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İpek, thank you for being such a lovely and caring friend, and being there for me
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1
Introduction

The biomanufacturing industry developed several revolutionary drugs (also known
as biopharmaceuticals) to treat diseases and provide better health care services.
More than 345 million patients worldwide survived from diabetes, cardiovascu-
lar diseases, cancer, and many others thanks to these biopharmaceuticals (The
European Biopharmaceutical Enterprises, 2015). Due to the surge in the chronic
diseases, inclination towards targeted therapy and growing elderly population, the
demand for these drugs increases. The demand increase is so rapid that the market
analyses anticipate 7.32% annual growth globally between the years 2021 and 2026

(Mordor Intelligence, 2020). The growing global demand is stretching production
footprints, and markets are becoming increasingly sensitive to costs (McKinsey &
Company, 2014). To keep pace, the competitive advantage is shifting from “science”
to “operations” (McKinsey & Company, 2019); and practitioners look for novel
methods to improve biomanufacturing efficiency.

Different than traditional pharmaceutical operations, producing medicines from
chemicals and synthetic processes, biomanufacturing companies derive their prod-
ucts through biological processes using living cells (i.e., bacteria, viruses, mam-
malian cells). The resulting products are highly complex compared to traditional
pharmaceuticals. For instance, a biopharmaceutical molecule can contain 25, 000
atoms, while an aspirin contains only 21 atoms (McKinsey & Company, 2014). This
complexity, and the use of living cells lead to many challenges including batch-
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to-batch variability, uncertainties in yield and throughput, production planning
difficulties, and high costs and lead times.

In this thesis we develop stochastic optimization models to address these challenges
and improve biomanufacturing efficiency. We focus on a novel technique: bleed–
feed, allowing biomanufacturers to skip intermediary setups. We investigate
optimal bleed–feed decisions from different aspects and inform practitioners
about its potential in improving biomanufacturing operations. Through industry
collaboration with MSD Animal Health in Boxmeer, the Netherlands (MSD AH), we
develop decision support tools, and elaborate on their real-world implementation.

The rest of this chapter is organized as follows. We first present an overview of the
biomanufacturing operations, and explain the concept of bleed–feed (Section 1.1).
Next, we introduce the challenges in decision making and provide our research
questions (Section 1.2). Then, we explain the methodology used to answer the
research questions and highlight our contributions (Section 1.3). Finally, we present
the thesis outline (Section 1.4).

1.1. Biomanufacturing Operations and Bleed–feed

An overview of a biomanufacturing process flow is demonstrated in Figure 1.1.
Biomanufacturing operations typically consist of two main steps: upstream process-
ing (USP) and downstream processing (DSP). USP is the first production step where
the living cells (i.e., viruses and bacteria) are grown. USP starts with preculture,
where the seed (i.e., a small amount of inactive cells, such as 5mL) is fed with
medium. In this step, the seed is activated and prepared for fermentation. In
the fermentation process the cells are fed with medium to grow and produce the
desired active ingredients. Along with cells, byproducts (also called as impurities
or waste) also accumulate in the batch, as a result of cell metabolic activities.
Thus, output of the fermentation is a batch mixture of active ingredients and
byproducts. Downstream processing follows the fermentation process and focuses
on purification of the fermentation output to meet regulatory requirements on
quality, storage, and delivery. In this step impurities are separated from biomass to
be stored safely until its shipment to the customer. Centrifugation, chromatography,
and filtration are common downstream processing operations. Depending on the
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Preculture Fermentation Centrifugation Chromatography Filtration End 
product

Upstream Processing (USP) Downstream Processing (DSP)

Figure 1.1: A general overview of biomanufacturing operations.

characteristics of the cell culture and regulations, different DSP operations can be
applied in different orders.

The focus of this thesis is the upstream fermentation processes. Fermentation
processes typically take place in bioreactors, which are stainless-steel vessels with
a controlled environment to facilitate cell growth. Fermentation starts with a
bioreactor setup, where the bioreactor is cleaned and sterilized and the seed culture
(initial biomass) and medium are placed in the batch. The biomass consumes the
medium and grows following certain growth phases as shown in Figure 1.2(a).
Observe from Figure 1.2(a) that the fermentation starts with a small amount of
initial biomass. The biomass grows exponentially over time in the exponential
growth phase as it uses the medium. In the batch fermentation process medium
is added only once, at the beginning of the fermentation process. Hence, nutrients
deplete in the batch over time. Subsequently the cell growth slows down and the
biomass enters the stationary phase, where the growth stops. Therefore, the batch is
usually harvested in the stationary phase. When a batch is harvested, the bioreactor
needs to be setup for a new fermentation process.

  Time

Exponential
growth
phase

Stationary
phase

Harvest

(a) Biomass growth without bleed–
feed

Time

Exponential
growth
phase

Stationary
phase

Harvest

(b) Biomass growth with bleed–feed

Figure 1.2: Biomass growth over time in current practice (a) and with bleed–feed (b).
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The Bleed–feed Concept. The bioreactor setups are costly because they require
highly specialized materials and labor. For instance, the consumables and reagents
that are used in cleaning and sterilization of a bioreactor take around 16% of
the total fermentation cost (Oyebolu et al., 2019; Mahal et al., 2021). This forces
practitioners to find innovative ways to increase the biomass (and the associated
rewards) obtained per setup as much as possible. In addition, setups are time
consuming. Up to ten hours can be spent during a bioreactor setup (Sharma, 2019;
Yang and Sha, 2019). This leads to lower throughput levels and fermentation profit
per time unit. Therefore, there is a strong business case in the industry to reduce
the number of setups.

Bleed–feed is a promising method to skip intermediary bioreactor setups. We
illustrate the main idea behind bleed–feed in Figure 1.2(b). When bleed–feed
is performed, some part of biomass accumulated in the bioreactor is extracted
(“bleed”) such that only a small amount of biomass remains inside the bioreactor.
Then, fresh medium is added in the bioreactor (“feed”). The remaining biomass
acts as a seed culture, and continues to grow in the exponential growth phase by
using the new medium. In short, bleed–feed enables practitioners to skip a setup
by prolonging the exponential growth phase.

The concept of “bleed” and “feed” exists in the fermentation systems for fed-batch,
continuous batch and perfusion applications (Pollock et al., 2013; Muldowney, 2018;
Walker, 2017; Kakes, 2018). Fed-batch systems continues to add fresh medium
into the bioreactor during the fermentation. In continuous fermentation, next
to continuous medium transfer into the batch, an equivalent amount of batch
mixture is taken out of the bioreactor throughout the process. Perfusion is similar
to continuous fermentation; the fundamental difference in a perfusion culture is
that only the medium is extracted and the cells are kept in the system. Hence,
bleed–feed is a new technique, as it is implemented in batch fermentation. It is
performed almost instantaneously and can be perceived as starting a new batch
without a new setup. Therefore, bleed–feed has unique trade-offs and challenges
with high potential for improving biomanufacturing efficiency. Yet, its optimal
implementation and potential impact has not been fully understood by the industry.
We address these challenges and investigate the optimal bleed–feed decisions from
various aspects to generate insights for biomanufacturers.
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1.2. Challenges and Research Questions

In this section, we first elaborate on the challenges related to making bleed–
feed decisions in different contexts and present the research questions. Then, we
highlight common biomanufacturing challenges that are addressed in the last part
of the thesis and focus on industry implementation of the proposed models.

High setup costs motivate biomanufacturers to produce as much yield as possible
from a setup. We first assume the batch condition is regularly monitored and aim
to maximize the yield obtained from a setup with bleed–feed. However, timing
of bleed–feed is crucial for a successful implementation. Bleed–feed can only be
implemented in the exponential growth phase. Otherwise, the cells do not grow
in the next cultivation, and hence the batch needs to be harvested (meaning that
bleed–feed failed). Determining the correct timing is not straightforward due to
challenges derived by uncertain and complex nature of biomanufacturing. The
duration of the exponential growth phase (i.e., time to enter the stationary phase)
is stochastic. This is mainly because of the complex biological nature of living cells.
This uncertainty introduces the trade-off on the bleed–feed time. If we implement
the bleed–feed “too early” in order to avoid missing the exponential growth phase,
we may not reach the highest yield from the batch. In contrast, if we are “too late”
to bleed–feed in anticipation of obtaining higher biomass yield, then we lose the
bleed–feed opportunity and we produce yield from only one cultivation.

Additionally, regulatory requirements permit only a limited number of bleed–
feed implementation per bioreactor setup. These regulations are pre-specified by
scientific evidence provided by biomanufacturers showing that batch safety and
reliability are not at risk within these limits. Hence, these regulations are known
to be overly strict in order to ensure safety for a wide range of settings. These
rules affect the operational decisions, yet their impact is not fully understood in
the industry. Biomanufacturers first need to understand the value of bleed–feed
and the implications of adopting such policies in practice. Hence, we formulate the
research questions as follows:

RQ 1. What is an optimal condition-based bleed–feed policy that maximizes the total amount
of biomass obtained from a bioreactor setup?

RQ 2. How are the potential benefits of bleed–feed affected by regulatory limitations?
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RQ 3. What is the added value of implementing bleed–feed to current industry practice?

Note that besides batch yield, processing time of the fermentation also increases
with bleed–feed (because the bioreactor is occupied for a longer time period
until the harvest). Therefore, understanding the implications of bleed–feed on
throughput is important. In addition, time-based bleed–feed policies are also
practically relevant, as they can easily be incorporated into production planning
activities. For instance, biomanufacturing typically has a no-wait constraint, such
that the batch needs to continue with subsequent operations immediately after
it is harvested. In such settings time-based policies may be more attractive for
practitioners.

Also, biomanufacturers can adjust the starting amount for the second cultivation
(after bleed–feed) by controlling how much they extract from the first cultivation
during bleed–feed. We observed from industry data that the start amount for the
second cultivation affects the throughput. If the start amount is too little for the
second cultivation, time to reach a certain biomass amount will be longer, and
vice versa. Then, if we start the second cultivation with a high biomass amount,
this implies we extract (obtain) less from the first cultivation during the bleed–feed
(lowering the throughput). However, the exponential growth phase is likely to be
shorter for the second cultivation (increasing the throughput). In contrast, if we
start the second cultivation with a low biomass amount, this implies we extract
(obtain) more from the first cultivation. Yet, the fermentation throughput may
not increase, as the time needed to achieve a certain biomass level is longer for
the second cultivation. Therefore, finding the balance between starting the second
cultivation with “too much” or “too little” biomass can help making better bleed–
feed decisions in optimizing the throughput. The trade-off between implementing
the bleed–feed “too soon” versus “too late” (and the challenge in decision making)
is still valid, as either case results in a suboptimal throughput due to suboptimal
batch yield. These challenges lead to the following research questions:

RQ 4. What is the optimal bleed–feed time for the first cultivation and the optimal starting
biomass amount for the second cultivation in order to maximize the expected throughput?

RQ 5. What is the added benefit of jointly optimizing the bleed–feed time and the
replenishment amount in practice?

RQ 6. How much improvement (in the expected throughput) can we achieve by
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implementing bleed–feed on current practice? Under which problem settings does bleed–
feed offer a stronger business case for implementation, and under which setting adopting
bleed–feed does not bring benefit?

Next to biomass growth, byproducts accumulate in fermentation as a result of
metabolic activities of cells. These byproducts increase the toxicity in the culture
environment, which might result in cell growth inhibition and reduction in batch
quality. These byproducts are separated from the biomass (i.e., purified) in the
DSP operations. The amount of byproducts affect the workload in the DSP. A
batch with more byproducts might have to repeat certain steps in purification
operations, thus incur higher costs. In this setting, if we bleed–feed too early,
then we may not receive the highest yield and hence the revenue from the first
cultivation. In addition, impurity level increases as a result of producing two
cultivations, and purification cost increases. Contrarily, if we implement bleed–
feed too late, the bleed–feed opportunity is lost and we harvest the batch with only
one cultivation, leading to revenue corresponding to one cultivation alone. Yet,
the impurity level and the purification cost will also be less in this case, as the
impurity level corresponds to that from only one cultivation. Managing this trade-
off and understanding how the cost parameters affect the bleed–feed decisions are
important aspects for increasing the expected fermentation profit per time unit.

In addition, bleed–feed implementation requires operator interaction (i.e., initiating
the medium transfer and extracting certain some part of the batch). However, in
a biomanufacturing company working in shifts, no operators would be available
during certain time periods. In this case, we must ensure that bleed–feed is
implemented during a shift. Also, practitioners might tolerate some certain levels of
bleed–feed failure risk. For instance, they might want to adjust the bleed–feed time
in a risk-averse manner if they do not want to take the risk of missing the bleed–
feed. Such restrictions limit the time that bleed–feed can be implemented, and the
benefits obtained from it compared to flexible cases. Based on these challenges, we
formulate the following research questions:

RQ 7. What is the optimal bleed–feed time in order to maximize the fermentation profit per
time unit, considering the impurity level in the batch?

RQ 8. How can we ensure that bleed–feed is implemented during a shift (i.e., when
personnel is available), and that bleed–feed is implemented successfully with a certain
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probability level?

RQ 9. How is the benefit obtained from bleed–feed affected by the constraints? What is the
value of flexibility (i.e., having no restrictions on bleed–feed time) in bleed–feed decisions?
Under which settings adopting bleed–feed does not bring benefit?

In addition to aforementioned challenges related to bleed–feed decisions, we focus
on other common challenges biomanufacturers face. We elaborate on the industry
implementation of the proposed solutions. In particular, we address issues related
to fermentation yield variability and production planning from our industry partner
MSD AH, explained as follows:

Fermentation processes are highly unpredictable, and many factors affect the
fermentation output. Even though the same fermentation process is conducted
by using the identical settings (i.e., the cell type, physicochemical parameters,
buffers, medium), one of the process lines produced significantly lower yield.
Understanding the reason and improving the yield from a specific process line
can be challenging, as life sciences literature does not necessarily capture the
relationship between the specific fermentation yield of interest as a function of
specific process parameters from different bioreactor technologies. Conducting
laboratory scale experiments may not be possible due to capacity restrictions
and scalability issues. Best configuration for fermentation parameters had to be
determined under a limited number of industry scale runs.

In addition, production planning is challenging in biomanufacturing. The use of
living cells causes variability in yield and processing times. Different products
have different production requirements regarding equipment, necessary production
steps and expertise of the operators. Equipment, such as bioreactors, can vary in
size and technology, and processing times and end yield amount can be affected
by equipment choices. There are interdependent production steps, with no-wait
constraints (if products wait in between the production steps, contamination may
occur, and quality may deteriorate so that the entire batch might be scrapped).
Specialized equipment can be limited in number and shared between process lines.
Operators are mostly scientists with different skill sets. Some operations can be
carried out only by specific operators. Hence, production planning decisions are
highly complicated. An automated and rigorous approach for production planning
is crucial for companies.
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1.3. Methodology and Contributions

In this section, we first elaborate on each chapter for the methodology used in
order to answer the research questions, and the contributions. Then, we highlight
the contributions of the thesis.

First, in Chapter 2 we develop a finite-horizon, discrete time Markov decision
process (MDP) model to determine optimal condition-based bleed–feed policies
to maximize expected total biomass obtained from a batch (RQ1). We analyze
the structural properties of the optimal policies and show that the optimal bleed–
feed policies have three-way control limit structure (on the cultivation age, cell
growth rate, and the bleed–feed count) under mild conditions. We present a
sufficient condition under which a risk-averse heuristic is optimal. We characterize
the value function as a function of the regulatory requirements on bleed–feed
number and show that the marginal benefit of an additional bleed–feed decreases
and converges to a certain value (RQ2). In addition, we perform a case study
from MSD AH to demonstrate the impact of bleed–feed implementation in practice
(RQ3). We observe that bleed–feed brings benefits. In the base case, an increase of
137% is achieved in total biomass production from one setup with two bleed–feed
implementations. Sensitivity analyses on system risks and the critical biomass level
inform practitioners that low-risk batches and cultures with high critical biomass
levels benefit more from bleed–feed implementation.

In Chapter 3, we develop a renewal model to find time-based bleed–feed policies
for one bleed–feed. Our renewal model optimizes the bleed–feed time and the
replenishment amount jointly to maximize fermentation throughput (RQ4). We
explore the structural properties of the optimization problem to generate insights
on optimal policies and assess the impact of batch risks on throughput. We
present a sufficient condition under which the throughput function is convex for
a specific period of bleed–feed time. Using this result, we explore the settings when
implementing bleed–feed is not beneficial (RQ6). We enhance these results with a
case study from MSD AH. We consider several relevant strategies to understand
the potential benefits of optimizing the bleed–feed time and the replenishment
amount jointly (RQ5). Further, we quantify the potential benefits of bleed–
feed implementation in practice under different production settings (RQ6). Our
numerical analysis shows that the expected throughput can be improved by 17%
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with bleed–feed. We also observe that bleed–feed brings most benefit for fast-
growing cells and that it is optimal not to adopt bleed–feed for slow-growing cell
cultures.

Next, in Chapter 4 we extend our renewal model from Chapter 3 and find the
bleed–feed time that optimizes the fermentation profit per time unit, considering
practically relevant constraints (RQ7). In this chapter we take waste accumulation,
its effects on the exponential growth phase, and the costs related to the purification
of the batch (to remove waste) into account. We include constraints in our
optimization model to capture relevant restrictions on the bleed–feed time related
to operator availability to perform bleed–feed and the practitioner’s risk-averse
behavior (RQ8). We conduct a numerical analysis to generate managerial insights,
and we relax some of the constraints to investigate the value of flexibility in bleed–
feed decisions (RQ9). Further, we assess effects of restrictions on the bleed–feed
time under different production configurations. Our results indicate that it is not
necessarily better to implement bleed–feed at an earlier shift (to avoid missing
the bleed–feed opportunity) if bleed–feed does not take place in a shift (when no
operators are present). We also observe that implementing bleed–feed is not an
attractive option if we have both the shift and the chance constraints.

In Chapter 5, we present a portfolio of operations research (OR) tools to improve
biomanufacturing efficiency in collaboration with MSD AH. We demonstrate the
use of OR methods in biomanufacturing. More specifically, the following tools are
introduced: (i) bleed–feed tool, by using renewal reward theory to determine optimal
bleed–feed time to optimize the fermentation throughput, (ii) yield optimization tool,
by using Bayesian design of experiments to provide a methodological approach
for determining the best fermentation configurations under limited number of
experiments, and (iii) rhythm wheel tool, by using simulation-optimization to assess
the feasibility of a weekly production schedule and create smart schedules to
increase throughput and lower the lead times. We elaborate on the development
of these tools and their implementation at MSD AH. Implementation of these tools
at MSD AH had a significant impact with up to 50% increase in the batch yield,
and an additional revenue of e50 million per year. The rhythm wheel tool allowed
one extra batch production per week. Bleed–feed tool resulted in 85% increase in
the batch yield per setup (using one bleed–feed).

Overall, this thesis demonstrates an example of how operations research can
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complement biomanufacturing to improve operational decisions. We present
problems and solution approaches that are relevant to both operations research and
biomanufacturing communities. Biological dynamics and the operational trade-offs
in biomanufacturing decision making are combined and lead to the formulation
of optimization models. We work in collaboration with MSD AH, perform case
studies with real world fermentation data and validate our models. The primary
focus is on the bleed–feed problem, for which we develop novel analytical models
to find optimal bleed–feed policies under different contexts. To the best of our
knowledge, we are the first to address the bleed–feed problem and to present a
successful industry scale implementation of bleed–feed. We develop generic models
that can be extended to other companies, or industries with fermentation processes.
The research outcomes have been internationally recognized in several platforms
for its scalability and potential impact, including professional societies and the
media (INFORMS, 2019; EURO, 2019; IFORS News, 2020; IMPACT, 2020; European
Commission, 2020).

1.4. Outline

This thesis focuses on optimizing bleed–feed decisions from different aspects. First,
Chapter 2 investigates condition-based bleed–feed policies to maximize the yield
obtained from a setup, adapted from Koca et al. (2021b). Then, Chapter 3 generates
time-based bleed–feed policies to maximize the expected throughput of a batch,
based on Koca et al. (2021a). Next, Chapter 4 extends the renewal model from
Chapter 3, and finds the optimal bleed–feed time considering practically relevant
constraints. Chapter 5 presents a portfolio of decision support tools to improve
biomanufacturing efficiency (Martagan et al., 2021). Finally, Chapter 6 presents the
concluding remarks and future research directions.

We note that we rely on the same notation in the renewal models presented in
Chapters 3, 4 and 5. However, Chapter 2 has a different theory, and its notation is
independent from the other chapters. Chapters 2, 3 and 5 can be read individually.
Chapter 4 is an extension of Chapter 3 and the literature review for Chapter 3

is valid also for Chapter 4. Thus, we do no present a separate literature review
section in Chapter 4. Hence, we recommend reading Chapter 3 before starting with
Chapter 4.



12 Chapter 1. Introduction



2
Increasing Biomanufacturing Yield with

Bleed–Feed: Optimal Policies and
Insights

2.1. Introduction

Upstream operations constitute the first step of biomanufacturing processes, and
include activities related to fermentation (i.e., preparation of seed culture and
media, bioreactor setup, fermentation process, and harvesting). Fermentation is
generally conducted in a bioreactor, which is a stainless steel vessel equipped with
several sensors. The fermentation process starts with a seed culture (i.e., living
organisms such as bacteria or virus) and a special medium. We refer to the seed
culture as initial biomass. The bioreactor provides a controlled environment in which
the initial biomass grows and reproduces during fermentation. This growth pattern
is shown in Figure 2.1(a). More specifically, in Figure 2.1(a), industry data is
used to plot the biomass production (in grams) over time (hours) during a batch
fermentation process. Figure 2.1(a) shows that the fermentation process starts
with a small amount of initial biomass. Then, the biomass follows an exponential
growth pattern, which is known as exponential growth phase of fermentation. In a
batch fermentation process, a special medium is added only at the beginning of the
process (before fermentation starts). This medium supports the exponential growth
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Figure 2.1: Biomass growth over time in current practice (a) and with bleed–feed (b).

of the biomass. However, the medium depletes as more biomass accumulates inside
the batch, and the fermentation process enters the stationary phase. In this phase, the
cells lose viability, and the bioreactor needs to be harvested. In our specific problem
setting, the end-product obtained from fermentation is measured in terms of the
total amount of biomass produced from the batch. This is because each of these
biological cells (biomass) is essentially an active ingredient for a biopharmaceutical
drug. Hence, the subsequent production steps process these active ingredients
further into their final forms (e.g., vaccines, pills, etc.).

The bioreactor needs to be set up before a fermentation process is started. The
setup activities include preparation of the seed culture and media; cleaning and
sterilization of the bioreactor; and setup of other necessary equipment such
as sensors. In practice, bioreactor setups require highly-specialized labor and
materials, and are well-known to be costly. For example, the consumables and
reagents alone (e.g., acid, caustic, water-for-injection, and steam used for cleaning
and sterilization in each setup) constitute around 16% of the total fermentation
costs (Oyebolu et al., 2019; Mahal et al., 2021). Such high setup costs motivate
the industry to obtain as much biomass as possible from each bioreactor setup.
The increasing adoption of single-use bioreactor technologies presents another
motivation for maximizing the bioreactor yield in the industry (Low, 2020). The
problem of increasing the total biomass production per setup (also known as the
problem of increasing upstream titer) has been a popular research topic in the life
sciences. As such, finding new ways of addressing this problem is recognized
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as one of the critical requirements for succeeding in future markets (McKinsey &
Company, 2014). To address this problem, we consider a novel technique for batch
fermentation: “bleed–feed.”

Bleed–Feed: Concept and Challenges

Figure 2.1(b) illustrates the basic dynamics of a bleed–feed operation using
industry data. In simple terms, bleed–feed prolongs the exponential growth
phase (Eppendorf, 2017; Muldowney, 2018; Kakes, 2018). To perform bleed–feed,
the bioreactor operator first extracts the biomass that has accumulated inside the
bioreactor (“bleed”). This is carried out such that only a small amount of biomass
remains inside the bioreactor. Then, fresh medium is added to the bioreactor
to help the remaining biomass grow and reproduce (“feed”). The bleed–feed
operation is performed almost instantaneously and can be perceived as starting
a new cultivation without a new setup. For example, Figure 2.1(b) shows that the
remaining biomass functions as a seed culture after bleed–feed and continues to
grow in the exponential growth phase. This is evidently a breakthrough technology
with a high potential for improving biomanufacturing efficiency.

However, the specific timing of bleed–feed plays a critical role for success: bleed–
feed needs to be performed during the exponential growth phase. When the cell
culture enters the stationary phase, bleed–feed cannot be conducted, and the batch
needs to be harvested.1 The identification of the correct timing is not a trivial
decision. The complex and uncertain nature of the biological systems introduce
three critical challenges in decision-making:

(i) Uncertain duration of the exponential growth phase. The duration of the exponential
growth phase (i.e., the time to enter the stationary phase) of most batch fermenta-
tion processes exhibits uncertainty. This is mainly owing to the complex biological
nature of living cells. However, the process generally does not incur any risk of
entering the stationary phase when the biomass amount is below a certain threshold
value called “critical biomass.” In addition, industry data shows that the cell growth
is more likely to terminate as fermentation gets older.

(ii) Uncertain cell growth rate after bleed–feed. The response of living cells to bleed–feed

1We use the term “batch” to represent the production from when a bioreactor is set up until it is
harvested, including multiple bleed–feeds.
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is uncertain. Although it is established that they continue to grow in the exponential
growth phase, their growth rate could be higher or lower compared to that of the
original cell culture (the one used before the first bleed–feed).

(iii) Regulatory requirements on the number of bleed–feeds. According to regulatory
requirements, only a limited number of bleed–feeds per bioreactor setup may be
performed. These regulations are generally pre-specified, and biomanufacturers
provide scientific evidence that substantiates the process’ safety and reliability
within these limits. However, these regulations are often known to be conservative
to ensure safety in a wide range of settings. For example, in our specific case study,
regulations permit only two bleed–feeds per setup.

From a practical perspective, challenge (i) described above creates a trade-off
between performing the bleed–feed technique “too soon” and “too late.” When
performed too soon, we would not achieve the maximum biomass yield. When
performed too late, we will miss the opportunity for performing bleed–feed. This
motivates our first research question: (1) what is an optimal bleed–feed policy that
maximizes the total amount of biomass obtained from a bioreactor setup?

As a consequence of the three challenges described above, there are conflicting
opinions on the added value of bleed–feed to current practice, and biomanufactur-
ers need a deeper understanding of their managerial choice before adopting such
policies. In addition, the impact of regulations as described in (iii) is not fully
understood in our context. Such exogenous policies affect operational decisions,
yet their impact on the industry may in turn create the need for alternative
regulatory policies. Moreover, challenges (i) and (ii) imply that bleed–feed may
not improve the biomanufacturing efficiency if performed suboptimally. These
observations motivate our second and third research questions: (2) how are the
potential benefits of bleed–feed affected by regulatory limitations; and (3) what is the added
value of implementing bleed–feed to current industry practice?

To address these research questions, we develop a Markov decision process (MDP)
model, and analyze the structural characteristics of the value function and optimal
bleed–feed policies. In addition, we present an industry case study to illustrate
the use of the developed model and assess the potential room for improvement
in practice. We develop answers to our aforementioned research questions, which
yield the following insights for biomanufacturers:
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1. Optimal bleed–feed policies have a control-limit structure. We show that
optimal bleed–feed policies have a control-limit structure (i.e., a three-way control
limit on the cultivation age, the cell growth rate, and the number of bleed–feeds
performed) wherein it is optimal to perform bleed–feed above this control limit
and not to do so below it. Such control-limits are useful to support industry
implementation because these are simple to adopt in daily practice.

2. The marginal benefits of bleed–feed diminish as additional bleed–feeds are
performed. Our analysis reveals that the marginal benefits of an additional bleed–
feed are decreasing and converge to a certain value. More specifically, we show that
the marginal benefits are only equal to the critical biomass if the regulators would
permit more bleed–feeds.

3. Bleed–feed can provide significant benefits. We present an industry case study
to quantify the potential impact of bleed–feed on practice. To generate broader
insights, our numerical experiments assess the performance of two practically-
relevant heuristics as a benchmark (i.e., a risk-averse heuristic, and the current
practice with no bleed–feed). We observe an increase of 137% in batch yield per
setup in the industry base case with two bleed–feeds.

In summary, our model formalizes our understanding of the challenges and trade-
offs associated with bleed–feed. In addition, our results inform biomanufacturers
and policy-makers on the potential impact of the bleed–feed technology on current
practice.

The concept of “bleeding” and “feeding” has been used in continuous fermentation
systems (Doran, 1995; Pollock et al., 2013; Muldowney, 2018). However, the use
of bleed–feed in batch fermentation is novel and involves unique challenges, as
described above.2 To the best of our knowledge, we present the first successful
industry-scale implementation in our context. We believe that our model can serve
as a building block to support the industry’s gradual transition from batch to (semi-
)continuous processing in the near future.

This research has been conducted in close collaboration with MSD Animal

2In continuous systems, the cell culture is continuously fed and bled so that it maintains a steady-state
condition. On the other hand, the problem of optimizing the bleed–feed time, the uncertainty in growth
rate after bleed–feed, and the regulatory restrictions on the number of bleed–feeds are the distinguishing
characteristics of batch processing applications.
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Health, Boxmeer, the Netherlands.3 MSD’s facility in Boxmeer is a leading
biomanufacturing hub of Europe. It specializes in both R&D and large-scale
biomanufacturing to improve animal health. Hereafter, we use the term “MSD”
to represent the Bacteriological Processing Department in Boxmeer. Although
our work originates from MSD, this research addresses a common industry
problem, and the resulting analytical models and insights can be generalized to
other biomanufacturing companies. We also believe that our models can find
future applications in other industries. In particular, certain applications in the
food industry involve batch fermentation operations (e.g., yogurt, beer, and wine
production) and may benefit from the use of the bleed–feed technology.

The remainder of this chapter is organized as follows. We review the relevant
literature in Section 2.2. We present the optimization model in Section 2.3, and
study the analytical results in Section 2.4. We present a model extension in
Section 2.5 where failure risks depend on the bleed–feed count. We present an
industry case study from MSD in Section 2.6, and the concluding remarks in
Section 2.7.

2.2. Literature Review

Our work is closely related to two main streams of research: Section 2.2.1 elaborates
on the relevant work in the life sciences, and Section 2.2.2 reviews relevant studies
in Operations Management.

2.2.1 Relevant Literature in Life Sciences

Several studies in the life sciences address the problem of increasing upstream
titer (i.e., total biomass obtained per setup). In particular, a large body of
work focuses on the modeling and control of biological systems using mass-
balance equations or kinetic models (Xing et al., 2010; Chang et al., 2011; Mutturi
and Lidén, 2014; Villaverde et al., 2016). In addition, predictive models have
been developed to estimate and control the biological dynamics of fermentation
processes. These models generally focus on establishing a relationship between

3The company’s official name is “Merck” in the United States and Canada, and “MSD” elsewhere.
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the media composition, physicochemical parameters, and biomass production
(Handlogten et al., 2018; Patel et al., 2016; Wang et al., 2019).

Although deterministic models are the most commonly used models in the life
sciences, a few studies have also developed stochastic optimization models to
increase fermentation titer. In particular, stochastic models are often used to control
critical process parameters for supporting cell growth during fermentation. For
example, an MDP model was built by Saucedo and Karim (1997) to determine an
optimal feed rate that maximizes ethanol production in fed-batch fermentation.
Subsequently, Peroni et al. (2005) used approximate dynamic programming to
control feed rates and maximize the biomass formation in fed-batch fermentation.
Similarly, Li et al. (2011) adopted a Q-learning approach to model fed-batch yeast
fermentation and determined an optimal feed rate to increase biomass formation.
Cheema et al. (2002) used the genetic algorithm to optimize operating conditions
and improve gluconic acid production. Jabarivelisdeh and Waldherr (2018)
also used the genetic algorithm and determined dynamic metabolic engineering
strategies to maximize ethanol production in batch fermentation. We complement
life science research with a rigorous theoretical analysis of optimal policies. While
most studies in life science focus on controlling the dynamics of fermentation, we
provide a theoretical analysis of optimal policies based on operational trade-offs
and biological dynamics under uncertainty.

2.2.2 Relevant Literature in Operations Management

Although several industries have benefited from the use of Operations Management
(OM) methodologies, OM applications in the context of biomanufacturing have not
been widely studied. We refer to Kaminsky and Wang (2015) for a recent survey of
analytical models for biopharmaceutical operations and supply chains.

Many of the existing OM studies focus on strategic or tactical decisions in
biopharmaceutical supply chains, such as licensing contracts and R&D alliances
(Crama et al., 2008; Xiao and Xu, 2012; Bhattacharya et al., 2015; Allain et al.,
2016; Taneri and De Meyer, 2017), supply uncertainty and demand forecasting
(Tomlin, 2009; Stonebraker and Keefer, 2009). A few OM studies considered the
impact of regulations on licensing and innovation (Hermosilla, 2020; Moreira et al.,
2020), and R&D investments (Arora et al., 2009; Rao, 2020) in the pharmaceutical
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industry. A limited number of OM studies considered operational decisions in
biomanufacturing. For example, Martagan et al. (2019) built an MDP framework to
jointly optimize upstream batch sizing and downstream purification decisions. In a
similar context, Xie et al. (2020) provided a Bayesian Network to capture the inter-
dependence between process parameters and quality attributes. However, none of
the aforementioned studies considered the problem of bleed–feed optimization.

Optimal stopping problems determine the optimal time to take an action to
terminate a process. Several studies characterize structure of the optimal stopping
policies, and develop algorithms to provide numerical solutions (Chow et al.,
1964; Cox et al., 1979; Shiryaev, 2007; Dayanik et al., 2008; Oh and Özer, 2016).
Applications of optimal stopping include option pricing, organ transplantation
decisions and marketing (Ben-Ameur et al., 2002; Wu and Fu, 2003; Ciocan and
Mišić, 2020; David and Yechiali, 1985; Terwiesch and Loch, 2004). Note that, the goal
of bleed-feed action is not to terminate the process, but to prolong the fermentation
by initiating new cultivations.

Machine maintenance is another stream of relevant OM research. This is because
the transition of the batch to the stationary phase, and thus failing to implement
bleed–feed can be considered as system failure, whereas bleed–feed operation
resembles a maintenance activity. The field of machine maintenance has a rich
history. Since the bleed–feed number that can be implemented on a batch is limited
in our study, we focus on papers that are most directly relevant to our research,
i.e., machine maintenance with a limited number of spare parts (replacements). For
a comprehensive overview of the state-of-the-art, we refer to the review paper by
De Jonge and Scarf (2019) and the book by Van Houtum and Kranenburg (2015).
Earlier work on machine maintenance with a finite number of spare parts dates back
to Derman et al. (1984). Therein, the authors assumed a continuous distribution for
the lifetime of a machine, and determined age-dependent replacement policies. In
a more recent study, Icten et al. (2013) extended this framework to build a discrete-
time, condition-based MDP model. They optimized the lifetime of a system under
a limited number of maintenance actions, and showed that optimal policies have a
control-limit structure. However, our problem setting has several key differences.
First, the replacement components are identical in Icten et al. (2013), whereas each
bleed–feed results in a new value of cell growth rate in our setting. Second,
although Icten et al. (2013) do allow for general transition probability matrices
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rather than just advancing age by one or “failing,” their transition probabilities are
arbitrary and not calibrated for a specific application. Most importantly, Icten et al.
(2013) assume that the rewards are nonincreasing in component condition, whereas
ours are nondecreasing in cultivation age, which creates unique trade–offs. That is,
more deteriorated components are more likely to fail and yield less reward in Icten
et al. (2013), whereas in this chapter, the probability of entering the stationary phase
increases in cultivation age while the biomass produced in a period increases.

In summary, our work has several contributions to both life sciences and OM. To
the best of our knowledge, our work is the first attempt to optimize bleed–feed
decisions under uncertainty. We characterize the structural properties of optimal
bleed–feed policies; and analyze the behavior of the value function to understand
the impact of regulatory restrictions. Our model has been validated with a real-
world implementation at MSD and directly improved the business metrics.

2.3. Model Formulation

Our objective is to identify an optimal bleed–feed policy that maximizes the
expected total biomass obtained per batch (subject to regulatory requirements).
We formulate the bleed–feed problem as a discrete-time Markov decision process
(MDP). All modeling assumptions presented in this section have been cross-
validated with one year of implementation data. We present the details of the MDP
model as follows.

Decision epochs: The fermentation process is monitored at discrete decision epochs
k = 0, 1, 2, . . ., corresponding to the time points t = kτ. Here, τ represents a period
(a constant time interval between two consecutive decision epochs). In practice,
the length τ of a period can range from minutes to days depending on the cell
characteristics (e.g., type of cells used, cell lifetime, cell growth rates, etc.) and
process characteristics (e.g., type of bioreactor, etc.).

States: The state of the batch is denoted by (i, µ, n). The state i ∈ I = {0, 1, . . . , I}
is the cultivation age, and represents the time elapsed (in terms of decision epochs)
from the start of the current cultivation. Each time a bleed–feed is performed, a
special medium is added, and a new cultivation starts. Therefore, the cultivation
age is i = 0 at the beginning of a fermentation process, and resets to i = 0 when
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a bleed–feed is performed. We assume that the maximum achievable cultivation
age is I considering the limitations in the cell viability during fermentation and the
bioreactor capacity.

The state µ ∈ M = [µ`, µu] indicates the cell growth rate of a culture (i.e., the rate
at which biomass accumulates during fermentation). In alignment with current
practice, we assume that the cell growth rate µ is known at the beginning of the
initial fermentation. In contrast, the cell growth rate after bleed–feed is uncertain
and follows a general distribution G(µ) with finite support [µ`, µu]. In practice,
the bounds µu ≥ µ` > 0, as well as the distribution of the growth rate can
be determined based on historical data and R&D studies. We let the random
variable M denote the uncertain cell growth rate, and µ′ its realization after bleed–
feed. Post-implementation data indicates that the growth rate after bleed–feed
does not depend on bleed–feed related parameters, such as cultivation age, growth
rate before bleed–feed, number of bleed–feeds performed, etc. We can provide
an intuitive explanation for this behavior from a biological perspective. When a
bleed–feed is performed, a fresh medium is added and only a small amount of
biomass remains inside the bioreactor as a seed culture. With the extraction of
biomass and the addition of fresh medium, the fermentation process naturally
“resets” itself without costly setups. Therefore, this uncertainty in growth rate
is typically exogenous and mainly associated with the inherent uncertainty of
biological dynamics.

The state n ∈ N = {0, 1, . . . , N} represents the total number of bleed–feed
operations performed since the setting up of the bioreactor (i.e., this state can be
considered as a bleed–feed count). The term N denotes the regulatory limit with
regard to the maximum number of bleed–feeds that can be performed on a batch.
The regulatory limit N is generally pre-specified and known. Most often, N is
limited to only one or two bleed–feeds per setup to ensure safety and quality. To be
eligible for bleed–feed, biomanufacturers provide evidence to regulatory authorities
on the process’s safety and quality under N bleed–feeds (i.e., no safety and quality
issues should arise because of mutation, impurities, contamination, etc.). Therefore,
our state space does not include components related to batch safety or quality.

The state ∆ denotes the stationary phase of fermentation, where the biomass growth
stops and the batch is immediately harvested. The state ∆ is an absorbing state with
no rewards and represents the end of the decision-making process.
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Actions: The action space includes two actions, {b, c} ∈ A. Here, b denotes the
bleed–feed, and c represents the continuation of fermentation until the next decision
epoch. The only feasible action in states (i, µ, N) is c because no further bleed–feed
is permitted.

State Transitions: As the fermentation evolves and the cultivation age i increases,
additional biomass accumulates inside the bioreactor (see Figure 2.1). Therefore,
we first provide relevant background on the underlying dynamics of fermentation.
Let miµ denote the total amount of biomass produced by cultivation age i ∈ I
when the cell growth rate is µ ∈ M. Biomass accumulates exponentially during the
exponential growth phase. We use the well-known exponential cell growth function
applied in chemical engineering to capture the amount of biomass accumulated miµ

over the cultivation age i during the exponential growth phase (based on the cell
growth rate µ):

miµ = m0(1 + µτ)i, (2.1)

where m0 denotes the initial amount of biomass (i.e., seed culture) (Monod, 1949;
Doran, 1995). In common practice, the initial amount m0 is pre-determined. The
biomass amount is bounded due to the limitations in the fermentation dynamics
and bioreactor capacity.

Let 1− piµ denote the probability of transitioning to the stationary phase ∆ from
state (i, µ, n). We observed from industry data that the transition probabilities
1− piµ are independent of the bleed–feed count n but dependent on the cultivation
age i and cell growth rate µ. In particular, we observed that 1− piµ ≤ 1− pi+1 µ, i.e.,
the probability that the cell culture transitions to the stationary phase increases as
the cultivation age i increases (under a specified growth rate µ). We can provide an
intuitive explanation for these observations, i.e., the limited amount of medium
depletes faster when the biomass amount m increases. As the medium inside
the bioreactor is depleted, growth inhibition occurs and the cells lose viability.
Subsequently, the cell culture becomes more likely to transition to the stationary
phase. Moreover, it is intuitive that 1− piµ is independent of n, as the fermentation
is “reset” at each bleed–feed with the addition of fresh medium and the extraction of
biomass. To represent this behavior analytically, we let ν(m) denote the exponential
rate at which the process transitions to the stationary phase when the biomass
amount is m. Then, 1− piµ = ν(miµ)τ. Appendix 2.C describes a procedure for
estimating the rate function ν(m).
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. . . i− 1, µ, n i, µ, n . . .

∆

1, µ′, n + 1

pi−1µ piµ

dG(µ ′) p0µ ′

dG(µ ′) p0µ ′

Figure 2.2: State transition diagram (solid arrows for the continue action, dashed arrows
for the bleed–feed action).

Next, we elaborate on the state transitions associated with each action. The
fermentation process starts in state (i = 0, µ, n = 0), where µ ∈ M is known for the
initial culture. The cell growth rate continues to be µ until a bleed–feed operation
is performed. However, under the continue action c at state (i, µ, n), a critical risk
for the decision-maker is the probability 1− piµ of transitioning to the stationary
phase ∆. At the stationary phase ∆, the batch is harvested and the decision-making
process terminates. This implies a lost opportunity for bleed–feed when n < N.

The solid arrows in Figure 2.2 show the state transitions under the continue action
c. At a decision epoch, when we perform action c in state (i, µ, n), the biomass
grows based on the dynamics shown in Equation (2.1) during that period. By the
end of that period, (i) the culture continues to be in the exponential growth phase
(with probability piµ), which implies that the cultivation age increases from i to
i + 1; or (ii) the culture transitions to the stationary phase ∆ otherwise. The system
immediately transitions to the stationary phase ∆ at the maximum cultivation age
I.

The dashed arrows in Figure 2.2 illustrate the state transitions under the bleed–feed
action b. When we take action b in state (i, µ, n) at a decision epoch, the bleed–feed
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operation is performed instantaneously (i.e., we keep the pre-specified amount m0

inside the bioreactor as seed culture and add a special medium) and the cultivation
age is reset to i = 0. Then, the cell culture adopts a new growth rate M. The
realization of M is µ′ with probability dG(µ′).4 Hence, when we perform action
b in state (i, µ, n) at a decision epoch, the system immediately transitions from
state (i, µ, n) to (0, µ′, n + 1) with probability dG(µ′). Then, during period τ, the
biomass grows with rate µ′, and by the end of that period, (i) the culture stays in
the exponential growth phase and the cultivation age increases from 0 to 1 (with
probability p0µ′ ); or (ii) the culture transitions to the stationary phase ∆ otherwise.

The cell culture does not transition to the stationary phase before a certain biomass
amount is reached (see Figure 2.5 in Appendix 2.C for a real-world example). We
call this biomass amount the critical biomass, m̃. Hence, the rate ν(m) is zero when
the actual biomass amount is below this critical biomass m̃. However, ν(m) is
increasing in m when the actual biomass amount exceeds the critical biomass m̃.
This behavior implies that the likelihood of entering the stationary phase increases
as more biomass accumulates. This trend is intuitive because the limited medium
depletes and the cells lose viability faster at higher levels of biomass. In practice, the
value of critical biomass m̃ depends on the cell culture and the application context
(e.g., medium and bioreactor type). For example, we observed from industry
data that the critical biomass could be as small as zero for several cell cultures
while others were more robust (e.g., the cell culture considered in our case study
has a critical biomass m̃ = 13 grams). Lastly, we let ı̃µ be the cultivation age
corresponding to the critical biomass level m̃. Hence, piµ = 1 for i < ı̃µ, and
pi−1 µ > piµ for i ≥ ı̃µ. Clearly, by (2.1), the critical age ı̃µ is nonincreasing in µ.

Rewards: The immediate reward is defined as riµ = mi+1µ −miµ under the continue
action c, and r0µ′ = m1µ′ − m0 under the bleed–feed action b. This indicates that
our reward function collects the incremental biomass amount produced during a
period.5 In our problem setting, the biomass amount miµ determines the rewards.
Hence, we use Equation (2.1) to obtain the rewards associated with state (i, µ, n).

4When the cells continue growing after bleed–feed, the growth rate can be monitored. Hence, the
cell growth rate after the bleed feed is uncertain before the bleed feed, but known after the bleed feed is
implemented.

5We adopt this reward structure because our objective is to maximize the expected total biomass
production. An alternative reward structure is also possible, where the cumulative biomass production
is collected only by the end of the cultivation (i.e., rewards are collected either when the batch enters the
stationary phase or when a bleed–feed is performed). We note that these two modeling approaches are
essentially equivalent. We use the former for ease of exposition.



26
Chapter 2. Increasing Biomanufacturing Yield with Bleed–Feed: Optimal

Policies and Insights

Next, we elaborate on the sequence of events associated with the reward collection
process. Consider the case in which we perform the continue action c in state
(i, µ, n). Here, we receive an immediate reward riµ = mi+1µ −miµ (i.e., incremental
biomass production during that period), and the system transitions either to
state (i + 1, µ, n) or the stationary phase ∆ by the end of that period. Similarly,
if we decide to perform a bleed–feed b in state (i, µ, n), the cultivation age is
instantaneously reset to i = 0, we collect the reward r0µ′ = m1µ′ − m0 based on
the realized growth rate µ′ during that period, and the system transitions either to
state (1, µ′, n + 1) or ∆ by the end of that period (see Figure 2.2 for an illustration
on the system’s dynamics).

Evidently, piµ > pi+1 µ, and riµ < ri+1 µ. That is, both risk of entering the stationary
phase 1− piµ and immediate reward riµ increase in i for a given µ. This results
in a challenging trade-off: as the cultivation age i increases, the biomass amount
miµ also increases (from a practical perspective, this represents an opportunity for
collecting higher rewards throughout the exponential cell growth phase). However,
the risk of entering the stationary phase also increases as the cultivation age i
increases (whereby, the chances of missing the bleed–feed opportunity increase).
The decision-maker needs to balance this trade-off to maximize the expected total
biomass yield.

Value function: We define v(i, µ, n) as the expected biomass production to go given
that the current state is (i, µ, n). The objective is to identify optimal bleed–feed
policies to maximize the value function v(i, µ, n). Let C(i, µ, n) and B(n) be the
expected biomass production under the actions continue c and bleed–feed b in
state (i, µ, n), respectively. Then, the value function v(i, µ, n) satisfies the following
optimality equations:

v(i, µ, n) = max

{
C(i, µ, n) ≡ riµ + piµv(i + 1, µ, n),
B(n) ≡ E

[
C(0, M, n + 1)

] (2.2)

valid for all i < I, µ ∈ M and n < N, and

v(i, µ, N) = C(i, µ, N) (2.3)

for all i < I and µ ∈ M. Note that v(I, µ, n) = 0 for all µ and n, and v(∆) = 0. For
convenience, we set B(N) = 0, so (2.2) is also valid for n = N.
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Observe from Equations (2.2) and (2.3) that our aim is to maximize the expected
total biomass obtained from a batch, v(0, µ, 0), where µ is the cell growth rate at
the beginning of fermentation. This objective function aligns with both existing
studies in the life sciences and current industry practice that aim to obtain as much
biomass as possible before harvest. This is because the activities associated with
cleaning, sterilization and setup are cost-intensive (Mahal et al., 2021). In addition,
discussions with MSD revealed that the costs associated with bleed–feed are rather
small compared to the setup and harvest costs and therefore, negligible in practice.
Nevertheless, in Appendix 2.B, we present an alternative model formulation with
the objective of maximizing the total expected reward (profit) obtained from a batch,
and extend our structural results. Our analysis in Appendix 2.B shows that the
structural characteristics of optimal bleed–feed policies are robust to this alternative
formulation.

2.4. Structural Analysis

In this section, we investigate the structural characteristics of the value function
and optimal bleed–feed policies. These results provide a deeper understanding of
the problem and insights on how optimal bleed–feed decisions should be made. In
particular, we present sufficient conditions under which optimal bleed–feed policies
have a control-limit structure in the cultivation age i (Section 2.4.1), cell growth
rate µ (Section 2.4.2), and bleed–feed count n (Section 2.4.3). We also provide
further insights on the value function (Section 2.4.4). All proofs are presented in
Appendix 2.A.

2.4.1 Structural Analysis in the Cultivation Age

We first characterize the structural properties of the value function and optimal
bleed–feed policies based on the cultivation age i. We start with Remark 2.1 and
analyze the value function in Proposition 2.1.

Remark 2.1 The batch has no risk of entering the stationary phase before the critical
age ı̃µ. Hence, for i < ı̃µ, it is optimal to continue fermentation and the value
function is nonincreasing in i, i.e., v(i + 1, µ, n) ≤ v(i, µ, n). However, for the value



28
Chapter 2. Increasing Biomanufacturing Yield with Bleed–Feed: Optimal

Policies and Insights

function to be nonincreasing also for i ≥ ı̃µ, we need to impose a condition.

Proposition 2.1 The value function v(i, µ, n) is nonincreasing in i for fixed µ ∈ M, n ∈
N , provided the following condition holds:

riµ − ri−1µ

riµ
≤ pi−1µ − piµ, for all ı̃µ ≤ i < I, µ ∈ M. (2.4)

Proposition 2.1 provides a sufficient condition for the value function v(i, µ, n) to be
nonincreasing in i, i.e., the total biomass obtained from a batch does not increase
as the cultivation age i increases. From a practical perspective, the left-hand side
of (2.4) captures the (relative) increase in the immediate reward riµ, and the right-
hand side captures the decrease in the probability of successful batch growth piµ,
as the cultivation age transitions from i − 1 to i. Thus, Condition (2.4) presents a
constraint on how the immediate reward and the probability of biomass growth
should change by a one-step increment in i, for ı̃µ ≤ i < I. The value function
is nonincreasing in i if the increase in the reward is less than the decrease in the
probability.

Based on our industry case study (Section 2.6), we conclude that Condition (2.4) is
mild and realistic for most practical settings. In particular, we observe that the cell
growth rates are generally small fractions (e.g., µ = 0.06 in our case study), whereby
the difference between the rewards obtained from two consecutive cultivation ages
is relatively small compared to the increased risk of failure. Furthermore, we
observe that the left-hand side of (2.4) is a constant rate and that the condition
can be simplified further to µτ

1+µτ ≤ mini{pi−1µ − piµ}.

In Proposition 2.2, we analyze the difference C(i, µ, n)− B(n) in the value function
under actions c and b. This establishes a preliminary result for analyzing the
structural characteristics of optimal bleed–feed policies.

Proposition 2.2 If Condition (2.4) holds, C(i, µ, n)− B(n) ≤ C(i − 1, µ, n)− B(n) for
all ı̃µ ≤ i < I, µ ∈ M, n ∈ N .

Proposition 2.2 states that C(i, µ, n)− B(n) is nonincreasing in i, i.e., the difference
in the value function under actions c and b does not increase as the cultivation age
i increases. This implies that when the difference drops below zero for a certain
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cultivation age i and fixed µ and n, bleed–feed will be optimal for all cultivation
ages greater or equal to i. This is summarized in Theorem 2.1.

Theorem 2.1 If Condition (2.4) holds, for fixed µ ∈ M and n ∈ N , there exists a threshold
i∗(µ, n), such that, for i > i∗(µ, n) it is optimal to bleed–feed in state (i, µ, n), and for
i ≤ i∗(µ, n) it is optimal to continue fermentation, where i∗(µ, n) is a cultivation-age-based
control limit.

Theorem 2.1 establishes the existence of an optimal control-limit policy in culti-
vation age i. That is, for a given cell growth rate µ and bleed–feed count n, it
is optimal to bleed–feed if the cultivation age i exceeds a certain threshold value
i∗(µ, n), and to continue otherwise. An intuitive explanation of this result is that
the decision-maker becomes more willing to bleed–feed when the cultivation age
i increases (i.e., as i increases, the risk of transitioning to the stationary phase
increases and results in higher chances of missing the bleed–feed opportunity).
From a practical perspective, Theorem 2.1 provides a simple and practical guideline
to support bleed–feed decisions based on the cultivation age i. For example, at
MSD, such cultivation-age-based optimal control-limits can be easily incorporated
into production plans to support daily practice.

2.4.2 Structural Analysis in the Cell Growth Rate

Next, we analyze the structural characteristics of the value function in cell growth
rate µ. We first present two monotonicty properties in Propositions 2.3 and 2.4, and
establish our main result in Theorem 2.2. To establish these properties we impose
the (mild) assumption that when the last cultivation age I− 1 is reached, the optimal
action is to bleed–feed. The assumption is valid throughout this section.

Assumption 2.1 In all states (I − 1, µ, n) with µ ∈ M, n < N, bleed–feed action b is
optimal.

Proposition 2.3 For fixed µ ∈ M, n < N , v(i, µ+, n) ≤ v(i, µ, n) for all i ≥ ı̃µ+ and
µ+ ≥ µ, provided the following condition holds:

ri−1µ+ − ri−1µ

riµ+
≤ pi−1µ − pi−1µ+ , for all ı̃µ+ ≤ i < I, µ ≤ µ+ ∈ M. (2.5)
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Proposition 2.3 provides a sufficient condition under which the value function
v(i, µ, n) is nonincreasing in µ, i.e., the total biomass obtained from a batch does
not increase as the cell growth rate µ increases. The left-hand side of (2.5) captures
the (relative) increase in the immediate reward, and the right-hand side captures
the decrease in the probability of successful growth when the cell growth rate
increases from µ to µ+. Hence, the condition ensures that the increase in immediate
reward is lower than the decrease in the probability of successful growth when the
growth rate increases. Condition (2.5) is mild and holds for the industry case study
presented in Section 2.6.

In Proposition 2.4, we analyze the difference C(i, µ, n)− B(n). This is a preliminary
result for analyzing the structure of optimal bleed–feed policies in µ.

Proposition 2.4 If Condition (2.5) holds, C(i, µ+, n) − B(n) ≤ C(i, µ, n) − B(n) for
ı̃µ+ ≤ i < I − 1, µ ≤ µ+ ∈ M, n < N.

Proposition 2.4 shows that C(i, µ, n)− B(n) is nonincreasing in µ, i.e., the difference
in the value function under actions c and b does not increase as the cell growth rate
µ increases. This implies that if it is optimal to bleed–feed in state (i, µ, n), then it is
also optimal to bleed–feed in state (i, µ+, n) with µ+ ≥ µ.

Theorem 2.2 If Condition (2.5) holds, for fixed i < I and n ∈ N , there exists a threshold
µ∗(i, n), such that, for µ > µ∗(i, n) it is optimal to bleed–feed, and for µ ≤ µ∗(i, n) it is
optimal to continue fermentation, where µ∗(i, n) is a cell growth rate-based control limit.

For a given cultivation age i and bleed–feed count n, Theorem 2.2 shows that it is
optimal to bleed–feed if the cell growth rate µ exceeds a certain threshold value
µ∗(i, n), and continue otherwise. This result also implies that the decision-maker
becomes more willing to bleed–feed when the cell growth rate µ is higher (i.e.,
as µ increases, the risk of entering the stationary phase and hence the chances
of missing the bleed–feed opportunity increase). From a practical perspective,
Theorem 2.2 provides a simple guideline to support bleed–feed decisions based
on the cell growth rate µ.

Remark 2.2 If the growth rate M is not random, but constant, M = µ say, then
Assumption 2.1 immediately follows from Condition 2.4, since, by Proposition 2.2,
we have B(n) = C(0, µ, n + 1) ≥ C(I − 1, µ, n + 1) = rI−1,µ = C(I − 1, µ, n).



2.4 Structural Analysis 31

2.4.3 Structural Analysis in the Number of Bleed–feeds

In this section, we establish the structural characteristics in the number of bleed–
feeds performed, n. Moreover, we analyze the behavior of the value function as a
function of the regulatory limit N. We start our analysis with two monotonicity
properties in Propositions 2.5 and 2.6.

Proposition 2.5 The value function v(i, µ, n) is nonincreasing in n for fixed i ∈ I , µ ∈
M.

In Proposition 2.5, we show that the value function v(i, µ, n) is nonincreasing in
n, i.e., the total biomass to be obtained from a batch does not increase as we
perform more bleed–feeds (and approach the limit N). This result, together with
Proposition 2.6, is used to establish the structural characteristics of optimal policies.

Proposition 2.6 C(i, µ, n)− B(n) ≤ C(i, µ, n+ 1)− B(n+ 1) for all i < I, µ ∈ M, n <

N.

Proposition 2.6 states that C(i, µ, n)− B(n) is nondecreasing in n, i.e., the difference
in the value function under actions c and b does not decrease as the number of
bleed–feeds increases. This implies that for fixed i and µ, if it is optimal to continue
at n, then it is also optimal to continue at n + 1.

Theorem 2.3 For fixed i < I and µ ∈ M, there exists a threshold n∗(i, µ) such that for
n ≤ n∗(i, µ) it is optimal to bleed–feed, and for n > n∗(i, n) it is optimal to continue
fermentation, where n∗(i, n) is the control limit in bleed–feed counter.

Theorem 2.3 shows that optimal bleed–feed polices have a control-limit structure in
the bleed–feed counter n. That is, for a given cultivation age i and cell growth rate
µ, it is optimal to bleed–feed when the bleed–feed count is below a certain threshold
value n∗(i, µ), and to continue otherwise. From a practical perspective, this result
implies that the decision-maker is more willing to bleed–feed when only a few
bleed–feeds have been performed. That is, one would take less risks of transitioning
to the stationary phase at lower levels of n, because the opportunity for producing
higher amounts of biomass through bleed–feed is lost when the process transitions
to the stationary phase. On the other hand, Theorem 2.3 shows that, when the
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Figure 2.3: An illustration of the three-way control limit policy.

bleed–feed count approaches its maximum N, the decision-maker is willing to take
higher risks of hitting the stationary phase and tends to continue the fermentation.

We can now conclude that the structure of the optimal policy is a three-way control
limit. This is summarized in Corollary 2.1 and illustrated in Figure 2.3.

Corollary 2.1 If Conditions (2.4) and (2.5) hold, there exists a three-way control limit
policy, i.e.,

• for fixed µ ∈ M, n ∈ N , there is a threshold i∗(µ, n) above which it optimal to
bleed–feed,

• for fixed i < I, n ∈ N , there is a threshold µ∗(i, n) above which it is optimal to
bleed–feed,

• for fixed i < I, µ ∈ M, there is a threshold n∗(i, µ) above which it is optimal to
continue.

An immediate implication of the three-way control limit is that the thresholds are
monotone in the parameters. This can be seen in Figure 2.3. Monotonicity of i∗(µ, n)
is formalized in Corollary 2.2. The other two thresholds have similar properties.

Corollary 2.2 If Conditions (2.4) and (2.5) hold, then:
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• for fixed µ ∈ M, the threshold i∗(µ, n) is non-decreasing in n, i.e.,

i∗(µ, n + 1) ≥ i∗(µ, n), n < N,

• for fixed n ∈ N , the threshold i∗(µ, n) is non-increasing in µ, i.e.,

i∗(µ+, n) ≤ i∗(µ, n), µ+ ≥ µ ∈ M.

Next, we focus on understanding the impact of regulations on bleed–feed opera-
tions. In industry, stringent regulations on the maximum bleed–feed count N can
be perceived as a barrier towards bleed–feed implementation. Practitioners are
concerned that regulatory requirements on bleed–feed count N may restrict the
potential benefits of bleed–feed. To examine this issue, we analyze the behavior
of the value function E[v(0, M, 0)] as a function of the maximum bleed–feed count
N, where E[v(0, M, 0)] can be interpreted as the maximum expected total biomass
produced by an arbitrary batch.

Theorem 2.4 The expected total biomass E[v(0, M, 0)] obtained from an arbitrary batch
increases in the maximum bleed–feed count N, where the marginal increments are decreasing
and converge to the critical biomass m̃.

Remark 2.3 More precisely, we prove that, if m̃ > 0, then for sufficiently large N,
the marginal increments are equal to

E[ ∑
i<ı̃M

i−1

∏
j=0

pjM · riM].

This quantity is close, but not identical to the critical biomass m̃, due to dis-
cretization of time. Further, if m̃ = 0, then the marginal increments converge to
0 geometrically fast.

Theorem 2.4 shows that the expected total biomass obtained from an arbitrary
batch exhibits diminishing returns in N, and converges to the critical biomass
m̃ for sufficiently large N. This result provides a deeper understanding of the
impact of regulations on bleed–feed operations. In practice, the relationship
between biomanufacturers and regulators is bi-directional: regulatory constraints
impact operational decisions in practice and industry implementation may also
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shape regulatory policies. By characterizing the behavior of the value function
as a function of the regulatory limit N, our analysis provides insights for both
manufacturers and regulators.6

2.4.4 Further Insights

To generate further analytical insights, we analyze a risk-averse heuristic as a
practically-relevant benchmark and provide a sensitivity analysis on risks 1− piµ.

Risk-averse heuristic: a benchmark. As a practically-relevant benchmark, we
consider a risk-averse heuristic and evaluate its performance. Recall that the bleed–
feed opportunity is lost when fermentation enters the stationary phase. Because of
the high risks involved in fermentation processes, practitioners may decide to adopt
a risk-averse heuristic to implement bleed–feed with zero risk. Based on industry
data, we know that the fermentation has no risk of entering the stationary phase
before the critical age ı̃µ. In addition, we know from Remark 2.1 that implementing
bleed–feed before the critical age is suboptimal. Therefore, we consider a risk-averse
heuristic which implements bleed–feed at the critical age ı̃µ with zero risk of failure.
Theorem 2.5 presents a sufficient condition under which this risk-averse heuristic is
optimal.

Theorem 2.5 It is optimal to bleed–feed in state (i, µ, n) for ı̃µ ≤ i ≤ I − 1, µ ∈ M, n <

N, if the following condition holds:

riµ

r0µ + r1µ + ... + rı̃µµ + E[pı̃M MrI−1M]
≤ 1− piµ, for ı̃µ ≤ i < I, µ ∈ M. (2.6)

When Condition (2.6) holds, Theorem 2.5 indicates that the risk-averse heuristic
is optimal. In other words, the critical age ı̃µ corresponds to the optimal
cultivation-age-based control limit i∗ presented in Theorem 2.1. To elaborate on
the practical relevance of Theorem 2.5, we note that the term r0µ + r1µ + ... + rı̃µµ

in Condition (2.6) is close to the critical biomass amount m̃. Hence, (2.6) indicates
that if the reward at age ı̃µ divided by the critical biomass amount is less than the

6We note that Theorem 2.4 considers a hypothetical case in which the regulatory limit N is large. In
practice, the regulations permit only a few (e.g., one or two) bleed–feeds. If the regulations would permit
more bleed–feeds, we expect that the critical biomass m̃ would approach zero; and hence the marginal
benefits would converge to zero in practice.
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failure probability at age ı̃µ, then it is optimal to bleed–feed at the critical age. On
the other hand, we observe from (2.6) that if the critical biomass amount is small or
the probability of batch failure at age ı̃µ is low, then Condition (2.6) may not hold
and thus, implementing bleed–feed at the critical age may not be optimal. Hence,
our analysis indicates that the risk-averse heuristic may not perform optimally for a
wide range of practically-relevant scenarios. Yet, it can serve as a naı̈ve heuristic for
practitioners who aim to avoid failure risks. In Section 2.6, we provide a numerical
analysis to assess the performance of this risk-averse heuristic compared to optimal
policies.

Sensitivity analysis on risks. Recall that 1 − piµ denotes the probability of
entering the stationary phase at state (i, µ, n). Consider two batches with transition
probabilities p1

iµ and p2
iµ, respectively. We assume that these two batches are

identical, except that the second batch has a higher risk of entering the stationary
phase, i.e., 1 − p1

iµ ≤ 1 − p2
iµ for all i ∈ I , µ ∈ M. This means that the rate

function of the second batch stochastically dominates the first one. Let v1(i, µ, n)
and v2(i, µ, n) denote the value function of the first and second batch, respectively.
We first present an upper bound on the value function in Lemma 2.1, and then
compare these two batches in terms of their expected total biomass production in
Proposition 2.7.

Lemma 2.1 If Condition (2.4) holds, then

riµ + ri+1µ + ... + rı̃µµ

1− pı̃µµ
≥ v(i + 1, µ, n) for 0 ≤ i < ı̃µ, µ ∈ M, n ∈ N (2.7)

riµ

1− piµ
≥ v(i + 1, µ, n) for ı̃µ ≤ i ≤ I − 1, µ ∈ M, n ∈ N . (2.8)

Proposition 2.7 Consider two identical batches, except that 1 − p1
iµ ≤ 1 − p2

iµ for i ∈
I , µ ∈ M, and assume Condition (2.4) holds, so the optimal policy for both batches has a
control-limit in i. Then,

(i) v1(i, µ, n) ≥ v2(i, µ, n) for all i ∈ I , µ ∈ M, n ∈ N ,

(ii) if it is optimal to bleed–feed the first batch at state (i, µ, n), it is also optimal to bleed–feed
the second batch at the same state, provided the following condition holds

rI−1µ(p1
iµ − p2

iµ) ≥ E
[
p1

0M
r0M

1− p1
0M
− p2

0MrI−1M
]
, for ı̃µ ≤ i < I. (2.9)
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Proposition 2.7 (i) shows that a batch with a lower risk produces higher total
biomass, and (ii) presents a sufficient condition under which bleed–feed is
implemented earlier to a batch with higher risk7. Condition (2.9) sets a lower bound
on the difference between the successful growth probabilities, p1

iµ − p2
iµ. When

this difference is sufficiently large, bleed–feed is performed earlier for the high-risk
batch. For small values of p1

0µ and p2
0µ, the right-hand side of (2.9) becomes negative,

and the condition holds as the left-hand side is positive. However, Condition (2.9)
becomes more restrictive for large values of p1

0µ. In such cases, the term p2
0µrI−1µ

should be high or r0µ should be small for the condition to hold. In our industry
case study, we observed that r0µ is relatively small, so that (2.9) holds for several
practically-relevant scenarios.

2.5. Model Extension

The base model in Section 2.3 assumes that the probability of entering the stationary
phase is independent of the bleed–feed count n.8 However, this assumption
might not necessarily hold for all fermentation processes (including cross-industry
applications). To ensure generalizability and wider impact, we now relax this
assumption and assume that the probability of entering the stationary phase
1− piµn depends on the bleed–feed count n. In particular, we focus on the case when
the fermentation encounters higher risks of entering the stationary phase as the
bleed–feed count n increases, i.e., 1− piµn ≤ 1− piµn+1 for a given cultivation age
i. In this extension, we shall assume that the cell growth behavior in Equation (2.1)
and the reward structure are identical to the base model in Section 2.3. Hence,
the value function v(i, µ, n) of the extended model satisfies the following optimality
equations:

v(i, µ, n) = max

{
C(i, µ, n) ≡ riµ + piµnv(i + 1, µ, n),
B(n) ≡ E

[
C(0, M, n + 1)

] (2.10)

7When p1
0µ = 1, by using (2.7) of Lemma 2.1, we can replace the term E

[
p1

0M
r0M

1−p1
0M

]
in Condition (2.9)

by E
[
p1

0M
r0M+r1M+...+rı̃M M

1−p1
ı̃M M

]
.

8We validated this assumption with one-year of bleed–feed implementation data. However, our data
involved only one bleed–feed per batch, N = 1.
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valid for all i < I, µ ∈ M and n < N, and

v(i, µ, N) = C(i, µ, N)

for all i < I and µ ∈ M. Note that v(I, µ, n) = 0 for all µ and n, and v(∆) = 0.
Observe from (2.10) that the probabilities piµn depend on the bleed–feed count n.
We now revisit the structural results obtained from Section 2.4 to characterize the
optimal bleed–feed policies for the extended model.

We first focus on the structural properties in the cultivation age i and the cell growth
rate µ. In the extended model, structural properties described in Proposition 2.1,
Proposition 2.2 and Theorem 2.1 continue to hold when the sufficient condition (2.4)
is revised as

riµ−ri−1µ

riµ
≤ pi−1µn − piµn. This implies that the extended model

continues to have an optimal threshold-type policy in cultivation age i (for a given µ

and n). Furthermore, Proposition 2.3, Proposition 2.4 and Theorem 2.2 also continue
to hold for the extended model when the sufficient condition (2.5) is revised as
ri−1µ+−ri−1µ

riµ+
≤ pi−1µn − pi−1µ+n. Therefore, the extended model has an optimal

threshold-type policy in µ (for a given i and n).

We now focus on the structural characteristics in the number of bleed–feeds
n. It is easy to see that Proposition 2.5 and Theorem 2.4 continue to hold.
However, Proposition 2.6 does not hold in the extended model. As a counterpart,
Proposition 2.8 provides a sufficient condition under which C(i, µ, n) − B(n) is
nonincreasing in n.

Proposition 2.8 C(i, µ, n)− B(n) ≥ C(i, µ, n+ 1)− B(n+ 1) for all i < I, µ ∈ M, n <

N provided the following condition holds:

rI−1µ(piµn − piµn+1) ≥ E
[
p0Mn+1

r0M
1−p0Mn+1

− p0Mn+2rI−1M
]

for i < I, µ ∈ M, n < N.

(2.11)

Proposition 2.8 presents a sufficient condition under which the difference in value
function under the actions continue c and bleed–feed b does not increase in the
bleed–feed count n. This implies that the extended model continues to have an
optimal threshold-type policy in n (for fixed i and µ), such that, it is optimal to
continue below this threshold, and bleed–feed otherwise. Hence, the three-way
control limit structure described in Corollary 2.1 continues to hold in the extended



38
Chapter 2. Increasing Biomanufacturing Yield with Bleed–Feed: Optimal

Policies and Insights

model, except that it is now optimal to bleed–feed (instead of continue) above
threshold n∗. This difference is attributed to the increasing failure risk under the
extended model. Because the failure probabilities increase in the bleed–feed count
n in the extended model, optimal policies tend to bleed–feed earlier than in the base
model.

2.6. Numerical Analysis: An Industry Case Study

We present a numerical case study motivated by MSD Animal Health, Boxmeer,
the Netherlands. We use the case study to demonstrate the potential impact of the
bleed–feed optimization model in practice, and to provide a deeper understanding
of the problem instances that have high potential for improvement. We first
introduce the problem setting (Section 2.6.1), and present sensitivity analysis on the
impact of the system’s risk of transitioning to the stationary phase (Section 2.6.2),
critical biomass level (Section 2.6.3), and the number of bleed–feeds permitted on a
batch by the regulations (Section 2.6.4).

2.6.1 Problem Setting

This case study is generated based on three-years of fermentation data for a specific
biopharmaceutical drug used in animal health (i.e., two years pre-implementation
and one year post-implementation). The fermentation data obtained from MSD
included an extensive set of measurements, including the initial biomass amounts,
cell growth rates, time-to-enter the stationary phase, final biomass amounts, harvest
times, and physico-chemical parameters. To protect confidentiality, we have
disguised MSD’s original data and used representative values in this case study.

We establish the main parameters used in the case study as follows. The
fermentation starts with an initial biomass amount m0 = 1 gram. The critical
biomass amount is m̃ = 13 grams, and the critical age is ı̃ = 45 hours. The
maximum biomass amount that can be produced from a cell culture is 24 grams.
In the first fermentation run (i.e., before the first bleed–feed), the cell growth rate
is 0.06 cell divisions per hour. In the second fermentation (i.e., after the bleed–
feed), our industry data shows that the cell growth rate follows a (discrete) uniform
distribution in the interval [0.045, 0.075] (see Figure 2.5(b) in Appendix 2.C). Hence,
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the mean cell growth rate after a bleed–feed is E[M] = 0.06 cell divisions per hour,
and the coefficient of variation is CV(M) = 0.14. The maximum fermentation time
is 72 hours because of the limitations in cell viability.

The rates of transitioning to the stationary phase ν(m) (for all possible values of
biomass amount m) and the corresponding probabilities of successful batch growth
piµ are estimated from industry data. Recall that transition rates ν(m) are calculated
based on the biomass amount (as described in Section 2.3), and that the transition
probabilities of the MDP model are determined from the transition rates by using
the relationship 1 − piµ = ν(miµ)τ. We refer to Appendix 2.C for a detailed
discussion on a procedure to estimate the transition rates. Appendix 2.C also
presents the specific transition rates used in our case study.9 In addition, we note
that the industry data satisfied the monotonicity conditions described in Section 2.4.

In our case study, regulatory requirements limit the number of bleed–feeds to a
maximum of two bleed–feeds per setup, i.e., N = 2. Note that N = 2 implies
three cultivations per setup (i.e., no bleed–feed can be performed after the second
one). The time between two decision epochs is set as τ = 1 hour based on the
feedback received from MSD. Nevertheless, we conducted a sensitivity analysis on
smaller values of τ (i.e., τ ∈ {0.25, 0.5}) and observed that the optimal policies
and managerial insights were robust to finer levels of discretization. Hereafter, we
refer to this setting as base case. We solved for the optimal policy using backward
induction.

Analysis Overview. The main objective of this case study is to provide a deeper
understanding of the potential impact of bleed–feed on current practice. For this
purpose, we focus on (1) helping the biomanufacturing industry understand how
implementing bleed–feed makes a difference on their operations and (2) quantifying
the potential gains (in terms of the expected biomass production per setup) from
the application of bleed–feed. We consider three practically-relevant strategies:

• Current practice (CP) harvests the batch as soon as it enters the stationary
phase and does not use bleed–feed (this can also be interpreted as N = 0 for
the model in Section 2.3). The strategy CP is our main benchmark because it

9Our numerical experiments used a step function which was empirically generated from industry
data (see Figure 2.5(a) of Appendix 2.C). We note that it is possible to fit an exponential curve for the
rate function, as shown in Figure 2.5. Additional numerical experiments confirm that our results are
robust when this exponential function is used to approximate the empirical distribution.
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represents the current practice.

• Risk-averse heuristic (RA) implements bleed–feed at the critical age ı̃. This
strategy represents a conservative approach that implements bleed–feed at no
risk (see Section 2.4.4).

• Bleed–feed optimization (BO) maximizes the expected total biomass per setup
and finds the optimal bleed–feed policies.

We identified a wide range of practically-relevant instances for our numerical
analysis based on the input received from our industry partners. In particular,
we understand that bio-processes can vary widely in terms of their their risk of
entering the stationary phase and the critical biomass level. Therefore, we focus
on sensitivity analysis on the risk of entering the stationary phase (Section 2.6.2),
the critical biomass (Section 2.6.3) and the regulatory limit on the bleed–feed
number allowed per batch (Section 2.6.4) to generate managerial insights for a wider
audience (other companies or end-products in the industry). A key performance
metric used in this section is the percentage improvement (%IRA and %IBO) that
could have been achieved by adopting risk-averse heuristic (RA) and bleed–feed
optimization (BO) rather than current practice (CP).

2.6.2 Insights on the Risk of Entering the Stationary Phase

Although certain cell cultures are more reliable and stable (e.g., bacteria cells),
others exhibit high risks of entering the stationary phase (e.g., viruses). To
understand the impact of the transition probabilities on the room for improvement
over CP, we performed sensitivity analysis on the rate of entering the stationary
phase ν(m). Recall that Figure 2.5(a) in Appendix 2.C provides the rate function
ν(m) of the base case. In this section, we multiply the base case’s rate function ν(m)

by a factor f to represent the following scenarios: (i) base case ( f = 1), (ii) higher
risk of transitioning to the stationary phase ( f = 1.1, 1.25, 1.5), and (iii) lower risk of
transitioning to the stationary phase ( f = {0.9, 0.75, 0.5, 0.25, 0.1}). These scenarios
are presented in Table 2.1.

Table 2.1 reports the value function v(0, 0.06, 0) for each scenario under the
strategies CP, RA and BO, and shows the corresponding percentage improvement
%I. In alignment with current regulations, the analysis is based on two bleed–feed
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Table 2.1: Impact of transition risks on CP, RA and BO.

f CP RA BO %IRA %IBO i∗0 i∗1 ı̃
1.5 20.1 45.5 47.9 126% 139% 47 48 45

1.25 20.4 45.8 48.6 124% 138% 47 48 45

1.1 20.7 46.1 49.1 123% 137% 47 48 45

1 20.8 46.2 49.5 122% 137% 48 49 45
0.9 21.0 46.4 49.9 121% 138% 48 49 45

0.75 21.3 46.7 50.6 119% 138% 48 50 45

0.5 21.8 47.2 52.5 117% 141% 49 51 45

0.25 22.4 47.8 56.1 114% 151% 51 52 45

0.1 22.7 48.2 60.5 112% 166% 52 54 45

opportunities (N = 2). Columns i∗0 and i∗1 denote the optimal cultivation-aged-
based threshold for the first and second bleed–feeds, respectively (i.e., at n = 0 and
n = 1). For ease of exposition and brevity, Table 2.1 reports the optimal thresholds
i∗0 and i∗1 at selected states (when µ′ = 0.06 and n ∈ {0, 1}).

First, we compare RA, BO and CP to quantify the potential room for improvement
in each scenario. In Table 2.1, we observe that %IBO ranges between 137% and
166%; and %IRA ranges between 112% and 126%. In particular, Table 2.1 shows
that in the base case setting of MSD, BO can help the company achieve an increase
of 137% (and RA of 122%) in the total biomass production from one setup (with
two bleed–feeds). Although two bleed–feeds may be perceived as two additional
batches of biomass production, we observe that it does not triple the total biomass
production (compared to CP) in any of the scenarios. This is mainly because
we stop the cultivation earlier than CP when we bleed–feed (to avoid the risk
of entering the stationary phase and losing the bleed–feed opportunity). This
implies that BO compromises on the biomass production toward the end of the
exponential growth phase to be able to perform bleed–feed. Hence, practitioners
should understand that two additional cultivations with bleed–feed do not result in
three full batches of biomass production in CP (without bleed–feed). Nevertheless,
notable improvements (as reported in Table 2.1) can be achieved through BO by
eliminating two intermediary setups.

For low-risk batches, Table 2.1 shows that improvement percentages are higher
under BO, and lower under RA. The underlying intuition of this behavior can
be explained as follows. Low-risk batches can accumulate more biomass at lower
failure risks under each strategy. Hence, bleed–feed decisions can be postponed
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without high risks of entering the stationary phase. Recall that RA implements
bleed–feed at the critical biomass amount, whereas CP collects all the biomass until
the stationary phase. This difference leads to lower improvements %IRA. On the
other hand, BO collects higher amount of biomass with each bleed–feed, and hence
%IBO increases at lower risks. Hence, we observe that the business case for BO is
stronger for the low-risk batches.

We now consider the optimal bleed–feed thresholds i∗0 and i∗1 . Table 2.1 shows that
optimal policies tend to bleed–feed at higher cultivation ages i∗0 and i∗1 , as the risk
of transitioning to the stationary phase decreases. This result is intuitive because
the biomass is more likely to continue accumulating at lower risks. In addition,
when we compare i∗0 and i∗1 of a given scenario, we observe that optimal bleed–feed
thresholds increase in n. This indicates that the optimal bleed–feed policy becomes
less conservative after the first bleed–feed and thus enables the growth of additional
biomass for the second cultivation.

Table 2.1 shows that BO outperforms RA. Observe that the difference between the
optimal bleed–feed thresholds i∗0 and i∗1 and the critical age ı̃ increases when the
batch exhibits lower risks of entering the stationary phase. This is because BO can
wait longer to bleed–feed with lower risk of missing the bleed–feed opportunity.
Subsequently, RA performs worse compared to BO for low-risk batches. This
finding aligns with our structural insights (Section 2.4.4).

2.6.3 Insights on the Critical Biomass Level

In practice, cells might have different critical biomass levels depending on their
biological characteristics (i.e., virus, bacteria or mammalian), the media (i.e., nutri-
ents used in the media formulation) and the equipment used in the fermentation
(i.e., bioreactor types and technologies). Therefore, we considered the following
scenarios for the critical biomass: (i) base case, m̃ = 13 grams, (ii) lower levels,
m̃ = {3, 5, 7, 9, 11}, and (iii) higher levels, m̃ = {15, 17, 19}. In each scenario, we
shifted our base rate function to the left (for lower m̃) or right (for higher m̃).
Table 2.2 reports the value function v(0, 0.06, 0) for each scenario under CP, RA and
BO.

Observe from Table 2.2 that both %IRA and %IBO increase as the critical biomass m̃
increases. This trend is obtained because the process becomes more robust as the
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Table 2.2: Impact of the critical biomass level in CP, RA and BO.

m̃ CP RA BO %IRA %IBO i∗0 i∗1 ı̃
19 22.9 59.9 64.6 161% 181% 54 54 51

17 22.7 55.8 59.8 146% 163% 52 53 49

15 22.1 51.2 54.7 131% 147% 50 51 47

13 20.8 46.2 49.5 122% 137% 48 49 45
11 18.6 39.7 43.2 113% 132% 46 47 42

9 16.2 32.6 36.4 101% 125% 43 45 38

7 13.8 26.3 29.5 90% 114% 40 42 34

5 11.2 19.6 22.8 74% 103% 36 38 28

3 8.5 12.7 15.8 49% 85% 31 34 19

critical biomass increases (i.e., no risk of entering the stationary phase before m̃).
Subsequently, the expected total biomass production increases in m̃, and thus the
potential benefits of bleed–feed also gets higher. This result implies that bleed–feed
has a stronger business case when the critical biomass is high.

We now focus on the optimal bleed–feed thresholds i∗0 and i∗1 . Optimal bleed–feed
times i∗0 and i∗1 decrease as the critical biomass m̃ decreases. This trend is intuitive
because the risk of entering the stationary phase is higher at lower critical biomass
levels. Yet, we observe from Table 2.2 that the difference between the optimal bleed–
feed times i∗0 and i∗1 (used by BO) and the critical age ı̃ (used by RA) increases as
the critical biomass m̃ decreases. Recall that the process becomes more vulnerable
(i.e., higher risks of entering stationary phase) at lower critical biomass levels m̃.
Subsequently, RA underperforms compared to BO because it tends to bleed–feed
sooner than optimal to avoid failure risks at low values of m̃. This risk-averse
behavior leads to a larger difference between optimal policies (i∗0 and i∗1) and the
critical age ı̃ when the critical biomass m̃ decreases. This finding aligns with the
structural insights presented in Section 2.4.4.

2.6.4 Insights on Regulatory Requirements

We conduct numerical analysis on the maximum number of bleed–feeds permitted
N. The regulatory bound N ensures that the batch is safe and reliable after bleed–
feed (i.e., no safety or quality issues because of growth inhibitors and byproducts
after bleed–feed; the cell growth behavior and the rate function is robust to the
bleed–feed count). In this section, we relax this regulatory bound and analyze
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Figure 2.4: Analysis for the number of bleed–feeds permitted on a batch N for (a) m̃ = 0
and (b) m̃ = 13 grams.

the behavior of the value function in the bleed–feed count n. From a practical
perspective, when the bleed–feed amount is large (by relaxing N), the cell culture
is expected to become more vulnerable (i.e., the critical biomass would tend to
zero and the batch would become more likely to enter the stationary phase). To
capture this behavior in a realistic manner, our numerical analysis focuses on the
case when the critical biomass amount is m̃ = 0. We present the results also for
m̃ = 13 for the sake of completeness. In addition, we consider base risk ( f = 1),
high-risk ( f = 1.5), and low-risk batches ( f = 0.5) for both cases to provide a better
understanding of the impact of risks and regulations. Figure 2.4(a) depicts the value
function v(0, 0.06, 0) under BO for N = {0, 1, . . . , 10}, when m̃ = 0, for a base risk
(m̃ = 0, f = 1), high-risk (m̃ = 0, f = 1.5) and low-risk batch (m̃ = 0, f = 0.5).
Figure 2.4(b) presents the same for m̃ = 13.

Recall Theorem 2.4 showing that the marginal increments of the expected total
biomass are decreasing in n and converge to the critical biomass m̃. Figure 2.4(a)
demonstrates this result for m̃ = 0. Observe from Figure 2.4(a) that the increase in
biomass production obtained by an additional bleed–feed decreases as more bleed–
feeds are conducted on a batch. Moreover, if we increase N further, we observe that
the total expected biomass converges to a bound in each case in Figure 2.4(a). This
bound is lower for a high-risk batch, and higher for a low-risk batch. In addition,
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we observe that the higher-risk batch converges to its bound at lower N values.
Figure 2.4(b) depicts the result from Theorem 2.4 for m̃ = 13. Observe that the value
function increases in n when m̃ = 13, as the increments in v(0, 0.06, 0) in n converge
to m̃. However, we note that Figure 2.4(b) can be misleading, as it does not capture
the vulnerability of the cells as a result of increasing the number of bleed–feeds
beyond the regulatory limit N. In practice, the relationship between manufacturers
and regulators is bi-directional: exogenous constraints on the bleed–feed count N
impact operational decisions in practice; and the industry implementation may also
shape regulatory policies. Hence, our results provide a deeper understanding for
practitioners by demonstrating the effects of an additional bleed–feed.

2.7. Conclusions

Bioreactor setups involve high cost of cleaning, sterilization, seed culture, labor,
and materials (Oyebolu et al., 2019; Mahal et al., 2021). In addition, with increasing
competition and growing market demand, maintaining a competitive advantage
requires decision makers to balance short-term cost pressures against the long-term
need to innovate (McKinsey & Company, 2019). In this context, the problem of
increasing upstream titer has been gaining importance for improving biomanufac-
turing efficiency. To address this problem, we consider a new technology for batch
fermentation: bleed–feed.

The bleed–feed technology allows biomanufacturers to “skip” a few of the biore-
actor setups by extending the duration of the exponential growth phase in
batch fermentation. Therefore, this technology presents an innovative approach
for reducing costs and improving efficiency in batch-based biomanufacturing.
However, the successful use of bleed–feed involves challenges and trade-offs that
are unlike those in any other applications. For example, bleed–feed can be
performed only in the exponential growth phase. As the duration of the exponential
growth phase is random, there is a critical trade-off between performing bleed–feed
too soon or too late. In addition, regulatory requirements restrict the number of
bleed–feeds (per setup) to a pre-specified limit, which are generally known to be
conservative to ensure safety and reliability. All these factors obstruct the potential
benefits of bleed–feed technology.
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To address these challenges, we built an analytical framework to optimize bleed–
feed decisions. In particular, we developed an MDP model and analyzed the
structural properties of optimal bleed–feed policies. Moreover, we characterized
the behavior of the value function as a function of the regulatory limit N. Counter-
intuitive to the generally-held opinion in industry, we showed that the marginal
benefits of an additional bleed–feed are decreasing and converge to the critical
biomass, as the regulatory limit N increases. We observe that bleed–feed brings
benefits. Our case study shows that batch yield per setup can increase by 137% in
the base case (with two bleed–feeds).

2.A. Proofs

Proof of Proposition 2.1. Fix µ ∈ M and n ∈ N . By induction in i we show

v(i, µ, n) ≤ v(i− 1, µ, n), i > 0. (2.12)

For i = I, we have v(I, µ, n) = 0 ≤ v(I − 1, µ, n). Hence, (2.12) is valid for i = I.
Now we assume that (2.12) is valid for i where i > ı̃µ. Then we show that (2.12) also
holds for i− 1. From (2.4) we have (note that pi−2µ − pi−1µ > 0)

ri−1µ − ri−2µ

pi−2µ − pi−1µ
≤ ri−1µ

≤ ri−1µ + pi−1µv(i, µ, n)

= C(i− 1, µ, n)

≤ v(i− 1, µ, n). (2.13)

Rearranging (2.13), we obtain

ri−1µ − ri−2µ ≤ (pi−2µ − pi−1µ)v(i− 1, µ, n)

= pi−2µv(i− 1, µ, n)− pi−1µv(i− 1, µ, n)

≤ pi−2µv(i− 1, µ, n)− pi−1µv(i, µ, n), (2.14)
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where (2.14) follows from the induction hypothesis. Rearranging terms yields

C(i− 1, µ, n) = ri−1µ + pi−1µv(i, µ, n) ≤ ri−2µ + pi−2µv(i− 1, µ, n) = C(i− 2, µ, n).
(2.15)

Hence,

v(i− 1, µ, n) = max{C(i− 1, µ, n), B(n)} ≤ max{C(i− 2, µ, n), B(n)} = v(i− 2, µ, n).

Finally, for 0 < i < ı̃µ we have pi−1µ = 1, so v(i − 1, µ, n) = max{ri−1µ +

v(i, µ, n), B(n)} ≥ v(i, µ, n). 2

Proof of Proposition 2.2. The inequality C(i, µ, n) − B(n) ≤ C(i − 1, µ, n) − B(n)
reduces to C(i, µ, n) ≤ C(i− 1, µ, n). The latter inequality follows from the proof of
Proposition 2.1. 2

Proof of Theorem 2.1. The proof is an immediate consequence of Proposition 2.2.
2

Proof of Proposition 2.3. Fix µ < µ+ ∈ M and n < N . By induction in i we show

v(i, µ+, n) ≤ v(i, µ, n), i ≥ ı̃µ+ . (2.16)

Assumption 2.1 is required for the first induction step: For i = I − 1 we have
v(I − 1, µ+, n) = v(I − 1, µ, n) = B(n). Hence, (2.16) is valid for i = I − 1. Now we
assume that (2.16) is valid for i where i > ı̃µ+ . We show that (2.16) also holds for
i− 1. From (2.5) we have (note that pi−1µ − pi−1µ+ > 0):

ri−1µ+ − ri−1µ

pi−1µ − pi−1µ+
≤ riµ+

≤ riµ+ + piµ+v(i + 1, µ+, n)

= C(i, µ+, n)

≤ v(i, µ+, n). (2.17)
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Rearranging (2.17), we obtain:

ri−1µ+ − ri−1µ ≤ (pi−1µ − pi−1µ+)v(i, µ+, n)

= pi−1µv(i, µ+, n)− pi−1µ+v(i, µ+, n)

≤ pi−1µv(i, µ, n)− pi−1µ+v(i, µ+, n), (2.18)

where (2.18) follows from the induction hypothesis. Rearranging terms we get:

C(i− 1, µ+, n) = ri−1µ+ + pi−1µ+v(i, µ+, n) ≤ ri−1µ + pi−1µv(i, µ, n) = C(i− 1, µ, n).
(2.19)

Hence,

v(i− 1, µ+, n) = max{C(i− 1, µ+, n), B(n)} ≤ max{C(i− 1, µ, n), B(n)} = v(i− 1, µ, n),

which completes the proof. 2

Proof of Proposition 2.4. The inequality C(i, µ+, n) − B(n) ≤ C(i, µ, n) − B(n)
reduces to C(i, µ+, n) ≤ C(i, µ, n). The latter inequality follows from the proof
of Proposition 2.3. 2

Proof of Theorem 2.2. The proof is an immediate consequence of Proposition 2.4.
2

Proof of Proposition 2.5. Suppose that in each state (i, µ, n) with n < N, we apply
the optimal action for state (i, µ, n + 1) (note that the only feasible action in states
(i, µ, N) is c). Let v′(i, µ, n) denote the expected biomass production under this
policy. Then,

v(i, µ, n) ≥ v′(i, µ, n) = v(i, µ, n + 1).

2

Proof of Proposition 2.6. Proposition 2.5 implies that B(n) ≥ B(n + 1). By
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induction in i, we show

C(i, µ, n)− B(n) ≤ C(i, µ, n + 1)− B(n + 1). (2.20)

For i = I − 1 we have C(i, µ, n) = C(i, µ, n + 1) = rI−1µ. Therefore,

C(i, µ, n)− B(n) = C(i, µ, n + 1)− B(n) ≤ C(i, µ, n + 1)− B(n + 1).

Hence, (2.20) is valid for i = I − 1. Now assume that (2.20) is valid for i. Then,
we show that it also holds for i− 1. By (2.20), we have C(i, µ, n) ≤ C(i, µ, n + 1) +
B(n)− B(n + 1). Therefore,

v(i, µ, n)− v(i, µ, n + 1) = max{C(i, µ, n), B(n)} −max{C(i, µ, n + 1), B(n + 1)}

≤ max{C(i, µ, n + 1) + B(n)− B(n + 1), B(n)}

−max{C(i, µ, n + 1), B(n + 1)}

= B(n)− B(n + 1)

and thus

C(i− 1, µ, n)− C(i− 1, µ, n + 1) = pi−1µ(v(i, µ, n)− v(i, µ, n + 1))

≤ pi−1µ(B(n)− B(n + 1)) ≤ B(n)− B(n + 1).

2

Proof of Theorem 2.3. The proof is an immediate consequence of Proposition 2.6.
2

Proof of Lemma 2.1. If Condition (2.4) holds, then the value function is
nonincreasing in i:

v(i, µ, n) = max{C(i, µ, n), B(n)} ≥ v(i + 1, µ, n). (2.21)

If v(i, µ, n) = B(n), then v(i + 1, µ, n) = B(n) from Theorem 2.1, and (2.21) holds. If
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v(i, µ, n) = C(i, µ, n) for 0 ≤ i < ı̃µ we have:

v(i, µ, n) = C(i, µ, n) = riµ + v(i + 1, µ, n)

= riµ + ri+1µ + ... + rı̃µµ + pı̃µµv(ı̃µ + 1, µ, n) ≥ v(i + 1, µ, n).

Then, from Proposition 2.1,

riµ + ri+1µ + ... + rı̃µµ + pı̃µµv(i + 1, µ, n) ≥ v(i + 1, µ, n),

so

riµ + ri+1µ + ... + rı̃µµ

1− pı̃µµ
≥ v(i + 1, µ, n).

If v(i, µ, n) = C(i, µ, n) for ı̃µ ≤ i ≤ I − 1 we have:

v(i, µ, n) = C(i, µ, n) = riµ + piµv(i + 1, µ, n) ≥ v(i + 1, µ, n),

thus

riµ

1− piµ
≥ v(i + 1, µ, n).

2

Proof of Theorem 2.4. From Equation (2.2) we have for n = 0, . . . , N:

v(0, µ, n) = max{B(n), r0µ + p0µv(1, µ, n)}

= max{B(n), r0µ + p0µB(n), r0µ + p0µr1µ + p0µ p1µv(2, µ, n)}

= · · ·

= max{B(n), r0µ + p0µB(n), r0µ + p0µr1µ + p0µ p1µB(n), · · · ,

r0µ + p0µr1µ + · · ·+ p0µ · · · pI−3µrI−2µ + p0µ · · · pI−2µB(n),

r0µ + p0µr1µ + · · ·+ p0µ · · · pI−3µrI−2µ + p0µ · · · pI−2µrI−1µ}.

This can be written as

v(0, µ, n) = max
0≤i≤I

{aiµ + biµB(n)},
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where

biµ =
i−1

∏
j=0

pjµ, 0 ≤ i < I, bI = 0,

and

aiµ =
i−1

∑
j=0

bjµrjµ, 0 ≤ i ≤ I.

Note that bi+1µ = biµ piµ ≤ biµ and ai+1µ = aiµ + biµriµ ≥ ai. We first consider the
special case that the growth rate M is not random, but constant, M = µ say. Then
B(n) = v(0, µ, n + 1), so the above equation can be written as

v(0, µ, n) = max
0≤i≤I

{aiµ + biµv(0, µ, n + 1)}, n = 0, 1, . . . N,

where v(0, µ, N + 1) = 0. Since we want to investigate the behavior of v(0, µ, 0) as N
tends to infinity, it is convenient to write w(µ, n) = v(0, µ, N − n), where n denotes
the remaining number of bleed–feeds. For w(µ, n) we get the recursion

w(µ, n) = fµ(w(µ, n− 1)), n = 0, 1, . . . , N,

starting with w(µ,−1) = v(0, µ, N + 1) = 0, where

fµ(x) = max
0≤i≤I

{aiµ + biµx}.

Then the maximum total expected biomass from a batch is v(0, µ, 0) = w(µ, N).

Since a0µ = 0 and b0µ = 1 we immediately have

w(µ, n) ≥ a0µ + b0µw(µ, n− 1) = w(µ, n− 1), n ≥ 0. (2.22)

So the benefit of bleed–feed increases. The function fµ(x) is the maximum of
convex, non-decreasing linear functions, and hence, fµ(x) is convex, non-decreasing
and piece-wise linear. Then we have

w(µ, n + 1)− w(µ, n) = fµ(w(µ, n))− fµ(w(µ, n− 1)) (2.23)

≤ f ′µ(w(µ, n))(w(µ, n)− w(µ, n− 1))

≤ w(µ, n)− w(µ, n− 1),
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where f ′µ is the (left) derivative. Hence, the marginal benefit is decreasing.

For i > ı̃µ, let w∗iµ be the intersection point of aiµ + biµx and aı̃µµ + bı̃µµx, so (note
that bı̃µµ = 1 > biµ)

w∗iµ =
aiµ − aiµµ

1− biµ
, i > ı̃µ,

and let w∗µ = maxi>iµ w∗iµ. Then, clearly,

fµ(x) = aiµµ + x, x ≥ w∗µ. (2.24)

If the critical biomass m̃ > 0, i.e., ı̃µ > 0, we have

w(µ, n) ≥ aı̃µµ + bı̃µµw(µ, n− 1) = aı̃µµ + w(µ, n− 1),

so the benefit w(µ, n) grows to infinity as n tends to infinity. By (2.24), we have, for
sufficiently large n,

w(µ, n) = aı̃µµ + w(µ, n− 1).

Hence, the marginal benefit decreases to and, at some point, coincides with aı̃µµ.
Now we consider the case m̃ = 0, or in other words, ı̃µ = 0. Then aı̃µµ = a0µ = 0, so
we have, by (2.24),

fµ(x) = x, x ≥ w∗µ. (2.25)

Since w(µ,−1) = 0 ≤ w∗µ and fµ(x) is non-decreasing, w(µ, n) ≤ w∗µ implies that
w(µ, n + 1) = fµ(w(µ, n)) ≤ fµ(w∗µ) = w∗µ. Hence, by induction, w(µ, n) ≤ w∗µ for
all n. So w(µ, n) is an increasing, bounded sequence. Therefore, its limit exists and
it is equal to w∗µ, since for all n ≥ 0,

w∗µ − w(µ, n) = fµ(w∗µ)− fµ(w(µ, n− 1)) ≤ b1µ(w∗µ − w(µ, n− 1))

≤ · · ·

≤ bn+1
1µ (w∗µ − w(µ,−1)) = bn+1

1µ w∗µ.

Hence, if the critical biomass m̃ = 0, the benefit converges geometrically fast to w∗µ.

The above holds when the growth rate is not random. For random growth rate M
we have the recursion

w(n) = E[ fM(w(n− 1))], n = 0, 1, . . . , N,
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starting with w(−1) = 0. Then the maximum expected total biomass from an
arbitrary batch is E[v(0, M, 0)] = w(N). Similar to (2.22) and (2.23) we have

w(n) = E[ fM(w(n− 1))] ≥ E[w(n− 1)] = w(n− 1)

and

w(n + 1)− w(n) = E[ fM(w(n))− fM(w(n− 1))] ≤ E[w(n)− w(n− 1)] = w(n)− w(n− 1).

Hence, w(n) is increasing, and the marginal benefits decrease.

Since piµ and riµ are continuous in µ, we have that aiµ, biµ and w∗µ are also
continuous in µ. So w∗ = maxµ w∗µ exists. If the critical biomass m̃ > 0, i.e.,
ı̃µ > 0 for µ ∈ M, we have

w(n) = E[ fM(w(n− 1)] ≥ E[aı̃M M + w(M, n− 1)] = E[aı̃M M] + w(n− 1),

so the benefit w(n) grows to infinity as n tends to infinity. Since (2.24) is valid for
x ≥ w∗ and µ ∈ M, we have, for sufficiently large n,

w(n) = E[ fM(w(n− 1)] = E[aı̃M M] + w(n− 1)

Hence, the marginal benefit decreases to and, at some point, coincides with E[aı̃M M].
This quantity is close to the critical biomass m̃, but not exactly equal to m̃, due to
discretization of time.

In case the critical biomass m̃ = 0, i.e., ı̃µ = 0 for µ ∈ M, we have that (2.25) is
valid for x > w∗ and µ ∈ M. Since w(−1) = 0 ≤ w∗ and fµ(x) is non-decreasing
for µ ∈ M, w(n) ≤ w∗ implies that w(n + 1) = E[ fM(w(n))] ≤ E[ fM(w∗)] = w∗µ.
Hence, by induction, w(n) ≤ w∗ for all n. So w(n) is an increasing, bounded
sequence and thus, its limit exists. This limit is equal to w∗, since for all n ≥ 0,

w∗ − w(n) = E[ fM(w∗)− fM(w(n− 1))] ≤ E[b1M(w∗ − w(n− 1))]

= E[b1M](w∗ − w(n− 1))

≤ b∗1(w
∗ − w(n− 1)),

where b∗1 = maxµ b1µ < 1 Hence, if m̃ = 0, the benefit converges geometrically fast
to w∗. 2
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Proof of Proposition 2.7. By induction in i and n we show (i):

v1(i, µ, n) ≥ v2(i, µ, n). (2.26)

For states (I, µ, n) and (i, µ, N + 1) we have v1(I, µ, n) = v2(I, µ, n) = v1(i, µ, N +

1) = v2(i, µ, N + 1) = 0, hence (2.26) holds. Assume (2.26) holds for (i, µ, n)
and (1, µ, n + 1). We now show (2.26) also holds for (i − 1, µ, n). Then, from the
induction assumption and p1

iµ ≥ p2
iµ we have:

C1(i− 1, µ, n) = ri−1µ + p1
i−1µv1(i, µ, n) ≥ ri−1µ + p2

i−1µv2(i, µ, n) = C2(i− 1, µ, n),

and

r0µ + p1
0µv1(1, µ, n + 1) ≥ r0µ + p2

0µv2(1, µ, n + 1),

Thus,

B1(n) = E
[
C1(0, M, n + 1)

]
≥ E

[
C2(0, M, n + 1)

]
= B2(n),

Hence,

v1(i− 1, µ, n) = max{C1(i− 1, µ, n), B1(n)} ≥ max{C2(i− 1, µ, n), B2(n)} = v2(i− 1, µ, n).

This completes the proof of (i). We prove (ii) by showing that C1(i, µ, n)− B1(n) ≥
C2(i, µ, n)− B2(n). From Condition (2.9):

rI−1µ(p1
iµ − p2

iµ) ≥ E
[
p1

0M
r0M

1− p1
0M
− p2

0MrI−1M
]

≥ E
[
p1

0Mv1(1, M, n + 1)
]
−E

[
p2

0MC2(I − 1, M, n + 1)
]

(2.27)

≥ E
[
p1

0Mv1(1, M, n + 1)
]
−E

[
p2

0Mv2(I − 1, M, n + 1)
]

(2.28)

≥ E
[
p1

0Mv1(1, M, n + 1)
]
−E

[
p2

0Mv2(1, M, n + 1)
]

(2.29)

= B1(n)− B2(n), (2.30)

where (2.27) follows from (2.8) of Lemma 2.1 and the fact that C(I − 1, µ, n + 1) =
rI−1µ, (2.28) follows from the fact that v2(I − 1, µ, n) ≥ C2(I − 1, µ, n) and (2.29)
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from Proposition 2.1. Rearranging (2.30):

B2(n)− B1(n) ≥ −rI−1µ(p1
iµ − p2

iµ)

= −C1(I − 1, µ, n)(p1
iµ − p2

iµ)

≥ −v1(I − 1, µ, n)(p1
iµ − p2

iµ) (2.31)

≥ −p1
iµv1(i + 1, µ, n) + p2

iµv1(i + 1, µ, n) (2.32)

≥ −p1
iµv1(i + 1, µ, n) + p2

iµv2(i + 1, µ, n) = −C1(i, µ, n) + C2(i, µ, n),

(2.33)

where (2.31) follows from the fact that C1(I− 1, µ, n) ≤ v1(I− 1, µ, n), (2.32) follows
from Proposition 2.1, and (2.33) from Proposition 2.7 (i). Rearranging (2.33) we
obtain C1(i, µ, n)− B1(n) ≥ C2(i, µ, n)− B2(n).

For i < ı̃µ, the difference C1(i, µ, n) − C2(i, µ, n) remains constant (since riµ is
the same for the two batches, and p1

iµ = p2
iµ = 1). Thus, C1(i, µ, n) − B1(n) ≥

C2(i, µ, n)− B2(n). 2

Proof of Theorem 2.5. By induction in i, we show that the following holds for
ı̃µ ≤ i ≤ I − 1, µ ∈ M and n < N:

C(i, µ, n) ≤ B(n). (2.34)

For i = I − 1, from Condition (2.6) we have:

C(I − 1, µ, n) = rI−1µ ≤ (1− pI−1µ)(r0µ + r1µ + ... + rı̃µµ + E[pı̃M MrI−1M])

≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M MrI−1M]

= r0µ + r1µ + ... + rı̃µµ + E[pı̃M MC(I − 1, M, n + 1)]

≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M Mv(I − 1, M, n + 1)] (2.35)

≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M Mv(ı̃M + 1, M, n + 1)] (2.36)

= E[r0µ + v(1, M, n + 1)] = E[C(0, M, n + 1] = B(n),

where (2.35) follows from the fact that C(I − 1, µ, n) ≤ v(I − 1, µ, n) and (2.36) from
Proposition 2.1. Hence, (2.34) is true for i = I − 1. Now, assume (2.34) holds for
ı̃µ + 1. We show that it also holds for ı̃µ. Rearranging Condition (2.6) for i = ı̃µ we
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have:

rı̃µµ

1− pı̃µµ
≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M MrI−1M]

= r0µ + r1µ + ... + rı̃µµ + E[pı̃M MC(I − 1, M, n + 1)]

≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M Mv(I − 1, M, n + 1)] (2.37)

≤ r0µ + r1µ + ... + rı̃µµ + E[pı̃M Mv(ı̃M + 1, M, n + 1)] (2.38)

= E[r0µ + v(1, M, n + 1)] = E[C(0, M, n + 1] = B(n),

where (2.37) follows from the fact that C(I − 1, µ, n) ≤ v(I − 1, µ, n) and (2.38) from
Proposition 2.1. Rearranging:

C(ı̃µ, µ, n) = rı̃µµ + pı̃µµv(ı̃µ + 1, µ, n) = rı̃µµ + pı̃µµB(n) ≤ B(n) (2.39)

where (2.39) follows from the induction assumption. 2

Proof of Proposition 2.8. The proof is similar to that of Proposition 2.7(ii), hence it
is omitted. 2

2.B. Maximizing the Expected Reward per Batch

We present an alternative model formulation with the objective of maximizing the
reward (profit) obtained from a single batch. Immediate rewards are now defined
as riµ = g(mi+1µ − miµ), where g denotes the revenue obtained per unit biomass
produced in the bioreactor. Let the direct costs for harvesting and for bleed–feed
be constants, represented as ch and cb, respectively. The costs are ordered such that
cb < ch. We note that the cell growth behavior (as represented in Equation (2.1))
and the transition probabilities remain identical.

Since every batch is eventually harvested, we can omit the harvest cost. We define
v(i, µ, n) as the maximum expected reward given the current state is (i, µ, n). Then,
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the value function v(i, µ, n) satisfies:

v(i, µ, n) = max

{
C(i, µ, n) ≡ riµ + piµv(i + 1, µ, n),
B(n) ≡ E

[
C(0, M, n + 1)

]
− cb

valid for all i < I, µ ∈ M and n < N, and v(i, µ, N) = C(i, µ, N) for all i < I and
µ ∈ M. Note that v(I, µ, n) = 0 for all µ and n, and v(∆) = 0. We now show
that structural results presented in Section 2.4 are robust to the alternative model
formulation.

First, we focus on the structure in fermentation age i. Since B(n) is constant in i
in the alternative model (as in the main model), showing the result for C(i, µ, n) is
sufficient. Note that C(i, µ, n) is identical in both models, except in the alternative
model the immediate rewards riµ are multiplied by constant revenue per unit

biomass amount g. Recall Condition (2.4):
riµ−ri−1µ

riµ
≤ pi−1µ − piµ. In the alternative

model, the left hand side of the condition can be written as:

g(mi+1µ −miµ)− g(miµ −mi−1µ)

g(mi+1µ −miµ)

=
g(m0(1 + µτ)i+1)− g(m0(1 + µτ)i)− g(m0(1 + µτ)i) + g(m0(1 + µτ)i−1)

g(m0(1 + µτ)i+1)− g(m0(1 + µτ)i)

=
µτ

1 + µτ
.

Observe that g cancels out in the condition, implying that the structure of the value
function in i does not depend on revenue obtained per unit biomass amount g in
the alternative model. Hence, Proposition 2.1 is valid. Using similar arguments, it
is easy to show that Propositions 2.2, 2.3, 2.4 and 2.5, and Theorems 2.1, 2.2, and 2.3
continue to hold. We omit the details for brevity.

2.C. Estimation of the Transition Rate Function

We only sketch the approach adopted to estimate the rate function (and omit
the details) because of confidentiality concerns. Let Fµ(m) denote the (long-run)
fraction of batches that transition to the stationary phase at a biomass amount
of at most m, and fµ(m) be the corresponding density, i.e., fµ(m) = F′µ(m), for
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Figure 2.5: Base case parameters used in the case study.

batches that grow at the rate M = µ. Let ∆ be a small time interval. Then,
given that the biomass is m at time t, the probability that a batch will transition
to the stationary phase at a biomass amount between m and m(1 + µ∆) (recall
that the growth is exponential) satisfies fµ(m)µm∆ = ν(m)∆(1 − Fµ(m)). Hence,

fµ(m)

1−Fµ(m)
= ν(m)

µm . Note that the rate of transitioning ν(m) depends only on the
biomass m, and not on the growth rate µ. Solving the above differential equations

yields 1 − Fµ(m) = e−
∫ m

m0
ν(x)
µx dx, m ≥ m0, where m0 is the initial biomass. The

function Fµ(m) can be estimated directly from data, and discretized at points
m = 1, 2, . . .. If we then approximate fµ(m) ≈ Fµ(m + 1) − Fµ(m), we obtain

an estimate for the transition rate function Fµ(m+1)−Fµ(m)

1−Fµ(m)
= ν(m)

µm , which can be

rewritten as ν(m) = µm Fµ(m+1)−Fµ(m)

1−Fµ(m)
for m = 1, 2, . . .. The growth rate M is

random. Therefore, by taking the expectation, we obtain the (more robust) estimate
ν(m) =

∫ µu
µl

µm Fµ(m+1)−Fµ(m)

1−Fµ(m)
dP(M = µ). By discretizing M with the possible values

µ1, µ2, . . ., this equation reduces to ν(m) = ∑µi
µim

Fµi (m+1)−Fµi (m)

1−Fµi (m)
P(M = µi) for

m = 1, 2, . . ..

Figure 2.5 illustrates the rate function used in our numerical experiments. We used
representative values considering confidentiality.



3
Optimizing the Fermentation

Throughput in Biomanufacturing with
Bleed–Feed

3.1. Introduction

Biomanufacturing operations start with upstream processing, where living cells,
such as viruses and bacteria, are grown in a controlled environment to produce
the desired active ingredients. Upstream processing includes operations such as
preparation of seed culture, preparation of medium, fermentation and harvest.
The output obtained from fermentation varies across different drugs but it often
represents biomass, protein or antibody. In the remainder of this chapter, we use
the term “biomass” to represent the output of fermentation.

Fermentation processes typically take place in a bioreactor which is a stainless steel
vessel, providing a controlled environment to facilitate cell growth. The bioreactor
needs to be set up before a fermentation process starts. During these setup activities,
the bioreactor is first cleaned and sterilized, and then a seed culture (initial biomass)
and medium are placed inside the bioreactor. The biomass growth follows a
specific pattern during fermentation, as shown in Figure 3.1(a). We observe from
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Figure 3.1: Biomass growth over time in current practice (a) and with bleed–feed (b).

Figure 3.1(a) that the fermentation starts with a small amount of initial biomass.
This biomass consumes the medium and grows exponentially over time. This
specific phase of fermentation is known as the exponential growth phase. In batch
fermentation, medium is added only once, at the beginning of the fermentation
process. Thus, the limited amount of medium depletes over time and the biomass
growth stops. This specific phase of fermentation is called the stationary phase. A
common practice is to harvest the batch in the stationary phase. After the harvest,
the bioreactor is set up for a new fermentation process.

Bioreactor setups can be labor intensive and time consuming (Yang and Sha, 2019).
For example, up to ten hours can be spent during a bioreactor setup (Sharma,
2019). This results in long bioreactor occupation times and low throughput levels.
Therefore, there is a strong business case in the industry to reduce bioreactor setups
and thereby improve throughput. For this purpose, bleed–feed is perceived as a
promising technique to skip intermediary bioreactor setups. The main dynamics
of bleed–feed are demonstrated in Figure 3.1(b). When the bleed–feed technique is
performed, we extract (“bleed”) some of the biomass that accumulated inside the
bioreactor and add (“feed”) fresh media for the remaining biomass. The biomass
in the remaining culture acts as a seed for the next cultivation, and uses the fresh
medium to continue growing. Thus, bleed–feed technique enables practitioners to
skip one setup by prolonging the exponential growth phase. In other words, the
bleed–feed technology enables us to produce two cultivations from one setup. The
batch is harvested when the second cultivation reaches its predetermined harvest
time.
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Although bleed–feed presents an opportunity to increase throughput, its imple-
mentation can be challenging in practice. In particular, we can bleed–feed only
in the exponential growth phase for a successful implementation. Otherwise, the
technique does not work as the biomass growth stops before the second cultivation.
However, the duration of the exponential growth phase is stochastic due to inherent
randomness of biological systems. Subsequently, this uncertainty introduces a
critical trade-off on the timing of bleed–feed. On the one hand, if we are “too
late” to bleed–feed in anticipation of obtaining a higher biomass yield, the bleed–
feed opportunity is lost and we harvest the batch with only one cultivation. On the
other hand, if we are “too early” to bleed–feed, we may not receive the highest yield
from the first cultivation and thus obtain a sub-optimal throughput. Managing this
trade-off is crucial for a successful implementation to increase throughput.

The starting biomass amount for the first cultivation (before bleed–feed) is prede-
termined by manufacturing protocols. However, the biomanufacturer is allowed
to control the starting biomass amount of the second cultivation to achieve the
highest benefit from bleed–feed.1 For brevity, we call the problem of optimizing
the starting biomass amount as the replenishment problem. Industry data shows that
the replenishment problem itself involves a critical trade-off: when the starting
biomass amount is “too little” for the second cultivation, the time needed to achieve
a certain biomass amount is likely to be longer. For example, Figure 3.1(b) illustrates
two scenarios with low (b`) and high (bh) starting biomass amounts in the second
cultivation (assuming the same cell growth rate for both cases). Consider a certain
biomass amount to be produced in the second cultivation B. Then, we observe from
Figure 3.1(b) that the time needed to produce B units of biomass is longer (i.e.,
t` > th) when the starting biomass amount is lower (i.e., b` < bh). This behavior
is mainly caused by the exponential growth pattern of biomass, and has complex
implications on the expected throughput. When we start the second cultivation
with a high biomass, this implies that we obtain (extract) only a little biomass from
the first cultivation during bleed–feed (thus lowering the throughput). However,
the exponential growth phase is likely to be shorter for the second cultivation (thus
increasing the throughput). In contrast, when we start the second cultivation with a
low biomass, this implies that we obtain (extract) a high biomass yield from the first
cultivation. However, the expected throughput of the system may not necessarily

1The starting biomass amount of the second cultivation is controlled by adjusting the amount of
biomass extracted from the first cultivation during bleed–feed.
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be higher, as the time needed to achieve a certain biomass level is longer in the
second cultivation. Therefore, starting the second cultivation with “too much” or
“too little” biomass would lead to a sub-optimal throughput for the system. By
modeling this complex relationship between the initial biomass and the exponential
growth duration, we can make better bleed–feed decisions to maximize the expected
throughput.

Based on the aforementioned challenges and trade-offs of biomanufacturers, we
formulate our research questions as follows:

• What is the optimal bleed–feed time for the first cultivation and the optimal
replenishment amount (i.e., starting biomass amount) for the second cultiva-
tion in order to maximize the expected throughput?

• What is the added benefit of jointly optimizing the bleed–feed time and the
replenishment amount in practice?

• How much improvement (in the expected throughput) can we achieve by
implementing bleed–feed on current practice? Under which problem settings
(e.g., risk of entering the stationary phase, setup duration, etc.) does bleed–
feed offer a stronger business case for implementation?

To answer these research questions, we developed a stochastic optimization model
using renewal reward theory, and analyzed the structural properties of the model.
We summarize our contributions as follows. Bleed–feed is a novel technique with
a high potential for improving biomanufacturing efficiency. However, its optimal
implementation and potential impact is not fully understood. We develop a novel
analytical model that combines the biological dynamics with operational trade-offs
of bleed–feed. To the best of our knowledge, our study is the first to build an
analytical model to jointly optimize the bleed-feed time and the replenishment
amount to maximize biomanufacturing throughput. We explore the structural
properties of the optimization problem to generate insights on optimal policies and
assess the impact of risks. In addition, we present an industry case study from
MSD Animal Health (Boxmeer, the Netherlands) to quantify the potential impact of
bleed–feed implementation on practice. To generate broader insights, our numerical
experiments assess the performance of three practically-relevant strategies as a
benchmark: (i) “current practice” which does not implement bleed–feed; (ii)
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“naive bleed–feed policy” which implements bleed–feed in a risk-averse manner
without optimization; and (iii) “bleed–feed optimization” which assumes a fixed
start amount for the second cultivation and optimizes the bleed–feed time alone
(inspired from Koca et al. (2021b)). Comparing the performance of these benchmark
strategies help us understand the potential benefits of jointly optimizing the bleed–
feed time and the replenishment amount on practice. Numerical experiments
indicate that our optimization framework can improve the expected throughput
by 17% compared to current practice.

Our model is generic to address a wide range of applications including biopharma-
ceutical research and development, and large-scale biomanufacturing. Although
our research has been primarily inspired by the biomanufacturing industry,
applications of bleed–feed technology is relevant to several other industries that
use fermentation (e.g., food processing industry for wine or yogurt making, biofuel
production with ethanol fermentation, etc.).

The remainder of the chapter is organized as follows. We discuss the relevant
literature in Section 3.2. We formulate the renewal model in Section 3.3 and explore
properties of the optimization problem in Section 3.4. We present a case study in
Section 3.5 and concluding remarks in Section 3.6.

3.2. Literature Review

This study is closely related to the following areas: (i) modeling and optimization of
fermentation processes in life sciences, and (ii) applications of Operations Research
methodologies in biomanufacturing.

In life sciences, many studies work on improving the fermentation titer (i.e. total
biomass obtained from a batch) and productivity (i.e. titer produced in the batch
per unit time). Commonly, mass balance equations and kinetic models are built to
control fermentation systems (Chang et al., 2011; Villaverde et al., 2016; Nakanishi
et al., 2017; D’anjou and Daugulis, 2001). Some studies develop predictive models
to estimate the relationship between process parameters and fermentation yield. By
controlling these parameters, the fermentation titer and productivity are increased
(Cunha et al., 2002; Colletti et al., 2011; Handlogten et al., 2018). Additionally,
stochastic models are developed to improve fermentation titer and productivity.
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These studies often focus on controlling process parameters to support cell growth
(Kapadi and Gudi, 2004; Kachrimanidou et al., 2020; Li et al., 2011; Peroni et al.,
2005; Wang et al., 2019). However, the life sciences literature mostly focuses on
the chemical and biological dynamics of fermentation. To complement the life
sciences research, our study combines the biological dynamics of fermentation with
operational trade-offs and business implications of bleed–feed, and our insights can
be extended to other industries.

The concept of “bleed” (extracting material from the batch) and “feed” (adding
fresh medium to the culture) exists in fermentation literature for continuous
batch, fed-batch and perfusion fermentation applications (Doran, 1995; Walker,
2017; Muldowney, 2018). However, the implementation of bleed–feed in batch
fermentation mode is a new technique, and has unique trade-offs and challenges
as described in Section 3.1. Hence, a rigorous analytical modeling of bleed-feed
decisions is essential before its implementation, as practitioners need a better
understanding on the potential benefits of this new technology.

Applications of Operations Research (OR) methodologies in the biomanufacturing
industry is relatively understudied. We refer to Kaminsky and Wang (2015)
for a survey of analytical models in biomanufacturing. Limon and Krishna-
murthy (2020) analyzed a queuing system using matrix-geometric methods to
address resource allocation decisions in downstream purification processes. Zeng
et al. (2018) proposed a constrained Gaussian process method to predict scaffold
biodegradation. Sahling and Hahn (2019) adopted a heuristic approach to address
dynamic lot sizing problem in biomanufacturing. In the OR literature, renewal
models are mainly studied in the context of maintenance (Sabri-Laghaie and
Noorossana, 2016; Bei et al., 2019; Cherkaoui et al., 2018; Wang, 2000; Rebaiaia
et al., 2017) and inventory management (Çetinkaya and Lee, 2000; Karamatsoukis
and Kyriakidis, 2009; Chang and Ho, 2010; Boone et al., 2000; Maddah and
Jaber, 2008). To the best of our knowledge, our study is the first attempt to
develop a stochastic optimization model of bleed–feed decisions using the renewal
reward theory to optimize biomanufacturing throughput. To date, only a limited
number of studies adopted OR methodologies to optimize fermentation processes
in biomanufacturing. For example, Xie et al. (2020) adopted Bayesian network
approach to model the dependencies between process parameters and quality to
improve the performance of fermentation processes. Martagan et al. (2016) built
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a Markov Decision Process (MDP) model to determine condition-based harvesting
policies to increase fermentation efficiency. However, none of the aforementioned
papers addressed the bleed–feed problem.

Koca et al. (2021b) presented a first attempt in modeling the bleed–feed problem
in biomanufacturing (Chapter 2). They built an MDP model to generate condition-
based policies that maximize the fermentation yield. Our study is different from
Koca et al. (2021b) in several fundamental aspects: we optimize both the bleed–
feed time and the replenishment amount (i.e., the biomass amount kept inside
the batch after bleed-feed) simultaneously. In contrast, Koca et al. (2021b) only
focus on optimizing the bleed-feed time alone and assume a fixed replenishment
amount. Our numerical experiments show that joint optimization of bleed–
feed time and replenishment amount can lead to a significant improvement in
fermentation throughput. In addition, the replenishment problem itself involves
unique trade-offs as explained in Section 3.1. Besides, we develop an analytical
model to maximize throughput; whereas Koca et al. (2021b) analyze condition-
based policies to maximize yield. This implies that our bleed-feed policy is a time-
based policy that takes into account the long setup times in biomanufacturing. Such
time-based policies are also practically-relevant as they can be easily incorporated
into production planning activities.

In summary, this chapter contributes to both life sciences and operations research.
The bleed–feed problem is new and practically-relevant with a high potential
to improve biomanufacturing throughput. We address the problem of jointly
optimizing the bleed-feed time and the replenishment amount by combining the
underlying biological dynamics of fermentation with operational trade-offs of
bleed–feed. We present an industry case study and provide insights about the
potential benefits of bleed–feed.

3.3. Model Formulation

We formulate a renewal model to optimize the bleed–feed time tb for the first
cultivation and starting biomass amount b2 for the second cultivation, with the
objective of maximizing the expected throughput R(tb, b2) (i.e., expected yield per
time unit). A fermentation (renewal) cycle starts with a bioreactor setup and
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continues until a harvest operation. Recall that bleed–feed is performed only in
the exponential growth phase but the duration of the exponential growth phase is
stochastic (ex-ante). Hence, if the culture is in the exponential growth phase at a
certain bleed–feed time tb (ex-post), then bleed–feed is successful and we obtain
two cultivations from one setup. In this case, the second cultivation (after bleed–
feed) continues for a fixed processing time th, which is specified by manufacturing
protocols. If the batch is not in the exponential growth phase at time tb (ex-post),
then bleed–feed fails and the batch is harvested with only one cultivation. A new
cycle begins each time the batch is harvested.

We build an optimization model that captures the trade-offs in bleed–feed decisions.
On the one hand, the biomanufacturer faces with a trade-off on bleed–feed time
tb (“too soon” versus “too late”) which affects the chances of successful bleed–
feed. On the other hand, there is a trade-off on starting amount b2 (“too much”
versus “too little”) which affects the performance of second cultivation. Both trade-
offs have a direct impact on the expected throughput of the system. To establish
our objective function and build our optimization model, we first elaborate on the
expected length of a fermentation cycle (Section 3.3.1) and expected yield obtained
in a fermentation cycle (Section 3.3.2). Table 3.1 summarizes the notation.

3.3.1 Length of a Fermentation Cycle

Each fermentation cycle starts with a bioreactor setup. Setup activities (i.e.,
cleaning, sterilization, medium and seed culture transfer) are standardized, and
their duration is known in advance. We let s denote the fixed duration of a
bioreactor setup.

Our model focuses on a time-based bleed–feed policy, i.e., we define a fixed
bleed–feed time tb ex-ante and do not change our decision during fermentation.
In practice, biomanufacturers often prefer to adopt time-based policies, because
of production planning restrictions. For example, there is a no-wait constraint
such that the batch needs to immediately continue with subsequent purification
operations after harvest. In such settings, time-based policies are easier to
implement in practice. We note that the bleed–feed time is negligible, as it takes
relatively short time (i.e., only 1-2 minutes) with respect to the overall fermentation
time (i.e., several days or weeks until the first bleed–feed). Hence, it is practically-
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Table 3.1: Notation used in the renewal model.

bi Initial biomass amount for the ith cultivation.
E[Y(tb, b2)] Expected yield obtained in a fermentation cycle when bleed–feed

is performed at time tb and the second cultivation starts with b2
units biomass.

f (m) Density of batches that enter the stationary phase at a biomass m.
F(m) Long-run fraction of batches that enter the stationary phase at a

biomass of at most m.
g(t|b) Probability density function (pdf) of time to enter the stationary

phase given starting amount of b units biomass.
G(t|b) Cumulative distribution function (cdf) of time to enter the

stationary phase given starting amount of b units biomass.
m′ The critical biomass amount.
m(t, b) Biomass accumulation during the exponential growth phase by

time t, when the fermentation starts with b units biomass.
µ Biomass growth rate.
ν(m) Rate of entering stationary phase under m units of biomass.
R(tb, b2) Expected throughput when bleed–feed is performed at time tb

and the second cultivation starts with b2 units biomass.
s Bioreactor setup duration.
tb Time to bleed–feed.
Ti Random time to enter the stationary phase at the ith cultivation.
ti Realization of the exponential growth phase’s duration for the ith

cultivation.
th Time to harvest a cultivation.
Z(t, b) Random yield obtained from a cultivation by time t when the

starting biomass amount is b.

relevant to assume that the bleed–feed implementation is instantaneous.

Consistent with current good manufacturing practices (CGMPs), the second cul-
tivation (after bleed–feed) needs to be harvested at a fixed harvest time th. For
example, if we decide to implement bleed–feed at time tb, this implies that the
bioreactor will be occupied during tb + th time units (tb for the first, and th for the
second cultivation). Therefore, the fermentation cycle length when we bleed–feed
at time tb is deterministic, and given as s + tb + th.
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3.3.2 Expected Yield Obtained in a Fermentation Cycle

Let E[Y(tb, b2)] denote the expected biomass yield obtained from a fermentation
cycle, when we perform bleed–feed at time tb and start the second cultivation with
b2 units biomass. In a fermentation process, the expected biomass yield depends
on a complex relationship between the starting biomass amount, random time to
enter the stationary phase, and biomass growth rate during the exponential growth
phase. Therefore, we establish an analytical model to capture the impact of these
critical parameters on the expected yield.

The term bi denotes the biomass amount at the beginning of cultivation i ∈ {1, 2},
where i = 1 represents the first cultivation (before bleed–feed) and i = 2 the second
one (after bleed–feed). We note that the first cultivation always starts with a certain
biomass amount b1, which is prespecified by manufacturing protocols. However,
as part of bleed–feed decisions, the biomanufacturer can control and optimize the
starting biomass amount b2 for the second cultivation. The decision b2 affects the
risk (probability) of entering the stationary phase.

Let the random variable Ti (with realization ti) denote the time to enter the
stationary phase in cultivation i. The random variable Ti has probability density
function g(ti|bi), and distribution function G(ti|bi) = P(Ti ≤ ti|bi) for cultivation i.
We note that the density function g(ti|bi) depends on the starting biomass amount
bi. We made this modeling assumption based on the analysis of three-years of
industry data. In particular, we observed that the time needed to achieve a certain
biomass level is longer when the starting biomass amount is lower (see Figure 3.1(b)
for an illustration based on real-world data). The underlying intuition of this
behavior can be explained as follows: when we have more biomass, the limited
amount of medium depletes faster. As a result, growth inhibition occurs and the
fermentation enters the stationary phase earlier. This implies that a high amount
of initial biomass b2 does not necessarily lead to high yield, because the process is
more likely to enter the stationary phase earlier.

We let the function m(t, b) represent the biomass accumulation by time t (as long
as the batch is in the exponential growth phase) when the fermentation starts at
time t = 0 with b units of biomass. Based on well-known fermentation models in
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chemical engineering, the biomass accumulation by time t ≥ 0 is modelled as:

m(t, b) = beµt, (3.1)

where µ denotes the growth rate, and b the initial biomass Doran (1995). The
exponential growth continues for the cultivation i until the cultivation enters the
stationary phase at the realized time ti.

In this setting, the yield obtained from cultivation i is random, because the
duration of the exponential phase is random with realization ti. Therefore, we
use Equation (3.1) to formulate the random yield obtained from cultivation i when
we start with bi units biomass and stop at time t:

Z(t, bi) =

 bieµTi if Ti ≤ t,

bieµt if Ti > t.
(3.2)

Observe from Equation (3.2) that the random yield obtained from cultivation i by
time t depends on the realization of Ti. When the exponential growth Ti stops before
time t, i.e., ti < t, the biomass yield obtained from cultivation i by time t is bieµti

(i.e., recall that biomass accumulates only until the realized time ti). Otherwise, the
biomass yield is bieµt, as the process is still in the exponential growth phase by time
t.

We let E[Y(tb, b2)] denote the total expected yield obtained from both the first
and the second cultivation under bleed–feed time tb (for the first cultivation) and
starting biomass amount b2 (for the second cultivation). We formulate E[Y(tb, b2)]

as:
E[Y(tb, b2)] = E[Z(tb, b1)] + (1− G(tb|b1)) [E[Z(th, b2)]− b2] . (3.3)

In Equation (3.3), E[Z(tb, b1)] represents the expected yield of the first cul-
tivation. Using Equation (3.2), E[Z(tb, b1)] can be written as E[Z(tb, b1)] =∫ tb

0 b1eµt1 g(t1|b1)dt1 +
∫ ∞

tb
b1eµtb g(t1|b1)dt1. The first summand represents the

biomass produced from the first cultivation when bleed–feed fails (t1 ≤ tb). The
second summand is the biomass production in the first cultivation when bleed–
feed is successful (t1 > tb). In this case, the bleed–feed time limits the cell
growth, and yield becomes b1eµtb . Thus, we can also rewrite the second summand
as
∫ ∞

tb
b1eµtb g(t1|b1)dt1 = (1 − G(tb|b1))b1eµtb . The term 1 − G(tb|b1) in (3.3)



70
Chapter 3. Optimizing the Fermentation Throughput in Biomanufacturing with

Bleed–Feed

represents the probability of a successful bleed–feed. If bleed–feed is successful,
then we produce the second cultivation with the expected yield E[Z(th, b2)]− b2 =∫ th

0 b2eµt2 g(t2|b2)dt2 +
∫ ∞

th
b2eµth g(t2|b2)dt2 − b2. The first summand represents

the yield obtained from the second cultivation when the exponential growth
ends before the harvest time, t2 ≤ th. The second summand captures the case
when the exponential growth does not end before the prespecified harvest time,
t2 > th. When t2 > th, the harvest time th limits the biomass growth, and hence
the cultivation yield becomes b2eµth . Therefore, we have

∫ ∞
th

b2eµth g(t2|b2)dt2 =

(1 − G(th|b2)) b2eµth . If bleed–feed is successful, we subtract b2 from the second
cultivation yield since b2 was produced in the first cultivation and was already in
the batch during the second. The randomness in the yield is captured by probability
distribution of the exponential growth phase’s duration (i.e., g(ti|bi) for i = {1, 2}).

Recall that the replenishment problem involves a critical relationship between the
starting amount b2 and the duration of the exponential growth phase. Because
of the exponential growth pattern described in Equation (3.1), it takes longer to
achieve a certain biomass amount when b2 is too small (see Figure 3.1(b) for an
illustration). To capture this relationship analytically, we define a rate function:
let ν(m) denote the rate of entering the stationary phase when there are m units
biomass inside the bioreactor. The rate function ν(m) can be obtained from industry
data (see Appendix 3.B for details). In our analytical model, we use the rate function
ν(m(t, bi)) to estimate the probability density function g(ti|bi), as explained in
Section 3.3.2.1.

3.3.2.1 Establishing the Probability Distribution to Stationary Phase from the
Rate Function

We now establish the probability density function g(t|b) from the rate function
ν(m). Consider a random time to enter stationary phase T, with distribution
function

G(t|b) = P(T ≤ t|b), t ≥ 0,

where b represents the initial biomass. The function ν(m) is the transition rate to
the stationary phase when the biomass amount is m. Then, we have

g(t|b)dt = P(T > t|b) · P(T < t + dt|T > t, b)
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= (1− G(t|b)) ν(m(t, b))dt.

Hence,
g(t|b)

1− G(t|b) = ν(m(t, b))

and integrating this equation yields (by using that G(0, b) = 0)

log(1− G(t|b)) = −
∫ t

0
ν(m(s, b))ds,

thus,
1− G(t|b) = e−

∫ t
0 ν(m(s,b))ds, t ≥ 0.

The probability density function is g(t|b) = G′(t|b). For the expectation, we get

E[T|b] =
∫ ∞

0
(1− G(t|b))dt =

∫ ∞

0
e−
∫ t

0 ν(m(s,b))dsdt.

Thus, once we obtain the rate function ν(m) from the industry data (as explained
in Appendix 3.B) we can establish the probability density function of entering the
stationary phase g(t|b).

3.3.3 The Objective Function and the Optimization Model

We formulate our optimization model to determine a bleed–feed policy π(tb, b2)

that maximizes the expected throughput R(tb, b2). By using the fermentation cycle
length presented in Section 3.3.1, and the expected yield of a fermentation cycle in
Section 3.3.2, we formulate our objective function as follows:

R(tb, b2) =
E[Z(tb, b1)] + (1− G(tb|b1)) [E[Z(th, b2)]− b2]

s + tb + th
. (3.4)

Equation (3.4) denotes the expected throughput (i.e., expected yield produced per
unit time) as a function of the bleed–feed time tb (for the first cultivation) and
starting amount b2 (for the second cultivation). Using Equation (3.4), we solve
the following two-dimensional optimization problem to maximize the expected
throughput:

max R(tb, b2) (3.5)
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s.t. 0 < b2 ≤ b1,

0 ≤ tb ≤ th.

In problem (3.5), the first constraint ensures that the starting biomass b2 of the
second cultivation is lower than b1. The amount b1 represents the maximum
possible amount to start a cultivation, as defined by current manufacturing
protocols. Nevertheless, the protocols provide an opportunity to control the
biomass amount b2 on the range (0, b1], as part of bleed–feed decisions. In
common practice, the harvest time th represents a prespecified bound on the
cultivation processing time. Hence, the second constraint ensures that the bleed–
feed time tb does not exceed the predefined fermentation time th. Our model takes
these practical boundaries into account to find an optimal π(tb, b2) to maximize
throughput R(tb, b2).

For computational efficiency, we can reduce the problem (3.5) into two sequential,
one-dimensional optimization problems as follows. Consider our objective function:

max
tb ,b2

R(tb, b2) = max
tb

1
s + tb + th

[
E[Z(tb, b1) + (1− G(tb|b1))max

b2
(E[Z(th, b2)]− b2)

]
.

Note that the expected yield obtained from the second cultivation E[Z(th, b2)]

depends only on the starting amount of the second cultivation b2 and not on the
bleed–feed time tb. Hence, we can first solve the inner optimization problem (the
first one-dimensional problem) to find b∗2 maximizing E[Z(th, b2)]− b2. Then, we
can substitute b∗2 in the original optimization problem to have the second one-
dimensional problem as:

= max
tb

1
s + tb + th

[E[Z(tb, b1) + (1− G(tb|b1))(E[Z(th, b∗2)]− b∗2)] .

3.4. Properties of the Optimization Problem

In this section, we consider the optimization problem (3.5) and explore the
properties of the expected throughput function R(tb, b2). We generate insights
on optimal policies (Section 3.4.1) and analyze the impact of system’s risks
(Section 3.4.2). All proofs are presented in Appendix 3.A.
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3.4.1 Insights on Optimal Policies

Insights on the optimal bleed–feed time t∗b . The cell culture does not transition
to the stationary phase before a certain biomass amount is reached. We refer to
this biomass amount as the “critical biomass level,” m′. Hence, the probability of
entering to the stationary phase is typically zero when the actual biomass amount is
below this critical biomass m′. In practice, the value of critical biomass m′ is known
and depends on the cell culture and equipment used in fermentation. Subsequently,
the “critical biomass time” t′ denotes the time when m′ is reached. Then, we have
m′ = bieµt′ , and hence t′ = 1

µ log m′
bi

. Therefore, ν(m) = 0 for m ≤ m′, and g(t|bi) = 0
for t ≤ t′.

We now explore the impact of parameters m′ and t′ on optimal bleed–feed policies.
For this purpose, we let π(tb, b2) represent a bleed–feed policy which performs the
bleed-feed at time tb and starts the second cultivation with b2 units of biomass. We
formalize our insights in Lemma 3.1 and Proposition 3.1.

Lemma 3.1 For a fixed biomass amount b2, the expected biomass yield E[Y(tb, b2)] under
the bleed–feed policy π(tb, b2) increases in the bleed-feed time tb for 0 ≤ tb ≤ t′, where t′ is
the critical biomass time.

Lemma 3.1 indicates that the expected yield E[Y(tb, b2)] obtained from the bleed–
feed policy π(tb, b2) is increasing in bleed–feed time tb when 0 ≤ tb ≤ t′. However,
this insight is not necessarily valid for the expected throughput. This is because
the fermentation cycle time also increases when the expected yield obtained from
the batch increases in tb (where 0 ≤ tb ≤ t′). When the additional yield does not
outweigh the extended fermentation time, the expected throughput may decrease
in tb (when 0 ≤ tb ≤ t′). From a practical perspective, Lemma 3.1 implies that it
is optimal not to perform bleed–feed before the critical biomass time t′. We further
explore this insight in Proposition 3.1.

Proposition 3.1 R(tb, b2) is convex in tb for 0 ≤ tb ≤ t′ and fixed b2, if the following
condition holds:

µ

2
>

1
s + th

. (3.6)

Proposition 3.1 presents a sufficient condition under which the expected throughput
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function R(tb, b2) is convex in tb when 0 ≤ tb ≤ t′ for a given b2. Condition (3.6)
sets a lower bound on the growth rate µ in terms of fermentation processing rate
(i.e., setup time s and harvest time th). This condition may not hold when the
biomass growth rate µ is too small or when the fermentation setup and cultivation
harvest time is too short. Nevertheless, we validated with industry data that
Condition (3.6) is mild and holds for a wide range of practically-relevant settings
(i.e., Condition (3.6) holds for the base case and all other scenarios considered in
case study in Section 3.5).

Convexity of the expected throughput R(tb, b2) in 0 ≤ tb ≤ t′ implies that we need
to analyze the boundary conditions (i.e., when tb = 0 and tb = t′) to maximize
throughput. Therefore, we compare the two extreme scenarios, namely the bleed–
feed policies π(t′, b2) (when we bleed–feed at time t′) and π(0, b2) (when we bleed–
feed at time 0) for a fixed b2. Note that bleed–feeding at tb = 0 represents the case
when bleed–feed is not implemented. Next, we observe that bleed-feeding at time
t′ is better than bleed–feeding at time 0, if:

R(t′, b2) =
E[Z(t′ ,b1)]+E[Z(th ,b2)]−b2

s+t′+th
≥ E[Z(0,b1)]+E[Z(th ,b2)]−b2

s+th
= R(0, b2). (3.7)

In (3.7), E[Z(t′, b1)] = b1eµt′ = m′ and E[Z(0, b1)] = b1. Rearranging the terms, we
obtain:

m′

s + t′ + th
− b1

s + th
≥ E[Z(th, b2)]− b2

s + th
− E[Z(th, b2)]− b2

s + t′ + th
. (3.8)

When we bleed–feed earlier than t′, the bleed–feed is successful because there is no
risk of entering the stationary phase when tb ≤ t′. Therefore, the expected yield
produced from the second cultivation E[Z(th, b2)] is constant for all tb ≤ t′ for a
fixed b2. On one hand, if we bleed–feed at t′ instead of at time 0, the fermentation
cycle increases, and hence the throughput from the second cultivation decreases.
On the other hand, bleed–feeding at time t′ leads to increased yield form the first
cultivation compared to the case when we bleed–feed at time 0. Thus, (3.8) implies
that, if the decrease in throughput in the second cultivation is smaller than the
increase in the throughput from the first cultivation, than bleed–feeding at time t′

is better than bleed–feeding at time 0, and vice versa. In addition, we validated that
(3.8) holds for the industry case study presented in Section 3.5.

Our analysis presents a sufficient condition under which the optimal bleed–feed
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time is at t′ or later, where t′ = 1
µ log m′

b1
and m′ is fixed. Hence, when the initial

biomass level b1 or growth rate µ is small, the time to reach the critical biomass
amount t′ is high. In such cases, the left hand side of (3.8) decreases, while the
right hand side increases. As a result, bleed–feeding at time 0 might be better
than bleed–feeding at time t′. We further investigate the optimal bleed–feed time
through a comprehensive numerical analysis in Section 3.5.

Insights on the optimal starting biomass amount for the second cultivation b∗
2 .

Recall that the yield E[Z(th, b2)]− b2 obtained from the second cultivation (when
the bleed–feed is successful) depends only on b2. Hence, the amount b2 for which
E[Z(th, b2)] − b2 is maximized would be the optimal start amount for the second
cultivation. Proposition 3.2 shows that E[Z(th, b2)]− b2 is concave in b2 for a special
case, where the rate function ν(m) is linearly increasing in the biomass m.

Proposition 3.2 E[Z(th, b2)]− b2 is concave in b2 when the rate function ν(m) is linearly
increasing in the biomass amount m.

Proposition 3.2 focuses on a special case of the problem to study the concavity of
E[Z(th, b2)]− b2 in b2. We note that the complex nature of the rate function ν(m)

challenges the proof of Proposition 3.2 for more generic cases.

We now present a boundary for the optimal start amount b∗2 by using the relations
obtained from industry data: ν(m) = 0 for m ≤ m′, and ν(m) = 1 for m > H,
where H denotes the maximum possible biomass obtained from a cultivation due
to limitations in cell viability and growth. When ν(m) = 0, the first derivative of
E[Z(th, b2)]− b2 is equal to eµth − 1, which is positive. This means that the expected
yield obtained from the second cultivation is increasing in b2. Thus, we reach the
critical biomass amount until the second cultivation ends, i.e., b2eµth = m′, resulting
in at least b2 = m′

eµth
. Similarly, when ν(m) = 1, the first derivative of E[Z(th, b2)]− b2

is equal to−1, meaning that the expected yield obtained from the second cultivation
is decreasing in b2. Then, we do not to exceed the maximum biomass amount that
can be produced until the second cultivation ends, i.e., b2eµth = H, resulting in
at most b2 = H

eµth
. Since we have a constraint on b2 as b2 ≤ b1 in problem (3.5),

the upper bound would be min(b1, H
eµth

). As a result b∗2 would be in the interval

[ m′

eµth
, min(b1, H

eµth
)].
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Figure 3.2: Plots of ν(m), G(t|b1), E[Z(th, b2)]− b2 and R(tb, b∗2), for the industry base
case (solid line), and a scenario with a higher risk of entering the stationary phase
(dashed line).

3.4.2 Insights on the Risk of Entering the Stationary Phase

We evaluate the impact of risk of entering the stationary phase on the expected
throughput. For this purpose, we consider two batches with identical initial
biomass amount b1 and growth rate µ, on which we implement the same bleed–
feed policy π(tb, b2). We shall assume that these two batches are identical except
for their risk of entering the stationary phase. To assess their difference in risk, we
adopt the concept of stochastic ordering Ross (1996).

Proposition 3.3 If the time to enter the stationary phase for batch A is stochastically larger
than the time to enter the stationary phase for batch B, the throughput of batch A under a
bleed–feed policy π(tb, b2) is higher than the throughput of batch B under the same bleed–
feed policy.

If the rate function to enter stationary phase for one batch stochastically dominates
the other one (when everything else is identical), then the latter batch has
stochastically larger time to enter stationary phase than the former. This means
that, when a batch has higher rate to enter stationary phase, it is more likely for
this batch to stop growing at early biomass levels. Hence, the expected yield and
the expected throughput for this batch will be lower.
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To visualize Proposition 3.3, Figure 3.2 presents two scenarios obtained from our
case study. The solid line represents the base case obtained from industry data,
and the dashed line represents a scenario where the batch has a stochastically
lower time to enter the stationary phase. For these two batches, Figure 3.2
plots (i) the rate function of entering the stationary phase ν(m) over m; (ii) the
cumulative distribution function G(t|b1) over t; (iii) the yield obtained from the
second cultivation E[Z(th, b2)] − b2 over b2; and (iv) the expected throughput
R(tb, b∗2) over tb. Observe from Figure 3.2 that the resulting expected yield from
the second cultivation E[Z(th, b2)]− b2 and the expected throughput R(tb, b∗2) are
lower for the high-risk batch.

3.5. Case Study

We present a case study from MSD in Boxmeer, the Netherlands. We use
the case study to (i) demonstrate the room for improvement by the bleed–feed
implementation, and (ii) investigate the additional benefit of jointly optimizing
the bleed–feed time and the starting biomass amount for the second cultivation.
For our numerical analysis, we identified a wide range of practically-relevant
configurations with our industry partners. We understand that the performance
of fermentation processes varies for different cell cultures (i.e., viruses or bacteria),
medium (i.e., different types and formulations), and equipment (i.e., bioreactor
mechanism and size). Therefore, we present a comprehensive sensitivity analysis to
generate managerial insights for the industry. First, we explain the data collection
and present the base case (Section 3.5.1). Then, we conduct numerical experiments
on critical process parameters, such as, biomass growth rate (Section 3.5.2), failure
risks (Section 3.5.3), and setup duration (Section 3.5.4).

3.5.1 Data Collection and the Base Case

In the case study, we use three-years of fermentation data for a specific active
ingredient of an animal drug. This data was obtained from various measurements
performed by MSD. More specifically, the data consisted of two main data sets
including: (i) fermentation information (e.g, initial biomass amount, end biomass
amount, growth rate, etc.) and (ii) physicochemical parameters monitored through
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the fermentation (e.g., pH, temperature, oxygen levels, etc.) for each batch. The
latter were in terms of plots, showing the process parameter versus time. Specific
pattern changes in these plots were used to detect different growth phases during
the fermentation. These plots were available in paper format and needed to be
transformed into digital form manually. Then, the two data sets were combined
into one master data file for determining the case study parameters.

We establish the case study parameters as follows: The fermentation starts with
b1 = 1 gram biomass. The biomass growth rate is µ = 0.06 cell divisions per hour.
The rate function is obtained from the data as explained in Appendix 3.B. Figure 3.3
depicts the rate function used in the base case and the corresponding probability
density function for the time to enter stationary phase (given that b1 = 1 gram).
Observe from Figure 3.3(a) that the critical biomass level is m′ = 9 grams. Due
to the growth limiting factors (e.g., cell characteristics and media formulation) the
biomass can reach at most H = 20 grams. Finally, time to harvest a cultivation is
th = 72 hours, and setup duration is s = 8 hours. We refer this setting as the base
case in our numerical analysis. We note that all parameters presented in this section
are representative values to protect confidentiality.
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(a) The rate function ν(m).
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Figure 3.3: The rate function used in the base case (a) and the corresponding probability
density function (b).

To establish a benchmark and assess the potential benefits of our model, we consider
the following strategies in our case study 2:

(i) Current practice (CP) harvests the batch at the harvest time th without implement-

2Note that it is also possible to define another strategy where the starting amount is optimized alone
by assuming a predefined bleed–feed time. For ease of exposition, we did not include this strategy in
our numerical experiment (i.e., its performance was sensitive to the assumption on bleed–feed time and
the results were not practically-relevant).
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ing bleed–feed. The harvest time th is exogenously prespecified by manufacturing
protocols. This strategy represents the current industry practice, as bleed–feed is a
novel technique and has not been implemented yet.

(ii) Naive Bleed–feed Policy (NBP) implements bleed–feed at critical biomass time t′.
Under this strategy, we assume that b2 is fixed at b2 = b1. We consider NBP because
it is a simple and practically-relevant heuristic, as Section 3.4 indicates that optimal
bleed–feed time can be only at t′ or later.

(iii) Bleed–feed optimization (BO) maximizes the expected throughput by finding the
optimal bleed–feed time alone. Under this strategy, we assume that b2 is fixed at
b2 = b1. This strategy aligns with the work of Koca et al. (2021b).

(iv) Joint bleed–feed optimization (JBO) corresponds to our renewal model (described
in Section 3.3) and optimizes both the bleed–feed time tb and the starting biomass
amount for the second culture b2 to maximize the expected throughput.

To assess the room for improvement with bleed–feed implementation, we compute
the percentage improvement (%I) in the expected throughput that could have been
achieved by NBP, BO and JBO instead of CP. We used Mathematica software to
solve the numerical experiments.3

We present the results for the base case in Table 3.2. We observe that the expected
throughput in CP is R = 0.156. It is optimal to bleed–feed at time t∗b = 37.3
for BO and t∗b = 37.2 for JBO. By optimizing the bleed–feed time alone with
BO, we can already achieve 13% improvement on the expected throughput. By
jointly optimizing the bleed–feed time and the replenishment amount with JBO,
the percentage improvement increases to 17%. We obtain that the optimal initial
biomass amount for the second cultivation is b∗2 = 0.2 grams in JBO. Note that this
b∗2 value is less than b2 = b1 = 1 gram used in BO. This is because JBO considers
the relationship between the starting biomass b2 and the duration of the exponential
growth phase, whereas BO omits this trade-off. We observe that the performance
(%I) of NBP and BO are similar, yet NBP performs bleed–feed slightly earlier than
BO.

Figure 3.4 plots the expected throughput R(tb) as a function of the bleed–feed

3To evaluate JBO, we optimized the bleed–feed time tb and the replenishment amount b2
simultaneously. Note that the reduced problem (i.e., solving two sequential, one-dimensional
optimization problems) would produce the same results, as described in Section 3.3.3.
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Table 3.2: Base case results and the room for improvement on current practice.

CP NBP BO JBO
R t′ R(t′) %I t∗b R(t∗b) %I t∗b b∗2 R(t∗b , b∗2) %I

0.156 36.6 0.176 12% 37.3 0.177 13% 37.2 0.2 0.183 17%
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R(tb)
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Figure 3.4: Base case throughput R(tb) versus tb in BO strategy.

time tb under the BO strategy (i.e., for b2 = b1 = 1 gram). First, we observe
from Figure 3.4 that the expected throughput R(tb) is not necessarily concave in
tb. However, we see that the throughput reaches its maximum at t∗b = 37.3, with
one peak point. This behavior illustrates the trade-off between the bleed–feed time
and biomass yield. Bleed–feeding too early (before t∗b = 37.3) results in lower yield
and throughput. Bleed–feeding too late (after t∗b = 37.3) causes a steep decrease in
throughput as bleed–feed is more likely to fail.

Figure 3.5 presents a surface plot showing the expected throughput R(tb, b2) for JBO
strategy as a function of bleed–feed time tb and the biomass amount b2. We obtained
Figure 3.5 by optimizing tb and b2 simultaneously (by solving the two-dimensional
optimization problem in Equation (3.5)). Note that reducing this joint optimization
problem into two sequential, one-dimensional optimization problems would lead
to the same results (as explained in Section 3.3.3). For illustration, Figure 3.6 shows
E[Z(th, b2)]− b2 in b2 (Figure 3.6(a)), and R(tb, b∗2) in tb (Figure 3.6(b)), which are
obtained by solving the reduced optimization problems. We observe from Figure 3.5
and 3.6 that the expected throughput reaches its maximum at b∗2 = 0.2 and t∗b = 37.2.
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Figure 3.5: Surface plot depicting base case throughput R(tb, b2) versus tb and b2 in JBO
strategy, when tb and b2 are optimized simultaneously.
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Figure 3.6: Reducing two-dimensional JBO into two sequential one-dimensional
optimization problems.

We now investigate the behavior of the objective function under b2 and tb. In
Figure 3.6(a), the expected yield first increases in b2 steeply, and then decreases
slowly. The underlying reason can be explained as follows: the optimal amount
b∗2 in JBO ensures that we can obtain the highest yield possible from the second
cultivation by capturing the complex dynamics of cell growth (given biomass
growth rate µ, the probability to enter stationary phase and the harvest time th).
If we start with a lower biomass then b∗2 , the cell growth might not end before
the prespecified harvest time th in the second cultivation and we harvest with
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little yield. Hence, the expected yield increases sharply in b2 until we reach b∗2 in
Figure 3.6(a). In contrast, when we start the second cultivation with more biomass
then b∗2 , this does not necessarily imply that we produce high yield in the second
cultivation as the growth is limited (due to the trade-off between starting biomass
and duration of the exponential growth). When we start with higher biomass than
b∗2 in the second cultivation, this means that we extract less biomass from the first
cultivation while the yield from second cultivation remains almost constant. Hence,
the overall expected yield decreases so as the throughput. Consistent with our
result from Section 3.4.1, Figure 3.6(a) shows that E[Z(th, b2)]− b2 is concave in b2.
In Figure 3.6(b), we observe a similar pattern for R(tb, b∗2) in tb (as in Figure 3.4) and
hence omit the discussion. From practical point of view, these observations imply
bleed–feeding too late and/or starting the second cultivation with too little biomass
is worse off (in terms of expected throughput) than bleed–feeding too early and/or
starting with too much biomass.

3.5.2 Sensitivity on Biomass Growth Rate

Biomass growth rate µ can be different across cell cultures based on the biological
characteristics (virus or bacteria), medium and equipment used. Hence, we
considered the following scenarios for the biomass growth rate: (i) base case,
µ = 0.06, (ii) slow growth, µ = {0.04, 0.045, 0.05, 0.055}, and (iii) fast growth,
µ = {0.065, 0.07, 0.075, 0.08}. Table 3.3 presents these scenarios in the first column,
and reports the optimal expected throughput R, optimal bleed–feed times t∗b and
the optimal amount b∗2 to start the second cultivation under relevant strategies.
Columns %I show the percentage improvements in the expected throughput under
the strategies NBP, BO and JBO compared to CP. Bold entries represent the base
case.

We observe from Table 3.3 that as the growth rate µ increases, the throughput R
increases in all strategies (since the expected yield increases for a fast-growing
batch). With bleed–feed (in BO and JBO strategies), we see that the faster the
biomass grows, the earlier the optimal bleed–feed time becomes. The reason is that
a fast-growing batch consumes the medium faster and enters the stationary phase
earlier. The system tends to bleed–feed earlier to avoid entering the stationary phase
and losing the bleed–feed opportunity. Additionally, as growth rate µ increases, the
optimal starting amount b∗2 decreases. This is because of the relationship between
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Table 3.3: Sensitivity on the biomass growth rate µ.

CP NBP BO JBO
µ R t′ R(t′) %I t∗b R(t∗b) %I t∗b b∗2 R(t∗b , b∗2) %I

0.04 0.147 54.9 0.147 0% 0 0.147 0% 0 — 0.147 0%
0.045 0.150 48.8 0.155 4% 49.5 0.156 4% 49.4 0.6 0.158 6%
0.05 0.152 43.9 0.163 7% 44.6 0.163 7% 44.6 0.4 0.168 10%
0.055 0.154 39.9 0.170 10% 40.6 0.170 11% 40.6 0.3 0.176 14%
0.06 0.156 36.6 0.176 12% 37.3 0.177 13% 37.2 0.2 0.183 17%
0.065 0.158 33.8 0.182 15% 34.5 0.183 15% 34.4 0.2 0.190 20%
0.07 0.160 31.4 0.187 17% 32.1 0.188 17% 32.0 0.1 0.196 22%
0.075 0.162 29.3 0.192 18% 30.0 0.194 19% 29.9 0.1 0.202 24%
0.08 0.164 27.5 0.197 20% 28.1 0.198 21% 28.1 0.1 0.207 26%

the staring amount and the duration of the exponential growth phase, as explained
in Section 3.1. Consistent with analytical results, NBP performs the bleed–feed
slightly earlier than BO. However, we observe that the performance (%I) of NBP
and BO are similar in all scenarios considered in Table 3.3.

As biomass grows faster, the biomass yield increases and the fermentation cycle
time of the first cultivation decreases (because the optimal policy tends to bleed–
feed earlier). Subsequently, throughput R and the improvement percentage %I
increase for both BO and JBO at higher growth rates µ. However, the increase in %I
decreases in µ. This behavior is associated with the exponential growth behavior
of the biomass: for fast-growing cells, the exponential growth phase ends earlier
and hence the optimal bleed-feed times (and fermentation cycle times) become
closer between the scenarios. We also observe from Table 3.3 that the additional
benefit obtained by joint optimization JBO increases as the batch grows faster. The
underlying intuition of this behavior can be explained as follows. Recall that BO
uses a heuristic that starts the second cultivation with the same amount as the first
one, i.e., b2 = b1. However, we observe from Table 3.3 that the optimal amount b∗2
(suggested by JBO) is lower than b1 (suggested by BO) and decreases in µ. Hence,
the difference between b∗2 and b1 increases when the growth rate µ gets higher. For
practitioners, these observations indicate bleed–feed (both BO and JBO strategies)
have stronger business case for fast-growing batches, and the additional benefits
provided by JBO become more pronounced as the growth rate µ increases.

Table 3.3 indicates that t∗b = 0 when µ = 0.04. This implies that it is optimal not to
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Figure 3.7: Throughput R(tb) versus bleed–feed time tb in BO strategy for slow growth
(µ = 0.04).

bleed–feed when the biomass growth rate is too small. To visualize this behavior,
Figure 3.7 plots the expected throughput R(tb) as a function of bleed–feed time tb

under BO strategy when µ = 0.04. We observe from Figure 3.7 that the biomass
grows so slowly that the system needs too much time until any significant biomass
is obtained in the first cultivation. Thus, it becomes optimal to produce only one
batch without bleed–feed. We note that this result is consistent with our analysis in
Section 3.4.1. For practitioners, these observations imply that bleed–feed is not an
attractive option for slow growing cell cultures.

3.5.3 Sensitivity on the Risk of Entering the Stationary Phase

We now investigate the impact of the risk of entering the stationary phase on
optimal throughput and bleed–feed policies.

3.5.3.1 Sensitivity on Critical Biomass Level

Recall that the rate of transitioning to the stationary phase starts to be greater than
zero when the biomass amount reaches the critical level m′. In our sensitivity
analysis, we considered the following scenarios for the critical biomass level: (i)
base case, m′ = 9 grams, (ii) lower critical biomass level, m′ = {1, 3, 5, 7} grams,
and (iii) higher critical biomass level, m′ = {11, 13, 15} grams. Table 3.4 presents
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Table 3.4: Sensitivity on the critical biomass level m′.

CP NBP BO JBO
m′ R t′ R(t′) %I t∗b R(t∗b) %I t∗b b∗2 R(t∗b , b∗2) %I

1 0.040 0 0.040 0% 4.7 0.041 2% 1.4 0.1 0.051 28%
3 0.074 18.3 0.081 9% 20.5 0.082 10% 20.0 0.2 0.090 21%
5 0.104 26.8 0.115 11% 28.2 0.116 12% 28.0 0.2 0.124 19%
7 0.131 32.4 0.147 12% 33.4 0.148 13% 33.3 0.2 0.154 18%
9 0.156 36.6 0.176 12% 37.3 0.177 13% 37.2 0.2 0.183 17%

11 0.180 40.0 0.204 13% 40.4 0.205 13% 40.4 0.3 0.210 17%
13 0.203 42.7 0.230 13% 43.1 0.231 14% 43.1 0.3 0.236 17%
15 0.223 45.1 0.255 14% 45.3 0.255 14% 45.3 0.3 0.261 17%

these scenarios in the first column, and reports the expected throughput R, optimal
bleed–feed time t∗b and the optimal start amount b∗2 for the second cultivation under
relevant strategies. Bold entries represent the base case.

In Table 3.4, we observe that the expected throughput R increases as m′ increases for
all strategies. We obtain this behavior because, for high m′, we can produce higher
biomass amounts without failure risk (risk of entering the stationary phase). This
leads to higher expected yield and throughput. The additional benefit obtained
from JBO decreases as critical biomass level m′ increases. The underlying reason
can be explained as follows: Recall that b2 is fixed at b2 = 1 gram under BO.
In JBO, b∗2 is increasing in m′ and getting closer to b2 = 1. Thus, BO and JBO
perform similar as m′ increases. We note that except from the scenario m′ = 1, the
improvement percentages of the scenarios are close for a given strategy (%I ranges
between 10− 14% for BO, and 17− 21% for JBO). This is because the throughput
already increases in m′ under CP. Hence, practitioners should keep in mind that
BO brings more benefit when m′ is high, and JBO brings more benefit when m′ is
low, although both strategies improve the throughput as m′ increases. Consistent
with results from Section 3.4.1, Table 3.4 indicates that NBP implements the bleed–
feed slightly earlier than BO and JBO. Nevertheless, %I obtained from NBP and BO
strategies are similar, especially for high-risk batches (i.e., higher m′ values).

Table 3.4 shows that the optimal bleed–feed time t∗b increases in m′. This is because
the risk of entering the stationary phase starts later when the critical biomass level
m′ gets higher. Hence, the system can collect higher amounts of biomass without
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Table 3.5: Sensitivity on maximum biomass that can be obtained H.

CP NP BO JBO
H R t′ R(t′) %I t∗b R(t∗b) %I t∗b b∗2 R(t∗b , b∗2) %I
12 0.134 36.6 0.161 20% 36.8 0.161 20% 36.8 0.2 0.168 25%
15 0.144 36.6 0.167 16% 37.0 0.168 17% 37.0 0.2 0.175 21%
20 0.156 36.6 0.176 12% 37.3 0.177 13% 37.2 0.2 0.183 17%
25 0.167 36.6 0.183 10% 37.5 0.184 11% 37.5 0.3 0.190 14%
30 0.176 36.6 0.190 8% 37.7 0.191 8% 37.6 0.3 0.197 12%
35 0.185 36.6 0.195 6% 37.9 0.197 7% 37.8 0.3 0.203 10%
40 0.193 36.6 0.201 4% 38.1 0.203 5% 38.0 0.4 0.208 8%
45 0.201 36.6 0.206 3% 38.2 0.209 4% 38.1 0.4 0.213 6%
50 0.208 36.6 0.211 2% 38.4 0.214 3% 38.3 0.4 0.218 5%
55 0.215 36.6 0.216 0% 38.5 0.219 2% 38.4 0.4 0.223 4%

risking the bleed–feed. Also, observe that b∗2 increases in m′. The underlying
intuition is related to the complex inter-dependency between b∗2 , m′ and t∗b . Notice
that the optimal policy tends to bleed–feed earlier at lower values of m′. This also
implies that we reach lower biomass amounts at time t∗b when m′ is low. However,
we aim to obtain as much biomass as possible from both cultivations. To obtain
more from the first cultivation (although t∗b is low), we tend to extract more biomass
from the first cultivation during bleed–feed. For the second cultivation, this leads
to lower starting amounts b∗2 for lower m′ values.

3.5.3.2 Sensitivity on Maximum Biomass Level

The maximum biomass amount H that can be obtained from a cell culture could be
finite because of limited cell viability. Hence, we investigate the following scenarios:
(i) base case, H = 20 grams, (ii) lower levels of maximum biomass, H = {12, 15} grams,
and (iii) higher levels of maximum biomass, H = {25, 30, 35, 40, 45, 50, 55} grams. We
refer to the cases with lower H as “high-risk” batches (as their risk of entering the
stationary phase is higher). Table 3.5 presents the results.

Observe from Table 3.5 that the throughput increases in H for all scenarios. The
reason is that the expected yield increases when the batch can reach higher biomass
values H. We also observe that %I decreases both in BO and JBO as H increases.
This is because the throughput R in CP is already high when H is high. Besides,
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the biomass yield obtained from the second cultivation when the bleed–feed is
successful is similar to the expected yield obtained from the first cultivation under
CP (as all scenarios have the same growth conditions for similar time duration). For
these reasons, %I is lower for higher H values. This indicates that the business case
for bleed–feed is stronger when the maximum biomass level H is small (i.e., when
cells have a low production capacity).

We observe from Table 3.5 that the optimal bleed–feed time t∗b increases as the
maximum possible biomass amount H increases. The reason can be explained as
follows: For higher H values, the risk of entering the stationary phase is lower.
Hence, we can bleed–feed later without increasing the risk of failure. Observe also
that b∗2 increases as H gets higher under JBO. This is because when H is lower, a
smaller amount of initial biomass b2 would be sufficient to obtain the maximum
possible yield from that batch. For practitioners these results indicate that both the
bleed–feed time t∗b and the starting amount b∗2 should be higher when H increases.
Lastly, we observe from Table 3.5 that NBP and BO provide similar improvements
%I, as their suggested bleed–feed times are close, especially for high-risk batches.

3.5.4 Sensitivity on Setup Duration

The setup time needed for cleaning the bioreactor and transferring the medium
and the seed culture into the bioreactor can vary across different bioreactor sizes.
Hence, we consider the following cases for the setup duration: (i) base case, s = 8
hours, (ii) shorter setups, s = {0, 2, 4, 6} hours, and (iii) longer setups, s = {10, 12, 14}
hours. These scenarios are shown in the first column in Table 3.6. The expected
throughput, optimal bleed–feed time and the staring amount for the second
cultivation are also presented in Table 3.6 for relevant strategies. Bold entries
represent the base case.

In Table 3.6, we observe that %I ranges between %9 and %16 for BO, and %13 and
%20 for JBO when the setup duration changes from 0 to 14 hours. In the extreme
case where the bioreactor has no setup (s = 0), the benefit of bleed–feed is still
%9 for BO, and %13 for JBO. This insight is interesting because it means that the
percentage improvement %I obtained through bleed–feed is not only a result of
producing higher biomass yield per single setup, but also of decreased processing
time with bleed–feed, i.e., fermentation processing time (excluding setup times) for
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Table 3.6: Sensitivity on setup duration s.

CP BO JBO
s R t∗b R(t∗b) %I t∗b b∗2 R(t∗b , b∗2) %I
0 0.174 37.3 0.190 9% 37.2 0.2 0.197 13%
2 0.169 37.3 0.186 10% 37.2 0.2 0.193 14%
4 0.165 37.3 0.183 11% 37.2 0.2 0.190 15%
6 0.160 37.3 0.180 12% 37.2 0.2 0.186 16%
8 0.156 37.3 0.177 13% 37.2 0.2 0.183 17%

10 0.153 37.3 0.174 14% 37.2 0.2 0.180 18%
12 0.149 37.3 0.171 15% 37.2 0.2 0.177 19%
14 0.145 37.3 0.168 16% 37.2 0.2 0.174 20%

two cultivations takes (tb + th) with bleed–feed and (th + th) without bleed–feed
(note that the harvest time th ≥ tb because the batch is harvested in the stationary
phase, whereas bleed–feed is performed in the exponential growth phase). Hence,
the benefits of bleed–feed comes from a combination of the reduced processing and
setup times and increased levels of biomass production per setup.

Notice from Table 3.6 that expected throughput R decreases as setup duration s
increases in all strategies. This is because the setup duration does not affect the
expected yield but only prolongs the expected cycle length. For this reason, optimal
bleed–feed time t∗b (both for BO and JBO) and the starting amount b∗2 (for JBO) are
robust to setup time s. In addition, we observe that the benefits (%I) of bleed–feed
increases as the setup duration s increases (under both BO and JBO).

3.6. Conclusion

Setups are needed before a fermentation process to clean and sterilize the bioreactor.
These setups are time consuming as they can take up to ten hours Sharma (2019).
Therefore, increasing the fermentation throughput is a critical problem to improve
efficiency. To address this problem, we consider a novel approach for eliminating
bioreactor setups: bleed–feed.

Bleed–feed enables to skip intermediary bioreactor setups by replenishing some
amount of the culture by fresh medium, instead of harvesting the batch. It is a novel
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method for prolonging the cell growth in batch fermentation. However, the timing
of bleed–feed is important for a successful implementation. Bleed–feed can only
be performed in the exponential growth phase of fermentation. As the duration of
the exponential growth phase is random, there is a trade-off between implementing
bleed–feed too soon versus too late. In addition, the starting biomass amount of
the second cultivation (after bleed–feed) affects the expected fermentation yield and
throughput. In this work, we formulate the critical trade-offs associated with bleed–
feed decisions. We build a stochastic optimization model using renewal reward
theory, and determine an optimal bleed–feed time and starting biomass amount to
maximize the expected throughput. Our model links the biological dynamics of
fermentation with operational trade-offs to support optimal decision-making.

We explore the structural properties of the optimization problem. We generate
insights on optimal policies and assess the impact of risks. We show that the
throughput function is convex from the start of the fermentation until the critical
biomass time under a sufficient condition. Using this result, we discuss the settings
under which bleed–feed is not optimal, and understand that the optimal bleed–
feed time is at or after the critical biomass time. Based on an industry case
study obtained from MSD Animal Health, we present a comprehensive numerical
analysis and analyze the potential impact of implementing bleed–feed on current
practice. Our numerical analysis shows that bleed–feed can bring benefits. By
jointly optimizing the bleed–feed time and amount, our case study (base case)
shows that the expected throughput can increase by 17% compared to current
practice. We also observe that bleed–feed has a stronger business case for fast-
growing cells, high-risk cultures or long setups.

3.A. Proofs

Proof of Lemma 3.1. Take two policies: π(tb, b2) and π(t′, b2), where 0 ≤ tb ≤ t′, for
all b2. We compare the expected yield under these policies and show E[Y(tb, b2)] ≤
E[Y(t′, b2)] for 0 ≤ tb ≤ t′. From the fact that g(tb|bi) = 0 for tb ≤ t′, we have:

E[Y(tb, b2)] = b1eµtb + E[Z(th, b2)] − b2 ≤ b1eµt′ + E[Z(th, b2)] − b2 = E[Y(t′, b2)],

which concludes the proof. 2
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Proof of Proposition 3.1. Consider a bleed–feed policy π(tb, b2), where 0 ≤ tb ≤ t′

for a fixed b2. Under the policy π(tb, b2), we prove convexity of the throughput
function by showing that ∂2R(tb ,b2)

∂t2
b

> 0. Since g(tb|bi) = 0 for tb ≤ t′, we write

R(tb, b2) as:

R(tb, b2) =
b1eµtb + E[Z(th, b2)]− b2

s + tb + th
. (3.9)

Hence,

∂2R(tb, b2)

∂t2
b

=
µ2b1eµtb

s + tb + th
− 2µb1eµtb

(s + tb + th)2 +
2b1eµtb

(s + tb + th)3 +
2E[Z(th, b2)]− 2b2

(s + tb + th)3 .

(3.10)

We now show that if (3.6) holds, then ∂2R(tb ,b2)

∂t2
b

> 0. Rearranging (3.6) we have that:

0 >
1

s + th
− µ

2
.

Multiplying both sides of the inequality by µ and rearranging the terms we obtain:

0 >
µ

s + tb + th
− µ2

2
(3.11)

>
µ

s + tb + th
− 1

(s + tb + th)2 −
µ2

2
, (3.12)

where (3.11) follows since µ
2 > 1

s+th
≥ 1

s+tb+th
for tb ≥ 0, and (3.12) follows from

the fact that 1
(s+tb+th)2 > 0. Multiplying both sides of (3.12) by 2b1eµtb

s+tb+th
we obtain:

0 >
2µb1eµtb

(s + tb + th)2 −
2b1eµtb

(s + tb + th)3 −
µ2b1eµtb

s + tb + th

>
2µb1eµtb

(s + tb + th)2 −
2b1eµtb

(s + tb + th)3 −
µ2b1eµtb

s + tb + th
− 2E[Z(th, b2)]− 2b2

(s + tb + th)3 , (3.13)
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where (3.13) follows from 2E[Z(th ,b2)]−2b2
(s+tb+th)3 > 0. Rearranging (3.13) we obtain:

∂2R(tb, b2)

∂t2
b

=
µ2b1eµtb

s + tb + th
− 2µb1eµtb

(s + tb + th)2 +
2b1eµtb

(s + tb + th)3 +
2E[Z(th, b2)]− 2b2

(s + tb + th)3 > 0,

(3.14)

which completes the proof. 2

Proof of Proposition 3.2. Take a linearly increasing rate function ν(m) = c m for
c > 0 (i.e., ν(m(t, b2)) = c m(t, b2) = c b2eµt). We prove concavity of E[Z(th, b2)]− b2

in b2 by showing that ∂2(E[Z(th ,b2)]−b2)

∂b2
2

< 0. Using ν(m(t, b2)) = c m(t, b2) = c b2eµt,
we have:

E[Z(th, b2)]− b2 =
∫ th

0
b2eµt2 g(t2|b2)dt2 + (1− G(th|b2)) b2eµth − b2

= −b2 + b2e−
c b2(−1+eµth )

µ +µth +
b2(c− c e

c b2−c b2eµth+µ2th
µ ) + µ− e−

c b2(−1+µth)
µ µ

c
.

Then,

∂2(E[Z(th, b2)]− b2)

∂b2
2

= − c e−
c b2(−1+eµth )

µ (−1 + eµth)2

µ
< 0,

which completes the proof. 2

Proof of Proposition 3.3. Take two batches as batch A and B with identical b1 and
µ, with the rate function of entering the stationary phase for batch B dominating
A. Let Gj denote the distribution function of time to enter stationary phase for
batch j = {A, B} and T j

i denote the random time to enter stationary phase for batch
j = {A, B}; TA

i being distributed according to GA, and TB
i according to GB, for

cultivation i = {1, 2}. Then, tj
i denotes the realization of random time to enter

stationary phase for batch j = {A, B} in cultivation i = {1, 2}. Take a bleed–feed
policy π(tb, b2). Rj(tb, b2) denotes the throughput and E[Y j(tb, b2)] the expected
yield under bleed–feed policy π(tb, b2) for batch j = {A, B}. From Equation (3.3),
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the expected yield for batch j under policy π(tb, b2) is given as:

E[Y j(tb, b2)] = E[Zj(tb, b1)] + (1− Gj(tb|b1))
[
E[Zj(th, b2)]− b2

]
.

Because the rate function of entering the stationary phase for batch B dominates
that of A, the random time to enter stationary phase for batch A is stochastically
larger than that of batch B, TA

i � TB
i . By coupling (Proposition 9.2.2 from Ross

(1996)), we have tA
i > tB

i for every realization of TA
i and TB

i (considering a given
cultivation i). Thus, for the yield in the batch from the second cultivation we can
say that ZA(th, b2) ≥ ZB(th, b2) for each realization, so E[ZA(th, b2)] ≥ E[ZB(th, b2)]

by Proposition 9.1.2 from Ross (1996). Similarly, we can say that E[ZA(tb, b1)] ≥
E[ZB(tb, b1)]. By definition of stochastic ordering, 1− GA(tb|b1) > 1− GB(tb|b1)

holds. Thus, E[YA(tb, b2)] ≥ E[YB(tb, b2)]. If we divide both sides by the cycle
length under the bleed–feed policy π(tb, b2) we obtain:

RA(tb, b2) =
E[YA(tb, b2)]

s + tb + th
≥ E[YB(tb, b2)]

s + tb + th
= RB(tb, b2),

which completes the proof. 2

3.B. Establishing the Transition Rate Function from

Industry Data

We explain a procedure to obtain the rate function from industry data. Let ν(m)

denote the rate of entering the stationary phase, and F(m) denote the (long-run)
fraction of batches that enter the stationary phase at a biomass of at most m, and
f (m) is the corresponding density, i.e., f (m) = F′(m). If ∆ is a small time interval,
then the probability that a batch will enter the stationary phase at biomass between
m and m(1 + µ∆) (recall that the growth is exponential), given that at time t the
batch has m units biomass satisfies

f (m)µ m∆ = ν(m)∆(1− F(m)).
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Hence,
f (m)

1− F(m)
=

ν(m)

µ m
.

The function F(m) can be directly estimated from the industry data, m discretized
with stepsize δ. If we then approximate f (m) ≈ F((m + 1)δ)− F(mδ), we obtain as
estimate for the stationary phase function

F((m + 1)δ)− F(mδ)

1− F(mδ)
≈ ν(mδ)

µm

or rewritten,

ν(mδ) ≈ µm
F((m + 1)δ)− F(mδ)

1− F(mδ)
for m = 0, δ, 2δ . . . .

This rate function is used to establish the probability of entering the stationary
phase, as explained in Section 3.3.2.1.
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4
Optimal Bleed–Feed Decisions under

Practical Constraints

4.1. Introduction

In this chapter, we extend our renewal model from Chapter 3. Different from
Chapter 3, we now take accumulation of waste in the batch and the corresponding
purification costs into account, and we find the optimal time to bleed–feed to
maximize the expected fermentation profit. In addition, this chapter considers
practically relevant constraints on bleed–feed time to ensure that bleed–feed happens
when operators are available in the company, and that we implement bleed–feed
successfully with a certain probability.

Recall that biomanufacturing operations consists of upstream processing (USP)
and downstream processing (DSP). Upstream processing is the first step where
the cells are grown. USP includes operations such as preparation of seed culture
and medium, fermentation process and harvest. Downstream processing refers
to purification and finishing operations. In DSP, biomass is separated from the
impurities in the batch and prepared for storage until its delivery. We focus on
upstream fermentation processes in this chapter.
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(a) Biomass growth.
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(b) Waste accumulation.

Figure 4.1: Biomass growth (a) and waste accumulation (b) over time without bleed–
feed.

Fermentation typically take place in a bioreactor which is a stainless-steel vessel,
providing a controlled environment for cell growth. Fermentation starts with a
bioreactor setup, where the bioreactor is cleaned and sterilized and seed culture
(initial biomass) with a suitable medium is placed into the bioreactor. The seed
culture uses the medium to grow. The growth follows a specific pattern as shown
in Figure 4.1(a). Observe that the fermentation starts with a small amount of
initial biomass. This biomass uses the medium and reproduce. This phase is the
exponential growth phase. In the batch production, medium is added only once, at
the beginning of the fermentation process. As the biomass amount increases in
the exponential growth phase, it consumes the limited amount of medium and
nutrients deplete in the batch. As a result, the cell growth stops and the cells enter
to the stationary phase. Commonly, the batch is harvested in the stationary phase.

Along with biomass growth, byproducts (also called as impurities, waste) accumu-
late in the batch as a result of metabolic activities of cells during fermentation.
Ammonia and lactate are examples of byproducts. Inspired by industry data,
Figure 4.1(b) illustrates accumulation of waste over time. Waste accumulation
deteriorates the culture environment by increasing the toxicity in the batch. Hence,
excessive amount of byproducts inhibits cell growth and decreases the batch
quality. After harvesting the batch, the output of the fermentation process, i.e.,
homogeneous mixture of biomass and byproducts, is transferred to the downstream
processing for purification.

Following the harvest, the bioreactor is set up for the new fermentation process.
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(a) Biomass growth with bleed-feed.
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(b) Waste accumulation with bleed-feed.

Figure 4.2: Biomass growth (a) and waste accumulation (b) over time with bleed–feed.

These setups are time consuming and expensive. For instance, a bioreactor setup
can take up to ten hours (Sharma, 2019; Yang and Sha, 2019). In addition, the
consumables and reagents used in cleaning and sterilization in each setup constitute
around 16% of the total fermentation costs (Oyebolu et al., 2019; Mahal et al., 2021).
This results in long bioreactor occupation time and less fermentation profit obtained
per time unit. Hence, there is a strong business case for biomanufacturers to
eliminate some of the setups. For this purpose, bleed–feed is a promising technique.
The main dynamics of bleed–feed are demonstrated in Figure 4.2. When bleed–
feed is implemented, some predetermined fraction of the culture in the batch is
extracted (bleed), and fresh medium is added to the bioreactor (feed). Then the
remaining biomass in the culture acts as a seed culture and the growth continues
(Figure 4.2(a)). Hence, bleed–feed enables practitioners to skip an intermediary
setup and produce two cultivations from a batch. The batch is harvested when the
second cultivation reaches its predetermined harvest time.

Although a promising technique to increase fermentation profit, determining the
bleed–feed time is not straightforward. We can bleed–feed only in the exponential
growth phase for a successful implementation. Otherwise, the biomass growth
stops before the next cultivation and the technique does not work. However, the
exponential growth phase duration is stochastic due to the inherent randomness of
biological systems. Also, the amount of byproducts accumulated in fermentation
has an important effect on purification workload in the downstream processing
(Farid, 2007; Gronemeyer et al., 2014). For instance, a batch with high impurity
levels may require multiple steps of certain purification operations and inspection
steps to ensure batch quality, therefore increasing the costs. In Figure 4.2(b) the
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remaining waste also continues to accumulate after the bleed–feed, leading to waste
from two cultivations. In this setting, if we are “too early” to bleed–feed, we may not
receive the highest yield, and hence the highest revenue from the first cultivation.
In addition, more impurity will accumulate in the batch as a result of producing
two cultivations, and purification cost will be higher. Contrarily, if we are “too late”,
the bleed–feed opportunity is lost and we harvest the batch with one cultivation.
This means that we obtain the revenue corresponding to one cultivation only. Yet,
the impurity amount and the purification cost will also be less in this case (as it will
be associated to one cultivation only). Managing this trade-off and understanding
how the cost parameters affect the bleed–feed decisions are important aspects for
increasing the expected profit per time unit with bleed–feed.

In addition, bleed–feed implementation requires operators to take certain actions
(such as initiating the medium transfer and extracting certain fraction from the
batch). However, in a biomanufacturing company working in shifts, no operators
are available during certain time periods. In this case, it is crucial to ensure that
bleed–feed is implemented during a shift.1 Also, practitioners might tolerate some
certain probabilities of bleed–feed failure only. For instance, they might not want
to take the risk of missing the bleed–feed and adjust their bleed–feed time in a risk-
averse manner. Such restrictions limit the time that bleed–feed can be implemented,
and the benefits obtained from it compared to flexible cases. Hence, we formulate
our research questions as follows:

• When to implement bleed–feed to maximize the expected profit per time unit
from a fermentation, considering the impurity level in the batch?

• How to ensure that bleed–feed takes place during a shift, and that bleed–feed
is implemented successfully with a certain probability level?

• How is the benefit obtained from bleed–feed affected by the shift and the
chance constraints? What is the value of flexibility (i.e., having no restrictions
on bleed–feed time) in bleed–feed decisions? Under which settings adopting
bleed–feed is not desirable?

In order to answer these questions, we extend our renewal model from Chapter 3.
1This does not need to hold for the harvest time. Bioreactors can be adjusted so that at a specific time

the culture is frozen. This stops any metabolic activities in the culture, enabling the operators harvest
the batch later if harvest time does not take place in a shift.
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We determine the optimal bleed–feed time to maximize the expected profit per
time unit under shift and chance constraints. We present a numerical analysis to
demonstrate the use of our model, and to investigate the value of flexibility when
adopting bleed–feed under practically relevant restrictions.

Fermentation profit per unit time has been considered in life sciences literature.
Jia et al. (2007) built mass balance equations and kinetic models to identify key
parameters in evaluating fermentation profit per time unit. Yuan et al. (2009)
developed predictive models to find scheduling approaches to maximize profit
of a batch over its production time. However, these studies focus on chemical
and biological dynamics of fermentation. We combine the biological dynamics
of fermentation with operational trade-offs of bleed-feed, and propose a generic
model that can be extended to other industries. Martagan et al. (2016) developed
an MDP model to improve fermentation profit. In addition to yield production
and its revenue, they also model waste accumulation and associated purification
cost. However, they determine condition-based harvest policies, and they did not
address the bleed–feed problem. Koca et al. (2021b) presents the first attempt
for modeling bleed–feed (Chapter 2). They built an MDP model to determine
condition-based bleed–feed policies to maximize batch yield and assumed a fixed
initial biomass amount for the second cultivation. Next, Koca et al. (2021a)
developed a renewal model to optimize the bleed–feed time and the initial biomass
amount for the second cultivation jointly (Chapter 3). They generate time-based
bleed-feed policies to optimize the throughput (expected batch yield per time
unit). However, none of these studies consider the fermentation profit, waste
accumulation, and costs associated to purification. In this chapter, we extend the
renewal model from Koca et al. (2021a). We model the waste accumulation, and
its effects on the exponential growth phase duration. We consider the costs and
revenues associated to fermentation process to find optimal bleed–feed time to
maximize the fermentation profit per time unit. In addition, practical constraints
have not been taken account in the previous studies. We include a shift constraint
in our model to ensure that the bleed–feed is implemented when operators are
available. We also include a chance constraint to capture practitioner’s risk-averse
behavior. We investigate the value of flexibility in decision making, by relaxing
these constraints. We note that Koca et al. (2021b) and Koca et al. (2021a) considered
risk-averse strategies in bleed–feed implementation. Having a chance constraint is
different for the following reasons: (i) If we also consider a shift restriction on



100 Chapter 4. Optimal Bleed–Feed Decisions under Practical Constraints

bleed–feed time, the risk-averse strategy from these studies might be infeasible. By
having a change constraint (rather than considering a risk-averse strategy) we can
capture risk-averse behavior under shift restrictions. (ii) With a chance constraint,
we can consider different levels of tolerating the risk of bleed–feed failure.

Our work contributes to both life sciences and operations research. Bleed–feed
problem is a new and relevant problem for biomanufacturing, with high potential
of improving efficiency. We develop an analytical model that combines biological
dynamics of living systems and operational trade-offs of bleed–feed. This study is
the first in finding the optimal bleed–feed time that maximizes the fermentation
profit, considering practically relevant restrictions on the bleed–feed time and
effects of waste accumulation on exponential growth phase duration. We present a
generic model that can be adopted in other industries with fermentation processes.
We demonstrate the use of our model with a numerical analysis. We investigate the
value of flexibility in bleed–feed decisions by relaxing the constraints and generate
insights on the bleed–feed implementation for different production configurations.
Our numerical analysis revealed that it is not necessarily better to bleed–feed earlier
if bleed–feed time does not take place in a shift, and chance constraints have more
impact for low-risk batches. In addition, we observe that bleed–feed does not bring
benefit for batches with fast waste accumulation, or if the bleed–feed time has both
the shift and the chance constraint.

The remainder of the chapter is organized as follows. In Section 4.2 we formulate
the renewal model. We present the numerical analysis in Section 4.3. Section 4.4
concludes the chapter.

4.2. Model Formulation

We formulate a renewal model to find the optimal bleed–feed time tb to maximize
the expected fermentation profit per time unit J(tb). A fermentation cycle starts
with a bioreactor setup and continues until the batch is harvested. Recall that
bleed–feed can only be implemented in the exponential growth phase. If at the
pre-determined bleed–feed time tb the culture is still in the exponential growth
phase, the bleed–feed is successful. Then, we extract a fraction ψ from the batch
mixture, add fresh medium in the bioreactor and let the remaining biomass grow.
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This way we produce two cultivations from one setup. The second cultivation (after
the bleed–feed) is harvested after a fixed cultivation time th. Then, fermentation
profit captures the revenue obtained from the biomass produced in the batch, the
purification cost of waste accumulated during the two cultivations, and the direct
costs of bleed–feed and harvest operations. If the batch is not in the exponential
growth phase at time tb, then bleed–feed fails and the batch is harvested only with
one cultivation. This means that we obtain revenue and incur purification costs
from one culture, and we incur the direct harvest cost.

Our renewal model captures the trade-offs on the bleed–feed time, and the complex
biological dynamics of fermentation (i.e., the impact of biomass and waste amount
on the exponential growth phase duration). In addition, we include practically
relevant constraints in our optimization problem, to ensure that (i) bleed–feed
is implemented during a shift, and (ii) with a certain probability the bleed–feed
implementation is successful. We first elaborate on the expected length of a
fermentation cycle (Section 4.2.1) and expected profit obtained in a fermentation
cycle (Section 4.2.2) to establish our objective function and build our optimization
model (Section 4.2.3). Table 4.1 summarizes the notation we used in the model.

4.2.1 Length of a Fermentation Cycle

Each fermentation cycle starts with a bioreactor setup. Setup activities (i.e.,
cleaning, sterilization, medium and seed culture transfer) are standardized, and
their duration is known in advance. We let s denote the fixed duration of a
bioreactor setup.

Our model generates a time-based bleed–feed policy, meaning that we define a fixed
bleed–feed time tb and do not change our decision during fermentation. In practice,
biomanufacturers prefer adopting time-based policies, because of production
planning restrictions. For example, there is a no-wait constraint such that the
batch needs to immediately continue with subsequent purification operations after
harvest. In such settings, time-based policies are easier to implement. We note that
the bleed–feed time takes relatively short time (i.e., only 1-2 minutes) with respect to
the overall fermentation time (i.e., several days or weeks until the first bleed–feed),
and it is negligible.

Consistent with current good manufacturing practices (CGMPs), we harvest the
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Table 4.1: Notation used in the renewal model.

η Waste accumulation rate.
µ Biomass growth rate.
ψ Fraction of the batch mixture to be extracted during bleed–feed.
ωi Initial waste amount for the ith cultivation.
bi Initial biomass amount for the ith cultivation.
cb Bleed–feed cost.
cp(w) Purification cost incurred from w units of waste.
ch Harvest cost.
g(t|b, ω) Probability density function of time to enter stationary phase at the

ith cultivation given b units of initial biomass and ω units of initial
waste.

G(t|b, ω) Cumulative distribution function of the time to enter stationary
phase given b units of initial biomass and ω units of initial waste.

J(tb) Expected profit per unit time obtained from a fermentation when
bleed–feed is implemented at time tb.

m(t, b) Biomass growth during the exponential growth phase by time t,
when the fermentation starts with b units biomass.

P(tb) Random profit obtained from a fermentation cycle if bleed–feed is
implemented at time tb.

r(m) Revenue obtained from m units biomass amount.
s Bioreactor setup duration.
tb Time to bleed–feed.
Ti Random time to enter the stationary phase at the ith cultivation.
ti Realization of the exponential growth phase’s duration for the ith

cultivation.
th Time to harvest a cultivation.
w(t, ω) Waste accumulation during the exponential growth phase of the

biomass by time t, when the initial waste amount is ω units.

second cultivation (after bleed–feed) at a fixed cultivation time th. If we decide to
implement bleed–feed at time tb, this implies that the bioreactor is occupied for
tb + th time units (tb for the first, and th for the second cultivation). Therefore, the
fermentation cycle length when we bleed–feed at time tb is deterministic, and given
as s + tb + th.
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4.2.2 Expected Profit Obtained in a Fermentation Cycle

In a fermentation process biomass accumulates in the batch along with byproducts.
Then, output of a cultivation is a homogeneous mixture of biomass and waste.
When we stop the cultivation (either with harvest or bleed–feed), we earn revenue
associated to the final biomass level, and incur purification cost related to the
waste amount. In addition, we incur a direct cost of stopping the cultivation.
Hence, fermentation profit depends on the relationship between biomass and waste
accumulation, their complex relationship with exponential growth phase duration,
and related revenues and costs. Our renewal model captures these parameters to
establish expected fermentation profit.

We use the term bi to denote the initial biomass amount for cultivation i ∈ {1, 2},
where i = 1 represents the first cultivation (before bleed–feed) and i = 2 represents
the second cultivation (after bleed–feed). Fermentation process starts with a certain
biomass amount, denoted as b1. Every time we start a batch, there is also a small
amount of impurities in the seed culture, accumulated during preculture activities.
We denote this initial waste amount as ω1. Initial waste ω1 is usually close to zero.
During bleed–feed, we extract a known fraction ψ ∈ (0, 1) of the batch mixture.
Hence, the remaining fraction 1− ψ of the biomass and impurities produced in the
first cultivation until the bleed–feed time tb correspond to the start amount for the
second one (i.e., b2 and ω2, respectively).

Let the random variable Ti (with realization ti) denote the time to enter the
stationary phase in cultivation i. The random variable Ti has probability density
function g(ti|bi, ωi), and distribution function G(ti|bi, ωi) = P(Ti ≤ ti|bi, ωi) in
cultivation i. Note that the probability of entering the stationary phase depends on
the initial biomass amount bi and the initial waste amount ωi. More specifically, a
batch with higher initial biomass and waste is likely to have a shorter exponential
growth phase. The underlying intuition of this behavior can be explained as follows:
a batch with a higher biomass amount consumes the limited amount of medium
faster. As a result, the nutrients deplete, and the cells lose viability earlier. In
addition, impurities deteriorate the culture environment and increase the toxicity
in the batch. Then, the growth inhibition is likely to occur faster, and the cells enter
the stationary phase. By modeling this relationship, our model captures the random
exponential growth duration and its complex underlying biological relationships
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with the biomass and the impurity levels.2

We let the function m(t, b) represent the biomass growth by time t, when the
fermentation starts at time t = 0 with b units biomass. We note that m(t, b) is
valid as long as the batch is in the exponential growth phase. Based on well-known
fermentation models in chemical engineering, the biomass accumulation by time
t ≥ 0 is given as (Doran, 1995):

m(t, b) = beµt, (4.1)

where µ denotes the cell growth rate and b the initial biomass level. The growth
continues until the batch enters the stationary phase.

Along with the biomass growth, byproducts accumulate as a result of metabolic
activities of the cells during a fermentation. This implies that when biomass growth
stops, waste accumulation also stops. We let the function w(t, ω) represent the
byproduct accumulation by time t, when the fermentation starts at time t = 0 with
ω units impurity. Then, we present the byproduct accumulation by time t ≥ 0 while
the biomass is in the exponential growth phase as:

w(t, ω) = ωeηt, (4.2)

where η is the waste accumulation rate and ω is the initial waste amount. For some
cell cultures, empirical evidence exists showing that waste and yield production
are independent processes, evolving over time (Ozturk et al., 1997; Tsao et al., 2005;
Xing et al., 2010). Hence, we use different growth rates for biomass growth and
waste accumulation.

We note that, the final biomass and the waste amounts in the batch are random,
because the exponential growth phase duration is random. Until the realized time
ti, the biomass and waste accumulate as shown in Equations (4.1)-(4.2) in cultivation
i. At time ti the batch enters to the stationary phase for the cultivation i. Then, the
biomass and waste accumulations stop.

When a cultivation is stopped (either by harvest or bleed–feed), we obtain the

2A way to estimate the probability distribution to stationary phase from the industry data could be
to use the rate function as explained in Section 3.3.2.1 in Chapter 3, which is established in Section 3.B
based on biomass amount m. Note that this time we should generate the joint rate function of entering
the stationary phase depending both on biomass amount m, and the waste amount w.
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fermentation output, i.e., mixture of the biomass and the waste (if we harvest we
extract the entire batch, and if we bleed–feed we extract a fraction). We obtain
revenue r(m), if m units biomass is achieved in the cultivation. The amount of
waste products affects the purification operations and workload in downstream
processing. A batch with a high amount of waste product would require more
steps in downstream processing and inspection steps to meet purity requirements,
hence increasing the purification cost (Farid, 2007; Gronemeyer et al., 2014). Then,
we incur purification cost cp(w) with respect to w units of waste products at the end
of a cultivation. The purification costs include raw material costs, equipment costs,
labor costs, costs of quality assurance and control activities, and clean room costs.
Finally, we incur fixed costs for implementing bleed–feed cb, and harvest ch. Bleed–
feed cost cb captures the cost of medium preparation and costs of other bleed–feed
related activities such as transfer of medium into the batch and transfer of culture
out of the batch. Harvest cost ch captures the cost of cleaning, sterilization and
setup of a new batch (including costs related to preculture preparation, medium
preparation, transfer of medium and culture into the bioreactor, and transferring
the culture out of the bioreactor). Thus, we have cp < ch. Then, the profit obtained
from a cultivation that is harvested with m units biomass and w units waste is
r(m)− cp(w)− ch. If the cultivation is stopped by bleed–feed with m units biomass
and w units waste the profit is r(m)− cp(w)− cb.

We let P(tb) denote the random profit obtained from a fermentation cycle when
the bleed–feed is implemented at time tb, and E[P(tb)] its expectation.3 The
fermentation profit is random because the final biomass and waste amounts in
the batch are random, and we produce the second cultivation only if bleed–feed is
successful at time tb. Then, E[P(tb)] can be formulated as:

E[P(tb)] = E[P1(tb)] + (1− G(tb|b1, ω1))E[P2(tb)]. (4.3)

In Equation (4.3), E[P1(tb)] represents the expected profit from the first, and
E[P2(tb)] from the second cultivation, when we implement bleed–feed at time tb.
The term 1− G(tb|b1, ω1) represent the probability of a successful bleed–feed. This

3The profit obtained from the fermentation also depends on the initial biomass amount b1 and the
waste amount ω1, since they affect the random time to enter to the stationary phase. Therefore, the
expected profit from a fermentation cycle could be denoted as E[P(tb)|b1, ω1]. We note that these
parameters are known for every problem case, and they are no decision variables. Hence, for notational
simplicity we decide to leave out the terms b1 and ω1 in the profit function.
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means that second cultivation profit is obtained only if the bleed–feed is successful.
Using the discussions above, the expected profit from the first cultivation E[P1(tb)]

can be written as:

E[P1(tb)] =
∫ tb

0

[
r(b1eµt1)− cp(ω1eηt1)− ch

]
g(t1|b1, ω1)dt1

+ (1− G(tb|b1, ω1))
[
r(ψb1eµtb)− cp(ψω1eηtb)− cb

]
. (4.4)

The first summand in Equation (4.4) represents the case when the bleed–feed
fails, i.e., t1 ≤ tb. In this case the biomass amount will be b1eµt1 , and the waste
accumulates to ω1eηt1 . Hence, we obtain revenue r(b1eµt1), and incur purification
cost cp(ω1eηt1). We harvest the batch as the bleed–feed fails, thus incurring
harvest cost ch. The second summand represents the profit obtained from the first
cultivation when the bleed–feed is successful i.e., t1 > tb. In this case we extract
fraction ψ from the batch, leading to a mixture of ψ b1eµtb units biomass and ψ ω1eηtb

units waste. As a result, we obtain r(ψ b1eµtb) revenue, and incur purification cost
cp(ψ ω1eηtb), and bleed–feed cost cb. In case bleed–feed is successful, we produce
the second cultivation, and obtain expected profit E[P2(tb)] given as:

E[P2(tb)] =
∫ th

0

[
r((1− ψ)b1eµ(tb+t2))− cp((1− ψ)ω1eη(tb+t2))− ch

]
× g(t2|(1− ψ)b1eµtb , (1− ψ)ω1eηtb)dt2

+ (1− G(t2|(1− ψ)b1eµtb , (1− ψ)ω1eηtb))

×
[
r((1− ψ)b1eµ(tb+th))− cp((1− ψ)ω1eη(tb+th))− ch

]
. (4.5)

In the second cultivation, the remaining fraction of biomass (1− ψ)b1eµtb acts as
a seed culture and continue growing in the exponential growth phase. Similarly,
remaining waste (1− ψ)ω1eηtb continues to accumulate. Then, the first summand
of Equation (4.5) captures the expected profit obtained from the second cultivation
when the exponential growth phase ends before the harvest time, i.e., t2 ≤ th. In
this case the profit becomes r((1 − ψ)b1eµ(tb+t2)) − cp((1 − ψ)ω1eη(tb+t2)) − ch. If
the exponential growth does not end before the harvest time th, i.e., t2 > th, then
the harvest time th limits the biomass and waste accumulations. Then, the profit is
r((1− ψ)b1eµ(tb+th))− cp((1− ψ)ω1eη(tb+th))− ch, as given in the second summand
of Equation (4.5).
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4.2.3 The Objective Function and the Optimization Model

We now present our optimization model to determine the optimal bleed–feed time
tb to maximize the expected profit per time unit J(tb). From the discussions of
Section 4.2.1 and 4.2.2, we present our objective function as:

J(tb) =
E[P1(tb)] + (1− G(tb|b1, ω1))E[P2(tb)]

s + tb + th
. (4.6)

Then, we solve the following optimization problem:

max J(tb)

s.t. 0 ≤ tb ≤ th, (4.7)

dk ≤ tb + s ≤ dk + l, (4.8)

1− G(tb|b1, ω1) ≥ q, (4.9)

a ≥ k ≥ 0, k integer.

In the optimization problem, the first constraint sets a boundary on the bleed–
feed time tb. In practice, the harvest time th represents a prespecified time on the
cultivation time. Hence, the constraint (4.7) ensures that the bleed–feed time tb does
not exceed this cultivation time th.

In addition, implementing bleed–feed requires operator interaction. Hence, we
include constraint (4.8) to ensure that the bleed–feed happens in a shift, when
operators are available. Recall that every fermentation process starts with a setup.
In (4.8), we begin the first shift with a setup at time 0. A shift captures the time
period in which operators are present in the company, and it continues for l hours
0 < l ≤ 24, after which no operators are present for 24 − l hours. This pattern
repeats every 24 hours. See Figure 4.3 for an illustration of this pattern. The term dk

denotes the start time of the kth shift since time 0 (dk = 24k hours, for a ≥ k ≥ 0, and
integer k, where k = 0 captures the first shift of the fermentation). The term a limits
the number of shifts until bleed–feed, due to cell viability and production planning
restrictions.4 Then, the time until bleed–feed since time 0, i.e., tb + s, should be in
the time period that kth shift takes place, i.e., [dk, dk + l] for a ≥ k ≥ 0, and integer k.
In this case we also determine the value of k in our problem, representing on which

4In MSD AH weekly production schedules (also called as rhythm wheels) are applied. The limit a
can ensure that these schedules work smoothly with bleed–feed.
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shift bleed–feed must be performed to meet the requirement of operator availability.

setup

l

t (hours)d0=0 d1=24

....

.... da=24a

24-l l 24-l l 24-l

shift 1 shift 2 shift a+1

Figure 4.3: Illustration of the shift pattern. Gray areas represent shifts of l hours, and
white areas represent the times no operator is present at the company.

Finally, constraint (4.9) ensures bleed–feed is implemented successfully with
a certain probability level. We let q ∈ [0, 1] be the probability level the
biomanufacturer wants to achieve. Recall that the bleed–feed is successful when
the realized time of the exponential growth phase for the first cultivation is after
the bleed–feed time, i.e., t1 > tb. Then, constraint (4.9) ensures that the probability
of success is greater than q. If q = 1 the optimization problem captures a risk-averse
behavior, where the biomanufacturer wants each bleed–feed implementation to be
successful.

Our optimization problem takes these practically relevant constraints into account
to generate the optimal bleed–feed time that maximizes the expected profit per time
unit. We note that constraint (4.7) is valid for all settings. However, constraints (4.8)
and (4.9) might not always be necessary. For instance, a biomanufacturing company
working full time (i.e., 24 hours a day) has available operators the entire day. Or
a biomanufacturer might tolerate the risk of missing the bleed–feed as long as
the fermentation profit per time unit is improved. In the numerical analysis, we
investigate different cases by relaxing one or both of these (shift and the chance)
constraints to understand the impact of such restrictions and the value of flexibility
on the bleed–feed time.

4.3. Numerical Analysis

In this section, we present numerical analysis to (i) demonstrate the effect of
bleed–feed on the expected profit per time unit, and (ii) investigate the value of
flexibility on the performance of bleed–feed. We determine the base case parameters
combining literature study and fermentation data obtained from MSD AH. We
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present sensitivity analysis on the shift duration and the desired level probability
of successful bleed–feed implementation for the base case in Section 4.3.1. In
addition, we perform sensitivity analysis on critical process parameters; the waste
accumulation rate in Section 4.3.2, and revenue in Section 4.3.3.5

We establish the base case parameters as follows: The fermentation starts with b1 =

1 gram biomass. The biomass growth rate is µ = 0.06 cell divisions per hour. Waste
accumulation is modeled based on literature (Jang and Barford, 2000; Doran, 1995;
Ozturk et al., 1992). The initial waste amount at the beginning of the fermentation
is ω1 = 0.006 grams. Waste products accumulate with rate η = 0.07 per hour. The
probability density function to enter to the stationary phase is established from the
rate based on fermentation dynamics obtained from fermentation literature (Omasa
et al., 1992; Ozturk et al., 1992). Figure 4.4 depicts the probability density function
and the cumulative distribution function for the time to enter the stationary phase
used as base case, given that b1 = 1 and ω1 = 0.006 grams. The harvest time
of a cultivation (i.e., fermentation processing time without bleed–feed) is th = 72
hours, and setup duration is s = 8 hours in our numerical analysis. In accordance
with regulations and industry implementation, we extract 90% of the batch mixture
during bleed–feed, and let the remaining 10% continue the fermentation in the
second cultivation. Thus, ψ = 0.9. Finally, we determine the cost parameters from
literature (Martagan et al., 2016; Farid, 2007), and expert opinion based on industry
data. From m grams biomass we obtain r(m) = 1.3 m revenue, and for purification
cost we have cp(w) = 0.13 w as a result of purifying w grams waste products. Direct
cost of harvesting the batch is ch = 5 and implementing bleed–feed is cb = 1. We
refer to this setting as the base case in our numerical analysis. We note that the
parameters presented in this section are scaled.

To establish benchmark and assess the value of flexibility on bleed–feed decisions,
we consider the following cases in our numerical analysis:

No Bleed–feed (NoB) harvests the batch at time th, without implementing bleed–
feed. This case represents the common industry practice since bleed–feed has not
been widely adopted yet. We consider this case to understand when implementing
bleed–feed is not desirable.

Bleed–feed optimization (BO) relaxes both the shift and the chance constraints in our

5We also performed sensitivity on the biomass growth rate and the purification cost, and obtained
similar insights. For brevity, we focus only on sensitivity on the waste accumulation rate and revenue.
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Figure 4.4: The probability density function g(t|b1, ω1) and the cumulative distribution
function G(t|b1, ω1) to enter the stationary phase in the base case (b1 = 1 and ω1 =
0.006).

renewal model, and generates the optimal bleed–feed time to maximize the profit
per time unit. This case represents the most flexible case (assumes 24 hours operator
availability, and desired probability level of successful bleed–feed to be greater that
zero, i.e., l = 24 hours and q = 0). We use BO as a benchmark to assess the
percentage decrease in the bleed–feed performance when there are restrictions on
the bleed–feed time.

Risk-averse bleed–feed optimization (BORA) captures the case where all bleed–feed
implementations need to be successful and no risk of failure is tolerated. In this
case we relax the shift constraint, set q = 1 to represent risk-averse behavior of the
biomanufacturer and find the optimal bleed–feed time to maximize the profit per
time unit.

Bleed–feed optimization with shift (BOS) assumes a shift of eight hours (i.e., l = 8
hours), and generates the optimal time to implement the bleed–feed to maximize
the profit per time unit. In this case we relax the chance constraint.

Risk-averse bleed–feed optimization with shift (BORA+S) assumes risk-averse behavior
(i.e., q = 1) and a shift of eight hours (i.e., l = 8 hours), to generate the optimal
bleed–feed time to maximize the profit per time unit. BORA+S is our least flexible
case.

In our numerical analysis, we compare the (absolute values of) profit per time
unit if bleed–feed is not implemented (NoB), with the other cases with bleed–feed
implementation (BO, BORA, BOS, BORA+S) to observe under which settings bleed–
feed technique is not an attractive option. In addition, we calculate the percentage
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Table 4.2: Base case results.

NoB BO BORA BOS BORA+S

J t∗b J(t∗b) t∗b J(t∗b) D% t∗b J(t∗b) D% t∗b J(t∗b) D%
0.138 37.6 0.155 36.6 0.153 1% 40 0.142 8% 24 0.118 24%

decrease D% in the expected profit per time unit if we have restrictions on the
bleed–feed time (BORA, BOS, BORA+S), rather than having the most flexible case
BO. This way we investigate the effects of constraints on the bleed–feed decisions.

4.3.1 Base Case Results

In this section we present the results for the base case. In addition, we perform
sensitivity analysis on the duration of the shift l, and the probability of successful
bleed–feed implementation q that we want to satisfy to understand the effects of
shift and chance constraints on the optimal policies and performances of the cases.

Table 4.2 shows the results for the base case. We observe that the profit per time
unit is J = 0.138 if we do not implement bleed–feed (NoB). If we implement bleed–
feed with no restrictions on the bleed–feed time (BO), it is optimal to bleed–feed at
time t∗b = 37.6. In the risk-averse case BORA, optimal bleed–feed time is t∗b = 36.6,
slightly earlier than that of BO. The performance of bleed–feed decreases by 1% as a
result of having the chance constraint with q = 1. If we have the shift constraint only
(BOS), the optimal bleed–feed time is t∗b = 40, corresponding to the beginning of the
third shift. In this case the performance of bleed–feed drops by 8% compared to the
most flexible case. If we have both the chance and the shift constraints on the bleed–
feed time (BORA+S), the optimal bleed–feed time becomes t∗b = 24, corresponding
to the end of the second shift. This case restricts the bleed–feed time so much that
the system bleed–feeds too early. This results in 24% decrease on the bleed–feed
performance compared to BO. Observe also that this case results in less profit per
time unit J(t∗b) than NoB, meaning that adopting bleed–feed is not desirable.

We note that the performances of the cases with shift constraint (BOS and BORA+S)
are sensitive to problem parameters such as the shift duration, and how close the
optimal bleed–feed time from BO is, to any of these shift. To explain this further,
we plot the expected profit per time unit J(tb) as a function of the bleed–feed time



112 Chapter 4. Optimal Bleed–Feed Decisions under Practical Constraints

0.15

0.05

10 20 30 40 50 60 70

0.10

J(tb)

tb

Figure 4.5: Base case profit per time unit J(tb) versus tb for BO. Shaded areas correspond
to shifts of l = 8 hours.

tb for BO in Figure 4.5. The shaded areas represent the time corresponding to the
shifts of l = 8 hours (in our base case the first shift is spent with setup and hence
not included in Figure 4.5).

Observe in Figure 4.5 that the optimal bleed–feed time is at t∗b = 37.6, and bleed–
feeding earlier or later results in less profit per time unit J(tb). We see a steep
decrease in J(tb) after t∗b = 37.6, since it becomes more likely to miss the bleed–
feed opportunity. Still, observe in Table 4.2 that when we have a shift constraint
we bleed–feed later (t∗b = 40 in BOS). This is counter intuitive to common industry
belief that we would always bleed–feed earlier if optimal time in the most flexible
case is not feasible, because of the steep decrease in the profit per time unit.
However, observe from Figure 4.5 that the optimal bleed–feed time is much closer
to the next shift (starting at time 40) than the previous one (ending at time 24).
Hence, implementing the bleed–feed at the beginning of the next shift results in a
higher J(tb). Note that if the shifts would be longer, or the optimal bleed–feed time
would be earlier (due to different production settings) then it could be favorable to
bleed–feed earlier. For practitioners this implies that implementing the bleed–feed
earlier is not necessarily optimal if the bleed–feed time does not take place in a shift.

We now present a sensitivity analysis on the shift duration l that is imposed by
our shift constraint in (4.8) for the base case. We consider the following scenarios:
l = {8, 10, 12, 14, 16, 18, 20, 22} hours. These scenarios are given in the first column
of Table 4.3. Column BO represents the most flexible case, and column BOl
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represents the case with shift duration l, when the chance constraint is relaxed
(BOl=8 is equivalent to BOS). We report the optimal bleed–feed time t∗b and the
optimal profit per time unit J(t∗b) for each case. Column D% shows the percentage
decrease in expected profit per time unit if we have shift constraint on the bleed–
feed time with duration l. Observe from Table 4.3 that until l = 18, optimal bleed–
feed time is at t∗b = 40 for BOl . After l = 18, it becomes optimal to bleed–feed
earlier (than BO). Performance of BOl approaches to BO (i.e., D% decreases) in l.
When l = 22, the optimal time for the most flexible case BO and the case with the
shift constraint BOl is equal. This is because the optimal bleed–feed time from BO
takes place in a shift when l = 22.

Table 4.3: Sensitivity on the shift duration l for the base case.

BO BOl

l t∗b J(t∗b) t∗b J(t∗b) D%
8 37.6 0.155 40 0.142 8.0%

10 37.6 0.155 40 0.142 8.0%
12 37.6 0.155 40 0.142 8.0%
14 37.6 0.155 40 0.142 8.0%
16 37.6 0.155 40 0.142 8.0%
18 37.6 0.155 34 0.143 7.7%
20 37.6 0.155 36 0.150 2.9%
22 37.6 0.155 37.6 0.155 0.0%

Now, we focus on a sensitivity analysis on the probability level of successful bleed–
feed that the practitioners want to achieve q, captured by Constraint (4.9). We
consider the following scenarios: q = {1, 0.99, 0.98, 0.97, 0.96, 0.95}. These scenarios
are shown in the first column of Table 4.4. We present the results for the base
case, and for a lower risk batch (the probability of entering to the stationary phase
is lower at the same cultivation time). We illustrate the probability density and
cumulative distribution functions of the lower risk batch (together with the base
case) in Figure 4.6 in Appendix 4.A. For each of these risk scenarios, column
BO represents the most flexible case, and column BOq represents the case with
probability level q, when the shift constraint is relaxed (BOq=1 is equivalent to
BORA). We report the optimal bleed–feed time t∗b and the optimal profit per time
unit J(t∗b) for each case. Column D% shows the percentage decrease in expected
profit per time unit if we have a chance constraint with probability level q, rather
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Table 4.4: Sensitivity on the probability of successful bleed–feed q for the base case and
a case with lower risk (of entering to the stationary phase).

Base Case Lower Risk
BO BOq BO BOq

q t∗b J(t∗b) t∗b J(t∗b) D% t∗b J(t∗b) t∗b J(t∗b) D%
1 37.6 0.155 36.6 0.153 1.3% 40.4 0.213 36.6 0.205 3.5%
0.99 37.6 0.155 37.3 0.155 0.1% 40.4 0.213 38.3 0.210 1.2%
0.98 37.6 0.155 37.5 0.155 0.0% 40.4 0.213 38.9 0.212 0.6%
0.97 37.6 0.155 37.6 0.155 0.0% 40.4 0.213 39.4 0.212 0.3%
0.96 37.6 0.155 37.6 0.155 0.0% 40.4 0.213 39.8 0.213 0.1%
0.95 37.6 0.155 37.6 0.155 0.0% 40.4 0.213 40.2 0.213 0.0%

than having the most flexible case BO (for the corresponding risk scenario). Observe
from Table 4.4 that as the probability of success level q decreases, D% decreases,
meaning that BOq performs closer to BO. When we become more tolerant to failure
(lower q) the optimal bleed–feed time t∗b becomes later, and profit per time unit
J(t∗b) increases. Note that our base case setting is rather robust to the changes
in the probability level q. This is mainly because in our specific base case the
probability of entering to the stationary phase increases suddenly (see Figure 4.4).
As a result, t∗b from BO has a quite high successful bleed–feed probability, and the
chance constraint does not affect the bleed–feed decisions much. In the case with
lower risk, we can observe the impact of the chance constraint better. Practitioners
should keep this behavior in mind when they set their tolerance levels.

4.3.2 Sensitivity on the Waste Accumulation Rate

The waste accumulation rate η can differ for cell cultures based on the cell
characteristics, medium and equipment used. Hence, we consider the following
scenarios for waste accumulation: base case η = 0.07, slow accumulation η =

{0.055, 0.06, 0.065}, and fast accumulation η = {0.075, 0.08, 0.085, 0.09}. Table 4.5
presents these scenarios in the first column, and reports the profit per time unit J
and optimal bleed–feed time t∗b for relevant cases. Columns D% demonstrate the
percentage decrease in the cases with restrictions on the bleed–feed time (BORA,
BOS and BORA+S) compared to the case with no constraints (BO). Bold entries
represent the base case.
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Table 4.5: Sensitivity on the waste accumulation rate η.

NoB BO BORA BOS BORA+S

η J t∗b J(t∗b) t∗b J(t∗b) D% t∗b J(t∗b) D% t∗b J(t∗b) D%
0.055 0.210 42.1 0.266 41.4 0.265 1% 42.1 0.266 0% 41.4 0.265 1%
0.06 0.181 40.4 0.220 39.7 0.218 1% 40.4 0.220 0% 24 0.177 19%
0.065 0.158 38.9 0.184 38.1 0.182 1% 40 0.181 2% 24 0.143 22%
0.07 0.138 37.6 0.155 36.6 0.153 1% 40 0.142 8% 24 0.118 24%
0.075 0.121 36.3 0.132 35.3 0.129 2% 40 0.110 16% 24 0.098 26%
0.08 0.106 35.2 0.112 34.0 0.109 2% 40 0.085 24% 24 0.081 28%
0.085 0.094 34.2 0.095 32.8 0.093 3% 40 0.068 28% 24 0.067 29%
0.09 0.083 33.2 0.080 31.7 0.078 3% 40 0.057 29% 24 0.056 31%

Observe in Table 4.5 that the optimal bleed–feed time t∗b decreases as the accumu-
lation rate η increases. If waste accumulates too fast, environment deteriorates,
and the batch becomes more likely to enter stationary phase. Thus, we implement
bleed–feed early to avoid missing the bleed–feed opportunity. If waste accumula-
tion rate increases, profit per time unit J decreases for all cases. This is because
(i) we produce more waste and incur higher purification costs, and (ii) the biomass
growth will stop earlier due to growth inhibition leading to less revenue. If η is too
high (η = 0.09), bleed–feed is not an attractive option as we obtain less profit per
time unit J in BO than NoB. These results indicate that practitioners should adjust
their bleed–feed policies based on waste accumulation rate.

In Table 4.5, we see that percentage decrease D% ranges between 1 − 3% if we
have risk-averse behavior BORA, between 0− 29% for the case with shift BOS, and
between 1− 31% for the case with both risk-averse behavior and shift BORA+S. In
BORA, D% is lower if waste accumulates slower, meaning that BORA performs closer
to BO for batches with slow waste accumulation. This is because for high η, profit
per time unit J in BO is already low. Observe that for small accumulation rates,
i.e., η ≤ 0.06, BO is equal to the case with a shift constraint BOS (and BORA is
equal to BORA+S). The reason is that, the optimal bleed–feed time takes place in
a shift in these scenarios. As η increases, the optimal bleed–feed time decreases
to t∗b = 40 for BOS in our example. Yet, especially for scenarios with high η,
implementing bleed–feed at t∗b = 40 (from BOS), and t∗b = 24 from (BORA+S) result
in similar profit per time unit J, and performance decrease D%. This is because
the optimal bleed–feed time of BO is far away from both the previous shift and the
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Table 4.6: Sensitivity on the factor in the revenue function φr.

NoB BO BORA BOS BORA+S

φr φp/φr J t∗b J(t∗b) t∗b J(t∗b) D% t∗b J(t∗b) D% t∗b J(t∗b) D%
1.9 0.07 0.230 37.5 0.250 36.6 0.248 1% 40 0.231 8% 24 0.199 20%
1.7 0.08 0.199 37.5 0.218 36.6 0.216 1% 40 0.201 8% 24 0.172 21%
1.5 0.09 0.168 37.5 0.187 36.6 0.184 1% 40 0.172 8% 24 0.145 22%
1.3 0.10 0.138 37.6 0.155 36.6 0.153 1% 40 0.142 8% 24 0.118 24%
1.1 0.12 0.107 37.6 0.123 36.6 0.121 1% 40 0.113 8% 24 0.090 26%
0.9 0.14 0.076 37.7 0.091 36.6 0.090 2% 40 0.084 8% 24 0.063 31%
0.7 0.19 0.045 37.7 0.059 36.6 0.058 2% 40 0.054 9% 24 0.036 39%

next shift. In these scenarios, bleed–feeding is not an attractive option if we have
shift restrictions. Also observe that in BORA+S, implementing bleed–feed does not
increase J compared to NoB in any scenario (except from the scenario η = 0.055),
meaning that implementing bleed–feed is not desirable in the least flexible case.

4.3.3 Sensitivity on Revenue

Revenue obtained from unit biomass might differ based on the industry and the
final product (cell cultures), since revenue margins can change. Hence, we perform
sensitivity analysis on the factor in the revenue function, denoted as φr. Recall in
the base case we have r(m) = 1.3 m, hence, φr = 1.3. We also consider the following
scenarios: lower revenue φr = {0.7, 0.9, 1.1} and higher revenue φr = {1.5, 1.7, 1.9}.
Table 4.6 presents these scenarios in the first column, and reports the profit per time
unit J and optimal bleed–feed time t∗b for relevant cases. Columns D% demonstrate
the percentage reduction in the cases with restrictions on the bleed–feed time
(BORA, BOS and BORA+S) compared to the case with no constraints (BO). Besides
the revenue obtained from biomass, fermentation profit also takes the purification
cost into account. We let φp denote the factor in the purification cost function
(cp(w) = φp w with φp = 0.13 in the base case). We also conducted sensitivity
analysis on φp, and obtained similar insights. Hence, we present the sensitivity on
revenue alone for brevity, and we interpret our results based on the ratio φp/φr

given in the second column of Table 4.6. Bold entries represent the base case.

Observe from Table 4.6 that as φp/φr increases, fermentation profit per time unit
J decreases for all cases. In BO, the optimal bleed–feed time t∗b slightly increases
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in φp/φr. This is because the system is willing to take more risk in bleed–feed to
earn more, when the system gets less revenue compared to the costs incurred. This
implies that practitioners should adjust their bleed–feed decisions based on φp/φr.
Observe also that the optimal bleed–feed time is robust in the cases with constraints
(BORA, BOS and BORA+S). This is intuitive, as the biological characteristics of the
system remain unchanged, and the change in optimal bleed–feed time in BO is
very small among scenarios. The percentage decrease D% ranges between 1− 2%
in BORA, 8− 9% in BOS, and 20− 39% in BORA+S. We observe that D% increases
in φp/φr for all cases, meaning that the performance gets worse as φp/φr increases.
This can be explained as follows: The optimal bleed–feed times from BO and BORA

become more distant for higher φp/φr. This results in worse performance for BORA

compared to BO for high φp/φr. In BOS we bleed–feed later (at t∗b = 40) and
increase failure risk, and earn less from the extra time bioreactor is occupied since
revenue is lower. Hence, D% increases in φp/φr. In BORA+S, implementing bleed–
feed too early (at t∗b = 24) means that we give up on the extra biomass that could be
achieved due to exponential growth, while we earn less revenue from the biomass
produced due to lower revenue. Thus, D% increases in φp/φr. Finally, observe
that no bleed–feed case NoB results in higher profit per time unit J than BORA+S,
implying that implementing bleed–feed is not optimal.

4.4. Conclusion

Bleed–feed enables biomanufacturers to skip intermediary setups by replenishing
some percentage of the culture with medium, instead of harvesting the batch.
However, the time of bleed–feed is crucial for a successful implementation. Bleed–
feed is successful, only if it is performed in the exponential growth phase of the
fermentation. Since the exponential growth phase duration is random, finding the
optimal bleed–feed time is not straightforward. Implementing it too early, or too
late results in suboptimal fermentation profit per time unit. In addition, bleed–
feed implementation requires operator interaction, meaning that it can only be
implemented when operators are present in the company. Also, biomanufacturers
might tolerate different probabilities of bleed–feed failure. For instance, they might
want to implement bleed–feed ensuring that it is always successful. Such constraints
restrict the time bleed–feed can be implemented, and its potential benefits. In this



118 Chapter 4. Optimal Bleed–Feed Decisions under Practical Constraints

work, we extend our renewal model from Chapter 3, and determine the optimal
bleed–feed time to maximize the fermentation profit per time unit. Our model links
the biological dynamics of fermentation with operational trade-offs of bleed–feed
decisions, and our optimization problem includes practically relevant constraints to
capture restrictions on the bleed–feed time.

We present a numerical analysis inspired from literature and fermentation data
from MSD AH. By relaxing the constraints, we consider different cases to investigate
the value of flexibility in bleed–feed decisions. We perform sensitivity analysis
on the critical process parameters to generate insights on the bleed–feed with
constraints under different production configurations. Our numerical analysis
reveals that it is not necessarily better to bleed–feed earlier if bleed–feed time is
not during a shift, and chance constraint has more impact for low-risk batches. We
observe that in our example the risk-averse case usually performs the best, and the
least flexible case is the worst, compared to the most flexible case. We also see that
if we have a shift constraint and risk-averse approach, bleed–feed is not desirable.

4.A. Low-Risk Batch

Figure 4.6 demonstrates the probability density function and cumulative distribu-
tion function of the base case (solid line) and the batch with lower risk of entering
the stationary phase (dashed line) of Table 4.4, for b1 = 1 and ω1 = 0.006.
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Figure 4.6: The probability density functions g(t|b1, ω1) and the cumulative distribution
functions G(t|b1, ω1) to enter the stationary phase in the base case (solid line) and the
case with a lower risk (dashed line) for b1 = 1 and ω1 = 0.006.
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5.1. Introduction

Animals have important roles in our daily lives. They can be our companions,
such as service animals and domestic pets. Some of them contribute to our food
supply with milk, eggs, and meat. Caring for them is critical to improve the health
and welfare of not only animals but also humans. For example, there are several
zoonotic diseases that are naturally transmitted between animals and humans. A
recent report published by the World Health Organization estimates that 61% of all
human diseases are zoonotic in nature (World Health Organization, 2019). This
emphasizes the critical role of the pharmaceutical industry in maintaining the
health and welfare of animals as well as humans.

Recent advances in biomanufacturing have led to innovative medicines for animals
and humans. The active ingredients of these medicines are generated by novel
biomanufacturing methods. These methods can successfully re-engineer and
use living organisms (e.g., bacteria and viruses) during the production process.
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The resulting active ingredients are highly complex and unique. For example,
a biopharmaceutical molecule might contain 25, 000 atoms whereas an aspirin
molecule consists of only 21 atoms (McKinsey & Company, 2014). This complexity
leads to several challenges related to the predictability, stability, and batch-to-batch
variability in biomanufacturing operations.

Regulatory requirements for the biomanufacturing of animal health products are
equally stringent compared with those for human health and might also require
additional studies to ensure food safety. Most importantly, unlike human drugs
that are often subsidized, animal owners are responsible for paying the full price
for these drugs. Subsequently, this restricts the acceptable prices in the animal
health industry. For example, from a farmer’s perspective, the price of a vaccine
should be justifiable compared with the actual value of (or revenue obtained from)
a healthy animal. From a biomanufacturer’s perspective, this leads to smaller
margins for covering the risks and costs and creates a strong incentive to improve
biomanufacturing efficiency.

Increasing market demand is another critical reason for improving biomanufactur-
ing efficiency. As such, recent market analyses anticipate that the total demand
for animal products will double in developing countries by 2030, and the global
demand for companion animals will grow exponentially during the same period
(Food and Agriculture Organization of the United Nations, 2018; Grand View
Research, 2018). To stay competitive, biomanufacturers around the world are
looking for novel methodologies and opportunities to reduce costs and lead times.
“Our target is to double our output in the next five years” says Bram van Ravenstein,
Associate Director at MSD AH, “We cannot rely only on capacity expansions to
achieve this target. We also need to get the best use of our existing capacity by
optimizing our production processes.”

Operations research (OR) methodologies have benefited several industries by
reducing costs and lead times. However, the applications of OR methodologies to
biomanufacturing are still premature. This is mainly because, to date, the scientific
capability to produce these drugs was one of the main competitive advantages.
However, with growing competition, there is an increasing need for a data-driven,
OR-based transformation to reduce biomanufacturing costs and lead times.

In this chapter, we develop a portfolio of optimization models and decision support



5.2 Overview of Biomanufacturing Operations 121

tools for biomanufacturing operations.1 To generate these models, we adopted a
systematic approach that combines life sciences research with various OR method-
ologies. The project has been conducted through a three years of close collaboration
between Eindhoven University of Technology (TU/e) and Merck Sharp & Dohme
Animal Health (MSD AH) in Boxmeer, the Netherlands. MSD AH’s facility in
Boxmeer is one of the world’s leading biomanufacturing centers. Hereafter, we use
the term MSD AH to refer to the Production Department of the Boxmeer facility.
Although we focus on MSD AH’s operations, the true impact of this work extends
to other biomanufacturing companies (including human health applications). The
project outcomes have been shared with a broader biomanufacturing community
through working group sessions (Nederlandse Biotechnologische Vereniging, 2018)
and social media (MSD, 2019).

5.2. Overview of Biomanufacturing Operations

Figure 5.1 illustrates a generic biomanufacturing process flow. Biomanufacturing
operations typically consist of upstream processing (USP) and downstream pro-
cessing (DSP) activities. USP starts with preculture. In this step, a working seed
(i.e., a small volume of inactive cells, such as 5 ml) is fed with a medium. This
enables the working seed cells to divide, grow, and get ready for fermentation.
Next, the preculture is transferred into a bioreactor to conduct a fermentation
operation. Bioreactors are typically stainless-steel vessels or flasks that provide a
highly controlled environment to facilitate cell growth. Depending on the specific
application, bioreactors can significantly vary in size, e.g., 1 to 1500 L. In the
fermentation, the cells are fed with a medium to help them grow and produce
the desired end products (e.g., antigens, proteins, antibodies, etc.). The output
of fermentation is a batch mixture consisting of the desired end products and
unwanted impurities (e.g., byproducts, dead cells, etc.). Hereafter, we use the term
antigen to refer to the desired end products in our specific problem setting.

Production steps after fermentation are referred to as DSP. The main aim of DSP
is to purify the fermentation output. More specifically, the antigens are separated
from unwanted impurities, so that the batch can be stored safely and remains stable
until it is shipped to customers. Centrifugation, chromatography, and filtration

1A brief video on this project is available at https://youtu.be/79B7OBuvRkY.

https://youtu.be/79B7OBuvRkY
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Figure 5.1: A general overview of biomanufacturing operations.

are common examples of DSP activities. Depending on the characteristics of the
cell culture, production requirements, and regulations, different combinations of
DSP operations are applied in different orders. After DSP operations, the end
product is stored to be shipped to customers. Among all USP and DSP operations,
fermentation is the bottleneck of our production setting at MSD AH. This is also
the main step in the complete process where the antigens are actually being made
by living organisms.

5.2.1 Fermentation Operations

During the fermentation process, the cell growth follows a specific pattern, as
illustrated in Figure 5.2. Typically, six different growth phases occur during a batch
fermentation process. First, the cells go through the lag phase. During the lag
phase, cells adapt to their new environment, and hence do not undergo any growth.
Growth starts in the acceleration phase and continues through the exponential
growth phase where it reaches a maximum for that batch. When the nutrients are
depleted in the medium, the cell growth slows down and enters the deceleration
phase. Next, the culture enters a stationary phase in which the cell growth stops. In
the death phase, the cells lose viability and die. During the fermentation process,
the cells produce the antigens as they grow. Therefore, a common industry practice
is to harvest the batch at the deceleration or stationary phase, as the fermentation
operating costs do not typically outweigh the incremental gains in production yield
obtained during these growth phases.

Although the fermentation process is highly controlled, the time spent in each
growth phase and the rate at which the cells grow can be highly variable in
practice. This is mainly because of the complex biological and chemical dynamics of
fermentation processes. From a practical perspective, this leads to significant batch-
to-batch variability in terms of processing times, production yields, and costs. These
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Figure 5.2: Typical phases of cell growth during fermentation.

operational challenges have led to three main process improvement opportunities
at MSD AH, namely, the bleed–feed problem, the yield optimization problem, and
the rhythm wheel problem. We elaborate on each of these problems in the following
sections.

5.2.2 The Bleed–Feed Problem

The bioreactor needs to be cleaned and sterilized after each use. In practice, these
changeovers often require several expensive resources, such as buffers, mediums,
special equipment, and highly skilled labor. In addition, these changeovers are time
consuming, as up to one-third of the total fermentation operating time can often
be spent on cleaning and sterilization activities. Therefore, there is a significant
business case in the industry to reduce bioreactor changeovers.

To reduce the number of changeovers, MSD AH developed a new replenishment
technique named bleed–feed. Bleed–feed is also a novel technique in the life science
literature, especially in the context of batch fermentation processes. With this
technique, instead of harvesting the entire batch at the stationary phase, some
fraction of the cell culture is extracted during the exponential growth phase (bleed)
and a special medium is added (feed). Subsequently, the remaining cell culture
acts as a seed for a new fermentation run and continues to grow at the exponential
growth phase. Therefore, if the bleed–feed is performed successfully, it enables the
changeover activities and the lag phase of the subsequent batch to be skipped. From
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Figure 5.3: A box plot to compare the average production yield of Lines A, B, and C.

a practical standpoint, if performed successfully, the bleed–feed technique provides
a significant opportunity to reduce fermentation costs and lead times.

As a critical constraint, the bleed–feed can only be performed in the exponential
growth phase. Otherwise, the technique does not work, and the entire batch needs
to be harvested. In this setting, identifying the best bleed–feed time is challenging
because the time when the exponential growth phase stops is unknown beforehand
(i.e., the duration of each cell growth phase is stochastic). This implies that if the
bleed–feed is carried out too early, then we might not achieve the maximum yield
from that batch. In contrast, if it is performed too late, then the batch needs to be
harvested and the bioreactor needs to be set up for the next batch. This leads to the
bleed–feed problem, which aims to optimize this trade-off. To identify the optimal
bleed–feed time, a formal decision-support tool is needed.

5.2.3 The Yield Optimization Problem

Once a bioreactor is set up for fermentation, a natural incentive is to achieve the
highest possible production yield from that batch. However, the fermentation
process is highly unpredictable, and several factors affect the production outcomes.
This is illustrated in Figure 5.3, which is also the business case for the yield
optimization problem. The box plot in Figure 5.3 shows the mean and variability
of annual production yield obtained from three production lines (Line A, B, and
C) at MSD AH. These production lines conducted the same fermentation process
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using an identical recipe (i.e., the cell paste, physicochemical parameters, buffers,
and all other critical control parameters were identical across these production
lines). However, Line C consistently produced lower production yields, as shown
in Figure 5.3.

The only difference between these three production lines was the bioreactor type
used. Interestingly, Line C was using a new bioreactor with latest technology.
Further investigation showed that this new bioreactor had a different mixing
mechanism, leading to a different type of flow inside this bioreactor. This implied
that a controllable input parameter needed to be adjusted to achieve the best
performance from Line C. (The specific name of this parameter is confidential.
Hereafter, we refer to it as the critical process parameter.)

However, finding the best configuration for the critical process parameter was a
challenging problem in practice. First, there were no information in the literature
to estimate how production yield (of that specific cell culture) would change as a
function of this critical process parameter under this new bioreactor technology.
Therefore, MSD AH needed to conduct several experiments to understand this
relationship. However, it was not possible to conduct these experiments at the
laboratory scale because of resource limitations and potential scalability issues.
This implied that experiments needed to be conducted at the industry scale.
Subsequently, this has led to an optimal learning problem, where the relationship
between the critical process parameter and yield needed to be quantified under a
limited number of experiments. Note that each of these experiments were expensive
as they were conducted at the industry scale. In addition, the yield obtained from
each experiment would be subject to an inherent randomness owing to biological
dynamics. Therefore, a smart experimental design mechanism was needed to
identify the best parameter configuration at a limited number of bioreactor runs.

5.2.4 The Rhythm Wheel: Production and Capacity Planning
Problems

Production planning can often be challenging in biomanufacturing practice owing to
several factors. For example, the use of living cells causes batch-to-batch variability
in yield and processing times. In addition, each antigen has unique production
requirements. More specifically, the production process of each antigen needs to
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abide by a unique recipe indicating the specific production configurations and
associated resources (i.e., media, seed cells, buffers, equipment, etc.). This recipe
can impose constraints on production planning decisions, i.e., not every antigen
is permitted to be produced on every process line. Similar constraints are also
applicable for equipment selection decisions. Equipment such as bioreactors might
vary in size and technology. Subsequently, processing times of antigens may
depend on the type of equipment being used. Some equipment also requires further
sterilization steps in addition to the standard cleaning process performed after each
batch. All these factors translate into differences in processing and set-up times for
each possible equipment–antigen pair.

The production process involves several inter-dependent operations to be com-
pleted. For example, the manufacturing process for one antigen (from working
seed to end product) might involve up to 3, 000 inter-dependent production steps
(i.e., including buffer and media preparation, documentation, setups, cleaning,
control, etc). In this setting, a sub-optimal performance in one production step
has a magnifying impact on the subsequent operations. In addition, bio-safety
requirements introduce “no-wait” constraints between different production steps.
If an antigen waits as work-in-progress, its quality deteriorates rapidly and the
entire batch needs to be scrapped. The no-wait constraint adds an additional layer
of challenge, as it requires a rigorous production plan and a smooth flow of all
products throughout the system.

Biomanufacturers face with capacity planning challenges. One of the key factors
is the shared use of resources, such as equipment, operators, and utilities. For
example, specialized equipment (e.g., bioreactors with a unique mixing and
aeration technology) can often be limited in number, and shared between different
process lines. Similarly, highly skilled scientists can be assigned to multiple
process lines. The workforce consists of scientists with different skill sets. Some
tasks, such as operating a chromatography technique, can be performed by highly
skilled scientists only. Therefore, allocation of antigens to shared resources and
specialized scientists might make production and capacity planning decisions even
harder. Another critical factor is associated with unpredictable and non-stationary
demand (i.e., in our context, non-stationarity means that monthly demand is not
constant and changes over time. This could be associated with several factors, such
as, seasonality, surge in demand due to an unforeseen disease spreading among
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animals, etc.). This implies that production and capacity plans should be flexible
enough to quickly respond to changing market needs.

To address these challenges, MSD AH tested several commercially available
software packages to support production and capacity planning decisions. How-
ever, existing software packages were not fully equipped to address all of the
complexities and unique features of their production system. Consequently, MSD
AH relied on past experience and domain knowledge. Production plans were
generated manually by the most experienced planners, and revised on a weekly
basis. However, there was a strong need for an automated and rigorous framework
to achieve better system control and predictability.

5.3. Operations Research Tools Provide Solutions

A portfolio of OR tools have been developed over three years of collaboration with
a multidisciplinary team of researchers from MSD AH and Eindhoven University of
Technology. Figure 5.4 presents a summary of the OR tools in terms of their input,
output, and the OR methods used.

Bleed‐Feed Tool
(using Renewal Theory)

Biological constraints
Fermentation dynamics Optimal bleed‐feed time

Input OutputOperations Research Tools 
(Operations Research Methods)

Yield Optimization Tool
(using Bayesian Design of Experiments)

Historical data
Expert opinion

Optimal process parameters
Information collection policy

Rhythm Wheel Tool
(using Simulation‐Optimization)

Production schedules
Production configurations

Performance assessment of rhythms
Production and capacity plans

Figure 5.4: Summary of the tools developed in this project.

The bleed–feed and yield optimization tools address the challenges faced in USP
activities. Both of them aim to improve fermentation processes in terms of increased
throughput and reduced lead times. The rhythm wheel tool addresses production
and capacity planning challenges and captures both USP and DSP activities. In
this context, the term rhythm wheel refers to cyclic production plans. These tools
are developed based on a variety of OR methods, such as renewal theory, Bayesian



128
Chapter 5. Operations Research Improves Biomanufacturing Efficiency at MSD

Animal Health

design of experiments, and simulation-optimization. In this chapter, we elaborate
on each of the tools, and discuss the implementation process at MSD AH.

5.3.1 Relevant Literature and Contributions

There is a large body of work in the field of chemical and biological engineering.
For brevity, we focus on relevant studies in the field of Operations Research and
Management Science (OR/MS).

To date, applications of OR/MS methodologies in biomanufacturing have received
little attention. In the context of fermentation modeling and control, there are only a
few studies related to our work (the bleed–feed tool). For example, Martagan et al.
(2016) present a Markov decision process model to optimize bioreactor harvesting
decisions but do not consider bleed–feed decisions. In a similar context, Xie et al.
(2020) provide a Bayesian Network to capture the inter-dependence between process
parameters and quality attributes. Structural characteristics of the optimal bleed–
feed policies are analyzed in Koca et al. (2021a). However, Koca et al. (2021a)
focus on the mathematical analysis of optimal polices, and do not discuss the
implementation and integration of the three developed tools at MSD AH.

The yield optimization tool builds on the well-known theory of optimal learning
and Bayesian design of experiments. In this context, our work presents a real-world
application of the theory described in Powell (2010); Gelman et al. (2013); Frazier
(2014, 2018).

The rhythm wheel tool is closely related to the field of production planning
and scheduling in OR/MS. In this context, several studies address common
industry challenges. For example, Limon and Krishnamurthy (2020) use Queuing
Theory to address a resource allocation problem in protein purification. Petrides
and Siletti (2004) discuss the benefits of process simulation in biopharmaceutical
plants. Similarly, Leachman et al. (2014) develop an optimization-based production
planning tool for the biotechnology industry. However, existing studies and
commercially available software did not fully address the specific needs of MSD
AH. The rhythm wheel tool presented in our work uses the well-known theory of
simulation-based optimization, and addresses the specific needs and challenges of
MSD AH.
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5.3.2 The Bleed–Feed Tool

The bleed–feed tool determines an optimal bleed–feed time for a batch to maximize
the long-run expected yield obtained per unit time. The tool uses renewal theory,
and combines cell-level dynamics (i.e., cell growth phases and yield accumulation
mechanisms) with manufacturing-level dynamics (i.e., harvest risks and yield trade-
offs) to support decision making.

The input to the renewal model is related to the underlying dynamics of the fer-
mentation process, such as the initial amount of pre-culture, biomass accumulation
rate, set-up time, and parameters of the probability distributions related to the
duration of the cell growth phases. The tool determines an optimal time to perform
the bleed–feed operation to maximize the expected reward, namely expected
throughput (i.e., expected yield obtained per unit time). To optimize the expected
throughput of the system, the renewal model captures the expected yield and the
expected cycle time as a function of the bleed–feed time. In this setting, a renewal
cycle starts with a new setup. To calculate the expected yield of a renewal cycle,
we developed a stochastic model that captures how the antigens accumulate over
time during fermentation. This stochastic model is established based on Monod-
type equations obtained from the biological and chemical engineering literature
(Monod, 1949; Doran, 1995).

To calculate the expected cycle time, the renewal model considers the complex
interaction between the bleed–feed time and the randomness in the duration of
the exponential growth phase. Note that the bleed–feed operation can be performed
only during the exponential growth phase. However, the time when the exponential
growth phase ends is stochastic. This has complex implications on the expected
yield and cycle time of a renewal cycle. More specifically, if the bleed–feed is
performed after the exponential growth stops, then the bleed–feed is unsuccessful
and the batch is harvested. In the model, this implies the end of a renewal
cycle. Whereas, if the bleed–feed is successful, then the exponential growth phase
is prolonged and the cells continue to grow for another round without any set-
ups. This means that the existing renewal cycle continues, and hence the expected
yield and cycle times continue to evolve accordingly. Therefore, the renewal
model considers the random evolution of the yield and cycle time as a function
of the bleed–feed time and identifies an optimal policy to maximize the resulting
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Figure 5.5: Example output of the bleed–feed tool.

throughput. We refer to Appendix 5.A for more information on the mathematical
model.

The tool is developed in MATLAB® software. An integration with MS Excel is also
provided for a user-friendly interface. Users enter the input parameters into an
Excel file. Then, the renewal model runs automatically and calculates the optimal
bleed–feed time. As an output, the tool reports an optimal bleed–feed time and
its corresponding long-run expected throughput. In addition, the tool reports a
plot that shows how the expected throughput changes as a function of the bleed–
feed time. For example, Figure 5.5 represents an example output of the tool for a
case study at MSD AH. In this case study, two years of production data have been
analyzed for a specific antigen to identify model inputs. In this figure, we see that
there is a unique optimal bleed–feed time (indicated with the dotted line). We can
also observe that the model indeed captures the trade-off between yield and bleed–
feed risks: performing the bleed–feed operation too soon leads to a sub-optimal
throughput (i.e., the left-hand side of the optimal bleed–feed time) because of the
lower yield collected from a bioreactor run; whereas, performing it too late also
yields a sub-optimal throughput (i.e., the right-hand side of the optimal bleed–feed
time), mainly because of the increased risk of missing the bleed–feed opportunity
and incurring set-up costs for the subsequent batch.

Prior to the bleed–feed tool, there were no tools or models available in common
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practice to assist with the bleed–feed decision. This decision was mainly made
based on expert opinion and domain knowledge. The bleed–feed tool provides a
data-driven and quantifiable approach to understand the system risks and optimize
bleed–feed decisions.

5.3.3 The Yield Optimization Tool

The yield optimization tool builds a methodological approach for MSD AH to
identify the best possible process configuration using a limited (and predetermined)
number of experiments. First, we start by explaining our modeling assumptions. In
our specific case study, we did not have full knowledge of the expected batch yield
as a function of the critical process parameter. Therefore, we assumed a generic
setting in which the expected yield was not necessarily monotone or concave in
the critical process parameter. The yield obtained at each experiment was assumed
to be normally distributed, with a mean and variance that depend on the critical
process parameter. We validated this normality assumption through statistical
analysis of a two years of production data. We also assumed an independent and
identically distributed noise for each experiment, as the bioreactor was sterilized,
and the system was reconfigured after each use.

The main goal of the project was to achieve the highest possible batch yield by
adjusting the value of the critical process parameter. However, we had a limited
budget for conducting experiments, and hence our central research problem was
to smartly design an information collection policy in such a way that it would
eventually lead us to an optimal value of the critical process parameter. To address
this problem, we adapted a Bayesian approach, and modeled the uncertainty in
the yield function by using a Gaussian process prior, which is commonly used
to model continuous functions in Bayesian spatial statistics (we refer to Murphy
(2012) for details on Gaussian processes). In our setting, the starting Gaussian
process prior was determined based on expert opinion and domain knowledge.
Then, we built a dynamic programming (DP) model with the objective of finding
the best information collection policy that maximizes the expected yield. Following
the literature on Bayesian methods for simulation optimization, we used the
knowledge-gradient (KG) policy to build a one-step ahead approximation to the
optimal policy (Powell and Ryzhov, 2012; Frazier, 2018). The main idea of KG
policy is to compare the myopic value of what we learn from sampling different
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Figure 5.6: Example output of the yield optimization tool.

choices of the critical process parameter. Based on this information, KG policy
suggests a specific value to be tested in such a way that the expected difference
in value between our current knowledge on the prior distribution and our one-
step lookahead knowledge on prior distribution is maximized (see Appendix 5.B
for details on the mathematical model, and Frazier (2018) for a recent review on
Bayesian optimization).

The output of the yield optimization tool is an information collection policy and
an estimate of the best value of the critical process parameter that maximizes the
expected yield. Figure 5.6 illustrates an example output of the tool. This figure
plots our final belief on the expected yield as a function of the critical process
parameter (we note that the original result is scaled to protect confidentiality). In
this case study, eight real-world experiments were conducted to build this function.
We observed that the end result is a monotone and concave function. The tool was
developed using MATLAB® software, and open-source packages on KG heuristic
and Bayesian learning were used to complement it. The tool provided a formal
and rigorous approach to MSD AH for optimally designing experiments to support
process improvement projects.
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5.3.4 The Rhythm Wheel: Production and Capacity Planning Tool

The rhythm wheel tool addresses production and capacity planning problems of
biomanufacturers. The tool is designed to help MSD AH assess the feasibility of
a weekly production schedule and create smart schedules with higher throughput
and lower lead times than the current practice. In addition, the tool is used to
evaluate and justify capacity planning decisions at MSD AH.

The rhythm wheel tool consists of three steps: simulation, optimization, and
visualization. The simulation model is developed with the Arena software and
contains more than 8000 inter-dependent production steps for 48 different products
with their unique routing on 25 pieces of equipment. The simulation model contains
three main components: (1) a planning component in which a specific production
rhythm is defined; (2) USP activities with a detailed process flow of pre-culture
and fermentation operations; and (3) DSP activities with a detailed process flow
of purification operations. The simulation model also captures several critical
production constraints, such as bill of materials, precedence requirements, and the
no-wait constraint in the system.

The main input to the simulation model includes a list of equipment and
constraints on their availability (i.e., some processes cannot operate overnight
as close monitoring might be needed), a list of available operators and their
corresponding skill sets, routing information for each antigen, bill of materials,
antigen-specific production steps and their corresponding processing times (i.e.,
distribution, mean and standard deviation of each operation), and a production
rhythm to be evaluated. However, we note that further details of the simulation
model (i.e., process flow diagrams, bill-of-materials, information on processing
times and steps) are not disclosed to protect confidentiality. After the simulation
model was built, it was linked to a simple MS Excel file to provide a user-friendly
interface. This allowed the user to easily edit and change model inputs without
interfacing with the details of the simulation model. For example, the user can input
a specific rhythm to the Excel user interface by entering the names of antigens to be
produced and their corresponding start time at the main fermentation operation.
The simulation model retrieves this information and matches it with antigen-
specific USP and DSP operations to run the simulation model. As an output,
the rhythm wheel tool presents critical performance parameters (e.g., throughput,
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utilization, and manufacturing lead times) obtained through a long-run (e.g., two
years) simulation of the model.

After the simulation step, the tool uses a Tabu search algorithm in the optimization
step to create smart schedules. The objective of the optimization step is to
maximize throughput. For this purpose, the optimization model searches over
feasible rhythms by changing the order and the start time of antigens in the main
fermentation step. For a rhythm to be feasible, it should (i) have zero waiting times
between biological processes (from pre-culture to main culture, or from USP to
DSP), (ii) maintain the equipment utilization below a predefined threshold level
(e.g., 90% utilization), and (iii) comply with production constraints (i.e., some
resources are not available during night shifts, some operations must be performed
by specific equipment or scientists, etc.). Considering these constraints, the tool
determines when and on which process line the antigens should be produced. In
case the planner is interested in evaluating (but not optimizing) the performance of
a specific rhythm, she can skip the optimization and proceed with the visualization
step.

After the optimization step, the tool visualizes the results in a dashboard. The
dashboard reports the performance of a given rhythm (i.e., equipment utilization,
throughput, and waiting times) in a way that is visually appealing and easy
to understand for users. For example, equipment utilization and waiting times
are presented in the form of a simple bar chart. If the equipment utilization
exceeds 90% (utilization constraint) or waiting times are greater than zero (no-wait
constraint) for a process line, then the schedule is clearly undesired.

Prior to the rhythm wheel tool, MSD AH relied on past experience and spreadsheet
calculations to support production and capacity planning decisions, and the
corresponding system performance could be assessed only through real-world
implementation. The rhythm wheel tool provided a rigorous and reliable approach
for predicting and better controlling the production system.

5.4. Implementation

Throughout the collaboration, MSD AH provided strong expertise on the life-
science-related aspects of the project, and Eindhoven University of Technology
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(TU/e) brought in expertise on OR. In this way, we encouraged an active
collaboration leading to a smooth and successful implementation of the developed
tools in daily operations. In compliance with common practice at MSD AH, we
adopted the plan–do–check–act (PDCA) cycle to execute the project. The PDCA
cycle is an iterative method for continuous improvement. Based on this approach,
we describe the main steps of the project as follows.

1. Plan: The project was planned and monitored through regular meetings and
brainstorming sessions at MSD AH. We conducted these meetings on a daily
or weekly basis, depending on the specific needs of the project. Every three
to four months, we provided an update presentation to a larger audience at
MSD AH (including potential end users from various departments). In these
meetings, we formulated specific objectives and reviewed the progress leading
to the development of OR tools.

2. Do: This step corresponds to data collection, analysis, and development of OR
tools.

3. Check: We validated the developed models and assumptions through expert
opinions, historical data, and either laboratory- or industry-scale experiments.
We also conducted numerical (sensitivity) analysis to check the robustness of
the tool output and the quality of solutions.

4. Act: Based on the results obtained from the steps above, we identified
improvement opportunities. We performed tool enhancements by revising
the models, assumptions, and adding new features. To ensure a smooth
implementation of the tools in daily operations, we automated their input and
output and developed user-friendly interfaces.

A multi-disciplinary team of researchers were involved in the execution of the
project. The core team at MSD AH consisted of three people and the extended team
involved around ten researchers from various departments (i.e., including upper
and middle management, process improvement engineers, and scientists working
on daily production processes in clean rooms). The TU/e team consisted of two
faculties, one Ph.D. student, and four Master’s students. The students worked full-
time on the project while supervisors from TU/e and MSD AH provided daily
guidance. No formal “maintenance contract” was signed between TU/e and MSD
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AH for the work done. However, it is envisioned that the developed tools will be
maintained and enhanced over time through continued collaboration. For example,
currently, MSD AH is sponsoring two new Ph.D. students (for four years) and
around two Master’s students per semester to sustain a longer-term collaboration.

In the following, we elaborate on the implementation process, and describe the
challenges and opportunities raised throughout the process. First, we focus on the
implementation of the bleed–feed tool and yield optimization tool, then elaborate
on the rhythm wheel tool.

5.4.1 Implementation of the Bleed–Feed Tool and Yield Optimiza-
tion Tool

In this section, we discuss the implementation of the bleed–feed and yield
optimization tools together, because both of these tools focus on fermentation, and
their implementation steps are similar.

Data collection. Fermentation is a highly controlled process where several
physicochemical parameters (e.g., temperature, pH, etc.) are monitored and
documented for regulatory purposes. Throughout the project, such process data
were useful in modeling and analyzing the fermentation dynamics. For example,
for the bleed–feed tool, antigen-related information (initial biomass amount and
resulting yield) were obtained from historical data. However, in some cases,
available process data were limited, and did not have sufficient information to
justify our model assumptions. Therefore, several test runs were conducted at the
laboratory or industry scale to collect the required information. For example, for
the bleed–feed tool, the cell growth behavior after the bleed–feed operation was
not fully known. Expert opinion indicated that the duration of the exponential
growth phase would be prolonged with bleed–feed, and this behavior was later
validated through laboratory-scale experiments. In some other cases, required
data were not available but could be inferred from process measurements. For
example, the duration of cell growth phases was not available. However, by
detecting some pattern changes in certain physicochemical parameters, each cell
growth phase duration was calculated. Such data were preprocessed manually, and
then converted into a digital format.

For the yield optimization tool, the relationship between the critical process
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parameter and yield was unknown, and hence industry-scale experiments were
performed to understand this relationship. These experiments were conducted
during the Christmas break. This time period was most suited to conduct such
large-scale experiments, as most productions line were not active. This also
meant that some operators agreed to work during this holiday break to perform
the test runs. For some laboratory- or industry-scale experiments, additional
sensors needed to be installed to measure the required parameters. As a hands-
on approach, internship students from Eindhoven University of Technology were
trained to independently operate these sensors and collect data.

Validation. The developed models and assumptions were validated through
historical data, test runs, and expert opinions. Relevant papers from the life-science
literature were also used to validate model assumptions on cell growth. What-
if analysis was conducted to test the robustness of proposed solution. Then, the
proposed policies were tested through laboratory- or industry-scale experiments.
Results of these test runs were continuously monitored and discussed through
regular meetings. For the yield optimization tool, the post-implementation process
played a vital role in validation. After the new configuration of the critical process
parameter was implemented, results of the industry-scale production runs were
closely monitored for several months; the mean and variance of the batch yield were
analyzed to ensure the quality and stability of the new production configuration.

Automation and tool enhancements. The input and output of the tools were
automated through spreadsheet models. Simple user interfaces were developed
at MS Excel to help scientists use the tools without interacting with the underlying
optimization model. Through regular meetings with potential end users, we made
several enhancements to the tools. For example, the objective of the bleed–feed
tool was initially defined as to maximize the average profit. However, sensitivity
analysis of the tool output revealed that the optimal bleed–feed time was very
sensitive to the cost parameters. Therefore, we revised the objective function as
to maximize the throughput. The solution obtained from the revised objective was
more robust, and easier to adopt in practice. A critical feature we added to the
bleed–feed tool was a module allowing the user to optimize the harvesting time.
We decided to add this feature, after we observed that the current harvest policy
was sub-optimal for the corresponding case study. Based on the user’s preference,
the enhanced version of the tool can optimize the bleed–feed time alone, harvesting
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time alone, or jointly optimize both of them. Similarly, the yield optimization
tool was initially developed to predict the expected yield as a function of one
critical process parameter. As an enhancement, the model was extended to capture
dependencies over multiple process parameters. This enhancement could be useful
for future implementations at other process lines.

5.4.2 Implementation of the Rhythm Wheel Tool

Data collection. Biomanufacturing is a highly regulated environment where all
processes are closely monitored and documented. This implies that relevant data
were mostly available. However, finding the correct data from the appropriate
resource in the correct format was not straightforward. During the project, we
needed to track down process data from different resources and then matched
them to ensure compatibility with the rhythm wheel tool. For example, ten years
of USP data (on processing times and production parameters) were recorded for
regulatory purposes. These USP data were stored in separate Excel spreadsheets
for each antigen. We extracted relevant information from these spreadsheets and
combined them into one master file. However, this master file did not include DSP
data. Unlike USP data, DSP data were not available in a digital format. Therefore,
we needed to pre-process and digitalize this information. We knew that every
item of DSP equipment was continuously monitored through a batch monitoring
software. This software kept track of all process parameters for each batch produced
in the past two years. However, the software was designed to view the screen only,
without allowing data to be stored digitally on an external drive. Therefore, we
took screen shots of these data, and then printed and scanned them through an
optical character recognition software to obtain a digital data set. There were a
few minor cases in which equipment was not connected to this batch monitoring
software. For such cases, we collected the required data in the field, by retrieving
the corresponding information from the memory of the equipment itself.

Validation. The simulation model was validated through comparison against
historical production data, what-if experiments, and expert opinion. For example,
random snapshots were selected from historical production data and corresponding
rhythms were mirrored to the simulation model. Subsequently, the output of
the simulation model and the performance metrics obtained in real-world were
compared in terms of lead time, utilization, and throughput. On average, the
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simulation model performed with 95–98% accuracy compared with the real-world
performance results. In addition, we conducted several sensitivity analyses (on
distributions and parameters of processing times, batch sizes, capacity constraints,
specific rhythms, etc.) to test the robustness of the model output. Several meetings
were held with operators and production planners to validate the process flows,
bill-of-materials, production constraints, processing times, etc.

Automation and tool enhancements. Input and output of the tool are automated
via a user-friendly interface, such that users with no simulation-optimization
background could easily use the tool. For this purpose, the simulation model
interacts with an MS Excel file. Users enter the required information (i.e., products
to be produced, operator availability, etc.) into the Excel spreadsheet. In less than
twenty seconds, the tool reports the results in terms of simple and understandable
visuals, such as plots and tables. Through several iterations, we made multiple
enhancements to the simulation model to make sure that we created a digital
twin of the Boxmeer facility. These enhancements included adding or removing
dependencies and production constraints, adjusting process parameters, etc. The
most significant tool enhancement was related to the optimization part. Initially,
the project objective was to develop a simulation model for performance evaluation.
The development of the optimization part arose naturally during the process as a
new module to enhance the simulation model.

Implementation highlights. When the rhythm wheel tool was first implemented, it
showed that one extra batch could have been produced each week, without any
capacity expansions. After we discovered it, the visualization step of the tool
provided an effective means of communicating this insight with stakeholders. For
example, it showed that one extra batch per week would not necessarily lead to
higher congestion in the system. This encouraged an open and clear discussion
on what could be done and how, and prevented any possible resistance to change.
Subsequently, the proposed solution was successfully implemented and led to one
extra batch per week.

The rhythm wheel tool has also been successfully used to evaluate process
improvement opportunities. For example, in one specific case study, the process
improvement team realized that increasing the fermentation time of a specific
antigen would improve the batch yield. However, the simulation model revealed
that the potential gains in yield would not outweigh the corresponding increase in
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fermentation time and would lead to a lower throughput on average. In this setting,
the tool provided a rigorous approach for translating a process-level change (i.e.,
fermentation time and yield) into a system-level metric (i.e., throughput), which
would not have been possible otherwise.

Such success stories inspired several follow-up projects. For example, MSD
AH is in the process of implementing these ideas at two other facilities, in
two other countries. Similarly, the bleed-feed and yield optimization tools were
initially developed for one production line but their success encouraged follow-up
implementations at two other production lines in the Boxmeer facility.

5.5. Impact

The OR tools have been used in daily operations at MSD AH since August 2017. The
OR tools have been implemented in multiple different production lines and directly
affected the business metrics: In total, the project resulted in roughly e50 million
additional revenue per year.2 More specifically, we achieved an increase of 45% in
annual production yield on one of the production lines, resulting in an additional
revenue of e12 million per year. On a second production line, we achieved an
increase of 50% in yield, leading to e18 million per year. On a third production
line, we achieved an additional revenue of e2.5 million per year. On average, the
implementation of the bleed–feed tool resulted in an 85% improvement in batch
yield per setup (based on one bleed–feed). The rhythm wheel tool allowed one extra
batch to be produced per week, without making any investments on additional
resources, leading to an additional e18 million per year. As a joint impact of all
the OR tools, the production outcome increased by 97% without expanding the
existing capacity. As a side benefit, the systematic application of a data-driven, OR-
based approach enabled a better standardization of daily operations, resulting in
20% reduction in the standard deviation of the annual production yield.

In addition to the financial benefits, the OR tools provided several non-quantified
benefits:

2We quantified the impact in terms of additional ‘revenue’ (and not ‘cost’ reduction). This is because
we found that this approach was more intuitive and easier to present within MSD. For example, the
yield optimization tool increased the yield obtained from each batch while the total production cost (per
batch) remained the same.
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1. Reduced CO2 reduction through increased production yield per batch.

2. Better response to market needs: The animal health industry is currently
experiencing large deficiencies in meeting the market demand worldwide.
Every extra unit produced has a significant contribution in responding to
market needs. In particular, in the context of animal health, the facility
in Boxmeer is a leading biomanufacturing hub serving the entire world.
Therefore, increasing the production yield at this facility can have substantial
social implications in terms of improved availability and accessibility of these
drugs.

3. Creation of new jobs: MSD AH created four new job positions in the Boxmeer
facility for industrial engineers. As Oscar Repping, the Executive Director
at MSD AH states, the company recognizes OR as an important skill set to
consider during future hiring processes. Currently, MSD AH is in the process
of sponsoring new PhD students at Eindhoven University of Technology.

4. Rigorous assessment of production capabilities: The rhythm wheel tool
allowed a formal and quantitative assessment of manufacturing capabilities
and production schedules. More specifically, the tools helped MSD AH
translate the complex dynamics of the underlying biological processes into
business metrics, such as throughput, lead times, and costs. This also resulted
in an improved understanding of the system dynamics within the facility.

5. Increased flexibility: The use of OR tools helped to increase the yield
without additional resource investment. The increased batch yield freed up
significant production capacity, leading to higher flexibility within the facility.
In addition, the OR tools provided flexibility of designing several process
improvement ideas and allowed them to be evaluated through what-if analysis
(e.g., purchase of equipment) before implementing them in real life.

6. Data-driven decision making; change in the mindset: MSD AH experienced
a systematically increased use of a data-driven, OR-based approach. Prior to
the OR tools, process data were collected for documentation purposes, but
were not actively analyzed for optimization projects. The project encouraged
making the best use of historical process data. In addition, the idea of
integrating the underlying biology with manufacturing system dynamics and
financial trade-offs was new for most scientists, and they all embraced it.
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We note that the developed tools are flexible to address common industry
challenges and can be easily adjusted to other production lines or facilities. For
example, MSD AH is currently in the process of implementing these tools on
additional production lines within the Boxmeer facility. The longer-term vision
is to encourage systematic use of these tools at other facilities worldwide.

5.6. Conclusions

Biopharmaceuticals are highly innovative, and complex compared with conven-
tional drugs. Their production process relies on growing cell cultures and using live
organisms to generate active ingredients. However, the use of live organisms during
production creates challenges that are unlike those in any other industries. For
example, most biomanufacturers encounter issues related to predictability, stability,
and high levels of batch-to-batch variability. Whereas, with the growing market
demand and increasing competition, the competitive advantage in the industry
is shifting from the scientific expertise to finding new ways of achieving higher
efficiency.

To address these challenges, a multidisciplinary team of researchers collaborated
over three years to develop a portfolio of optimization models and decision support
tools. These tools were aimed at improving biomanufacturing efficiency using a
variety of operations research methodologies, including stochastic optimization,
Bayesian design of experiments, and simulation-optimization. The developed
models link the underlying biology and chemistry of biomanufacturing processes
with financial trade-offs and business risks. The research has been conducted in
close collaboration with MSD AH. Industry implementation at MSD AH had a
significant impact with up to 50% increase in batch yield and an additional revenue
of e50 million per year.

To date, several industries have benefited from OR to improve efficiency and reduce
costs. However, the applications of OR have not been widely adopted in the
biomanufacturing practice yet. This project is one of the first examples that shows
and quantifies how OR can benefit the biomanufacturing industry. Our project
is generalizable to other biomanufacturing companies. For example, the developed
OR tools (e.g., mathematical models presented in Appendix 5.A and 5.B) are generic



5.A Mathematical Model of the Bleed-Feed Tool 143

and can be easily applicable to other biomanufacturing companies. The effort in this
project builds on the existing work in the OR literature, as it presents a systematic
application of the well-known OR methodologies (i.e., renewal reward theory,
machine learning, and simulation-based optimization) in an innovative context
of biomanufacturing. As more companies such as MSD AH embrace operations
research, we believe that this will significantly help the industry provide faster and
more affordable access to new treatments.3

5.A. Mathematical Model of the Bleed-Feed Tool

A fermentation cycle starts with a set-up and involves the fermentation process
(including bleed-feed). A new cycle starts each time a batch is harvested. Let tb

denote the time when the bleed-feed is performed in a fermentation cycle. We let
E[Y(tb)] denote the expected yield obtained in a fermentation cycle and E[L(tb)]

be the expected length of a fermentation cycle when the bleed-feed is performed
at time tb. Subsequently, we let R(tb) be the expected yield obtained per unit time
when the bleed-feed is done at tb. Using the renewal reward theory, we get

R(tb) =
E[Y(tb)]

E[L(tb)]
. (5.1)

First, we focus on the term E[L(tb)] in Equation (5.1). We let Te denote a random
time when the exponential growth phase ends. The random variable Te has the
probability density function g(·) and realization te. In addition, th denotes the
harvesting time (i.e., the processing time of fermentation without bleed–feed),
and s is the duration of a bioreactor setup. Therefore, the expected length of a
fermentation cycle when we bleed-feed at time tb is

E[L(tb)] = s +
∫ tb

0
tb g(te)dte +

∫ ∞

tb

(tb + th)g(te)dte. (5.2)

Equation (5.2) indicates that the processing time is equal to the bleed–feed time tb

when the exponential growth phase stops before the bleed–feed time tb. Otherwise,
the processing time is tb + th.

3MSD AH’s notes on conclusions are presented in Appendix 5.C.
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Next, we focus on the term E[Y(tb)] in Equation (5.1). Fermentation starts with a
pre-defined biomass (yield) amount b1. In alignment with the literature, we use the
function b1eµt to capture the total amount of biomass that accumulates by time t,
where t ≤ te and the term µ denotes a constant accumulation rate (Doran, 1995).
Next, we let ψ ∈ (0, 1) represent the fraction of biomass to be extracted during
bleed-feed (i.e., the remaining fraction 1−ψ continues growing inside the bioreactor
after we bleed-feed). Therefore, the expected yield obtained in a fermentation cycle
when we bleed-feed at tb is

E[Y(tb)] =
∫ tb

0
b1eµte g(te)dte

+
∫ th

tb

[ψb1eµtb + (1− ψ)b1eµ(tb+te)]g(te)dte

+
∫ ∞

th

[ψb1eµtb + (1− ψ)b1eµ(tb+th)]g(te)dte.

(5.3)

Using Equations (5.1)-(5.3), the optimal bleed-feed time t∗b is given by argmax
tb

R(tb).

5.B. Mathematical Model of the Yield Optimization

Tool

In our problem setting, we have k alternative options to configure the critical
process parameter, where k is assumed to be finite and countable. We let µx ∈ R

represent the underlying value of alternative x, which is unknown to the decision-
maker and learned through real-world (industry-scale) experiments. To model
the uncertainty in underlying value µx of option x, we use a Bayesian approach.
Specifically, we assign a probability distribution that describes the uncertainty in
µx. Following Powell (2010); Gelman et al. (2013) and Frazier (2014), before we start
collecting any information, we assume that our prior distribution of belief about µx

is normally distributed with mean µ0
x and precision β0

x. Let Wn
x denote the output

of the experiment n representing the realized yield value. It is considered that the
precision of this measurement is given by βε. In our problem setting, the precision
is fixed and known.

In total, only N experiments can be conducted because of resource limitations and
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budget constraints on experimentation. When we select an alternative xn+1 = x
at the (n + 1)th experiment, we observe Wn+1

x ∼Normal(µx, 1/βε). Given that
our current belief about unknown µx is captured with normal prior belief having
parameters µn

x and βn
x (at the end of nth experiment), Bayes theorem can be used

to show that the updated mean and precision of the posterior belief on µx can be
computed using µn+1

x = (βn
xµn

x + βεwn+1
x )/(βn

x + βε) and βn+1
x = βn

x + βε (Gelman
et al., 2013). Furthermore, since the prior belief of µx is normally distributed, its
posterior belief is also normally distributed.

Repeating the updating procedure, we subsequently collect samples x1, . . . , xN ,
w1, . . . , wN after a total of N experiments. Based on these samples, if we choose the
alternative x, we get the conditional expected reward E[µx|x1, . . . , xN , w1, . . . , wN ] =

µN,x. Therefore, our objective is to identify the alternative which has the highest
conditional expected reward; i.e., argmaxx µN,x with the corresponding value
maxx µN,x. The question then becomes how collect the samples (i.e., choose the
alternatives x1, . . . , xN) such that the conditional expected reward is maximized.
We answer this question by adopting the knowledge gradient approach for offline
learning Powell (2010); Gelman et al. (2013). Specifically, we first compute the
expected value of measuring the option x, i.e.,

E[Vn+1(Sn+1(x))−Vn(Sn)|Sn], (5.4)

where Sn = {(µn
x , βn

x) : x = 1, . . . , k} is the current state of knowledge, Sn+1(x) is
the updated state of knowledge after choosing option x and observing Wn+1

x , and
Vn(Sn) denotes maxx′∈{1,...,k} µn

x′ (i.e., the value of being in the knowledge state Sn).
The term in (5.4) is referred as the knowledge gradient as it represents the marginal
value of information from measuring the option x. For a more detailed description
of how to calculate the knowledge gradient, see (Powell, 2010; Gelman et al., 2013;
Frazier, 2014, 2018).

5.C. Notes of MSD AH on Conclusions

This project serves to our motto “Invent. Impact. Inspire.” Our motto represents
a mechanism for value creation through continuous improvement. By combining
knowledge from the life sciences and OR, we have built a variety of optimization
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models and decision support tools to improve biomanufacturing efficiency (Invent).
The project achieved a significant impact with up to 50% increase in batch yield
and e50 million additional revenue each year. As a combined effect of all the OR
tools, the production output at the Boxmeer facility increased by 97%, without any
additional investment in capacity (Impact). The results inspired several follow-up
projects both nationally and internationally (Inspire). For example, the Boxmeer
facility is currently collaborating with two other facilities in two other countries
to help them use the OR tools. Furthermore, new initiatives are encouraged for
knowledge transfer to the human health department in the Netherlands.

In the future, such projects can help animals and humans get cheaper and faster
access to new treatments. As Oscar Repping, Executive Director at MSD AH states,
“We [the industry] will benefit from OR, as such, we will avoid investments, we
will become more predictive, leading to cost reduction, leading to more capacity on
our production lines, meaning that we can make this world a better place.”
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Conclusion

Biopharmaceuticals are revolutionary and complex compared to conventional
drugs, due to the use of living cells in their production processes. Therefore,
biomanufacturers face challenges that are different than those in any other industry.
In this thesis we develop analytical models to improve biomanufacturing efficiency.
We focus on a novel technique: bleed–feed. Bleed–feed is promising in skipping
intermediary setups, but its optimal implementation involves unique trade-offs
and challenges. We combine the biological dynamics of fermentation and the
operational trade-offs of bleed–feed, and present stochastic optimization models
to find optimal bleed–feed policies for different contexts. We generate managerial
insights and inform practitioners about the potential of bleed–feed implementation.
Our work is one of the limited attempts to demonstrate how OR can complement
life sciences. To the best of our knowledge, we are the first to address the bleed–feed
problem and to present successful industry scale implementation of bleed–feed for
batch fermentation.

In this section we present our findings and discuss their practical implications.
We first elaborate on our main results from each chapter (Section 6.1), and then
conclude the thesis with directions for future research (Section 6.2).
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6.1. Main Results

Main Results from Chapter 2. In Chapter 2, we assume the batch condition is
monitored regularly, and we aim to the obtain as much yield as possible from
a batch with bleed–feed under regulatory requirements. We search for: (RQ1) the
optimal condition-based bleed–feed policies to maximize the expected total biomass
obtained from a batch, (RQ2) the effects of regulatory limitations on bleed–feed (i.e.,
maximum number of bleed–feeds permitted on a batch), and (RQ3) the room for
improvement with bleed–feed.

We build a finite-horizon, discrete time MDP model to maximize the total expected
batch yield (RQ1). We analyze the structural characteristics of the optimal policies
and show that the optimal bleed–feed policies have three-way control limit structure
on the cultivation age, cell growth rate, and the bleed–feed count under mild
conditions. This structure continues to hold if we aim to maximize the batch profit.
Control limit policies are intuitive and easy to implement in practice. In addition,
we present a sufficient condition under which a risk-averse heuristic is optimal.
We characterize the value function as a function of the regulatory restrictions on
bleed–feed number and show that marginal benefit of an additional bleed–feed
decreases and converges to the critical biomass level (RQ2). Our base model
assumes that the number of bleed–feeds performed on the batch does not affect
the transition probabilities to the stationary phase. This assumption is valid if we
do not exceed the maximum bleed–feed number permitted by the regulations. We
relax this assumption in a model extension and show that three-way control limit
structure continues to hold under sufficient conditions. We also perform analytical
sensitivity analyses and generate insights about impact of batch risk and cell growth
rate on the expected total biomass and the optimal bleed–feed time. In addition, we
perform a case study from MSD AH to demonstrate the impact of bleed–feed under
different production settings (RQ3). We observe an 137% increase in total biomass
production from one setup with two bleed–feed implementations (in the base case).
Sensitivity analyses on system risks and the critical biomass level reveal that low
risk batches and cultures with high critical biomass levels benefit more from bleed–
feed implementation. We observe that implementing bleed–feed is better for all
production settings compared to no bleed–feed.

Our MDP model is simple and captures the biological dynamics of fermentation
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and operational trade-offs of bleed–feed. Hence, we could derive most of the
managerial insights from analytical results. Our analytical results contribute both
to OR literature and practice. Insights from this chapter are useful when the
focus is maximizing the batch yield and the processing time is less important
(e.g., if certain demand must be met), and for implementing multiple bleed–feeds.
However, the MDP model assumes the batch state is monitored. This may not
be the case in companies due to unavailability of sensors and operators. For this
reason, implementation of this model might be harder (or less attractive) compared
to time-based models.

Main Results from Chapter 3. In Chapter 2 we observe that the expected total
biomass obtained from a batch increases with bleed–feed. However, bleed–feed
increases the fermentation processing time as well. In addition, time-based policies
are also attractive for practitioners due to production planning restrictions. Thus,
in Chapter 3 we generate time-based bleed–feed policies to maximize throughput
(RQ4). Industry data indicated that the initial biomass amount for the second
cultivation affects the throughput. Hence, we optimize the bleed–feed time and
the initial biomass amount for the second cultivation jointly and investigate the
additional benefit of the joint optimization (RQ5). We explore the production
settings that benefit the most from bleed–feed, or when adopting bleed–feed is
not desirable (RQ6).

We build a renewal model to jointly optimize the bleed–feed time and the initial
biomass amount for the second cultivation, to maximize fermentation throughput
(RQ4 and RQ5). We explore the structural properties of the optimization problem
to generate insights on optimal policies and assess the impact of batch risks on
throughput (RQ6). We present a sufficient condition under which the throughput
function is convex for a specific range of bleed–feed time. Using this result, we
discuss the settings where implementing bleed–feed is not beneficial. We show that
the expected yield obtained from the second cultivation is concave in the initial
biomass amount for the second cultivation for a special case. In addition, we show
that a higher risk batch reaches a lower throughput. We enhance the managerial
insights with a case study from MSD AH. In this case study we consider several
strategies to understand the benefits of optimizing the bleed–feed time and the
replenishment amount jointly (RQ5). We quantify the potential benefits of bleed–
feed implementation under different production settings (RQ6). Our numerical
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analysis shows that the expected throughput can be improved by 17% with bleed–
feed and bleed–feed brings the most benefit for fast-growing cells. We see that even
if we have no setup time the throughput increases with bleed–feed, although the
improvement percentage is lower for these scenarios. Different from Chapter 2,
in this chapter implementing bleed–feed is not beneficial under certain settings.
For instance, bleed–feed is not an attractive option for slow-growing cell cultures.
This is because extra biomass produced does not outweigh the increased processing
time.

We note that our analytical results are limited in this chapter, due to the complex
behavior of the reward function. This is because the probability distribution of
entering to the stationary phase is a complex function (recall that we characterize
the distribution of the exponential growth phase duration as a function of the
biomass level using the rate function established from the industry data). Since
our reward function depends on these rate and probability functions, analyzing
its structure was not straightforward. Still, our analytical results contribute to OR
literature and provide a better understanding on bleed–feed.

Insights from Chapter 3 can be useful when increasing the yield per setup is not our
only concern, and the increased processing time with bleed–feed is also considered.
In this model the bleed–feed time is determined in advance, meaning that the
system does not have to be monitored. Hence, this model can be easier to adopt
under production planning restrictions and can be attractive to practitioners. We
also generate insights on optimizing the start amount for the second cultivation
together with bleed–feed time. In practice start amount can be changed by adjusting
the amount extracted from the batch during bleed–feed. However, this might not
be easy, since it requires special adjustments to be done at the bleed–feed time,
and operators’ presence. For instance, it may be more practical to extract a fraction
(as in Chapter 4 and 5). However, extracting a fraction complicates the reward
function more, and for tractability we assume that we optimize the initial amount.
We believe that our insights remain the same for wither case. Also, this model
assumes full operator availability and does not consider constraints on the bleed–
feed time. Hence, the optimal bleed–feed generated by the model time might not
be feasible under certain settings.

Main Results from Chapter 4. In Chapter 4, we take relevant restrictions on the
bleed–feed time into account. We also model the impurity accumulation in the
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batch, along with the biomass growth. We find the optimal bleed–feed time to
maximize the fermentation profit per time unit (RQ7), ensure operators are available
during the bleed–feed time and capture the risk-behavior of the biomanufacturer
(RQ8), and investigate the value of flexibility in bleed–feed decisions (RQ9).

We extend our renewal model from Chapter 3 to find the bleed–feed time that
optimizes the fermentation profit per time unit, including practically relevant
constraints in the optimization model (RQ7 and RQ8). The constraints capture
the restrictions on the bleed–feed time related to operator availability to perform
bleed–feed and the biomanufacturer’s risk behavior. In this model we also include
waste accumulation, costs related to its purification and its effect on the exponential
growth phase duration. We perform a numerical analysis to generate managerial
insights. We consider different cases by relaxing the constraints, so that we
investigate the value of flexibility in bleed–feed decisions (RQ9). Our results
indicate that it is not necessarily better to implement bleed–feed earlier if bleed–
feed time is not in a shift, and chance constraints have more impact for low-risk
batches. We assess effects of restrictions on the bleed–feed time under different
production configurations. We observe that if revenue is higher compared to the
purification cost, then the risk-averse case performs closer to the most flexible case.
We observe cases where bleed–feed is worse than no bleed–feed. If we have both
the shift and the chance constraints, or if the waste accumulation is fast, then bleed–
feed is not an attractive option.

We note that this model is less tractable than the one from Chapter 3, because
it captures the waste accumulation, takes constraints on the bleed–feed time into
account, and assumes that we extract a fraction from the batch. Thus, our insights
from this chapter are based on a numerical analysis. We also note that real-world
data on waste accumulation was not available and we rely on literature review and
expert opinion to model waste. Yet, this chapter provides a framework for modeling
the effects of waste accumulation in the bleed–feed decisions for maximizing the
profit. When the waste accumulation is significant and/or waste decreases batch
quality dramatically, this framework can be useful. Also, companies working with
shifts, or practitioners when determining their risk behavior can benefit from the
insights generated in this chapter. This model assumes a fraction is extracted from
the batch. This may be more practical compared to the model from Chapter 3. In
line with industry application, we assume this fraction is given, and we do not
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optimize it. We believe Chapter 3 captures the optimization of the replenishment
amount, and the insights do not change for this model.

Main Results from Chapter 5. In Chapter 5, we collaborate with MSD AH,
and present a portfolio of operations research tools to improve biomanufacturing
efficiency. More specifically, we introduce: (i) bleed–feed tool, by using renewal
reward theory to determine optimal bleed–feed time to optimize the fermentation
throughput, (ii) yield optimization tool, by using Bayesian design of experiments
to provide a methodological approach for determining the best fermentation
configurations under limited number of experiments, and (iii) rhythm wheel tool,
by using simulation-optimization to assess the feasibility of a weekly production
schedule and create smart schedules to increase throughput and lower the lead
times. We elaborate on the development of these tools and their implementation
at MSD AH. These tools are currently in use at MSD AH. Thanks to these tools,
MSD AH had a significant impact with up to 50% increase in the batch yield, and
an additional revenue of e50 million per year. The rhythm wheel tool allowed one
extra batch production per week. Bleed–feed tool resulted in 85% increase in the
batch yield per setup (using one bleed–feed).

We note that the tools are developed specifically for MSD AH, and the results
are based on MSD AH implementation. Still, the tools are flexible to address
common industry challenges, and they can be extended to other process lines
and companies. The results can motivate other companies to use OR methods to
improve their processes. The proposed models and their insights can be used as a
starting point and the tools can be adapted based on the special needs of different
companies/process lines. For example, the renewal model presented in this chapter
is a modified version of Chapter 3 and 4. Modifications ensure that the model fits
the needs of MSD AH and is easy to implement in real life. Yet, as shown in
Chapter 3 and 4, we can easily extend our model for different contexts.

Overall Results. Our chapters capture different objectives and base cases; thus, it
is not straightforward to compare their numerical results. Still, we obtain several
insights based on our overall bleed–feed analyses. First, we observe that bleed–feed
is promising. We emphasize that a bleed–feed does not produce a full batch but
produces slightly less to avoid missing the bleed–feed opportunity. Still, significant
improvement in the expected batch yield is achieved with bleed–feed (Chapter 2).
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Benefits drop when we include processing time in the objective by considering
throughput (Chapter 3) or profit per time unit optimization (Chapter 4). This is
because bleed–feed also increases the fermentation processing time as the bioreactor
is occupied longer. In Chapter 3 and 4 we observe certain scenarios (i.e., batches
with slow growth, low initial biomass or fast waste accumulation) does not benefit
from bleed–feed.

Chapter 2 and 3 show that the optimal policy implements bleed–feed later than the
risk-averse policy, if bleed–feed is desirable. However, when we have restrictions on
the bleed–feed time in Chapter 4, shift constraints might force the system to bleed–
feed earlier than the risk-averse policy. We observe in each chapter that if critical
biomass is higher, or if we have batches that exhibit higher probabilities of entering
the stationary phase in the critical biomass level, risk-averse strategy performs
closer to optimal. We note that risk-averse policy assumes critical biomass level to be
greater than the initial biomass amount of the fermentation. This might not always
be the case, and the culture can have the risk of entering to the stationary phase
since the start of fermentation. Then, the risk-averse policy does not implement
bleed–feed, while, as we observe, the optimal policy does. Although in this case
bleed–feed brings lower benefits (recall that for batches with higher critical biomass
bleed–feed has a stronger business case).

Having restrictions on the bleed–feed time can reduce its benefits up to 24% in the
base case compared to the flexible case. This case represents the most restrictive case
where the bleed–feed time is forced to be too early. Then, we see that bleed–feed is
not an attractive option. Note that it is also possible for the optimal bleed–feed time
from the flexible case to be during a shift (as in Chapter 5). Thus, a shift constraint
might have no effects on implementation or impact of bleed–feed. Hence, this
result is highly sensitive to the process parameters. Our constraints guarantee to
meet these restrictions, and provide an understanding on how optimal bleed–feed
time is affected by them.

6.2. Directions for Future Research

In this thesis we assume availability of sufficiently large data to make inferences
about fermentation systems. This might not be the case for all products and
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companies. For instance, since bleed–feed is a new technology, in the early
stages of this research no bleed–feed data was available. Our preliminary models
relied on literature review, expert opinion, fermentation data (without bleed–feed)
and some laboratory scale experiments. This is also the reason for our renewal
models and industry implementation to focus on single bleed–feed implementation.
When bleed–feed implementations started in MSD AH, we could validate our
assumptions with industry data. However, this data is still limited. Companies
should collect fermentation data with and without bleed–feed. Especially the cell
growth rate, and transitioning to the stationary phase based on biomass level should
be observed after each bleed–feed to capture the effects of bleed–feed on each
cultivation. Our models could be revisited if evidence is found from additional data.
Such modifications would especially be important for Chapter 2, as the MDP model
implements multiple bleed–feeds. This is because determining the optimal bleed–
feed time in different cultivations (under multiple bleed–feeds) would require a
good understanding on them. Our renewal models could be extended to capture
multiple bleed–feeds. Also, Chapter 4 captures the waste and its effects on profit
and exponential growth phase. Due to lack of industry data on waste, our models in
Chapter 4 rely on literature review and expert opinion. Future work could collect
more data on waste accumulation. If needed, our model from Chapter 4 should
be modified. Also, future studies could train machine learning models to support
bleed–feed decisions under limited data.

Chapter 4 takes operator availability into account, but it does not consider the
scheduling aspect in detail. Future research can relax the assumption of setups
starting at the beginning of a shift. Then, we can decide when to start the
fermentation process to maximize the fermentation throughput (or profit per time
unit) ensuring that bleed–feed takes place in a shift. Another direction for future
research could focus on production planning. The demand, holding and shortage
costs could be considered. Subsequently, start time of the fermentation, bleed–feed
and harvest times and production amount (e.g., which bioreactor size to use) could
be determined. Depending on the cost parameters and demand, harvesting early,
or not implementing bleed–feed could be optimal. Fermentation of other products
can also be taken into account to make plant-wise production planning decisions.
This could be done by incorporating the bleed–feed technique in the rhythm wheel
tool.
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Although we increase the bioreactor time with bleed–feed, we do not consider
reliability of the bioreactor. If the bioreactor fails, the batch might fail suddenly
or contamination may accumulate in the batch. This contamination may deteriorate
the batch quality and lead to batch failure. Chapter 4 captures the waste and its
effects on profit and exponential growth phase. Also, the model extension provided
in Chapter 2 might provide insight for these aspects, as we assume batch failures
become more likely as we bleed–feed. Yet, these models capture the failure of bleed–
feed implementation (as a result of transitioning to the stationary phase), and do not
exclusively model the bioreactor reliability. Future research can model the trade-off
between producing more with bleed–feed and risking to scrap the entire batch due
to increased bioreactor time. This extension would be useful especially for products
and industries where contamination significantly deteriorates the product quality
or when bioreactor is less reliable. Future work could extend our MDP model, so
that contamination of the batch is also monitored. Specification limit for the highest
allowable waste could be considered to capture batch failure.

Note that implementation of bleed–feed to a batch fermentation does not require
investments for switching to different fermentation modes. A cost/benefit analysis
could be performed to compare switching to a continuous system (continuous, fed-
batch or perfusion mode of fermentation) versus implementing bleed–feed in the
existing batch fermentation.

Finally, we propose analytical models in this thesis, that are generic and can be
extended to different companies. Implementation of the decision support tools
(presented in Chapter 5) in other MSD plants and process lines are ongoing. Bleed–
feed could also be implemented in single use bioreactor systems, where setup time
is significantly reduced for a batch. Our numerical analysis from Chapter 3 suggests
that bleed–feed still brings benefits for lower setup times. Another extension could
focus on implementing “bleed” into fed-batch fermentation systems. Insight from
our work could be combined with growth dynamics of fed-batch fermentation,
and bleed policies could be investigated. It could also be interesting to explore
applications of bleed–feed in other industries involving fermentation processes,
or working with living cells (i.e., food processing). The proposed models
might be directly applicable to certain settings. In this case, first the process
parameters should be determined through an analysis of fermentation data, then
the optimal bleed–feed policies can be found using our models. Or the models
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might need modifications before being implemented to other industries, since our
understanding of bleed–feed in this thesis is based on animal health industry.
For instance, human health industry is known to be more sensitive to waste
accumulation. A more comprehensive waste accumulation model (than the one
presented in Chapter 4) might be needed for human health applications. Similarly,
cell growth dynamics can vary among different industries, due to the use of
different type of cells, medium and equipment. For instance, bleed–feed might
affect the cell growth rate, or the batch might not have to be harvested if cells
enter to the stationary phase. Hence, fermentation dynamics should be observed
to understand the cell growth behavior. If necessary, our models can be modified
before being implemented in real life.
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Summary
Optimal Decision Making under Uncertainty in Biomanufacturing

Biomanufacturing methods use living organisms (i.e., viruses and bacteria) to
generate products. This leads to challenges that are different than those in
any other industry. In this thesis we address these challenges and develop
optimization models to improve biomanufacturing efficiency. In collaboration with
MSD Animal Health (MSD AH), we focus on a novel technique: bleed–feed.
Bleed–feed is promising in skipping intermediary setups. However, its optimal
implementation involves unique trade-offs and challenges, and its potential benefits
are not fully understood by the industry yet. We combine the biological dynamics
of fermentation and the operational trade-offs of bleed–feed, and present stochastic
optimization models. We investigate the optimal bleed–feed decisions in different
contexts and generate insights for practitioners.

More specifically, in Chapter 2 we assume the batch condition is monitored
regularly. We develop a finite-horizon, discrete-time Markov decision process
(MDP) model to determine condition-based bleed–feed policies that maximize
expected total yield per batch. We analyze the structural characteristics of the
optimal policies and show that the optimal bleed–feed policies have a three-way
control-limit structure under mild conditions. We present a sufficient condition
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under which a risk-averse heuristic is optimal. Additionally, we characterize the
behavior of the value function as a function of regulatory restrictions and observe
that the marginal benefit of an additional bleed–feed decreases and converges to a
certain value. We show that for a model extension the control limit structure is still
valid. In addition, a case study from MSD AH is performed to demonstrate the
impact of bleed–feed under different production settings. We observe that bleed–
feed brings benefits for all scenarios. In the base case, total biomass production
from one setup increases by 137% with two bleed–feed implementations.

As observed in Chapter 2, bleed–feed improves the batch yield. However, it also
increases the fermentation processing time. Additionally, time-based policies are
also attractive for practitioners as they can be easily incorporated in production
planning. Thus, in Chapter 3 renewal reward theory is used to determine time-
based bleed–feed policies maximizing the expected fermentation throughput. We
optimize the bleed–feed time and the replenishment amount jointly and investigate
the additional benefit of the joint optimization. We analyze structural properties
of the optimization problem and present a sufficient condition under which the
throughput function is convex for a specific range of bleed–feed time. Using this
result, we discuss the settings where implementing bleed–feed is not beneficial. We
also show (for a special case) that the expected yield obtained from the second
cultivation is concave in the initial biomass amount for the second cultivation.
Subsequently, the managerial insights are enhanced with a case study from MSD
AH. Through several strategies and practically relevant scenarios, we assess the
potential impact of implementing bleed–feed on current practice. Our numerical
analysis indicates that the expected throughput can be improved by 17% with
bleed–feed, and bleed–feed is not an attractive option for slow-growing cell cultures.

Then, in Chapter 4 we extend our renewal model by including practically relevant
constraints. These constraints ensure that bleed–feed is implemented during a shift
and consider biomanufacturer’s risk-averse behavior while finding optimal bleed–
feed policies. This model also captures waste accumulation, costs related to its
purification and its effect on the exponential growth phase duration and determines
the optimal bleed–feed time to maximize the fermentation profit per time unit. We
generate managerial insights through numerical analysis. We relax the constraints
to investigate the value of flexibility in bleed–feed decisions. Our results indicate
that it is not necessarily better to implement bleed–feed earlier if bleed–feed time
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is not in a shift, and chance constraints have more impact for low-risk batches. We
observe that if we are too restrictive on bleed–feed time, or if the waste accumulation
is fast, then bleed–feed is not an attractive option.

Finally, in Chapter 5 we present a portfolio of decision support tools to improve
biomanufacturing efficiency. The tools consist of the bleed–feed, yield optimization
and rhythm wheel tools, and use variety of operations research methods, such
as renewal reward theory, Bayesian design of experiments, and simulation-
optimization. We elaborate on development of the tools and their implementation
at MSD AH. Thanks to these tools, MSD AH had a significant impact with up to
50% increase in the batch yield and an additional revenue of e50 million per year.
In addition, the rhythm wheel tool allowed one extra batch production per week,
and the bleed–feed tool resulted in 85% increase in the batch yield per setup using
one bleed–feed.
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