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Abstract
Effectively detecting anomalous nodes in attributed networks is crucial for the success of 
many real-world applications such as fraud and intrusion detection. Existing approaches 
have difficulties with three major issues: sparsity and nonlinearity capturing, residual mod-
eling, and network smoothing. We propose Residual Graph Convolutional Network (Res-
GCN), an attention-based deep residual modeling approach that can tackle these issues: 
modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity, 
utilizing a deep neural network allows direct residual ing from the input, and a residual-
based attention mechanism reduces the adverse effect from anomalous nodes and prevents 
over-smoothing. Extensive experiments on several real-world attributed networks demon-
strate the effectiveness of ResGCN in detecting anomalies.
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1 Introduction

Attributed networks are ubiquitous in a variety of real-world applications. Data from many 
real-world domains can be represented as attributed networks, where nodes represent enti-
ties with attributes and edges express the interactions or relationships between entities. Dif-
ferent from plain networks where only structural information exists, attributed networks 
also contain rich features to provide more details to describe individual elements of the 
networks. For instance, in social networks, user profiles contain important information to 
describe users. In citation networks, paper abstracts can provide complementary informa-
tion to the citation structures. In gene regulatory networks, gene sequence expressions are 
the attributes beside the interactions between molecular regulators. Due to the ubiquity of 
attributed networks, various data mining tasks on attributed networks have attracted an 
upsurge of interest such as community detection (Falih et al., 2018; Li et al., 2018c; Pei 
et al., 2015), link prediction (Barbieri et al., 2014; Li et al., 2018a; Brochier et al., 2019), 
network embedding (Huang et al., 2017b, a; Meng et al., 2019), etc.

Anomaly detection is one of the most vital problems among these tasks on attributed 
networks because of its significant implications in a wide range of real-world applica-
tions including cyber attack detection in computer networks, fraud detection in finance 
and spammers discovery in social media, to name a few. It is more challenging to detect 
anomalies on attributed networks because both attributes and structures should be taken 
into consideration in order to detect anomalous nodes. We illustrate this with a toy example 
in Fig. 1. The anomalous node is different from others because of two reasons: (1) structur-
ally it connects to all other nodes and (2) its attributes are significantly different from the 
majority.

Several approaches for anomaly detection on attributed networks have been proposed 
recently in the literature. Most of them aim at detecting anomalies in an unsupervised 
fashion because of the prohibitive cost for accessing the ground-truth anomalies (Ding 
et  al., 2019a). They can be categorized into four types of methods that are based on: 
community analysis, subspace selection, residual analysis, and deep ing. Community 
analysis methods  (Gao et  al., 2010) detect anomalies by identifying the abnormal-
ity of current node with other nodes within the same community. Subspace selection 
approaches (Perozzi et al., 2014) first  a subspace for features and then discover anoma-
lies in that ed subspace. Residual analysis methods (Li et al., 2017; Peng et al., 2018) 

Fig. 1  An illustration of failure in 
previous message passing based 
anomaly detection approaches
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explicitly model the residual information by reconstructing the input attributed network 
based on matrix factorization. Deep ing methods use deep neural networks to capture 
the nonlinearity of networks and detect anomalies in an unsupervised  (Ding et  al., 
2019a) or supervised way (Liang et al., 2018).

However, there are three major issues in existing approaches: (1) sparsity and non-
linearity capturing, (2) residual modeling, and (3) network smoothing. Capturing spar-
sity and nonlinearity is important in anomaly detection on networks because real-world 
attributed networks are complex and non-linear. Previous shallow models such as non-
negative matrix factorization (Li et al., 2017; Peng et al., 2018) fail to detect anomalies 
because of the incapability of modeling nonlinearity. Although residual modeling has 
been explored in previous studies  (Li et  al., 2017; Peng et  al., 2018), the residual is 
modeled from the reconstruction error and similarly only captures linear information 
because traditional matrix factorization frameworks have been used. Thus, they can nei-
ther be adaptively ed from the input networks nor capture more complex nonlinearity of 
real-world attributed networks. Smoothing networks, which is based on the homophily 
hypothesis  (McPherson et al., 2001), is a commonly used strategy to detect anomalies 
on networks, e.g., (Ding et al., 2019a). However, those methods are not well-suited for 
anomaly detection because they might oversmooth the node representations, i.e., mak-
ing anomalous nodes less distinguishable from the majority of normal nodes (Li et al., 
2019), because the output representations may be oversmoothed to become similar to 
neighbors (Li et al., 2018b).

To tackle these issues, in this paper, we propose Residual Graph Convolutional Net-
work (ResGCN), a novel approach for anomaly detection on attributed networks. Res-
GCN is capable of solving the above three problems as follows: (1) to capture the spar-
sity and nonlinearity of networks, ResGCN is based on GCN to model the attributed 
networks; (2) to model residual information, ResGCN s residual directly from the input 
using a deep neural network; and (3) to prevent over-smoothing of node representations, 
ResGCN incorporates the attention mechanism based on ed residual information, and 
different neighbors play different roles in passing messages according to the residual 
(attention). Thus, the information propagation of anomalous nodes can be reduced. The 
contributions of this paper are summarized as follows:

– We propose novel anomaly detection method named ResGCN. ResGCN captures the 
sparsity and nonlinearity of networks using GCN, s the residual information using a 
deep neural network, and reduces the adverse effect from anomalous nodes using the 
residual-based attention mechanism.

– We propose a residual information based anomaly ranking strategy and the residual 
information is ed from the input network instead of reconstruction errors.

– Results of our extensive experiments on real-world attributed networks demonstrate 
the effectiveness of ResGCN in the task of anomaly detection w.r.t. different evalua-
tion metrics.

The rest of this paper is organized as follows. Section 2 formally defines the problem of 
anomaly detection on attributed networks. Section 3 introduces the proposed ResGCN 
model for anomaly detection. Section 4 provides empirical evidence of ResGCN perfor-
mance on anomaly detection in real-world networks w.r.t. different evaluation metrics. 
Section 5 briefly discusses related work on anomaly detection on attributed networks. 
Finally, we conclude in Sect. 6.
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2  Problem definition

We first summarize some notations and definitions used in this papers. Following the com-
monly used notations, we use bold uppercase characters for matrices, e.g., X , bold lowercase 
characters for vectors, e.g., b , and normal lowercase characters for scalars, e.g., c. The The 
ith row of a matrix X is denoted by Xi,∶ and (i, j)th element of matrix X is denoted as Xi,j . The 
Frobenius norm of a matrix is represented as ‖ ⋅ ‖F and ‖ ⋅ ‖2 is the L2 norm. In detail, the 
main symbols are listed in Table 1.

Definition 1 Attributed Networks. An attributed network G = {V ,E,X} consists of: (1) a 
set of nodes V = {v1, v2, ..., vn} , where |V| = n is the number of nodes; (2) a set of edges E, 
where |E| = m is the number of edges; and (3) the node attribute matrix X ∈ ℝ

n×d , the ith 
row vector Xi,∶ ∈ ℝ

d, i = 1, ..., n is the attribute of node vi.

The topological structure of attributed network G can be represented by an adjacency 
matrix A , where Ai,j = 1 if there is an edge between node vi and node vj . Otherwise, Ai,j = 0 . 
We focus on the undirected networks in this study and it is trivial to extend it to directed net-
works. The attribute of G can be represented by an attribute matrix X . Thus, the attributed net-
work can be represented as G = {A,X} . With these notations and definitions, same to previous 
studies (Li et al. 2017; Peng et al. 2018; Ding et al. 2019a), we formulate the task of anomaly 
detection on attributed networks:

Problem  1 Anomaly Detection on Attributed Networks. Given an attributed network 
G = {A,X} , which is represented by the adjacency matrix A and attribute matrix X , the 
task of anomaly detection is to find a set of nodes that are rare and differ singularly from 
the majority reference nodes of the input network.

Table 1  Table of notations Symbol Description

V Node set
E Edge set
m Number of edges
n Number of nodes
d Number of attributes
A Adjacency matrix
X Attribute matrix
W

l The trainable weight matrix in the l∧ th layer

H
l The latent representation matrix in the l∧ th  layer

R
l The residual matrix in the lth layer

� The trade-off parameter for reconstruction error
� The residual parameter
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3  Proposed method

In this section we first introduce the background of GCN. Next, we present the proposed 
model ResGCN in details. Then we analyze the complexity of ResGCN.

3.1  Graph convolutional networks

GCN s node representations by passing and aggregating messages between neighboring 
nodes. Different types of GCN have been proposed recently  (Kipf & Welling, 2016a; 
Hamilton et al., 2017), and we focus on one of the most widely used versions proposed 
in (Kipf & Welling, 2016a). Formally, a GCN layer is defined as

where h(l)
i

 is the latent representation of node vi in layer l, Ne(i) is the set of neighbors of 
node vi , and Wl is the layer-specific trainable weight matrix. f (⋅) is a non-linear activation 
function and we select ReLU as the activation function following previous studies  (Kipf 
and Welling 2016a) (written as fReLU(⋅) below). D̃ is the diagonal degree matrix of Ã 
defined as D̃i,i =

∑
j Ãi,j where Ã = A + I is the adjacency matrix of the input attributed 

network G with self connections I . Equivalently, we can rewrite GCN in a matrix form:

For the first layer, H(0) = X is the attribute matrix of the input network. Therefore, we have

The architecture of GCN can be trained end-to-end by incorporating task-specific loss 
functions. In the original study, GCN aims at semi-supervised classification task so the 
cross-entropy loss is evaluated by adding the softmax function as the output of the last 
layer.Formally, the overall cross-entropy error is evaluated on the graph for all the labeled 
samples:

where L is the set of nodes with labels, C is the number of classes, Y is the label and 
Ŷ = softmax(H) is the prediction of GCN passing the hidden representation in the final 
layer H(L) to a softmax function.

Note that original GCN (Kipf & Welling, 2016a) is designed for semi-supervised ing, 
our target is to detect anomalies in an unsupervised way. Therefore, the cross entropy 
loss for (semi-)supervised ing is not suitable in our problem settings. We will introduce 
our proposed loss function which is based on network reconstruction errors in the fol-
lowing section.

(1)
h
(l+1)

i
= f

( ∑

j∈Ne(i)

1
√

D̃i,iD̃j,j

h
(l)

j
W

(l)
)
,

(2)H
(l+1) = fReLU

(
D̃

−
1

2 ÃD̃
−

1

2H
(l)
W

(l)
)
.

(3)H
(1) = fReLU

(
ÃXW

(0)
)
.

(4)Lcls = −
∑

i∈L

C∑

c=1

Yic log Ŷic
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3.2  ResGCN

In this section, we present the proposed framework of ResGCN in details. ResGCN con-
sists of four components: residual modeling, representation ing, network reconstruction 
and anomaly ranking. The architecture of this model is illustrated in Fig. 2.

3.2.1  Residual modeling

Although some previous studies explicitly model the residual information for anomaly 
detection on attributed networks, e.g., Radar  (Li et al., 2017) and ANOMALOUS (Peng 
et al., 2018), these methods have two major limitations: (1) They are based on linear mod-
els, e.g., matrix factorization, so these shallow models are incapable of capturing the non-
linearity of networks. (2) The residual information has been modeled from the reconstruc-
tion error. Thus, they cannot be adaptively ed from the input networks. However, real-world 
networks are complex and residual information has different patterns in different datasets. 
Motivated by the study  (Dabkowski & Gal, 2017), which proposes to  the saliency map 
based on convolutional network, we propose to use a deep neural network to  the residual 
by capturing the nonlinearity in ResGCN. Formally,

where R(l) is the input for the fully connected (FC) layer l, and W(l) is the layer-specific 
trainable weight matrix which needs to be ed during the training of the model. Note that Rl

i
 

is the residual for node i in the lth layer. The output of this network is the residual matrix, 
denoted as R.

Another aim of the residual modeling component is to  the attention weights to control 
the message passing in network representation based on the residual information. Simi-
larly, we use FC layer which takes the residual matrix R as input and the calculation is the 
same to Eq. 5. Each output of the FC layer corresponds to the attention weights for each 

(5)R
(l+1) = fReLU(R

(l)
⋅W

(l)),
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Fig. 2  The framework of our proposed ResGCN
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GCN layer shown in Figure 2. Therefore, the number of FC layers to  the weights is equal 
to the number of GCN layers which will be presented below.

3.2.2  Representation ing

The second component of ResGCN aims at ing representations of the input attributed net-
work. Our proposed representation ing method can not only capture the sparsity and non-
linearity of networks but also prevent the information propagating of anomalies. In this 
component, we adopt GCN with attention which is based on the residual information mod-
eled in the first component to  the embeddings of nodes. To make the computations tracta-
ble, we follow (Zhu et al., 2019) and assume all hidden representations of nodes are inde-
pendent. Therefore, we can aggregate node neighbors as follows:

To prevent the information propagation from the anomalous nodes, we propose an attention 
mechanism based on the residual information modeled by the first component to assign dif-
ferent weights to neighbors. The reason is that it is intuitive the nodes with larger residual 
errors are more likely to be anomalies  (Li et  al., 2017). We use the smooth exponential 
function to control the effect of residual information on weights. This is because this func-
tion follows graph attention networks (GAT) (Velickovic et al., 2017) which uses the nor-
malized exponential function to model the attention and it also performs well in capturing 
the uncertainty of graph representation ing in (Zhu et al., 2019). Formally, the weight is 
defined as

where �(l)

j
 are the attention weights of node vj in the l∧ th  layer and � is a hyper-parameter. 

By taking the attention weights into account, the modified aggregated node neighbor repre-
sentation can be written as:

where ◦ is the element-wise product. Then we apply able filters and non-linear activation 
function (ReLU used in this study) to h(l)

Ne(i)
 in order to calculate h(l)

i
 . Formally the layer is 

defined as:

Equivalently, the matrix form is:

where � = exp(−�R(l)) . Similarly, for the first layer, we have

(6)
h
(l)

i
=

∑

j∈Ne(i)

1
√

D̃i,iD̃j,j

h
(l)

j
.

(7)�
(l)

j
= exp(−�R

(l)

j
),

(8)
h
(l)

i
=

∑

j∈Ne(i)

1
√

D̃i,iD̃j,j

h
(l)

j
◦�

(l)

j
,

(9)
h
(l+1)

i
= f

( ∑

j∈Ne(i)

1
√

D̃i,iD̃j,j

(
h
(l)

j
◦�j

)
W

(l)
)
.

(10)H
(l+1) = fReLU

(
D̃

−
1

2 ÃD̃
−

1

2

(
H

(l)
◦�

)
W

(l)
)
,
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The output of the last GCN layer is the node embedding matrix Z.

3.2.3  Network reconstruction

The target of the third component of ResGCN is to reconstruct the network which consists 
of structure reconstruction and attribute reconstruction. Both reconstructions are based on 
the latent representation Z ed in the representation ing component.

Structure Reconstruction Let Â denote the reconstructed adjacency matrix. Follow-
ing  (Ding et  al., 2019a; Kipf & Welling, 2016b), we use the inner product of the latent 
representations between two nodes to predict if an edge exists between them. Intuitively, 
if the latent representations of two nodes are similar, it is more likely that there is an edge 
between them. Formally, the prediction between two nodes vi and vj can represented as 
follows:

where fsigmoid function is to convert the prediction as a probability value. Accordingly, the 
whole reconstructed network structure based on the latent representations Z can be repre-
sented as follows:

Correspondingly, the reconstruction error for structure can be represented as:

       Attribute Reconstruction To reconstruct the original attributes, DOMINANT (Ding 
et al., 2019a) uses another graph convolution layer as the decoder to reconstruct the attrib-
utes. However, considering that graph convolution is simply a special form of Laplacian 
smoothing and mixes the nodal features and its nearby neighbors  (Li et  al., 2018b), we 
adopt the multi-layer perceptron as our decoder instead. Formally, let X̂ be the recon-
structed attributes and the reconstruction process can be formalized as follows:

where n denotes the number of FC layers and Φn(⋅) denotes n-layer perceptron which is 
composed with linear functions followed by non-linear activation function. By taking the 
residual into consideration, the attribute reconstruction is:

where � is the residual parameter to control how much residual information we want to 
use in the attribute reconstruction error. This error is similar to (Li et al., 2017; Peng et al., 
2018) which explicitly incorporate the residual information in attribute reconstruction.

Based on the structure and attribute reconstruction errors, we can propose the objective 
function of our proposed ResGCN model. To jointly  the reconstruction errors, the objec-
tive function of ResGCN is defined as the weighted combination of two errors:

(11)H
(1) = fReLU

(
ÃXW

(0)
)
.

(12)P(Âi,j = 1|zi, zj) = fsigmoid(zi, zj),

(13)Â = sigmoid(ZZT ).

(14)ES = ‖A − Â‖2
F
.

(15)X̂ = Φn(Z),

(16)EA = ‖X − X̂ − 𝜆R‖2
F
,
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where � is the trade-off parameter to control the importance of errors from structure and 
attributed reconstruction. By minimizing the objective function, we aim to approximate the 
input attributed network based on the latent representations. Different from previous stud-
ies which rank reconstruction errors to detect anomalous nodes (Ding et al., 2019a), in our 
proposed model, we rank the residual matrix R for anomaly identification. Formally, the 
anomaly score for node vi is

Finally, the anomalies are the nodes with larger scores and we can detect anomalies accord-
ing to the ranking of anomaly scores. This ranking strategy is superior to reconstruction 
error based methods because in our model the residual is explicitly ed from the data and 
implicitly updated by minimizing the reconstruction error. Therefore, it can better capture 
the anomaly of the data and less be adversely influenced by the noise from the model.

3.3  Complexity analysis

The computational complexity of GCN is linear to the number of edges on the network. 
For a particular layer, the convolution operation is D̃

−
1

2 ÃD̃
−

1

2XW and its complexity is 
O(edf) (Ding et al., 2019a), where e is the number of non-zero elements in the adjacency 
matrix A , d is the dimensions of attributes, and f is the number of feature maps of the 
weight matrix. For network reconstruction, we use link prediction to reconstruct the struc-
ture and multi-layer perceptron to reconstruct the attribute both of which are pairwise oper-
ations. Thus, the overall complexity is O(edF + n2) where F is the summation of all feature 
maps across different layers.

One issue in our model is that the complexity is quadratic with respect to the number of 
nodes in a network. Compared to anomaly detection methods only considering graph struc-
tures, most attributed network anomaly detection methods have higher computational com-
plexity. A simple comparison is shown in Table 12 of Section 5. One reason is that these 
methods have to compute correlation between nodes w.r.t. attributes. However, for deep ing 
based methods, they can be efficiently conducted using advanced hardware such as GPUs 
and TPUs. We would like to leave other algorithmic improvements such as sampling strate-
gies as future work.

4  Experiments

We evaluate the effectiveness of our proposed ResGCN model1 on several real-world 
datasets and present experimental results in order to answer the following three research 
questions.

(17)
L = (1 − 𝛼)ES + 𝛼EA

= (1 − 𝛼)‖A − Â‖2
F
+ 𝛼‖X − X̂ − 𝜆R‖2

F
,

(18)score(vi) = ‖Ri,∶‖2.

1 The source code is available at https:// bitbu cket. org/ paulp ei/ resgcn.

https://bitbucket.org/paulpei/resgcn.
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– RQ1: Does ResGCN improve the anomaly detection performance on attributed net-
works?

– RQ2: Is deep residual matrix ranking strategy effective in identifying anomalies?
– RQ3: How do the parameters in ResGCN affect the anomaly detection performance?

4.1  Datasets

In order to evaluate the effectiveness of our proposed method, we conduct experiments on 
two types of real-world attributed networks: data with and without ground-truth anomaly 
labels. All networks have been widely used in previous studies (Li et al., 2017; Peng et al., 
2018; Ding et al., 2019a; Gutiérrez-Gómez et al., 2019):

– Networks with ground-truth anomaly labels: Amazon and Enron2. Amazon is a co-
purchase network (Müller et al., 2013). It contains 28 attributes for each node describ-
ing properties about online items including rating, price, etc. The anomalous nodes are 
defined as nodes having the tag amazonfail. Enron is an email network (Metsis et al., 
2006) where each node is an email with 20 attributes describing metadata of the email 
including content length, number of recipients, etc, and each edge indicates the email 
transmission between people. Spammers are labeled as the anomalies in Enron data. 
The details of these attributed networks are shown in Table 2.

– Networks without ground-truth anomaly labels: BlogCatalog, Flickr and ACM3. Blog-
Catalog is a blog sharing website where users are the nodes and following relations 
between users are edges. Each user is associated with a list of tags to describe them-
selves and their blogs, which are used as attributes. Flickr is an image hosting and shar-
ing website. Similarly, users and user following relations are nodes and edges, respec-
tively. Tags are the attributes. ACM is a citation network where each node is a paper 

Table 2  Statistics of networks 
with ground-truth anomaly labels

Amazon Enron

# nodes 1418 13533
# edges 3695 176987
# attributes 28 20
# anomalies 28 5

Table 3  Statistics of networks 
without ground-truth anomaly 
labels

BlogCatalog Flickr ACM

# nodes 5196 7575 16484
# edges 171743 239738 71980
# attributes 8189 12074 8337
# anomalies 300 450 600

2 https:// www. ipd. kit. edu/ mitar beiter/ muell ere/ consub/.
3 https:// www4. comp. polyu. edu. hk/ ~xiaoh uang/ Code. html.

https://www.ipd.kit.edu/mitarbeiter/muellere/consub/.
https://www4.comp.polyu.edu.hk/%7exiaohuang/Code.html.
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and each edge indicates a citation relation between papers. Paper abstracts are used as 
attributes. The details of these attributed networks are shown in Table 3.

For the networks with labels, we directly use these provided labels to evaluate our method. 
For the data without labels, we need to manually inject anomalies for empirical evaluation. 
To make a fair comparison, we follow previous studies for anomaly injection (Ding et al., 
2019a). In specific, two anomaly injection methods have been used to inject anomalies by 
perturbing topological structure and nodal attributes, respectively:

– Structural anomalies: structural anomalies are generated by perturbing the topologi-
cal structure of the network. It is intuitive that in real-world networks, small cliques are 
typically anomalous in which a small set of nodes are much more connected to each 
other than average (Skillicorn, 2007). Thus, we follow the method used in (Ding et al., 
2019a, b) to generate some small cliques. In details, we randomly select s nodes from 
the network and then make those nodes fully connected, and then all the s nodes form-
ing the clique are labeled as anomalies. t cliques are generated repeatedly and totally 
there are s × t structural anomalies.

– Attribute anomalies: we inject an equal number of anomalies from structural per-
spective and attribute perspective. Same to (Ding et al., 2019a; Song et al., 2007), s × t 
nodes are randomly selected as the attribute perturbation candidates. For each selected 
node vi , we randomly select another k nodes from the network and calculate the Euclid-
ean distance between vi and all the k nodes. Then the node with largest distance is 
selected as vj and the attributes Xj of node vj is changed to Xi of node v

i
 . The selected 

node v
j
 is regarded as the attribute anomaly.

In the experiments, we set s = 15 and set t to 10, 15, and 20 for BlogCatalog, Flickr and 
ACM, respectively which are the same to (Ding et al., 2019a) in order to make the com-
parison with DOMINANT (Ding et al., 2019a). To facilitate the ing process, in our experi-
ments, we follow (Ding et al., 2019b) to reduce the dimensionality of attributes using Prin-
cipal Component Analysis (PCA) and the dimension is set to 20.

4.2  Evaluation metrics

In the experiments, we use two evaluation metrics to validate the performance of these 
anomaly detection approaches:

– ROC-AUC : we use the area under the receiver operating characteristic curve (ROC-
AUC) as the evaluation metric for anomaly detection as it has been widely used in pre-
vious studies (Li et al., 2017; Peng et al., 2018; Ding et al., 2019a; Gutiérrez-Gómez 
et al., 2019). ROC-AUC can quantify the trade-off between true positive rate (TP) and 
false positive rate (FP) across different thresholds. The TP is defined as the detection 
rate, i.e. the rate of true anomalous nodes correctly identified as anomalous, whereas 
the FP is the false alarm rate, i.e. rate of normal nodes identified as anomalous (Gutiér-
rez-Gómez et al., 2019).

– Precision@K and Recall@K: Since we use the ranking strategy to detect anomalies, 
measures used in ranking-based tasks such as information retrieval and recommender 
systems can be utilized to evaluate the performance. Thus, we use Precision@K to 
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measure the proportion of true anomalies that an approach discovered in its top K 
ranked nodes and Recall@K to measure the proportion of true anomalies that a method 
discovered in the total number of ground truth anomalies.

4.3  Baselines

To demonstrate the effectiveness of ResGCN in detecting anomalies, we compare it with 
the following anomaly detection methods:

– LOF (Breunig et al., 2000) measures how isolated the object is with respect to the sur-
rounding neighborhood and detects anomalies at the contextual level. LOF only consid-
ers nodal attributes.

– AMEN  (Perozzi & Akoglu, 2016) uses both attribute and network structure informa-
tion to detect anomalous neighborhoods. Specifically, it analyzes the abnormality of 
each node from the ego-network point of view.

– Radar (Li et al., 2017) is an unsupervised anomaly detection framework for attributed 
networks. It detects anomalies whose behaviors are singularly different from the major-
ity by characterizing the residuals of attribute information and its coherence with net-
work information.

– ANOMALOUS (Peng et al., 2018) is a joint anomaly detection framework to optimize 
attribute selection and anomaly detection using CUR decomposition of matrix and 
residual analysis on attributed networks.

– DOMINANT (Ding et al., 2019a) utilizes GCN to  a low-dimensional embedding rep-
resentations of the input attributed network and then reconstruct both the topological 
structure and nodal attributes with these representations. Anomalies are selected by 
ranking the reconstruction errors.

– MADAN (Gutiérrez-Gómez et al., 2019) is a multi-scale anomaly detection method. It 
uses the heat kernel as filtering operator to exploit the link with the Markov stability to 
find the context for anomalous nodes at all relevant scales of the network.

In the experiments, for ResGCN, we optimize the loss function with Adam (Kingma & 
Ba, 2014) algorithm. Other parameter settings are shown in the Appendix. Besides, we 
use a two-layer autoencoder as a simple baseline. It disregards the structural information 

Table 4  Performance of different anomaly detection methods w.r.t. ROC-AUC with standard deviation. The 
bold indicates the best performance of all the methods

Amazon Enron

AutoEncoder 0.581 ± 0.004 0.311 ± 0.011
LOF (Breunig et al. 2000) 0.490 ± 0.006 0.440 ± 0.013
AMEN (Perozzi and Akoglu 2016) 0.470 ± 0.005 0.470 ± 0.008
Radar (Li et al. 2017) 0.580 ± 0.007 0.650 ± 0.009
ANOMALOUS (Peng et al. 2018) 0.602 ± 0.004 0.695 ± 0.007
DOMINANT (Ding et al. 2019a) 0.625 ± 0.005 0.685 ± 0.015
MADAN (Gutiérrez-Gómez et al. 2019) 0.680 ± 0.016 0.680  ± 0.009
ResGCN (Our Model) 0.710 ± 0.010 0.660  ±  0.007
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and only reconstructs the attributes. Then the reconstruction errors are used as the rank-
ing score to detect anomalies.

4.4  Experimental results

We conduct experiments to evaluate the performance of ResGCN by comparing it with 
several baselines on two different types of networks: networks with and without ground-
truth anomaly labels. The experimental results w.r.t. ROC-AUC for networks with 
ground-truth labels are shown in Table 4. We observe from these results the following:

Table 5  Performance of different 
anomaly detection methods w.r.t. 
precision@K on BlogCatalog. 
The bold indicates the best 
performance of all the methods

K 50 100 200 300

AutoEncoder 0.120 0.120 0.120 0.107
LOF (Breunig et al. 2000) 0.300 0.220 0.180 0.183
Radar (Li et al. 2017) 0.660 0.670 0.550 0.416
ANOMALOUS (Peng et al. 2018) 0.640 0.650 0.515 0.417
DOMINANT (Ding et al. 2019a) 0.760 0.710 0.590 0.470
MADAN (Gutiérrez-Gómez et al. 2019) 0.600 0.620 0.520 0.410
ResGCN (Our Model) 0.848 0.860 0.670 0.483

Table 6  Performance of different 
anomaly detection methods w.r.t. 
precision@K on Flickr. The bold 
indicates the best performance of 
all the methods

K 50 100 200 300

AutoEncoder 0.240 0.206 0.160 0.120
LOF (Breunig et al. 2000) 0.420 0.380 0.270 0.237
Radar (Li et al. 2017) 0.740 0.700 0.635 0.503
ANOMALOUS (Peng et al. 2018) 0.790 0.710 0.650 0.510
DOMINANT (Ding et al. 2019a) 0.770 0.730 0.685 0.593
MADAN (Gutiérrez-Gómez et al. 2019) 0.710 0.680 0.620 0.540
ResGCN (Our Model) 0.780 0.830 0.875 0.680

Table 7  Performance of different 
anomaly detection methods w.r.t. 
precision@K on ACM. The bold 
indicates the best performance of 
all the methods

K 50 100 200 300

AutoEncoder 0.030 0.030 0.024 0.020
LOF (Breunig et al. 2000) 0.060 0.060 0.045 0.037
Radar (Li et al. 2017) 0.560 0.580 0.520 0.430
ANOMALOUS (Peng et al. 2018) 0.600 0.570 0.510 0.410
DOMINANT (Ding et al. 2019a) 0.620 0.590 0.540 0.497
MADAN (Gutiérrez-Gómez et al. 2019) 0.580 0.540 0.560 0.420
ResGCN (Our Model) 0.812 0.780 0.675 0.573
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– The proposed ResGCN model outperforms other baseline methods on Amazon data 
and achieves comparable result on Enron data. It demonstrates the effectiveness of Res-
GCN.

– Deep models such as DOMINANT and residual analysis based methods such as Radar 
and ANOMALOUS are superior to traditional approaches such as LOF and AMEN. It 
further validates the effectiveness of deep models and residual modeling.

The experimental results w.r.t. Precision@K and Recall@K for networks without ground-
truth labels are shown in Tables 5, 6, 7, 8, 9 and  10. From these evaluation results, we 
draw the following conclusions:

– The proposed ResGCN model outperforms other baseline methods on all three attrib-
uted networks except Precision@50 on Flickr. It demonstrates the effectiveness of our 

Table 8  Performance of different 
anomaly detection methods 
w.r.t. recall@K on BlogCatelog. 
The bold indicates the best 
performance of all the methods

K 50 100 200 300

AutoEncoder 0.026 0.028 0.033 0.036
LOF (Breunig et al. 2000) 0.050 0.073 0.120 0.183
Radar (Li et al. 2017) 0.110 0.223 0.367 0.416
ANOMALOUS (Peng et al. 2018) 0.107 0.217 0.343 0.417
DOMINANT (Ding et al. 2019a) 0.127 0.237 0.393 0.470
MADAN (Gutiérrez-Gómez et al. 2019) 0.105 0.215 0.375 0.380
ResGCN (Our Model) 0.143 0.299 0.456 0.483

Table 9  Performance of different 
anomaly detection methods w.r.t. 
recall@K on Flickr. The bold 
indicates the best performance of 
all the methods

K 50 100 200 300

AutoEncoder 0.016 0.024 0.056 0.082
LOF (Breunig et al. 2000) 0.047 0.084 0.120 0.158
Radar (Li et al. 2017) 0.082 0.156 0.282 0.336
ANOMALOUS (Peng et al. 2018) 0.087 0.158 0.289 0.340
DOMINANT (Ding et al. 2019a) 0.084 0.162 0.304 0.396
MADAN (Gutiérrez-Gómez et al. 2019) 0.078 0.150 0.306 0.356
ResGCN (Our Model) 0.088 0.187 0.393 0.458

Table 10  Performance of 
different anomaly detection 
methods w.r.t. recall@K on 
ACM. The bold indicates the best 
performance of all the methods

K 50 100 200 300

AutoEncoder 0.003 0.007 0.010 0.013
LOF (Breunig et al. 2000) 0.005 0.010 0.015 0.018
Radar (Li et al. 2017) 0.047 0.097 0.173 0.215
ANOMALOUS (Peng et al. 2018) 0.050 0.095 0.170 0.205
DOMINANT (Ding et al. 2019a) 0.052 0.098 0.180 0.248
MADAN (Gutiérrez-Gómez et al. 2019) 0.052 0.086 0.210 0.225
ResGCN (Our Model) 0.079 0.148 0.235 0.309
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method by combining residual modeling and deep representation ing using deep neural 
networks to detect anomalies.

– Superiority of ResGCN to other approaches in Precision@K and Recall@K indicates 
our proposed model can achieve higher detection accuracy and also find more true 
anomalies within the ranking list of limited length.

– Anomaly detection approaches using the deep architecture achieve better performance 
including ResGCN and DOMINANT. This verifies the importance of nonlinearity 
modeling for anomaly detection on attributed networks.

– The residual analysis based models, i.e., Radar and ANOMALOUS, although fail in 
capturing the nonlineariry of networks, achieve better performance than conventional 
approaches such as LOF. This demonstrates the rationality of explicit residual modeling 
in anomaly detection.

4.5  Ranking strategy analysis

One of the advantages of our proposed ResGCN is the deep residual modeling to capture 
the anomalous information. Therefore, different from DOMINANT  (Ding et  al., 2019a), 
which ranks the weighted combination of attribute and structure reconstruction errors 
to select the anomalous nodes, we rank the residual information for anomaly detection. 
In this section, we compare different ranking strategies for anomaly detection: (1)  rank-
ing attribute reconstruction errors, (2) ranking structure reconstruction errors, (3) ranking 
the weighted combination of attribute and structure reconstruction errors, and (4) rank-
ing based on the residual matrix. The first three strategies have been used in (Ding et al., 
2019a) and the last one has been used in Radar (Li et al., 2017). The results of anomaly 
detection w.r.t. ROC-AUC on Amazon and Precision@100 and Recall@100 on BlogCata-
log are shown in Fig. 3.

From the results, it can be observed that:

– ranking based on the residual matrix outperforms other ranking strategies on all the 
datasets w.r.t. different evaluation metrics except on Enron dataset. It demonstrates the 
effectiveness of residual modeling in ResGCN for anomaly detection.

(a) ROC-AUC (b) Precision@100 (c) Recall@100

Fig. 3  Comparison of different ranking strategies based on structure reconstruction, attribute reconstruc-
tion, combination of structures and attributes and residual information for anomaly detection: a ROC-AUC 
on Amazon and Enron, b Precision@100 on BlogCatalog, Flickr and ACM, and c Recall@100 on Blog-
Catalog, Flickr and ACM
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– By combining attribute and structure reconstruction errors, better detection perfor-
mance can be achieved. This result indicates that both attributes and structures con-
tain some useful information to detect anomalies.

– An interesting observation is that attributes play a more important role in detecting 
anomalies than structures as ranking attribute reconstruction errors performs better 
than structure construction errors.

In order to validate the effectiveness of the residual information, we compare the 
average residuals between normal and anomalous nodes in all these datasets. The results 
are shown in Table 11. From this comparison, it can be observed that the average resid-
uals for anomalous nodes are larger than that of normal nodes across all datasets. It 
demonstrates that residual modelling in ResGCN results is an effective indicator helping 
to distinguish normal and anomalous nodes in attributed networks.

4.6  Attributed anomalies vs. structural anomalies

To further analyze the performance of our proposed ResGCN in detecting different 
types of anomalies, we conduct experiments in three different settings: (1) only inject-
ing structural anomalies, (2) only injecting attributed anomalies, and (3) injecting 
both structural and attributed anomalies. To be consistent, we follow the same strate-
gies introduced in Sect. 4.1 to inject these anomalies. Besides, we vary the numbers of 
injected anomalies from 100 to 600 to further investigate the effect of anomaly sizes on 
the performance of ResGCN.

We conduct the experiment on BlogCatalog. The ROC-AUC curves corresponding 
to different settings are shown in Fig. 4. We also compare ResGCN to Dominant in dif-
ferent settings because both methods share the same GCN component. From the results, 
the following conclusions can be drawn:

Table 11  Comparison of 
residuals between normal and 
anomalous nodes

Normal nodes Anomalous nodes

Amazon 3.925 4.259
Enron 1.544 1.992
BlogCatalog 4.568 5.570

Fig. 4  Results of different numbers of injected anomalies in BlogCatalog: a only injecting structural anom-
alies, b only injecting attributed anomalies, and c injecting both structural and attributed anomalies
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– Generally, it is more difficult to detect structural anomalies than attributed anomalies; 
we can observe much higher AUC-ROC in detecting structural anomalies (Fig.  4a). 
This is due to the complex patterns of network data, e.g., non-IID distributions and sub-
graph structures.

– With more attributed anomalies injected, the detection rate increases. On the contrary, 
more injected structural anomalies first corresponds to an increasing detection rate, 
which then decreases when the number of anomaly is becoming larger than 400. This 
may happen because added structural anomalous nodes make the network even more 
difficult to analyze.

– Our proposed ResGCN outperforms Dominant in different setting which demonstrates 
the effectiveness of our method. Considering the key difference between ResGCN and 
Dominant, it demonstrates the effectiveness of residual modeling in guiding representa-
tion ing of GCN.

4.7  Parameter analysis

ResGCN has two specific (hyper)parameters: (1) � setting the trade-off for structure and 
attribute reconstruction errors, and (2) � corresponding to the residual in the loss function 
in Eq. 17.

We investigate the impact of these two parameters separately. Specifically, we test 
the anomaly detection performance by ranging � and � from 0.0 to 1.0 on Amazon and 

Fig. 5  Influence of the trade-off parameter � for structure and attribute reconstruction errors (ranging from 
0.0 to 1.0): a ROC-AUC on Amazon, b Precision@100 on BlogCatalog, and c Recall@100 on BlogCatalog

Fig. 6  Influence of the residual parameter � for loss function (ranging from 0.0 to 1.0): a ROC-AUC on 
Amazon, b Precision@100 on BlogCatalog, and c Recall@100 on BlogCatalog
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BlogCatalog datasets. The results are summarized in in Figures 5 and 6 from which we can 
observe that:

– The influence of � shows different trends on each of the networks. For Amazon, the 
performance becomes much better when � ≥ 0.1 . For BlogCatalog, larger � achieves 
better performance. The commonnality is that ResGCN achieves the best performance 
on both networks when � = 0.8.

– The impact of � is similar on different networks, i.e., both Amazon and BlogCatalog 
prefer smaller � . Empirically, the best detection performance can be achieved when 
� = 0.1 on Amazon and � = 0.2 on BlogCatalog.

5  Related work

Anomaly detection is one of the active research areas in data mining and machine ing. 
There are different anomalies in different types of data, e.g., text  (Kannan et  al., 2017; 
Ruff et al., 2019), network (Bhuyan et al., 2013) and temporal  (Gupta et al., 2013) data. 
Earlier studies of anomaly detection on graphs mainly focused on structural anomalies, 
e.g., (Noble & Cook, 2003) and (Eberle & Holder, 2007). However, compared to anomaly 
detection approaches on plain networks, anomaly detection on attributed networks is more 
challenging because both structures and attributes should be taken into consideration. In 
this section, we summarize the related work of anomaly detection on attributed networks.

Real-world networks often come with auxiliary attribute information, so recent years 
have witnessed an increasingly amount of efforts in detecting anomalies on attributed 
networks. Existing anomaly detection approaches on attributed networks can be cat-
egorized into several different types  (Ding et  al. 2019a): community analysis, subspace 
selection,residual analysis and deep ing methods.

CODA  (Gao et  al., 2010) focuses on community anomalies by simultaneously find-
ing communities as well as spotting anomalies using a unified probabilistic model. 
AMEN (Perozzi & Akoglu, 2016) uses both attribute and network structure information to 
detect anomalous neighborhoods. Radar (Li et al., 2017) detects anomalies whose behav-
iors are singularly different from the majority by characterizing the residuals of attribute 
information and its coherence with network information. ANOMALOUS  (Peng et  al., 
2018) is a joint anomaly detection framework to optimize attribute selection and anomaly 
detection using CUR decomposition of matrix and residual analysis on attributed networks. 
DOMINANT (Ding et al., 2019a) utilizes GCN to compress the input attributed network 
to succinct low-dimensional embedding representations and then reconstruct both the 
topological structure and nodal attributes with these representations. MADAN (Gutiérrez-
Gómez et al., 2019) is a multi-scale anomaly detection method. It uses the heat kernel as 
filtering operator to exploit the link with the Markov stability to find the context for outlier 
nodes at all relevant scales of the network. For traditional anomaly detection methods on 
graphs, interested readers are referred to (Akoglu et al., 2015) for detailed discussion.

With the popularity of network embedding techniques, which assigns nodes in a net-
work to low-dimensional representations and these representations can effectively pre-
serve the network structure (Cui et al., 2018), ing anomaly aware network representations 
also attracts huge attentions. Recently, there are several studies taking both problems into 
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consideration to  anomaly aware network embedding in attributed networks (Liang et al., 
2018; Zhou et al., 2018; Bandyopadhyay et al., 2019; Li et al., 2019; Bandyopadhyay et al., 
2020). SEANO  (Liang et  al. 2018) is a semi-supervised network embedding approach 
which s a low-dimensional vector representation that systematically captures the topologi-
cal proximity, attribute affinity and label similarity of nodes. SPARC (Zhou et al., 2018) is 
a self-paced framework for anomaly detection which gradually s the rare category oriented 
network representation. ONE  (Bandyopadhyay et  al., 2019) jointly align and optimize 
the structures and attributes to generate robust network embeddings by minimizing the 
effects of outlier nodes. DONE and AdONE (Bandyopadhyay et al., 2020) use two parallel 
autoencoders for link structure and attributes of the nodes respectively. By exploring the 
reconstruction errors for structures and attributes, the proposed methods can  embedding 
and detect anomalies. Another related embedding methods aim to capture the uncertainties 
of ed representations, such as and DVNE (Zhu et al., 2018) struc2gauss (Pei et al., 2020), 
where each node is mapped to a Gaussian distribution and the variance can capture the 
uncertainties. Intuitively, nodes with higher uncertainties are more likely to be anomalous.

A brief comparison of some representative anomaly detection methods is presented 
in Table  12. Among these previous methods, Radar  (Li et  al., 2017) and ANOMA-
LOUS  (Peng et  al., 2018) are most relevant to our proposed ResGCN. Both methods 
model residual information to identify anomalies. However, they can only capture the 
linear dependency because they use matrix factorization as the framework. Our method 
employs deep neural network which can effectively capture the non-linear residual infor-
mation and is more applicable for real-world complex networks. Similarly to our method, 
Dominant (Ding et al., 2019a) makes use of GCN for network reconstruction. However it 
does not distinguish normal and anomalous nodes in message passing of GCN, unlike our 
ResGCN, which uses residual as attention to guide the message passing so that the nega-
tive influence of anomalies can be reduced. In comparison with previous approaches espe-
cially those that are able to detect both structural and attribute anomalies, the complexity 

Table 12  Comparison of different anomaly detection methods.

Struc Anomaly and Attr Anomaly indicate for each method whether it can detect structural anomalies and 
attribute anomalies respectively. In the complexity, n, m and d are number of nodes, edges and attributes 
respectively. k and e are the number of iterations and dimension of embeddings respectively. In Dominant 
and our proposed ResGCN, H is the summation of all feature maps across different layers. In CatchSync, c 
is the number of grids and in AMEN, |C| is the neighborhood size

Method Struc Anomaly Attr Anomaly Complexity

LOF
√

× O(n log n)

OddBall
√

× –
CatchSync

√
× O(e + cn)

SCAN
√

× O(n)
AMEN

√ √
O(|C|2d + md)

Radar
√ √

O(kdn2 + kn3)

ANOMOULOUS
√ √

O(kdn2)

Dominant
√ √

O(edH + n2)

MADAN
√ √

O(n2)

AnomalyDAE
√ √

O(ne + me + de + nd + n2)

ResGCN
√ √

O(edH + n2)
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of ResGCN is not increased, i.e., the major part of the complexity is still O(n2) , but its 
performance accuracy is.

Another related work is graph convolutional networks (GCNs). The original GCN (Kipf 
& Welling, 2016a) has been proposed to learn node representations by passing and aggre-
gating messages between neighboring nodes. Different variants extending GCN have been 
proposed, e.g., by introducing attention (Velickovic et al., 2017), adding residual and jump-
ing connections (Xu et al., 2018) and disentangling node representations (Ma et al., 2019).

6  Conclusions

In this paper, we proposed a novel graph convolutional network (GCN) with attention 
mechanism, ResGCN, to address the problem of anomaly detection on attributed networks. 
ResGCN can effectively address the limitations of previously proposed approaches. Its 
GCN component models the high-order node interactions with multiple layers of nonlin-
ear transformations, thus capturing the sparsity and nonlinearity of networks. Its attention 
mechanism based on the explicit deep residual modeling can prevent anomalous nodes 
from propagating the abnormal information in the message passing process of GCN. Rank-
ing the residual information is employed to detect anomalies. The experimental results 
demonstrate the effectiveness of ResGCN and its advantages over the previously proposed 
methods. In the future, we would like to investigate the extensions of ResGCN to dynamic 
and streaming networks.

Appendix: Implementation details

In the experiments, we used Adam (Kingma and Ba 2014) algorithm to optimize the loss 
function. The parameters settings we used are shown in Table 13.

For previously proposed approaches included in our experimental study, we used the 
reference implementations by the authors if their source code have been publicly avail-
able. We set all hyper-parameters to the values recommended in the papers, in which the 
approaches were introduced:

– AMEN, we use the implementation in (Perozzi and Akoglu 2016). https:// github. com/ 
phane in/ amen.

– Radar  (Li et  al. 2017), the official code: http:// www. ece. virgi nia. edu/ ~jl6qk/ code/ 
Radar. zip.

Table 13  Parameters used in the 
experiments

Parameter Value

Learning rate 0.01
GCN layers [64, 32]
FC layers (residual modeling) [64, 64, 64]
FC layers (attention modeling) [64, 64]
FC layers (attribute decoder) [32, 64]

https://github.com/phanein/amen
https://github.com/phanein/amen
http://www.ece.virginia.edu/%7ejl6qk/code/Radar.zip
http://www.ece.virginia.edu/%7ejl6qk/code/Radar.zip
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– ANOMOULOUS  (Peng et  al. 2018), the official code: http:// www. ece. virgi nia. edu/ 
~jl6qk/ code/ ANOMA LOUS. zip.

– MADAM, we use the implementation in (Gutiérrez-Gómez et al. 2019). https:// github. 
com/ leogu ti85/ MADAN.

– Dominant  (Ding et  al. 2019a), the official code: https:// github. com/ kaize 0409/ GCN_ 
Anoma lyDet ection.

For LOF, we use the implementation of LOF in scikit-learn4.
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