.

– Line 6: This is the same iterative application as in Algorithm 11 (ITSS). The same
proofs as for Lemmas 6 and 7 hold here.

– Line 8: The correct result of applying sets Δ∼ is proven for Lemma 10 above. In
conjunction with the proof for Lemma 7, this proofs Lemma 11 for line 8.

For each time X′, Σ ′, −→′, X′
0, or X′

m is constructed in Algorithm 12, Lemma 11 is proven.
�

From Lemma 11 it follows that each intermediate result (Y ′,G′) is correctly constructed
in Algorithm 12, so that the final result (Y ′,G′) is equal to computeFixpoint(A′).
Using the same proof as Lemma 9, it follows that the supervisor automaton computed
by Algorithm 12 is the same as the supervisor automaton computed by Algorithm 1, for
automaton A′. Together, this shows that Theorem 4 holds.
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