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Trajectories are usually collected with physical sensors, which are prone to errors and cause outliers in the

data. We aim to identify such outliers via the physical properties of the tracked entity, that is, we consider

its physical possibility to visit combinations of measurements. We describe optimal algorithms to compute

maximum subsequences of measurements that are consistent with (simplified) physics models. Our results are

output-sensitive with respect to the number k of outliers in a trajectory of n measurements. Specifically, we

describe an O (n logn log2 k )-time algorithm for 2D trajectories using a model with unbounded acceleration

but bounded velocity, and an O (nk )-time algorithm for any model where consistency is “concatenable”: a

consistent subsequence that ends where another begins together form a consistent sequence. We also consider

acceleration-bounded models that are not concatenable. We show how to compute the maximum subsequence

for such models inO (nk2 logk ) time, under appropriate realism conditions. Finally, we experimentally explore

the performance of our algorithms on several large real-world sets of trajectories. Our experiments show that

we are generally able to retain larger fractions of noisy trajectories than previous work and simpler greedy

approaches. We also observe that the speed-bounded model may in practice approximate the acceleration-

bounded model quite well, though we observed some variation between datasets.
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1 INTRODUCTION

Trajectories—sequences of time-stamped locations representing the motion of an entity—are
among the most frequently collected types of spatio-temporal data. Consequently, there are myriad
analysis techniques that use trajectories as their input. However, many ways to collect trajectories
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involve physical sensors, which are prone to errors. For example, GPS readings notoriously stray
far from their real location in urban canyons, resulting in trajectories with multiple significant out-
liers. These outliers pose problems for many analysis techniques such as clustering or grouping,
and they skew the results of statistical methods. Hence, it is common practice to try to eliminate
outliers in a preprocessing step.

There are a variety of methods to remove outliers. Some techniques, such as smoothing or av-
eraging the data, have a possibly negative impact on the complete trajectory. Others, such as map
matching, are applicable only to trajectories that can be expected to coincide with a road network.
In this article, we focus on outlier detection, that is, we describe algorithms that identify outliers,
which are subsequently removed from the trajectory.

Specifically, we aim to identify outliers via the physical properties of the moving (real-world)
entity. We consider two measurements within a trajectory to be consistent for a particular physics
model, if the corresponding entity could have traveled between the two measured locations in the
time between the two measurements. In this article, we present optimal algorithms to compute
maximal consistent subtrajectories according to different (simplified) physics models. Before
describing our results in more detail, we first introduce the necessary notation and formally state
the problem.

Notation. A trajectoryT is a mapping from time to space that represents the motion of an entity.
However, recording devices typically record the position, and any other relevant information, of
the entity at discrete moments in time. Hence, a trajectory T is usually stored as a sequence of
time-stamped measurements 〈p1, . . . ,pn〉. A measurement pi represents the position of the entity
at time ti and may contain additional information such as its velocity vi and its acceleration ai at
time ti . The measurements are ordered by timestamp, so ti < tj if and only if i < j.

Let v− be the minimum speed, or velocity, that the entity can achieve, and let v+ be the maximum
speed that the entity can achieve. Similarly, let a− and a+ be the minimum and maximum possible
acceleration. These speed and acceleration bounds represent physical bounds, and thus the entity
cannot exceed them at any time, even in between consecutive time stamps ti and ti+1. The actual
continuous motion of an entity is assumed to be a continuous path π : [t , t ′]→ Rd over time
interval [t , t ′] through d-dimensional space (typically, d = 2). We say that a path π adheres to the
physics model if it never exceeds the bounds. For example, the speed is always in [v−, v+] and
the acceleration is always in [a−,a+]. A sequence of measurements T = 〈p1, . . . ,pn〉 is consistent

with the physics model, denoted C (T ), if and only if there exists at least one witness: a path π :
[t1, tn]→ Rd such that (i) for all i ∈ {1, . . . ,n}, π (ti ) coincides with location pi , and (ii) π adheres
to the physics model. We sometimes write C (pi ,pj ) instead of C (〈pi ,pj 〉).

We use subtrajectory or subsequence of a trajectory T to refer to a subset of the measurements
in the same order as in T ; note that these measurements do not need to be consecutive in T .

Formal problem statement. Given a trajectoryT and a physics model, compute a maximum-size
subsequence S ofT such that S is consistent with the given model. When S has size �, the trajectory
T contains k = n − � erroneous measurements or outliers.

Concatenability. Regardless of the physics model, if a sequence T is consistent, then so is any
subsequence S of T . But we cannot necessarily construct a consistent subsequence from smaller
ones: the concatenation 〈p1, . . . ,pn = q1, . . . ,qm〉 of two consistent subsequencesT = 〈p1, . . . ,pn〉
andU = 〈q1, . . . ,qm〉with pn = q1 is not necessarily consistent. We call a physics model concaten-

able if this is the case. An example of a concatenable model is one that limits only the speed of the
entity. Concatenable models generally allow more efficient algorithms.

Not all physics models are concatenable: for example, a model limiting both the speed and
the acceleration is not concatenable. See Figure 1 (left): both T = 〈p1,p2〉 and U = 〈p2,p3〉 are

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.



Maximum Physically Consistent Trajectories 17:3

Fig. 1. (Left) In an acceleration-bounded model 〈p1,p2,p3〉 is not consistent, even though 〈p1,p2〉 and 〈p2,p3〉
(and even 〈p1,p3〉) are. (Right) A consistent subtrajectory through p2 (red) may require a different speed at
p4 than a subtrajectory that includes p3 (blue).

consistent, but 〈p1,p2,p3〉 is not. The main problem is that sequences U and T essentially require
the entity to have two different speeds at p2. The two subtrajectories U and T are concatenable
in the acceleration-bounded model, under the condition that they have the same speed at their
common measurement. To capture this, we define a notion of conditional consistency, denoted
C (T | γ ), in which a trajectory T is consistent, provided that it has a witness satisfying condition
γ . In case C (T | γ ) and C (U | γ ′) imply that the concatenation of T and U is consistent, we say
that the physics model is conditionally concatenable. Hence, the model with bounded acceleration
is conditionally concatenable, using the condition that the speed at the common measurement is
the same. The speeds attainable at a certain measurement may depend on the subtrajectory so far,
as illustrated in Figure 1 (right).

Results and organization. We present three algorithms and the results of computational exper-
iments investigating the efficacy of our methods. Specifically, in Section 2, we describe a simple,
optimal algorithm that runs inO (nk ) time for any concatenable physics model allowingO (1) con-
sistency checks between two measurements. We then describe a more efficient algorithm that runs
in O (n logn log2 k ) time for the speed-bounded model in Section 3. Our final algorithm, described
in Section 4, uses an acceleration-bounded model, that can optionally also bound the speed. This
algorithm runs in O (nk2 logk ) time under mild assumptions, that are validated by our experi-
ments. We also present a variant of this algorithm that introduces slack in the physics model to
obtain an efficient approximate algorithm that achieves the given worst-case running time without
assumptions.

In Section 5, we discuss the results of a series of computational experiments on real-world data
using our open-source implementation.1 Specifically, we compare the quality of our algorithms
to simple greedy approaches and conclude that our algorithms are more reliable, especially for
trajectories with more than minor levels of noise. We also observe that the speed-bounded model
approximates the acceleration-bounded model, though there is some dependency on the dataset.
Finally, we also briefly investigate how sensitive our results are to the model parameters: though
speed bound is quite sensitive, the acceleration bounds have comparatively little influence on the
number of outliers detected. We conclude with a discussion of our results in Section 6.

Related work. Outlier detection is necessary to cope with imprecise data. Hence, many different
methods have been developed for various contexts. A general survey of outlier detection is given
in Reference [9]; see also Reference [8] for a survey focusing on data with a temporal component,
including trajectories. For trajectories, outlier detection has mainly focused on finding outlying
trajectories in sets of trajectories [7, 11, 13, 20] and not on finding outlying measurements in
one trajectory. At a glance, detecting outlying measurements resembles trajectory simplification
and trajectory smoothing, both well-studied topics: refer to Reference [21] for a survey. However,

1Released as part of the MoveTK library, https://movetk.win.tue.nl/.
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17:4 B. Custers et al.

simplification generally aims to minimize the number of measurements while still accurately de-
scribing the trajectory: this typically retains outliers as these are “salient.”

Physics models are often used in trajectory processing. Kalman filtering [12], for example, is
based upon a linear model for physical motion; its extensions handle more complex, nonlinear
models. Note, however, that Kalman filtering changes the measurement positions rather than se-
lecting a consistent subset. In a similar vein, physics models are used to reconstruct trajectories
from data, replacing subtrajectories that cannot be physically realized with ones that can [14, 18].
Here, unrealistic subtrajectories are detected using a local time window, sliding over the trajectory.

Given a trajectory and physics model, we aim to determine the maximum number of measure-
ments that can be explained through a path adhering to the model. As such, our problem bears
some resemblance to two other problems: computing a longest common subsequence and map
matching. The former asks to compute the maximum subsequence of two strings [3] and has also
been used to compute trajectory similarity [19]. Contrasting our approach, longest common sub-
sequence requires that both trajectories are known. The latter, map matching, is the problem of de-
termining the driven route through a street network, given a noisy trajectory. Myriad algorithms
exist, e.g., References [1, 15]; see Reference [21] for an overview. Dealing with noise naturally
arises in this application. Though we do not investigate this here, explicit outlier removal before
map matching may improve results of simple and faster algorithms; postprocessing map matching
results using our methodology may give rise to more realistic results. However, the primary differ-
ence is that our method does not rely on knowledge of the street network: the space of potential
paths is defined implicitly and as such our methodology is more broadly applicable to movement
that does not follow a predefined network (pedestrians, ships, airplanes).

2 CONCATENABLE CONSISTENCY MODEL

We assume an arbitrary concatenable physics model that allows consistency checks between two
measurements inO ( f (n)) time for some function f ; typically, f (n) = O (1). We follow the method-
ology of the Imai-Iri line-simplification algorithm [10]. Let G = (V ,A) be a directed acyclic graph
with a vertex vi for each measurement pi of T and an edge from vi to vj if and only if C (pi ,pj ).
This graph has O (n2) edges; each can be tested in O ( f (n)) time. By concatenability, a path in G
describes a consistent subsequence. Since G is directed and acyclic, we compute a longest path in
G, and thus a maximum consistent subsequence of T , in O (( |V | + |A|) f (n)) = O (n2 f (n)) time.

We now develop an output-sensitive variant of this algorithm. Rather than constructing the
full graph, we build a subgraph in which each vertex v has at most one incoming edge (uv ,v ). In
particular, uv andv are the last measurements of a longest consistent subsequenceTv ending inv .
Let �v denote the length of Tv .

Theorem 2.1. Consider a concatenable physics model that allows checking the consistency of a

pair of measurements in O ( f (n)) time. A maximum consistent subsequence of a trajectory T with n
measurements can be computed in O (nk f (n)) time, where k is the number of outliers.

Proof. We handle the measurements in chronological order, maintaining a linked list L that
stores, for each handled measurement v , the value �v and the predecessor uv in Tv . L is ordered
by the lengths �v in descending order. For a new measurement w , we traverse L to find the first
measurementv consistent withw . SinceL is ordered, we have thus found a longest consistent sub-
sequence of length �v + 1 ending inw . We now walk backwards in L and addw to the appropriate
place in the list.

After we have handled all measurements, the maximum consistent subsequence can be retrieved
inO (n − k ) time, by starting at the head of the list and following the predecessor pointers. For each
of the n − k measurements that end up in the longest subsequence, we perform one successful

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.
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Fig. 2. Each measurement defines a reachable region (a cone), that intersects the plane at time t ′ in a disk.
These disks define an AWVD. A measurement pj is consistent with an earlier measurement ph if (and only
if) its cone (shown in red) is contained in the cone of ph .

check preceded by at most k failed checks, and for the k outliers we perform at most n checks.
This gives a total ofO (nk f (n)) time performing the checks. The time for inserting a measurement
in L can be charged to the number of checks it performs: this takes O (nk ) time in total. Hence,
the total running time for the algorithm is O (nk f (n)). �

As the speed-bounded model allows to check consistency between two measurements in con-
stant time, we thus obtain the following running time for this model. We can, however, improve
upon this algorithm in case the trajectory has many outliers, as discussed in the next section.

Corollary 2.2. For the speed-bounded model, a maximum consistent subsequence of a trajectory

T with n measurements can be computed in O (nk ) time, where k is the number of outliers.

3 THE SPEED-BOUNDED MODEL IN 2D

We now consider the speed-bounded model, with maximum speed v+, and trajectories in R2. We
present an O (n logn log2 k )-time algorithm to find a maximum consistent subtrajectory in this
model. To this end, we develop an insertion-only data structure that, given a measurement q, can
determine the length of a maximum consistent subsequence ending at q in O (log3 n) time. Inser-
tions are supported in O (log3 n) time. By incrementally building the data structure in chronolog-
ical order, we can determine the maximum consistent trajectory in O (n log3 n) time. With a more
careful analysis this can be improved to O (n logn log2 k ) time.

3.1 A Consistency Data Structure

Let P be a subset of measurements from T , and let t̂ be the time of the last measurement in P . We
develop a data structureD that can efficiently answer consistency-queries on P . That is, for a given
new query measurement q occurring at time t ≥ t̂ , we can test whether there is a measurement
in P consistent with q. We view the measurements in P as points in R3, with the third axis being
time, that is,pi = (xi ,yi , ti ). Measurementspj , with j > i , that are consistent withpi must lie inside
a cone that starts at pi and has radius v+ (t − ti ) at time t ≥ ti ; see Figure 2. We call this cone the
reachable region of pi ; testing whether pj is in the reachable region of pi takes O (1) time.

To determine if a measurement q at time tq ≥ t̂ is consistent with any measurement of P , we use
an additively weighted Voronoi diagram (AWVD) [5, 6]. Given a set of disks with centers {v1, . . . ,vl }

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.



17:6 B. Custers et al.

and radii {r1, . . . , rl }, this diagram partitions the plane into cells {c1, . . . , cl } associated with the
disks, such that for any point v ∈ ci it holds that d (v,vi ) − ri ≤ d (v,vj ) − r j , for all vj � vi . Here,
d is a distance measure (in our case the Euclidean distance), and equality holds only on boundaries
between cells.

We construct an AWVD on the measurements in P by using the locations as the centers and
picking ri = v+ (t ′ − ti ) for every measurement for some arbitrary t ′ > tn . Observe that a mea-
surement pj is consistent with ph if the reachable region of pj at t ′ is inside the reachable region
of ph at t ′ (see Figure 2). We preprocess the AWVD for point location queries. Let D denote the
resulting data structure, which we refer to as a consistency data structure. We can now query D
with a new measurement q = pq , giving us a previous measurement pc and a distance sc between
the disks (pq , rq ) and (pc , rc ), given by sc = d (pq ,pc ) − rq − rc , where d measures the Euclidean
distance between the points in the plane, that is, ignoring the temporal component. The following
lemma then gives us that D can be used to answer consistency queries.

Lemma 3.1. Let D be a consistency data structure on a set P of measurements and let q = pq be a

query measurement, resulting in measurement pc on D. If sc ≤ −2rq for the resulting distance sc of

pc with pq , then pc is consistent with q. Otherwise, no measurement in P is consistent with q.

Proof. We denote w j = (x j ,yj ) for compactness. Let pq = (xq ,yq , tq ) be the qth measure-
ment in a trajectory and let D be the consistency data structure on a subset P ⊆ {p1, . . . ,pq−1}.
Let pc be the measurement associated with the found cell in D containing (xq ,yq ) and let
sc = d (wq ,wc ) − rq − rc .

Since sc = d (pq ,pc ) − rq − rc , we can rewrite the inequality sc ≤ −2rq to d (pq ,pc ) ≤ rc − rq , Ap-
plying the definition of rc and rq , the right-hand side can be rewritten to v+ (t ′ − tc ) − v+ (t ′ − tq ) =
v+ (tq − tc ). In other words, we have that the distance between the measurements is at most the
maximum distance that the object can travel in the given time span. Hence, pq is consistent
with pc .

Analogously, if the given inequality does not hold, then the distance between the two measure-
ments is larger than what the object can cover when traveling at maximum speed: They are not
consistent.

To show that no other measurement in P can be consistent, observe that the definition
of the AWVD gives us that d (pq ,pc ) − rc ≤ d (pq ,pk ) − rk for all pk ∈ P \ {pc }. Subtracting rq

from both sides, we get that d (pq ,pc ) − rc − rq = sc ≤ d (pq ,pk ) − rk − rq . Thus, if sc > −2rq ,
we must also have that d (pk ,pc ) > rk − rq . Thus, all measurements pk are not consistent with
measurement pq . �

We can construct the AWVD for a set ofm measurements and preprocess this AWVD for point-
location queries in O (m logm) time [5, 6]. The resulting data structure uses O (m) space, and can
answer point-location queries in O (logm) time. Since a single consistency check takes constant
time, we can also answer consistency queries in O (logm) time.

3.2 Supporting Insertions

Next, we describe how to extend our consistency data structure to support insertions. Testing
whether a measurement is consistent with any previous measurement of a subsequence of T is
a decomposable search problem. Thus, we use the approach by Bentley and Saxe [2] to turn our
consistency data structure into an efficient insertion-only data structure.

For a set of m measurements, we maintain O (logm) instances of our static data structure
D1, . . . ,DO (log m) (see Figure 3). Every measurement is in one of these O (logm) data structures.

Data structure Di has size 2i . On insertion, we create a new D1 with the inserted measurement.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.
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Fig. 3. Inserting elements using Bentley-Saxe. The colored measurements in the trajectory are the elements
in the insertion-only consistency data structure.

Fig. 4. Data structure for maximum subsequence queries.

When we get two data structures of same size 2i , we remove both and replace them by a single
data structure of size 2i+1. We repeat this process until all data structures have a unique size. To
answer a query, we simply query all O (logm) data structures.

The above construction together with the consistency query structure gives O (log2m) time for
a query and O (log2m) amortized time for an insertion. These bounds can be made worst case as
well [17]. We summarize our results in the following lemma.

Lemma 3.2. There is a consistency data structure D that can store a subset P of m measurements

from T and can answer consistency queries for query points q at time t ≥ t̂ , in O (log2m) time, and

supports insertions in O (log2m) time. Here, t̂ denotes the time of the last measurement currently in

P . The data structure uses O (m) space.

3.3 Maximum Subsequence Queries

We now use the data structure from Lemma 3.2 to build a dynamic data structure that, for a new
query measurementq = pq can determine the length �q of a longest consistent subsequenceTq ⊆ P
ending at q. We store the measurements in p ∈ P in the leaves of a balanced binary tree T , ordered
by the length �p of the longest consistent subsequence ending in p. Each internal nodev with right
child r corresponds to a subset Pv ⊆ P , and stores the minimum �p , with p ∈ Pr , occurring in its
right subtree, and a consistency data structure Dv built on the set Pr (see Figure 4).

Given a query measurement q, we find a measurement u ∈ P consistent with q with maximum
length �u . It then follows that a maximum-length consistent subsequenceTq ending in q has length
�u + 1, and that u is the predecessor of q in Tq . To find u, we start at the root v and query Dv to
test whether any measurement in the right subtree is consistent with q. If so, then we repeat the
process in the right child. If not, then we move to the left child. This way, we get the longest-path
measurement that is consistent with our query measurement q.

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.



17:8 B. Custers et al.

To insert a new measurement q, we find the leaf corresponding to length �q and insert q in the
appropriate associated data structures of all ancestors along this root to leaf path. To keep the
tree T balanced, we implement it using a BB[α] tree [4, 16]. When a subtree rooted at a node v
becomes unbalanced, we rebuild it and its associated data structures from scratch.

With the lemma below, we prove that this data structure can be implemented efficiently.

Lemma 3.3. There is a data structure T that can store a subset P of m measurements from T
and that can find, given a query measurement q at time tq ≥ t̂ , (the length �q of) a longest consistent

subtrajectoryTq ending inq inO (log3m) time. The data structure usesO (m logm) space and supports

insertions inO (log3m) amortized time. Here, t̂ denotes the time of the last measurement currently in P .

Proof. To answer a query, we follow a path from the root down to a leaf, and query the associ-
ated data structure at each node. Each such query takes O (log2m) time (Lemma 3.2), and thus the
total query time is O (log3m). Since each measurement is stored in the associated data structure
of O (logm) nodes, the total space use is O (m logm), and the total direct cost of an insertion is
O (log3m). To prove the lemma, we need to bound the costs due to rebalancing operations.

Assume an insertion of a node triggers a rebalance operation for a subtreev ofmv elements, and
C (mv ) the total construction time: the time that it takes to acquire all elements in the subtree and
construct a perfectly balanced tree (with its associated data structures). By the BB[α] definition,
(1 − 2α )mv − 2 insertions must have occurred inv to trigger the rebalance operation. This implies

that the amortized rebalance time per insertion is C (mv )
(1−2α )mv−2 .

Consider the tree after rebalancing. At height h > 0, we have intermediate nodes, each re-
quiring a data structure D constructed on O (2h ) elements. There are O (mv/2

h ) nodes at height
h. In total, to construct nodes with height h, we require O ((mv/2

h )2h log2 (2h )) = O (mvh
2)

time. Let H = O (logmv ) be the height of the entire subtree; summing up the construction
time of all heights in the subtree gives the total construction time C (mv ) =

∑H
h=1 O (mvh

2) =

O (mvH
3) = O (mv log3mv ). Amortized, this construction cost and hence the entire insertion time

is O (log3m).2 �

3.4 Maximum Consistent Subtrajectories

To compute a maximum-length consistent subtrajectory of T , we process all measurements in
chronological order. For each, we simply query the data structure from Lemma 3.3, and then in-
sert it. This results in an O (n log3 n)-time algorithm. Next, we show that we can improve this to
O (n logn log2 k ), where k is the number of outliers.

Lemma 3.4. For two consistent measurements pi and pj with i < j, the reachable region for pj for

all t > tj is contained in the reachable region of pi .

Proof. In the three-dimensional space (with the third dimension being time), the reachable
region of each measurement is an upward cone starting at the measurement, with slope v+. As pj

is consistent with pi , the former lies inside the latter’s cone. As their direction and slope are the
same, the cone for pj is thus contained in the cone for pi .

We can equally see this in two-dimensional space. Consider an arbitrary time t > tj . A hypothet-
ical measurement p∗ at time t consistent with pj must be within distance v+ (t − tj ). Since pi and
pj are consistent, we know that their distance is at most v+ (tj − ti ). Through triangle inequality,
we thus know that the distance between pi and p∗ is at most v+ (t − tj ) + v+ (tj − ti ) = v+ (t − ti ).
This readily implies that p∗ is consistent with pi as well. �

2Note that in our improved bound in Theorem 3.5 the total reconstruction time C (mv ) is simply O (mv log mv log2 k ), as

rebuilding the associated data structure of a node takes O (mv log2 k ) time rather than O (mv log2 mv ) time.
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From the definition of the AWVD, we know that if a disk c1 is strictly inside another disk c2,
then c1 will have an empty associated cell in the diagram. Combining this with Lemma 3.4 shows
that, any subset of m ≥ 1 measurements thus produces a diagram with at most min(m,k ) cells.
Hence, a static consistency data structure uses only O (min(m,k )) space, and querying it requires
O (log(min(m,k ))) time. When we insert a new measurement pj into our insertion-only data struc-
ture, we first query the data structure to decide whether pj is consistent with some earlier mea-
sure pi . If so, then we simply discard pj rather than inserting it; even when inserting additional
points, the cell of pi will contain that of pj . The query and insertion time therefore both become

O (log2 min(m,k )).
It now follows that the associated data structure Dv of every node in v ∈ T has size only

O (min(nv ,k )), thus querying it requires onlyO (log2 k ) time, and thusO (logn log2 k ) time in total.
Similarly, inserting a new measurement takes amortized O (logn log2 k ) time.

Theorem 3.5. Given a 2D trajectoryT with n measurements, of which k are outliers, we can com-

pute a maximum consistent subsequence of T for the speed-bounded model in O (n logn log2 k ) time.

4 THE ACCELERATION-BOUNDED MODEL

We now consider 1D trajectories where each measurement is of the form pi = (xi , ti ). We assume
a physics model where both velocity and acceleration are restricted. The velocity must lie in the
range [v−, v+] for constants v−, v+. In addition, the acceleration must lie in the range [a−,a+] for
constants a−,a+. For simplicity, we assume a− < 0 and refer to deceleration as acceleration with a
negative value.

For this acceleration-bounded model, we can still test in constant time if two points pi and pj

are consistent: we can check if the distance between the two measurements can be traveled using
velocities that lie in the range [v−, v+]. If there exists a velocity at pi such that the required velocity
at pj can be reached by accelerating, then the pair 〈pi ,pj 〉 is consistent. Recall, however, that a
physics model that limits acceleration is not concatenable: there may be a triplet of measurements
〈p1,p2,p3〉 for which the measurements are pairwise consistent, but the entire sequence is not (see
Figure 1 (left) for an example). Hence, we cannot use the algorithm described in Section 3.

In Section 4.1, we describe a dynamic programming algorithm that explicitly computes the
velocities achievable at every measurement and, using these velocities, finds the length of a
maximum-length consistent subtrajectory. In Section 4.2, we show how to retrieve the actual
consistent trajectory. The running time of the dynamic program and of the retrieval procedure
depends on the maximal fragmentation of the velocity intervals, which can arise during the DP.
In Section 4.3, we first argue that this number can be as large as Ω(n) for a linear number of
sets of velocities. It is easy to see that the maximal fragmentation is at most O (2n ); however, it
is unlikely that this bound would ever be reached in practice. In the following, we consider an
acceleration-bounded model with some slack in the acceleration bounds, modeling real-world
imprecision. This slack allows us to prove a linear upper bound for the fragmentation of any set
of velocities. Finally, in Section 4.4, we explain how to extend the acceleration-bounded model to
dimensions greater than one.

4.1 Computing the Maximum Length of a Physically Consistent Subtrajectory

A subtrajectory T is generally not concatenable with another subtrajectory T ′ under the
acceleration-bounded model, but is conditionally concatenable withT ′when the velocities at mea-
surements that they have in common are the same (see Section 1). Intuitively, this follows from
the fact that a bound on the acceleration prevents (discontinuous) jumps in velocity. Based on this,
we observe the following:
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Observation 1. A (sub)trajectory S = 〈p1, . . . ,pm〉 is consistent in the acceleration-bounded

model if and only if there are velocities 〈v1, . . . ,vm〉 such that for all i ∈ {1, . . . ,m − 1}, we have

that C (pi ,pi+1 | vi = vi , vi+1 = vi+1).

Observation 1 implies that our problem has an optimal substructure. Suppose we have found
all subtrajectories of some length � that are consistent. If we now want to know whether a sub-
trajectory of length � + 1 exists, then we have to determine only whether there is a measurement
p ′ such that the observation holds for one of the subtrajectories when we add p ′ at the end. That
is, there should be witness paths for both the subtrajectory and the trajectory between the last
measurement of the subtrajectory and p ′, that have a common velocity at the last measurement of
the subtrajectory. Hence, we can apply the dynamic programming paradigm to find the optimal
length for which a subtrajectory is physically consistent.

More formally, for each measurementpi and each possible length � ∈ {1, . . . ,n}, we maintain the
set of velocities I (�, i ) such that for every velocity v ∈ I (�, i ), a subsequence S = 〈. . . ,pi 〉 ending
at pi of length � exists that is physically consistent and has velocity v at pi , so that C (S | vi = v ).
Let �∗ be the maximum value, such that a measurement pi exists for which some set I (�∗, i ) is
non-empty. It follows that the maximum consistent subtrajectory of T has length �∗.

Given the set of possible velocities I (�,h) at ph , we can then determine whether a consistent
subsequence of length � + 1 exists that ends at a later measurement pi by using the conditional
concatenability property: If we find velocities vh ∈ I (�,h) and v ∈ [v−, v+] such that C (ph ,pi |
vh = vh ∧ vi = v ), then a consistent subsequence 〈. . . ,ph ,pi 〉 of length � + 1 exists. Hence, we
obtain the following recurrence for I (�, i ):

I (�, i ) =
⎧⎪⎪⎨⎪⎪⎩

∅, i < �,
{v | ∃h : C (ph ,pi | vi = v )}, � = 2,{
v | ∃h : C (ph ,pi | vh ∈ I (� − 1,h), vi = v )

}
, � > 2.

Moreover, we prove in Lemma 4.1 below, that when the entity directly travels from pi to pj , and
leaves pi with velocity vi , the possible velocities with which it can arrive at pj form a connected
interval. It follows that the sets I (�, i ) are actually sets of intervals.

Lemma 4.1. Let pi and pj be measurements with ti < tj , and let v1 ≤ v ≤ v2 be velocities. If

C (pi ,pj | vj = v1) and C (pi ,pj | vj = v2), then we also have C (pi ,pj | vj = v ).

Proof. C (pi ,pj | vj = v1) andC (pi ,pj | vj = v2) imply that there are two witnesses: paths π1 (t )
and π2 (t ) between pi and pj that travel Δx = x j − xi distance, obey the physics model and have
velocity v1, respectively, v2 at pj . Let a1 (t ) and a2 (t ) denote the acceleration functions describing
these paths.

The traveled distance Δx between ti and tj using any acceleration function a′(t ) and velocityv ′

at pj is given by

Δx = (tj − ti )

(
v ′ −

∫ tj

ti

a′(t )dt

)
+

∫ tj

ti

∫ t

ti

a′(t ′)dt ′dt . (1)

Any new path π ∗, which we create using convex combinations v = βv1 + (1 − β )v2 and a(t ) =
βa1 (t ) + (1 − β )a2 (t ) for β ∈ [0, 1], travels exactly the same distance by linearity of the inte-
grals. Since π ∗ was created via convex combinations, we also know that it satisfies the veloc-
ity and acceleration constraints, since its velocity and acceleration always lie between the orig-
inal velocities and accelerations at any time t in [ti , tj ]. Hence, π ∗ is a witness that implies
C (pi ,pj | vj = v1 + (1 − β )v2) for any β ∈ [0, 1]. �

Lemma 4.2 below shows how to propagate a single speed interval from pi to pj in constant
time. The problem is clearly computable, and hasO (1) input complexity: two measurements and a
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Fig. 5. The order for computing I (�, i ).

single interval of velocities. As such, the lemma readily follows. The complete proof of Lemma 4.2,
including a derivation of the precise propagation function, requires some lengthy mathematical
derivations, which we relegate to Appendix A as to not break the flow of the article.

Lemma 4.2. Let pi and pj be two measurements with i < j, and let I be an interval of velocities

at pi . The interval I ′ = {v | C (pi ,pj | vi ∈ I ∧ vj = v )} of achievable velocities can be computed in

O (1) time.

Let now δ (�, i ) denote the number of intervals in I (�, i ). We refer to δ (�, i ) as the fragmentation

of I (�, i ). Let δmax be the maximum fragmentation over all � and i . Using the recurrence for I
defined earlier, we can compute all values I (�, i ) using dynamic programming. We compute the
I (�, i ) values by increasing distance k ′ from the diagonal, and stop once there are no more reach-
able speeds. That is, we start by computing all I (i, i ), for increasing i . Observe that these values
correspond to having k ′ = 0 outliers. Once we have all sets I (i − k ′, i ) for some k ′, we continue
with the I (i − (k ′ + 1), i ) sets (see Figure 5). Let k be the number of outliers in a maximum-length
consistent subtrajectory, then all sets of speed intervals I (i − (k + 1), i ) will be empty. Hence, the
algorithm finishes after at most k + 1 “rounds.” To compute a single entry I (i − k ′, i ), we have to
propagate the speed intervals from at most k other entries (since all sets I (�, i ) with � > i are also
empty). It follows that in total, this procedure takes O (nk2 · P ) time, where P is the time required
to propagate all speed intervals in some set I (�′, i ) to I (�, j ). Every set I (�, i ) contains at most
δmax intervals, which we keep in sorted order. Propagating a single interval takes constant time
(see Lemma 4.2), and merging it with the intervals already in I (�, i ) then takes O (logδmax) time.

Theorem 4.3. Let T be a 1D trajectory with n measurements. Under the acceleration-bounded

model, the maximum length of a physically consistent subtrajectory of T can be computed in

O (nk2δmax logδmax) time using O (nkδmax) space, where k denotes the number of outliers and δmax

the maximum fragmentation.

4.2 Retrieving the Physically Consistent Subtrajectory

The dynamic program computes the length �∗ of a maximum consistent subsequence. Generally,
keeping track of the choices made in a dynamic program allows easy recovery of the actual answer,
that is, the actual subsequence. However, we need slightly more, as we join overlapping intervals
and thus no longer store which previous measurements led to parts of that interval—generally
there may not be only one measurement for an interval.

We could opt for storing a minimum cover of the interval in a cell instead, which we can easily
obtain while computing the union. However, this increases memory requirements. Alternatively,
we can also use “backpropagation.” That is, we extract S itself using the speed intervals in the sets
I (�∗, i ). We take an interval I ∈ I (�∗, i ) and use an inverse propagation to find a measurement
ph such that I (�∗ − 1,h) has a nonempty interval of speeds at which the interval of I (�∗, i ) is
reachable. We repeat this backpropagation, until the start of the subsequence is reached.
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Fig. 6. Instance with Ω(n) disjoint speed intervals at c .

To do this efficiently, we leverage that the intervals in I (�∗ − 1,h) are sorted by the dynamic
program already. Thus, we use backpropagation in O (1) time by Lemma 4.2 to find the velocity
interval I ′ at ph . We then find whether one of the intervals in I (�∗ − 1,h) intersects I ′ using binary
search in O (logδmax) time. Thus, computing the subtrajectory after the dynamic program takes
O ((n − k ) logδmax) time.

4.3 Bounding the Maximum Fragmentation

The running time of the dynamic program described in Section 4.1 depends on the maximum
fragmentation δmax, that is, the maximum number of intervals in any set of velocitiesI (�, i ). Recall
that I (�, i ) may contain more than one velocity interval (see Figure 1 (right)). We argue in the
following lemma that the fragmentation of a linear number of sets I (�, i ) may even be Ω(n).

Lemma 4.4. There is a 1D trajectoryT with n measurements such that Ω(n) sets of velocities I (�, i )
have fragmentation Ω(n).

Proof. We construct a trajectoryT = 〈p1, . . . ,pn/2, q1, . . . ,qn/2〉 such that for parameters v− =
0 and a = a+ = −a− = 1, we get Ω(n) speed intervals at each point pj , j > n/2.

Let Δ > 0 be some real number. We place the points at pi = (−4i · Δ2, 0), for i ∈ {1, . . . ,n/2},
and qj = (0,Δ), for j ∈ {1, . . . ,n/2} (see Figure 6). We can ensure that all points have unique time
stamps by offsetting them by some arbitrarily small time. This construction ensures that a consis-
tent subtrajectory cannot use two points pi and pj simultaneously. We now claim that every point
pi together with point q = q1 generates a consistent subtrajectory 〈pi ,q〉 for which the possible
speeds at q are given by the interval Ii = [vi − Δ,vi + Δ] with vi = 4iΔ. Observe that these inter-
vals are all pairwise disjoint. Since the other points qj are arbitrarily close to q, the same argument
shows that we get Ω(n) speed intervals at those points.

Since a = 1 and the time between pi and q is short, the velocity that the entity has at pi must be
similar to its velocity at q. If the speed at pi differs too much from the velocity at q, then the entity
cannot actually reach q: it will either travel too little or too far. Next, we formalize this argument.

To derive a contradiction, assume that there is a consistent subtrajectory in which an entity
travels from pj , with j � i , to q and arrives at q with speed v ∈ Ii . Since v− = 0, the distance that
any entity can and has to travel to go from pj to q is exactly 4jΔ2. The entity covers this in Δ time,
and hence its average speed must be 4jΔ. Since a = 1, it then follows that at any time in the time
interval [0,Δ] its speed lies in the range [4jΔ − Δ, 4jΔ + Δ].

The entity achieves speedv ∈ Ii = [vi − Δ,vi + Δ] atq. So, we have 4jΔ − Δ ≤ v ≤ vi + Δ. Using
thatvi = 4iΔ, we get j ≤ i + 1

2 . As i and j are natural numbers, we get j ≤ i . Symmetrically, we have
vi − Δ ≤ v ≤ 4jΔ + Δ, and get i ≤ j. Combining these results gives i = j: a contradiction.

Note that in this construction all consistent subtrajectories have length two. We can easily
achieve length � > 2 by prefixing the construction with a common trajectory of length � − 2; this
prefix provides sufficient time between its last point and the pointspi , to allow the entity to achieve
all speeds vi at pi . �

It is relatively easy to see that the fragmentation δ (�, i ) is at most O (2i ), since any fixed sub-
sequence of 〈. . . ,pi 〉 yields only a single interval (refer to Lemma 4.1). To realize such a large
number of intervals, they have to be packed ever more closely to the minimum or maximum al-

ACM Transactions on Spatial Algorithms and Systems, Vol. 7, No. 4, Article 17. Publication date: June 2021.



Maximum Physically Consistent Trajectories 17:13

Fig. 7. Propagation using the slacked model, from pi to pj . Green indicates standard propagation and red
slacked propagation. The result of merging the intervals is indicated in blue.

lowed speed threshold. It seems unlikely that this behavior will appear in realistic settings, and
hence we expect that the fragmentation is much smaller in practice. Below, we hence describe
an acceleration-bounded model, which introduces some slack in the parameters a− and a+, which
models real-world imprecision.

An acceleration model with slack. In a real-world setting, we can assume that there is some
error in the parameters a− and a+, which bound the acceleration. To model this error, we intro-
duce a slack parameter ε > 0 for the acceleration bounds. Specifically, let Δa = a+ − a− denote the
difference between minimum and maximum acceleration. For our slacked bounds, we add ε

2 Δa
to a+ and − ε

2 Δa to a−. During the dynamic program, we first propagate intervals as usual, using
the actual bounds a− and a+. Then, we also propagate using the slacked bounds a+ + ε

2 Δa and
a− − ε

2 Δa. This is illustrated in Figure 7: the green intervals are the result of standard propagation
and the red intervals are the result of slacked propagation. If two slacked intervals intersect, then
we merge the corresponding standard intervals and use the merged interval for future propagation
(in Figure 7 the blue interval is the result of the merge).

In the following, we give an upper bound on the size of any set of intervals I (�, i ) as a function
of ε . To do so, we estimate the number of disjoint intervals that can occur after propagation. First,
note that at both the minimum and the maximum velocity, standard intervals can degenerate to
a point. Slacked intervals, however, always have non-zero size. Consider now an interval [v,w],
which slack-propagates to a slacked interval [vs ,ws ] of minimum size. This implies that in fact
v = w, that is, the input interval degenerates to a point. We want to determine the minimum
separation between v and any other input interval whose slacked propagation touches [vs ,ws ].
To this end, we compute the largest input velocity vhi, which slack-propagates to vs . The separation
is now given by |v − vhi |. We can now compute a coarse upper bound for the number of intervals
by dividing the complete input range ΔaΔt (see Appendix A) by the separation:

δprop =
ΔaΔt

|v − vhi |
.

Solving for δprop results in

δprop =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2ε
√

1
ε
+ 1 �

	

√
2
√

2
√

1
ε
+ 1 − 1 − 1


�

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= O (ε−1/4),

which proves Theorem 4.5 below.
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Theorem 4.5. Let T be a 1D trajectory with n measurements. Under the slacked acceleration-

bounded model, the maximum fragmentation δmax for any set of velocities I (�, i ) is O (nε−1/4).

4.4 Extending to Higher Dimensions

The algorithm described above works for one-dimensional data. This may be realistic in some
scenarios: For example, if we track contestants in a race along a predefined route, then the
known route defines an approximately one-dimensional space. However, in most cases, move-
ment is in two or even three dimensions. There are various ways of generalizing the acceleration-
bounded model.

There are two standard 2D “interpretations” of our algorithm: either we use the Euclidean dis-
tance between the points, or we consider the Euclidean length of the path through all intermediate
measurements. In our view, the former is more suitable as we aim to remove outliers that could
greatly affect distances in the latter.

Yet, assuming a linear motion between two measurements is unrealistic as well. Thus, we use
the Euclidean distance between measurements only as a lower bound; the upper bound is the
Euclidean distance multiplied by a constant λ. Note that an upper bound can also be derived from
the current speed and acceleration bounds, but we use our simpler model in the experiments below.
To propagate a velocity interval, we use the distance lower bound to determine the minimum
velocity at the next measurement, and the upper bound for the maximum velocity.

Of course, the models above assume that the tracked object may turn arbitrarily fast. Effectively,
this means that positive or negative velocity becomes meaningless as we can instantaneously ro-
tate from one to the other. We thus set the minimal velocity to zero. However, the direction of
movement cannot be changed arbitrarily fast in reality, especially at higher speeds. Though we
can easily define various physics models to address this issue, this would require more complex
algorithms: We need to know more than just speed for the propagation and thus must generalize
from intervals to higher-dimensional regions.

5 EXPERIMENTS

We introduced various algorithms for computing maximum consistent subsequences of a trajec-
tory, according to different physics models, specifically a speed-bounded and an acceleration-
bounded model. The algorithms for the former are simpler and faster than for the latter. However,
the acceleration-bounded model is more accurate. Through a series of experiments, we investigate
the quality of our algorithms and the trade-off between them.

5.1 Algorithms

We use the following seven algorithms in our experiments. The first two refer to our optimal
output-senstive algorithms described above, their running time depending on the number of out-
liers. Additionally, we use three comparison algorithms to investigate the quality of our methods
with respect to simpler algorithms. These algorithms are two variants of an incremental greedy al-
gorithm (under both physics models) and a local greedy method (under the speed-bounded model).
We implemented all algorithms in C++; these implementations are open source and available as
part of the MoveTK library.3

[OSB] Optimal Speed-bounded. This algorithm implements the method of Section 2, under
the speed-bounded model.

3https://movetk.win.tue.nl/.
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[OAB] Optimal Acceleration-bounded. This algorithm implements the method of Sec-
tion 4. We use the 2D generalization, using λ = 1.5: the upper bound on the traveled
distance is 1.5 times the Euclidean distance between two measurements.

[GSB/GAB] Greedy Speed/Acceleration-bounded. We greedily build a consistent subse-
quence by testing whether the next considered measurement is consistent with the last
measurement in the current subsequence under the speed-bounded model (GSB) or
acceleration-bounded model (GAB). For GAB, we use the propagation technique of
OAB to maintain an interval of speeds—the next measurement is consistent if the inter-
val after propagation is nonempty. These methods run in O (n) time.

[SGSB/SGAB] Smart Greedy Speed/Acceleration-bounded. We keep track of multiple
subsequences simultaneously. We append the next measurement to each subsequence
ending in a consistent measurement; if no such subsequence exists, the measurement
starts a new subsequence. The longest subsequence is returned. These methods run in
O (n2) time.

[LGSB] Local Greedy Speed-bounded. Zheng [21] points to the only other method that uses
a speed bound for outlier detection. However, neither survey nor the references therein
give a detailed description of this heuristic method. We hence compare against our in-
terpretation of the sketch provided by Zheng [21]. We construct a graph with a vertex
per measurement. Two vertices are connected if their measurements are successive in
the original trajectory and they are consistent according to the speed bound. A measure-
ment is added to the output, if and only if its vertex is in a connected component of a
user-specified size; we set this value to 3 in our experiments. Note that this local heuristic
does not guarantee that the complete output is consistent according to the speed bound.
This method runs in O (n) time.

5.2 Datasets

We use three real-world datasets in our experiments. They are based on GPS measurements in
different modes of transport, at different locations and different times.

[MB] Mountain-bike trips. This dataset consists of 1,214 trajectories of mountain-bike trips
of a single cyclist in several European countries from 2012 to 2019.

[HR] The Hague-Rotterdam. This dataset provided by HERE4 consists of 5,000 trajectories
of cars and trucks in the region of The Hague-Rotterdam (the Netherlands), on a single
day in January 2019.

[LA] Los Angeles. This dataset provided by HERE4 consists of 78,658 trajectories of cars and
trucks in the metropolitan area of Los Angeles, CA (USA), on a single day in September
2018.

All trajectories in the datasets have at least 10 measurements. General statistics of these datasets
are provided in Table 1, along with our parameter settings per dataset, which are based on the
nature and location of the general dataset; note that v− is always set to 0 to allow the tracked
object to remain stationary.

5.3 Comparing Algorithms and Models

In our analysis of the results, we look primarily at relative lengths, that is, the ratio of the number
of measurements with respect to the input size. Thus, a result that filters k outliers and keeps n − k

4https://www.here.com/.
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Table 1. Summary of the Complexities and Speeds of Trajectories per Dataset

trajectories complexity speed (km/h) model parameters

mean maximum stddev mean stddev v+ (km/h) a− (m/s2) a+ (m/s2)

MB 1,214 3,377.1 22,426 2,643.4 18.8 10.9 35.0 −3.24 1.62

HR 5,000 424.9 8,925 545.6 62.3 43.0 125.0 −10.00 10.00

LA 78,658 304.4 38,719 1,082.0 55.8 1,557.7 129.6 −10.00 10.00

The final columns list the default model parameters used throughout the experiment.

Table 2. Mean, 99 Percentile, and Maximum Running Time in Milliseconds (ms),
Unless Indicated Otherwise

MB HR LA All datasets

mean 99% max mean 99% max mean 99% max mean 99% max

OSB 5.32 31.25 203.12 1.01 15.62 62.50 0.37 15.62 359.38 0.48 15.62 359.38

GSB 2.37 15.62 15.62 0.32 15.62 15.62 0.20 15.62 31.25 0.24 15.62 31.25

SGSB 210.26 1,812.50 7,750.00 4.15 78.12 468.75 2.27 15.62 8,593.75 5.35 78.12 8,593.75

LGSB 2.59 15.62 31.25 0.30 15.62 15.62 0.21 15.62 31.25 0.25 15.62 31.25

OAB 7,194.19 89.1 s 1,074.6 s 71.03 1,640.62 14.7 s 127.04 171.88 1,754.6 s 224.83 1,156.25 1,754.6 s

GAB 4.22 15.62 31.25 0.45 15.62 15.62 0.35 15.62 46.88 0.41 15.62 46.88

SGAB 95.37 921.88 2,656.25 2.35 31.25 234.38 1.47 15.62 4,843.75 2.86 46.88 4,843.75

Running times are shown per dataset, and over all datasets. Note that the imbalance in dataset size skews the

mean over all datasets strongly to the mean of the LA dataset.

measurements has a relative length of n−k
n
∈ [0, 1]. In the remainder, we simply use length to refer

to relative length. We start, however, with a brief consideration of efficiency.

Efficiency. Table 2 provides performance statistics per algorithm and dataset in terms of running
time, as performed on a HP Elitedesk 800 g2 TWR (Intel Core i5-6500 CPU at 3.20 GHz; 16 GB
of RAM; 64-bit Windows 10 Enterprise). Overall, the trend between the algorithms per dataset is
roughly the same. We see differences between datasets—specifically MB with respect to LA and
HR—which are simply a result of the increased trajectory complexity within the MB dataset. We
see that our OSB is competitive with GSB and even considerably faster than SGSB. As we may
expect from the theoretical analysis, OAB is very slow in comparison to the other algorithms, yet
the greedy alternatives are comparatively fast.

The main questions to investigate are thus twofold: (1) Is the speed-bounded model able to
achieve reasonable results, compared to the acceleration-bounded model? (2) How do the faster
greedy approaches compare in terms of quality with respect to the optimal algorithms. We first
investigate the latter question before turning to the former.

Speed-bounded model. We have three algorithms that strictly adhere to the speed-bounded
model: OSB, GSB, and SGSB (see left two columns of Figure 8). As OSB computes optimal results,
GSB and SGSB cannot result in longer subsequences. For the MB dataset, we observe that GSB
and SGSB perform very similarly in terms of the number of outliers detected. For the HR and LA
datasets, we see larger differences, especially for GSB. Table 3 shows the ratio between OSB and
GSB/SGSB according to different brackets of OSB. These numbers indicate that a vast majority of
trajectories has less than 10% outliers, and that in such cases the results are on average not much
different. The more outliers are present, the more pronounced the difference between our optimal
result and the greedy results becomes.
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Fig. 8. Comparing the various algorithms. Each axis represents the (relative) length. Top row: MB data;
middle row: HR data; bottom row: LA data. First three columns: comparison of OSB with GSB, SGSB, and
LGSB; last two columns: comparison of OAB with GAB and SGAB.

Table 3. Mean and Standard Deviation of the Ratio between Greedy Strategies and Optimal Strategies,
Split by Bins of the Optimal Length (“Length” Row)

MB HR LA

Length 0.0–
0.6

0.6–
0.8

0.8–
0.9

0.9–
1.0

0.0–
0.6

0.6–
0.8

0.8–
0.9

0.9–
1.0

0.0–
0.6

0.6–
0.8

0.8–
0.9

0.9–
1.0

Size 0.07% 0.20% 0.57% 99.17% 3.14% 4.58% 5.96% 86.32% 0.33% 2.06% 7.00% 90.61%

GSB 0.87 ±
0.14

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.83 ±
0.20

0.95 ±
0.07

0.98 ±
0.03

1.00 ±
0.01

0.87 ±
0.17

0.93 ±
0.11

0.97 ±
0.05

1.00 ±
0.01

SGSB 0.95 ±
0.06

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.93 ±
0.07

0.97 ±
0.04

0.99 ±
0.02

1.00 ±
0.01

0.94 ±
0.08

0.96 ±
0.05

0.98 ±
0.03

1.00 ±
0.01

LGSB 1.10 ±
0.20

1.08 ±
0.02

1.05 ±
0.01

1.01 ±
0.01

1.22 ±
0.28

1.11 ±
0.07

1.05 ±
0.03

1.00 ±
0.01

1.05 ±
0.48

1.04 ±
0.16

1.05 ±
0.05

1.00 ±
0.01

Size 0.07% 0.21% 0.70% 99.02% 3.14% 4.64% 5.94% 86.32% 0.33% 2.06% 7.33% 90.28%

GAB 0.98 ±
0.06

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.83 ±
0.21

0.95 ±
0.07

0.98 ±
0.03

1.00 ±
0.01

0.87 ±
0.17

0.93 ±
0.11

0.97 ±
0.04

1.00 ±
0.01

SGAB 1.10 ±
0.27

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.93 ±
0.08

0.97 ±
0.04

0.98 ±
0.02

1.00 ±
0.01

0.93 ±
0.09

0.96 ±
0.06

0.98 ±
0.03

1.00 ±
0.01

The “size” row indicates the percentage of trajectories in the corresponding length bin. in GSB, SGSB, and LGSB are

compared to OSB; GAB and SGAB to OAB.
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Fig. 9. Postprocessing to ensure a stricter physics model. Left column: MB data; middle column: HR
data; right column: LA data. Top row: comparison of LGSB→OSB with OSB; bottom row: comparison of
OSB→OAB with OAB.

OSB is thus more reliable, as it gives optimal results. When there are few outliers, this algorithm
is close to linear, and thus we may expect less of a performance loss compared to the simpler
methods. Indeed, we see that in terms of running time, OSB (0.48 ms on average per trajectory)
performs similarly as the GSB (0.24 ms) and is actually faster than SGSB (5.35 ms). When there are
many outliers, the extra time spent may be well worth the effort to obtain the maximum consistent
subsequence.

Acceleration-bounded model. Referring to Figure 8 and Table 3, we observe the same patterns
between OAB and GAB/SGAB as above for the speed-bounded variants, but the differences are
more pronounced. However, it must be noted that the computation times behave much differently.
Although the number of intervals in a single cell never exceeds 2 for almost all trajectories (with a
maximum of 4), the computation time of OAB (224.8 ms on average per trajectory) is significantly
higher than GAB (0.41 ms) and SGSB (2.86 ms). Thus, OAB seems practical mostly for cases where
processing speed is not a primary concern: for example, because much longer offline computations
are expected afterwards, or because the trajectory lengths are limited.

Local strategy. The LGSB method can also be compared to OSB. However, because this method
does not ensure that the entire subsequence adheres to the physics model, it may be the case that
LGSB yields a longer sequence than OSB. This is quite structurally the case (see third column in
Figure 8), with more pronounced effects for a large number of outliers (see Table 3, LGSB row).
This indicates that the local strategy for determining outliers is not quite suitable for capturing
the actual constraints of the physics model.

We further investigate by postprocessing the results of LGSB by OSB (LGSB→OSB). That is, we
find the longest consistent subsequence of the LGSB result. If LGSB would work perfectly, then
no outliers are filtered in this postprocessing step. The more outliers are found in the LGSB result,
the more violations of the physics model the LGSB result exhibits. The top row of Figure 9 shows
the results; note that the vertical axis shows (relative) length of the final result with respect to the
length without postprocessing rather than (relative) length with respect to the input. We see again
that the results depend on the number of outliers in the trajectory, but overall the difference may
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be quite pronounced: LGSB→OSB on average has 8.75% less measurements than LGSB for cases
with OSB length less than 0.9. The dataset also has an effect: MB has less variance than the other
two datasets.

Comparing models. Since any acceleration-bounded path in our setting is also a speed-bounded
path, OSB cannot detect more outliers than OAB. That is, OSB results can be interpreted in the
acceleration-bounded model, and we can investigate how well the model inherently meets the ac-
celeration bound. We follow the same approach in comparing LGSB to OSB above, postprocessing
OSB results by OAB (OSB→OAB) to determine how many outliers the OSB result still includes
according to the stricter model.

The bottom row of Figure 9 shows the results. We clearly see that that only few measurements
are filtered in the OAB postprocessing step for all three datasets. This pattern is strongest in MB
(0.09% classified as outliers on average) and HR (0.04% on average), even for more noisy trajectories.
For the LA dataset, slightly more measurements are filtered (1.74% on average), but interestingly,
this seems mostly the case for the less noisy trajectories. These averages are based on the cases
with OAB length less than 0.9.

We may conclude that generally the speed-bounded model is capable of getting quite realistic
results even for the acceleration-bounded case, while avoiding the computational complexity. It is
interesting that there seems to be slightly different behaviors between the two vehicle datasets:
this raises the question whether differences in traffic and driving behavior make acceleration more
important in certain environments than in others.

5.4 Sensitivity of Model Parameters

The physics models have a few parameters to capture what is considered feasible movement
through space and time. Here, we look at how sensitive the results are to changing the parame-
ter values. Following our observations from the previous section, we focus on the speed-bounded
model, which effectively has one parameter: the maximum speed v+, but we also briefly investigate
the effect of the detour factor as well as the acceleration bound in OAB.

Procedure. Our analysis for each parameter follows the same procedure: We vary the parameter
systematically from very restrictive values to very generous values, running the optimal algorithm
for the model under consideration on all data. We then consider how the length of the result varies
with this parameter.

To allow for summarizing the results, we operationalize the sensitivityσ for a single trajectory as
the maximum of the difference between relative length and the difference between two parameter
values, over all (consecutive) pairs of parameter values. We refer to the the two parameters that
result in the maximum the sensitive range ρ of that trajectory; we use the mean value of the range
to compute summary statistics. The unit of σ is thus the inverse of the unit of the parameter, but we
generally omit this indication. Intuitively, the sensitivity is the “slope” when plotting the relative
length as a function of the parameter, which we refer to as a profile. We illustrate these functions
for each case using a selection of the trajectories for each dataset, consider summary statistics over
all trajectories, and investigate the relation between the sensitivity and the sensitivity range.

Note that our choice of step size in varying the parameter inherently limits the maximum
sensitivity that can be obtained to the reciprocal of the step size. For example, steps of 2 km/h
in varying the speed bound v+, limits the sensitivity to 0.5, which would indicate jumping from
length 0 to 1 between two values of v+. In degenerate, constructed inputs this can indeed be
realized—in fact, any arbitrarily large sensitivity can achieved in theory. Consider a hypothetical
trajectory of n measurements along a straight line, sampled every second, with a distance between
consecutive measurements a distance c . The length of the optimal result for any v+ < c is then
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Fig. 10. Profile of the speed bound: length of OSB as a function of v+, for 100 random trajectories for each
dataset.

Table 4. Sensitivity σ of the Speed Bound v+

dataset mean stddev min 99% max
MB 0.093 ± 0.049 0.013 0.243 0.368
HR 0.059 ± 0.042 0 0.244 0.418
LA 0.047 ± 0.033 0 0.180 0.458

Fig. 11. Sensitivity σ of the speed bound v+ per dataset.

1/n, as no pair is consistent. However, the length for v+ ≥ c is 1. Thus, for v+ = c and v+ = c − ε ,
we obtain a sensitivity of (1 − 1/n)/ε . For ε approaching zero, this thus tends to infinity. Thus,
we focus on the practical slope of these curves, using some reasonable sampling of the domain of
the parameter.

Speed bound. We run our OSB algorithm, using a speed bound v+ from 2 to 70 km/h (MB), from 2
to 160 km/h (HR and LA), in steps of 2 km/h. Figure 10 provides a random sample of the resulting
profiles. As we can see, many trajectories follow the roughly the same pattern of a few steep
increases at different speed bounds. We attribute this to different behavior of the moving entity. For
MB, this behavior is fairly consistent, with a high sensitivity around 21.5 km/h (average sensitivity
range). For the other data sets, this is less clear, likely reflecting different driving behavior due to
local speed limits, which varies between trajectories but also within a single trajectory.

Table 4 and Figure 11 show summary statistics of the sensitivity for the three datasets. We
see that the sensitivity can be quite high in extreme cases: changing the parameter by 1 km/h
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Fig. 12. Scatterplot relating the sensitivity σ of v+ to (the mean of) the sensitivity range ρ. Each circle rep-
resents a single trajectory.

may change the relative length by almost 0.46. On average, the sensitivity is considerably lower.
However, these results still show that careful selection of the model parameters is important: too
low values result in measurements being identified as outliers unjustly, but setting them too high
might leave too many outliers undetected.

With Figure 12, we look at the relation between the sensitivity and the sensitivity range.
We roughly see the same pattern for each of the datasets: A number of trajectories have their
relatively large sensitivity at low speeds, followed by another peak at higher speeds. Potentially,
this separates the trajectories into different cases of actual behavior; for example, cars drive at
different speeds in residential areas, provincial roads, and highways—if a trajectory falls mostly
within one of the categories, it is reasonable to expect the largest sensitivity to occur at that speed.
Under this hypothesis, we see that we used quite a reasonable bounds on the maximum speed, that
is, values slightly higher than the sensitivity range for majority of the trajectories.

Acceleration bound. The acceleration-bounded model has, as the name suggests, parameters
controlling the allowed acceleration and deceleration, a+ and a−, respectively. Due to the high
computational cost of OAB, we restrict our attention to only six values combinations of a+ and
a− per dataset. The parameters we selected for defaults reflect fairly extreme capabilities: limits
of racing cars (HR and LA) and estimates of well-trained cyclists (MB). To investigate the effect
of these parameters, we thus reduce these parameter values, to reflect settings of “normal” and
“slow” behavior in terms of acceleration and deceleration. Specifically, we test the following six
combinations for each dataset: a+ ∈ {2, 4, 10} and a− ∈ {−2,−10} (HR and LA); a+ ∈ {0.8, 1.2, 1.62}
and a− ∈ {−2,−3.24} (MB). Each of these values is expressed in m/s2.

We can now study sensitivity of the one parameter by fixing the other parameter to each of its
values. A sample of the resulting profiles are shown in Figure 13 and Figure 14. We immediately see
that there is very little effect of the acceleration or deceleration bound. As these are not a random
sample, but actually the profiles with highest sensitivity, this tells us that these parameters are of
little influence.

The summary statistics over all trajectories further confirm this, as shown in Figure 15. Con-
sidering our chosen set of parameters, the sensitivity in a+ can be at most 0.5 (HR and LA) or
1.67 (MB); for a− these maxima are 0.125 (HR and LA) and 0.81 (MB). What we observe, however,
is that the actual sensitivity is significantly lower—also foregoing the need for further refine the
tested parameter values. The strongest sensitivity observed is 0.066 for a+ and 0.01 for a−. This is,
however, an “extreme” with medians and averages laying much closer to zero.

One observation to be made is that the sensitivity for the maximum acceleration in the MB
seems to be slightly higher, though still much lower. This is possibly caused by the nature of the
data: a mountain biker may accelerate and decelerate more strongly, compared to regular traffic.
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Fig. 13. Profiles of the acceleration bound: length of OAB as a function of a+, for the 100 most sensitive
trajectories for each dataset.

Fig. 14. Profiles of the deceleration bound: length of OAB as a function of a−, for the 100 most sensitive
trajectories for each dataset.

In Figures 16 and 17, we show histograms for the sensitivity, split by the sensitivity range. In
these charts, we omit all trajectories that have sensitivity zero—the number of remaining trajec-
tories is indicated per dataset. Notably, we see that MB has relatively few trajectories with zero
sensitivity, whereas for the other datasets this is the majority of trajectories. Again, we attribute
this to the different nature of mountain biking.
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Fig. 15. Sensitivity of a+ (left) and a− (right) per dataset and value of the other parameter. Note that the
technical maximum sensitivity would be significantly higher, but this does not occur – the horizontal scale
has been adjusted.

Fig. 16. Histogram relating sensitivity of a+ and the sensitivity range. Trajectories with sensitivity 0 have
been omitted. Note that the technical maximum sensitivity would be significantly higher, but this does not
occur—the horizontal scale has been adjusted.

In light of the little dependence on the acceleration bounds, we assume that the speed bounds
used by the acceleration model, in terms of sensitivity, behave similarly as for the speed-bounded
model. More importantly, these results further support our conclusion from Section 5.3: the speed-
bounded model provides realistic results even for the acceleration-bounded model.
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Fig. 17. Histogram of sensitivity of a−, of the single sensitivity range tested. Trajectories with sensitivity 0
have been omitted. Note that the technical maximum sensitivity would be significantly higher, but this does
not occur—the horizontal scale has been adjusted.

Fig. 18. Profiles of the detour factor: length of OAB as a function of λ, for the 100 most sensitive trajectories
for each dataset.

Detour factor. The OAB algorithm uses a detour factor λ, to determine how much distance can
at most be traveled between two measurements, which is λ times the Euclidean distance. In other
experiments, this is fixed to 1.5, but here we investigate how much this parameter may influence
the results. We run the OAB algorithm using λ from 1 to 2, with increments of 0.1.

Refer to Figures 18 and 19. We observe that detour factor λ has very little influence in general,
with most trajectories not being influenced by λ at all: 52 of 1,214 for MB, 4,049 of 5,000 for HR,
and 74,500 of 78,658 for LA. The detour factor is likely to help in cases where turns are made
at relatively high speed: The Euclidean distance might be too short to slow down and reach the
next measurement at the right time—but adding some slack gives enough space to travel between
two somewhat close points at high speed. Thus, this factor can be expected to be of less influence
for trajectories with high sampling frequency or without turns are relatively high speed. This
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Fig. 19. Sensitivity of λ per dataset. Note that the technical maximum sensitivity would be 10, but this does
not occur—the horizontal scale has been adjusted.

Fig. 20. Scatterplot relating the sensitivity σ of λ to (the mean of) the sensitivity range ρ. Each circle repre-
sents a single trajectory. Trajectories with sensitivity 0 have been omitted. Note that the technical maximum
sensitivity would be 10, but this does not occur—the vertical scale has been adjusted.

may explain why the mountain-bike dataset exhibits more sensitivity than the other two vehicle
datasets.

Figure 20 relates the sensitivity to the sensitivity range. We observe that the highest sensitivity
is found in the sensitivity range [1, 1.1], and generally a trend of higher sensitivity at lower values
of λ. This supports our suggestion above as to the cause of the low sensitivity.

Most of our trajectories have relatively high sampling frequency and as such the sensitivity
is low. The question is how these observations generalize to low sampling frequencies. This will
likely depend strongly on the object being tracked. If it travels frequently at nearly maximum
speed, then sensitivity may be high. However, if the general speed is significantly lower, then the
admitted variation in the reconstructed speed may already be sufficient to avoid sensitivity in the
detour factor.

6 DISCUSSION

Results. Our results indicate that our optimal algorithms outperform simple greedy strategies,
either in quality of the results, running time, or both. Noise levels and other characteristics do
influence these results, and our methods are particularly effective for dealing with large amounts
of noise. The example in Figure 21 (top) illustrates a case where the OAB algorithm computes a
longer sequence, compared to SGAB: the cause is that a few erroneous measurements lead this
greedy algorithm to make a sequence that prevents it from selecting many measurements later.
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Fig. 21. Example trajectory where OAB differs from SGAB (top) and OSB (bottom). Arrows indicate the
direction of travel, blue markers are measurements that are part of the consistent subsequence computed,
and red markers indicate the corresponding outliers. Both trajectories are from the LA dataset. Base maps
from OpenStreetMap.

Furthermore, the results suggest that the quality difference between speed-bounded models and
acceleration-bounded models is small. This must be considered carefully though, as there is an ef-
fect of social or geographic environment. Figure 21 (bottom) shows a case where the OSB algorithm
detects fewer outliers, though the difference is only minor. Contrasting the previous comparison,
this implies that OAB performed better than OSB: OSB fails to capture the outlier that is not phys-
ically realizable in the stronger acceleration-bounded model. That is, there is not enough time to
realistically decelerate and accelerate to capture the full near-stationary measurements.

The selection of parameters influences the results, but this is mostly the case for the maximum
speed. Acceleration and detour factor for our OAB algorithm tend to have minimal effect on the
number of outliers detected, though we observed variation between the types of moving entities.
Figure 22 shows a sequence of results for different speed bounds, for a trajectory from each dataset.
Increasing the speed bound leads to fewer outliers – but possibly less realistic behavior, if the bound
is set too high. The effect of lowering the speed bound is that corners tend to be cut by marking
outliers, to lower the traveled distance to one that is achievable within the speed bound.

Context. By design, we do not consider the use of other data, such as a road network that a
vehicle is driving on. However, such data opens up various potential avenues for further research.
For example, given a road network, we may be able to more accurately assess the travel distance or
limit it to a few likely candidates, rather than using the Euclidean distance. For OSB and OAB, this
is straightforwardly included into the algorithm. For our faster algorithm under the speed-bound
model, however, this is not quite the case, as the AWVD is no longer directly applicable, but there
may be potential to generalize the approach.

Beyond assessing distances more accurately, additional data could also be used to define more
accurate physics models. Our current models are fairly simple, and use only few parameters to
define global thresholds on the maximum speed and acceleration. However, such thresholds may
actually depend on the environment. For example, expected maximum speed for driving in a car is
different on the highway than it is in an urban environment. Similarly, cycling uphill or downhill
affects maximum speed. Ideally, physics models and, by extension, outlier-detection algorithms
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Fig. 22. Example results, using different speed bounds v+. One trajectory for each dataset is shown. Blue
line represents the resulting trajectory, with red dots marking the outliers. Base maps from OpenStreetMap.

should accommodate for such variations, as this allows for more efficacious processing of hetero-
geneous trajectories that travel through different environments.

Including contextual factors will make the models more accurate and realistic, but a crisp deci-
sion boundary (movement is or is not physically possible) may no longer exist. Instead, we may
want to define that a car can violate speed limits, but the severity and duration affect how likely the
behavior is. Future work could explore “behavioral models” that describe expected movement more
closely, including context, and are more robust by allowing deviations from the model, thereby re-
ducing parameter sensitivity.

Enhancing other techniques. There are many other forms of trajectory processing and analysis
techniques, such as clustering, map matching, and segmentation. Such techniques may be com-
plemented or enhanced by applying physics models to define possible or realistic behavior. For
example, a map-matching algorithm could include considerations of whether its result is physi-
cally realizable, or clustering may be done based on what physical behavior would be necessary
to realize certain trajectories. We leave exploring such complementarity of techniques to future
work, but our results presented here provide a framework and methods that may be integrated
into such enhanced techniques.

A DERIVATION OF THE PROPAGATION FUNCTION

For our algorithm under the acceleration-bounded model, we need to determine the minimum and
maximum speed for which the moving entity can arrive at a measurement pj , when starting at a
measurementpi with some given velocity. For our asymptotic analysis, we already argued that this
is possible in linear time (Lemma 4.2). Here, we show how to precisely compute this interval, pro-
viding the exact formula for propagation and thus proving that this is indeed computable. We do
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Fig. 23. (Left) Velocity-time diagram for the behavior where one maximally accelerates for a time tacc and
then maximally decelerates to obtain the lowest possible speed vmin . (Right) Velocity-time diagram for the
behavior of accelerating to the maximum velocity v+ in time t+, then maintaining this velocity for tmax time,
and finally maximally decelerating to get the minimum velocity.

so for the minimum velocity; computing the maximum velocity is symmetrical. This minimum ve-
locity vmin ∈ R is the smallest value such that C (pi ,pj | vi = v, vj = vmin ) for two measurements
pi ,pj and some initial v ∈ R. Note that these velocities may be negative, indicating the direction
of movement in the 1D space.

We need particular behaviors of the moving entity to accomplish this minimum velocity. These
behaviors are determined by the travel time Δt = tj − ti and distance Δx = ‖pj − pi ‖ between pi

and pj as well as the initial velocity v: We want to travel the distance between pi and pj within the
given time, while minimizing the velocity at pj .

Checking consistency. First, we determine whether any velocity can be obtained, that is, whether
it is physically possible to travel distance Δx in Δt time, starting with velocity v. That is, we must
test whetherC (pi ,pj | vi = v) holds. The maximum distance Δx+ that can be traveled, is obtained
by accelerating until reaching the maximum velocity v+ and then maintaining that speed. Acceler-

ating to maximum speed takes t+ = v+−v
a+

time. If t+ < Δt , then the maximum velocity is achieved,
and we can express Δx+ as (v + v+)t+/2 + (Δt − t+)v+. Otherwise, this behavior accelerates max-
imally for the entire duration, in which case Δx+ = (2v + a+Δt )Δt/2. Analogously, we find an
expression for the minimum distance Δx− that can be traveled. As we can use a convex combina-
tion of achieve any traveled distance between these two extremes, we know thatC (pi ,pj | vi = v)
if and only if Δx− ≤ Δx ≤ Δx+.

Note that the above test indicates consistency, then we can look for a minimal (and maximal)
velocity. If this consistency does not hold, then we know that no velocity can be reached at all. For
the remainder, we assume that C (pi ,pj | vi = v) is indeed true.

Finding the minimum velocity. We now strive to find the necessary behavior that results in
the minimum velocity, vmin , assuming we have already confirmed the basic consistency described
above. To visualize this behavior, we look at the velocity-time diagrams for the moving entity; see
the examples in Figure 23. The curve in this diagram represents the velocity as a function of time.
In this diagram, we need that the total area under the curve is exactly the traveled distance Δx .
The speed bounds v−, v+ are now represented as allowed minimum and maximum values for the
curve. The bounds on the acceleration a−,a+ translate to the minimum and maximum slope the
curve can have at any time.

We can distinguish a number of situations where we need different behavior to get to the mini-
mum velocity, depending on whether we travel at maximal velocity intermediately. If we can reach
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pj by first maximally accelerating for some time tacc and then maximally decelerating the rest of
the time, then this gives us the lowest possible velocity (left diagram in Figure 23). We can, how-
ever, encounter the case where the maximum velocity we reach with this behavior exceeds v+.
In this case, we can accomplish the minimum velocity by accelerating to v+ in time t+, retaining
this speed for some time tmax and then maximally decelerating (right diagram in Figure 23) for
the remaining time. However, if the result of the appropriate situation above violates the mini-
mum velocity bound v−, then we can conclude that vmin = v−. Detailed proofs that the first two
behaviors indeed give the minimum velocity are given in Appendices A.1 and A.2.

To compute the minimum velocity for the first and second case, we will use the equation of
motion in 1D, given by

Δx = vΔt +

∫ tj

ti

∫ t

ti

a(t ′)dt ′dt . (2)

This describes the aforementioned requirement that the area under the curve in the velocity-time
diagram is the distance Δx between pi and pj . To find the minimum velocity for the first two
described situations, we fill in the shape for the acceleration a(t ) and determine the minimum
velocity, given by

vmin = v +

∫ tj

ti

a(t )dt . (3)

Maximally accelerate, then maximally decelerate. We first consider the situation where we do
not reach the velocity bound when maximally accelerating. In this first situation, our acceleration
function is equal to

a(t ) =

{
a+, ti ≤ t ≤ ti + tacc

a−, ti + tacc < t ≤ tj
. (4)

What remains is to determine tacc . We do this by solving the 1D equation of motion (Equation (2))
for the distance Δx between the measurements. We fill in the acceleration function and integrate
to get

Δx = vΔt +
1

2
a+t2

acc + (v + a+tacc ) (Δt − tacc ) +
1

2
a− (Δt − tacc )2. (5)

We can now solve this quadratic equation for tacc . To simplify notation, we use Δa = a+ − a− and
v̄ = Δx/Δt , that is, the average required velocity to travel the distance in the given amount of time.
We pick the root of the solution such that the resulting tacc is in [ti , tj ] and get

tacc = Δt −
√

Δt

Δa

√
a+Δt + 2(v − v̄). (6)

With this value, we can now determine the minimum velocity. We fill in Equation (3) and get

vmin = v(ti + Δt ) = v + tacca
+ + (Δt − tacc )a−

= v + Δta+ −
√

ΔaΔt
√
a+Δt + 2(v − v̄).

(7)

Note that this situation applies only if we do not exceed the velocity bounds when accelerating
and decelerating. So, we require that

v + a+tacc ≤ v+, vmin = v + tacca
+ + (Δt − tacc )a− ≥ v−. (8)

Accelerating to maximum velocity. We now consider the situation where we reach the speed
bound v+. We accelerate for some t+ time, until we are moving with velocity v+, then we retain
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that velocity for some time tmax , and finally we maximally decelerate to get the minimum velocity.
We can describe this behavior with the following acceleration function:

a(t ) =
⎧⎪⎪⎨⎪⎪⎩

a+, ti ≤ t ≤ ti + t
+,

0, ti + t
+ < t ≤ ti + t

+ + tmax ,
a−, ti + t

+ + tmax < t ≤ tj .
(9)

We now need to determine t+ and tmax . As before, t+ = v+−v
a+

indicates the time needed to accelerate
from v to v+.

With the equation for t+, we can now determine tmax by again solving the 1D equation of
motion in Equation (2) with our new acceleration function. This gives us the following equation
of motion, and solution for tmax :

Δx = vt+ +
1

2
a+ (t+)2 + v+ (Δt − t+) +

1

2
a− (Δt − tmax − t+)2, (10)

tmax = Δt − t+ −
√

3a+

a−
(t+)2 +

2Δt (v̄ − v+)

a−
. (11)

Using the above, we now find the minimum velocity, by filling in Equation (3):

vmin = v+ + (Δt − t+ − tmax )a− = v+ +

√
3a+

a−
(t+)2 +

2Δt (v̄ − v+)

a−
a−. (12)

This case is applicable only if tmax > 0 and the resulting vmin ≥ v−.

Achieving v−. The extreme behavior of the previous two cases achieve the lowest possible speed,
without violating v+, a+, or a−. We can readily choose between the two cases, by comparing tacc

with t+: If the former is at most the latter, then the first case applies; otherwise, the second case
applies. However, the result may still violate the physics model, but only v−. That is, if the com-
puted vmin is below v−. Our claim is that, in such a case, vmin is actually equal to v−. Intuitively,
the previous cases in fact achieve a velocity that is too low: We thus have slack to use less extreme
behavior intermittently, such as standing still (v = 0) for a certain time.

Consider the behavior of the previous cases. If we follow the behavior but maintain the minimal
velocity bound, then we have too much area under the curve: We overshoot our traveled distance.
We can compensate for this by accelerating less extremely or maintaining a velocity below v+.
Since some velocity is obtainable, we know that there is sufficient slack and can indeed achieve
v−, if the previous cases would violate the velocity bound of v−.

A.1 Proof: Achieving Minimum Velocity without Attaining Velocity Bounds

We now show that the behavior of maximally accelerating, followed by maximally decelerating
indeed gives the minimum velocity, provided that the velocity bounds v−, v+ are never exceeded
during this behavior. Without loss of generality, we further assume that ti = 0 to simplify the
exposition, and thus tj = Δt .

The equation of 1D motion (Equation (2)) must satisfied for a(t ), with additional constraints
that a(t ) ∈ [a−,a+] for any t ∈ [0,Δt]. We then want to minimize the velocity at pj , as given by
Equation (3).

We represent the function a(t ) as follows:

a(ϕ, t ) = a− + (a+ − a−)ϕ (t ) = a− + Δaψ (t ), (13)

where ϕ : [0,Δt]→ [0, 1]. This way, the acceleration bounds are trivially satisfied by the function.
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Let a(ψ , t ) be the function representing maximal acceleration up to some time tacc ∈ [0,Δt] and
then maximum deceleration until tj . In addition, assume that the traveled distance is satisfied by
this function. We can representψ (t ) by

ψ (t ) =

{
1 t ≤ tacc

0 t > tacc
. (14)

Let ψ ′(t ) be a function given by ψ (t ) + δψ (t ) where δψ (t ) is a perturbation on the function,
such that a(ψ ′, t ) still travels the required distance, but differs in at least one value t from a(ψ , t ).
We now show that the velocity at pj for this perturbed function is always greater than the velocity
produced byψ (t ).

By assumption, both travel the same Δx distance in Δt time. Thus, filling in Equation (2) for
both gives us the following equality and its simplification:

vΔt +

∫ Δt

0

∫ t

0

(a− + Δaψ (t ′))dt ′dt = vΔt +

∫ Δt

0

∫ t

0

(a− + Δa(ψ (t ′) + δψ (t ′))dt ′dt , (15)

∫ Δt

0

∫ t

0

δψ (t ′)dt ′dt = 0. (16)

We know that the velocity at pj is given by Equation (3). We can now look at the difference Δv
between this velocity forψ ′(t ) and forψ (t ). This difference is given by

Δv = Δa

∫ Δt

0

δψ (t )dt . (17)

Now, if the minimum velocity at pj for a(ψ ′, t ) is smaller than the minimum velocity for a(ψ , t ),
then this would imply that Δv is negative for the corresponding δψ function.

By definition, the value of δψ (t ) is non-positive for t < tacc and non-negative for t > tacc , as

otherwise the acceleration bounds would be violated. Equation (16) implies that
∫ tacc

0
δψ (t )dt <

0 and
∫ Δt

tacc
δψ (t )dt > 0. Equivalently, the integral

∫ t

0
δψ (t )dt is non-increasing for the interval

[0, tacc ] and non-decreasing for the interval [tacc ,Δt].

Assume for a contradiction that Δv is negative for some δψ , that is,
∫ Δt

0
δψ (t )dt < 0. This au-

tomatically implies that
∫ t

0
δψ (t ′)dt ′ ≤ 0 for any t in the interval, due to the non-decreasing and

non-increasing properties of the integration interval. But then the integral of Equation (16) is by
definition negative, which means that a(ψ ′, t ) does not travel Δx distance. Hence, we must have
that Δv ≥ 0. Observe that Δv = 0 only if δψ (t ) is zero.

To prove that maximally decelerating and then accelerating results in the maximum velocity
follows a similar argumentation.

A.2 Proof: Achieving Minimum Velocity When Attaining Velocity Bounds

We now prove that if we maximally accelerate to the velocity bound v+ in time t+, retain this speed
for time tmax , and then maximally decelerate, this indeed gives us the lowest possible velocity, if
the previous situation does not apply—that is, t+ ≤ tacc , and we never reach the velocity lower
bound v−. Without loss of generality, we assume that ti = 0 and tj = Δt .

We follow the argumentation as described in the previous section. We again describe the ac-
celeration behavior using a(ψ , t ) for a to be defined function ψ (t ). We assume that a(ψ , t ) travels
the required distance given the initial velocity. But now, the behavior of this case yields a slightly
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different function forψ , do describe a(ψ , t ):

ψ (t ) =
⎧⎪⎪⎨⎪⎪⎩

1, t ≤ t+,
α , t+ < t ≤ t+ + tmax ,
0, t > t+ + tmax .

(18)

Here, α = − a−

Δa
indicates an acceleration of zero. For brevity, we call the three time regions with

the different behaviors A, B, and C , see Figure 23.
We again perturbψ (t ) to get a functionψ ′(t ) = ψ (t ) + δψ (t ). Here, we again assume that δψ (t )

is not the zero function. To obey the acceleration bounds, we observe that δψ (t ) is non-positive in

region A and non-negative in regionC , which implies that
∫ t

0
δψ (t )dt is non-increasing in region

A and non-decreasing in region C .
For region B, we observe that ψ (t ) describes the behavior that results in the highest possible

velocity in that region. So, the velocity at a time t in region B that results fromψ ′(t ) can be at most
the velocity obtained viaψ (t ). The velocity at any time t is given by

v(ϕ, t ) = v + ta− + Δa

∫ t

0

ϕ (t )dt (19)

for acceleration function a(ϕ, t ). Thus, we can now formalize the observation as v(ψ ′, t ) ≤ v(ψ , t )
for all t ∈ B. Using the definition of v(ϕ, t ) and simplifying, we obtain that∫ t

0

δψ (t ) ≤ 0 (20)

should hold for all t ∈ B. Since we want thatψ andψ ′ travel the same distance Δx in Δt time, we
again get the identity ∫ tj

ti

∫ t

ti

δψ (t )dt ′dt = 0, (21)

as was shown in Appendix A.1. Similar to the argumentation in Appendix A.1, we look at the
difference in minimum speed Δv at tj :

Δv = Δa

∫ tj

ti

δψ (t )dt . (22)

Again, ψ ′(t ) has a lower minimum velocity if Δv is negative. For this to happen,
∫ tj

ti
δψ (t )dt has

to be negative.
Now, assume for a contradiction that for some δψ , Δv is less than zero, such that the minimum

velocity using a(ψ ′, t ) is less than that from a(ψ , t ). From Equation (20), we see that
∫ t

0
δψ (t )dt

is non-positive for all t in regions A and B. In particular, at the end of region B, the integral is
non-positive. We distinguish two cases.

The integral is zero. Suppose the integral
∫ t

0
δψ (t )dt is zero at the end of region B. Then,

since the integral is non-decreasing in regionC as established before, we cannot have that∫ Δt

0
δψ (t )dt is less than zero: Δv is non-negative, which gives a contradiction.

The integral is negative. Suppose now that
∫ t

0
δψ (t )dt is negative at the end of region B.

If we want Δv to be negative, then this requires that the
∫ Δt

0
δψ (t )dt is negative. Since

the integral is non-decreasing in region C , we must have that the integral is negative
everywhere in region C to accomplish this. But then the traveled distance for ψ (t ) and
ψ ′(t ) is not the same, since Equation (21) is less than zero. This again gives a contradiction.
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From the previous argumentation, we can conclude that for any choice of ψ ′(t ) that satisfies
the traveled distance requirement, the minimum velocity at pj is at least the minimum velocity
obtained by usingψ (t ).
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