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A straight cylindrical duct is considered containing an axial mean flow that is uniform
everywhere except within a boundary layer near the wall, which need not be thin. Within
this boundary layer the mean flow varies parabolically. The linearized Euler equations
are Fourier transformed to give the Pridmore-Brown equation, for which the Greens
function is constructed using Frobenius series. Inverting the spatial Fourier transform, the
critical layer contribution is given as the non-modal contribution from integrating around
the continuous spectrum branch cut. This contribution is found to be the dominant
downstream contribution to the pressure perturbation in certain cases, particularly for
thicker boundary layers. Moreover, the continuous spectrum branch cut is found to be
involved in stabilizing what are otherwise convectively unstable modes by hiding them
behind the branch cut, particularly for slower flows. Overall, the contribution from the
critical layer is found to give a neutrally stable non-modal wave with a phase velocity
equal to the mean flow velocity at the source when the source is located within the
sheared-flow region, and to decay algebraically along the duct as O(x−

5
2 ) for a source

located with the uniform flow region. The Frobenius expansion, in addition to being
numerically accurate close to the critical layer where other numerical methods loose
accuracy, is also able to locate modal poles hidden behind the branch cut, which other
methods are unable to find. Matlab code is provided to compute the Greens function.

1. Introduction

The propagation of sound through an otherwise steady mean flow has many impor-
tant applications. One such application is predicting and optimizing aircraft engines
noise. With aircraft noise being subjected to ever increasing restrictions, being able
to successfully model this noise becomes increasingly important. In particular, aircraft
engine noise at takeoff depends critically on the sound absorbing performance of acoustic
liners. Unfortunately, acoustic liner performance in the presence of a steady mean flow

† Email address for correspondence: E.J.Brambley@warwick.ac.uk
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is poorly predicted by existing theory, as demonstrated by comparisons to laboratory
experiments (Renou & Aurégan 2011; Spillere, Bonomo, Cordioli & Brambley 2020). The
theory is equally applicable to any situation with small perturbations to an otherwise
steady mean flow along a non-rigid boundary: for example, the stability analysis of flow
over a deformable surface.

The behaviour of sound in an otherwise steady mean flow is usually modelled using
the linearized Euler Equations. Non-rigid boundaries, such as the acoustic liners used
in aircraft engines, are usually modelled using an impedance boundary condition, where
a disturbance with oscillating pressure Re(p exp{iωt}) leads to an oscillating normal
boundary velocity Re(v exp{iωt}) given by p = Z(ω)v. Such impedance boundary
conditions are well understood for a mean flow that satisfies no-slip at the boundary.
Often, however, we use a simplified model where the mean flow does not satisfy no-slip
at the boundary: for example, uniform axial flow in a duct. For slipping mean flows, it is
known that the impedance boundary condition must be modified. A common modified
boundary condition is the Myers, or Ingard–Myers, boundary condition (Ingard 1959;
Myers 1980). This boundary condition is known to be the correct limiting behaviour
for an inviscid mean flow boundary layer in the limit that the boundary layer thickness
tends to zero (Eversman & Beckemeyer 1972; Tester 1973). However, this boundary
condition, when applied in the time domain, is ill-posed (Brambley 2009). Several
alternative boundary conditions have been suggested (Brambley 2011b; Schulz, Weng,
Bake, Enghardt & Ronneberger 2017; Khamis & Brambley 2017; Aurégan 2018), which
each attempt to include more relevant physics, including the effect of the mean flow
boundary layer and the effect of viscosity. However, these boundary conditions come
with their own complications, including the need to fit further free parameters, and as
yet none have been made to agree with laboratory experiments (Spillere et al. 2020).

In light of this difficulty with boundary conditions in slipping mean flow, one may instead
only consider mean flows U(r) that satisfy no-slip at the boundary (e.g. Weng, Schulz,
Ronneberger, Enghardt & Bake 2017). Doing so, however, involves solving for the sound
in a strongly varying mean flow, which is especially taxing when the boundary layers
are particularly thin. Numerically resolving the sound in thin boundary layers requires
a fine resolution, which then also requires a small timestep owing to the CFL condition.
Progress may be made analytically by considering the simplified situation of a straight
rectilinear or cylindrical duct containing axial mean flow (as depicted later in figure 1). By
linearizing the Euler Equations about this steady mean flow and assuming exp{iωt− ikx}
dependence, one eventually arrives at the Pridmore-Brown equation (2.5), a second-
order linear ODE for the pressure perturbation within the duct due to Pridmore-Brown
(1958). The Pridmore-Brown equation has been the subjected of much analysis (e.g.
Mungur & Gladwell 1969; Ko 1972; Swinbanks 1975; Nagel & Brand 1982; Brambley,
Darau & Rienstra 2012a; Rienstra 2020), owing to its complexity. One complexity is
that, treating the frequency ω as known and solving for the axial wavenumber k as
the eigenvalue, the Pridmore-Brown equation is not Sturm–Liouville and results in a
nonlinear eigenvalue problem for k. A second complexity is that the Pridmore-Brown
equation possesses a regular singularity, referred to as a critical layer or continuous
spectrum. Despite these difficulties, eigenfunction expansions using eigenfunctions of the
Pridmore-Brown equation are frequently used, with the eigenfunctions assumed to form
a complete basis (despite the problem being non-self-adjoint) and the effect of the critical
layer ignored (e.g. Brooks & McAlpine 2007; Olivieri, McAlpine & Astley 2010; Oppeneer,
Rienstra & Sijtsma 2016; Rienstra 2021).
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The lack of completeness of the modal solutions of the Pridmore-Brown equation mo-
tivates the investigation of the Green’s function solution. The Green’s function is the
solution of the governing equations subject to a point forcing; for example, a point
mass source leads to the right-hand-side of equation (2.5). The Green’s function may
be used to construct the solution of the governing equations subject to any arbitrary
forcing; hence, the Green’s function is capable of being used to express any solution to
the governing equations, in contrast to a modal eigenvalue expansion which can only
express an arbitrary solution if the modal basis is complete. The Green’s function is also
worth considering on its own merits without reference to a particular forcing, since if the
governing equations are capable of exhibiting a particular feature (such as instability,
focusing, perfect reflection, etc), then the Green’s function must also exhibit that feature.
The Green’s function is also used in various approximation techniques (e.g. Brambley,
Davis & Peake 2012b; Posson & Peake 2013; Mathews & Peake 2018b). For this reason,
the Green’s functions has been constructed for a variety of acoustical situations (e.g.
Rienstra & Tester 2008; Brambley et al. 2012a; Mathews & Peake 2017, 2018a). In
particular, the Green’s function solution to the Pridmore-Brown equation naturally
includes the critical layer.

The critical layer, or continuous spectrum, is a singularity of the linearized Euler equa-
tions occurring when the phase velocity of the perturbation, ω/k, is equal to the local fluid
velocity of the steady flow, U(rc), for some critical radius rc. Because the phase speed
is equal to the flow speed, the effect of the critical layer may be thought of as being
convected with the mean flow, and therefore as hydrodynamic in nature (Case 1960;
Rienstra, Darau & Brambley 2013). For swirling flows, the critical layer is known to lead
to algebraically growing instabilities (Golubev & Atassi 1996; Tam & Auriault 1998;
Heaton & Peake 2006). For the Pridmore-Brown equation, the critical layer is currently
thought to lead to algebraically decaying disturbances, although publications differ on
the exact nature of the decay. For example, Swinbanks (1975) predicted a disturbance of
constant amplitude plus a disturbance with O(x−3) decay for a point source, and O(x−1)
decay for a distributed source, although exact formulae for these disturbances are not
given. Swinbanks (1975, p. 62) goes on to argue that the constant amplitude disturbance
would not be present when the disturbance is caused “by moving the surface of a solid
body”. In contrast, Félix & Pagneux (2007) demonstrated numerically, for a point source
in a parabolic mean flow, a decay rate of O(x−1). More recently, Brambley et al. (2012a)
gave an explicit analytic solution for the critical layer far-field response for a mean flow
U(r) that is constant in the centre of the duct, and then varies linearly in a “boundary
layer” region to zero at the duct walls. Locating a point source at a radius r0, they found
the pressure perturbation from the critical layer at a radius r consisted of three distinct
components with phase velocities U(0), U(r) and U(r0), each with different decay rates.
However, Brambley et al. (2012a) chose a rather special mean flow profile. In particular,
the critical layer is usually caused by a nonzero second derivative of the mean flow profile,
U ′′(r), but for the constant-then-linear mean flow U ′′(r) is either identically zero or has
a delta function discontinuity; in the constant-then-linear case, Brambley et al. (2012a)
instead attributed the critical layer to the cylindrical geometry.

In many cases, the effect of the critical layer is negligible in comparison with the modal
sum of the acoustics modes. However, when all acoustic modes are cut-off and non-
propagating, the effect of the critical layer will be dominant. Moreover, Brambley (2013,
figure 6) showed that a mode representing a hydrodynamic instability could interact with
the critical layer, although this was not seen for a constant-then-linear mean flow profile.
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Since the critical layer is a singularity of the Pridmore-Brown equation, traditional
numerical methods are particularly inaccurate near the critical layer. This often manifests
as a collection of spurious numerical modes being located along the critical layer. In
contrast, previous studies have used a Frobenius expansion about the singular point r =
rc (e.g. Heaton & Peake 2006; Campos & Kobayashi 2009; Brambley et al. 2012a). This
technique both gives increasing accuracy as the critical layer is approached, and allows
analytical continuation behind the critical layer branch cut. For example, Brambley
et al. (2012a, figure 10) found a previously unknown mode close to the critical layer
that was unable to be resolved numerically using more traditional finite differences. One
complication of the Frobenius series, however, is that, much like a power series, it has
an associated radius of convergence. For the constant-then-linear mean flow Frobenius
expansion (Brambley et al. 2012a), this did not prove a problem, as the radius of
convergence covered the region of interest in all cases that were considered. For general
flow profiles this will not be the case, and a solution covering the entire region of interest
will involve multiple Frobenius expansions with overlapping radii of convergence; this will
turn out to be the case here. By matching two different expansions in a region where both
converge, a hybrid solution may be constructed that spans the whole region of interest.

Here, we use the Frobenius expansion method as described by Brambley et al. (2012a),
and apply it to a mean flow that is constant in the centre of the duct and then varies
quadratically within a boundary layer to satisfy non-slip at the wall. As well as being
more realistic than the constant-then-linear profile considered by Brambley et al. (2012a),
this mean flow profile is twice differentiable, allowing U ′′(r) to enter the analysis, and as
such we expect the results to be more representative of an arbitrary mean flow profile.
The Frobenius expansion is derived in section 2, along with a derivation of the Pridmore-
Brown equations by spatially Fourier transforming the linearized Euler equations. The
Frobenius expansion is then used in section 3 to derive the Green’s function for a point
mass source, including inverting the spatial Fourier transform and investigating the far-
field behaviour. Results are presented in section 4 by numerically evaluating the Frobenius
expansions and the Green’s function. These results are compared against previous results,
particularly against the predictions by Swinbanks (1975) and the constant-then-linear
results by Brambley et al. (2012a). Finally, the implications of this work are discussed,
and areas for further research highlighted, in section 5.

2. Problem Formulation and Homogeneous Solutions

2.1. Constructing the Pridmore-Brown Equation

The governing equations for what follows are the Euler equations with a mass source q,

∂ρ

∂t
+ ∇ · (ρu) = q, ρ

Du

Dt
= −∇p,

Dp

Dt
=
γp

ρ

Dρ

Dt
. (2.1)

Here, we take the mass source q to be a small time-harmonic point mass source. In
cylindrical coordinates (x, r, θ), with a suitable choice of origin, this mass source q may
in general be taken as

q = Re

(
ε

r0
δ(x)δ(θ)δ(r − r0) exp{iωt}

)
, (2.2)

where ε is the small amplitude, ω is the frequency, and the 1/r0 term comes from writing
a unit amplitude point source in cylindrical coordinates. We expand each variable in
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powers of ε,

ρ = ρ0(r) + Re
(
ερ̂eiωt

)
+O(ε2), p = p0 + Re

(
εp̂eiωt

)
+O(ε2),

u = U(r)ex + Re
(
ε
(
û, v̂, ŵ

)
eiωt
)

+O(ε2), (2.3)

where p0 is necessarily a constant in order that the steady state should satisfy the Euler
equations. Without loss of generality, all perturbations are expanded using a Fourier
series in θ and a Fourier Transform in x. As a result, the pressure perturbation is given
as

p̂(x, r, θ) =
1

2π

∞∑
m=−∞

e−imθ
∫ ∞
−∞

p̃(r; k,m, ω)e−ikx dk, (2.4)

and similarly for the density ρ̂ and the velocity components û, v̂ and ŵ. Substituting these
into the Euler equations (2.1), and linearizing by ignoring terms of O(ε2) or smaller, each
of ρ̃, ũ, w̃, and finally ṽ may be eliminated, to leave a second order ODE in the radial
coordinate r for p̃,

p̃′′ +

(
2kU ′

ω − U(r)k
+

1

r
− ρ′0
ρ0

)
p̃′ +

(
(ω − U(r)k)2

c20
− k2 − m2

r2

)
p̃ =

ω − U(r0)k

2iπr0
δ(r − r0),

(2.5a)

with ṽ =
ip̃′

ρ0(ω − Uk)
, (2.5b)

where a prime denotes the derivative with respect to r. This is the Pridmore-Brown
(1958) equation for a point mass source, written in cylindrical co-ordinates.

One boundary condition to (2.5) is regularity at r = 0. The singular solution behaves,
for m 6= 0, as O(r−|m|) as r → 0, and the regular solution behaves as O(r|m|). For m = 0,
the singular solution behaves as O(log r) while the regular solution behaves as O(1).
Eliminating the singular solution is therefore possible using the boundary conditions at
r = 0

p̃(0) = 0 for m 6= 0 p̃′(0) = 0 for m = 0 (2.6)

To model sound within a straight cylindrical duct of radius r = a, we take the other
boundary condition to be the impedance boundary condition at r = a,

p̃(a) = Z(ω)ṽ(a) ⇐⇒ p̃′(a) =
iω

Z
p̃(a), (2.7)

where Z(ω) is the impedance of the duct wall, and the two expressions are equivalent in
light of (2.5b). A hard wall corresponds to Z →∞, and hence to ṽ(a) = 0, or equivalently
to p̃′(a) = 0.

In what follows, we make the simplifying assumptions of a perfect gas and a constant
density ρ0(r). This is a homentropic assumption, and implies that c0(r) is also constant.
We may then nondimensionalize speeds by the sound speed c0, densities by ρ0, and
distances by the duct radius a. Note that this places the impedance boundary condition
in nondimensional terms at r = 1. We also assume a flow profile U(r) that is uniform,
except within a boundary layer of width h where it varies quadratically:

U(r) =

{
M 0 6 r 6 1− h
M(1− (1− 1−r

h )2) 1− h 6 r 6 1
. (2.8)
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Z = p/v

x

r

h

U(r)

ρ0(r)

θ

Figure 1. A cross sectional view of a cylindrical duct with lined walls containing sheared axial
flow. ρ0(r) is the mean flow density (here taken constant), and U(r) is the mean flow velocity,
here taken to be uniform outside a boundary layer of width h. Z is the boundary impedance
and defines the boundary condition at the wall of the duct.

With the nondimensionalization of velocities by c0, M here is the duct centreline Mach
number. This situation is depicted schematically in figure 1.

In order to solve the Pridmore-Brown equation (2.5a), we first consider solutions to the
homogeneous form

p̃′′ +

(
2kU ′

ω − U(r)k
+

1

r

)
p̃′ +

(
(ω − U(r)k)2 − k2 − m2

r2

)
p̃ = 0. (2.9)

2.2. Homogeneous Solutions Within the Region of Uniform Flow

Within the region of uniform flow, the homogeneous Pridmore-Brown equation (2.9)
reduces to

p̃′′ +
1

r
p̃′ +

(
(ω −Mk)2 − k2 − m2

r2

)
p̃ = 0. (2.10)

This is Bessel’s equations of order m rescaled by α, where

α2 = (ω −Mk)2 − k2; (2.11)

it will turn out later that the branch chosen for α does not matter, although for
definiteness one may choose Re(α) > 0. Bessel’s equation has two pairs of linearly
independent solutions that we shall make use of: the Bessel functions of the First and
Second kind, Jm(αr) and Ym(αr); and the Hankel functions of the first and second kind.

H
(1)
m (αr) and H

(2)
m (αr). More information regarding these can be found in (Abramowitz

& Stegun 1964). It is worth noting that only Jm(αr) is regular at r = 0, with the other
solutions all requiring a branch cut along αr < 0, with a singularity at αr = 0.

2.3. Homogeneous Solutions Within the Region of Sheared Flow

In this section, we will construct the solution to the homogeneous Pridmore-Brown equa-
tion (2.9) when U(r) varies by proposing a Frobenius expansion about the singularities
of the Pridmore-Brown equation.

In addition to the singularity at r = 0, the homogeneous Pridmore-Brown equation
possesses regular singularities whenever ω − U(r)k = 0; these singularities correspond
to the critical layer. Within the sheared flow region 1 − h < r < 1, since the velocity
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profile U(r) is quadratic in r, there are exactly two critical values r = rc for which
ω − U(rc)k = 0. Note that in general these critical values will be complex. Solving this
quadratic equation gives the two singularities explicitly as r+c and r−c , where

r±c = 1− h±Q Q = h

√
1− ω

Mk
. (2.12)

For convenience, we will take Re(Q) > 0, so that Re(r+c ) > 1 − h and Re(r−c ) 6 1 − h.
Since solutions with this quadratic flow profile U(r) are only valid for 1− h < r < 1, it
will therefore be r+c that we are mostly concerned about here.

Following Brambley et al. (2012a), we propose a Frobenius expansion (Teschl 2012) about
the regular singularity r+c ,

p̃(r) =

∞∑
n=0

an(r − r+c )n+σ with a0 6= 0. (2.13)

Specifying that a0 6= 0 results in a condition on σ, and we find that σ = 0, 3. By Fuchs
theorem (Teschl 2012), this gives a pair of linearly independent solutions of the form

p̃1(r) =

∞∑
n=0

an(r − r+c )n+3, (2.14a)

p̃2(r) = Ap̃1(r) log(r − r+c ) +

∞∑
n=0

bn(r − r+c )n. (2.14b)

The coefficients an and bn are derived in appendix A, where, in particular, it is found
that

a0 = b0 = 1, b1 = 0, b2 =− 1

2

(
k2 +

(
m

r+c

)2)
, b3 = 0, (2.15)

and that

A = −1

3

(
1

Q
− 1

r+c

)(
k2 +

(
m

r+c

)2)
− 2m2

3r+3
c

, (2.16)

the latter in agreement with equations (2.3)–(2.5) of Brambley et al. (2012a). We note
in passing that in practice we may be limited by the radius of convergence of (2.14),
and in such cases the solutions given above are analytically continued by a companion
expansion of the Pridmore-Brown equations about r = 1, as described in appendix A.2.
Other than being a complication concerning numerical convergence, this complication
may be ignored, and p̃1 and p̃2 thought of as being defined by the expressions in (2.14).

Due to the log term in p̃2 in (2.14), a branch cut is necessary in the complex r plane
originating from the branch point r = r+c . This branch cut must be such that the solutions
remain continuous for the real values of r ∈ [1− h, 1], and so the branch cut must avoid
crossing the real r axis between 1−h and 1. In the following, we achieve this by choosing
the branch cuts parallel to the imaginary axis and away from the real axis, as depicted
in figure 2. When r+c is real and 1 − h < r+c < 1, no suitable choice of branch cut
exists, and as a result any solution p̃(r) with p̃(r+c ) 6= 0 necessarily has a singular third
derivative at r+c . This only occurs for particular values of k, however, and we can map
the corresponding values of k in the complex k plane to find they fall exactly on the half
line [ ωM ,∞); this range of excluded values of k we refer to as the critical layer branch cut.
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0
Re(r)

Im(r)

1− h 1

r+c

r−c

Branch cut

(a)

0
Re(r)

Im(r)

1− h 1
r+c

r−c

Branch cut

(b)

Figure 2. Schemetic of possible locations of the r+c branch cut in the complex r-plane. (a) A
possible choice of branch cut when Im(r+c ) > 0. (b) The other choice of branch cut is needed
when Im(r+c ) < 0.

As r+c becomes real, note that the value of p̃2(r+c ) is different depending on whether we
approach from positive or negative imaginary part. Thinking of r+c (k) as a function of k,
this corresponds to approaching the critical layer branch cut [ ωM ,∞) in k from above or
below. This re-enforces the consideration of the critical layer appearing as a branch cut
in the complex k plane, taken along the real line from k = ω

M . The change in p̃2 when
crossing the critical layer branch cut from below to above is described as

∆p̃2(r) = lim
Im(k)↘0+̃

p2(r) − lim
Im(k)↗0−̃

p2(r) = −2πiAp̃1(r)H(r+c − r) (2.17)

Where H(r) is the Heaviside function.

In order to retrieve this result we need only consider the log(r − r+c ) term of p̃2. Note
that ∂r+c /∂k > 0 for real k and real positive ω; hence, if k is nearly real and Im(k) > 0,
then Im(r+c ) > 0, and we must take the branch cut of log(r− r+c ) upwards towards +i∞.
Similarly, for Im(k) < 0 then Im(r+c ) < 0, and the branch cut for log(r − r+c ) must be
taken downwards to −i∞. When r+c is located on the real line, (r − r+c ) is negative for
r < r+c . When we choose the branch cut into the upper half plane, this corresponds to
a complex argument of −π. When we choose the branch cut into the lower half plane,
this correponds to a complex argument of π. This difference results in the jump of 2πi
given. If we instead consider r > r+c , the same argument is retrieved regardless of which
direction we take the branch-cuts, and so no jump is observed. This is the reason for the
presence of the Heaviside function.

2.4. Homogeneous Solutions Across the Full Domain

In order to construct a full solution in r ∈ [0, 1], we now construct two solutions ψ1(r)
and ψ2(r) that solve (2.5) across r ∈ [0, 1], by matching the solutions derived above in
sections 2.2 and 2.3. We construct ψ1(r) to satisfy the boundary condition at r = 0 (2.6),
and ψ2(r) satisfies the boundary condition at r = 1. Therefore, we take

ψ1(r) =

{
Jm(αr) 0 6 r 6 1− h
C1p̃1(r) +D1p̃2(r) 1− h 6 r 6 1,

(2.18)
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where the matching coefficients C1 and D1 ensure C1 continuity, and are given by

C1 =
Jm(α(1− h))p̃′2(1− h)− αJ ′m(α(1− h))p̃2(1− h)

W (1− h)
, (2.19a)

D1 = −Jm(α(1− h))p̃′1(1− h)− αJ ′m(α(1− h))p̃1(1− h)

W (1− h)
, (2.19b)

and W (r) =W(p̃1, p̃2; r) is the Wronskian of p̃1 and p̃2, given in appendix A.4 as

W (r) =W(p̃1, p̃2; r) = p̃1(r)p̃′2(r)− p̃2(r)p̃′1(r) = −3

4

r+c (r − r+c )2(r − r−c )2

rQ2
. (2.20)

Having constructed ψ1 to satisfy the boundary condition at r = 0, we now proceed to
construct ψ2 which satisfies the boundary condition (2.7) at r = 1. Writing ψ2 in terms
of the homogeneous solutions derived above,

ψ2(r) =

{
C

∧

2H
(1)
m (αr) +D

∧

2H
(2)
m (αr) 0 6 r 6 1− h

Ĉ2p̃1(r) + D̂2p̃2(r) 1− h 6 r 6 1,
(2.21)

we choose Ĉ2 and D̂2 to satisfy ψ2(1) = 1 and ψ′2(1) = − iω
Z . This forces a non-zero

normalized solution to ψ2 which satisfies the boundary condition (2.7) at r = 1, and
leads to

Ĉ2 =
p̃′2(1) + iω

Z p̃2(1)

W (1)
, D̂2 = −

p̃′1(1) + iω
Z p̃1(1)

W (1)
. (2.22)

The coefficients C
∧

2 and D
∧

2 are chosen such that our solution is C1 continuous at r = 1−h,
giving(
C

∧

2

D

∧

2

)
=

iπ(1−h)

4

(
αH

(2)′
m

(
α(1−h)

)
−H(2)

m

(
α(1−h)

)
−αH(1)′

m

(
α(1−h)

)
H

(1)
m

(
α(1−h)

))( p̃1(1−h) p̃2(1−h)
p̃′1(1−h) p̃′2(1−h)

)(
Ĉ2

D̂2

)
(2.23)

where the factor at the beginning comes from the Wronskian of H
(1)
m and H

(2)
m from

Abramowitz & Stegun (1964, formula 9.1.17).

We will also require later the jump in behaviour of ψ1 and ψ2 as k crosses the critical
layer branch cut from below to above. Since any jump comes from the log term in p̃2(r)
when r < r+c , we have, provided r+c < 1,

∆C1 = 2iπAD1, ∆Ĉ2 = ∆D1 = ∆D̂2 = 0, (2.24a)(
∆C

∧

2

∆D

∧

2

)
=
π2(1−h)AD̂2

2

(
αH

(2)′
m

(
α(1−h)

)
−H(2)

m

(
α(1−h)

)
−αH(1)′

m

(
α(1−h)

)
H

(1)
m

(
α(1−h)

) )( p̃1(1−h)
p̃′1(1−h)

)
(2.24b)

resulting in (provided r+c < 1)

∆ψ1(r) = 2iπAD1p̃1H(r − r+c ), (2.25a)

∆ψ2(r) =

{
∆C

∧

2H
(1)
m (αr) +∆D

∧

2H
(2)
m (αr) 0 6 r 6 1− h

−2iπAp̃1(r)D̂2H(r+c − r) 1− h 6 r 6 1.
(2.25b)

Note that, if r+c > 1, then ∆ψ1 = ∆ψ2 = 0, since the ψ1 and ψ2 solutions are uniquely
defined by their boundary conditions and no branch point occurs on the interval r ∈
[1− h, 1] to cause a jump.
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2.5. Modal solutions

Modal solutions of the homogeneous Pridmore-Brown equation (2.9) are nonzero solu-
tions p̃(r) that satisfy both the boundary conditions at r = 0 and at r = 1 (2.6,2.7).
In general, satisfying both boundary conditions would force the solution p̃(r) ≡ 0, so
nonzero solutions exist only for particular modal eigenvalues k (assuming ω is given and
fixed). In contrast, the solution ψ1(r) is never identically zero and always satisfies the
homogeneous Pridmore-Brown equation and the boundary condition at r = 0; indeed,
any solution satisfying the boundary condition at r = 0 is necessarily a multiple of
ψ1(r). Likewise, the solution ψ2(r) is never identically zero and always satisfies the
homogeneous Pridmore-Brown equation and the boundary condition at r = 1, and any
solution satisfying the boundary condition at r = 1 is necessarily a multiple of ψ2(r). In
general, ψ1 and ψ2 are linearly independent, and so their Wronskian W(ψ1, ψ2; r) is not
identically zero, where

W(ψ1, ψ2; r) = ψ1(r)ψ′2(r)− ψ2(r)ψ′1(r). (2.26)

However, if p̃(r) is nonzero and satisfies both boundary conditions at r = 0 and r = 1,
then p̃(r) = aψ1(r) = bψ2(r) for some nonzero coefficients a, b. In other words, a modal
solution is one where ψ1 and ψ2 are linearly dependent, and so W(ψ1, ψ2; r) ≡ 0.

For 1 − h 6 r 6 1, substituting ψ1 from (2.18) and ψ2 from (2.21) into the Wron-
skian (2.26) gives

W(ψ1, ψ2; r) = (C1D̂2 − Ĉ2D1)W (r), (2.27)

where W (r) is the Wronskian between p̃1 and p̃2 and is given earlier in (2.20). Since p̃1
and p̃2 were constructed to be linearly independent, we expect W (r) not to be identically
zero, and indeed (2.20) shows that W (r) 6= 0 except at the critical layer r = r+c . A modal

solution, therefore, is given by the condition that C1D̂2−Ĉ2D1 = 0, which is independent
of r, and implies that C1/D1 = Ĉ2/D̂2 and so that ψ1 and ψ2 are multiples of one another.

The same can be seen for r 6 1− h. In this case, the Wronskian (2.26) becomes

W(ψ1, ψ2; r) = αC

∧

2W(Jm, H
(1)
m ; r) + αD

∧

2W(Jm, H
(2)
m ; r) = α(C

∧

2 −D

∧

2)
2i

πr
, (2.28)

where we have made use of the Bessel function identities 9.1.3, 9.1.4 and 9.1.16 from
Abramowitz & Stegun (1964). Note in particular that rW(ψ1, ψ2; r) is a constant inde-
pendent of r for 0 6 r 6 1 − h. Since W(ψ1, ψ2; r) is continuous in r across r = 1 − h,
since ψ1 and ψ2 are both C1 continuous, it follows that for 0 6 r 6 1 − h we can set
rW(ψ1, ψ2; r) = (1− h)W(ψ1, ψ2; 1− h). We therefore arrive at the conclusion that

W(ψ1, ψ2; r) = (C1D̂2 − Ĉ2D1)

{
W (r) 1− h 6 r 6 1

W (1− h) 1−h
r 0 6 r 6 1− h,

(2.29)

and that a mode corresponds to the dispersion relation 0 = D(k, ω) = C1D̂2 − Ĉ2D1.
In the next section, we see how these modal solutions occur naturally as poles in the
solution of the non-homogeneous Pridmore-Brown equation.

3. Inhomogeneous Solutions and Inverting the Fourier Transform

3.1. Inhomogeneous Solution to the Pridmore-Brown Equation

While previously we have only been solving the homogeneous form (2.9), our original
problem was to solve the inhomogeneous Pridmore-Brown equation (2.5a) subjected to a
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harmonic point mass source. Due to the right hand side of (2.5a) being a scalar multiple
of a delta function, located at r = r0, our solution will be the same scalar multiple of
the Green’s function, and we denote this solution as G̃. This function will satisfy the
boundary condition at r = 0 and r = 1, and will solve the homogeneous Pridmore-Brown
equation for r < r0 and r > r0; hence, G̃ may be written as a multiple of the homogeneous
solution ψ1 for r < r0 and as a multiple of the homogeneous solution ψ2 for r > r0. All
that is required is to join the two solutions at r = r0 such that they are continuous, and
their derivative is discontinuous with a jump exactly matching the amplitude of the delta
function. This may be written succinctly as

G̃ =
ω − U(r0)k

2πir0

ψ1(ř)ψ2(r̂)

W(ψ1, ψ2; r0)
, (3.1)

where

r̂ = max(r, r0), ř = min(r, r0), (3.2)

and once again W(ψ1, ψ2; r) is the Wronskian of ψ1 and ψ2. Using (2.29), this may be
rewritten as

G̃ =
ω − U(r∗)k

2πir∗W (r∗)

ψ1(ř)ψ2(r̂)

C1D̂2 − Ĉ2D1

where r∗ = max(1− h, r0) (3.3)

3.2. Analytic continuation behind the critical layer branch cut

The solution for G̃ in (3.3) above contains a branch cut along the critical layer k ∈ [ ωM ,∞).
We now introduce the following additional notation. When evaluating a function f(k) on
the branch cut, for k ∈ [ ωM ,∞), we denote

f+(k) = lim
ε→0

f(k + iε) f−(k) = lim
ε→0

f(k − iε) ∆f(k) = f+(k)− f−(k) (3.4)

Note that the definition of ∆f agrees with the use of ∆ in equations (2.17,2.24,2.25)
above. By using these equations, we find that

∆G̃ =− ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

(3.5)

×

[
2iπAD1D̂2ψ

−
1 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

− ψ−1 (ř)∆ψ2(r̂)−∆ψ1(ř)ψ−2 (r̂)−∆ψ1(ř)∆ψ2(r̂)

]
.

A typical branch cut, such as the branch cut in
√
z − z0, may be taken in any direction

from the branch point z0. The critical layer branch cut in the complex k-plane is different,
in that the choice of branch cut was forced upon us by the requirement that the solution
be continuous in r for r ∈ [1 − h, 1]. None-the-less, noting from (3.5) that ∆G̃ is well
defined function for general complex k, we may use equation (3.5) to analytically continue

G̃ behind the critical layer branch cut. For real ω, we therefore define the analytic
continuation of G̃ behind the branch cut into the lower-half k-plane as

G̃+(k) =

{
G̃(k) Im(k) > 0 or Re(k) < ω

M ,

G̃(k) +∆G(k) Im(k) < 0 and Re(k) > ω
M .

(3.6)
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Similarly, we may rewrite (3.5) as

∆G̃ =− ω − U(r∗)k

2iπr∗W (r∗)

1

C+
1 D̂2 − Ĉ2D1 − 2iπAD1D̂2

(3.7)

×

[
2iπAD1D̂2ψ

+
1 (ř)ψ+

2 (r̂)

C+
1 D̂2 − Ĉ2D1

− ψ+
1 (ř)∆ψ2(r̂)−∆ψ1(ř)ψ+

2 (r̂) +∆ψ1(ř)∆ψ2(r̂)

]
,

which allows the analytic continuation of G̃− into the upper-half k-plane,

G̃−(k) =

{
G̃(k) Im(k) < 0 or Re(k) < ω

M ,

G̃(k)−∆G(k) Im(k) > 0 and Re(k) > ω
M .

(3.8)

The utility of these analytic continuations in not readily apparent. However, their use
allows for poles of G̃, corresponding to modal solutions to the homogeneous Pridmore-
Brown equation, to be tracked behind the branch cut, and in particular a possible
hydrodynamic instability mode will later be found to be hidden behind the critical layer
branch cut in certain cases. Their use also allows the deformation of integral contours
behind the critical layer branch cut, as will be needed for the steepest descent contours
needed for the large-x asymptotic evaluation of the inverse Fourier transform.

In what follows k+ and k− denote modal poles, see section 2.5, of only G̃+ or G̃−

respectively.

3.3. Inverting the Fourier Transform

Having formulated G̃ as the solution to the inhomogeneous Pridmore-Brown equa-
tion (2.5a), to recover the actual pressure perturbation p̂(x, r, θ), we are required to
invert the Fourier transform and sum the Fourier series. For a fixed azimuthal mode m
we invert the Fourier transform using the formula

G(x, r; r0,m) =
1

2π

∫
C
G̃(r, r0, k,m)e−ikxdk. (3.9)

Note, however, that the critical layer branch cut is located along the real-k axis k ∈
[ ωM ,∞). We are therefore required to be careful in choosing a suitable inversion contour
C.

3.3.1. Choosing an Inversion Contour

In order to choose the correct Fourier inversion contour C, we appeal to the Briggs-
Bers criterion (Briggs 1964; Bers 1983). The Briggs-Bers criterion, sumarised below,
invokes the notion of causality; that the cause of the disturbance (the delta function
forcing) should occur before the effect (the disturbance p̂), which is otherwise lost when
considering a time-harmonic forcing, as we do here. A more in-depth description is
available in many places in the literature (e.g. Brambley 2009, appendix A).

In order to make use to the Briggs-Bers criterion, the rate of exponential growth
of the solution must be bounded; that is, there must exist Ω,K > 0 such that, if
Im(ω) < −Ω, then G̃ is analytic for |Im(k)| < K. For a given ω with Im(ω) < −Ω,
we take the k-inversion contour C in (3.9) along the real-k axis, and map the locations
of any singularities (e.g. poles, branch points, etc). In order to find a correct integration
contour for the real values of ω that are of interest, the imaginary part of ω is smoothly
increased to 0, and the locations of any singularities tracked throughout this process.
During this process, the k-inversion contour C must be smoothly deformed in order
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ω
M

ω
M

k+ k+

C C

C<

Cb

C>

Figure 3. Illustration of the inversion contours taken when an unstable k+ pole is present. The

inversion contour for G̃ is labelled C. (Left) For x < 0, the contour is closed in the upper half
plane along the C< contour. (Right) For x > 0, the contour is closed in the lower half plane
along the C> contour, and around the critical layer branch cut along the Cb contour. Contributing
modal poles are indicated in blue.

to maintain analyticity; that is, no singularities must cross the k-inversion contour.
Assuming this process may be completed and Im(ω) increased to zero, then the resulting
k-inversion contour C is the correct causal contour. Since for x < 0 the exp{−ikx}
term is exponentially small as |k| → ∞ in the upper-half k-plane, for x < 0 we may
close the contour with a large semi-circular arc at infinity in the upper-half k-plane,
denoted C>. The resulting contours are illustrated in 3. In this illustration, the majority
of singularities of G̃ are poles which do not cross the real k axis as Im(ω) is varied, and
hence correspond to exponentially decaying disturbances away from the point mass source
at x = 0. The exception to these poles is the pole labelled k+, which for this illustration
originates in the lower-half k-plane for Im(ω) sufficiently negative, and therefore belongs
below the k-inversion contour. This implies that this pole is seen downstream of the
point mass source, for x > 0, despite having Im(k) > 0, and therefore corresponds to
an exponentially growing instability. The critical layer, as described earlier, exists when
k/ω = 1/U(rc) ∈ [1/M,∞] for some critical radius rc, and so is found in the lower-half
k-plane for Im(ω) < 0. Thus, as shown in figure 3, for x > 0 in order to close C in
the lower-half k-plane, we must pass around the critical layer branch cut, denoted by
the contour Cb, before closing in the lower-half k-plane with a semi-circular arc denoted
C>. The contribution from integrating around the critical layer branch cut, Cb, leads
to the non-modal contribution of the critical layer, and is discussed in detail below in
section 3.3.3.

3.3.2. Contribution from the poles of G̃

We may now write the integral around the closed contour as a sum of residues of poles:

1

2π

∫
C∪C<
G̃(r, r0, k,m)e−ikxdk = G(x, r; r0,m) =

∑
j: Im(kj)>Im(C)

R(kj) for x < 0, (3.10a)

1

2π

∫
C∪Cb∪C>
G̃(r, r0, k,m)e−ikxdk = G(x, r; r0,m)− I(x) =

∑
j: Im(kj)<Im(C)

R(kj) for x > 0, (3.10b)
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where I(x) is the contribution from integrating around the critical layer branch cut
contour Cb discussed in the next section, R(kj) is the residue from a pole at kj discussed
below, and the notation Im(kj) > Im(C) is used to denote poles kj lying above the
inversion contour C.

The poles of G̃ correspond to zeros of the denominator of G̃, as given in (3.3). They
can occur in two ways: as modal or non-modal poles. We consider the modal poles
first. The modal poles occur as zeros of the term C1D̂2 − Ĉ2D1 = 0. As discussed in
section 2.5, this occurs when both ψ1 and ψ2 satisfy both boundary conditions at r = 0
and r = 1. These modal poles can be further classified into acoustic modes and surface
modes: acoustic modes are those for which α in equation (2.11) has a small imaginary
part, and correspond to functions which are oscillatory in r; and surface modes are those
for which α has a significant imaginary part, and correspond to functions which decay
exponentially away from the duct walls at r = 1. For different parameters, we may find a
variety of surface modes, and two with which we will be particularly interested here will
be denoted k− and k+. For further details of surface modes, the reader is referred to the
existing literature (e.g. Rienstra 2003; Brambley 2013).

Since the modal poles occur as zeros of C1D̂2 − Ĉ2D1 = 0, which we shall assume are
simple zeros, the contribution from the residues of these poles are given by

R(k) = −sgn(x)
ω − U(r∗)k

2πr∗W (r∗)

ψ1(ř)ψ2(r̂)
∂
∂k

(
C1D̂2 − Ĉ2D1

)e−ikx. (3.11)

The second type of poles are the non-modal poles, which occur when W (r∗) = 0. These
occur when we loose independence between p̃1 and p̃2 at r∗. Note from the formula for
W (r), equation (2.20), that W (r∗) = 0 implies that r∗ = r+c . Since 1 − h 6 r∗ 6 1 this
can only occur when k is located on the critical layer branch cut. In what follows, we
will refer to this non-modal pole as k0. Note that k0 is a function of the radial location
of the point source r0 (through r∗), which is unlike the modal poles for which kj is
independent of the value of r0; this is one reason this k0 pole is referred to as a non-
modal pole. However, since our closed contour goes around the critical layer branch cut
(along contour Cb), this pole is always excluded from the sum of residues in (3.10) above,
and only occurs within the calculation of I(x), which we consider next.

3.3.3. Contribution from the critical layer Branch Cut

The contribution from the critical layer branch cut, including any non-modal pole k0
along the branch cut, is contained solely within the integral along around the critical
layer branch cut denoted Cb in figure 3,

I(x) =
−1

2π

∫
Cb
G̃e−ikx dk. (3.12)

However, as it stands, this integral for I(x) is oscillatory, owing to the e−ikx factor in the
integrand, and so is difficult to accurately compute numerically. This is especially true
for large values of x. Instead, it is helpful to deform the integral onto the Steepest
Descent contour, for which e−ikx is exponentially decaying along the contour. This
contour deformation has three benefits: firstly, it allows accurate numerical calculation of
the integral; secondly, it allows the derivation of large-x asymptotics using the Method of
Steepest Descents; and thirdly, it brings insight into the various contributions that make
up I(x). In deforming the integration contour, however, we must analytically continue G̃
behind the branch cut (as described in section 3.2 above), and carefully deform around
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Im
(k

)

Im
(k

)ω
M

ω
Mk< k<k> k>

k+ k+

k− k−

Figure 4. (Left) The integration contour required for the computation of the contribution from
the critical layer branch cut, understood by integrating above and below the branch cut. Possible

poles of G̃− and G̃+ are denoted k− and k+ respectively. (Right) The integration contour after
being transformed onto the steepest decent contour. Red lines behave as if evaluated below ω

M

(using G̃−); blue as if having been analytically continued around the ω
M

branch point; green
as if having been analytically continued around the ω

M
and k< branch points; and purple as if

analytically continued around all branch points, giving G̃+. Note that we have been required to
deform contours around the k+ and k− poles.

any poles and branch points. This is illustrated schematically in figure 4. Note that poles
and branch points of G̃ may exist behind the critical layer branch cut, and we must
therefore use analytic continuations of G̃; the reader is reminded that G̃+ is the analytic
continuation of G̃ down behind the branch cut from above, while G̃− is the analytic
continuation of G̃ up behind the branch cut from below. Here, we use the notation that a
pole of G̃+ with Re(k) > ω

M is denoted k+, and a pole of G̃− with Re(k) > ω
M is denoted

k−. Thus, a k+ pole with Im(k+) < 0 or a k− pole with Im(k−) > 0 are considered as
being hidden behind the critical layer branch cut. In the schematic in figure 4, one k−

and one k+ pole are present, both with Im(k) < 0, although this is not always the case.

The Steepest Descent contours are where e−ikx is exponentially decaying; i.e. towards
−i∞ in the complex k plane. There is no difficulty deforming the contour at infinity, since
e−ikx is exponentially small there (provided x > 0, which is the only case in which the
critical layer branch cut contributes). Along the branch cut there are up to three branch
points singularities, denoted ω

M , k< and k> in figure 4, that must be deformed around.
These occur because of the presence of the log(r− r+c ) term in p̃2(r), and the presence of

p̃2(1−h), p̃2(r0) and p̃2(r) in the expression for G̃; each of these terms leads to a branch
point, respectively at ω

M , at k0 corresponding to r+c (k0) = r0, and at kr corresponding
to r+c (kr) = r.

Moreover, G̃ possesses a pole at k0, which is exactly the non-modal pole referred to above,
although there are no poles of G̃ at ω

M or at kr. Details of these calculations are given
in appendix C. The branch point at kr is not present when r 6 1− h, and the pole and
branch point at k0 are not present when r0 6 1 − h. For simplicity in what follows, we
denote k< = min{k0, kr} and k> = max{k0, kr}, as depicted in figure 4.

The total integral around the branch cut can therefore be found by summing these three
integrals, subtracting any k− contributions below the branch cut and adding any k+

contributions below the branch cut, and adding the pole residue at k0 calculated as if it
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was located above the branch cut. This results in

I(x) = I ω
M

(x) + I0(x) + Ir(x) +R+
0 (k0) +

∑
Im(k+)<0

R+(k+)−
∑

Im(k−)<0

R−(k−), (3.13)

where R± is the residue given in (3.11) evaluated using G̃±, R+
0 (k0) is the residue of

the non-modal pole k0 evaluated as if approached from above the branch cut, derived in
appendix C.2 and given in (C 19) as

R+
0 (k0) =

2Mk20(ω −Mk0)e−ik0x

3πr0h2ω(C+
1 D̂2 − Ĉ2D1)

{
D̂2ψ1(r) r < r0

D1ψ2(r) r > r0,
(3.14)

the steepest descent integrals are defined as

Iq(x) =
1

2πi

∫ ∞
0

∆G̃q(kq − iξ)e−i(kq−iξ)x dξ, (3.15)

and the jumps across each of the Steepest Descent branch cuts are calculated in ap-
pendix B to be

∆G̃ ω
M

=
− (ω − U(r∗)k)A

r∗W (r∗)
(
C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

) ×



D̂2
2ψ
−
1 (ř)ψ−1 (r̂)(

C−1 D̂2 − Ĉ2D1

) r̂ < 1−h

D1D̂2ψ
−
1 (ř)ψ−2 (r̂)(

C−1 D̂2 − Ĉ2D1

) ř < 1−h < r̂

D2
1ψ
−
2 (ř)ψ−2 (r̂)(

C−1 D̂2 − Ĉ2D1

) 1−h < ř,

(3.16a)

∆G̃< =
−(ω − U(r∗)k)

r∗W (r∗)

AD1p̃1(ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

H
(
ř − (1− h)

)
, (3.16b)

∆G̃> =
−(ω − U(r∗)k)

r∗W (r∗)

AD̂2ψ
−
1 (ř)p̃1(r̂)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

H
(
r̂ − (1− h)

)
, (3.16c)

Note that ∆G̃ ω
M

+ ∆G̃< + ∆G̃> = ∆G̃ = G̃+ − G̃−. While these integrals are now
amenable to numerical integration, additional understanding of the contribution from
the three steepest decent contours may be gained by considering the large-x limit.

3.4. Far-Field Decay Rates of the Critical Layer Contribution

The critical layer branch cut contribution (3.13) contains integrals Iq(x) given by (3.15)
which are amenable to asymptotic analysis in the limit x → ∞, using the Method of
Steepest Descent. Having already deformed the integration contours onto the steepest
descent contours, so that the integrands have had their x-dependent oscillation removed
and are now exponentially decaying along the contour, we may directly apply Watson’s
Lemma (Watson 1918). If some function q(k) satisfies f(kq − iξ) ∼ Bξν + O(ξν+1) to
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leading order for small ξ with ν > −1, then Watson’s Lemma implies that, for large x,

1

2iπ

∫ ∞
0

f(kq − iξ)e−i(kq−iξ)x dξ ∼ BΓ (ν + 1)e−ikqx

2iπxν+1
+O

(
x−(ν+2)

)
, (3.17)

where Γ is the Gamma function, and in particular, Γ (ν + 1) = ν! for integer ν. For each
of the Iq(x) integrals, this can then be interpreted as an algebraically decaying wave of
phase velocity ω

kq
.

In order to find the decay rates of the steepest decent contours we are required to under-
stand the behaviour of ψ1(r, kq − iξ) and ψ2(r, kq − iξ) for small ξ at r ∈ {1− h, r, r0, 1}.
Details of these can be found in appendix C. The result, given in equations (C 13)
and (C 14), is that, for k = ω

M − iξ, as ξ → 0 with ξ > 0, we find that

∆G̃ ω
M
∼

{
ξ3/2 r0 6 1− h
ξ5/3 r0 > 1− h.

(3.18)

By Watson’s Lemma, this results in a wave convected with the flow speed M = U(1−h)

and algebraically decaying like x−
5
2 when the source is within the region of uniform flow,

and x−
7
2 for a source located in the sheared flow; the pre-factor in each case is different,

and is also governed by the above expressions.

In the case r0 > 1 − h, the leading order contribution to ∆G̃0 as k → k0 is derived in
appendix C.2 as

∆G̃0 =
Aωh2U(r0)

6r0Mk20(r0 − 1 + h)

(k − k0)2

C−1 D̂2 − Ĉ2D1 + 2πiAD1D̂2

×

{
D̂2ψ

−
1 (r) r0 > r

D1ψ
−
2 (r) r0 < r.

(3.19)

By Watson’s Lemma, this results in a wave convected with the flow speed at the point
source, U(r0), and decaying algebraically like x−3.

Finally, considering ∆G̃r as k → kr, it is found in appendix C.3 that

∆G̃r ∼
A(ω − U(r∗)kr)ω

3h6

8r∗W (r∗)M3k6r(r − 1 + h)3
(k − kr)3

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

{
D̂2ψ

−
1 (r0) r0 < r

D1ψ
−
2 (r0) r0 > r.

(3.20)
By Watson’s Lemma, this results in a wave convected with the flow speed U(r) and
decaying algebraically like x−4.

It may be noted that the decay rates for I0 and Ir are the same as predicted for a linear
boundary layer flow profile by Brambley et al. (2012a). We now proceed to compare
these results with previous literature.

3.4.1. Comparisons with Previous Far-Field Scalings

Our results for the large-x decay of the various components of the critical layer are
compared to those predicted by Swinbanks (1975) for a general flow profile, and those
predicted by Brambley et al. (2012a) for a constant-then-linear flow profile, in table 1.
The I0 integral gives a wave with phase velocity equal to that of the mean flow at the
location of the point mass source, U(r0), provided the point mass source is in a region
of sheared flow, r0 > 1 − h. It can be observed in table 1 that agreement is seen in
all three works for r0 > 1 − h. While Swinbanks did not consider the other cases in
detail, this work finds further agreement for the Ir contribution with Brambley et al..
In both the linear and quadratic shear flow cases, when the source is located within the
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I ω
M

Ir I0 R+
0 (k0)

r0 6 1− h r0 > 1− h r > 1− h r0 > 1− h r0 > 1− h

Swinbanks – – – x−3 1
Linear BL x−4 x−5 x−4 x−3 1

Quadratic BL x−
5
2 x−

7
2 x−4 x−3 1

Table 1. Comparison of the different decay rates given for a general flow profile by Swinbanks
(1975) and for a linear boundary layer flow profile by Brambley et al. (2012a) against those
given here for a quadratic boundary layer flow profile.

region of sheared flow, the I0 contibution is the slowest decaying term. When the source is
located within the uniform flow region, the I ω

M
contribution is the slowest decaying term,

although this is matched by Ir contribution for linear shear. It should noted, however,
that when r0 > 1 − h we have in addition the contribution of the non-modal k0 pole,
which does not decay.

The difference in the behaviour of the I ω
M

integrals may be understood as having two
causes. The first is the difference in behaviour of the constant A, given in general as

A = −1

3

(
ω2

M2
+
m2

r2c

)(
U ′′(rc)

U ′(rc)
− 1

rc

)
− 2m2

3r3c
. (3.21)

In the case of linear shear flow, the U ′′ term is zero for k 6= ω
M and the resulting expression

is O(1) as k → ω
M . In the case of a quadratic shear boundary layer, U ′′ is non zero and

dominates A as k → ω
M , providing a factor of (k− ω

M )−
1
2 . The remainder of the differences

between the decay rates is explained, for I ω
M

, by the fact that (r+c − (1−h)) ∼ (k− ω
M )

1
2

in the quadratic shear case, where as for linear shear (rc − (1− h)) ∼ (k − ω
M ). For the

I0 and Ir contributions, where we do not have r+c → 1 − h, and all the other terms are
equivalent between the linear and quadratic cases, therefore giving the same eventual
asymptotics scalings, although the pre-factors may vary significantly. Further details are
given in appendix D.

4. Numerical Results

In this section, the above analysis is illustrated with some numerical examples. The
Frobenius series solutions p̃1 and p̃2 are computed by summing the terms of the series, as
given in appendix A, until a relative error of order 10−16 is achieved. The modal poles are
found using a variant of the Secant method, and have been confirmed against results using
a finite-difference method applied to the Pridmore-Brown equation (Brambley 2011b).
When summing the residues of modal poles, all poles with |Im(k)| < 400 have been
included.

Throughout this section we show results from four parameter sets, detailed in table 2.
These parameter sets are inspired by values used in previous studies (Brambley et al.
2012a; Brambley 2013; Brambley & Gabard 2016), and motivated by application to
aeroengine intakes; in particular, parameter set B is intended to be typical of a rotor-
alone tone at takeoff, while parameter set C might represent the same type of mode
during the landing approach.

In section 4.1, we will explore the locations of the modal poles in the complex k-plane.
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A1 A2 B C

Frequency ω 10 10 31 16
Azimuthal order m 5 5 24 24

Centreline Mach number M 0.5 0.5 0.5 0.35
Boundary layer thickness h 0.05 0.001 0.01 0.005

Impedance mass µ 0.2 0.2 0.01 0.01
Impedance spring K 10 10 10 10

Impedance damper R 2 2 0.75 0.75
Impedance Z(ω) Z 2 + i 2 + i 0.75− 0.01i 0.75− 0.465i

Table 2. Parameter sets used for the following numerical results. The impedance is of
mass–spring–damper type, Z(ω) = R+ iµω − iK/ω.

This section will particularly focus on the k± modal poles discussed in 3.3, including
tracking these modal poles as they move behind the critical layer branch cut for certain
parameters (by taking advantage of the ability of the Frobenius series solutions to
analytically continue behind the critical layer branch cut). In section 4.2 we compare
the various contributions from the critical layer branch cut described in section 3.3.3,
including their large x behaviour, and show that these agree with the predicted large x
behaviour from section 3.4. In section 4.3 the full solution in terms of x and r is plotted,
and compared these results to the linear boundary layer case. Finally, in section 4.4, we
investigate how the results vary as we vary the frequency ω, the boundary layer thickness
h, and the wall impedance Z.

4.1. Pole Locations.

The locations of the poles in the complex k plane for parameter sets A and B are plotted
in figure 5. In addition to the usual acoustic modes (denoted as ∗ in figure 5), one
k+ and one k− pole is found for each parameter set. For parameter set A1, both the
k+ and k− poles are behind the critical layer branch cut, and so would not be found
using conventional numerical methods, although the k+ pole does still contribute to the
total pressure field through the critical layer branch cut contribution, as described in
section 3.3.3 above. In contrast, for parameter set A2, the k+ pole is not behind the
branch cut and takes the form of a standard modal pole, in this case a hydrodynamic
instability surface wave. The stability of the modal poles is verified from the movement
of the poles in the k plane as Im(ω) is decreased from zero, following the Briggs-Bers
Criterion (shown in the right-hand plots in figure 5); note that the critical layer branch
cut also moves as a function of Im(ω). Of particular note is that the k+ pole for parameter
set A1 emerges from behind the critical layer branch cut as Im(ω) is reduced from zero,
becoming a standard modal pole provided Im(ω) is taken sufficiently negative.

As discussed in section 3.3, when the k+ is located above the branch cut it is unstable,
with a contribution growing exponentially in x. When the k+ pole is located below the
branch cut we do not see it’s contribution to the modal sum directly, but instead it
contributes as part of the branch cut integral, as seen when deforming onto the steepest
decent contour. In this latter case, we would observe a contribution that decays in x.
In both examples, the k− pole in located above the branch cut and does not contribute
towards the Fourier inversion. In the event that this k− pole were located below the
branch cut, its contribution would almost exactly cancel the critical layer branch cut
contribution, again seen by deforming onto the steepest decent contour; however, the
k− pole has not been found below the branch cut for any parameters considered here,
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Figure 5. Location of the poles in the complex k plane for parameter sets A1 (top) and A2
(bottom). Left: For real ω: acoustic modes with Re(k) < ω

M
(∗); k+ poles (+); k− poles (×);

the critical layer branch cut (–); and branch points ω
M

and k0 for r0 = 1 − 9h
10

(◦). Right:
Trajectories of poles for −50 < Im(ω) < 0. Poles coloured red (left) and solid lines (right)
denote poles contributing to the modal sum. Poles coloured blue (left) and dashed lines (right)
denote poles hidden behind the branch cut (which varies with Im(ω)) and do not contribute.

unlike in the linear boundary layer profile case, which is investigated further in section 4.3
below.

Also plotted in figure 5 is the critical layer branch cut for k > ω
M , together with the

non-modal k0 pole, which is only present for a point mass source within the boundary
layer, r0 > 1−h. The effects of these non-modal contributions are illustrated in the next
section.

4.2. Branch cut contributions

Figure 6 illustrates the differences between the three types of contributions occurring
due to the presence of the boundary layer: the three steepest descent contour integrals
(figure 6(i)); the k0 non-modal pole (figure 6(ii)); and the k+ modal pole when it is located
below the branch cut and therefore does not appear in the modal sum (figure 6(iii)). The
non-modal k0 pole appears in these cases to have a small contribution compared to the
three integrals for small x, although it is comparable for larger x. For small x, the k+
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Figure 6. A comparison of the terms that contribute to the critical layer, for r0 = 1 − 4h
5

.
Plotted are the absolute values on a log10 scale. Left to right: parameter sets A1, B and C. Top
to bottom: (i) the sum of the three steepest descent contours, I ω

M
+ Ir + I0; (ii) the non-modal

k0 pole; (iii) the contribution of the k+ pole located behind the branch cut; and (iv) the total
contribution from integrating around the critical layer branch cut, obtained by summing (i)–(iii).
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Figure 7. Plots of the real part of the contribution from integrating around the branch cut
(Re(p(x, r))) for parameter set C, excluding any k+ pole located below the branch cut. Solid lines
indicate positive values, dashed lines indicate negative values. (a) r0 = 1− 9h
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; (b) r0 = 1− 3h

5
.

poles contribution is far greater than those of the three integrals and the non-modal
k0 pole. However, since the k+ pole decays exponentially in x, the non-modal pole will
dominate the far-field behaviour of the critical layer branch cut. We can further look at
how these contributions vary as we adjust the location of the source, shown in figure 7.
The contribution of the non-modal k0 pole is seen to be far smaller for the case when r0
is closest to 1− h. Note that there is no non-modal k0 pole when r0 6 1− h.

Figure 8 compares the numerically-computed steepest decent integrals with their pre-
dicted far-field rates of decay given in section 3.4, and a good agreement is seen in all
cases.

4.3. Full Fourier Inversion

We now consider the full Fourier inversion, including the contribution from all the modal
poles as well as the critical layer branch cut contribution considered above. Figure 9
compares a snapshot in the near-field (for small x values) of the wave field generated
by only the stable modal poles (left) with the full solution including the critical layer
and any unstable k+ pole (right). When the k+ pole is a convective instability, it clearly
dominates the solution sufficiently far downstream, as it grows exponentially in x. In
these near-field plot, the critical layer often appears negligible compared with the modal
sum, although in some circumstances it can have a significant effect, as shown by the
plots of case C.

In comparison, figure 10 shows the behaviour outside the near field of the three stable
cases from figure 9, plotting the amplitude of oscillations |p| on a logarithmic scale.
In all cases, since the modal sum decays exponentially, in the far field the dominant
contribution is from the critical layer, and this is often true from only one or two radii
downstream of the point source.

Figure 11 compares the wave field generated in a quadratic boundary layer with the wave
field in a linear boundary layer profile (as studied by Brambley et al. 2012a). The wave
fields are reasonably similar, although when the point mass source is within the boundary
layer significant differences are seen downstream. This is related to whether the k+ pole
is located above or below the branch cut. In the quadratic case, the k+ pole always
contributes, whether it is behind the branch cut or not, while the k− is always found
above the branch cut and so is not seen to contribute at all. With the linear boundary
layer, instead we find a k− pole that can be located either above or below the branch
cut, while the k+ pole is instead located above in all cases. The result of this is that
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the linear boundary layer profile is always found to be convectively unstable, while the
quadratic boundary layer profile is only found to be unstable if the boundary layer is
sufficiently thin. Even when both flow profiles give rise to a convective instability, we can
see in figure 11 that the growth rate of the instability can be significantly different.

The change in nature of the k+ pole in the quadratic case from convective instability to
stable is clearly of significant importance. We therefore finally consider the variation of
the solution as various parameters of interest are varied next.

4.4. Variation of results with changing parameters

The variation of the acoustic modal sum is relatively well understood, so in this section
we concentrate on the variation of the k+ and k− modal poles as various parameters are
varied. This includes whether Im(k+) > 0, corresponding to a convective instability, or
Im(k+) < 0, corresponding to a stable modal pole hidden behind the branch cut that
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Figure 9. Plotting the real values of the different contributions. (a) just the contribution for
the stable modal poles. (b) the Full Fourier Inversion, which also includes the k+ pole. The
parameter sets used from top to bottom are A1, A2, B and C, with r0 = 1 − 4h

5
in each case.

In case A2, the k+ pole is a convective instability. In cases A1, B and C, the k+ pole is located
behind the branch cut.

none-the-less contributes to the modal sum through the branch cut contribution. We also
consider whether Im(k−) > 0, meaning the pole is not included, or whether Im(k−) < 0,
in which case the pole is included as part of the contribution of the critical layer branch
cut.

Figure 12 illustrates how the k+ and k− modal poles vary with boundary layer thickness,
frequency, impedence and Mach number. In particular, taking wider boundary layers
and lower mean flow velocities appears to stabilize the k+ pole, moving it to below the
branch cut. In contrast, thinner boundary layers and higher mean flow velocities lead to
convective instability. The value of the impedance is also seen to alter the stability of the
solution, with, in this case, a range of values of Im(Z) being unstable and nearly hard-
walled values of |Im(Z)| → ∞ being stable, as is seen from the k+ poles movement in
figure 12(b). The variation of stability as the frequency is varied remains unclear, although
it appears likely from figure 12(c) that, for certain parameters, there would be a finite
range of frequencies for which the k+ pole would be unstable, while for frequencies either
higher or lower than this range the k+ pole would be stable. Note also from figure 12
that, in all cases, the k− pole is located above the branch cut and so does not contribute
either to the modal sum or the critical layer branch cut.
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branch cut. In the bottom left plot, the contribution from the modal poles is too small to be
shown (with 10 log10(|p|) < −78).
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Figure 11. Plotting the real values of the full solution for a quadratic boundary layer flow
profile (top) and a linear boundary layer flow profile (bottom) (from Brambley et al. 2012a).
From left to right, parameters are: set A1 with r0 = 0.4; set A1 with r0 = 1− 4h

5
= 0.96; set A2

with r0 = 0.4; and set A2 with r0 = 1− 4h
5

= 0.9992.

5. Conclusions

In this work we have considered a cylindrical duct containing a parallel mean flow that is
uniform everywhere except within a boundary layer of thickness h near the wall. Within
the boundary layer, which need not be thin, the flow has a quadratic profile and satisfies
the non-slip boundary condition at the duct wall, whilst maintaining a C1 continuous
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Figure 12. Motion of the modal poles for parameter set C as one parameters is varied (arrows
show the motion as the parameter is increased): (a) varying h in (0.001, 0.5); (b) varying Im(Z)
in (−∞,∞), with a dot showing hard-walled values; (c) varying Re(ω) in (1, 50); and (d) varying
M in (0.06, 0.9). Modal positions for parameter set C are denoted + (k+) and × (k−). Dashed
lines denote a pole hidden behind the branch cut. Note that (c) and (d) use a rescaled k plane
in order for the branch cut to remain fixed as ω or M are varied.

flow. For such a flow profile for 0 < h < 1, irrespective of the the thickness of the boundary
layer, a solution to the Pridmore-Brown equation has been constructed making use of two
Frobenius series expansions, valid for any wave number k. This enables the evaluation
of the Greens function of the Pridmore-Brown equation, equivalent to the solution for a
point mass source in the linearised Euler equations. The Green’s function solution is found
to consist of a sum of the usual acoustic duct modes, plus a non-modal contribution from
the critical layer branch cut. Full source code is provided in the supplementary material
to evaluate all solutions presented here.

The Frobenius series method employed here has two particular advantages over other
numerical methods to solve the Pridmore-Brown equation (such as finite differences, e.g.,
Brambley 2011b). The first is that the Frobenius series, being a series solution about the
critical points of the equation, is at its most accurate near the critical layer singularity
found in the Pridmore-Brown equation. This allows for accurate numerical solutions near
the critical layer, required for the integration around the critical layer singularity and
its associated branch cut to evaluate their effect on the resulting pressure field. Other
numerical methods such as finite difference are typically at their least accurate near the
critical layer (Brambley et al. 2012a). Moreover, the Frobenius series solution makes
explicit the branch cut along the critical layer, allowing for analytic continuation of
the solution behind the branch cut. This allows for tracking hydrodynamic instability
surface wave modes as they become stable and enter the critical layer (as seen figure 12),
which makes it significantly easier to track the boundary between stable and unstable
behaviour.
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An advantage of considering this particular quadratic flow profile is that the origins of
the critical layer are on a more solid footing. For the linear flow profile (Brambley et al.
2012a), the critical layer was due to the cylindrical geometry of the duct, where as in
general the critical layer is due to a non-zero second derivative of the sheared flow profile.
This also allows comparison to previous works, such as that of Swinbanks (1975) and
(Félix & Pagneux 2007). Further, as the quadratic flow profile has a continuous first
derivative, we have also been able to investigate the specific case of a point mass source
at the boundary between uniform and sheared flow, r0 = 1 − h, and we find this case
retains the same behaviour as a point mass source within the region of uniform flow. In
contrast, for the linear flow profile, r0 → 1 − h is a singular limit. We therefore believe
the results of the quadratic boundary layer flow profile to be in some ways typical of
solutions for a general boundary layer profile.

The final solution for the Green’s function for a point mass source was found to consist
of a number of contributions. This solution is dominated, both upstream and, in the near
field, downstream too, by the sum of modal poles. The modal poles, including acoustic
and surface modes, are well known, and are typically used in mode-matching numerical
methods. One complication found here to the surface modes is that a particular surface
mode, here labelled k+, is found to sometimes disappear behind the critical layer branch
cut (or, in other words, into the continuous spectrum). The contribution of this mode
is not lost, however, and is in effect added to the critical layer contribution. In general,
the modal poles present difficulty only in establishing which poles contribute upstream
(x < 0) or downstream (x > 0) of the source. This can be established through application
of the Briggs-Bers criterion, as summarised in section 3.3.

The effect of the critical layer, the focus of this work, always contributes downstream
of the source, and is the dominant contribution to the far-field pressure downstream
of the point mass source. This contribution, which results from integrating the Fourier
inversion contour around the critical layer branch cut, may be viewed in three parts.
The first contribution is from the k0 non-modal pole, only present when r0 > 1 − h,
which does not decay with distance from the point source and is therefore dominant in
the farfield downstream of the source. This contribution is similar to that described in
the linear flow profile case (Brambley et al. 2012a), and may be interpreted similarly as
a hydrodynamic vorticity wave generated from the point mass source interacting with
the sheared mean flow, traveling downstream with phase velocity equal to the local
fluid velocity U(r0). The second contribution to the critical layer is from the steepest-
descent non-oscillatory integrals I ω

M
, Ir and I0, which are the results of accounting for

the branch points coming from the critical points of the Pridmore-Brown equation. These
contributions have a phase speed equal to, respectively, the uniform flow speed, U(r), and
U(r0), and decay algebraically in the far-field downstream of the point source. The final
contribution is from any modal pole that is hiding behind the branch cut, such as from
a k+ surface wave mode that has stabilized by moving into the critical layer branch cut
from above. These poles, while looking very much like ordinary modal poles, are not able
to be found by traditional numerical methods, as they require analytically continuing
behind the critical layer branch cut. While these poles decay exponentially with distance
downstream of the point source, their decay rate may be slower than any other acoustic
modal pole, depending on the parameters used, and so may still be significant in the
far-field; this was seen for parameter set C in figure 10.

The k+ modal pole may be present as a hydrodynamic instability surface wave, or as a
stable mode included within the critical layer branch cut contribution. Interestingly, in
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the linear flow profile case (Brambley et al. 2012a), this mode was always an instability
and was never hidden behind the critical layer branch cut. From the results of figure 12,
we expect that this mode is stable for quadratic flow boundary layer profiles when the
boundary layer is sufficiently thick or the frequency is sufficiently high, although the
specific stability boundary also depends on the impedance Z.

For the linear flow profile boundary layer (Brambley et al. 2012a), a k− pole was found
below and behind the critical layer branch cut that contributed to the critical layer.
For the quadratic flow profile boundary layer here, this k− pole is always found to be
above the critical layer branch cut, and so never contributes. We believe that this k−

pole was an artifact of the unphysical linear boundary layer profile, although we have
no direct way of demonstrating this. Incidentally, for the linear flow profile boundary
layer, Brambley et al. (2012a) argued that the k+ pole could never be behind the critical
layer branch cut, as this would cause an unphysical discontinuity in the final solution;
in fact, it is found here that when the k+ pole is behind the branch cut, the unphysical
discontinuity in the k+ pole contribution is exactly cancelled by the Ir steepest descent
contour contribution, resulting in a continuous solution, as expected.

The various decay rates of the components of the critical layer have previously been
predicted by Swinbanks (1975) and Brambley et al. (2012a); and a summary can be found
in table 1. Swinbanks (1975) only considered the contribution from waves with phase
velocity U(r0), which are only present for a point mass source within the region of sheared
flow, r0 > 1−h. Swinbanks (1975) predicted these to behave as a constant amplitude plus
a decay as O(x−3) in the far field. Brambley et al. (2012a) found the same result, despite
Swinbanks considering a two dimensional flow in a rectilinear duct with an arbitrary
flow profile and Brambley et al. considering only a constant-then-linear flow profile in a
three dimensional cylindrical duct; in particular Swinbanks emphasised the importance
of the non-zero second derivative of the mean flow profile, which is identically zero for a
constant-then-linear flow profile. As a result, it would not have been unsurprising if these
results were different. Here, the same result is again found, with the constant amplitude
coming from the k0 non-modal pole and the algebraic decay coming from the I0 integral.
This shows that this agreement is not by coincidence. For the critical layer contribution
that propagates with phase velocity U(r) when r is within the boundary layer, we also
find here the same result given by Brambley et al. (2012a) of an O(x−4) far-field decay.

The critical layer also contributes a term with phase velocity equal to the uniform
flow velocity M , which is always present, and which dominates the other critical layer
contributions in the far field whenever the point mass source is in the uniform flow region,
r0 < 1−h. The amplitude of this term can decay at two different rates depending on the
location of the source. When the source is within the uniform flow a decay rate of O(x−

5
2 )

is found, while when the source is within the sheared flow we instead have a faster rate
of decay of O(x−

7
2 ). These results differ from those found by Brambley et al. (2012a) in

the linear flow profile boundary layer case, despite corresponding to the same physical
behaviour. This difference may be understood as result of both the difference in the
overall shape of the flow profile, and the importance of the second derivative of the flow.
Indeed, we conjecture that these scalings will differ depending on the flow profile within
the boundary layer, and an example discussion of this for n-polynomial flow profiles is
given in appendix D.

In most aeroacoustic analyses, particularly those involving mode matching, the critical
layer is either implicitly or explicitly ignored. The work here suggests that this may be
valid in the near-field provided not all acoustic modes are cut-off, although even in the
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near-field the critical layer can be dominant if all acoustic modes are cut-off, as shown in
figure 9 for parameter set C. However, it is certainly not valid to ignore the critical layer
downstream in the far-field, when the critical layer will be the dominant contribution.
Moreover, without considering the critical layer, it would not be apparent whether an
barely-stable hydrodynamic surface wave is present only just hidden behind the critical
layer branch cut (or, in other words, within the continuous spectrum).

There are a number of possible avenues for further investigation following on from this
work. One of practical importance concerns whether the hydrodynamic surface wave
k+ can be accurately predicted using a surface wave dispersion relation (e.g. Brambley
2013), especially when the k+ pole is located behind the critical layer branch cut; our
experience in this work has been that it cannot, at least with the simplified surface wave
dispersion relations that assume a thin boundary layer with a linear flow profile, although
more complicated surface wave dispersion relations may prove more accurate. Another
possibility for further investigation is to consider parameters on the stability boundary
when the k+ pole is neutrally stable. In this case, the k+ pole is exactly located on the
critical layer branch cut, and there would also exist a value of r0 for which the non-modal
k0 pole and the k+ pole overlap; this case has been explicitly excluded here. While this
may seem a rather contrived case, a distributed sound source would correspond to an
integral of source strength over all values of r0, and so k0 and k+ coinciding could be
expected to occur for any parameters for leading to exact neutral stability. Finally, the
critical layer may be regularized by considering either viscosity or weak nonlinearity, and
it would be interesting to investigate how the results presented here are recovered in the
inviscid or small-amplitude limits. In particular, for viscous thin boundary layers, the
critical layer is recovered as a caustic in the high-frequency limit (Brambley 2011a).
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Appendix A. Frobenius series solutions to the Pridmore-Brown
equation witha quadratic mean flow profile

In this appendix, we use a Frobenius expansion method to solve the homogeneous
Pridmore-Brown equation (2.9),

p̃′′ +

(
2kU ′

ω − U(r)k
+

1

r

)
p̃′ +

(
(ω − U(r)k)2 − k2 − m2

r2

)
p̃ = 0, (A 1)

for the flow profile (2.8),

U(r) =

{
M 0 6 r 6 1− h
M(1− (1− 1−r

h )2) 1− h 6 r 6 1,
(A 2)

in the quadratic flow region 1 − h 6 r 6 1. The Pridmore-Brown equation (A 1) has
regular singularities at r = 0 and at r = rc, where ω − U(rc)k = 0. For the quadratic
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flow profile (A 2), the solutions of ω − U(rc)k = 0 are given by (2.12),

r±c = 1− h±Q, where Q = h

√
1− ω

Mk
. (A 3)

This results in the Pridmore-Brown equation in the quadratic flow region 1− h 6 r 6 1
being given by

p̃′′+

(
2

r − r+c
+

2

r − r−c
+

1

r

)
p̃′+

(
M2k2

h4
(r − r+c )2(r − r−c )2 − k2 − m2

r2

)
p̃ = 0. (A 4)

We choose Re(Q) > 0 and consider the Frobenius expansion about r = r+c .

A.1. Frobenius expansion about r = r+c

Following Brambley et al. (2012a), we propose a Frobenius expansion about the regular
singularity r+c ,

p̃(r) =

∞∑
n=0

an(r − r+c )n+σ with a0 6= 0. (A 5)

We substitute (A 5) into (A 4) and expand using a Laurant series. Specifying that a0 6= 0
results in the requirement that σ(σ− 3) = 0. By Fuchs theorem (Teschl 2012), this gives
a pair of linearly independent solutions of the form

p̃c1(r) =

∞∑
n=0

an(r − r+c )n+3, (A 6a)

p̃c2(r) = Ap̃c1(r) log(r − r+c ) +

∞∑
n=0

bn(r − r+c )n. (A 6b)

The coefficients an and bn are then given by setting the remaining terms of the Laurent
expansion of (A 4) to zero, resulting in the recurrence relation

an =
1

n(n+ 3)

[
k2an−2 −

k2M2

h4
(
an−6 + 4Qan−5 + 4Q2an−4

)
−
n−1∑
j=0

(−1)j(n+ 2− j)an−1−j
(

1

(r+c )j+1
− 2

(2Q)j+1

)

+m2
n−2∑
j=0

(−1)j

(r+c )j+2
(j + 1)an−2−j

]
, (A 6c)

bn = − 1

n(n− 3)

[
A

(
(2n− 3)an−3 +

n−4∑
j=0

an−4−j(−1)j
(

1

(r+c )j+1
− 2

(2Q)j+1

))

− k2bn−2 +
k2M2

h4
(
bn−6 + 4Qbn−5 + 4Q2bn−4

)
+

n−1∑
j=0

(−1)j(n− 1− j)bn−1−j
(

1

(r+c )j+1
− 2

(2Q)j+1

)

−m2
n−2∑
j=0

(−1)j

(r+c )j+2
(j + 1)bn−2−j

]
, (A 6d)
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Figure 13. Schemetic of possible locations of the r±c critical points in the complex r-plane.
(a) The radius of convergence of the expansion about r+c covers the region of interest r ∈ [1−h, 1].
(b) The radius of convergence about r+c is insufficient to cover r ∈ [1− h, 1] (as k is too close to
ω
M

).

where we take an = bn = 0 for n < 0. Requiring a0 = b0 = 1, we then find that

b1 = 0, b2 =− 1

2

(
k2 +

(
m

r+c

)2)
, (A 7)

and that b3 is arbitrary, so we choose b3 = 0. However, for the recurrence relation
involving b3 on the left hand side to hold, we also require that A is chosen to be

A = −1

3

(
1

Q
− 1

r+c

)(
k2 +

(
m

r+c

)2)
− 2m2

3r+3
c

. (A 8)

Here, the notation p̃c1 and p̃c2 denotes that these are two linearly independent solutions
for p̃ about the critical point r+c .

The Frobenius series solutions (A 6) are limited by a radius of convergence, in that the
series converge if |r − r+c | < R for some radius of convergence R. This R is the distance
between r+c and the next nearest singularity of the Pridmore-Brown equation, which is
either at r = 0 or at r = r−c , and hence

R = min
{
|1− h+Q|, 2|Q|

}
. (A 9)

The choice of r+c as the singularity to expand around means that this expansion maxi-
mizes the region of [1 − h, 1] contained within the radius of convergence. This is shown
schematically in figure 13. It can be observed that these solutions are not always valid
for all of r ∈ [1− h, 1]. In particular, in the case of k → ω

M we observe r±c → (1− h) and
the radius of convergence R→ 0.

A.2. Frobenius expansion about r = 1

In order to cover the remainder of the domain [1 − h, 1], we construct a second series
solution about r = 1,

p̃11(r) =

∞∑
n=0

αn(r − 1)(n+1), p̃12(r) =

∞∑
n=0

βn(r − 1)n. (A 10)
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Specifying that α0 = β0 = 1, this results in the recurrence relation

αn = − 1

n(n+ 1)

[
− k2αn−2 +

k2M2

h4

(
αn−6 + 4hαn−5 + 2(3h2 −Q2)αn−4

+ 4h(h2 −Q2)αn−3 + (h2 −Q2)2αn−2

)
+

n−1∑
j=0

(−1)j(n− j)αn−j−1
(

1− 2

(h+Q)j+1
− 2

(h−Q)j+1

)

−m2
n−2∑
j=0

(−1)j(j + 1)αn−j−2

]
. (A 11a)

βn = − 1

n(n− 1)

[
− k2βn−2 +

k2M2

h4

(
βn−6 + 4hβn−5 + 2(3h2 −Q2)βn−4

+ 4h(h2 −Q2)βn−3 + (h2 −Q2)2βn−2

)
+

n−1∑
j=0

(−1)j(n− j − 1)βn−j−1

(
1− 2

(h+Q)j+1
− 2

(h−Q)j+1

)

−m2
n−2∑
j=0

(−1)j(j + 1)βn−j−2

]
. (A 11b)

with αn = βn = 0 for n < 0. These solutions are labelled p̃11 and p̃12 to indicate they
are two linearly independent solutions to p̃ expanded about the point r = 1.

A.3. A homogeneous solution valid across [1− h, 1]

We now construct solutions to the homogeneous Pridmore-Brown equation p̃1(r) and
p̃2(r) such that they are valid across the whole of [1− h, 1]. We set

p̃1(r) =

{
p̃c1(r) |r − r+c | < R

A1p̃11(r) +B1p̃12(r) otherwise
(A 12a)

p̃2(r) =

{
p̃c2(r) |r − r+c | < R

A2p̃11(r) +B2p̃12(r) otherwise
(A 12b)

First of all, note that these expansions are sufficient for a uniformly-valid expansion, as
sketched in figure 14. Note also from figure 14 that the regions of convergence of the p̃c
solutions and the p̃1 solutions always overlap (except when k = ω

M , which we exclude
here). For any real r̄ > Re(r+c ) contained within both regions of convergence, we may
find the coefficients A1, A2, B1 and B2 are found by requiring continuity and continuous
derivatives at r = r̄:[

A1 A2

B1 B2

]
=

[
p̃11(r̄) p̃12(r̄)
p̃′11(r̄) p̃′12(r̄)

]−1 [
p̃c1(r̄) p̃c2(r̄)
p̃′c1(r̄) p̃′c2(r̄)

]
(A 13)

These coefficients A1, B1, A2 and B2 are independent of the specific choice of r̄, and
the resulting solutions p̃1 and p̃2 have not only C1 continuity but C∞, since both are
solutions to the Pridmore-Brown equation. In effect, p̃1 analytically continues p̃c1 beyond
its radius of convergence, and similarly p̃2 analytically continues p̃c2.
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Figure 14. As for figure 13(b) with the radius of convergence for p̃11 and p̃12 added.

As described in (2.17), there is a jump in p̃c2 across the critical layer branch cut due to
the log term in (A 6b). If the radius of convergence R is sufficiently large that r = 1 is
within the radius of convergence, then no matching coefficients are needed, and this jump
in p̃c2 obviously carries through to p̃2. In the other case, that R is sufficiently small that
matching is needed, it follows that r̄ < 1. In this case, there is no jump in the matching
coefficients A1, A2, B1 and B2 as r̄ > Re(r+c ), and hence

∆p̃2(r) = −2πiAp̃1(r)H(r+c − r). (A 14)

This is analogous to the jump in p̃2 given in (2.17), and shows that the jump in p̃c2
carries through the analytic continuation, as might have been expected a priori.

A.4. The Wronskian of p̃1 and p̃2

We define the Wronskian of p̃1 and p̃2 to be

W (r) =W(p̃1, p̃2; r) = p̃1(r)p̃′2(r)− p̃2(r)p̃′1(r). (A 15)

Since p̃1 and p̃2 are solutions to the homogeneous Pridmore-Brown equation (A 1), we
have that

W ′ +

(
2kU ′

ω − Uk
+

1

r

)
W = 0 ⇒ W (r) ∝ (r − r+c )2(r − r−c )2

r
. (A 16)

By considering the behaviour of p̃1 and p̃2 as r → r+c , we find that W (r) = −3(r−r+c )2 +
O
(
(r − r+c )4

)
, and so the constant of proportionality can be found, giving

W (r) = −3

4

r+c (r − r+c )2(r − r−c )2

rQ2
. (A 17)

Appendix B. The jump in G̃ across the critical layer branch cut

In this appendix, we split the jump in G̃ across the critical layer branch cut, ∆G̃, into
its various components about the three possible branch points ω

M , k0 and kr. For this
reason, we restrict attention to k ∈ [ ωM ,∞), that is, to k on the critical layer branch cut.
In this case, r+c (k) ∈ [1−h, 1), and r+c (k) is an increasing function of k. Recall from (3.5)
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that

∆G̃ =− ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

(B 1)

×

[
2iπAD1D̂2ψ

−
1 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

− ψ−1 (ř)∆ψ2(r̂)−∆ψ1(ř)ψ−2 (r̂)−∆ψ1(ř)∆ψ2(r̂)

]
,

with ∆ψ1 and ∆ψ2 given in (2.25) as

∆ψ1(r) =

{
0 r < r+c
2iπAD1p̃1 r > r+c ,

(B 2a)

∆ψ2(r) =


∆C

∧

2H
(1)
m (αr) +∆D

∧

2H
(2)
m (αr) 0 6 r 6 1− h

−2iπAp̃1(r)D̂2 1− h 6 r 6 r+c
0 r+c < r 6 1.

(B 2b)

Note that since ř < r̂ it must be that ∆ψ1(ř)∆ψ2(r̂) = 0 in all cases.

When r, r0 < 1−h then for any k on the branch cut we have that ∆ψ1 = 0 and ∆ψ2 6= 0.
This means that we have the same formula for ∆G̃ for any k on the branch cut in this
case, so that ω

M is the only branch point of ∆G̃. Hence, we write ∆G̃ = ∆G̃ ω
M

, where

∆G̃ ω
M

=− ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

[
2iπAD1D̂2ψ

−
1 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

− ψ−1 (ř)∆ψ2(r̂)

]
,

=− ω − U(r∗)k

r∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD̂2
2ψ
−
1 (ř)ψ−1 (r̂)

C−1 D̂2 − Ĉ2D1

(B 3a)

When ř < 1 − h < r̂ then the formula for ∆G̃ depends on whether ω
M < k < k> or

k > k>. In this case, we set ∆G̃ = ∆G̃ ω
M

for ω
M k

< k>, and ∆G̃ = ∆G̃ ω
M

+ ∆G̃> for

k > k>, so that ∆G̃> is the correction required for k > k>. In effect, ∆G̃ has two branch
points, one at ω

M and one at k> in this case, and by making this definition we may write∫ ∞
ω
M

∆G̃e−ikx dk =

∫ ∞
ω
M

∆G̃ ω
M

e−ikx dk +

∫ ∞
k>

∆G̃>e−ikx dk. (B 3b)

By considering (B 1) in this case, we find that

∆G̃ ω
M

=− ω − U(r∗)k

r∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD1D̂2ψ
−
1 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

, (B 3c)

∆G̃> =
ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

ψ−1 (ř)∆ψ2(r̂),

=− ω − U(r∗)k

r∗W (r∗)

AD̂2ψ
−
1 (ř)p̃1(r̂)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

(B 3d)

Finally, when we have 1−h < ř we must consider three cases: ω
M < k < k<, k< < k < k>

and k> < k. Similarly to the previous case, we consider ∆G̃ ω
M

= ∆G̃ for ω
M < k < k<,
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and take ∆G̃< and ∆G̃> to be correction terms as k crosses k< and k> respectively.
This leads to

∆G̃ ω
M

=− ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

[
2iπAD1D̂2ψ

−
1 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

−∆ψ−1 (ř)ψ2(r̂)

]
,

=− ω − U(r∗)k

r∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD2
1ψ
−
2 (ř)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1

(B 3e)

∆G̃< =− ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

∆ψ−1 (ř)ψ2(r̂),

=− ω − U(r∗)k

r∗W (r∗)

AD1p̃1(r̂)ψ−2 (r̂)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

(B 3f )

∆G̃> =
ω − U(r∗)k

2iπr∗W (r∗)

1

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

ψ−1 (ř)∆ψ2(r̂),

=− ω − U(r∗)k

r∗W (r∗)

AD̂2ψ
−
1 (ř)p̃1(r̂)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

(B 3g)

Appendix C. Asymptotic behaviours of G̃ and ∆G̃q

In order to find the residue contribution of the non-modal pole at k = k0, and the decay
rates of the steepest decent contours given by integrating ∆G̃q along k = kq − iξ, we
are required to understand the behaviour of p̃1 and p̃2 at r = 1 − h, r, r0, and 1 as
k → ω

M , kr, k0, where p̃1 and p̃2 are given in appendix A.3.

Considering the evaluations at r, r0 > 1−h and 1, it can be noted that we must examine
the cases that p̃1 and p̃2 are described as p̃c1 and p̃c2 respectively (as described in
appendix A.1), or, if we have been required to perform matching, that both are expressed
in terms of p̃11 and p̃12 (given in appendix A.2). If we examine the limit k → ω

M , it will
follow that in each case we are required to take the matched solutions p̃11 and p̃12.

C.1. Asymptotic behaviour as k → ω
M

Consider first p̃c1 and p̃c2 for k close to ω
M and r close to 1−h. SinceQ = h

√
1− ω/(Mk) =

O
(
(k − ω

M )
1
2

)
, we consider the limit |Q| → 0 and set r = 1 − h + RQ for |R| 6 O(1).

By considering the recurrence formulae for the Frobenius expansion coefficients an and
bn given in equations (A 6c) and (A 6d) in this limit, and after some algebra, it can be
found to leading order that

p̃c1(1−h+RQ) = Q3(R− 1)3
(

1 +
3

4
(R− 1) +

3

20
(R− 1)2

)
+O(Q4), (C 1a)

p̃c2(1−h+RQ) = 1 +O(Q2 log(Q)), (C 1b)

p̃′c1(1−h+RQ) = 3Q2(R− 1)2
(

1 + (R− 1) +
1

4
(R− 1)2

)
+O(Q3), (C 1c)

p̃′c2(1−h+RQ) = −Q log(Q)

(
ω2

M2
+

m2

(1−h)2

)
(R−1)2

(
1 + (R−1) +

(R−1)2

4

)
+O(Q)

(C 1d)
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We consider next p̃11 and p̃12 in the same limit. By considering the recurrence formulae
for the series coefficients αn and βn given in equations (A 11a) and (A 11b), it can be

found that there are coefficients p̃
(n)
11 , p̃

′(n)
11 , p̃

(n)
12 , and p̃

′(n)
12 which are O(1) as |Q| → 0 such

that

p̃11(1− h+RQ) =

∞∑
n=0

(RQ)np̃
(n)
11 , p̃12(1− h+RQ) =

∞∑
n=0

(RQ)np̃
(n)
12 , (C 2a)

p̃′11(1− h+RQ) =

∞∑
n=0

(RQ)np̃
′(n)
11 , p̃′12(1− h+RQ) =

∞∑
n=0

(RQ)np̃
′(n)
12 . (C 2b)

Note in particular that, as |Q| → 0, the coefficients of the R5 term in both p̃11 and p̃12
tend to zero at least as fast as Q5, where as in p̃c1 from (C 1a) the coefficient of R5 tends
to zero as Q3. Hence, if we were to write p̃c1 = A1p̃11 + B1p̃12, then at least one of the
coefficients A1 and B1 would need to tend to infinity as Q−2 or faster as |Q| → 0. We
argue that the choice of p̃11 and p̃12 as two linearly independent solutions about r = 1
is arbitrary, and so by symmetry between p̃11 and p̃12 we expect A1 and B1 to be the
same order of magnitude in Q, therefore forcing that A1 = O(Q−2) and B1 = O(Q−2).
Similarly, since p̃′c2 has a coefficient of R4 which scales as Q logQ, if we were to write
p̃′c2 = A2p̃

′
11 +B2p̃

′
12, then at least one of the coefficients A2 and B2 would need to tend

to infinity as Q−3 logQ or faster as |Q| → 0, and so we argue that A2 = O
(
Q−3 logQ

)
and B2 = O

(
Q−3 logQ

)
.

Note, however, that by evaluation the Wronskian W(p̃c1, p̃c2; r) = W (r) at r = 1
using (A 17), and by definition of p̃11 and p̃12 at r = 1, considering W(p̃11, p̃12; r) at
r = 1 shows that

A1B2 −A2B1 =
3(h−Q)2(h+Q)2(1−h+Q)

4Q2
= O(Q−2). (C 3)

This is smaller than might have been expected from the individual scalings of A1, B1,
A2 and B2 given above, but this is expected as, when the critical point r+c is approached,
the two linearly independent solutions lose their linear independence, and so there is
significant cancellation between A1B2 and A2B1.

Note also from (A 17) that, as |Q| → 0, we have

W (r∗) =


−3Q2

4

(
1 +

Q

1−h

)
r0 6 1− h

−3(1−h− r0)4

4r0

(
(1−h)

Q2
+

1

Q
+O(1)

)
r0 > 1− h.

(C 4)
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Assuming that p̃11 and p̃12 are O(1) when r is not close to 1− h, it follows that

C1 =
4αJ ′m(α(1− h))

3Q2
+O(Q−1) = O(Q−2) (C 5a)

D1 = Jm(α(1− h)) +O(Q) = O(1) (C 5b)

Ĉ2 = −4Q2

3

A2 + iω
Z B2

(1− h+Q)(h−Q)2(h+Q)2
= O(Q−1 log(Q)) (C 5c)

D̂2 =
4Q2

3

A1 + iω
Z B1

(1− h+Q)(h−Q)2(h+Q)2
= O(1) (C 5d)

C

∧

2 =
πi(1− h)α

4
D̂2H

(2)′
m (α(1− h)) = O(1) (C 5e)

D

∧

2 = −πi(1− h)α

4
D̂2H

(1)′
m (α(1− h)) = O(1) (C 5f )

We can use the above to establish that ψ1 and ψ2 are both order 1 quantities for particular
values of r:

ψ1(r) = Jm(αr) = O(1) for r < 1− h; (C 6)

ψ2(r) = Ĉ2p̃1 + D̂2p̃2 = p̃12 −
iω

Z
p̃11 = O(1) for r > 1− h. (C 7)

We also note that ω−U(r∗)k = −M(k− ω
M ) = −ωQ2/h2+O(Q4) = O(Q2) for r0 6 1−h

and is O(1) for r0 > 1− h, and that

A = −1

3

(
ω2

M2
+
m2

r+2
c

)(
1

Q
− 1

r+c

)
− 2m2

3r+3
c

= − 1

3Q

(
ω2

M2
+
m2

r+2
c

)
+O(1). (C 8)

C.1.1. Behaviour of G̃ as k → ω
M

We now use the above scalings to consider the branch point of G̃ at k = ω
M , with the

aim of showing that G̃ does not experience a pole at k = ω
M for any value of r0. Recall

from (3.3) that

G̃ =
(ω − U(r∗)k)

2πir∗W (r∗)

ψ1(ř)ψ2(r̂)

C1D̂2 − Ĉ2D1

. (3.3)

Using the results above, if k = ω
M + εeiθ then for r0 6 1− h,

G̃ ∼ Mεeiθ

2πi(1−h)

ψ1(ř)ψ2(r̂)

αJ ′m(α(1−h))D̂2

= O(ε). (C 9)

If instead r0 > 1− h, we find that

G̃ ∼
−Mh4ε2e2iθ

(
M − U(r0)

)
2πiω(1−h)(1−h− r0)4

ψ1(ř)ψ2(r̂)

αJ ′m(α(1− h))D̂2

= O
(
ε2
)
. (C 10)

In particular, in either case there is no pole of G̃ at k = ω
M . Hence, we have that

Iε(x) =
−1

2π

∫ 2π

0

G̃
( ω
M

+ εeiθ
)

exp
{
−ix

( ω
M

+ εeiθ
)}

iεeiθ dθ → 0 as ε→ 0.

(C 11)
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C.1.2. Behaviour of ∆G̃ ω
M

as k → ω
M

We now substitute all of the above into the equation for ∆G̃ ω
M

given in equation (3.16a).
First of all, we rewrite (3.16a) exactly as

∆G̃ ω
M

=
4A
(
D̂2ψ

−
1 (1−h)

)2
f(r)f(r0)j(r∗)

3(1− h)Q3
(
C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

)(
C−1 D̂2 − Ĉ2D1

) , (C 12a)

where j(r0) = −3

4
(1− h)Q3ω − U(r0)k

r0W (r0)
and f(r) =



ψ−1 (r)

ψ−1 (1−h)
r < r0

D1ψ
−
2 (r)

D̂2ψ
−
1 (1−h)

r > r0.

(C 12b)

Taking now the leading order terms as k → ω
M , we find that

∆G̃ ω
M
∼ −

(
ω2

M2 + m2

(1−h)2

)
4(1− h)

Jm
(
α(1−h)

)2
α2J ′m

(
α(1−h)

)2 f(r)f(r0)j(r0), (C 13a)

where f(r) =



Jm(αr)

Jm
(
α(1−h)

) r < r0

ψ−2 (r)

D̂2

r > r0.

(C 13b)

and j(r0) =


− ω

h2
Q3 r0 < 1− h

ω(1− U(r0)/M)

(r0 − 1 + h)4
Q5 r0 > 1− h.

(C 13c)

Finally, setting k = ω
M − iξ, so that Q = (1 − i)h

√
Mξ/2ω + O

(
ξ3/2

)
(recalling that

Re(Q) > 0), we find that j(r0) may be written to leading order as

j(r0) =


1 + i√

2

hM3/2

ω1/2
ξ3/2 r0 < 1− h

−1− i√
2

h5M5/2

ω3/2

1− U(r0)/M

(r0 − 1 + h)4
ξ5/2 r0 > 1− h.

(C 14)

C.2. Asymptotic behaviour as k → k0

We now consider k → k0 with r0 > 1− h. We have that

r0 − r+c = −ωh
2(k − k0)

2Mk20Q0
+O

(
(k − k0)2

)
, where Q0 = h

√
1− ω

Mk0
. (C 15)
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Hence, in this limit, p̃1(r0) and p̃2(r0) may always be evaluated in terms of p̃c1 and p̃c2,
as we are always eventually within their radius of convergence. Hence, in this limit,

p̃1(r0) =

(
−ωh2(k − k0)

2Mk20Q0

)3
+O

(
(k − k0)4

)
, p̃2(r0) = 1 +O

(
(k − k0)2

)
. (C 16)

For r 6= r0, the Bessel function, Hankel functions, and p̃1 and p̃2 all behave as O(1) quan-

tities when evaluated at 1−h, r, and 1, resulting in O(1) behaviour for C1, D1, C

∧

2, D

∧

2, Ĉ2

and D̂2. It can be shown that A = O(1) and that

W (r0) = −3h4ω2(k − k0)2

4Q2
0M

2k40
+O

(
(k − k0)3

)
. (C 17)

C.2.1. Behaviour of G̃ as k → k0 and the residue of the non-modal k0 pole

Substituting all the above into (3.3) (as k → k0 from above) gives

G̃(k) =
−2Mk20(ω −Mk0)

3πir0h2ω(k − k0)

1

C+
1 D̂2 − Ĉ2D1

{
D̂2ψ1(r) r < r0

D1ψ2(r) r > r0
+O(1), (C 18)

confirming a pole at k = k0 that gives a residue contribution once integrated around of

R+
0 (k0) =

2Mk20(ω −Mk0)e−ik0x

3πr0h2ω(C+
1 D̂2 − Ĉ2D1)

{
D̂2ψ1(r) r < r0

D1ψ2(r) r > r0.
(C 19)

C.2.2. Behaviour of ∆G̃0 as k → k0

Moreover, we may substitute all the above into ∆G̃0 from equations (3.16b) and (3.16c)

to find the leading order contribution to ∆G̃0 as k → k0. First of all, we find the exact
expression for ∆G̃0 to be (considering only r0 > 1− h, as otherwise ∆G̃0 ≡ 0)

∆G̃0 = −ω − U(r0)k

r0W (r0)

Ap̃1(r0)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

{
D̂2ψ

−
1 (r) r0 > r

D1ψ
−
2 (r) r0 < r.

(C 20)

Using asymptotics above, to leading order we find that

∆G̃0 =
Aωh2U(r0)

6r0Mk20(r0 − 1 + h)

(k − k0)2

C−1 D̂2 − Ĉ2D1 + 2πiAD1D̂2

×

{
D̂2ψ

−
1 (r) r0 > r

D1ψ
−
2 (r) r0 < r.

(C 21)

C.3. Asymptotic behaviour as k → kr

Analogously to the derivation above for k → k0, we consider here the limit k → kr. In
this case, the only difference is that both W (r∗) and (ω−U(r∗)k) remain O(1) quantities
whenever r 6= r∗, unlike for the limit k → k0. Otherwise, the same procedure is applicable,
with, in particular,

r − r+c = −ωh
2(k − kr)

2Mk2rQr
+O

(
(k − kr)2

)
, where Qr = h

√
1− ω

Mkr
, (C 22)

and similarly

p̃1(r) =

(
−ωh2(k − kr)

2Mk2rQr

)3
+O

(
(k − kr)4

)
, p̃2(r) = 1 +O

(
(k − kr)2

)
. (C 23)
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C.3.1. Behaviour of G̃r as k → kr

Substituting all the above into (3.3) as k → kr gives, to leading order,

G̃ ∼ ω − U(r∗)kr
2πir∗W (r∗)

1

C1D̂2 − Ĉ2D1

{
D1ψ2(r0) r < r0

D̂2ψ1(r0) r > r0
= O(1), (C 24)

confirming no singular behaviour at k = kr, and in particular no pole at k = kr.

C.3.2. Behaviour of ∆G̃r as k → kr

Equation (3.16b) and (3.16c) for r > 1− h give ∆Gr as

∆G̃r = −ω − U(r∗)k

r∗W (r∗)

Ap̃1(r)

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

{
D1ψ

−
2 (r0) r < r0

D̂2ψ
−
1 (r0) r > r0

(C 25)

Substituting the above asymptotics into this equation gives

∆G̃r ∼
A(ω − U(r∗)kr)ω

3h6

8r∗W (r∗)M3k6r(r − 1 + h)3
(k − kr)3

C−1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×

{
D̂2ψ

−
1 (r0) r0 < r

D1ψ
−
2 (r0) r0 > r.

(C 26)

Appendix D. Conjecture on the behaviour of an n-polynomial flow
profile

In this appendix, we give an argument to support the conjectured behaviour of the critical
layer contribution for large x for an n-polynomial flow profile given by

U(r) =

{
M 0 6 r 6 1− h
M
(
1−

(
1− 1−r

h

)n)
1− h 6 r 6 1

(D 1)

The three steepest descent contours will be analogous in form to those given in sec-
tion 3.3.3. Setting rC to be some solution of ω − U(rC)k = 0, the solutions for small
|r − rC | will take the form

p̃1(r) = (r − rC)3 +O((r − rC)4) p̃2(r) = A log(r − rC)p̃1(r − rC) + 1 +O((r − rC)2)
(D 2a)

p̃′1(r) = 3(r − rC)2 +O((r − rC)3) p̃′2(r) = b2(r − rC) +O((r − rC)2) (D 2b)

for some coefficient b2. The Wronskian will satisfy

W(p̃1, p̃2; r) = W (r) ∝ 1

r

∏
ω−U(rc)k=0

(r − rc)2. (D 3)

For the solutions expanded around the particular critical point rC , we therefore have

W (r) = −3
rC
r

∏
ω−U(rc)k=0

(r − rc)2∏
ω−U(rc)k=0

rc 6=rC

(rC − rc)2
. (D 4)
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As k → ω
M we have

A = −1

3

(
ω2

M2
+
m2

r2C

)(
U ′′(rC)

U ′(rC)
− 1

rC

)
− 2m2

3r3C
∼ −1

3

(
ω2

M2
+

m2

(1−h)2

)
n− 1

rC − 1−h
+O(1),

(D 5)
and also that W (1− h) = O(1− h− rC)2, and that W (r) = O((1− h− rC)−2(n−1)) for
r > 1− h.

Because of the W (r) scalings and the p̃1 and p̃2 scalings, we also have that C1 = O
(
(1−

h− rC)−2
)

while D1, Ĉ2, D̂2 = O(1).

It then follows that

C1D̂2 −D1Ĉ2 = O
(
(1−h− rC)−2

)
(D 6a)

and ∆(C1D̂2 −D1Ĉ2) = 2πiAD1D̂2 = O
(
(1−h− rC)−1

)
. (D 6b)

We further know that as k → ω
M we have

ω − U(1− h)k = M
(
k − ω

M

)
and ψ1(r), ψ2(r) = O(1). (D 7)

Noting also that (1−h−rC) = O
(
(k− ω

M )
1
n

)
, we are finally ready to predict the behaviour

of I ω
M

:

∆G̃ ω
M

v
(ω − U(r∗)k)A

r∗W (r∗)
(
C1D̂2 − Ĉ2D1

)(
C1D̂2 − Ĉ2D1 + 2iπAD1D̂2

)

v


(k − ω

M )(1− h− rC)−1

(1− h− rC)2(1− h− rC)−4
v (k − ω

M )1+
1
n r0 6 1− h

(1− h− rC)−1

(1− h− rC)−2(n−1)(1− h− rC)−4
v (k − ω

M )2+
1
n r0 > 1− h,

(D 8)

and hence we predict that I ω
M

decays like x−2−
1
n for r0 6 1−h and x−3−

1
n for r0 > 1−h.

In order to do the same for Ir and I0, we first note that, as k → kr, we have (r −
rC) = O(k − kr), and analogously for k → k0. Further we have C1, D1, Ĉ2, D̂2 = O(1)
and that A = O(1). It is noticed that for r > 1 − h, p̃1(r) = O((r − rC)3) while
ψ1(r0), ψ2(r0) = O(1). Using the previously given results for ω−U(r∗)k and noting that
W (r0) = O((r0−rC)2) for I0 only, and otherwise W (r0) = O(1), then gives us our results
that I0 decays like x−3 while Ir decays like x−4, exactly as for the quadratic and linear
cases.

The validity of the above conjecture depends on the the assumed scalings for p̃1(r) and
p̃2(r) at r = 1 − h, 1 − h < r < 1 and r = 1, in the limits k → ω

M , k → kr and
k → k0 6= kr. Particular attention would be required for n > 6, where three expansions
would be needed to cover the whole domain r ∈ [1− h, 1]. Moreover, the locations of the
k± poles have a significant bearing on the overall far-field magnitude of the critical layer,
and in particular whether the k+ occurs as a convective instability or is stabilised by the
boundary layer thickness.
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