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A B S T R A C T

All-solid-state batteries are claimed to be the next-generation battery system, in view of their safety accompa-
nied by high energy densities. A new advanced, multiscale compatible, and fully three-dimensional model for
solid electrolytes is presented in this note. The response of the electrolyte is profoundly studied theoretically
and numerically, analyzing the equilibrium and steady-state behaviors, the limiting factors, as well as the most
relevant constitutive parameters according to the sensitivity analysis of the model, the novel model is finally
validated in accordance with experimental results.
1. Introduction

All solid state batteries (SSBs) are claimed to be the next-generation
battery system, since they combine superior thermal as well as electro-
chemical stability and avoid hazardous liquid electrolyte leakage [1,2].
As pointed out extensively in [3], however, SSBs are affected by a
number of chemical and stability issues. In spite they have been mostly
investigated experimentally, digital twins can guide and even partially
replace experimental campaigns. Computational simulations easily and
rapidly allow selecting constituents and tailoring architectures, provid-
ing meaningful insights on the evolution of ionic concentrations during
operation [4–7] and predicting limiting factors together with material
degradation in SSBs charge/discharge cycles [3,8–10].

At standard conditions, some of the Li ions in a solid electrolyte
are thermally excited. Chemical ionization reactions occur, leaving
behind uncompensated negative charges, associated with a vacancy
in the matrix at the place formerly occupied by lithium. In most
cases, see e.g. [11] and the references therein, the ionic transfer is
described by a single ion conduction model. Since the negative vacancies
in the lattice are modeled as firmly held, they cannot flow and the
resulting concentration of Li ions across the solid electrolyte is uniform
and known a priori in view of the electroneutrality [12]. Because no
concentration gradient drives the ionic motion, those models reproduce
essentially Ohm’s law.

More recently, single ion conduction models have been displaced
by two-mechanism models, which describe more realistically the ionic

∗ Corresponding author.
E-mail address: alberto.salvadori@unibs.it (A. Salvadori).

motility in solid electrolytes as due to hopping and interstitial diffu-
sion. One-dimensional mathematical models for Lithium phosphorus
oxynitride (LiPON henceforth) have been published in [13–15].

In this note, we propose a novel model of the ionic transport in
solid electrolytes. It is set in a rigorous thermodynamics framework and
accounts for the hopping/interstitial mechanisms and their interactions
during batteries operations [16]. Profound theoretical and numerical
investigations of the response of the electrolyte are here provided,
analyzing the equilibrium and steady state behaviors, the limiting
factors of the model, as well as the sensitivity of the ionic response to
the most relevant constitutive model parameters. The model accounts
for the electric field by means of the quasi-static Ampere–Maxwell
equations, in order to ensure the multiscale compatibility, as largely
described in [17]. Whereas the model is fully three-dimensional by
nature, a whole cell one-dimensional FEM code has been built to the
aim of validation against experimental evidences published in [18]. In
that implementation, interfaces mechanisms have been accounted for: in-
termediate electrode/electrolyte layers have been modeled as interfaces
between electrodes and the solid electrolyte, in terms of potential jumps
as for plate capacitors [19]. Stemming from rigorous thermodynamic
setting, conditions of non Butler–Volmer type arise [20].

The model published in [15] inspired this study, which is grounded
in the thermo-mechanics of continua. The proposed formulation de-
velops further the theory in [15], where both interstitial lithium and
negative vacancies were allowed to flow, thus creating a concentration
vailable online 13 January 2022
352-152X/© 2021 Elsevier Ltd. All rights reserved.
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gradient at steady state that resembles the liquid electrolyte distribu-
tions found for instance in [17,21]. Depicting vacancies with the same
conceptual framework used for negative ions in liquid electrolytes,
i.e. as able to move in the solid matter with an entropic brownian mo-
tion together with migration within an electric field, does not appear to
be physically sound. Accordingly, we reformulate the process of vacan-
cies replenishment and make it multi-scale-compatible, which appears
to be relevant for composite cathodes [6,7,22]. In our formulation,
we model explicitly the dynamic filling of vacancies by neighboring
positions, a motion of positive ions which in turn creates new vacancies.
To this aim, we claim that after the ionization reactions occur, some
ions hop and fill neighboring vacancies, whereas the remaining positive
ions move in a meta-stable interstitial state. In this way, positive
ions are the only moving species and the concentration of negatively
charged vacancies results from the solution of the governing equations.
Such a set of partial differential equations – mass balance equations,
chemical kinetics laws, balance of momentum, and Ampere’s law – is
detailed in Section 2. Those continuity equations shall be supplied with
constitutive laws, which arise from a rigorous thermodynamic analysis
formulated in Section 3.

The steady state response of the system as well as the transient
path of the unknown fields when initial conditions are far from equi-
librium, a typical situation in real batteries, are retrieved via numerical
simulations with the finite element method (FEM) (see Section 6.3).

Governing equations can be solved rather straightforwardly at
steady state as well as at equilibrium: the closed form solutions high-
light the role of material parameters, some of which can be measured
only with major uncertainties. The sensitivity analysis (SA) helps in
identifying model parameters that contribute the most to the predic-
tion, and thus identifying the accuracy required in measuring these
parameters [23]. The SA carried out in Section 7 allows to figure out
the effect of the variability of model parameters on the variability of
its prediction. The SA suggests that the fraction of Li that resides in
equilibrium in the mobile state is the most sensitive parameter.

2. Electrochemical modeling of the solid electrolyte

The version of the model detailed in what follows is a restriction of
a broader multi-physics formulation, which includes mechanical and
thermal interactions according to [24]. Since the present note focuses
on the electrochemical performance, for the sake of conciseness we
assume both thermal and mechanical equilibrium, with relevant fields
fixed during electrolyte operation.

2.1. Chemical kinetics

The amorphous structure of the LiPON electrolyte is schematically
shown in Fig. 1. It highlights two types of nitrogen bonds, either
triply- or doubly coordinated. Li0 denotes the (ionic) lithium bound
to the non-bridging oxygen atoms, Li+ is a lithium ion and n− is the
uncompensated negative charge associated with a vacancy formed in
the LiPON matrix at the place where Li+ was originally bound. The
maximal concentration of host-sites, denoted with 𝑐0, is established by
the stoichiometric composition of the electrolyte material. It is reached
in the ideal case of absolute zero temperature, when all available host
sites are fully filled with lithium ions and the ionic conductivity van-
ishes because all ions are immobile, see Fig. 1a. In standard conditions,
see Fig. 1b, some of the Li-ions are thermally excited and the chemical
ionization reaction

Li0
𝑘ion𝑓
⇄
𝑘ion𝑏

Li+ + 𝑛− (1)

occurs, 𝑘ion𝑓 and 𝑘ion𝑏 being the forward and backward rate constants for
the ionization (or recombination) reaction, respectively. Their ratio is
the equilibrium constant of reaction (1)

𝐾 ion
eq =

𝑘ion𝑓
ion
. (2)
2

𝑘𝑏
The ionization reaction (1) leaves behind uncompensated negative
charges, which are associated to a vacancy in the LiPON matrix at
the place formerly occupied by lithium. In [15] those vacancies were
modeled with the same conceptual formalism used for negative ions
in liquid electrolytes, i.e. as able to move in the solid matter driven
by an entropic Brownian motion together with migration within an
electric field. Here, we attempt to explicitly account for the dynamic
filling of vacancies by neighboring positions, where new vacancies
are created. To this aim, we claim that after the chemical ionization
reaction (1) occurs, some ions, denoted henceforth with Li+hop, hop
and fill neighboring vacancies, whereas the remaining Li+ ions move
in a meta-stable interstitial state. This dynamic behavior is described
by a further reaction, that converts part of the full amount of ions
made available by reaction (1) into hopping lithium with the ability
to fill vacancies, leaving to the remaining ions the interstitial motion
responsibility :

Li+
𝑘hop𝑓
⇄
𝑘hop𝑏

Li+hop . (3)

The ratio between 𝑘hop𝑓 and 𝑘hop𝑏 , which are the rate constants for
reaction (3), is the equilibrium constant of that reaction

𝐾hop
eq =

𝑘hop𝑓

𝑘hop𝑏

. (4)

In summary, reaction (1) makes lithium ions capable of unbinding
from the non-bridging oxygen atoms and move within the complex
amorphous LiPON structure, either by filling neighboring vacancies or
by flowing interstitially. The proportion of ions in these two mech-
anisms is governed by reaction (3). When 𝑘hop𝑓 = 0, no hopping
mechanism is accounted for. As 𝑘hop𝑓 increases, since more interstitial
lithium is depleted in favor of hopping, more vacancies are formed in
the ionization reaction (1) thus favoring the hopping mechanism.

Concentrations 𝑐𝛼 express the molarity (i.e. the number of moles
per unit volume) of a generic species 𝛼: 𝑐Li+ and 𝑐Li+hop denote the
concentration of mobile Li ions, 𝑐Li0 the concentration of immobile
lithium, and 𝑐n− the concentration of uncompensated negative charges.
The mass flux, i.e. the number of moles of species 𝛼 measured per unit
area per unit time, is denoted with ℎ⃗𝛼 . Scalar and vector fields are
efined in space �⃗� ∈ 𝑉 and time 0 ≤ 𝑡 ≤ 𝑡𝑓 . Functional dependence,
owever, is specified when necessary only to enhance readability.

For ideal systems, in which chemical potentials have entropy and
nergy contributions only, the chemical kinetics of reactions (1) and
3) are modeled via the law of mass action [25]:

= 𝑘ion𝑓
𝜃Li0

1 − 𝜃Li0
− 𝑘ion𝑏

𝜃Li+
1 − 𝜃Li+

𝜃n−
1 − 𝜃n−

, (5)

where 𝜃𝛼 is the dimensionless ratio

𝜃𝛼 =
𝑐𝛼
𝑐𝑠𝑎𝑡𝛼

nd 𝑐𝑠𝑎𝑡𝛼 is the saturation limit of the generic species 𝛼. In diluted
onditions, i.e. 𝜃𝛼 ≪ 1, Eq. (5) writes

= 𝑘ion𝑓 𝑐Li0 − 𝑘
ion
𝑏 𝑐Li+ 𝑐n− , (6a)

with a small abuse of notation on the kinetic constants. The reaction
rate of the interstitial-hopping transformation is

𝑦 = 𝑘hop𝑓 𝑐Li+ − 𝑘hop𝑏 𝑐Li+hop . (6b)

As observed in [24] for the elastic and swelling contributions,
lectric potential may affect the kinetics of reaction and hence the law
f mass action. Consistently with [24] and the Arrhenius formalism, it
s proposed here that factors 𝑘𝑓 and 𝑘𝑏 in Eqs. (6a), (6b) are function

of the electric potential 𝜙 in the following way:

ion ion 𝜁𝐹𝜙
𝑅𝑇 , 𝑘hop = 𝑘hop 𝑒

𝜁𝐹𝜙
𝑅𝑇 , (6c)
𝑘𝑓 = 𝑘𝑓0 𝑒 𝑓 𝑓0
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Fig. 1. LiPON matrix with triply- and doubly coordinated nitrogen (a). Movements of charged particles towards the interstitial space and by means of particle hopping, representing
the main ionic conductivity mechanisms in LiPON (b).
⃗

𝑘ion𝑏 = 𝑘ion𝑏0 𝑒
𝜁𝐹𝜙
𝑅𝑇 , 𝑘hop𝑏 = 𝑘hop𝑏0

𝑒
𝜁𝐹𝜙
𝑅𝑇 , (6d)

with 𝑅 = 8.31446 J K−1mol−1 identifying the gas constant and 𝐹 =
96485.338 C mol−1 the Faraday’s constant. Furthermore, 𝑇 denotes
temperature, 𝑘𝑓0 and 𝑘𝑏0 are positive constants, 𝜁 is an amplification
factor. When 𝜁 = 0, the influence of the electric potential vanishes. This
new formulation is consistent with the usual mass action law, which
is recovered when the potential equals the reference potential, here
taken as zero. Note that the equilibrium constants 𝐾eq in Eqs. (2) or (4)
remain independent upon the electric potential, which thus influences
the velocity of the two reactions but not their equilibrium state.

2.2. Mass balance

The characteristic feature of our formulation is that positive ions
are the only moving species. Uncompensated negative charges do not
possess any intrinsic motility, hence there is no flow ℎ⃗−n (𝑥, 𝑡) of nega-
tive charges. The concentration of vacancies is altered merely by the
chemical ionization reaction (3).

In view of Eq. (1), every lithium ion that leaves the host site creates
a negatively charged uncompensated vacancy. Therefore, since the
amorphous structure is not suppose to reorder itself, the concentration
of the vacancies plus the concentration of immobile lithium shall re-
main constant in time and equal the maximal concentration of host-sites

𝑐Li0 + 𝑐
−
n = 𝑐0 . (7)

The mass balance equations model the transport of species within
the solid electrolyte. Continuity equations are stated in a general,
three-dimensional framework, although applications in this note will
be merely one-dimensional (see Section 6). For the immobile lithium
Li0 and for uncompensated negative charges n−, the mass balance
equations do not account for fluxes
𝜕𝑐Li0
𝜕𝑡

= −𝑤, (8a)
𝜕𝑐n−
𝜕𝑡

= 𝑤, (8b)

where 𝑤 emanates from the mass action law (6a). For the interstitial
and hopping processes the mass balance equations read
𝜕𝑐Li+ + div

[

ℎ⃗ +

]

= 𝑤 − 𝑦, (9a)
3

𝜕𝑡 Li
𝜕𝑐Li+hop
𝜕𝑡

+ div
[

ℎ⃗Li+hop

]

= 𝑦, (9b)

where the reaction rate of the interstitial-hopping transformation 𝑦 is
recovered from Eq. (6b).

2.3. Charge balance

Charges in the solution are due to negatively charged uncompen-
sated vacancies as well as to the transport of interstitial and hopping
positive ions:

𝜁 = 𝐹
(

𝑐Li+ + 𝑐Li+hop − 𝑐n−
)

. (10a)

The flux of mass in balance (9) of each species contributes to a current
density �⃗�

𝑖 = 𝐹
(

ℎ⃗Li+ + ℎ⃗Li+hop

)

. (10b)

2.4. Maxwell’s equations for electro-quasi-statics

The model identified so far involves 4 different species, whose
concentrations are 𝑐Li0 , 𝑐n− , 𝑐Li+ , and 𝑐Li+hop . The set of 4 mass balance
equations, (8) and (9), contains 5 unknowns, i.e. the 4 mass concen-
trations plus the electric potential, which is constitutively related to
the mass fluxes. An additional equation is required and a common
selection in battery modeling is the electroneutrality condition (see
among others [26], page 286), which for the model at hand reads

𝑐Li+ (�⃗�, 𝑡) + 𝑐Li+hop (�⃗�, 𝑡) = 𝑐n− (�⃗�, 𝑡) . (11)

In several studies, originated by Newman [26] and collectively gath-
ered in the terminology ‘‘porous electrode theory’’, condition (11) is
used in place of Maxwell’s law - see among others [18,27–35]. Taking
advantage of Eq. (11), the electric field is not constrained in any
way to satisfy Maxwell’s equations. Remarkably, electroneutrality does
violate1 Maxwell’s equations (see for instance [36]).

1 This is immediately accomplished in 1D, where in view of electroneu-
trality Gauss law reads 𝜕𝐷

𝜕𝑥
= 0, thus leading to a constant electric

field.
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As discussed in [12,17], the electroneutrality assumption (11) can-
not be used in multiscale approaches, since it does not ensure energy
conservation in the scales transitions.2 This is a major obstacle to
the development of predictive theories for the battery response with
multi-scale models [16,39–46].

In the batteries modeling literature [26,47,48], it is generally as-
sumed that the electromagnetic fields and their interactions are static.

his assumption implies vanishing interference effects between the
lectric and magnetic phenomena. As a consequence, the set of
axwell’s equations are replaced by their electrostatic counterparts,

s for the steady current case [49]. In the present paper, Eq. (11) is
ot used as a fundamental law. Instead, electromagnetics is explic-
tly taken into account via the electro-quasi-static formulation [50] of
axwell’s equations,3 following the same path of reasoning of [12]. By

his approach, the time-dependent hyperbolic Maxwell’s equations are
eplaced by parabolic equations that can be solved in a more simple
ay.

Gauss’s laws relate the electric displacement and magnetic fields (�⃗�
nd �⃗� respectively) emanating from the distribution (10a) of electric
harge 𝜁

iv
[

�⃗�
]

= 𝜁 , div
[

�⃗�
]

= 0. (12)

n the light of the simplification made, the time derivative of the
agnetic field is negligible within Maxwell–Faraday’s law of induction,
ence the electric field is irrotational and derives from an electrostatic
otential 𝜙:

⃗ = −∇ [𝜙 ] . (13)

inally, Ampère’s law (with Maxwell’s correction)

𝜕�⃗�
𝜕 𝑡

+ �⃗� = curl
[

�⃗�
]

(14)

relates the electrical current (10b) and the time variation of the electric
displacement field to the magnetizing field �⃗� . The impingement of
the latter in Ampère’s law cannot be disregarded in the simplified
framework of electro-quasi-statics. Nonetheless, a differential form can
be straightforwardly obtained from Ampère’s law (14), after application
of the divergence operator:

div
[

𝜕�⃗�
𝜕 𝑡

+ �⃗�
]

= 0. (15)

.5. Weak form and boundary conditions

A weak form that entails a proper energy meaning can be given as
n [12] multiplying the strong form of the mass balance equations by a
uitable set of chemical potentials test functions (�̂�Li0 , �̂�n− , �̂�Li+ , �̂�Li+hop )
nd performing integration by parts, exploiting Green’s formula with
he aim of reducing the order of differentiation. The weak forms of the
ass balance Eqs. (8), (9) read:

∫𝑉
�̂�Li0

𝜕𝑐Li0
𝜕𝑡

d𝑉 = −∫𝑉
�̂�Li0 𝑤 d𝑉 , (16a)

∫𝑉
�̂�n−

𝜕𝑐n−
𝜕𝑡

d𝑉 = ∫𝑉
�̂�n− 𝑤 d𝑉 , (16b)

2 In fact, in a rigorous multi scale mathematical formulation – see [37,38] –
he micro to macro scale transition requires that the same power is expended
t the two scales, thus assuring that energy is neither artificially generated nor
rtificially dissipated across the scales. If electroneutrality is used in place of
axwell’s equations, recovering the energy description of the electromagnetic

nteractions is hardly possible.
3 As insightfully noticed in [50] electrostatics is a particular case of the

eneral Maxwell’s equations but electro-quasi-statics is not, it is an approxima-
tion. Such an approximation is acceptable under some conditions, described
4

in [51].
∫𝑉
�̂�Li+

𝜕𝑐Li+
𝜕𝑡

− ∇
[

�̂�Li+
]

⋅ ℎ⃗Li+ d𝑉 + ∫𝜕𝑉
�̂�Li+ ℎ⃗Li+ ⋅ 𝑛 d𝛤

= ∫𝑉
�̂�Li+ (𝑤 − 𝑦) d𝑉 , (16c)

∫𝑉
�̂�Li+hop

𝜕𝑐Li+hop
𝜕𝑡

− ∇
[

�̂�Li+hop

]

⋅ ℎ⃗Li+hop d𝑉 + ∫𝜕𝑉
�̂�Li+hop ℎ⃗Li

+
hop

⋅ 𝑛 d𝛤

= ∫𝑉
�̂�Li+hop 𝑦 d𝑉 , (16d)

where 𝑛 denotes the outward normal. The electrolyte boundary 𝜕𝑉 ,
hich forms the interfaces with the two electrodes, is of great relevance

n energy storage systems. A large amount of research has been devoted
o modeling the electrical double layer at solid-state electrochemical
nterfaces [52]. The weak form (16) clearly points out the need of
plitting the lithium flux at the boundary into two terms,

⃗Li+ ⋅ 𝑛 = −ℎ𝐵𝑉
Li+

�⃗� ∈ 𝜕𝑁𝑉 , (17a)

⃗
Li+hop

⋅ 𝑛 = −ℎ𝐵𝑉
Li+hop

�⃗� ∈ 𝜕𝑁𝑉 , (17b)

where the mass fluxes at the boundary, termed ℎ𝐵𝑉
Li+

and ℎ𝐵𝑉
Li+hop

, must
escend from a proper interface equation, generally of Butler–Volmer
ype. Discussions on the electrode kinetics are differed to Section 8.

With a similar path of reasoning and accounting for Eq. (10b), the
eak form of Ampère’s law (15) reads

∫𝑉
−∇

[

�̂�
]

⋅
{

𝜕�⃗�
𝜕𝑡

+ 𝐹
(

ℎ⃗Li+ + ℎ⃗Li+hop

)}

d𝑉

+ ∫𝜕𝑉
�̂�

{

𝜕�⃗�
𝜕𝑡

+ 𝐹
(

ℎ⃗Li+ + ℎ⃗Li+hop

)}

⋅ 𝑛 d𝛤 = 0 . (18)

Boundary conditions for the electric potential emanate from Am-
ère’s law (14), accounting for constraints (17).
{

𝜕�⃗�
𝜕𝑡

+ 𝐹
(

ℎ⃗Li+ + ℎ⃗Li+hop

) }

⋅ 𝑛 = curl
[

�⃗�
]

⋅ 𝑛 �⃗� ∈ 𝜕𝑉 . (19)

n modeling a full battery cell, as in Section 8, it can be assumed that
he curl of the magnetizing field is continuous across all interfaces when
rojected in the normal direction. Such a continuity condition cannot
e rephrased when the electrolyte only is modeled. It will be assumed in
uch a case that �⃗� along the boundary can be estimated from the ‘‘steady
urrent’’ theory (see [49], chapter 3). Ampère’s law without Maxwell’s
orrection describes the magnetic field generated by a steady current

url
[

�⃗�
]

⋅ 𝑛 = −𝐹
(

ℎ𝐵𝑉
Li+

+ ℎ𝐵𝑉
Li+hop

)

�⃗� ∈ 𝜕𝑁𝑉 . (20)

n view of (17) and (19), boundary conditions for the electric potential
ead:
𝜕�⃗�
𝜕𝑡

⋅ 𝑛 = 0 �⃗� ∈ 𝜕𝑁𝑉 . (21)

Note once again that this condition is not imposed in full cells. Finally,
in order to make the problem solvable, Dirichlet boundary conditions
(usually homogeneous) for the potential need to be added.

In conclusion, the weak form of the balance equations can be written
n terms of the potentials in time interval

[

0, 𝑡𝑓
]

as

Find 𝑧 ∈  [0,𝑡𝑓 ] such that d
d𝑡
𝑏 (�̂�, 𝑧(𝑡)) + 𝑎(�̂�, 𝑧(𝑡)) + 𝑐(�̂�, 𝑧(𝑡)) = 𝑓 (�̂�)

∀�̂� ∈  (22)

where

𝑏 (�̂�, 𝑧) = ∫𝑉
�̂�Li0 𝑐Li0 + �̂�n− 𝑐n− + �̂�Li+ 𝑐Li+ + �̂�Li+hop 𝑐Li

+
hop

d𝑉

− ∫𝑉
∇
[

�̂�
]

⋅ �⃗� d𝑉 (23a)

(�̂�, 𝑧(𝑡)) = −∫𝑉
∇
[

�̂�Li+
]

⋅ ℎ⃗Li+ + ∇
[

�̂�Li+hop

]

⋅ ℎ⃗Li+hopd𝑉

+ ∇
[

�̂�
]

⋅ 𝐹
(

ℎ⃗Li+ + ℎ⃗Li+
)

d𝑉 (23b)
∫𝑉 hop
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𝑐 (�̂�, 𝑧(𝑡)) = ∫𝑉
�̂�Li0 ⋅𝑤 d𝑉 − ∫𝑉

�̂�n− ⋅𝑤 d𝑉

− ∫𝑉
�̂�Li+ ⋅ (𝑤 − 𝑦) d𝑉 − ∫𝑉

�̂�Li+hop ⋅ 𝑦 d𝑉 (23c)

𝑓 (�̂�) = −∫𝜕𝑁𝑉
�̂�Li+ℎ

𝐵𝑉
Li+

+ �̂�Li+hopℎ
𝐵𝑉
Li+hop

− 𝐹 �̂�
(

ℎ𝐵𝑉
Li+

+ ℎ𝐵𝑉
Li+hop

)

d𝛤

(23d)

with 𝑧 = { 𝑐Li0 , 𝑐n− , 𝑐Li+ , 𝑐Li+hop , 𝜙}, 𝑦 = {𝜇Li0 , 𝜇n− , 𝜇Li+ , 𝜇Li+hop , 𝜙}.
olumns 𝑧 and 𝑦 collect the time-dependent unknown fields. Column �̂�
ollects the steady-state test functions that correspond to the unknown
ields in 𝑦. To computationally solve the (either weak or strong) prob-
em, constitutive equations must be specified, which is the subject of
ection 3. Ellipticity of operators, functional and numerical properties
f the solution and of its approximation depend on the constitutive
ssumptions and on the choice of the correct functional spaces  [0,𝑡𝑓 ], ,

whose identification falls beyond the scope of the present paper.

2.6. Equilibrium solution

We will discriminate the equilibrium conditions, that occur at no
current flowing in the electrolyte, from the steady-state conditions, in
which processes simply become time-independent. Chemical equilib-
rium for reaction (1) implies

𝑐eqLi0 =
𝑐eq
Li+

𝑐eq
Li+

+𝐾 ion
eq

𝑐0 , 𝑐eqn− =
𝐾 ion

eq

𝑐eq
Li+

+𝐾 ion
eq

𝑐0 . (24)

n view of reaction (3), part of the lithium is transformed into hopping.
ence,4 at equilibrium,

eq
Li+

+ 𝑐eq
Li+hop

= 𝑐eqn− → 𝑐eq
Li+hop

=
𝐾 ion

eq

𝑐eq
Li+

+𝐾 ion
eq

𝑐0 − 𝑐
eq
Li+

. (25)

hemical equilibrium of reaction (3) yields

hop
eq 𝑐eq

Li+
−

(

𝐾 ion
eq

𝐾 ion
eq + 𝑐eq

Li+
𝑐0 − 𝑐

eq
Li+

)

= 0 , (26)

o be solved for 𝑐Li+ . It yields

eq
Li+

=
𝐾 ion

eq

2

⎛

⎜

⎜

⎝

√

1 + 4
𝑐0
𝐾 ion

eq

1
1 +𝐾hop

eq

− 1
⎞

⎟

⎟

⎠

, (27)

to be replaced in Eqs. (24)–(25). Three independent parameters, there-
fore, shape the equilibrium concentrations, namely 𝑐0 and the two
equilibrium constant of reactions (1) and (3). Whereas the former
can be estimated with accuracy, experimental estimation of 𝐾 ion

eq and
𝐾hop

eq is subject to considerable uncertainties. The three parameters are
connected to the fraction of Li that resides in equilibrium in the mobile
state, termed here 𝛿 as in [15], i.e.

𝑐eqLi0 = (1 − 𝛿) 𝑐0, 𝑐eqn− = 𝛿 𝑐0 . (28)

Comparing eqs. ((24)b), (27), and ((28)b), it holds

𝛿 = 2

1 +
√

1 + 4 𝑐0
𝐾 ion
eq

1
1+𝐾hop

eq

. (29)

q. (29) can be easily inverted to obtain 𝐾hop
eq as a function of 𝛿 and

ion
eq

hop
eq =

−𝑐0𝛿2 + (1 − 𝛿)𝐾 ion
eq

(𝛿 − 1)𝐾 ion
eq

. (30)

4 Note that Eq. (25) holds because at equilibrium we assume that concen-
rations are uniform, thus Eq. (25) merely expresses a mass conservation. Of
ourse, out of equilibrium, the very same equation may describe electroneu-
rality, a constraint that is not imposed a priori in the present note. This point
ill be discussed further later on in the paper.
5

Since the latter can assume only positive values, Eq. (30) limits the
region of admissible pairs {𝛿,𝐾 ion

eq }. The upper bound for 𝐾 ion
eq is

𝐾
ion
eq = 𝛿2

1 − 𝛿
𝑐0 , (31)

hich, by coincidence, is the equilibrium constant of reaction (1)
efined in [15]. In fact, a vanishing value for the equilibrium constant
hop
eq corresponds to 𝐾

ion
eq in identity (29).

3. Constitutive theory

For the sake of limiting the length of this note, we do not indulge
in details on the thermodynamic balance of energy and entropy, which
can be derived from [24] and from Appendix in [17]. Constitutive
theory moves from the Helmholtz free energy density 𝜓 that describes
the isothermal processes at hand. It is assumed to consist of two
separate contributions:

𝜓(𝑐𝛼 , �⃗�) = 𝜓𝑑𝑖𝑓𝑓 (𝑐𝛼) + 𝜓𝑒𝑙(�⃗�) ,

with 𝛼 = Li+,Li+hop. The mass transport process is described by 𝜓𝑑𝑖𝑓𝑓 ,
adopting species concentrations 𝑐𝛼 as the state variables. The contri-
bution 𝜓𝑒𝑙(�⃗�) models the electromagnetic interactions, in terms of the
electric field �⃗�. The processes are thermodynamically uncoupled.

The electric displacement field is related to the electric field consti-
tutively. In linear media

𝜓𝑒𝑙(�⃗� ) = −1
2
𝜀| �⃗� ⋅ �⃗� (32)

hence, by means of identity (13),

⃗ = −
𝜕𝜓𝑒𝑙(�⃗� )

𝜕�⃗�
= 𝜀| �⃗� = −𝜀| ∇ [𝜙 ] (33)

he permittivity 𝜀| = 𝜀|𝑟 𝜀|0 quantifies a material’s ability to transmit (or
‘permit’’) an electric field. Its value is 8.85×10−12 CV−1 m−1 in vacuum
denoted with 𝜀|0) . The permittivity of a homogeneous material is
sually given relative to that of vacuum, as a relative permittivity 𝜀|𝑟.

The free energy 𝜓𝑑𝑖𝑓𝑓 (𝑐Li+ , 𝑐Li+hop ) in a mixture, and in turn the
hemical potentials

𝛼 =
𝜕𝜓𝑑𝑖𝑓𝑓 (𝑐𝛼)

𝜕𝑐𝛼
, 𝛼 = Li+,Li+hop (34)

depend on the composition of the mixture itself. For no reasons but
simplicity, we assume ideal conditions, and thus neglect the chemi-
cal interactions between Li+ and Li+hop. We are aware of how strong
this assumption can be, and will consider more intricate Maxwell–
Stefan free energies in future works. In order to satisfy thermodynamic
consistency, see among others [24] and appendix A in [17], a linear
dependence of the mass flux of species 𝛼 on the gradient of the
electrochemical potential is taken

ℎ⃗𝛼 = −𝑴𝛼 ∇
[

𝜇𝛼
]

(35a)

by means of a positive definite mobility tensor 𝑴𝛼 , with the electro-
chemical potential 𝜇𝛼 defined as

𝜇𝛼 = 𝜇𝛼 + 𝐹 𝑧𝛼 𝜙 . (35b)

In diluted solutions far from saturation, the isotropic linear choice

𝑴𝛼(𝑐𝛼) = u| 𝛼 𝑐𝛼 1 (35c)

is taken, implying that the pure phase 𝑐𝛼 = 0 has a vanishing mobility.
The amount u| 𝛼 > 0 is usually termed the ion mobility. This approach
is generally named after Fick’s diffusion and captures an underlying
Brownian motion of species in a statistical sense.

An ideal solution model [53] provides the following free energy den-
sity for the continuum approximation of the mixing for dilute solutions
far from saturation

𝜓 𝑖𝑑𝑑𝑖𝑓𝑓 (𝑐Li+ , 𝑐Li+hop ) = 𝜇0
Li+

𝑐Li+ + 𝜇0
Li+hop

𝑐Li+hop

+ 𝑅𝑇
(

𝑐Li+ ln[𝑐Li+ ] + 𝑐Li+ ln[𝑐Li+ ]
)

. (36)

hop hop



Journal of Energy Storage 48 (2022) 103842L. Cabras et al.

p
r

𝜇

a

ℎ

T
t

t
P
t
t
t

a

4

4

T
𝜙
i
E

d

d

c
A
b
h

i
t

a

d

t
c

F
u
n
d
e

𝑎

𝑐

𝑓

𝑐

4

p
i
(

d

5

r
n
s

d
m
𝑤
c

𝑐

f

−

𝑅 is the universal gas constant, 𝜇0𝛼 is a reference value of the chemical
otential of diffusing species 𝛼. Applying (34), the chemical potential
esults in the form

𝛼 = 𝜇0𝛼 + 𝑅𝑇 (1 + ln[𝑐𝛼]) (37)

nd Fick’s law (35) takes the Nernst–Planck form
⃗𝛼 = −u| 𝛼 𝑅𝑇 ∇

[

𝑐𝛼
]

− 𝑧𝛼 𝐹 u| 𝛼 𝑐𝛼 ∇ [𝜙 ] . (38)

he diffusivity D| 𝛼 is defined by D| 𝛼 = u| 𝛼 𝑅𝑇 (this equation is sometimes
ermed after Nernst–Einstein).

The hopping mechanism is thermodynamically quite different from
he interstitial motion, thus making recourse to the classical Nernst–
lanck thermodynamic description for both mechanisms might be ques-
ionable. Nonetheless, such a form is generally accepted in the litera-
ure (see for instance [11,15,18,34]). Within this paper, we assume that
he fluxes ℎ⃗Li+ and ℎ⃗Li+hop in Eqs. (23) obey the Nernst–Planck Eq. (38).

Equilibrium conditions for the chemical reactions (1) and (3) can be
chieved from thermodynamics, as well. They are detailed in Appendix.

. Governing equations and their weak form

.1. Multiscale compatible formulation

The unknown fields result from the thermodynamic choices made.
hey are concentrations 𝑐Li0 , 𝑐n− , 𝑐Li+ , 𝑐Li+hop , and the electric potential
. Governing equations at all points �⃗� ∈ 𝑉 and times 𝑡 come out

ncorporating the constitutive Eqs. (33) and (38) into the balance
qs. (9) and (15). Besides Eq. (8), governing equations read:
𝜕𝑐Li+
𝜕𝑡

− div
[

D| Li+ ∇
[

𝑐Li+
]

+
𝐹 D| Li+
𝑅𝑇

𝑐Li+ ∇ [𝜙 ]
]

= 𝑤 − 𝑦 (39a)

𝜕𝑐Li+hop
𝜕𝑡

− div

[

D| Li+hop ∇
[

𝑐Li+hop

]

+
𝐹 D| Li+hop
𝑅𝑇

𝑐Li+hop ∇ [𝜙 ]

]

= 𝑦 (39b)

iv
[

𝜀| ∇
[

𝜕𝜙
𝜕𝑡

]

+ 𝐹 2

𝑅𝑇

(

D| Li+ 𝑐Li+ + D| Li+hop 𝑐Li
+
hop

)

∇ [𝜙 ]
]

+

iv
[

𝐹
(

D| Li+∇
[

𝑐Li+
]

+ D| Li+hop∇
[

𝑐Li+hop

])]

= 0 (39c)

together with mass action laws (6a), (6b).
It is typical in batteries to fully impose Neumann conditions for

oncentration, in terms of mass fluxes, during galvanostatic processes.
ccordingly, conditions (17) and (21) are applied along Neumann
oundaries 𝜕𝑁𝑉 . To ensure uniqueness, Dirichlet boundary conditions
ave to be imposed along part 𝜕𝐷𝑉 , being 𝜕𝑉 = 𝜕𝐷𝑉 ∪ 𝜕𝑁𝑉 .

Initial conditions usually enforce equilibrium. They have been stated
n Eqs. (24)–(27). Initial conditions for electric potential should match
he boundary value problem at 𝑡 = 0, and yield a uniform value at all
�⃗� ∈ 𝑉 . At initial time, in fact, Gauss law (12) provides the necessary
nd sufficient equations to be solved for 𝜙:

iv [ −𝜀| ∇ [𝜙 ] ] = 𝐹
(

𝑐Li+ + 𝑐Li+hop − 𝑐n−
)

�⃗� ∈ 𝑉 , 𝑡 = 0 (40)

ogether with homogeneous boundary conditions for potential and
urrent — in view of thermodynamic equilibrium at initial time.

The evolution problem can be formulated in a weak form as well.
ollowing a Galerkin approach, weak forms are built at a given time t
sing ‘‘variations’’ of the same set of variables that rule the problem,
amely concentrations 𝑐𝛼 and electric potential �̂� which are solely
epending upon the space variable �⃗�. The weak form of the governing
quations can thus be written in time interval

[

0, 𝑡𝑓
]

as

Find 𝑦 ∈  [0,𝑡𝑓 ] such that
d
d𝑡
𝑏
(

�̂�(�⃗�), 𝑦(�⃗�, 𝑡)
)

+ 𝑎(�̂�(�⃗�), 𝑦(�⃗�, 𝑡)) + 𝑐(�̂�(�⃗�), 𝑦(�⃗�, 𝑡)) = 𝑓 (�̂�(�⃗�)) ∀�̂� ∈ 

(41a)
6

where

𝑏 (�̂�, 𝑧) = ∫𝑉
𝑐Li0 𝑐Li0 + 𝑐n− 𝑐n− + 𝑐Li+ 𝑐Li+ + 𝑐Li+hop 𝑐Li

+
hop

+𝜀| ∇
[

�̂�
]

⋅ ∇
[

𝜕𝜙
𝜕𝑡

]

d𝑉 (41b)

(�̂�, 𝑧(𝑡)) = ∫𝑉
D| Li+∇

[

𝑐Li+
]

⋅ ∇
[

𝑐Li+
]

+
𝐹D| Li+
𝑅𝑇

𝑐Li+∇
[

𝑐Li+
]

⋅ ∇ [𝜙 ] d𝑉 +

+ ∫𝑉
D| Li+hop∇

[

𝑐Li+hop

]

⋅ ∇
[

𝑐Li+hop

]

+
𝐹D| Li+hop
𝑅𝑇

𝑐Li+hop∇
[

𝑐Li+hop

]

⋅ ∇ [𝜙 ] d𝑉 +

+ ∫𝑉
𝐹 ∇

[

�̂�
]

⋅
(

D| Li+ ∇
[

𝑐Li+
]

+ D| Li+hop ∇
[

𝑐Li+hop

])

d𝑉

+ ∫𝑉
𝐹 2

𝑅𝑇

(

D| Li+ 𝑐Li+ + D| Li+hop 𝑐Li
+
hop

)

∇
[

�̂�
]

⋅ ∇ [𝜙 ] d𝑉 (41c)

(�̂�, 𝑧(𝑡)) = ∫𝑉
𝑐Li0 ⋅𝑤 − 𝑐n− ⋅𝑤 − 𝑐Li+ ⋅ (𝑤 − 𝑦) − 𝑐Li+hop ⋅ 𝑦 d𝑉 (41d)

(�̂�) = −∫𝜕𝑁𝑉
𝑐Li+ℎ

𝐵𝑉
Li+

+ 𝑐Li+hopℎ
𝐵𝑉
Li+hop

− 𝐹 �̂�
(

ℎ𝐵𝑉
Li+

+ ℎ𝐵𝑉
Li+hop

)

d𝛤 (41e)

with 𝑦(�⃗�, 𝑡) = { 𝑐Li0 , 𝑐n− , 𝑐Li+ , 𝑐Li+hop , 𝜙} and �̂�(�⃗�) = {𝑐Li0 , 𝑐n− , 𝑐Li+ ,

̂Li+hop , �̂�}.

.2. Approximated electroneutral formulation

The hypothesis of electroneutrality, namely Eq. (11), leads to a sim-
ler formulation for the governing equations. They encompass Eq. (11)
tself, Eq. (8), Eq. (39a) and a linear combination of the former with
39b), which eventually leads to:

iv
[

D| Li+ ∇
[

𝑐Li+
]

+ D| Li+hop ∇
[

𝑐Li+hop

]

+ 𝐹
𝑅𝑇

(

D| Li+ 𝑐Li+ + D| Li+hop 𝑐Li
+
hop

)

∇ [𝜙 ]
]

= 0 (42)

. Steady state solution

At the end of the transient behavior, the solid electrolyte response
eaches a steady state, at which the fields 𝑐Li0 , 𝑐n− , 𝑐Li+ , 𝑐Li+hop , and 𝜙 do
ot change further in time. Current flows in the electrolyte at a steady
tate, hence the system is not at equilibrium.

A closed form solution at steady state can be found for one-
imensional systems under the assumption of electroneutrality. We
ay start from Eq. (8). Since the left hand side must vanish, then
= 0, i.e. the ionization reaction (1) must be at equilibrium. Hence,

onditions (24) hold, here copied and pasted for readability

ss
Li0

=
𝑐ss
Li+

𝑐ss
Li+

+𝐾 ion
eq

𝑐0 , 𝑐ssn− =
𝐾 ion

eq

𝑐ss
Li+

+𝐾 ion
eq

𝑐0 , (43)

with the apex ‘‘ss’’ that stands for steady state. Enforcing electroneu-
trality, Eq. (11) implies

𝑐ss
Li+hop

=
𝐾 ion

eq

𝐾 ion
eq + 𝑐ss

Li+
𝑐0 − 𝑐ssLi+ . (44a)

We are thus left with two unknown fields 𝑐ss
Li+

and 𝜙ss. They can be
ound solving Eqs. (42) and (39b), i.e.

div
[

∇
[

𝑐ss+

]

+ 𝐹 𝑐ss+ ∇
[

𝜙ss ]
]

= −
𝑦

, (45a)

Lihop 𝑅𝑇 Lihop D| Li+
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⃗

−div

[

∇

[

𝐾 ion
eq

𝐾 ion
eq + 𝑐ss

Li+
𝑐0

]

+ 𝐹
𝑅𝑇

(

𝐾 ion
eq

𝐾 ion
eq + 𝑐ss

Li+
𝑐0

)

∇
[

𝜙ss ]
]

=
⎛

⎜

⎜

⎝

1
D| Li+hop

− 1
D| Li+

⎞

⎟

⎟

⎠

𝑦, (45b)

with 𝑦 as in (6b). A uniform concentration 𝑐ss
Li+

(𝑥) = 𝑐Li+ is sought
for. In this circumstance, summing up the two Eqs. (45a), (45b) and
rearranging, the laplacian of the electric potential turns out to be
defined through an unknown constant 𝑝 as follows

div [∇ [𝜙 ] ] = 1
D| Li+

𝑘hop𝑓 𝑐Li+ − 𝑘hop𝑏

(

𝐾 ion
eq

𝐾 ion
eq +𝑐Li+

𝑐0 − 𝑐Li+
)

𝐹
𝑅𝑇

(

𝑐Li+ −
𝐾 ion
eq

𝐾 ion
eq +𝑐Li+

𝑐0

) = 𝑝 𝑒
𝜁𝐹𝜙
𝑅𝑇 ,

(46)

taking advantage of Eq. (6). Note that the numerator in Eq. (46) is
equal to 𝑦 from Eq. (6b). Restricting to a one-dimensional problem, the
solution of (46) is

𝜙 = 𝑎 + 𝑏𝑥 + 𝑅2𝑇 2

𝜁2𝐹 2
𝑝 𝑒

𝜁𝐹𝜙
𝑅𝑇 .

Imposing 𝜙(0) = 0 and the conservation of current ℎ⃗Li+ (𝐿) + ℎ⃗Li+hop (𝐿) =

ℎ⃗Li+ (0)+ ℎ⃗Li+hop (0), the constant 𝑝 must vanish. As a consequence, 𝑦 must
vanish, too, thus granting chemical equilibrium. We conclude that, at
steady state, the concentration

𝑐ss
Li+

= 𝑐eq
Li+

as in Eq. (27) and the electric potential is linear

𝜙 = 𝑏 𝑥 , (47)

with constant 𝑏 identified by the current ℎ⃗Li+ (𝐿) + ℎ⃗Li+hop (𝐿) that flows
across the electrolyte. Since the equilibrium concentrations are uni-
form, Nernst–Planck constitutive Eq. (38) has vanishing diffusive con-
tribution and reduces to a special form of Ohm’s law, with conduc-
tivity that depends upon concentration. From Faraday’s law (10b), it
eventually descends

𝑖 = − 𝐹 2

𝑅𝑇

(

D| Li+ 𝑐
ss
Li+

+ D| Li+hop 𝑐
ss
Li+hop

)

∇ [𝜙 ] . (48)

6. Numerical simulations of the electrolyte response

To validate the model described so far, the one-dimensional solid
electrolyte case study of [15] will be analyzed. The response of the
electrolyte, part of a commercial all-solid-state thin-film battery with
storage capacity of 0.7 mAh, is simulated under galvanostatic conditions
of charge, at a constant temperature of 25 ◦C and zero state of stress.
The electrolyte has been experimentally tested in [15] at different
𝐶 − 𝑟𝑎𝑡𝑒𝑠. All the parameters shared with [15] have been taken from
that paper.

The electrolyte is a layer of LiPON with thickness 3.62 μm. We
take for the Li+hop diffusivity the vacancy diffusivity provided in [15],
i.e. D| Li+hop

= 5.69 × 10−16 m2s−1, whereas the interstitial lithium
diffusivity holds D| Li+ = 1.73 × 10−16 m2s−1. The relative permittivity of
LiPON is assumed in the range of 1−100. The fraction of Li that resides
in equilibrium in the mobile state, 𝛿 is taken as in [15], i.e. 𝛿 = 0.64.

A few test-cases have been run changing the reaction constants
parameters.

In order to make initial and boundary conditions compatible with
thermodynamic equilibrium at 𝑡 = 0, the current 𝐼(𝑡) is tuned in time
as

𝐼(𝑡) = (1 − 𝑒−𝑡) 𝐼 (49)
7

1𝐶
Fig. 2. A one-dimensional model of a Li-ion battery, with separator of size 3.62 μm
highlighted. The flux of Li+ ions during charge is pointed out.

with 𝑡 in seconds and 𝐼1𝐶 the current at 1C-rate, i.e. 𝐼1𝐶 = 0.70 mA.
Boundary and initial conditions have been taken according to [15],
adopting the coordinate system depicted in Fig. 2. Initially (at 𝑡 =
0) the concentration of ions across the electrolyte is uniform and at
equilibrium as in Eqs. (24)–(27). The current passing through the elec-
trode/electrolyte interfaces is the sum of the interstitial and hopping
currents. Boundary conditions (17) thus shall satisfy the constraints
(

ℎ⃗Li+ (0, 𝑡) + ℎ⃗Li+hop (0, 𝑡)
)

⋅ 𝑛 = −
𝐼(𝑡)
𝐹𝐴

, (50a)
(

ℎ⃗Li+ (𝐿, 𝑡) + ℎ⃗Li+hop (𝐿, 𝑡)
)

⋅ 𝑛 =
𝐼(𝑡)
𝐹𝐴

, (50b)

where 𝐴 = 3.36 × 10−4 m2 is the net area of the electrodes/electrolyte
interfaces. For being in thermodynamic equilibrium with neither cur-
rent nor mass flowing, the electric potential at the initial time satisfies
Eqs. (40) and has to be homogeneous

𝜙(𝑥, 0) = 0 �⃗� ∈ 𝑉 . (51)

The boundary condition for 𝜙 at 𝑥 = 0 is homogeneous, too.

6.1. Discretization and time advancing by finite differences

The weak form (41) can be transformed in a first order Ordinary
Differential Equation (ODE) in time if discretization is performed via
separated variables, with spatial test 𝜑𝑖(𝑥) and shape functions 𝜑𝑗 (𝑥)
and nodal unknowns (collectively gathered in column 𝑦 with compo-
nent 𝑦𝑗 (𝑡)) that depend solely on time. The usual Einstein summation
convention is taken henceforth for repeated indexes. The non linear
ODE reads:

Find 𝑦(𝑡) s.t. 𝑏𝑖 ⋅
𝜕𝑦
𝜕𝑡

(𝑡) + 𝑎𝑖[ 𝑦(𝑡) ] + 𝑐𝑖[ 𝑦(𝑡) ] = 𝑓𝑖(𝑡)

for 𝑖 = 1, 2,… , 𝑁 (52a)

where

𝑏𝑖 ⋅
𝜕𝑦
𝜕𝑡

(𝑡) = ∫

𝑙

0
𝜑Li0
𝑖 𝜑Li0

𝑗 d𝑥
𝜕𝑐Li0𝑗

𝜕𝑡
+ ∫

𝑙

0
𝜑n−
𝑖 𝜑n−

𝑗 d𝑥
𝜕𝑐n−𝑗
𝜕𝑡

+ ∫

𝑙

0
𝜑Li+
𝑖 𝜑Li+

𝑗 d𝑥
𝜕𝑐Li+𝑗

𝜕𝑡
+ (52b)

+ ∫

𝑙

0
𝜑
Li+hop
𝑖 𝜑

Li+hop
𝑗 d𝑥

𝜕𝑐
Li+hop
𝑗

𝜕𝑡
+ ∫

𝑙

0
𝜀|
𝜕𝜑𝜙𝑖
𝜕𝑥

𝜕𝜑𝜙𝑗
𝜕𝑥

d𝑥
𝜕𝜙𝑗
𝜕𝑡

𝑎𝑖[ 𝑦(𝑡) ] =
𝑙
D| Li+

𝜕𝜑Li+
𝑖

𝜕𝜑Li+
𝑗 d𝑥 𝑐Li

+

∫0 𝜕𝑥 𝜕𝑥 𝑗
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𝑐

w
o
p

Table 1
Model parameters used during simulations.
Input parameters

Parameters Value Unit of measure Description

𝑇 298.5 ◦K Temperature
𝐿 3.62 ⋅ 10−6 m Thickness of the electrolyte
𝐴 3.36 ⋅ 10−4 m2 Geometrical surface area
D| Li+ 5.69 ⋅ 10−16 m2/s Diffusion coefficient for Li+ ions in the electrolyte
D| Li+hop 1.73 ⋅ 10−16 m2/s Diffusion coefficient for Li+hop in the electrolyte
𝛿 0.64 – Fraction of mobile Li in the electrolyte in equilibrium
𝑐0 61141 mol/m3 Maximal lithium concentration in the electrolyte
D

c
r

+ ∫

𝑙

0
D| Li+hop

𝜕𝜑
Li+hop
𝑖
𝜕𝑥

𝜕𝜑
Li+hop
𝑗

𝜕𝑥
d𝑥 𝑐

Li+hop
𝑗 (52c)

−𝐹 ∫

𝑙

0

𝜕𝜑𝜙𝑖
𝜕𝑥

D| Li+
𝜕𝜑Li+

𝑗

𝜕𝑥
d𝑥 𝑐Li

+

𝑗

−𝐹 ∫

𝑙

0

𝜕𝜑𝜙𝑖
𝜕𝑥

D| Li+hop
𝜕𝜑

Li+hop
𝑘
𝜕𝑥

d𝑥 𝑐
Li+hop
𝑘 +

+ 𝐹
𝑅𝑇 ∫

𝑙

0
D| Li+

𝜕𝜑Li+
𝑖
𝜕𝑥

𝜑Li+
𝑗

𝜕𝜑𝜙𝑘
𝜕𝑥

d𝑥 𝑐Li
+

𝑗 𝜙𝑘 +

+ 𝐹
𝑅𝑇 ∫

𝑙

0
D| Li+hop

𝜕𝜑
Li+hop
𝑖
𝜕𝑥

𝜑
Li+hop
𝑗

𝜕𝜑𝜙𝑘
𝜕𝑥

d𝑥 𝑐
Li+hop
𝑗 𝜙𝑘 +

− 𝐹 2

𝑅𝑇 ∫

𝑙

0
D| Li+

𝜕𝜑𝜙𝑖
𝜕𝑥

𝜕𝜑𝜙𝑘
𝜕𝑥

𝜑Li+
𝑗 d𝑥 𝑐Li

+

𝑗 𝜙𝑘

− 𝐹 2

𝑅𝑇 ∫

𝑙

0
D| Li+hop

𝜕𝜑𝜙𝑖
𝜕𝑥

𝜕𝜑𝜙𝑘
𝜕𝑥

𝜑
Li+hop
𝑗 d𝑥 𝑐

Li+hop
𝑗 𝜙𝑘

𝑖[ 𝑦(𝑡) ] = ∫

𝑙

0
𝜑Li0
𝑖 ⋅ (𝑘ion𝑓 𝜑Li0

𝑗 𝑐Li0𝑗 − 𝑘ion𝑏 𝜑Li+
𝑗 𝑐Li

+

𝑗 𝜑n−
𝑘 𝑐n

−

𝑘 ) d𝑥+ (52d)

− ∫

𝑙

0
𝜑n−
𝑖 ⋅ (𝑘ion𝑓 𝜑Li0

𝑗 𝑐Li0𝑗 − 𝑘ion𝑏 𝜑Li+
𝑗 𝑐Li

+

𝑗 𝜑n−
𝑘 𝑐n

−

𝑘 )d𝑥

− ∫

𝑙

0
𝜑Li+
𝑖 ⋅

[

(𝑘ion𝑓 𝜑Li0
𝑗 𝑐Li0𝑗 − 𝑘ion𝑏 𝜑Li+

𝑗 𝑐Li
+

𝑗 𝜑n−
𝑘 𝑐n

−

𝑘 ) +

−(𝑘hop𝑓 𝜑Li+
𝑗 𝑐Li

+

𝑗 − 𝑘hop𝑏 𝜑
Li+hop
𝑗 𝑐

Li+hop
𝑗 )

]

d𝑥+

− ∫

𝑙

0
𝜑
Li+hop
𝑖 ⋅ (𝑘hop𝑓 𝜑Li+

𝑗 𝑐Li
+

𝑗 − 𝑘hop𝑏 𝜑
Li+hop
𝑗 𝑐

Li+hop
𝑗 ) d𝑥

𝑓𝑖(𝑡) = ∫𝜕𝑁𝑉
𝜑Li+
𝑖 ℎ𝐵𝑉

Li+
+ 𝜑

Li+hop
𝑖 ℎ𝐵𝑉

Li+hop
− 𝐹𝜑𝜙𝑖

(

ℎ𝐵𝑉
Li+

+ ℎ𝐵𝑉
Li+hop

)

d𝛤

(52e)

ith 𝑦𝑗 (𝑡) = {𝑐Li0𝑗 , 𝑐n−𝑗 , 𝑐Li+𝑗 , 𝑐
Li+hop
𝑗 , 𝜙𝑗}. A family of time-advancing meth-

ds based on the so-called 𝜃-scheme can be set up for the discrete
roblem (52a). Assume that solution 𝑦(𝑡) is given at time 𝑡, and that

the algorithm is triggered at the initial time 𝑡 = 0 by means of initial
conditions. The scheme seeks for 𝑦(𝑡 + 𝛥𝑡) such that

𝑏𝑖 ⋅
𝑦(𝑡 + 𝛥𝑡) − 𝑦(𝑡)

𝛥𝑡
+ 𝑎𝑖[ 𝜃 𝑦(𝑡 + 𝛥𝑡) + (1 − 𝜃)𝑦(𝑡) ]

+ 𝑐𝑖[ 𝜃 𝑦(𝑡 + 𝛥𝑡) + (1 − 𝜃)𝑦(𝑡) ]

= 𝜃 𝑓𝑖(𝑡 + 𝛥𝑡) + (1 − 𝜃)𝑓𝑖(𝑡) (53)

for 𝑖 = 1, 2,… , 𝑁 , where 0 ≤ 𝜃 ≤ 1, 𝛥𝑡 = 𝑡𝑓∕𝑁𝑡 is the time step,
𝑁𝑡 is a positive integer. 𝜃-scheme includes the forward Euler scheme
8

(𝜃 = 0, linear in 𝑦(𝑡+𝛥𝑡)), backward Euler (𝜃 = 1), and Crank–Nicholson
(𝜃 = 1∕2). In the numerical simulations that follows, backward Euler
(𝜃 = 1) has been selected, thus searching for 𝑦(𝑡 + 𝛥𝑡) such that

𝑏𝑖 ⋅
𝑦(𝑡 + 𝛥𝑡)
𝛥𝑡

+ 𝑎𝑖[ 𝑦(𝑡 + 𝛥𝑡) ] + 𝑐𝑖[ 𝑦(𝑡 + 𝛥𝑡) ] = 𝑓𝑖(𝑡 + 𝛥𝑡) + 𝑏𝑖 ⋅
𝑦(𝑡)
𝛥𝑡

(54)

enoting with 𝗊 = 1, 2,… the iteration counter, the Newton Raphson
iterative solution scheme solves non-linear problem (54). It proceeds
until a condition on the L2 norm of the increment

𝛿𝑦 = 𝗊+𝟣𝑦(𝑡 + 𝛥𝑡) − 𝗊𝑦(𝑡 + 𝛥𝑡)

is satisfied. The numerical technique has been implemented in a Matlab
package script.

Several simulations have been carried out with different time steps
and space discretizations in order to check convergence, but those
details will not be presented here. The outcomes reported henceforth
refer to a spatial discretization made of 20 finite elements, biased to a
finer mesh in proximity of the boundaries, where greater gradient of the
variables are expected. Time discretization is achieved with a constant
time step 𝛥𝑡 = 1 s.

Since the permittivity is extremely small, instabilities and conver-
gence issue may arise. To this aim, the solution scheme has been
partitioned into two separated algorithms. At first, the electroneutral
approximation has been taken and the problem depicted in Section 4.2
has been solved. Such a solution is used as initial guess for the mul-
tiscale compatible formulation described in Section 4.1. Our strategy
lacks of a profound numerical analysis investigation, yet neither sta-
bility nor convergence issues arose in the implementation of quasi
electrostatic Maxwell’s equation.

6.2. Steady state response

The closed form of steady state response of the system was estab-
lished in Section 5. It is here computed numerically, using the material
parameters collected in Table 1.

The concentrations 𝑐ssLi0 and 𝑐ssn− emanate from Eq. (28), since chem-
ical equilibrium is attained at the steady state. Easy algebra allows
relating the steady state values for interstitial and hopping lithium to
𝛿 and 𝐾 ion

eq :

𝑐ss
Li+

= 𝐾 ion
eq

( 1
𝛿
− 1

)

, 𝑐ss
Li+hop

= 𝛿 𝑐0 +𝐾 ion
eq

(

1 − 1
𝛿

)

. (55)

Fig. 3 plots the evolution of 𝑐ss
Li+

and 𝑐ss
Li+hop

, normalized by the

oncentration of vacancies 𝑐ssn− , at different values for 𝐾 ion
eq and 𝛿. The

ed curve materializes the upper bound 𝐾
ion
eq , defined in Eq. (31),

corresponding to 𝐾hop
eq = 0 in identity (30). Such a curve, in the {𝛿,𝐾 ion

eq }
plane, emerges at 𝑐ss

Li+
= 𝑐ssn− , as expected since no hopping takes place.

The molarity 𝑐ss
Li+

vanishes at 𝐾 ion
eq = 0: this outcome is expected,

since no ions are generated in the chemical ionization reaction (1). On
the other hand, as 𝛿 approaches the limit unit value, 𝑐ss

Li+
tends to zero

again. In that case, the chemical ionization reaction (1) is complete, all
host-sites became negative vacancies, 𝐾hop

eq becomes larger and larger
(see Eq. (30)). As a consequence, also reaction (3) becomes complete
and no interstitial lithium is left over.
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Fig. 3. Steady state representation of interstitial 𝑐ss
Li+

and hopping 𝑐ss
Li+hop

lithium normalized by 𝑐ss𝑛− as a function of 𝛿 and 𝐾 ion
eq . The red curve corresponds to the upper bound 𝐾

ion
eq

defined in (31). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Steady state representation of coefficient 𝑏 (i.e. the gradient of the electric
potential) as a function of 𝛿 and 𝐾 ion

eq . With the material properties of Table 1, 𝐾 ion
eq = 0.

As per Eq. (47), the electric potential is linear. Coefficient 𝑏 can be
derived from Eq. (48) as

𝑏 = −
𝐼(𝑡)
𝐴

𝑅𝑇
𝐹 2

1
D| Li+ 𝑐ssLi+ + D| Li+hop 𝑐

ss
Li+hop

, (56)

under the condition that the denominator is positive, i.e.

𝐾 ion
eq > 𝐾

ion
eq

D| Li+hop
D| + − D| +

, (57)
9

Lihop Li
which in turn puts a condition on diffusivities in order to achieve a
steady state condition, i.e.

D| Li+hop < D| Li+ (58)

and sets 𝐾 ion
eq = 0 as a lower bound on 𝐾 ion

eq . The values taken by 𝑏 are
plot in Fig. 4 as a function of 𝛿 and 𝐾 ion

eq .
The influence of the equilibrium constants 𝐾 ion

eq and 𝐾hop
eq on the

concentration of the species 𝑐ssLi0 , 𝑐
ss
n− , 𝑐ss

Li+
, 𝑐ss

Li+hop
and on the gradient

of the electric potential are shown in Figs. 5 and 6 for the particular
value 𝛿 = 0.64.

The steady state solution (28), (55) and (56) turns out to be the
numerically simulated response of the electrolyte when initial condi-
tions are imposed to be at equilibrium, according to Eqs. (24)–(27), and
boundary conditions on fluxes (17) are chosen as such as to maintain
such steady state solution.

6.3. Single discharge response of the electrolyte

The response of the system is studied at different values of material
parameters.

6.3.1. Case study 1 : 𝐾 ion
eq = 𝐾

ion
eq

The two reaction rate constants that describe the ionization reaction
(1), i.e the lithium ion recombination rate 𝑘ion𝑏 and the generation
rate 𝑘ion𝑓 , were identified in [15], 𝑘ion𝑏 = 8.00 ⋅ 10−7 m3mol−1s−1 and

𝑘ion𝑓 = 5.56 ⋅ 10−2 s−1. Their ratio is 𝐾 ion
eq = 𝐾

ion
eq = 69518 mol m−3. As

stated in Section 2.1, in such a case 𝐾hop
eq = 0.

To follow the transient response of the electrolyte, analyses have
been carried out perturbing the initial ionic concentration from the
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Fig. 5. Concentration of species 𝑐ssLi0 , 𝑐
ss
n− , 𝑐ss

Li+
, 𝑐ss

Li+hop
as a function of 𝐾 ion

eq (a) and 𝐾hop
eq (b) at 𝛿 = 0.64 and 𝑐0 = 61141.
Fig. 6. Electric potential as a function of 𝐾 ion
eq (a) and 𝐾hop

eq (b). The asymptotic values of the gradient of the electric potential are 𝑏 = −𝐼(𝑡)𝑅𝑇 ∕(𝛿𝐴𝐹 2D| Li+hop 𝑐0) for 𝐾 ion
eq = 0 and

= −𝐼(𝑡)𝑅𝑇 ∕(𝛿𝐴𝐹 2D| Li+ 𝑐0) for 𝐾 ion
eq = 𝐾

ion
eq .
t
t
e

b

𝜌

tate of equilibrium,5 as follows:

Li0 = (1 − 𝛿)𝑐0; 𝑐n− = 𝛿𝑐0; 𝑐Li+ = 0.9 ⋅ 𝑐n− ;

Li+hop
= 0.1 ⋅ 𝑐n− �⃗� ∈ 𝑉 , 𝑡 = 0 .

(59)

he initial concentration of hopping lithium will be transformed in
nterstitial by reaction (3), with pace ruled by the constant 𝑘hop𝑏 , with
ero forward rate in view of this case-study hypothesis.
Consider first 𝑘hop𝑏 = 𝑘ion𝑏 . The transient evolution is clearly visible

or species concentrations profiles at different instants (10, 30, 60 min,
espectively) in Fig. 7. The oxygen-bound lithium concentration 𝑐Li0
ecreases in the whole electrolyte in the transient period, whereas
acancies do the opposite. Fig. 8, which focuses on the species concen-
rations at anode and cathode, shows that the concentration profiles
cquire a steady state regime only after a very long time for the

5 If at the initial time 𝑐Li+hop = 0 then no hopping lithium is further
enerated and no hopping takes place, with steady state charge transport of
ure interstitial type.
10
parameters at hand. One may argue therefore that, for some selections
of parameters, the whole charge/discharge process occurs in the tran-
sient regime. The time required to approach a steady state regime is
governed by the values of the reaction rate constants. Dotted lines in
Fig. 8 denote the concentration of species at the interface with the
anode, whereas continuous lines are used for the cathode interface.

Fig. 9a depicts the evolution of the electric potential 𝜙(𝑥) along
he solid electrolyte at 10, 30, 60 min. It shows a tendency to reach
he steady state much faster than concentrations. Fig. 9b reports the
volution of the electric potential at the cathode interface.

The deviation from perfect electroneutrality condition is estimated
y the ratio 𝜌𝑒𝑙

𝑒𝑙(𝑡) = sup
0≤𝑥≤𝐿

𝑐Li+ + 𝑐Li+hop − 𝑐n−

𝑐Li+ + 𝑐Li+hop + 𝑐n−
.

Electroneutrality is well approximated by the numerical solution, since
𝜌𝑒𝑙(𝑡) ∼ 10−7 during the time-span of the discharge process.

To highlight the influence of 𝑘hop𝑏 , we took 𝑘hop𝑏 = 1000𝑘ion𝑏 while
hop
keeping all other parameters unaltered. The increment of 𝑘𝑏 reduces
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Fig. 7. Concentrations in the electrolyte. Four instants are considered: besides the initial time, 10 min, 30 min, 1 h.

Fig. 8. Ionic concentration profile at anode and cathode for the different species. The dashed lines represent the values at the anode, the continuous lines at the cathode. (a) Zoom
around 𝑡 = 0 to show how concentration depart from initial values for the transient behavior. (b) A complete time-span evolution, showing how the steady asymptotic behavior is
recovered.

Fig. 9. (a) The electric potential 𝜙(𝑥), parametrized in time. (b) Its value 𝜙(𝐿) at the cathode interface.
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Fig. 10. Concentrations in the electrolyte. Four instants are considered, initial one (blue), 1 h (red), 10 min (green) and 30 min (yellow). 𝑘ion𝑏 = 8.00 ⋅ 10−7, 𝑘ion𝑓 = 5.56 ⋅ 10−2,
𝑘hop𝑏 = 1000𝑘ion𝑏 and 𝑘hop𝑓 = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Ionic concentration profile at the interface with the anode and the cathode.
The dashed lines represent the values in the anode, the continuous lines in the cathode.
𝑘ion𝑏 =8.00 ⋅ 10−7, 𝑘ion𝑓 = 5.56 ⋅ 10−2, 𝑘hop𝑏 = 1000𝑘ion𝑏 and 𝑘hop𝑓 = 0.

significantly the time to reach the steady state regime, since the initial
hopping lithium is much quickly converted into interstitial. Compare
in this regard Fig. 11 with Fig. 8-b and Fig. 10a with Fig. 7.

6.3.2. Case study 2 : 𝐾 ion
eq = 0.85𝐾

ion
eq

In a second case study, the equilibrium constant 𝐾 ion
eq has been

reduced by fifteen percent, i.e. 𝐾 ion
eq = 59090 mol∕m3. The equilibrium

constant for reaction (3) becomes 𝐾hop
eq = 0.1765, from Eq. (29). The

rate constant 𝑘ion𝑏 =8.00 ⋅10−7 m3mol−1s−1 as in the previous case-study,
and we consider 𝑘hop𝑏 = 𝑘ion𝑏 at first. Initial conditions are taken as in
(59).

The concentration of the different species in the electrolyte is plot-
ted in Fig. 12. The overall response is similar to Fig. 7, but the steady
state is reached more rapidly. Similar conclusion can be inferred from
Fig. 13, where the concentrations at the two electrodes are shown.

As already noticed in the former case-study, the evolution of the
electric potential 𝜙(𝑥) along the solid electrolyte shows a tendency to
reach the steady state much faster than concentrations (see Fig. 14).
12
7. Sensitivity analysis of the model parameters

In this section we perform a Sensitivity Analysis (SA) to our model,
in order to identify the importance of each parameter and its contribu-
tion to the variability of the model predictions derived in Section 6.2
at steady state. In ideal scenario, all the model parameters should be
estimated as accurately as possible from carefully designed physical
experiments. The cost and time restrictions, however, can limit the
access to experimental data required for model calibration. Conducting
a SA prior to the physical experiments can help in identifying the es-
sential parameters (i.e. those with high sensitivity index) to be estimated.
The non-essential parameters, on the other hand, can be set to nominal
values obtained from the literature or any prior physical knowledge.
Varying each parameter within a given range and scrutinizing the
output of simulations allow identifying essential parameters.

Specifically, since Eq. (30) holds, three parameters are required to
define the steady state solution, i.e. the maximal concentration of host-
sites 𝑐0, the fraction of Li that resides in equilibrium in the mobile state,
𝛿, and the equilibrium constant of reaction (1), 𝐾 ion

eq . Assuming that 𝑐0
can be estimated with high accuracy on theoretical grounds, the interest
is to study the effect of 𝛿 and 𝐾 ion

eq on the steady state solutions (55) and
(56).

The Sobol’ index, which is a variance-based method, is used to this
aim. In the probabilistic setting, the model parameters are assumed
to be random variables and a surrogate model is built to map the
inputs to the corresponding output. Once the surrogate is constructed,
Sobol decomposition provides the sensitivity indices [23]. We use the
Bayesian Hybrid Modeling (GEBHM) approach [54,55], a probabilistic
machine learning method that enables SA, calibration, multi-fidelity
modeling and uncertainty quantification.

The matrix in Fig. 15(a) shows the correlation between the input
parameters 𝛿 and 𝐾 ion

eq and the output uniform concentrations 𝑐ss
Li+

and
𝑐ss
Li+hop

. We notice that 𝛿 has a small negative correlation with 𝑐ss
Li+

and

relatively large positive correlation with 𝑐ss
Li+hop

. On the other hand, 𝐾 ion
eq

has a small negative correlation with 𝑐ss
Li+hop

and positive correlation with
𝑐ss
Li+

. This is expected given the structure of the expression relating
the inputs to outputs (see Eq. (55)). Fig. 15(b) shows Sobol indices
for the input parameters 𝛿 and 𝐾 ion

eq representing the percentage of
their contribution to the total variance of the outputs 𝑐ss+ and 𝑐ss+ ,
Li Lihop
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Fig. 12. Concentrations in the electrolyte. Four instants are considered, initial one (blue), 1 h (red), 10 min (green) and 30 min (yellow). 𝑘ion𝑏 = 8.00 ⋅ 10−7, 𝑘ion𝑓 = 4.726 ⋅ 10−2,
𝑘hop𝑏 = 1000𝑘ion𝑏 and 𝑘hop𝑓 = 1.4118 ⋅ 10−4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Ionic concentration profile at the interface wit the anode and the cathode.
The dashed lines represent the values in the anode, the continuous lines in the cathode.
𝑘ion𝑏 =8.00 ⋅ 10−7, 𝑘ion𝑓 = 4.726 ⋅ 10−2, 𝑘hop𝑏 = 1000𝑘ion𝑏 and 𝑘hop𝑓 = 1.4118 ⋅ 10−4.

respectively. The values of the total Sobol indices can be viewed
as an indicator of the relevance of each parameter. For example in
Fig. 15(b), 𝛿 contributes around 37% to the variability of 𝑐ss

Li+
, whereas

the interaction between 𝛿 and 𝐾 ion
eq contributes around 48%. Similarly,

Fig. 15(c) shows that 𝛿 contributes around 49% to the variability of
𝑐ss
Li+hop

. These results show that for the concentration 𝑐ss
Li+hop

, 𝛿 is the most

influential parameter, while the interaction between 𝛿 and 𝐾 ion
eq is the

most influential on the variability of 𝑐ss
Li+

. In conclusion, the 𝛿 parameter
should be carefully estimated prior to conducting any simulation.

Next, we study in Fig. 16 the effect of the input parameters 𝛿,
𝐾 ion

eq , D| Li+hop , and D| Li+ on the variability of the coefficient 𝑏 in Eq. (56).
Once again majority of the variability is due to the variability in 𝛿.
The variability of the parameter 𝐾 ion

eq alone has more effect than the
individual variability of each D| Li+hop , and D| Li+ , while the interaction
between 𝛿 with each D| Li+hop and 𝐾 ion

eq comes in the third place. These
results suggest again that 𝛿 is the most sensitive parameter, even to the
electric potential coefficient 𝑏.
13
8. Numerical simulations of the electrolyte embodied in a full cell

In this section, the novel model of solid electrolyte illustrated so
far is embodied in a thin film battery, with all-solid-state LiPON elec-
trolyte. The full cell is eventually validated against the experimental
outcomes described in [18].

The schematic representation of the battery under discharge condi-
tions is shown in Fig. 17. The battery consists of a current collector,
onto which the positive LiCoO2 electrode is deposited, of a metal-
lic lithium Li foil as negative electrode and of a LiPON solid-state
electrolyte. One-dimensional mathematical models are customary for-
mulations for thin films batteries, because: (i) the ratio between the
lateral dimension and the thickness is large enough for the lateral di-
mension to be considered as infinite; (ii) thin electrodes and electrolyte
are well approximated by homogeneous planar materials. The values of
material and geometrical parameters are collected in Table 2.

During charge, the lithium ions cross the electrolyte and are reduced
into metallic Li at the lithium foil surface; vice-versa during discharge.
Assuming LiCoO2 (shortened in LCO) to be the positive electrode
material, the basic electrochemical charge-transfer reaction writes

LiCoO2
𝑘1
⇄
𝑘−1

Li1−𝑥CoO2 + 𝑥Li
+ + 𝑥e− 0 ≤ 𝑥 ≤ 1

2
. (60)

If lithium foil serves as the negative electrode material, deposition and
extraction at the negative surface is described by the reaction

Li
𝑘2
⇄
𝑘−2

Li+ + 𝑒− . (61)

Li ions intercalating in the cathode will be denoted with Li⊕, to stress
their ionic nature ‘‘shielded’’ by electrons and to distinguish them
from mobile charges Li+ in the electrolyte. Charge-transfer kinetics at
both electrode/electrolyte interfaces, diffusion and migration of mobile
lithium ions in the electrolyte (Li+) and positive electrode (Li⊕) are
accounted for. The space-charge separation in electrical double layers,
materialized at both electrode/electrolyte interfaces, is considered, too.
Redox processes, modeled as isothermal, only occur at the interfaces
between the electrolyte and the electrode layers; volume changes of
the electrolyte during cycling are neglected and the active surface area
does not change over cycling.

The positive and negative electrodes thickness amount at Lc =
0.32 μm and La = 0.50 μm, respectively. The solid electrolyte is a one-
micron-thick (L = 1.00 μm) layer of LiPON. The surface area of the
e
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Fig. 14. The electric potential 𝜙(𝑥) inside the electrolyte. (a) 𝑘ion𝑏 =8.00 ⋅ 10−7, 𝑘ion𝑓 = 5.56 ⋅ 10−2, 𝑘hop𝑏 = 1000𝑘ion𝑏 and 𝑘hop𝑓 = 0. (b) 𝑘ion𝑏 =8.00 ⋅ 10−7, 𝑘ion𝑓 = 4.726 ⋅ 10−2, 𝑘hop𝑏 = 1000𝑘ion𝑏
and 𝑘hop𝑓 = 1.4118 ⋅ 10−4.
Fig. 15. The correlation matrix between the input and output (a). The total Sobol indices for: (b) 𝑐ss
Li+

and (c) 𝑐ss
Li+hop

.

Fig. 16. The total Sobol indices for 𝑏.
deposited electrodes is 𝐴 = 10−4 m2 and the theoretical storage capacity
of the battery is 10−5 Ah.

The electrochemical cell is subject to a galvanostatic process of dis-
charge at different 𝐶−𝑟𝑎𝑡𝑒𝑠, under a temperature-controlled condition
of 25 ◦C. The current corresponding to 𝐶−𝑟𝑎𝑡𝑒 = 𝑗 is denoted with 𝐼𝑗𝐶 .
For 𝐶−𝑟𝑎𝑡𝑒 = 1, 𝐼1𝐶 amounts at 10−5𝐴. Initial and boundary conditions
are made compatible with thermodynamic equilibrium at 𝑡 = 0, tuning
the density current 𝑖𝑏𝑎𝑡(𝑡) in time as:

𝑖𝑏𝑎𝑡(𝑡) = (1 − 𝑒−𝑡)
𝐼𝑗𝐶
𝐴

, (62)

with 𝑡 in seconds. In view of (62), all ionic concentrations at 𝑡 = 0 are
uniform and at equilibrium, because no profiles have yet developed.
By enforcing the fraction of mobile lithium in the electrolyte 𝛿 = 0.18
and a maximum concentration of lithium host sites in the electrolyte
14
𝑐0 = 60100mol∕m3, Eqs. (24)–(28) provides

𝑐Li(𝑥, 0) = 𝑐eqLi = 2.40⋅104 mol∕m3 −𝐿𝑎 ≤ 𝑥 ≤ 0, (63a)

𝑐Li0 (𝑥, 0) = 4.93⋅104 mol∕m3 0 ≤ 𝑥 ≤ 𝐿𝑒, (63b)

𝑐n− (𝑥, 0) = 1.08⋅104 mol∕m3 0 ≤ 𝑥 ≤ 𝐿𝑒, (63c)

𝑐Li+ (𝑥, 0) = 5.68⋅103 mol∕m3 0 ≤ 𝑥 ≤ 𝐿𝑒, (63d)

𝑐Li+hop (𝑥, 0) = 5.12⋅103 mol∕m3 0 ≤ 𝑥 ≤ 𝐿𝑒, (63e)

𝑐Li⊕ (𝑥, 0) = 𝑐eq
Li⊕

= 1.20⋅104 mol∕m3 𝐿𝑒 ≤ 𝑥 ≤ 𝐿𝑒 + 𝐿𝑐 . (63f)

The electric potential at the interface between the anode and the solid
electrolyte is fixed as:

𝜙(0, 𝑡) = 0 [𝑉 ] ∀𝑡. (64)
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Fig. 17. A pictorial view of the ASSBs used to validate the solid electrolyte model proposed, under discharge conditions, together with the unknown fields. The unknown fields
include lithium concentration in the anode, for the sake of generality.
Table 2
Model parameters used during simulations.
Input parameters

Parameter Value Unit Description

𝑇 298.5 K Temperature
𝐿𝑎 0.50 ⋅ 10−6 m Thickness of the anode
𝐿𝑒 1.50 ⋅ 10−6 m Thickness of the electrolyte
𝐿𝑐 0.32 ⋅ 10−6 m Thickness of the cathode
𝐿𝑐𝑜𝑙 0.10 ⋅ 10−6 m Thickness of the positive collector
𝐴 1.00 ⋅ 10−4 m2 Geometrical surface area
𝑐𝑠𝑎𝑡
Li⊕

2.34 ⋅ 104 mol m−3 Maximum concentration of Li⊕ ions in the electrode
𝑘𝑎 1.08 ⋅ 107 S m−1 Electrical conductivities in the lithium anode
𝑘𝑐𝑜𝑙 10.0 S m−1 Electrical conductivities in the current collector
𝑘ion𝑓 1.125 ⋅ 10−5 (1.80 ⋅ 10−5) s−1 Lithium ion generation reaction rate constant for Eq. (1)
𝑘ion𝑏 0.90 ⋅ 10−8 m3 mol−1 s−1 Lithium ion recombination reaction rate constant for Eq. (1)
𝑘hop𝑓 8.10 ⋅ 10−9 (1.69 ⋅ 10−9 ) s−1 Lithium ion generation reaction rate constant for Eq. (3)
𝑘hop𝑏 0.90 ⋅ 10−8 m3 mol−1 s−1 Lithium ion recombination reaction rate constant for Eq. (3)
𝑐𝑑𝑙𝑎 1.74 ⋅ 10−4 F m−2 Double layer capacity per unit area of anode
𝑐𝑑𝑙𝑐 5.30 ⋅ 10−3 F m−2 Double layer capacity per unit area of cathode
𝛼𝑛 0.6 – Charge transfer coefficient for the negative electrode
𝛼𝑝 0.6 – Charge transfer coefficient for the positive electrode
D| Li+ 5.10 ⋅ 10−15 m2 s−1 Diffusion coefficient for Li+ ions in the electrolyte
D| Li+hop 0.90 ⋅ 10−15 m2 s−1 Diffusion coefficient for Li+hop ions in the electrolyte
D| Li⊕ 1.76 ⋅ 10−15 m2 s−1 Diffusion coefficient for Li⊕ ions in the cathode
𝑘1 5.10 ⋅ 10−6 m2.5 mol−0.5 s−1 Standard reaction rate constant for forward reaction in Eq. (60)
𝑘2 1.09 ⋅ 10−5 m s−1 Standard reaction rate constant for forward reaction in Eq. (61)
𝛿 0.18 – Fraction of mobile ions in the electrolyte in equilibrium
𝑐0 6.01 ⋅ 104 mol m−3 Maximal lithium concentration in the electrolyte
𝜀𝑟 2.25 – Relative permittivity in the electrolyte
According to Eqs. (2) and (4), the equilibrium constants read

𝐾 ion
eq = 1.125 ⋅ 10−5

0.90 ⋅ 10−8
= 1250 , 𝐾hop

eq = 8.10 ⋅ 10−9

0.90 ⋅ 10−8
= 0.9. (65)

Solution schemes - The governing equations are numerically solved
with the finite element method, with in house implementation of weak
forms in the commercial numerical software Matlab. The geometry and
the unknown fields (see Fig. 17) are discretized with 61 linear elements;
1 element is sufficient for the anode, since the lithium concentration
is uniform ad the electric potential is linear; the outcomes refer to a
tessellation of 40 finite elements covering the electrolyte and 20 panels
that discretize the cathode. In both cases, the mesh is refined near the
electrode/electrolyte interface. The time marching is dealt with the
backward Euler method, with fixed time increments of 𝛥𝑡 = 1.0 s.
15
The open circuit potential (OCP) used in the simulations has been
reconstructed with splines stemming from experimental evidences
in [18].

The simulations account for a broad range of C-rates, from 1.0 to
51.2. The corresponding experimental discharging curves have been
plotted with dots in Fig. 18-a as a function of time: continuous lines
correspond to simulations. Measurements and simulations agree well
across the wide range of investigated 𝐶−𝑟𝑎𝑡𝑒𝑠. Obviously, the ex-
tracted charge decreases with increasing 𝐶−𝑟𝑎𝑡𝑒 due to the higher
over-potentials. In fact lower discharge rates implies a lower rate of
lithium insertion in the cathode and a more uniform Li distribution in
the positive electrode.

Electric potential profiles - Fig. 19 depicts the electric potential
𝜙(𝑥) profile in the battery at different times for two different discharge
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Fig. 18. Voltage vs time discharge curves as a function of time for different 𝐶−𝑟𝑎𝑡𝑒𝑠. Colored lines correspond to different 𝐶−𝑟𝑎𝑡𝑒𝑠, whereas the dots identify the experimental
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. (a)–(b): The electric potential profile at different times for two different 𝐶−𝑟𝑎𝑡𝑒𝑠. The last plotted time step corresponds to the instant when the concentration of lithium
Li⊕ inside the cathode reaches the saturation limit 𝑐sat

Li⊕
. (c)–(d): The electric potential in the interfaces with the electrodes as a function of time for two different 𝐶−𝑟𝑎𝑡𝑒𝑠.
rates, i.e. 𝐶−𝑟𝑎𝑡𝑒 = 3.20 (which theoretically allows to discharge the
battery in 1125 s) and 𝐶−𝑟𝑎𝑡𝑒 = 51.2 (for which the battery in principle
completes the discharge process in 70 s). Simulations quit when the
concentration of lithium Li⊕ inside the cathode reaches the saturation
limit 𝑐𝑠𝑎𝑡

Li⊕
, after 1085 s and 50 s respectively. Cathodic saturation is

indeed the limit factor for the battery operation (see also [56] for
an extensive discussion on limiting factors in electrochemical cells,
induced by materials and architectures).

The electric potential evolution in time at both interfaces is given
in Fig. 19(c)–(d) and reflects the conclusions driven in Fig. 19(a)–(b).

Interface currents - Interface conditions on fluxes at the left and
right boundaries of the electrolyte are:

ℎ⃗ + (0, 𝑡) ⋅ 𝑛 = −
𝑖𝑐𝑡𝑎∕𝑒(𝑡) + 𝑖

𝑑𝑙
𝑎∕𝑒(𝑡) (66a)
16

Li 𝐹
ℎ⃗Li+ (𝐿𝑒, 𝑡) ⋅ 𝑛 = −
𝑖𝑐𝑡𝑒∕𝑐 (𝑡) + 𝑖

𝑑𝑙
𝑒∕𝑐 (𝑡)

𝐹
. (66b)

Considering the non-faradaic current contribution (dis)charging the
electrical double layers 𝑖𝑑𝑙𝛼 (𝑡), it can be defined in derivative form as

𝑖𝑑𝑙𝛼 (𝑡) = 𝐶𝑑𝑙𝛼
𝜕[[𝜙 ]]
𝜕𝑡

, (67)

where the jump [[𝜙 ]] of the electric potential at the electrolyte/
electrode interface is always defined as the electrode potential mi-
nus the electrolyte potential and 𝛼 = 𝑎∕𝑒, 𝑒∕𝑐. The faradaic current
proposed in [15] emanates from charge transfer kinetics, in a form
that extends Butler–Volmer equations to the mass transfer-influenced
conditions [47]. The expression of 𝑖𝑐𝑡𝛼 at the interfaces are:

𝑖𝑐𝑡 = 𝑖0
(

𝑐Li(0, 𝑡) exp
[

𝛼𝑎𝐹 𝜂𝑎(𝑡)
]

𝑎∕𝑒 𝑎∕𝑒 𝑐Li 𝑅𝑇
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[

−
(1 − 𝛼𝑎)𝐹
𝑅𝑇

𝜂𝑎(𝑡)
])

, (68a)

𝑒∕𝑐 (𝑡) = 𝑖0𝑒∕𝑐

(

exp
[

𝛼𝑐𝐹
𝑅𝑇

𝜂𝑐 (𝑡)
]

− exp
[

−
(1 − 𝛼𝑐 )𝐹
𝑅𝑇

𝜂𝑐 (𝑡)
])

, (68b)

where 𝑐Li+ is the average bulk concentration of species Li+, 𝑐𝐿𝑖 is
the bulk activity of the metallic Li, 𝛼𝑎 and 𝛼𝑐 are the charge transfer
oefficients for reaction Eq. (60) and for reaction Eq. (61) respectively.
he overpotentials 𝜂𝑎 and 𝜂𝑐 of the charge transfer reactions at the neg-
tive and positive electrode respectively are the difference between the
ump [[𝜙 ]] of the electric potential at the electrolyte/electrode interface
always defined as the electrode potential minus the electrolyte poten-
ial) and the open circuit potential (OCP) measured experimentally. The
xchange current 𝑖0𝛼 are given by:

0
𝑎∕𝑒 = 𝐹 𝑘2 (𝑐Li+ )

𝛼𝑎 (𝑐Li)1−𝛼𝑎 , (69a)

𝑖0𝑒∕𝑐 = 𝐹 𝑘1 𝑐
𝑠𝑎𝑡
Li⊕

(

1 −
𝑐Li⊕
𝑐𝑠𝑎𝑡
𝐿𝑖⊕

)𝛼𝑐 (

𝑐Li⊕
𝑐𝑠𝑎𝑡
𝐿𝑖⊕

)1−𝛼𝑐
(

𝑐Li+
)𝛼𝑐 , (69b)

with 𝑘2 and 𝑘1 the standard rate constants for reactions Eqs. (60)
nd (61), respectively. The reader may refer to [15] for further details
n these equations and on the geometric capacitance. In view of the
plitting of lithium flux in interstitial and hopping, faradaic interface
onditions split, too:
𝑐𝑡
𝑎∕𝑒 = 𝑖𝑐𝑡𝑎∕𝑒Li+ + 𝑖𝑐𝑡𝑎∕𝑒Li+hop

, 𝑖𝑐𝑡𝑒∕𝑐 = 𝑖𝑐𝑡𝑒∕𝑐Li+ + 𝑖𝑐𝑡𝑒∕𝑐Li+hop
(70)

with the interstitial and hopping contributions to charge transfer cur-
rent clearly identified. They can be inferred from Butler–Volmer
Eqs. (68). The exchange currents read:

𝑖0𝑎∕𝑒Li+ = 𝐹 𝑘2 (𝑐Li+ )
𝛼 (𝑐Li)1−𝛼 ,

0
𝑒∕𝑐Li+

= 𝐹 𝑘1 𝑐
𝑠𝑎𝑡
Li⊕

(

1 −
𝑐Li⊕
𝑐𝑠𝑎𝑡
Li⊕

)𝛼 (

𝑐Li⊕
𝑐𝑠𝑎𝑡
Li⊕

)1−𝛼

(𝑐Li+ )
𝛼 (71a)

𝑖0𝑎∕𝑒Li+hop
= 𝑖0𝑎∕𝑒Li+

⎛

⎜

⎜

⎝

𝑐Li+hop
𝑐Li+

⎞

⎟

⎟

⎠

𝛼

,

0
𝑒∕𝑐Li+hop

= 𝑖0𝑒∕𝑐Li+
⎛

⎜

⎜

⎝

𝑐Li+hop
𝑐Li+

⎞

⎟

⎟

⎠

𝛼

. (71b)

where 𝑐Li+ , 𝑐Li+hop
are average bulk concentrations of species Li+ and

i+hop, respectively. Note that, differently from [15], those averages are
ot time independent. Lacking more clear understanding, we assume
hat the non faradaic current 𝑖𝑑𝑙𝛼 (𝑡) as in Eq. (67) is proportional to the

faradaic splitting, i.e.

𝑖𝑑𝑙𝑠 = 𝑖𝑑𝑙𝑠 Li+ + 𝑖𝑑𝑙𝑠 Li+hop
, (72a)

𝑖𝑑𝑙𝑠 Li+ =
𝑖𝑐𝑡𝑠 Li+

𝑖𝑐𝑡𝑠
𝑐𝑑𝑙𝑠

𝜕[[𝜙 ]]
𝜕𝑡

,

𝑑𝑙
𝑠 Li+hop

=
𝑖𝑐𝑡𝑠 Li+hop

𝑖𝑐𝑡𝑠
𝑐𝑑𝑙𝑠

𝜕[[𝜙 ]]
𝜕𝑡

, (72b)

where the jump [[𝜙 ]] of the electric potential at the electrolyte/
lectrode interface is always defined as the electrode potential minus
he electrolyte potential and 𝑠 = 𝑎∕𝑒, 𝑒∕𝑐. The Neumann conditions on

fluxes at the left and right boundaries of the electrolyte eventually read:

ℎ⃗Li+ (0, 𝑡) ⋅ 𝑛 = −(𝑖𝑐𝑡𝑎∕𝑒Li+ + 𝑖𝑑𝑙𝑎∕𝑒Li+ )∕𝐹 ,

ℎ⃗Li+ (𝐿𝑒, 𝑡) ⋅ 𝑛 = −(𝑖𝑐𝑡𝑒∕𝑐Li+ + 𝑖𝑑𝑙𝑒∕𝑐Li+ )∕𝐹 ,
(73a)

ℎ⃗Li+hop (0, 𝑡) ⋅ 𝑛 = −(𝑖𝑐𝑡𝑎∕𝑒Li+hop
+ 𝑖𝑑𝑙𝑎∕𝑒Li+hop

)∕𝐹 ,

ℎ⃗Li+ (𝐿𝑒, 𝑡) ⋅ 𝑛 = −(𝑖𝑐𝑡𝑒∕𝑐 + + 𝑖𝑑𝑙𝑒∕𝑐 + )∕𝐹 .
(73b)
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The charge transfer faradaic current 𝑖𝑐𝑡 and the double layer 𝑖𝑑𝑙 currents
flowing at the interfaces, described by Eqs. (70)–(72), are shown in
Fig. 20 at different C-rates. The results account for the splitting of
lithium flux in interstitial and hopping.

The left column collects the evolution in time of the charge transfer
faradaic current 𝑖𝑐𝑡, at the 𝑎∕𝑒 and 𝑒∕𝑐 interfaces. At 𝑡 = 0 all currents
vanish, in view of the thermodynamic equilibrium. The charge flow
ramps up according to Eq. (62) and rapidly reaches a steady state,
which is maintained in time. The hopping current 𝑖𝑐𝑡Li+hop is smaller than
the corresponding interstitial at both interfaces, while their sum equals
𝑖𝑏𝑎𝑡(𝑡) since 𝑖𝑑𝑙𝑎∕𝑒 and 𝑖𝑑𝑙𝑒∕𝑐 are vanishing after a short time.

The non-faradaic currents 𝑖𝑑𝑙𝑎∕𝑒 and 𝑖𝑑𝑙𝑒∕𝑐 are plot in the right columns
of Fig. 20 at different C-rates. The anodic double layer current is
basically null throughout the discharge time, whereas the cathodic
one reaches soon its maximum value, (still several order of magnitude
smaller than 𝑖𝑐𝑡), and returns to zero at similar speed.

Currents and mass fluxes are related by the Faraday’s constant 𝐹 .
The mass fluxes of the two species of lithium across the electrolyte, ℎ⃗Li+
and ℎ⃗Li+hop , are given in dashed and solid line in Fig. 21 respectively.
Two 𝐶 − 𝑟𝑎𝑡𝑒𝑠 and two sets of equilibrium constants are considered.
Figs. 21a and 21b refer to the same C-rate (3.2) but to different equi-
librium constants (specifically, Fig. 21a kinetic constants are the ones in
italic in Table 2). Figs. 21b and 21c share the same constants but refer
to the different C-rates (3.2 vs 51.2). In all three cases, the fluxes at
anode and cathode remains basically unchanged in time, confirming the
evidence discussed in Fig. 20. The profile across the electrolyte however
evolves towards a uniform profile, which corresponds to a steady state.
In all cases both interstitial and hopping fluxes are positive, hence there
is no counter-flux in any of the two mechanisms and lithium flows from
the anode to the cathode in discharge.

Fig. 21 highlights that the sum of the interstitial and hopping
fluxes remains constant in space and time: this event is due to the
electroneutrality. In fact, enforcing Eq. (11) in the linear combination
of Eqs. (8)–(9), one easily gets

div
[

ℎ⃗Li+ + ℎ⃗Li+hop

]

= 0 0 ≤ 𝑥 ≤ 𝐿𝑒. (74)

In turn, this implies that the total lithium 𝑐𝑡𝑜𝑡
Li+

= 𝑐Li+ + 𝑐Li+hop obeys the
evolution equation
𝜕𝑐𝑡𝑜𝑡

Li+

𝜕𝑡
= 𝑤 0 ≤ 𝑥 ≤ 𝐿𝑒 , (75)

thus highlighting the fundamental role of the ionization reaction (1)
in the charge/discharge process. The hopping flux decreases from the
electrodes toward the center of the electrolyte. Since the ionic flow goes
from the anode to the cathode, this results in accumulation of hopping
lithium at the anode and a depletion at the cathode. The interstitial
lithium behaves in the opposite way and the same holds for vacancies
that are not filled by the hopping lithium.

Concentrations profiles
Fig. 22 depicts the evolution of lithium concentration 𝑐Li⊕ (𝑥) in the

cathode and in the solid electrolyte. Since two ionic concentrations are
concurrently present in the electrolyte, only their sum (𝑐Li+ + 𝑐Li+hop ) has
been plotted in Fig. 22.

The anode, made of a metallic foil of lithium, is unaffected by
the lithiation/delithiation processes and considered as an unlimited
reservoir of lithium. The lithium ions intercalate inside the cathode and
accumulates near at the electrolyte/cathode interface. The discharge
process ends when lithium in cathode reaches its saturation limit 𝑐𝑠𝑎𝑡

Li⊕
=

23400 mol m−3. Saturation of the interface electrolyte/cathode is thus
the limiting factor for the performance of this battery.

Concentrations cLi0 , c𝑛− , cLi+ and cLi+ℎ𝑜𝑝 are plotted separately in
Fig. 23. The number of uncompensated negative vacancies, balanced
by the interstitial lithium, is higher at the cathode in discharge. Note
that, in view of electroneutrality and of the assumption of no neg-

ative charges flow, the total concentration of lithium cannot vanish,
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Fig. 20. Left (right) column: evolution in time of the charge transfer faradaic current 𝑖𝑐𝑡 (double layer current 𝑖𝑑𝑙), at the 𝑎∕𝑒 and 𝑒∕𝑐 interfaces at different C-rates.

Fig. 21. Interstitial and hopping lithium fluxes inside the electrolyte at different C-rates and equilibrium constants.

Fig. 22. Lithium concentration profiles inside the battery at different time steps for two different 𝐶−𝑟𝑎𝑡𝑒𝑠. The blue lines correspond to the initial time step, when the lithium
concentrations inside the single components of the battery are in equilibrium and no profile is developed. The final time step, in red line, corresponds to the instant when the
battery is considered discharged since the concentration of lithium Li⊕ inside the cathode reaches the saturation limit 𝑐sat

Li⊕
. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 23. Lithium concentration profiles of the different species cLi0 , c𝑛− , cLi+ and cLi+ℎ𝑜𝑝 inside the solid electrolyte at different time steps for a 𝐶−𝑟𝑎𝑡𝑒 = 3.2 (a) and a 𝐶−𝑟𝑎𝑡𝑒 = 51.2
b).
ifferently from liquid electrolyte and from [15]. Nonetheless, the con-
ributions cLi+ and cLi+ℎ𝑜𝑝 can separately become zero (see Fig. 23(d)).
he consequences of this event are yet unclear.

The concentration of Li⊕ in the cathode increases with the discharge
ime, in agreement with the Li-intercalation reaction of Eq. (61). The
igher the C-rate, the steeper the expected concentration gradient,
ence diffusion in the electrode may become an issue at high C-rates.
t 51.2, this phenomena is clearly visible in Fig. 22(b).

The total lithium concentration at the interfaces with the two elec-
rodes is plotted in Fig. 24. The tangent at 𝑡 = 0 vanishes: this is

explained by the resulting electroneutrality coupled to the equilibrium
condition 𝑤 = 0 imposed at 𝑡 = 0 in Eq. (8)b. The concentrations
at the two electrodes evolve according to mass balance Eqs. (9). As
noticed in Fig. 21, the fluxes tend in time to achieve a uniform value
across the electrolyte, i.e. the divergence term becomes less and less
important and the evolution of concentrations turns out to be driven
19
by the evolution of 𝑤. It is thus expected that, at the same equilibrium
constant, increasing the reaction constant (i.e. making the reaction
faster) would allow reaching the steady state in due time. This is
numerically confirmed in Fig. 24, where the higher the 𝑘ion𝑓 and 𝑘ion𝑏 ,
keeping 𝐾 ion

eq = 1250, the sooner the concentration plateau is reached.
Note that steady state in that case is obtained only at low C-rates.
9. Conclusions

In this note, we proposed a novel model for solid electrolytes
and thoroughly investigated its electrochemical response. The model
belongs to the class of two-mechanism models, in which the ionic motility
is depicted as due to hopping and interstitial diffusion. After the ion-
ization reactions occur, some ions hop and fill neighboring vacancies,
whereas the remaining positive ions move in a meta-stable interstitial
state. In this work, the dynamic filling of vacancies by neighboring
positions is modeled explicitly. The concentration of negatively charged
vacancies results from the solution of the governing equations.
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Fig. 24. Lithium concentration at the interfaces with the two electrodes, for two different 𝐶−𝑟𝑎𝑡𝑒𝑠. Several values for 𝑘ion𝑏 have been chosen, at constant 𝐾 ion
eq = 1250. The blue

ines correspond to the values measured at the interface anode/electrolyte and the red line corresponds to the interface electrolyte/cathode. Note that the initial tangent vanishes:
his is explained by the resulting electroneutrality coupled to the equilibrium condition 𝑤 = 0 imposed at 𝑡 = 0 in Eq. (8)b. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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Mass balance equations, chemical kinetics laws, balance of momen-
um, and Ampere’s law are framed in the rigorous setting of the thermo-
hemo-mechanics of continua. The model is fully three-dimensional
nd, in order to ensure the multiscale compatibility, depicts the electric
ield by means of the quasi-static Ampere–Maxwell equations, without
mposing electroneutrality a priori [17].

Governing equations have been either solved numerically via the
inite element method or analytically, in seeking for the steady state
olution. Interface currents, the electric potential, fluxes and concen-
rations profiles have been analyzed at equilibrium, steady state, and
ime-dependent behaviors. The transient response shows a non-uniform
rofile of ionic concentrations, with gradients that attenuate in time
owards a uniform ionic distribution at steady state. Depending upon
he material parameters and initial conditions, the time required to
omplete the transient phase turned out to be extremely long; as a
onsequence, the transient response might even be the only relevant
ehavior during real life battery operations.

The simulations outcomes have been validated against the experi-
ental evidence presented in [15] and in [18]. Quantities of interest,

s discharge curves, agree well across the wide range of investigated
− 𝑟𝑎𝑡𝑒𝑠.
The model sensitivity on the material parameters was investigated,

oo, with the aim of identifying the ones that contribute the most to
he response. It turned out that the most relevant parameter is the
raction of Li that resides in equilibrium in the mobile state, which can
e accurately estimated according to [15].

Further developments of the proposed framework are in progress,
ith the aim of accounting for multi-physics interactions and realistic
escriptions of the microstructure of composite cells. The processes
ithin the proposed model are in fact described as isothermal, although

t is quite well known, at least in liquid electrolytes, that temperature
ffects the response of batteries [43]. Furthermore, the volume of elec-
rodes changes with cycling, due to repeated insertion and removal of Li
toms, causing disconnection and reduced contacts. In our simulations,
hough, the active surface area, where redox processes occur, was
naltered over cycling. All above assumptions are going to be removed
n our future research efforts.
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ppendix. Equilibrium conditions for the chemical reactions

Equilibrium conditions for the chemical reactions (1) and (3) can be
chieved from thermodynamics, as well. Imposing a vanishing affinity
or (3), for instance, leads to
𝑦 = 𝜇Li+hop − 𝜇Li

+ = 𝜇Li+hop − 𝜇Li
+ = 0 (76)

in view of definition (35b) since hopping and interstitial flows share
the same electric potential. For ideal solutions, replacing Eq. (37) into
Eq. (76), it comes out

𝜇0
Li+hop

− 𝜇0
Li+

= 𝑅𝑇 log
𝑐eq
Li+hop

𝑐eq
Li+

= 𝑅𝑇 log𝐾hop
eq (77)

by setting 𝑦 = 0 into Eq. (6b). Eq. relates 𝐾hop
eq to the negative of the

ibbs free energy change 𝜇0
Li+hop

− 𝜇0
Li+

. The thermodynamic restriction

𝐴𝑦 ≤ 0

s satisfied using Eq. (6b). The affinity and the reaction rate can be
estated as:

𝑦 = 𝑅𝑇 ln
⎡

⎢

⎢

⎣

𝜃Li+hop
1 − 𝜃Li+hop

1 − 𝜃Li+
𝜃Li+

1
𝐾hop

eq

⎤

⎥

⎥

⎦

,

𝑦 = 𝑘hop𝑏

⎧

⎪

⎨

⎪

−
𝜃Li+hop

1 − 𝜃Li+hop
+

𝜃Li+
1 − 𝜃Li+

𝐾hop
eq

⎫

⎪

⎬

⎪

.

⎩ ⎭
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𝐾

If 𝑦 > 0 then

hop
eq >

𝜃Li+hop
1 − 𝜃Li+hop

1 − 𝜃Li+
𝜃Li+

and in turn 𝐴𝑦 < 0. Viceversa if 𝑦 < 0 then 𝐴𝑦 > 0.
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