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Abstract

The mass transfer between a rising bubble and the surrounding liquid is mainly deter-

mined by an extremely thin layer of dissolved gas near the bubble interface. Resolving

this concentration boundary layer in numerical simulations is computationally expensive

and limited to low Péclet numbers. Subgrid-scale (SGS) models mitigate the resolution

requirements by approximating the mass transfer near the interface. In this contribution,

we validate an improved SGS model with a single-phase simulation approach, which sol-

ves only the liquid phase at a highly resolved mesh. The mass transfer during the initial

transient rise of moderately deformed bubbles in the range Re = 72–569 and Sc = 102–

104 is carefully validated. The single-phase approach is able to mirror the two-phase flow

field. The time-dependent local and global mass transfer of both approaches agree well.

The difference in the global Sherwood number is below than 2.5%. The improved SGS

model predicts the mass transfer accurately and shows marginal mesh dependency.

K E YWORD S

high-Schmidt number problem, machine learning, mass transfer, multiphase flows, subgrid-
scale modeling

1 | INTRODUCTION

Many industrial processes are characterized as gas–liquid systems.

A gas–liquid system is often favorable because of the good mass

transfer characteristics. However, these mass transfer characteristics

are difficult to determine. Thus, the optimization of the processes is

challenging. Due to the typically high Schmidt and Reynolds numbers

in gas–liquid systems, the species concentration boundary layer is

very thin and hard to capture both experimentally and numerically.

Nevertheless, the mass transfer in gas–liquid systems has been widely

studied for decades. Some studies kept the Schmidt number relatively

low to alleviate the resolution requirements.1–4 Other studies used

static local refinements with which they could simulate higher

Schmidt numbers, however, only with a fixed bubble shape.5–8 In the

last decade the focus has been shifting to adaptive mesh refinement

(AMR) techniques9 and subgrid-scale (SGS) models.10–16 Both

approaches still have their challenges. In this work, we investigate the

effectiveness of SGS models to simulate the mass transfer during the

initial accelerated rise of small bubbles.

Two families of SGS models for computing the convection-

dominated mass transfer at rising bubbles are available in literature.

The first group13,14,17 uses an analytical profile function or machine
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learning (ML) model to correct convective and diffusive species fluxes

in cells containing or aligned with the gas–liquid interface. This type

of SGS model has been implemented in volume-of-fluid13,14 and

interface-tracking15,16 two-phase flow solvers. The second group10–12

is more tailored to front tracking-based flow solvers. Instead of

resolving the steep concentration profile in interface normal direction,

the species mass contained in a fluid portion normal to the interface is

stored on the front markers. As in the first group of SGS models, ana-

lytical profile functions are used to reconstruct the species distribu-

tion normal to the interface. Based on the profile, the profile's

derivative can be evaluated at a fixed distance away from the inter-

face. Using this derivative, the mass exchange between gas and liquid

and between bulk and boundary layer is computed. The SGS model

presented in this contribution belongs to the latter group and is an

improved version of the work by Claassen et al.12 The improvement

consist of enforcing the concentration at the end of the boundary

layer implicitly on the bulk via an immersed boundary method,

whereas previously the flux at the end of the boundary layer was

mapped explicitly to the bulk. This is expected to be more accurate.

For a more detailed comparison of both SGS modeling approaches

and an overview of other approaches to overcome the high-Schmidt

number problem, the reader is referred to Ref. 18 and the references

therein.

The challenge for SGS model development lies in the validation.

The most straightforward approach to validate such a model would be

to compare results for selected canonical cases against direct, fully

resolved solutions. However, resolving the flow dynamics of a single

rising bubble requires easily several weeks on a high-performance

cluster. Since the species boundary layer thickness scales roughly with

Sc�1/2 compared with that of the momentum boundary layer around a

clean interface, a 10–100 times denser mesh would be required for a

direct solution of the species boundary layer. Moreover, the portions

of the boundary layer that are the hardest to resolve typically have a

fairly simple structure such that a direct solution of the full problem,

two-phase flow and species transport, would yield little qualitative

information.

Further reference data for validation is available from experi-

ments and theoretical investigations. Both sources typically provide

integral data like rise velocity or global Sherwood number. Local

boundary layer data like species concentration fields are even harder

to obtain in experiments than in simulations, but ultimately, it is nec-

essary to show that the SGS model computes accurate local species

transfer. Moreover, reference data is often only available for steady

flow conditions, but those conditions do not reflect the ones encoun-

tered in bubble swarms.

Our approach to obtaining transient local reference data is as

follows: first, the two-phase flow problem is solved; then, a single-

phase simulation with fully resolved momentum and species trans-

port in the liquid phase is computed. ML models are used to map

shape and velocity information from the two-phase to the single-

phase simulation to obtain accurate flow and species fields. This

hybrid approach was first presented in Weiner et al.18 for steady

flow conditions and is here extended to the transient case. In

contrast to the hybrid approach for steady flow conditions, the bub-

ble shape, velocity field, and species concentration change over

time in the single-phase simulations. Consequently, time is an addi-

tional independent variable in the ML models. It should be noted

that the hybrid approach neglects the effect of local volume change

due to the dissolution of the gas phase. The same assumptions is

also made for the two-phase simulation approach employing the

SGS model.

The remainder of this article is structured as follows. In the next

section, both approaches, the SGS model and the single-phase simula-

tion approach, are described in more detail. Then, the mesh depen-

dency is assessed for the highest investigated Reynolds, Re = Ubdb/

νl = 569, and several Schmidt numbers, Sc = D/νl (Ub—terminal bubble

velocity, db—equivalent bubble diameter, νl—kinematic liquid viscosity,

D—molecular species diffusivity in the liquid phase). In the results

Section 4, we compare the time-dependent velocity and concentra-

tion fields as well as local and global mass transfer between both

approaches for the ranges Re = 72–569 and Sc = 102–104. Finally,

we discuss several possible points for improvements in both methods

and suggest further investigations toward the simulation of bubbles

undergoing path and shape oscillations.

The scientific data, scripts for data processing, analysis, and plot-

ting, the source code and test cases of the single-phase approximation

approach, as well as additional documentation are available via the

Github repository* accompanying this article. Except for the two-

phase flow simulations, which were performed on a high-performance

cluster, all results were obtained in a fully reproducible manner using

Docker software containers (instructions provided in the repository).

Visualizations were created with ParaView19 and Matplotlib.20 The

data processing was mostly implemented in Numpy21 and Pandas.22

The ML models for the single-phase simulation approach were cre-

ated with PyTorch.23

2 | NUMERICAL METHODS AND SETUPS

2.1 | Front tracking

In this work, the used front tracking method is based on the method

by van Sint Annaland et al.,24 Dijkhuizen et al.,25 and Roghair

et al.26 The implementation of the SGS model is an improved

version of the SGS model of Claassen et al.12 In this article, we will

focus only on the main characteristics of the front tracking and the

SGS model.

2.1.1 | Flow dynamics

The front tracking model solves the continuity equation, Equation (1),

and the Navier–Stokes equations, Equation (2), for incompressible

flows using a one-fluid approximation.

r�u¼0 ð1Þ
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ρ
∂u
∂t

¼�rp�ρr� uuð Þ�r�μ ruþ ruð ÞT
h i

þρgþFσ ð2Þ

where u denotes the velocity vector, ρ the density, p the pressure, μ

the viscosity, g the gravity vector, and Fσ the surface tension force

density vector relating the two phases. The density and viscosity are

calculated on the fraction of liquid and gas in a cell in the previous

time step using normal and harmonic averaging, respectively. The

extra force density Fσ is directly calculated from the triangular mesh,

which represents the gas–liquid interface. The force density is deter-

mined by summing the tensile force on a marker, m, of adjacent

markers as given in Equation (3), which uses the joined tangent of the

marker, tm,i, and the normal vector of the adjacent marker ni.
27

Fσ,m ¼1
2

X3
i¼1

σ tm,i�nið Þ ð3Þ

where σ is the surface tension coefficient. This tensile force of each

marker is mapped to the surrounding Eulerian grid cells using mass-

weighing.28 However, this local mapping results in a mismatch in the

discrete representation of the pressure and the surface tension, which

leads to undesirable spurious currents. Therefore, a pressure-jump

correction is implemented.25,29,30

The velocity and pressure fields are solved using the projection-

correction method on a staggered grid. All terms in the Navier–Stokes

equations are treated explicitly, except for the viscous term, which is

treated semi-implicitly. In the viscous terms, the implicit part is chosen

such that all the velocity components can be solved separately. The vis-

cous term and the convective term are discretized using the second

order central differencing scheme and the second order flux-delimited

Barton scheme, respectively. The implicit part of the viscous terms and

the pressure correction are solved using a Block ICCG matrix solver.

After calculation of the velocity field, the bubble interface can be

updated. The location of the Lagragian points, which form the triangu-

lated grid, are advected with the local velocity using a fourth order

Runga–Kutta method. The velocity is interpolated to the mesh using

third order splines. Because the points are advected separately, the

bubble interface is able to deform. This separate advection will lead to a

decrease in the quality of the triangular mesh. To improve the mesh

quality, three different remeshing operations have been implemented:

edge splitting, edge collapsing and edge swapping.27,31 Besides these

remeshing operations, the smoothing algorithm of Kuprat et al.32 is

included in the code to ensure a more even distribution of the points

over the surface. Finally, the advection and the remeshing of the inter-

face might lead to small volume errors, which are significant over a large

number of time steps. These volume errors are corrected by redistribu-

tion of the lost (or gained) volume over all the points by moving them in

the normal direction.4 When the new interface location is known, the

new local phase fraction of each cell can be computed geometrically.

2.1.2 | Mass transfer and the SGS model

In the bulk region, that is, far away from the gas–liquid interface, the

magnitude of the gradients in the species concentration, c, is expected

to be relatively low, while near the gas–liquid interface high gradients

are expected. Therefore, the bulk region and the region near the gas–

liquid interface are treated differently.

For both regions, the distribution of species in the domain can be

determined using the following equation:

∂c
∂t

þ u �rð Þc¼Dr2c ð4Þ

Due to the low gradients in the bulk region, Equation (4) can be

determined on a relatively coarse grid. Therefore, the hydrodynamics

grid will be used in the bulk region. The convection in the bulk region

is discretized explicitly using a van Leer scheme, while the diffusion

term is treated implicitly using a second order central differencing

scheme.

The concentration gradients in the region near the gas–liquid

interface are too large to be resolved on the coarse hydrodynamics

grid. Therefore, the concentration gradients in this region are approxi-

mated by a simplified version of Equation (4) according to the

approach of Aboulhasanzadeh et al.10 The simplified advection–

diffusion equation is solved for all the triangular markers of the inter-

face. The used approximation of the concentration in the boundary

layer is given by:

dc
dt

¼ nγ
∂c
∂n

þ D
∂2c
∂n2

, where γ¼� ∂un
∂n

: ð5Þ

In this equation n is the normal direction and γ is the strain rate.

The strain rate is considered to be constant in interface normal direc-

tion, since the concentration boundary layer is much thinner than its

velocity counterpart. The equation assumes that the mass boundary

layer is only affected by the compression (or expansion) of the surface

and the diffusion in the normal direction. It is thus assumed that the

concentration of each triangular marker is only affected in the normal

direction of the bubble surface, i.e. all effects in the tangential direc-

tion and all effects due to curvature are neglected in the approxima-

tion. It should be noted that the tangential convection of the mass is

included via the movement of the markers over the surface.

Using Equation (5), the mass in the boundary layer of each marker

can be determined via integration M0 ¼
Ð δ0
0 c nð Þdn, where δ0 is a

predefined maximum thickness in which the boundary layer model is

used. In the model, the total mass per marker is determined by inte-

gration of Equation (5).

dM0

dt
¼�γM0�D

∂c
∂n

����
0

þ γcδ0δ0þD
∂c
∂n

����
δ0

ð6Þ

When the approximated mass boundary layer exceeds a

predefined thickness δ0, Aboulhasanzadeh et al.10,11 transferred the

last two terms to the bulk grid. In the current implementation, the

concentration at δ0 is enforced at the mass transfer grid using an

approach similar to the immersed boundary method of Deen et al.33

This concentration can only be determined when the concentration
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profile is assumed. In this work, we will use the following profile for

the concentration:

c nð Þ
c0

¼ erfc
ffiffiffi
π

p n
δ

� �
ð7Þ

With this profile we can evaluate Equation (6) which would give

us M0 for the new time step. The δ for the new time step is obtained

from solving M0 ¼
Ð δ0
0 c nð Þdn for δ via the Newton–Raphson method.

Besides the changes due to diffusion and convection, the mass on

a triangular marker can be changed due to the remeshing procedures

described in the previous subsection. These changes in mass are

treated as discussed in Claassen et al.12

2.2 | Sherwood number

The global and local Sherwood numbers are determined to enable a

direct comparison between the two numerical methods. To calculate

the global Sherwood number based on the effective transfer area

Aeff ¼
P

m �M Am in the SGS model approach, the following equation

is used:

Sheff ¼ deq
c0�c∞

P
m �M

dc
dn

��
0,mAmP

m �M
Am

ð8Þ

In this equation, the Sherwood number is based on the sphere-

equivalent diameter, deq, M is the total set of all markers and Am the

area of marker m. The far field concentration c∞ is zero in all cases

considered here.

The local Sherwood number is calculated similarly to the global

Sherwood number as shown in Equation (9). The difference is that in

the calculation of the local Sherwood number only markers with their

center of mass within the considered range of angles, ϑ� 1
2Δϑ, are

taken into account. This subset of markers is represented by Mθ. The

angle of a marker is calculated with Equation (10), in which x is the

center of mass of a marker (subscript m) or bubble (subscript b) and ey

is the unit vector in rise direction. The used Δϑ is equal to 2 degrees.

Shloc ϑð Þ¼ deq
c0�c∞

P
m �Mϑ

dc
dn

��
0,m

AmP
m �Mϑ

Am
ð9Þ

ϑm ¼ acos
xm�xbð Þ �ey
j xm�xb j

� �
ð10Þ

2.2.1 | Simulation setup

In all the simulations, the bubbles are initialized as perfect spheres at

the horizontal center of the domain and at 75% of the domain in the

rise direction. A moving frame of Reference [28] is used to keep the

bubble center at this initial position. The used domain size is 6.25 bub-

ble diameters in the rise direction and 4.7 bubble diameters in the hor-

izontal direction. At all the domain boundaries a free-slip condition is

applied for the velocity and a zero-gradient condition for the concen-

tration. The used dimensionless time step, Δet, is 10�4. For the SGS

model, the model parameter δ0 is equal to two cell sizes.

2.3 | Single-phase approximation

As the name suggests, the single-phase simulation approach is not a

self-contained two-phase flow solver. Instead, two-phase flow and

mass transfer are treated as two separate problems dealt with in two

consecutive steps. This simplification allows computing directly

resolved mass transfer at high Schmidt numbers in a short amount of

time but it also introduces some limitations. For example, two-way

interactions15 between species transport and flow dynamics are diffi-

cult to implement. The basic idea is simple: first, a two-phase flow

solution without species transport is computed to obtain the bubble's

rise velocity, deformation, and interface velocity; then, the species

transport problem is solved on a mesh containing only the liquid

phase. Compared with the structured Cartesian mesh used for the

two-phase flow simulations described in the previous section, the

unstructured liquid-phase mesh used in the single-phase computa-

tions allows efficient placement of most cells close to the bubble's

surface and wake. Moreover, the surface-aligned cell layers are suit-

able to resolve the strong gradients in the species concentration field.

A further reduction of the computational costs is enabled by per-

forming two-dimensional simulations. Axis-symmetry in azimuthal

direction is assumed and implemented using OpenFOAM's wedge

mesh approach.†

2.3.1 | Flow dynamics

A divergence-free mapping of the velocity field from the two-phase

to the single-phase domain is not straightforward. Instead, the flow

solution is computed again on the unstructured single-phase mesh. To

ensure that both velocity fields are as similar as possible, the boundary

condition on the surface representing the bubble in the single-phase

simulation must be chosen carefully. A typical approach would be to

assume a free-slip condition, rujs � ts = 0 and us � ns = 0, where

s denotes the bubble's surface as shown in Figure 1. The surface nor-

mal vector ns points into the liquid domain, and the tangential vector

ts is oriented as ϑ in Figure 1. However, even for supposedly simple,

almost spherical bubble shapes, a free-slip condition would introduce

significant differences in the evolution of the flow and concentration

fields. The Appendix S1 of this article provides more details and quan-

titative comparisons with the boundary condition outlined hereafter.

To compute a flow solution in the single-phase mesh that resem-

bles its two-phase counterpart as closely as possible, the interface

velocity, deformation, and rise velocity are mapped from the two-

phase flow fields to the single-phase simulation. A moving reference
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frame formulation is suitable to keep the mesh deformation to a mini-

mum. Since we consider the initial transient rise of the bubble, the

inlet velocity in the single-phase simulations must be time-dependent,

too. We create a ML model bUb tð Þ for the bubble's terminal velocity

Ub = ub � ey, where ey is the unit vector in rise direction. The inlet

velocity vector uin is then computed as:

uin ¼�bUb tð Þey: ð11Þ

Additional information about the training process is provided in

the next section.

To consider shape deformation in the single-phase simulations,

the boundary s must be moved over time, and the surrounding bulk

mesh must deform accordingly to preserve mesh quality. Therefore,

we parameterize the evolution of the interface as radius:

r t,ϑð Þ¼ xΣ�xbj j, ð12Þ

where xb denotes the bubble's center of mass, and xΣ is the position

vector describing the interface. A ML model is trained based on the

location of the front points and yields the approximationbr t,ϑð Þ≈ r t,ϑð Þ. In OpenFOAM, a Laplace equation for the mesh dis-

placement Δx is solved to move the mesh points. At the boundary s,

the displacement vector Δxs is prescribed using the difference

between the initial radius r0 = r(t = 0, ϑ) = 0.5db and the radius

predicted for the current simulation timebr t,ϑð Þ:

Δxs ¼ br t,ϑð Þ� r0ð Þer , ð13Þ

where the unit vector in radial direction is defined as

er ¼ xΣ�xbð Þ= xΣ�xbj j. At the wedge boundaries, no displacement

normal to the boundary is allowed, and the displacement for all

remaining boundaries is set to zero. To preserve the resolution in

interface vicinity during mesh motion, a diffusion coefficient based on

the quadratic inverse distance from the closest boundary is used in

the Laplace equation for the displacement. For more information on

the mesh motion, the reader is referred to Jasak and Tukovic.34

For the surface velocity, the two-phase velocity is interpolated to

the points located on the surface mesh, as indicated in Figure 1. This

interpolation is a standard operation in front tracking approaches.

Details on the cubic spline interpolation can be found in Dijkhuizen

et al.35 To obtain a 2D velocity profile, sector-wise averages along the

circumference are computed, similar to those of the local Sherwood

number. Neglecting any volume effects due to the mass transfer, the

velocity component normal to the interface equals the velocity of the

interface. To keep the velocity's normal component at the surface con-

sistent with the interface motion, we compute the normal velocity as:

bun ¼ _brer �ns� �
ns, ð14Þ

where _br is the partial derivative of the radius with respect to time.

Practically, the time derivative is evaluated by comparing old and new

interface position. Therefore, the resulting normal velocity is in agree-

ment with the motion predicted by br t,θð Þ. The remaining tangential

velocity component is obtained by projecting the relative velocity

onto the interface:

ut ¼ uΣ�ub½ � � tΣ, ð15Þ

where tΣ denotes the unit normal vector in the tangential plane. The

tangential component is again approximated by means of a model

1. Two

2. Ma

Rise

De

In

Single

Sl
ip

F IGURE 1 Single-phase simulation
workflow and case setup
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but t,ϑð Þ≈ ut t,ϑð Þ. Finally, the velocity vector at the boundary s in the

single-phase simulation is computed as:

us ¼but t,ϑð Þtsþbun t,ϑð Þns: ð16Þ

Finally, to obtain the velocity field, the incompressible, isothermal

Navier–Stokes equations are solved using the pimpleFoam solver. The

pressure–velocity coupling at each time step is stopped once a toler-

ance of 10�4 is reached, which usually happens within two to three

iterations. The time step varies between Δet¼ t=
ffiffiffiffiffiffiffiffiffi
gdeq

p ¼10�4 for test

case CB4 and Δet¼5�10�5 for test case CB1 (at refinement level

one; see Section 3.2).

2.3.2 | ML models

For readers without previous experience in ML, we recommend chap-

ter 4 of Reference [36] for a brief introduction tailored to the present

work. We use neural networks with fully-connected layers for all

required function approximations. All networks consist of two hidden

layers with 40 neurons per layer and SELU activation functions.37 This

simple architecture is sufficient to obtain accurate function approxi-

mations for all cases investigated here. Note that the network archi-

tecture could be optimized in terms of free parameters for each

individual model. However, the gain in terms of inference speed

would be marginal. Moreover, evaluating the models during the simu-

lation takes up a negligible amount of time.

The number of neurons in input and output layers varies

according to the number of independent variables of the approxi-

mated function. All models depend on t. The models for radius and

interface velocity also depend on the polar angle ϑ. The radius model

is created in two steps for improved accuracy. First, the aspect ratio

of the bubble's shape idealized as an ellipsoid is learned as a function

of time. Then, a second model learns the deviation of the actual shape

from the idealized ellipsoid. The model of the aspect ratio has two

output neurons, one for each half-axis. All other models have only

one output.

A mean squared error is used as loss function to adjust the

models' weights. The weight update is computed using the ADAM

optimizer.38 Before the training, all inputs and outputs are scaled to

the range [0, 1]. The models are trained for 5000 to 20,000 epochs,

depending on the non-linearity of the approximated function, and the

weights resulting in the lowest loss are kept for the final model. Since

the mappings are low-dimensional and the relative amount of training

data is large, no cross-validation was performed. For more details, the

reader is referred to the accompanying code repository.

2.3.3 | Species transfer and transport

As in the front tracking approach, the species concentration field is

obtained by solving Equation (4). At the boundary of the bubble s,

the concentration is set to unity and remains constant over time. At

the outlet boundary, the concentration gradient is set to zero. At the

inlet and side boundary, the concentration is set to zero. An implicit

first-order Euler scheme is used to discretize in time. Diffusive fluxes

are approximated by means of linear interpolation. The convective

term is discretized using OpenFOAM's linearUpwind scheme, which

switches between linear and upwind interpolation. Further details

on the simulation setup are available in the accompanying code

repository.

Once the concentration field is computed, time-dependent local

and global mass transfer properties can be evaluated. The local Sher-

wood number is defined as:

Shloc ¼rcjs �nsdeq
cs�c∞

: ð17Þ

The far field concentration c∞ is zero in all cases considered here.

The global Sherwood number based on the effective transfer area Aeff

is obtained by integrating the local Sherwood number over the bub-

ble's surface. In the discrete sense, the integral becomes the following

sum over all Ns faces on s:

Sheff ¼
XNs

i¼1

Shloc,iAi=
XNs

i¼1

Ai, ð18Þ

where Ai is the face area of face i. In contrast to expression (18), cor-

relations and experimental results are usually normalized using the

sphere-equivalent surface area Aeq. The connection between effective

and equivalent Sherwood number is given by the ratio of effective to

equivalent surface area:

Sheq ¼ Sheff
Aeff

Aeq
: ð19Þ

2.4 | Physical simulation parameters

The Morton number Mo¼ gμ4l =ρl=σ
3 ¼2:57�10�11 is the same for all

cases and corresponds to an air-water system (log[Mo] = �10.59, μl—

dynamic liquid viscosity). The ratios between liquid and gas density

and viscosity are ρl/ρg = 100 and μl/μg = 100. Note that the density

ratio is decreased by a factor of 10 compared with a physical gas–

liquid system to aid in the required computational time. The Eötvös or

Bond number completes the case description and is defined as

Eo¼ gρld
2
b=σ. Rising bubbles are also frequently characterized in terms

of the Galilei number Ga¼
ffiffiffiffiffiffiffiffi
gd3b

q
=νl , which we provide in addition to

Eo in Table 1.

The diameters in Table 1 have been selected such that the bub-

bles undergo a moderate deformation and rise on a straight path. Con-

sequently, the flow follows the interface and no recirculation zones

are present. The upper size limit at which small bubbles rising in pure

water become path unstable is at roughly db = 2 mm.

To simplify the parameter study and the analysis in terms of

dimensionless numbers, gravity, equivalent bubble diameter, and
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liquid density are set to unity (in SI units) in all simulations. The Eötvös

numbers according to Table 1 are obtained by adjusting surface ten-

sion and dynamic viscosity as given in the second half of the table.

Regarding the species transport, three different Schmidt numbers

Sc¼ 100,1000,10,000½ � are investigated. The resulting Péclet num-

bers, Pe = ReSc, vary between Pe = 7.2�103 and Pe = 5.7�106, and

cover most of the industrially relevant parameter range.

3 | MESH DEPENDENCY STUDY

3.1 | SGS model

The two-phase flow simulations employ an equidistant Cartesian

mesh. Three different mesh resolutions have been investigated, which

are reported in Table 2.

To reduce the overall number of simulations, the mesh depen-

dency study has been performed only for case CB4, the case with the

highest Reynolds number. Moreover, we only evaluate species trans-

fer and transport quantities, namely the global and local Sherwood

number as well as the wake concentration, and assume mesh indepen-

dent flow dynamics if we find mesh independent species transport.

Besides the time-dependent equivalent global Sherwood number,

Figure 2 also depicts the frequently used correlation by Lochiel and

Calderbank39:

Sheq ¼ 2ffiffiffi
π

p 1�2:96ffiffiffiffiffiffi
Re

p
� �0:5 ffiffiffiffiffi

Pe
p

: ð20Þ

Equation (20) assumes a spherical shape, a steady state, as well as

high Reynolds and Schmidt numbers to be most accurate. Compared

with the numerical results on refinement levels one and two,

Equation (20) yields an about 7% smaller Sherwood number. All

numerical results are in close agreement over the entire duration of

the simulation. Note that we depict the time-dependent results over

the characteristic time:

et¼ t=
ffiffiffiffiffiffiffiffiffi
gdeq

q
ð21Þ

The steady-state Sherwood number predicted on the coarsest

mesh is about 5% smaller compared with the ones computed on the

medium and fine meshes.

Also for the local Sherwood number, the SGS models delivers

mostly mesh independent results for all investigated Schmidt num-

bers. This statement holds true for the temporal evolution of the local

mass transfer, too (Figure 3).

The SGS model only corrects the species transport in the concen-

tration boundary layer. Once the mass is released into the bulk mesh,

convective, and diffusive fluxes are computed based on the default

interpolation scheme. Therefore, it is not surprising that the wake

concentration in Figure 4 shows a clear mesh dependency. The coor-

dinate yΣ is aligned with the y-axis but starts at the bubble's south

pole. The deviation is more pronounced with increasing Schmidt num-

ber, which is not surprising since the characteristic spatial scales in the

concentration field lc scale approximately with lc~1=
ffiffiffiffiffi
Sc

p
. Note that the

mesh-independent local mass transfer and the mesh-dependent con-

centration profiles in the wake are not contradictory. Thanks to the

TABLE 1 Investigated test cases in terms of Eo, Ga, the dynamic
liquid viscosity μl, and the surface tension σ

Identifier CB1 CB2 CB3 CB4

db in mm (water) 0.6 1.0 1.4 1.8

Eo � 10 0.485 1.346 2.683 4.361

Ga 45.86 98.67 163.4 238.2

μl � 103 in kg/(ms) 21.81 10.13 6.118 4.197

σ in kg/s 20.64 7.429 3.790 2.293

TABLE 2 Characteristic mesh properties for mesh dependency
study

Identifier Δ � 102 db/Δ Ncells/10
3

Refinement 0 5.000 20 1104.5

Refinement 1 3.125 32 4500

Refinement 2 2.500 40 8836

Note: The uniform cell width is denoted by Δ, and Ncells is the overall

number of cells.

0 1 2 3 4 5
t̃

102

103

104

S
h

eq

ref. 2 simulation stopped

Sc = 100

Sc = 1000

Sc = 10,000

Case 4, Re = 569

Refinement 0 Refinement 1 Refinement 2 Lochiel & Calderbank

F IGURE 2 Global Sherwood number

for test case 4 (Re = 569) computed on
meshes according to Table 2. The
reference corresponds to Equation (20)
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SGS model, the boundary layer profile and consequently the mass

transfer are approximated accurately. The correct amount of spe-

cies is released into the wake. However, due to the low mesh res-

olution in the wake, the species quickly diffuses normal to the rise

direction. Therefore, the concentration profile in the wake along

the central axis decays rapidly. Increasing the mesh resolution

mitigates this effect, but a much finer resolution would be

required to obtain sufficiently mesh-independent results. None-

theless, the qualitative behavior of the results on both meshes is

comparable.

Based on these results, we consider refinement level one to be

sufficiently mesh independent, at least with respect to the Sher-

wood numbers. Therefore, refinement level one is used for all

remaining simulations. The simulations were performed on eight

cores on a high performance cluster with 3.2 GHz clock rate, and

took between 5 days 18 h (CB1–Sc = 102) and 5 days 6 h

(CB4–Sc = 103) to compute one dimensionless time unit. For com-

parison, the refinement levels zero and two simulations of CB4 at

Sc = 103 required about 21 h and 10 days 18 h for one time unit,

respectively.

3.2 | Single-phase approximation

The block-structured meshes used in the single-phase simulations

were created with blockMesh. Most cells are concentrated around the

surface boundary. To create a refined mesh, the number of cells in

each direction of each block is doubled, but all other parameters, like

cell expansion ratios, are kept constant. As a result, the width of the

first cell layer Δ1 along the boundary s is halved with each additional

refinement level, and the overall number of cells is roughly four times

larger, as can be seen in Table 3.

F IGURE 3 Local Sherwood number at selected time instances of test case 4 (Re = 569) computed on meshes 1 and 2 according to Table 2.
The time in the graphs is dimensionless according to Equation (21)
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ỹΣ

B
ub

bl
e

so
ut

h
p

ol
e

Sc = 1000

t̃ = 0 .5, ref. 1

t̃ = 0 .5, ref. 2

t̃ = 1 , ref. 1

t̃ = 1 , ref. 2

t̃ = 1 .5, ref. 1

t̃ = 1 .5, ref. 2

t̃ = 2 , ref. 1

t̃ = 2 , ref. 2

−2 −1 0
ỹΣ
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The second column in Table 3 indicates the resolution of a

Cartesian mesh to reach a similar cell width near the interface. The

resolution in the single-phase simulations is roughly two orders of mag-

nitude higher than in the two-phase simulations. Even with a two-phase

flow solver supporting locally AMR, it would be highly challenging or

even impossible to reach such mesh densities. The three refinement

levels compared in this section are depicted in Figure 5.

As before, we compare local and global Sherwood numbers as

well as the species concentration in the wake for test case CB4

(highest Reynolds number). Figure 6 depicts the computed global

Sherwood number over time. Except for the highest Schmidt number,

the curves of all three meshes are visually indistinguishable. For

Sc = 104, the results on the coarsest mesh deviate by about 8% from

the ones computed on refinement level one. As expected, the devia-

tion is the highest in the initial stage et<0:5 since the concentration

boundary layer is still developing. The results indicate that refinement

level one might be sufficiently mesh independent.

Favorable compensation of errors can yield integral quantities

that appear more accurate than they actually are. Therefore, we also

look at the local Sherwood numbers. Figure 7 shows several snap-

shots computed on refinement levels one and two. The shape of the

graphs is very similar to results obtained by Figueroa-Espinoza and

Legendre,40 but a direct comparison with these results is difficult due

to the simplified ellipsoidal shape of the bubbles and the free-slip

boundary used in Figueroa-Espinoza and Legendre.40

As for the global Sherwood numbers, the results are in close

agreement. Only for the highest Schmidt number, a small deviation is

visible at the upper half of the bubble, where the concentration gradi-

ents are the strongest. Note that there are several outliers in the scat-

ter plot, especially close to the bubble's north pole. These extreme

values originate from the difficulty of evaluating the concentration

gradient in cells with extremely large aspect ratios. The closer cells are

to the axis of rotation, the more the cell topology deteriorates due to

the wedge domain, and therefore, the computed species transfer is

less accurate. This observation holds true for the wake region, too,

but the species transfer there is close to zero. A true two-dimensional

mesh could potentially yield better results. Another potential source

for the scatter might be small inaccuracies in the ML models for shape

and velocity, since the models are created by means of regression

based on imperfect training data. Since the concentration profile

changes strongly normal to the interface, small inaccuracies in the

interface position or the tangential velocity can get amplified when

computing gradients. However, we evaluated the mass transfer close

to the front, ϑ < 3 rad, and found a contribution of about 0.1% to the

global Sherwood number.

For completeness, we also look at the wake concentration along

the axis of rotation. Figure 8 shows no significant difference

between the results obtained on refinement levels one and two.

Note that the cell size increases in the downstream direction, which

presumably causes the small visible shift at et≈2. An interesting

observation is that the concentration profile is not always monoto-

nously decreasing for Sc = [1000, 10,000]. We explain this effect in

Section 4.3.

Based on these results, we consider refinement level one to be

sufficiently mesh independent for all remaining simulations. The

TABLE 3 Characteristic mesh properties for mesh dependency
study

Identifier Δ1 � 104 db/Δ1 Ncells/10
3

Refinement 0 5.00 2000 27

Refinement 1 2.50 4000 108

Refinement 2 1.25 8000 434

Note: The width of the first cell layer normal to the bubble's surface is

denoted by Δ1, and Ncells is the overall number of cells. Note that Δ1

undergoes small changes as the mesh deforms.

F IGURE 5 Coarse, medium, and fine mesh for the single-phase simulations corresponding to the properties in Table 3

WEINER ET AL. 9 of 17



simulations were performed on a single core with 2.6 GHz clock rate,

and took between 14 h (CB1) and 6 h (CB4) to compute one dimen-

sionless time unit. For comparison, the refinement level zero and two

simulations of CB4 required about 50 min and 1.4 days for one time

unit, respectively. The latter simulation was performed in parallel on

two cores.

4 | RESULTS

4.1 | Rise velocity, aspect ratio, and flow fields

To determine whether the flow dynamics in the simulations are cor-

rect, rise velocity and aspect ratio obtained in the simulations are
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S
h e

q ref. 2 simulation stopped

Sc = 100
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Sc = 10,000

Case 4, Re = 569

Refinement 0 Refinement 1 Refinement 2 Lochiel & Calderbank

F IGURE 6 Global Sherwood
number for test case 4 (Re = 569)
computed on meshes according to
Table 3. The reference corresponds to
correlation (20)

F IGURE 7 Local Sherwood
number at selected time instances of
test case 4 (Re = 569) computed on
meshes 1 and 2 according to Table 3
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compared with well-known correlations in literature. Table 4 shows

that the obtained rise velocity is within the range of the correlations

of both Mei et al.41 and Tomiyama et al.42

The simulation conditions were chosen such that the bubble

shapes range from almost spherical (CB1) to moderately ellipsoidal

(CB4). The results reflect this deformation behavior very well, as can

be seen in Table 4. The obtained aspect ratios also agree with the

experimental results of Duineveld et al.43 and the correlation of

Legendre et al.44 For the highest Reynolds number (CB4), the numeri-

cally predicted deformation is about 10% lower compared with the

experimental data of Duineveld et al. and 13% higher compared with

the correlation of Legendre et al. This shows the existing scatter

between literature correlation.

Besides the check with the correlations, the velocity profiles in

both simulations are compared for case CB4 in Figure 9. The velocity

profile is the same in the proximity of the bubble. However, small dif-

ferences are obtained at large distances from the bubble due to a

difference in resolution of the grid, type of boundary conditions used

and the distance to the domain boundaries.

4.2 | Global and local mass transfer

Figure 10 shows the time-dependent global Sherwood number for all

investigated test cases. The results were obtained at refinement level

one in both approaches. A first look reveals that the agreement is

extremely good over the entire investigated range of Reynolds and

Schmidt numbers. The maximum deviation of 2.47% of the final steady-

state Sherwood number occurs for test case CB3 (second highest Re)

and Sc = 100. For most test cases, the difference is below 2%. The

remaining deviation might be attributed to modeling errors and small

differences in the liquid-phase velocity field close to the interface.

From the figure it is clear that the agreement of all simulations

with the literature correlation of Lochiel and Calderbank,

TABLE 4 Comparison of numerically obtained bubble Reynolds number and aspect ratio χ with reference data from literature

Resim χ sim ReMei ReTomiyama χDuineveld χ Legendre

CB1 72 0.985 77 58 0.966 0.983

CB2 243 0.882 288 268 0.902 0.887

CB3 430 0.710 503 459 0.694 0.751

CB4 569 0.580 630 569 0.524 0.665

Note: The reference aspect ratio was computed using a 4th-order polynomial fit of Duineveld's experimental data.43 Note that the diameters of cases CB1

and CB2 are below the experimentally investigated diameter range in Duineveld et al.43 and may contain some extrapolation error.

(A) t̃ = 1 (B) t̃ = 2 (C) t̃ = 3 (D) t̃ = 5

F IGURE 9 Rise velocity field at different times for the highest Reynolds number case (CB4)
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Equation (20), is best for test case CB2 regardless of the Schmidt

number. This observation is sensible because most of the assump-

tions necessary to derive Equation (20) hold true in this case: the

Reynolds number is high but not too high to cause a significant

shape deformation; in conjunction with the overall high Schmidt

numbers investigated here, the thin boundary layer assumption is

fulfilled the best. When using a lower Reynolds number (i.e., CB1),

the velocity and concentration boundary layer are significantly

thicker. In case CB1, it is expected that the differences between the

correlation and the simulation decrease with increasing Schmidt

number as the concentration boundary layer thickness decreases.

On the other hand, as the Reynolds number increases (i.e., CB3 and

CB4), the shape becomes more deformed, and the boundary layers'

shape change. As Figueroa-Espinoza and Legendre40 have shown,

the effect on the Sherwood number with different aspect ratio's is

low for high Reynolds and Schmidt numbers which explains why the

match is still satisfactory. All steady-state Sherwood numbers and

their relative differences can be found in the complementary

material.

Figure 11 shows the local Sherwood number at select time

instances during the early stage of the bubble's rise. In contrast to the

scatter plots presented in Section 3, the curves have been smoothed

with a Gaussian filter to enable a better visual comparison. Again, the

agreement between both approaches is satisfying throughout the

temporal evolution. Some differences are visible at low polar angles,

which are caused by the outliers present in the single-phase simula-

tion approach. However, as discussed in Section 3.2, the area around

the caps contributes little to the overall species transport. Note that

the local Sherwood number in the SGS model approach does not

exactly reflect its global counterpart due to the averaging procedure

in the circumferential direction. In other words, integrating the

circumference-weighted local Sherwood number over the polar angle

yields slightly higher global Sherwood numbers. The reason is that 3D

simulations on Cartesian meshes are usually not perfectly symmetric

along the azimuth. Nonetheless, the influence is too small to affect

the qualitative discussion of Figure 11.

4.3 | Concentration fields

The discussion of the concentration field, in particular in the wake, is

complex due to the various physical and numerical effects and their

parameter-dependent impact on the results. Therefore, we want to

start this section by listing the main effects at play:

• Convection: the species transport along the interface and also in

the wake along the rise direction is dominated by convection

• Diffusion: close to the bubble's surface the main transport mechan-

ics are diffusion normal to the surface (on the liquid side) and con-

vection along the surface; the equilibrium of convection and
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diffusion forms the boundary layer; diffusion also occurs in the

wake but is less important due to the high Schmidt number

• Numerical diffusion: if the concentration profile is not sufficiently

well approximated by the interpolation scheme, convective fluxes

are erroneous; the discretization error acts similar to physical diffu-

sion, hence the naming

• Approximation error in diffusive fluxes: similar to numerical diffu-

sion, the interpolation error of the concentration gradients on cell

faces causes numerically enhanced diffusive fluxes (in principal, the

fluxes could be also mitigated, but for high Schmidt numbers, they

are usually enhanced)

Due to the acceleration the bubble undergoes, the above mecha-

nisms act with varying intensity over time. The time-dependency is

important to understand the concentration fields and profiles

depicted in Figures 12 and 13, respectively.

Figure 12 shows that the evolution of the wake concentration is

in good agreement for all depicted cases. The agreement is similarly

good for all other cases not depicted in the figure. In comparison to

the single-phase results, the wake in the SGS simulation evolves faster

by a small extend. This difference arises mostly due to numerical dif-

fusion. Moreover, the wake in the SGS simulations is wider. This

effect is mostly caused by approximation errors of diffusive fluxes,

which numerically enhance diffusive fluxes normal to the rise direc-

tion. The discretization errors are mitigated to a large extent in the

boundary layer by the SGS model. In the single-phase approximation,

the errors are reduced by extreme mesh densities. The wake resolu-

tion is about 40 times higher in horizontal and 4 times higher in rise

direction compared with the SGS model simulations. Still, the two-

phase simulation results are close to their single-phase counterpart,

which indicates that the high Schmidt number problem is less severe

in the bulk compared with the boundary layer.

In Figure 13, we look at concentration profiles close to the centerline

to enable a more quantitative comparison than in Figure 12. As discussed

in Section 3.1, the wake concentration in the SGS model simulations is

not sufficiently mesh-independent. Nonetheless, the concentration pro-

files follow the qualitative behavior of the single-phase simulations over

the entire parameter range. It is also clearly visible that the agreement

improves with decreasing Péclet number, where the resolution require-

ments are smaller. The profiles in the SGS simulations evolve faster in

downstream direction, which was already discussed before.

An interesting observation is that for some curves with Re ≥ 430

and Sc ≥ 1000, the concentration is not always monotonously

decreasing. The behavior is caused by the bubble's acceleration in the
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F IGURE 12 Concentration field at
different times for the lowest Reynolds and
Schmidt number case (top), case CB2 (middle),
and the highest Reynolds and Schmidt number
case (bottom)
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initial stage. At the very beginning of the simulation, the bubble is at

rest, and only diffusion acts. A concentration layer forms quickly

around the interface because no species is present in the bulk, and

the concentration normal derivative at the interface is correspond-

ingly high. Then, as the bubble accelerates, convection transports the

species along the surface to the rear part of the bubble and into the

wake. Note that this interpretation considers a reference frame mov-

ing with the bubble. In the two-phase simulations as well as in experi-

ments, convection rather causes the species “to be left behind.” At

some point, convection becomes stronger than diffusion such that the

boundary layer depletes. Also the global Sherwood numbers reflect

this behavior showing an increase after roughly et≈0:5. Due to the

depletion, less species is transported through the boundary layer into

the wake. The wake concentration close to the bubble around this

point in time is consequently lower than it was before. At the same

time, concentration gradients in the wake decay because of physically

and numerically induced diffusion. This non-monotonous wake profile

is only observed if the Schmidt number is sufficiently high and the

mesh is dense enough, because in these cases the regions of increased

concentration persists long enough. In some sense, one could say that

the wake concentration reflects the mass transfer's history masked by

bulk diffusion.

The effect described before is not too surprising. When looking at

comparable experiments with visualized concentration fields,16 similar

events take place: first; the bubble forms at the orifice; while it forms, it

also starts to dissolve; when the bubble detaches, it leaves a region rich

in transfer species behind. Of course, the mechanism in the experiment

becomes even more intricate due to the formation process.

Another observation in Figure 13 is that the SGS model results

are sometimes below and sometimes above the ones of the single-

phase simulation. We attribute this observation to the varying error

sources associated with the mesh dependency mentioned before. The

discretization error varies with both Reynolds and Schmidt number.

We omit a detailed discussion of each individual test case.
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F IGURE 13 Comparison of the wake concentration along a line in y-direction
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5 | SUMMARY AND OUTLOOK

In this contribution, we introduced improved versions of two

approaches to compute the convection-dominated mass transfer from

rising bubbles. The main finding is that the SGS model yields excellent

mass transfer predictions for a wide range of relevant Reynolds and

Schmidt numbers. This statement holds true for the steady rise as well

as the initial stage, in which the bubble undergoes strong deformation

and acceleration. The extended transient single-phase simulation

approach approximates the two-phase velocity field extremely well

and presents itself as an excellent validation tool. Of course, there are

still several open questions and possible improvements in both

methods. Regarding the transient mass transfer, little is known about

the local mass transfer at dynamic bubbles undergoing path instability

and shape oscillations at realistic Reynolds and Schmidt numbers. The

present results suggest that the SGS model could perform well under

such conditions, but a thorough validation would be necessary. If the

SGS passes this challenging test, it could be applied with much higher

confidence to even more complex tasks like bubble swarm simula-

tions. Regarding the numerical methods, the single-phase simulation

approach could be improved by building further mathematical con-

straints into the ML models. For example, fulfilling the symmetry

boundary condition at the central axis of rotation exactly by definition

could mitigate the outliers in the local mass transfer close to the poles.

The SGS model currently assumes a species concentration of zero in

the surrounding liquid bulk, which should be taken into account, for

example, to simulate bubble–bubble interactions or systems with mul-

tiple species and chemical reactions. Moreover, the present imple-

mentation would not be ideal to approximate reactive boundary

layers since the concentration profile function was derived assuming

pure physisorption. Reactive boundary layers could be dealt with by

replacing the present profile function with more complex ones or by

using a ML model instead. The biggest remaining question is the accu-

rate, but not too computationally demanding modeling of the liquid

bulk. This could be achieved by local mesh refinements or by applying

an extra SGS model for the wake of the bubble. However, there have

been only a few successful attempts toward tackling this problem.
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