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A straight cylindrical duct is considered containing an axial mean flow that is uniform
everywhere except within a boundary layer near the wall, which need not be thin. Within
this boundary layer the mean flow varies parabolically. The linearized Euler equations
are Fourier transformed to give the Pridmore-Brown equation, for which the Greens
function is constructed using Frobenius series. Inverting the spatial Fourier transform, the
critical layer contribution is given as the non-modal contribution from integrating around
the continuous spectrum branch cut. This contribution is found to be the dominant
downstream contribution to the pressure perturbation in certain cases, particularly for
thicker boundary layers. Moreover, the continuous spectrum branch cut is found to be
involved in stabilizing what are otherwise convectively unstable modes by hiding them
behind the branch cut, particularly for slower flows. Overall, the contribution from the
critical layer is found to give a neutrally stable non-modal wave with a phase velocity
equal to the mean flow velocity at the source when the source is located within the
sheared-flow region, and to decay algebraically along the duct as O(x’%) for a source
located with the uniform flow region. The Frobenius expansion, in addition to being
numerically accurate close to the critical layer where other numerical methods loose
accuracy, is also able to locate modal poles hidden behind the branch cut, which other
methods are unable to find. Matlab code is provided to compute the Greens function.

1. Introduction

The propagation of sound through an otherwise steady mean flow has many impor-
tant applications. One such application is predicting and optimizing aircraft engines
noise. With aircraft noise being subjected to ever increasing restrictions, being able
to successfully model this noise becomes increasingly important. In particular, aircraft
engine noise at takeoff depends critically on the sound absorbing performance of acoustic
liners. Unfortunately, acoustic liner performance in the presence of a steady mean flow
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is poorly predicted by existing theory, as demonstrated by comparisons to laboratory
experiments (Renou & Aurégan|2011; |Spillere, Bonomo, Cordioli & Brambley||2020)). The
theory is equally applicable to any situation with small perturbations to an otherwise
steady mean flow along a non-rigid boundary: for example, the stability analysis of flow
over a deformable surface.

The behaviour of sound in an otherwise steady mean flow is usually modelled using
the linearized Euler Equations. Non-rigid boundaries, such as the acoustic liners used
in aircraft engines, are usually modelled using an impedance boundary condition, where
a disturbance with oscillating pressure Re(pexp{iwt}) leads to an oscillating normal
boundary velocity Re(vexp{iwt}) given by p = Z(w)v. Such impedance boundary
conditions are well understood for a mean flow that satisfies no-slip at the boundary.
Often, however, we use a simplified model where the mean flow does not satisfy no-slip
at the boundary: for example, uniform axial flow in a duct. For slipping mean flows, it is
known that the impedance boundary condition must be modified. A common modified
boundary condition is the Myers, or Ingard—Myers, boundary condition
Myers| [1980). This boundary condition is known to be the correct limiting behaviour
for an inviscid mean flow boundary layer in the limit that the boundary layer thickness
tends to zero (Eversman & Beckemeyer 1972; [Tester| 1973). However, this boundary
condition, when applied in the time domain, is ill-posed (Brambley| 2009). Several
alternative boundary conditions have been suggested (Brambley| 20110} [Schulz, Weng,|
Bake, Enghardt & Ronneberger||2017; Khamis & Brambley|2017; |Aurégan|2018), which
each attempt to include more relevant physics, including the effect of the mean flow
boundary layer and the effect of viscosity. However, these boundary conditions come
with their own complications, including the need to fit further free parameters, and as
yet none have been made to agree with laboratory experiments (Spillere et al.|2020)).

In light of this difficulty with boundary conditions in slipping mean flow, one may instead
only consider mean flows U(r) that satisfy no-slip at the boundary (e.g.
Ronneberger, Enghardt & Bake|[2017). Doing so, however, involves solving for the sound
in a strongly varying mean flow, which is especially taxing when the boundary layers
are particularly thin. Numerically resolving the sound in thin boundary layers requires
a fine resolution, which then also requires a small timestep owing to the CFL condition.
Progress may be made analytically by considering the simplified situation of a straight
rectilinear or cylindrical duct containing axial mean flow (as depicted later in ﬁgure. By
linearizing the Euler Equations about this steady mean flow and assuming exp{iwt —ikz}
dependence, one eventually arrives at the Pridmore-Brown equation , a second-
order linear ODE for the pressure perturbation within the duct due to |Pridmore-Brown|
(1958). The Pridmore-Brown equation has been the subjected of much analysis (e.g.
Mungur & Gladwell [1969} [Swinbanks| [1975; [Nagel & Brand|[1982; [Brambley,
Darau & Rienstral[2012a} [Rienstra [2020)), owing to its complexity. One complexity is
that, treating the frequency w as known and solving for the axial wavenumber k as
the eigenvalue, the Pridmore-Brown equation is not Sturm-Liouville and results in a
nonlinear eigenvalue problem for k. A second complexity is that the Pridmore-Brown
equation possesses a regular singularity, referred to as a critical layer or continuous
spectrum. Despite these difficulties, eigenfunction expansions using eigenfunctions of the
Pridmore-Brown equation are frequently used, with the eigenfunctions assumed to form
a complete basis (despite the problem being non-self-adjoint) and the effect of the critical
layer ignored (e.g. Brooks & McAlpine|2007; Olivieri, McAlpine & Astley|2010; Oppeneer,|
Rienstra & Sijtsmal 2016} Rienstra 2021)).
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The lack of completeness of the modal solutions of the Pridmore-Brown equation mo-
tivates the investigation of the Green’s function solution. The Green’s function is the
solution of the governing equations subject to a point forcing; for example, a point
mass source leads to the right-hand-side of equation . The Green’s function may
be used to construct the solution of the governing equations subject to any arbitrary
forcing; hence, the Green’s function is capable of being used to express any solution to
the governing equations, in contrast to a modal eigenvalue expansion which can only
express an arbitrary solution if the modal basis is complete. The Green’s function is also
worth considering on its own merits without reference to a particular forcing, since if the
governing equations are capable of exhibiting a particular feature (such as instability,
focusing, perfect reflection, etc), then the Green’s function must also exhibit that feature.
The Green’s function is also used in various approximation techniques (e.g. |Brambley,
Davis & Peake |2012b; [Posson & Peake [2013} Mathews & Peake|[20180)). For this reason,
the Green’s functions has been constructed for a variety of acoustical situations (e.g.
Rienstra & Tester||2008; Brambley et al.||2012a; [Mathews & Peake|[2017, 2018a)). In
particular, the Green’s function solution to the Pridmore-Brown equation naturally
includes the critical layer.

The critical layer, or continuous spectrum, is a singularity of the linearized Euler equa-
tions occurring when the phase velocity of the perturbation, w/k, is equal to the local fluid
velocity of the steady flow, U(r.), for some critical radius r.. Because the phase speed
is equal to the flow speed, the effect of the critical layer may be thought of as being
convected with the mean flow, and therefore as hydrodynamic in nature (Case||1960;
Rienstra, Darau & Brambley|[2013). For swirling flows, the critical layer is known to lead
to algebraically growing instabilities (Golubev & Atassi[1996; Tam & Auriault||1998;
Heaton & Peake|2006]). For the Pridmore-Brown equation, the critical layer is currently
thought to lead to algebraically decaying disturbances, although publications differ on
the exact nature of the decay. For example, [Swinbanks (1975) predicted a disturbance of
constant amplitude plus a disturbance with O(z~%) decay for a point source, and O(z~1)
decay for a distributed source, although exact formulae for these disturbances are not
given. |[Swinbanks| (1975| p. 62) goes on to argue that the constant amplitude disturbance
would not be present when the disturbance is caused “by moving the surface of a solid
body”. In contrast, Félix & Pagneux! (2007) demonstrated numerically, for a point source
in a parabolic mean flow, a decay rate of O(z~!). More recently, Brambley et al.| (20124
gave an explicit analytic solution for the critical layer far-field response for a mean flow
U(r) that is constant in the centre of the duct, and then varies linearly in a “boundary
layer” region to zero at the duct walls. Locating a point source at a radius rg, they found
the pressure perturbation from the critical layer at a radius r consisted of three distinct
components with phase velocities U(0), U(r) and U(ro), each with different decay rates.
However, [Brambley et al.| (2012a)) chose a rather special mean flow profile. In particular,
the critical layer is usually caused by a nonzero second derivative of the mean flow profile,
U"(r), but for the constant-then-linear mean flow U”(r) is either identically zero or has
a delta function discontinuity; in the constant-then-linear case, |Brambley et al.| (2012al)
instead attributed the critical layer to the cylindrical geometry.

In many cases, the effect of the critical layer is negligible in comparison with the modal
sum of the acoustics modes. However, when all acoustic modes are cut-off and non-
propagating, the effect of the critical layer will be dominant. Moreover, |Brambley| (2013,
figure 6) showed that a mode representing a hydrodynamic instability could interact with
the critical layer, although this was not seen for a constant-then-linear mean flow profile.
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Since the critical layer is a singularity of the Pridmore-Brown equation, traditional
numerical methods are particularly inaccurate near the critical layer. This often manifests
as a collection of spurious numerical modes being located along the critical layer. In
contrast, previous studies have used a Frobenius expansion about the singular point r =
r. (e.g. Heaton & Peake|[2006} |Campos & Kobayashi|[2009; Brambley et al.|[2012a)). This
technique both gives increasing accuracy as the critical layer is approached, and allows
analytical continuation behind the critical layer branch cut. For example, [Brambley
et al| (2012a}, figure 10) found a previously unknown mode close to the critical layer
that was unable to be resolved numerically using more traditional finite differences. One
complication of the Frobenius series, however, is that, much like a power series, it has
an associated radius of convergence. For the constant-then-linear mean flow Frobenius
expansion (Brambley et al||2012a)), this did not prove a problem, as the radius of
convergence covered the region of interest in all cases that were considered. For general
flow profiles this will not be the case, and a solution covering the entire region of interest
will involve multiple Frobenius expansions with overlapping radii of convergence; this will
turn out to be the case here. By matching two different expansions in a region where both
converge, a hybrid solution may be constructed that spans the whole region of interest.

Here, we use the Frobenius expansion method as described by [Brambley et al.| (2012al),
and apply it to a mean flow that is constant in the centre of the duct and then varies
quadratically within a boundary layer to satisfy non-slip at the wall. As well as being
more realistic than the constant-then-linear profile considered by Brambley et al.[(2012a]),
this mean flow profile is twice differentiable, allowing U”(r) to enter the analysis, and as
such we expect the results to be more representative of an arbitrary mean flow profile.
The Frobenius expansion is derived in section [2| along with a derivation of the Pridmore-
Brown equations by spatially Fourier transforming the linearized Euler equations. The
Frobenius expansion is then used in section [3| to derive the Green’s function for a point
mass source, including inverting the spatial Fourier transform and investigating the far-
field behaviour. Results are presented in section 4 by numerically evaluating the Frobenius
expansions and the Green’s function. These results are compared against previous results,
particularly against the predictions by [Swinbanks| (1975)) and the constant-then-linear
results by Brambley et al. (2012a)). Finally, the implications of this work are discussed,
and areas for further research highlighted, in section

2. Problem Formulation and Homogeneous Solutions
2.1. Constructing the Pridmore-Brown FEquation

The governing equations for what follows are the Euler equations with a mass source q,

Du Dp _ ~vp Dp

dp
= TV -(pu) =g, PEZ—V]% Dt~ p Dt

> (2.1)

Here, we take the mass source ¢ to be a small time-harmonic point mass source. In
cylindrical coordinates (z,r,6), with a suitable choice of origin, this mass source ¢ may
in general be taken as

¢=Re (Ed(x)d(ﬂ)é(r — 7o) exp{iwt}) : (2.2)

To

where € is the small amplitude, w is the frequency, and the 1/r¢ term comes from writing
a unit amplitude point source in cylindrical coordinates. We expand each variable in
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powers of e,
p = po(r) + Re(epe™’) + O(e?), p = po + Re(epe’) + O(€?),
u="U(r)es + Re(e(ﬂ, o, u))ei“’t> +0(é?), (2.3)

where pg is necessarily a constant in order that the steady state should satisfy the Euler
equations. Without loss of generality, all perturbations are expanded using a Fourier
series in # and a Fourier Transform in z. As a result, the pressure perturbation is given
as

1 & . o0 .
plar,0)=— > e ™ / p(rsk,m, w)e™* dk, (2.4)
2r £ oo
m=—00

and similarly for the density 6 and the velocity components @, ¢ and w. Substituting these
into the Euler equations (2.1)), and linearizing by ignoring terms of O(e?) or smaller, each
of p, u, w, and finally ¥ may be eliminated, to leave a second order ODE in the radial
coordinate r for p,

~11 2kU L oo\~ (w— U(T)k)2 L2 m72 ~_ w—U(ro)k _
P+ <w Uk + " D+ 2 k 2 —————4(r — ro),
(2.5a)
with U= (2.5b)

where a prime denotes the derivative with respect to r. This is the [Pridmore-Brown
(1958)) equation for a point mass source, written in cylindrical co-ordinates.

One boundary condition to is regularity at » = 0. The singular solution behaves,
for m # 0, as O(r~I"™!) as r — 0, and the regular solution behaves as O(rI™!). For m = 0,
the singular solution behaves as O(logr) while the regular solution behaves as O(1).
Eliminating the singular solution is therefore possible using the boundary conditions at
r=20

p(0)=0 form##0 P0)=0 form=0 (2.6)

To model sound within a straight cylindrical duct of radius r = a, we take the other
boundary condition to be the impedance boundary condition at r = a,

- - iw

p(a) = Z(w)d(a) — P (a) = 7p(a), (2.7)

where Z(w) is the impedance of the duct wall, and the two expressions are equivalent in
light of (2.58). A hard wall corresponds to Z — oo, and hence to 9(a) = 0, or equivalently
to p'(a) = 0.

In what follows, we make the simplifying assumptions of a perfect gas and a constant
density po(r). This is a homentropic assumption, and implies that ¢o(r) is also constant.
We may then nondimensionalize speeds by the sound speed ¢y, densities by pg, and
distances by the duct radius a. Note that this places the impedance boundary condition
in nondimensional terms at r = 1. We also assume a flow profile U(r) that is uniform,
except within a boundary layer of width h where it varies quadratically:

U(r)=

M 0<r<1-h
{ " (2.8)

M1-(1-55?% 1-hr<r<1’




FIGURE 1. A cross sectional view of a cylindrical duct with lined walls containing sheared axial
flow. po(r) is the mean flow density (here taken constant), and U(r) is the mean flow velocity,
here taken to be uniform outside a boundary layer of width h. Z is the boundary impedance
and defines the boundary condition at the wall of the duct.

With the nondimensionalization of velocities by ¢y, M here is the duct centreline Mach
number. This situation is depicted schematically in figure

In order to solve the Pridmore-Brown equation (2.54d)), we first consider solutions to the
homogeneous form

P+ <%+i)ﬁ+ <(w—U(r)k)2—k2—7;f>]b‘:0. (2.9)

2.2. Homogeneous Solutions Within the Region of Uniform Flow

Within the region of uniform flow, the homogeneous Pridmore-Brown equation (2.9)
reduces to

~1! 1A4 2 2 m2 ~
This is Bessel’s equations of order m rescaled by «, where
a? = (w— Mk)? — k?; (2.11)

it will turn out later that the branch chosen for « does not matter, although for
definiteness one may choose Re(«) > 0. Bessel’s equation has two pairs of linearly
independent solutions that we shall make use of: the Bessel functions of the First and
Second kind, J,, (o) and Yy, (ar); and the Hankel functions of the first and second kind.

H,(wl)(ar) and Hff)(ar). More information regarding these can be found in (Abramowitz
& Stegun|[1964)). It is worth noting that only J,,(ar) is regular at r = 0, with the other
solutions all requiring a branch cut along ar < 0, with a singularity at ar = 0.

2.3. Homogeneous Solutions Within the Region of Sheared Flow

In this section, we will construct the solution to the homogeneous Pridmore-Brown equa-
tion (2.9) when U(r) varies by proposing a Frobenius expansion about the singularities
of the Pridmore-Brown equation.

In addition to the singularity at » = 0, the homogeneous Pridmore-Brown equation
possesses regular singularities whenever w — U(r)k = 0; these singularities correspond
to the critical layer. Within the sheared flow region 1 — h < r < 1, since the velocity
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profile U(r) is quadratic in 7, there are exactly two critical values r = 7. for which
w — U(re)k = 0. Note that in general these critical values will be complex. Solving this
quadratic equation gives the two singularities explicitly as rT and r;, where

+ - w
rE=1-h+Q th,/lfM—k. (2.12)

For convenience, we will take Re(Q) > 0, so that Re(r}) > 1 — h and Re(r;) < 1 — h.
Since solutions with this quadratic flow profile U(r) are only valid for 1 —h < r < 1, it
will therefore be rI that we are mostly concerned about here.

Following|Brambley et al.|(2012al), we propose a Frobenius expansion (Teschl|2012) about
the regular singularity r,

pr) = Z an(r —rnte with  ag # 0. (2.13)
n=0

Specifying that ag # 0 results in a condition on o, and we find that ¢ = 0,3. By Fuchs
theorem (Teschl [2012)), this gives a pair of linearly independent solutions of the form

Pi(r) = an(r— )", (2.14q)
n=0
pa(r) = Ap1(r) log(r — r1) + Z by (r —rh)". (2.14b)
n=0

The coefficients a,, and b, are derived in appendix [A] where, in particular, it is found

that
1( 4 m Y
apg = bo = 1, b1 = 0, b2 = — 5 k + = 5 bg = 0, (215)

and that
1/1 1 m\? 2m?
A=—=(=—— [+ (=) | -, 2.16
(g +>< (+)> g (216)

the latter in agreement with equations (2.3)—(2.5) of Brambley et al.| (2012a). We note
in passing that in practice we may be limited by the radius of convergence of ,
and in such cases the solutions given above are analytically continued by a companion
expansion of the Pridmore-Brown equations about r = 1, as described in appendix [A-2]
Other than being a complication concerning numerical convergence, this complication
may be ignored, and p; and ps thought of as being defined by the expressions in .

Due to the log term in ps in 7 a branch cut is necessary in the complex r plane
originating from the branch point r = rI. This branch cut must be such that the solutions
remain continuous for the real values of r € [1 — h, 1], and so the branch cut must avoid
crossing the real r axis between 1 —h and 1. In the following, we achieve this by choosing
the branch cuts parallel to the imaginary axis and away from the real axis, as depicted
in figure [2 When r is real and 1 — h < r} < 1, no suitable choice of branch cut
exists, and as a result any solution p(r) with p(r}) # 0 necessarily has a singular third
derivative at rl. This only occurs for particular values of k, however, and we can map
the corresponding values of k in the complex k plane to find they fall exactly on the half

line [{F, 00); this range of excluded values of k& we refer to as the critical layer branch cut.



Im(r) Im(r)

Branch cut

B = e -

} - Re(r) } - Re(r)
A S 1 0 1-h* 1
1
1
1

e

Branch cut

FIGURE 2. Schemetic of possible locations of the r} branch cut in the complex r-plane. (a) A
possible choice of branch cut when Im(rJ) > 0. (b) The other choice of branch cut is needed
when Im(r}) < 0.

As rl becomes real, note that the value of py(r7) is different depending on whether we
approach from positive or negative imaginary part. Thinking of rf (k) as a function of ,
this corresponds to approaching the critical layer branch cut [§7,00) in & from above or
below. This re-enforces the consideration of the critical layer appearing as a branch cut

in the complex k plane, taken along the real line from k£ = 7. The change in p2 when

crossing the critical layer branch cut from below to above is described as

Apa (1) fn(g)rr\l‘op}(r) ;n(g)rgojoig(r) = —2miAp (r)H(rf —7) (2.17)

Where H(r) is the Heaviside function.

In order to retrieve this result we need only consider the log(r — r¥) term of py. Note
that drF /Ok > 0 for real k and real positive w; hence, if k is nearly real and Im(k) > 0,
then Im(r}) > 0, and we must take the branch cut of log(r — r}) upwards towards +ico.
Similarly, for Im(k) < 0 then Im(r}) < 0, and the branch cut for log(r — rI) must be
taken downwards to —ico. When r is located on the real line, (r — ) is negative for
r < rF. When we choose the branch cut into the upper half plane, this corresponds to
a complex argument of —mw. When we choose the branch cut into the lower half plane,
this correponds to a complex argument of . This difference results in the jump of 27i
given. If we instead consider r > 7}, the same argument is retrieved regardless of which
direction we take the branch-cuts, and so no jump is observed. This is the reason for the
presence of the Heaviside function.

2.4. Homogeneous Solutions Across the Full Domain

In order to construct a full solution in r € [0, 1], we now construct two solutions ) (r)
and v5(r) that solve (2.5)) across r € [0,1], by matching the solutions derived above in
sectionsand We construct 1 (r) to satisfy the boundary condition at » = 0 ,
and 19 (r) satisfies the boundary condition at r = 1. Therefore, we take

» = I (ar) 0
Ya(r) {01171(7’)4'171?2(7") 1

N

h

B 2.18
<l (2.18)

r<1
—h<r
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where the matching coefficients C; and D; ensure C' continuity, and are given by
Im((1 = h))py(1 — h) — aj,(a(1 — h))p2(1 — h)

o i , (2.190)
py — _Imla = m)5( _3[)(;&{1;;(@(1 —h)p(1—h) (2.19b)

and W(r) = W(p1,p2;r) is the Wronskian of p; and ps, given in appendix as
3ré(r—rd)?(r—ry)”

W (r) = W(p1, p2;7) = p1(r)ps(r) — po(r)p)(r) = - T

(2.20)

Having constructed v to satisfy the boundary condition at r = 0, we now proceed to
construct ¥ which satisfies the boundary condition (2.7)) at » = 1. Writing 15 in terms
of the homogeneous solutions derived above,

(1) (2)
() = {Cg (ar)—i—DgH (ar) 0<

r —h
Cop (1) + Dapa(r) 1—nh

N (2.21)

//\ //\
//\

we choose Cy and Dy to satisfy 15(1) = 1 and ¢4(1) = —1 This forces a non-zero
normalized solution to 1o which satisfies the boundary condition (2.7) at » = 1, and
leads to

o Dh(1) 4+ 2p2(1) ~ pi(1) + 2P (1)
_ Tf) Dy — _Tf)' (2.22)

The coefficients 52 and 52 are chosen such that our solution is C'* continuous at r = 1—h,

giving
2
2

02 ir(1=h) [ «aHY' (a(1—h)) —HS (a(1—h)) (§1(1—h) §2(1—h))
D, 4 \—aHy (a(1=h))  HY (a(1-h)) )\ Pr(1=h) P5(1-h)
(2.23)

where the factor at the beginning comes from the Wronskian of H,(y}) and H,(,?) from
Abramowitz & Stegun| (1964) formula 9.1.17).

)

We will also require later the jump in behaviour of ¢); and 5 as k crosses the critical
layer branch cut from below to above. Since any jump comes from the log term in pa(r)
when r < rT, we have, provided r < 1,

AC, = 2irADy, ACy = ADy = AD, =0, (2.24a)

(A@ ) _ 7*(1-h)AD, ( oHP (a(1-h)) —HP (a(1-h)) ) ( By (1—h) >

AD, 2 —aHY (a(1=h))  HY (a(1-h)) pi(1=h)
(2.24b)
resulting in (provided r} < 1)
Ay (r) = 2itAD1p H(r — r), (2.25q)
(1) (2) <r<i
Ao(r) = AC,HY, (ar) + ADyH (ar) 0<r<1—h (2.25b)
—2im Apy (r)DoH (r} — 1) 1-h<r<1.

Note that, if r > 1, then Ay = Ay = 0, since the ¢, and 15 solutions are uniquely
defined by their boundary conditions and no branch point occurs on the interval r €
[1 — A, 1] to cause a jump.
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2.5. Modal solutions

Modal solutions of the homogeneous Pridmore-Brown equation are nonzero solu-
tions p(r) that satisfy both the boundary conditions at 7 = 0 and at r = 1 (2.6]2.7).
In general, satisfying both boundary conditions would force the solution p(r) = 0, so
nonzero solutions exist only for particular modal eigenvalues k (assuming w is given and
fixed). In contrast, the solution 1 (r) is never identically zero and always satisfies the
homogeneous Pridmore-Brown equation and the boundary condition at r = 0; indeed,
any solution satisfying the boundary condition at r = 0 is necessarily a multiple of
1(r). Likewise, the solution g(r) is never identically zero and always satisfies the
homogeneous Pridmore-Brown equation and the boundary condition at » = 1, and any
solution satisfying the boundary condition at r = 1 is necessarily a multiple of 15(r). In
general, ¥1 and 1) are linearly independent, and so their Wronskian W (1)1, ¢9;7) is not
identically zero, where

W(hr,haim) = 1 () (r) — a(r)eby (r). (2.26)

However, if p(r) is nonzero and satisfies both boundary conditions at » = 0 and r = 1,
then p(r) = a1 (r) = hpa(r) for some nonzero coefficients a,b. In other words, a modal
solution is one where 7 and 1 are linearly dependent, and so W(1)1,¢9;7) = 0.

For 1 — h < r < 1, substituting v¢; from and vy from into the Wron-
skian gives

W(’(/Jl, ’(/)2; ’I“) = (ClDQ — Cng)W(r), (2.27)
where W (r) is the Wronskian between p; and p» and is given earlier in (2.20). Since p;
and py were constructed to be linearly independent, we expect W (r) not to be identically
zero, and indeed shows that W (r) # 0 except at the critical layer r = rI. A modal
solution, therefore, is given by the condition that Clﬁ? fang = 0, which is independent
of r, and implies that C1 /D1 = C2/ D5 and so that ¥1 and 1) are multiples of one another.

The same can be seen for » < 1 — h. In this case, the Wronskian ) becomes
W(1,v9;7) = Oé\éQW(Jm, Hg);r) + a\ﬁQW(Jm, Hfﬁ);r) = oz(\C/'z — 52)—;, (2.28)
T

where we have made use of the Bessel function identities 9.1.3, 9.1.4 and 9.1.16 from
Abramowitz & Stegun| (1964). Note in particular that ¥W(1)1,9;7) is a constant inde-
pendent of r for 0 < r < 1 — h. Since W(1)1,9;7) is continuous in r across r = 1 — h,
since 1, and vy are both C! continuous, it follows that for 0 < r < 1 — h we can set
rW(1,12; 1) = (1 — h)W()1,12; 1 — h). We therefore arrive at the conclusion that

W(r) 1—
Wl —-h)i=h 0<g

r

(2.29)

W1, 9951) = (C1ﬁ2 — CyDy) {

h<r<
r<l-— h,

and that a mode corresponds to the dispersion relation 0 = D(k,w) = le)g — ang.
In the next section, we see how these modal solutions occur naturally as poles in the
solution of the non-homogeneous Pridmore-Brown equation.

3. Inhomogeneous Solutions and Inverting the Fourier Transform

3.1. Inhomogeneous Solution to the Pridmore-Brown Equation

While previously we have only been solving the homogeneous form (2.9)), our original
problem was to solve the inhomogeneous Pridmore-Brown equation (2.54) subjected to a
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harmonic point mass source. Due to the right hand side of being a scalar multiple
of a delta function, located at r = rq, our solution will be the same scalar multiple of
the Green’s function, and we denote this solution as G. This function will satisfy the
boundary condition at r = 0 and r = 1, and will solve the homogeneous Pridmore-Brown
equation for r < rg and r > 7; hence, G may be written as a multiple of the homogeneous
solution 1y for r < rg and as a multiple of the homogeneous solution 9 for r > rq. All
that is required is to join the two solutions at r = rg such that they are continuous, and
their derivative is discontinuous with a jump exactly matching the amplitude of the delta
function. This may be written succinctly as

a_Y= Uro)k ¥1(7)o(7)
2rirg W1, ¢2;10)’

(3.1)

where
7 = max(r, rg), 7 = min(r, ro), (3.2)

and once again W(1)1,19; ) is the Wronskian of ¢; and 5. Using (2.29)), this may be
rewritten as
G @ UGk ()
27ir* W (r*) €y Dy — Co Dy

where r* = max(1l — h,rg) (3.3)

3.2. Analytic continuation behind the critical layer branch cut

The solution for G in (3.3)) above contains a branch cut along the critical layer k € (475 00).
We now introduce the following additional notation. When evaluating a function f(k) on
the branch cut, for k € [17,00), we denote

k) =l fkiz)  fT(k) = lim f(h—ie)  Af(R) = fH) - f (k) (3.4)

Note that the definition of Af agrees with the use of A in equations (2.17][2.24]|2.25)

above. By using these equations, we find that

w—U(r*)k 1

21WT*W(T*) Cfﬁg - éle + 217TAD1132

. | 2mAD Doty (795 (7)
C;Dz — CyDq

AG = —

(3.5)

— U1 (F)Aa(7) = A (F)y () — A (7) Ao (7)

A typical branch cut, such as the branch cut in y/z — zg, may be taken in any direction
from the branch point zy. The critical layer branch cut in the complex k-plane is different,
in that the choice of branch cut was forced upon us by the requirement that the solution
be continuous in r for r € [1 — h,1]. None-the-less, noting from that AG is well
defined function for general complex k, we may use equation to analytically continue
G behind the critical layer branch cut. For real w, we therefore define the analytic
continuation of G behind the branch cut into the lower-half k-plane as

. _ é(k;) Im(k) > 0 or Re(k) < &,
“= {é(k) + AG(k) Im(k) <0 and Re(k) >Mﬁ (30
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Similarly, we may rewrite as
w—U(r*)k 1
~ 2inr*W(r*) i Dy — CoDy — 2inAD, D,
2ir ADy Dot (7)b3 (7)
CiDy — CyDy

AG =

(3.7)

— by (F) Aipo (7) — Apy ()5 (F) + Ay (7)Ao (7) |

which allows the analytic continuation of G~ into the upper-half k-plane,

_ {(:}(k) Im(k) < 0 or Re(k) < <, (38)
G(k) — AG(k) Tm(k) > 0 and Re(k) > & '

The utility of these analytic continuations in not readily apparent. However, their use
allows for poles of G, corresponding to modal solutions to the homogeneous Pridmore-
Brown equation, to be tracked behind the branch cut, and in particular a possible
hydrodynamic instability mode will later be found to be hidden behind the critical layer
branch cut in certain cases. Their use also allows the deformation of integral contours
behind the critical layer branch cut, as will be needed for the steepest descent contours
needed for the large-x asymptotic evaluation of the inverse Fourier transform.

In what follows k* and k~ denote modal poles, see section of only Gt or G-
respectively.

3.3. Inverting the Fourier Transform

Having formulated G as the solution to the inhomogeneous Pridmore-Brown equa-
tion , to recover the actual pressure perturbation p(x,r,f), we are required to
invert the Fourier transform and sum the Fourier series. For a fixed azimuthal mode m
we invert the Fourier transform using the formula

1 ~ .
G(CE,’I’;T‘le) = %/(;(’r'7 ro,k,m)e_‘kwdk. (39)
C

Note, however, that the critical layer branch cut is located along the real-k axis k €
[47,00). We are therefore required to be careful in choosing a suitable inversion contour

C.

3.3.1. Choosing an Inversion Contour

In order to choose the correct Fourier inversion contour C, we appeal to the Briggs-
Bers criterion (Briggs||1964; Bers|[1983). The Briggs-Bers criterion, sumarised below,
invokes the notion of causality; that the cause of the disturbance (the delta function
forcing) should occur before the effect (the disturbance p), which is otherwise lost when
considering a time-harmonic forcing, as we do here. A more in-depth description is
available in many places in the literature (e.g. Brambley| 2009, appendix A).

In order to make use to the Briggs-Bers criterion, the rate of exponential growth
of the solution must_be bounded; that is, there must exist 2, K > 0 such that, if
Im(w) < —{2, then G is analytic for [Im(k)| < K. For a given w with Im(w) < —£2,
we take the k-inversion contour C in along the real-k axis, and map the locations
of any singularities (e.g. poles, branch points, etc). In order to find a correct integration
contour for the real values of w that are of interest, the imaginary part of w is smoothly
increased to 0, and the locations of any singularities tracked throughout this process.
During this process, the k-inversion contour C must be smoothly deformed in order
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Ficure 3. Illustration of the inversion contours taken when an unstable k* pole is present. The

inversion contour for G is labelled C. (Left) For < 0, the contour is closed in the upper half
plane along the C< contour. (Right) For = > 0, the contour is closed in the lower half plane
along the C~ contour, and around the critical layer branch cut along the Cp contour. Contributing
modal poles are indicated in blue.

to maintain analyticity; that is, no singularities must cross the k-inversion contour.
Assuming this process may be completed and Im(w) increased to zero, then the resulting
k-inversion contour C is the correct causal contour. Since for x < 0 the exp{—ikz}
term is exponentially small as |k| — oo in the upper-half k-plane, for z < 0 we may
close the contour with a large semi-circular arc at infinity in the upper-half k-plane,
denoted C-. The resulting contours are illustrated in Bl In this illustration, the majority
of singularities of G are poles which do not cross the real k axis as Im(w) is varied, and
hence correspond to exponentially decaying disturbances away from the point mass source
at z = 0. The exception to these poles is the pole labelled kT, which for this illustration
originates in the lower-half k-plane for Im(w) sufficiently negative, and therefore belongs
below the k-inversion contour. This implies that this pole is seen downstream of the
point mass source, for > 0, despite having Im(k) > 0, and therefore corresponds to
an exponentially growing instability. The critical layer, as described earlier, exists when
k/w=1/U(r.) € [1/M, 0] for some critical radius r., and so is found in the lower-half
k-plane for Im(w) < 0. Thus, as shown in figure 3, for x > 0 in order to close C in
the lower-half k-plane, we must pass around the critical layer branch cut, denoted by
the contour Cp, before closing in the lower-half k-plane with a semi-circular arc denoted
C~. The contribution from integrating around the critical layer branch cut, Cp, leads
to the non-modal contribution of the critical layer, and is discussed in detail below in

section [3.3.31

3.3.2. Contribution from the poles ofé

We may now write the integral around the closed contour as a sum of residues of poles:

1 ~ .
— [ G(r,r0, k,m)e " *dk = G(x,r;70,m) = ZR(kj) for =<0, (3.10a)

7T
Cuc< j: Im(k;)>Im(C)

o G(r,ro, k,m)e *dk = G(z,rro,m) — I(z) = ZR(kj) for x>0, (3.100)
T Jeuc,ues j: Im(k;)<Im(C)
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where I(z) is the contribution from integrating around the critical layer branch cut
contour Cp discussed in the next section, R(k;) is the residue from a pole at k; discussed
below, and the notation Im(k;) > Im(C) is used to denote poles k; lying above the
inversion contour C.

The poles of G correspond to zeros of the denominator of é, as given in . They
can occur in two ways: as modal or non-modal poles. We consider the modal poles
first. The modal poles occur as zeros of the term C7; Dy — CoD1 = 0. As discussed in
section [2.5] this occurs when both 1)1 and 5 satisfy both boundary conditions at r = 0
and r = 1. These modal poles can be further classified into acoustic modes and surface
modes: acoustic modes are those for which « in equation has a small imaginary
part, and correspond to functions which are oscillatory in r; and surface modes are those
for which « has a significant imaginary part, and correspond to functions which decay
exponentially away from the duct walls at » = 1. For different parameters, we may find a
variety of surface modes, and two with which we will be particularly interested here will
be denoted k= and k™. For further details of surface modes, the reader is referred to the
existing literature (e.g. Rienstral2003; |Brambley|2013).

Since the modal poles occur as zeros of 01152 — ang = 0, which we shall assume are
simple zeros, the contribution from the residues of these poles are given by

w—=U((r*)k  1(F)a(T) o ik
2= W (r*) %(le)z — 62D1) .

R(k) = —sgn(x) (3.11)

The second type of poles are the non-modal poles, which occur when W (r*) = 0. These
occur when we loose independence between p; and py at r*. Note from the formula for
W (r), equation , that W(r*) = 0 implies that r* = rF. Since 1 — h < r* < 1 this
can only occur when k is located on the critical layer branch cut. In what follows, we
will refer to this non-modal pole as ky. Note that kg is a function of the radial location
of the point source ro (through r*), which is unlike the modal poles for which k; is
independent of the value of rg; this is one reason this kg pole is referred to as a non-
modal pole. However, since our closed contour goes around the critical layer branch cut
(along contour Cp), this pole is always excluded from the sum of residues in above,
and only occurs within the calculation of I(x), which we consider next.

3.3.3. Contribution from the critical layer Branch Cut

The contribution from the critical layer branch cut, including any non-modal pole kg
along the branch cut, is contained solely within the integral along around the critical
layer branch cut denoted C; in figure

-1

I(.’L‘):% .
b

Ge k= 4k, (3.12)
However, as it stands, this integral for I(x) is oscillatory, owing to the e ~*** factor in the
integrand, and so is difficult to accurately compute numerically. This is especially true
for large values of z. Instead, it is helpful to deform the integral onto the Steepest
Descent contour, for which e '*? is exponentially decaying along the contour. This
contour deformation has three benefits: firstly, it allows accurate numerical calculation of
the integral; secondly, it allows the derivation of large-zr asymptotics using the Method of
Steepest Descents; and thirdly, it brings insight into the various contributions that make
up I(z). In deforming the integration contour, however, we must analytically continue G
behind the branch cut (as described in section above), and carefully deform around
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k< k

Im(k)
[OS[3

Im(k)

.k7

° k+ -C-z y.\k+

,,,,,

FIGURE 4. (Left) The integration contour required for the computation of the contribution from
the critical layer branch cut, understood by integrating above and below the branch cut. Possible
poles of G~ and G are denoted k™~ and k™ respectively. (Right) The integration contour after

being transformed onto the steepest decent contour. Red lines behave as if evaluated below 17

(using C:’*); blue as if having been analytically continued around the 17 branch point; green
as if having been analytically continued around the ;% and k< branch points; and purple as if

analytically continued around all branch points, giving G*. Note that we have been required to
deform contours around the kT and k&~ poles.

any poles and branch points. This is illustrated schematically in figure ] Note that poles
and branch points of G may exist behind the critical layer branch cut, and we must
therefore use analytic continuations of G the reader is reminded that G+ is the analytic
continuation of G down behind the branch cut from above, while G~ is the analytic
continuation of G up behind the branch cut from below. Here, we use the notation that a
pole of G with Re(k) > 4 is denoted kT, and a pole of G~ with Re(k) > +% is denoted
k~. Thus, a k1 pole with Im(k™) < 0 or a £~ pole with Im(k~) > 0 are considered as
being hidden behind the critical layer branch cut. In the schematic in figure 4} one k~
and one kT pole are present, both with Im(k) < 0, although this is not always the case.
The Steepest Descent contours are where e ** is exponentially decaying; i.e. towards
—ioo in the complex k plane. There is no difficulty deforming the contour at infinity, since
e~ ** is exponentially small there (provided = > 0, which is the only case in which the
critical layer branch cut contributes). Along the branch cut there are up to three branch
points singularities, denoted 17, k< and k- in figure {4} that must be deformed around.
These occur because of the presence of the log(r —rT) term in pa(r), and the presence of
D2(1—h), pa(ro) and ﬁg( ) in the expression for G; each of these terms leads to a branch
point, respectively at 7, at ko corresponding to r¥ (ko) = ro, and at k, corresponding
tort(k.) =r.

Moreover, G possesses a pole at kg, which is exactly the non-modal pole referred to above,
although there are no poles of G' at 17 or at k.. Details of these calculations are given
in appendix [C} The branch point at k, is not present when r < 1 — h, and the pole and
branch point at kg are not present when ro < 1 — h. For simplicity in what follows, we
denote k< = min{ko, k- } and ks~ = max{ko, k. }, as depicted in figure

The total integral around the branch cut can therefore be found by summing these three
integrals, subtracting any k~ contributions below the branch cut and adding any kT
contributions below the branch cut, and adding the pole residue at kg calculated as if it
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was located above the branch cut. This results in

I(z) = Iy () + Io(@) + Ip(2) + RY (ko) + Y _RY(KT) = > R (k7), (3.13)
Im(kT)<0 Im(k™)<0

where R* is the residue given in (3.11) evaluated using G*, R{ (ko) is the residue of
the non-modal pole kg evaluated as if approached from above the branch cut, derived in

appendix and given in (C 19) as

IMk2(w — Mko)e o [ D
R (ko) = 0w M o)eA 291 (r) T <ro (3.14)
3mroh2w(Cy Dy — CoDy) | D1va(r) 7 > 1o,
the steepest descent integrals are defined as
1 <~ ; :
IL(z) = — / AG, (kg — i&)eka—iOz q¢ (3.15)
27 Jo

and the jumps across each of the Steepest Descent branch cuts are calculated in ap-
pendix [B] to be

Dyun (Mer () o
(O;f)2 - 6’2D1)
AG o = —(w=UEk) A X Dlﬁ%—(fl@m F<l-h<7
M ’/‘*W(’/‘*)(O;Dg — CyD1 + 2i7TAD1D2) (C;DQ — CQDl)
DRTCWEG) |,
(C;f)z - @Dl)
(3.16a)
5~ _ —(w—U(r)k) AD1py (7)Y, () B
A = — = —H(r—(1—-h .16b
G< T*W(T*) Cng — C3D1 +2imrAD1 Dy (T (1 ))’ (3 16 )
Aé> _ _(w — U(T*)k) ADle_ (f)ﬁl(’ﬁ) H(’ﬁ _ (1 _ h))7 (3160)

r*W(r*) €7 Dy — CyDy + 2irAD, D,

Note that Aéﬁ + Aé< + Aé> = AG = G* — G—. While these integrals are now
amenable to numerical integration, additional understanding of the contribution from
the three steepest decent contours may be gained by considering the large-x limit.

3.4. Far-Field Decay Rates of the Critical Layer Contribution

The critical layer branch cut contribution contains integrals I,(x) given by
which are amenable to asymptotic analysis in the limit x — oo, using the Method of
Steepest Descent. Having already deformed the integration contours onto the steepest
descent contours, so that the integrands have had their z-dependent oscillation removed
and are now exponentially decaying along the contour, we may directly apply Watson’s
Lemma (Watson//1918)). If some function q(k) satisfies f(k, — i) ~ B&” 4+ O(¢" 1) to
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leading order for small £ with v > —1, then Watson’s Lemma implies that, for large z,

1 BI'(v+ 1)e ka®
2im 2irgrtl

/ flky —i€)ekamiO2 g ~ + Oz~ ), (3.17)
0

where I' is the Gamma function, and in particular, I'(v + 1) = v! for integer v. For each
of the I,(x) integrals, this can then be interpreted as an algebraically decaying wave of
phase velocity .

In order to find the decay rates of the steepest decent contours we are required to under-
stand the behaviour of o1 (r, kg —i§) and a(r, kg — i) for small € at r € {1 —h,r, 7o, 1}.
Details of these can be found in appendix The result, given in equations
and , is that, for k = {7 — i€, as £ — 0 with § > 0, we find that

~ 3/2 <1-—h
AGo ~ {80 (3.18)
13 / ro >1—h.

By Watson’s Lemma, this results in a wave convected with the flow speed M = U (1 — h)
and algebraically decaying like 2~ % when the source is within the region of uniform flow,
