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a b s t r a c t 

The transportation sector is the largest contributor to global greenhouse gas emissions. Disruptive tech- 

nological changes in this sector, such as alternative fuel vehicles, are crucial for emission reduction. We 

show how a cost-minimizing strategic transition plan to adopt electric trucks over time can be developed 

for a firm that owns and operates a fleet of diesel trucks. We consider the case in which the firm de- 

cides to invest in the charging infrastructure required to support this transition, either because the pub- 

lic charging infrastructure is currently inadequate or for strategic reasons. The congestion effect at the 

charging stations, the charging times, and the potential loss of productive driving time due to detours to 

reach charging stations are explicitly considered. By developing an independence property, we are able to 

model this problem as a linear integer program without specifying origins and destinations. We illustrate 

the resulting transition plan with realistic parameter configurations. Our results indicate that a firm with 

high transportation demand density over a given service region significantly benefits from adoption of 

electric trucks, while also enjoying substantial carbon emissions savings. High demand density also fa- 

vors smaller battery capacity with shorter ranges under the optimized charging network capacity, even 

though larger battery capacity would increase productivity with extended ranges. Our analysis also offers 

insights for governments and regulators regarding the impact of several influential factors such as carbon 

cost, content of renewable energy in electricity mix, diesel engine efficiency, and subsidizing the charg- 

ing infrastructure. Additionally, we present an extension to the model that allows for different modalities 

of partnership in the infrastructure investment; notably public-private and private-private partnerships. 

While in general our results suggest that such partnerships are beneficial to all involved, the amount 

and relative distribution of the potential gains depend on the topography and on the density of charging 

infrastructure. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Technological change is necessary if we are to meet the aggres- 

ive emission targets of the 2016 Paris accords. This is particularly 

rue for the transportation sector, one of the largest contributors 

o global greenhouse gas (GHG) emissions. As of 2017, this sector 

enerated the largest share (28.9%) of all U.S. GHG emissions [1] . 

lobally, the estimate is close to 25% [2] . Moreover, road transport 

ccounts for approximately 80% of all such emissions [2] . 
� Area: Supply Chain Management. This manuscript was processed by Associate 

ditor Morales. 
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Under current trends, energy demand and emissions related 

o transportation are predicted to double by 2050 [3] . There- 

ore, disruptive—rather than progressive—change is needed to meet 

mission targets in the sector [4] . Some estimates indicate that an 

doption of alternative fuel vehicles (AFV) in the order of 50% for 

verall traffic is required, by 2050, to stay within the 2-degree cli- 

ate target [5] . Other estimations are equally radical [see, e.g., 6 ]. 

On the commercial front, the International Energy Agency has 

eveloped two scenarios for the evolution of energy demand from 

reight vehicles [7] . The first scenario estimates the evolution of 

he sector solely based on advances in current technologies (i.e., 

ased on policies and measures that are currently adopted or an- 

ounced, e.g., improvements in fuel efficiency, vehicle utilization, 

nd routing). This scenario leads to an increase in GHG emissions 

n the order of 55% by 2050. The second scenario, however, explic- 
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tly considers the adoption of a new type of “modern truck” based 

n radical technological change; it achieves a reduction in GHG 

missions in the order of 60%. In this scenario, the penetration of 

FVs in commercial fleets is in the order of 85% for light vehicles, 

5% for medium freight vehicles, and 70% for heavy freight vehi- 

les. Currently, the adoption of AFVs in the commercial space is 

irtually zero; particularly in the medium/heavy freight space. As 

f the end of 2018, the number of AFVs on the road was around

 million, the vast majority of which were consumer vehicles [8] . 

f these, 3 million are battery electric vehicles. (This is equivalent 

o approximately 0.1% of the total number of consumer vehicles on 

he road.) 

The lack of adoption of AFVs in the industrial sector can be at- 

ributed to a number of reasons. Limited range, high cost of fixed 

ssets, and a lack of fueling infrastructure are consistently listed 

s the primary factors holding firms back [7] . Moreover, the lack 

f full-scale adoption of AFVs also impacts the uncertainty of their 

esale value, further limiting adoption. In contrast to the consumer 

pace, an investment in AFVs can potentially represent a signifi- 

ant portion of a firm’s total investment, particularly for logistic 

ervice providers. A change in the technology basis of their largest 

sset base is non-trivial. Thus, it is understandable for firms to take 

 wait-and-see approach, allowing for the market to become less 

ncertain (i.e., allowing for the different technologies to mature) 

efore formulating an alternative-fuel strategy [9] . 

From a technological perspective, however, we are currently at 

he verge of maturity. Electric vehicles (e-vehicles) specifically tar- 

eted at the consumer sector deliver outstanding performance [10–

3] . Recent research suggests that battery technology is now at a 

tage where, even though they are still more expensive upfront, 

he total ownership cost (considering maintenance costs and tax 

ebates) of consumer e-vehicles is lower than the total owner- 

hip cost of internal combustion vehicles (ICVs; [14–16] ). Moreover, 

orecasts estimate that the purchase cost of consumer e-vehicles 

ill be competitive with that of ICVs as early as 2025 [17] . Devel-

pments in the commercial space are slower, but several truck and 

-vehicle manufacturers such as Daimler, Mack, Tesla, Volvo, Sca- 

ia, and DAF have announced plans to deliver long-haul e-trucks 

18] . Trucks based on other alternative-fuel technologies are also 

nder development. The question in the transportation sector is, 

herefore, not whether the current standard for commercial appli- 

ations will be replaced by new vehicle technologies, but how to 

mplement the upcoming technology change in the best way pos- 

ible. This question motivates our research. 

In this paper, we study whether e-trucks can become a feasi- 

le alternative for a firm that currently operates a fleet of ICVs –

ypically, diesel trucks (d-trucks) – for its own operations or as a 

ervice. We develop a model to optimize the investment and sal- 

aging decisions for a truck fleet (composed of d- and/or e-trucks) 

ogether with the investment for the charging infrastructure asso- 

iated with e-trucks. We explicitly factor-in the congestion effect 

t the charging stations due to scarce resources and lengthy charg- 

ng times, which curtails the utilization of e-trucks. The argument 

or considering vehicle and infrastructure decisions simultaneously 

s threefold. First, there is no existing infrastructure for refueling 

FVs on the scale necessary for commercial use [18] . Thus, early 

dopters must also invest in infrastructure. Second, even for a suf- 

cient coverage area of publicly available charging infrastructure, 

eet owners may want to avoid potential congestion, uncertain 

aiting times, and unavailability due to maintenance and break- 

owns. Third, the choice of charging technology and the density 

f the charging infrastructure have a substantial impact on the ef- 

ective utilization of trucks and, hence, on the level of customer 

ervice provided. Moreover, fuel costs are of strategic importance 

or road freight transport; estimates suggest that they comprise in 

he order of 30% of total costs [19,20] . Therefore, fleet operators 
2 
ay want to maintain control of this significant cost component 

nd thus invest in their own refueling infrastructure for strate- 

ic reasons. Even though there are not many e-trucks on roads as 

f yet, other kinds of AFVs are getting increasingly more popular 

nd we already observe a recent spike in the number of providers 

ffering char ging infrastructure solutions to companies for their 

and their customers’) electric vehicles, see e.g., ChargeUp Europe 

 https://www.chargeupeurope.eu ), which is a coalition of electric 

ehicle charging infrastructure providers. Deutsche Post DHL, for 

xample, has come to an agreement already back in 2018 with 

nnogy to provide charging infrastructure for its growing electric 

ehicle fleet at DHL locations in 10 different countries in Europe 

21,22] . Kullman et. al. [22] report that French company ENEDIS 

hose to invest in their own charging infrastructure when replac- 

ng their fleet with EVs due to the uncertainty at public charging 

nfrastructure. We find that, among other insights, e-trucks can in- 

eed become a feasible alternative for firms in the near future if 

he density of the charging infrastructure is also optimized collec- 

ively. 

We develop a high-level strategic model that can provide valu- 

ble insights for the decision makers and the governing bodies. By 

sing our model, decision makers can identify when and if they 

re ready to invest in e-trucks and the type of e-truck (in terms of 

attery capacity) that best suits to their market structure. Govern- 

ng bodies can benefit from our approach in developing policies to 

ccelerate the transition of the industry to sustainable transporta- 

ion. With the help of a numerical study inspired by real-life pa- 

ameter settings, our approach is also instrumental in developing 

nsights some of which may be counter to the common sense: (i) 

nvesting in e-trucks can be optimal only if the decision maker also 

nvests in their own charging infrastructure in an optimal manner, 

ii) larger battery capacity is not always the best option compared 

o smaller battery capacity, and (iii) improvements in diesel engine 

fficiency can be counterproductive in the long run and can thwart 

he effort s to att ain net-zero emission t arget s. 

The rest of this paper is structured as follows. In Section 2 we 

rovide a survey of the literature related to sustainable transporta- 

ion and fleet replacement issues. Then, in Section 3 , we present 

ur modeling approach that let us formulate a linear model to 

olve the problem efficiently. Section 4 contains the results of our 

umerical study and scenario analysis that we conducted based on 

 realistic data set. We conclude with Section 5 . 

. Literature review 

Our research is motivated by the sustainability-driven require- 

ent for technological change in commercial transport. Our pa- 

er is therefore positioned at the intersection of two literature 

treams: sustainable operations (in particular, green transporta- 

ion) and asset management / fleet composition. 

.1. Sustainable transportation 

Within the general field of sustainable operations [see 23 , for an 

verview], much attention has centered around sustainable trans- 

ortation and, in particular, on the need to transition from ICVs 

o AFVs, both as means of personal [see, e.g., 24,25 ] and com- 

ercial transportation [e.g., 26,27 ]. Existing research ranges from 

ngineering considerations [28] to economic issues, including fis- 

al incentives [29] and total cost of ownership [30] . The particular 

hallenges facing commercial operators in adopting AFVs are most 

elevant to our paper. In this context, Schneider et al. [31] and 

elletier et al. [32] provide in-depth discussions of the challenges 

rms face and of future research perspectives of goods distribu- 

ion using AFVs. Note that, while there is no universal consensus 

https://www.chargeupeurope.eu
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s to the optimal alternative fuel technology [see 7] , electric vehi- 

les (EV) are typically considered the default AFV given the current 

tate of technology. Within the vast literature on sustainable trans- 

ortation, the electric vehicle routing problem (E-VRP) and facility 

ocation problems (FLP) for optimal location of charging infrastruc- 

ure have gathered considerable attention, on which we elaborate 

urther below. 

Goods distribution using EVs poses a double challenge: lim- 

ted range and long recharging times. This challenge requires ex- 

licit modeling of the charging technology, infrastructure, and pol- 

cy. Even though there are several different charging technology 

tandards (see Appendix A and B), the majority of studies in the 

iterature model generic power and cost parameters. In our anal- 

sis, we use the American SAE standard and adopt the speed of 

evel 3 charging system. We refer the reader to Das et al. [33] for a

horough review of the different standards and charging technolo- 

ies of EVs and Appendix A for a summary of existing charging 

echnologies. 

Afroditi et al. [34] trace the early appearance of the E-VRP 

o the beginning of the decade and suggest trends and insights 

or future research: a call for real-world, industry-based solutions. 

n subsequent years, the topic has sparked considerable interest 

rom the research community. Given that the problem is NP-hard, 

ybrid heuristics are typically used to solve problem instances. 

he charging schedule and timing can also be an important fac- 

or for different applications and analysis. For example, studies 

ithin the E-VRP literature usually assume that the vehicles are 

harged overnight in a depot so that vehicles start their routes 

ully charged [e.g., 35 ]; a number of studies also foresee the use 

f en-route charging stations with fast chargers [36] as a top- 

ff charge whenever necessary. Several extensions to the E-VRP 

lso consider different charging and/or routing policies; for ex- 

mple, the inclusion of delivery time windows [37] , minimizing 

missions [38] or energy consumption instead of costs [39] , adopt- 

ng battery-swapping instead of charging-stations [40–42] , and us- 

ng the driver’s lunch hour for partial recharging [43] . There are 

lso studies that consider long term planning and expansion of 

harging stations. Koç et al. [44] allow for shared charging sta- 

ions with a joint investment of multiple firms in charging infras- 

ructure, Xie et al. [45] deal with the long-term strategic plan- 

ing of inter-city fast-charging infrastructure to satisfy the grow- 

ng e-vehicle adoption in inter-city use, and Quddus et al. [46] in- 

egrate use of renewable energy and vehicle-to-grid mechanisms 

n their problem settings. In recent works, Keskin et al. [47] and 

eskin et al. [48] extend the E-VRP with stochastic waiting times 

n a recharging queue. They model the queues as M/G/1 systems 

nd introduce heuristic and simulation-based solution method- 

logies. The authors argue that modeling the waiting times may 

e crucial, and should be taken into account, for routing deci- 

ions. Finally, Kullman et al. [22] extend the E-VRP by explic- 

tly considering a private-public recharging strategy and model- 

ng congestion at the charger through M/M/c/ ∞ queues. They set 

he problem as an approximate dynamic programming model, and 

ropose a number of static and dynamic routing policies. They 

nd that with good dynamic routing policies, strategies consider- 

ng public-private charging infrastructure consistently outperform 

rivate-only solution strategies. We refer the reader to Macrina 

t al. [49] and Keskin et al. [47] for up-to-date surveys of the re-

ated literature in this domain. In this study, in addition to charg- 

ng infrastructure expansion decisions, we also consider fleet ex- 

ansion and replacement decisions in an integrated manner. 

A different modeling approach is the FLP, which decomposes 

he problem by first identifying a route and then finding the opti- 

al station location among a set of potential candidates [e.g., 50 ]. 

n contrast to the E-VRP, the FLP typically uses the demand be- 

ween origin-destination pairs to model the flow of vehicles, and 
3 
reats the charging station location as a decision variable [51–53] . 

inally, several assumptions can be made regarding the charging 

unction itself. The majority of studies assume either deterministic 

harging times [35] or linear charging times, where every minute 

f charging time increases the charge of a vehicle by a constant 

54] . Montoya et al. [55] however, argue that in real life, battery 

harging is non-linear: the charging rate for the first 80% is signif- 

cantly faster than the remainder. 

A number of recent papers consider integrated location-routing 

roblems. Schiffer and Walther [37] recognize the “chicken and 

gg” nature of the problem, in which the adoption of EVs is hin- 

ered by a lack of infrastructure, and infrastructure investment is 

indered by a lack of EV adoption. They formulate the electric lo- 

ation routing problem with time windows and partial recharging 

s a mixed integer programming model and allow for simultaneous 

outing and infrastructure decisions, considering partial recharging 

nd recharging at customer sites. Schiffer and Walther [36] later 

xtended this model to incorporate demand uncertainty with ro- 

ust optimization. 

In contrast to the short-term focus of the FLP and E-VRP, we 

ccount for the characteristics of electric vehicles from a strate- 

ic perspective, focusing on the investment decisions for the fleet 

ssets and the charging infrastructure. We estimate the required 

apacity of the refueling infrastructure based on the total driving 

imes of vehicles scattered over a given region, without needing 

o identify their exact routes. Rather than optimizing the rout- 

ng, location, and sizing decisions based on a given infrastructure, 

e optimize the timing of the capacity investment decisions for a 

esired density of the infrastructure network at a strategic level. 

hen a strategic decision lays out a transition plan as an outcome 

f our model, desired FLP and E-VRP models can be used by the 

ecision maker to convert this plan into tactical and operational 

ecisions for locating charging facilities and for identifying vehicle 

outes and charging schedules. 

This study is, to the best of our knowledge, the first to explic- 

tly include the relationship between the fleet size, the capacity of 

harging stations, and the expected waiting time. As we know from 

ueuing theory, the higher the capacity utilization, the longer the 

aiting times. In the type of application that concerns us, a ca- 

acity utilization above 80–90% can easily result in waiting times 

onger than the actual charging time. Therefore, it is necessary to 

ncorporate this effect to ensure that non-productive times are rea- 

onable. A number of recent studies contemplate different aspects 

f the utilization/waiting time relationship. Kim et al. [56] use 

 stochastic method to derive steady-state performance measures 

or charging stations under first-in, first-out and processor shar- 

ng scheduling methods. They find that the optimal scheduling 

ethod depends on characteristics of the problem setting, such 

s the available charging capacity and the behavior of arrivals. 

hamami et al. [57] and Kavianipour et al. [58] consider the prob- 

em of planning the refueling infrastructure for intercity e-vehicle 

ravel, they take waiting times into account through a determinis- 

ic queue assumption, where vehicles only wait if the (determinis- 

ic) arrival rate is larger than the service rate; Chen et al. [59] con-

ider stochastic M(t) /M/n queues by allowing potential charging 

tations within defined graphs. These studies remark on the im- 

ortance of modeling waiting times – however, in contrast with 

ur study, they treat the fleet size as exogenous. 

.2. Asset management, technology adoption, and equipment 

eplacement 

The classical asset management/replacement problem consid- 

rs the tradeoff between increasing operating, maintenance, and 

epreciation costs of aging equipment against the salvage value 

nd replacement cost of new equipment [60] . A large literature on 
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he subject considers deterministic [61] and stochastic factors [62] . 

xtensions to the pure replacement problem are the replacement 

roblem with new technology adoption [63] , the renewal problem 

64,65] , and the combined replacement and renewal problem [66] . 

hen adopting a new technology, a decision maker faces the ad- 

itional uncertainty of future technological change, its associated 

ttributes, and cost [67,68] . Operationally, sustainability can be in- 

orporated by framing the issue as a multi-objective problem, with, 

.g., energy consumption and GHG emissions as additional objec- 

ives [69] . 

From a strategic perspective, the timeframe for technological 

hange is aligned with the timeframe over which environmental 

olicies are evaluated [70] . Thus, the problem of strategic asset re- 

lacement with sustainable technologies has started to gain trac- 

ion in the literature [71,72] . 

.2.1. Strategic fleet replacement 

A number of papers study the different strategic aspects of the 

eplacement of a fleet of ICVs by EVs. Ansaripoor et al. [73] use 

 risk-type analysis to optimize the expected conditional value 

t risk metric, Kleindorfer et al. [74] formulate a stochastic dy- 

amic programming model with uncertain battery and fuel acqui- 

ition prices to support the fleet renewal decision at the French 

ostal operator, La Poste. Kuppusamy et al. [75] study the tech- 

ology overhaul of a taxicab service provider. In this setting, the 

ecision is whether to continue with ICVs or to fully switch to 

n EV fleet with a corresponding battery swap station. They find 

hat the fleet technology decision depends on the expected num- 

er of miles driven and its variability, and that the structure of the 

olution allows for switching (i.e., there are optimality ranges for 

V adoption). They observe a similar result when limited hetero- 

eneity (where different vehicle types are allowed for short/long 

aul). Feng and Figliozzi [76] and Davis and Figliozzi [77] evaluate 

he cost competitiveness of a series of e-trucks against their diesel 

ounterparts. They embed their analyses within an optimal fleet 

eplacement framework to analyze the key economic and techno- 

ogical factors driving the cost competitiveness of an eventual tran- 

ition to AFVs. They found that, given the high acquisition and bat- 

ery costs, e-trucks required a combination of favorable factors to 

ecome competitive; high utilization being a key driver. The au- 

hors note, however, that a reduction in costs could favor AFVs in 

he future. Battery costs, in particular, have fallen threefold since 

he publication of these articles. 

Wang et al. [78] and Patricksson et al. [79] are closest in spirit 

o our paper. The former presents a dynamic capacity investment 

odel for two competing technologies: “green” and conventional. 

he authors assume stochastic demand and operating costs, for- 

ulating a dynamic programming model in which the decision to 

nvest/divest or do nothing is taken every period for a certain time 

orizon. They illustrate an application of their model with a case 

tudy of the diesel/electric vehicle fleet for Coca-Cola. The authors, 

owever, consider a 1-to-1 replacement of the diesel fleet with 

lectric vehicles, thus foregoing the interaction effect between in- 

rastructure capacity and waiting times—and the associated impact 

n the required fleet size. Patricksson et al. [79] study the problem 

f fleet composition with regional emission limitations using RoRo 

hipping as a case study. While they consider several technologi- 

al characteristics in their model, there is no infrastructure compo- 

ent in their analysis. Islam and Lownes [80] analyse the joint fleet 

nd infrastructure investment problem from the perspective of an 

merican department of transportation, considering, in particular, 

he opportunities for technology replacement in a passenger bus 

eet. In contrast to our work, the authors do not consider the in- 

rastructure location as a decision variable (due to the assumption 

f a central bus depot), nor do they consider congestion-related 

ueueing issues. Hu et al. [81] deal with an integrated planning 
4 
f fleet size, hub locations, and hub capacities for a transportation 

rm by explicitly considering road congestion. In contrast, we ex- 

licitly model the congestion at the charging stations while plan- 

ing for fleet size and mix, and charging infrastructure capacities. 

n a recent study, Pelletier et al. [82] examined the optimal tran- 

ition strategy for a bus fleet. Similar to our study, they consider 

he effect of charging speed and evaluate the sensitivity of their 

olution to the future evolution of external parameters such as en- 

rgy/fuel costs. Due to the difference in setting, however, their ap- 

roach differs from ours in that they assume depot (or bus-stop) 

harging, without the consideration of queuing effects. 

We consider the specific strategic issue of the transformation 

f an entirely diesel fleet into an electric fleet within a given time 

orizon. The aim of our model is to assist with strategic decision- 

aking by finding the optimal investment decision in terms of 

ruck technology and charging infrastructure. We optimize over the 

ntire planning horizon; thus, our solution implies a time-varying 

nvestment strategy. We make general assumptions regarding the 

emand for transportation and the location of origins, destinations, 

nd charging infrastructure. In contrast to prior research, the num- 

er of facilities and charging instruments installed in a given year 

re treated as decision variables; this allows us to trade off in- 

rastructure investment against unproductive time (i.e., deviations 

rom route and queueing time prior to recharging). 

. Problem environment and model 

We consider a freight-moving firm operating within a given ge- 

graphical region. Similar to Pelletier et al. [82] , we define the fleet 

omposition of the firm using the set of truck types K = { 1 , . . . , n }
here K e ⊆ K denotes the subset of truck types that are e-trucks 

nd K d ⊆ K denotes the subset of truck types that are d-trucks. The 

rm aims to minimize the investment and operational costs associ- 

ted with its fleet composition over a certain planning horizon T = 

 1 , . . . , t F } of t F years. Let V tk denote the number of trucks of type

 operated by the firm in year t . We quantify the ‘sustainability’ of 

he fleet composition through the Green Ratio (GR), which we de- 

ne as the fraction of total demand carried by e-trucks; formally, 

he green ratio in year t is given by GR t = 

∑ 

k ∈ Ke V tk / 
∑ 

k ∈ K V tk . We

ssume that the firm initially operates with a fleet composed en- 

irely of d-trucks ( GR 0 = 0 ). 

The firm might reduce the carbon footprint (and associated 

mission costs) of its transportation operations by adopting a 

greener’ fleet containing e-trucks. Given the current state of the 

echnology, we assume that the charging infrastructure required to 

perate the e-truck fleet is not readily available, hence, the firm 

ust also invest in the charging infrastructure to materialize this 

ransition. Operational cost components are ‘fuel’ (diesel or elec- 

ricity), carbon emissions, driver wages, and maintenance of trucks 

nd charging outlets. Investment cost comprises procurement costs 

nd salvage values associated with trucks and plug-in charging in- 

rastructure. 

We adopt a strategic level analysis of the freight movement op- 

rations. We do not predicate our analysis on the exact locations of 

rigins, destinations, and the routes traversed, which might differ 

n a daily basis. Instead, we assume that the trucks are continu- 

usly traversing roads, destined for a drop-off, pick-up, refueling, 

r parking locations in a given service region defined at a city, 

ountry, or continent scale. Our analysis considers a dense road 

etwork over which origins and destinations are randomly scat- 

ered, implying that the traversing trucks are also randomly dis- 

ersed over the service area at any given time, without any con- 

ensed mass at a particular region. This topology fits well to Eu- 

ope, where the road network is dense and origins and destina- 

ions can be anywhere due to a large and dispersed population, as 

ell as highly populated areas such as Northeast of the US, North 
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merican coasts, and Asian, Latin American, and African metropoli- 

an areas. The problem under consideration applies to any firm 

hat owns and operates a fleet of trucks, whether in-house or for- 

ire. 

We define a “charging facility” as a charging station that con- 

ains one or more charging outlets, which we refer to as “charging 

nstruments”. We treat the number of facilities and instruments in- 

talled as design variables to be optimized. We assume that a firm 

dopts a single charging technology throughout its infrastructure, 

hich we model by parameterizing the charging times and acqui- 

ition costs on the chosen technology. In terms of charging policies, 

e assume deterministic charging in our numerical experimenta- 

ion, and investigate the effect of non-linear charging by modeling 

 scenario where batteries are only charged up to 80% in a shorter 

ime frame. Depending on the invested charging capacity, e-trucks 

ay need to detour to access a charging facility by deviating from 

heir main route and may also need to wait for an available instru- 

ent, due to congestion at the facility. Because we do not model 

pecific routes, we do not distinguish between depots and en-route 

harging stations; we consider a uniform distribution of equally- 

paced charging stations over the service area and include a “de- 

our” parameter to model the average (back and forth) deviation 

f a truck from its route to a charging station. In contrast, we as- 

ume that d-trucks can find a refueling station along their main 

oute whenever necessary and start refueling without delay, as gas 

tations are ubiquitous and with abundant capacity. 

.1. Definition of demand and productive driving time 

A typical trucking operation consists of productive and non- 

roductive work elements. Productive work elements are driv- 

ng times to reach a drop-off, pick-up, or parking location. 

on-productive elements include loading, unloading, and refuel- 

ng/recharging times. We assume that loading and unloading op- 

rations are independent of the drivetrain technology of a truck, 

nd thus do not explicitly model them. Technology choice (and the 

ssociated infrastructure), however, have a significant effect on the 

on-productive element associated with the refueling/recharging 

f a truck. For e-trucks, this includes the duration of the detour 

equired to reach a charging facility and to return to the main 

oute after receiving the service, potential waiting time at the facil- 

ty for an available charging instrument due to congestion, and the 

echarging time. For d-trucks, we assume that –given the high den- 

ity and capacity of gas stations– the only relevant non-productive 

lement is the refueling time at the gas station. 

We denote the total working time of a truck, excluding the 

forementioned non-productive work elements, as the “productive 

riving time”. For a truck of type k ∈ K, the total productive driving

ime per day, D 

p 

k 
, is estimated by 

 

p 

k 
= 

R k /νk 

R k /νk + τk 

H k , (1) 

here νk is the average speed of a truck of type k , R k is the driving

ange of a type k truck, H k is the total operating hours of a type

 truck per day, and τk denotes the non-productive work element 

ue to recharging/refueling of a truck of type k , which is depen- 

ent on the design of the refueling infrastructure, and is calculated 

s per Equation (2) . 

.2. Charging infrastructure design 

Transitioning to a greener fleet can be viable only if the oper- 

tions are backed up with sufficient charging capacity within the 

eographical service area that the freight-moving firm operates in. 

t any given year t ∈ T , this capacity is fully determined by F t , the

umber of charging facilities installed in the service area in year t , 
5 
nd γt , the number of charging instruments installed within each 

acility. 

Recall that we consider the demand to be homogeneous across 

he service area, meaning that the charging facilities are spread 

niformly within that region with identical capacities. For the op- 

ration of an e-truck fleet, the firm must consider the trade-off

ssociated with installing more charging capacity, which will de- 

rease the non-productive driving at the cost of increasing the in- 

estment requirements. Rather than setting F t and γt as indepen- 

ent decision variables, we adopt a service level target aimed by 

he decision maker through the design variables δ, the distance be- 

ween any two charging stations, and ω, the average waiting time 

t a charging facility due to congestion. In this section we present 

n estimation of the required charging capacity based on the given 

alues of these design variables. Table 1 shows a summary of all 

elevant notation for charging capacity estimation. 

We model the congestion at a charging facility via a G/D/γt 

ueueing system, in which the ‘customers’ are e-trucks arriving 

t charging facilities equipped with γt charging instruments. Even 

hough the state-of-charge (SoC) might differ for arriving trucks 

n general, we assume in our analysis that the SoC of the arriv- 

ng trucks will be consistently low, as the drivers would be in- 

tructed to maximize their battery usage before recharging. This 

mplies that the service delay at a charging instrument will be de- 

enerate with a service time equal to the recharging time of an e- 

ruck of type k ∈ K e , denoted by μk . The design parameters (δ, ω)

ill dictate the arrival rate and the required γt value. 

Estimating the Number of Facilities : Let G be the total area (in 

m 

2 ) of the region served by the firm. Assuming that the charg- 

ng stations are installed at the centers of δ × δ grids that span the 

ntire service areas on a continuous scale, F , the number of charg- 

ng facilities required to ensure at most δ kilometers between any 

wo charging stations can be estimated by F = G/δ2 . The maximum 

etour length to access a charging station and return to the main 

oute, using a Euclidean metric, is thus 
√ 

2 δ kilometers from any- 

here on the road. Note that this estimation is an upper bound, 

s it ignores the topology of the network. To account for more re- 

listic values, we include a coefficient, θ , to adjust for the maxi- 

um detour length. ( θ = 1 represents the most conservative sce- 

ario, where an e-truck is always at the farthest point to the near- 

st charging facility when it needs to be charged and returns to the 

ame point.) Given the ubiquity of gas stations, we assume that d- 

rucks can always charge on-route, with negligible waiting time. 

Under these constructs, the total non-productive time for 

echarging/refueling a truck, τk is given by 

k = 

{
θ
√ 

2 δ/νk + ω k + μk for k ∈ K e , 

μk for k ∈ K d 

(2) 

here μk is the recharging/refueling time of a truck of type k . 

If the firm operates with a mixed fleet of d- and e-trucks at 

ny point in time, a decision should be made regarding the allo- 

ation of each type of truck to different regions and customers. 

s the adoption of e-trucks requires investment in charging infras- 

ructure and the charging facilities do not need to be located over 

he entire service area at once, allocating the e-truck fleet to sat- 

sfy the customer demand in a continuous sub-region as a whole 

s more efficient than splitting the fleet to satisfy multiple sepa- 

ate regions. As we assume that the trucks are scattered randomly 

ver the service area at any given time, the service area allocated 

o the e-truck fleet must be proportional to the demand satisfied 

y e-trucks. With this in mind, F t , the number of charging facilities 

equired in year t , can be estimated by 

 t = 

l k V tk D 

p 

k 

W 

F for k ∈ K e , (3) 

t 
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Table 1 

Summary of parameters for the charging infrastructure design. 

D p 
k 

: Productive driving hours of type k vehicle in one day 

F : Minimum number of charging facilities required to have an access within δ

kilometers from anywhere on the road network 

F t : Number of charging facilities in year t

H k : Number of operating hours of a type k vehicle per day 

l k : Payload efficiency of a type k truck 

R k : Range of a type k vehicle in kilometers, with a full tank or battery 

V tk : Number of type k trucks operated in period t

W t : Daily productive driving hours necessary to satisfy the annual demand in year t

γt : Number of charging instruments kept in each charging facility in year t

δ: Distance between charging facilities 

ηk : Number of times that a type k ∈ K e truck must visit a charging facility per day 

θ : Average detour length coefficient 

λk 
t : Arrival rate of type k ∈ K e trucks per hour to a charging facility in year t

μk : Average recharging or refueling time for a type k truck 

νk : Average speed of a type k truck 

τk : Total time spent for refueling/recharging including the back-and-forth access time 

to the charging facility for a truck of type k 

ω k : Average waiting time in the queue allowed at the charging facility for a type k ∈ K e truck 
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here l k is the payload efficiency of a truck of type k to account 

or an eventual reduction of the maximum load due to size/weight 

f the battery packs, and W t is the total productive driving time 

equired to satisfy the demand for the trucking operations in year 

. (The latter depends on the number and locations of the destina- 

ions to be visited in a given time period.) 

Estimating the Arrival Rate : Under the settings described above, 

he number of charging facilities is proportional to the number 

f electric trucks. The intuition behind this is that as the elec- 

ric fleet increases, the demand area covered by electric trucks in- 

reases proportionally, enabling us to develop an efficient solution 

pproach. In particular, the proportional increase of identically- 

paced facilities allows us to formulate the problem as an integer 

inear optimization problem, as explained in the next section. We 

ormalize this with the following proposition. 

roposition 1. The arrival rate of e-trucks of type k in year t to a 

harging facility is independent of the size of the e-truck fleet, V tk with 

 ∈ K e , and is given by 

k 
t = 

νk W t 

R k l k D 

p 

k 
F 

for k ∈ K e 

roof. 

k 
t = 

ηk V tk 

F t 
= 

ηk V tk 

l k V tk D 
p 

k 

W t 
F 

= 

ηk W t 

l k D 

p 

k 
F 

, 

here ηk = νk /R k . �
Estimating the Number of Instruments : For any G/D/γt queue 

ith an arrival rate of λk 
t and service time of μk for e-trucks of 

ype k ∈ K e , the γt value that ensures the service level target ω
an approximately be estimated by using the waiting time in the 

ueue as follows: 

t = min 

k ∈ K e 

{ 

m : ω k ≤
C 2 a 

2 

(λk 
t μk /m ) 

√ 

2(m +1) −1 

m − λk 
t μk 

μk 

} 

for t ∈ T , (4) 

here C a is the coefficient of variation of the arrival time. See 

83] and [84] for discussions on estimating the waiting time in the 

ueue. 

.3. Problem formulation 

In this section, we present a linear mathematical programming 

ormulation of the Sustainable Fleet Management Problem, SFMP. 

et J v 
k 

= { 0 , 1 , . . . , L k } denote the set of possible ages for truck of

ype k , with j ∈ J v 
k 

representing an age of j years, and L k being
6 
he maximum useful lifespan of a truck of type k . Similarly, let 

 

i = { 0 , 1 , . . . , L i } be the set of possible ages for a charging instru-

ent, with j ∈ J i representing an age of j years, and L i being the

aximum useful lifespan of a charging instrument. Then, we de- 

ne the non-negative decision-variables used in SFMP as follows: 

 

v 
tk 

indicates the number of type k trucks purchased at the begin- 

ing of year t; P i t indicates the number of charging instruments 

urchased at the beginning of year t; Q 

v 
jtk 

denote the number of 

ype k trucks of age j owned at the beginning of year t; Q 

i 
jt 

in-

icates the number of charging instruments of age j owned at the 

eginning of year t , S v 
jtk 

denotes the number of type k trucks of age

j salvaged at the beginning of year t; and S i 
jt 

denotes the number 

f charging instruments of age j salvaged at the beginning of year 

. 

Table 2 shows all the set, parameters, and decision variables 

sed in the formulation of the Sustainable Fleet Management Prob- 

em, SFMP, which for any given service level target pair (δ, ω) , can 

e formulated as a function of F and γt as follows: 

FMP ( F , γt | δ, ω) : 

Minimize 
∑ 

t∈ T 

∑ 

k ∈ K 
βt c 

v 
tk P 

v 
tk −

∑ 

t∈ T 

∑ 

k ∈ K 

∑ 

j∈ J v 
k 

βt s 
v 
jtk S 

v 
jtk 

+ 

∑ 

t∈ T 

∑ 

k ∈ K 

∑ 

j∈ J v 
k 

βt Y ( f jtk + m 

v 
jtk ) D k Q 

v 
jtk 

+ 

∑ 

t∈ T 

∑ 

k ∈ K 

∑ 

j∈ J v 
k 

βt Y εt e 
d 
jtk D k Q 

v 
jtk 

+ 

∑ 

t∈ T 

∑ 

k ∈ K 

∑ 

j∈ J v 
k 

βt u t Y H k Q 

v 
jtk 

+ 

∑ 

t∈ T 
βt (A + m 

f 
t ) F t + 

∑ 

t∈ T 
βt c 

i 
t P 

i 
t −

∑ 

t∈ T 

∑ 

j∈ J i 
βt s 

i 
jt S 

i 
j

ubject to Q 

v 
0 tk = P v tk t ∈ T , k ∈ K (5) 

Q 

v 
jtk = Q 

v 
j−1 ,t−1 ,k − S v jtk t ∈ T , k ∈ K, j ∈ J v k \{ 0 } (6) 

S v jtk ≤ Q 

v 
j−1 ,t−1 ,k t ∈ T , k ∈ K, j ∈ J v k \{ 0 } (7) 

Q 

i 
0 t = P i t t ∈ T (8) 

Q 

i 
jt = Q 

i 
j−1 ,t−1 − S i jt t ∈ T , j ∈ J i \{ 0 } (9) 
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Table 2 

Set, parameter, and variable definitions for the SFMP model. 

Sets 

T : Set of t F years in the planning horizon. 

K: Set of truck types. 

J k : Set of possible ages for a truck of type k . 

J i : Set of possible ages for a charging instrument. 

Parameters 

A : Annualized fixed cost of a charging facility 

c i t : Purchasing cost of one charging instrument in year t

c v 
tk 

: Purchasing cost of one type k truck in year t

D k : Driving hours of type k truck in one day 

e d 
jtk 

: CO 2 emissions in kg per hour of driving by a type k truck of age j in year t

f jtk : Fuel/electricity cost of a type k truck of age j in year t for one hour of driving 

m 

f 
t : Annual maintenance cost required in a charging facility per year 

m 

v 
jtk 

: Maintenance cost of a type k truck of age j for one hour of driving in year t

Q v 
j0 k 

: Number of trucks of type k of age j owned at the beginning of the planning horizon 

Q i 
j0 

: Number of charging instruments of age j owned at the beginning of the planning horizon 

s v 
jtk 

: Salvage value of a type k truck of age j in year t

s i 
jt 

: Salvage value of one charging instrument of age j in year t

u t : Driver cost per hour in year t

Y : Number of working days in a year 

βt : Discount factor for year t

εt : Cost of emissions in year t per kilogram of CO 2 emissions 

Decision Variables 

P i t : Number of charging instruments purchased at the beginning of year t

P v 
tk 

: Number of type k trucks purchased at the beginning of year t

Q i 
jt 

: Number of charging instruments of age j owned at the beginning of year t

Q v 
jtk 

: Number of type k trucks of age j owned at the beginning of year t

S i 
jt 

: Number of charging instruments of age j salvaged at the beginning of year t

S v 
jtk 

: Number of type k trucks of age j salvaged at the beginning of year t . 
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S i jt ≤ Q 

i 
j−1 ,t−1 t ∈ T , j ∈ J i \{ 0 } (10) 

W t ≤
∑ 

j∈ J v 
k 

∑ 

k ∈ K 
l k D 

p 

k 
Q 

v 
jtk t ∈ T (11) 

∑ 

k ∈ K e 
∑ 

j∈ J v 
k 

l k D 

p 

k 
Q 

v 
jtk 

F 

W t 
≤ F t t ∈ T (12) 

γt F t ≤
∑ 

j∈ J i 
Q 

i 
jt t ∈ T (13) 

F t , P 
v 
tk , Q 

v 
jtk , S 

v 
jtk ∈ Z ≥0 t ∈ T , k ∈ K, j ∈ J v k (14) 

P i t , Q 

i 
jt , S 

i 
jt ∈ Z ≥0 t ∈ T , k ∈ K, j ∈ J i . (15) 

The objective function calculates the present value of all opera- 

ional costs and benefits using a discount factor βt , which include 

he purchasing cost of trucks ( c v 
tk 

); salvage value of trucks ( s v 
jtk 

);

uel and electricity costs ( f jtk ); maintenance costs of trucks ( m 

v 
jtk 

);

arbon emission costs ( εt ) due to transportation operations based 

n well-to-wheel emissions ( e d 
jtk 

); hourly cost of the driver ( u t );

xed cost of installing charging facilities ( A ); maintenance costs of 

harging facilities ( m 

f 
t ), and purchasing cost ( c i t ) and salvage value

 s i 
jt 

) of the charging instruments. Additionally, the parameter Y in 

he objective function denotes the number of working days per 

ear. 

Given initial fleet and infrastructure compositions, Q 

v 
j0 k 

and Q 

t 
j0 

, 

onstraint sets (5) – (7) are the balance equations for each type 

f truck through acquisition and salvaging. Constraint sets (8) –

10) are similar balance constraints for the charging instruments. 
7 
onstraint set (11) ensures that the size of the fleet is adequate 

o satisfy the demand, considering the available working time of 

ach truck. Constraint set (12) defines the auxiliary decision vari- 

ble, F t , which is the required number of charging facilities in year 

to serve the e-truck fleet in that year. In this constraint, D 

p 

k 
, pro-

uctive driving time of truck type k , is a parameter given by (1) .

onstraint set (13) ensures that an adequate number of charging 

nstruments are installed in each charging facility. Note that γt is 

 parameter in this constraint given by (4) . Constraint set (14) and 

15) are the non-negativity and integer constraints. 

.4. Operational constraints 

We extend the base model to include operational constraints 

hat can originate from internal or external mandates. 

Budget Constraint. An obvious operational constraint in practice 

s having budget limitations for new investments. Let B a t and B o t be 

he available budget in year t for investment in assets and for oper- 

tional expenses, respectively. Then, the following two constraints 

an be added to SFMP: 
 

k ∈ K 
c v tk P 

v 
tk + AF t + c i t P 

i 
t ≤ B 

a 
t ∀ t (16) 

 

j∈ J v 
k 

∑ 

k ∈ K 
( f jtk + m 

v 
jtk ) Y D k Q 

v 
jtk + 

∑ 

j∈ J v 
k 

∑ 

k ∈ K 
εt e 

d 
jtk Y D k Q 

v 
jtk + m 

f 
t F t ≤ B o t ∀ t. 

(17) 

Green Ratio. An internal constraint can be imposed to achieve 

 (potentially progressive) target level of “green ratio” in year t , 

efined as the ratio of demand satisfied by e-trucks. Let GR t be 

he minimum green ratio that the decision makers want to attain 

n year t . Then, the following constraint can be added to SFMP: 

R t ≤
∑ 

j∈ J v 
k 

∑ 

k ∈ K e 
(
l k D 

p 

k 
Q 

v 
jtk 

)
∑ 

j∈ J v 
∑ 

k ∈ K 
(
l k D 

p 

k 
Q 

v 
jtk 

) ∀ t. (18) 
k 
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1 For reference, the large region selected has a total area roughly comparable to 

the combination of France and Benelux. 
Emission Constraints. As discussed above, there can be emission 

argets mandated by governments that should guide the optimal 

nvestment plan. Such mandates can be in the form of a single ab- 

olute or relative target within a given number of years (e.g., net- 

ero within 10 years or 50% savings in emissions within the next 

ve years, respectively) or in the form of progressive savings over 

he years (e.g., at least 10% annual savings over the next 10 years). 

et 

E a τ : Maximum CO 2 emissions to be achieved by year τ , and 

E p : Minimum percentage of CO 2 savings compared to the previous year 

until reaching net-zero. 

An absolute target of E a τ can be achieved by adding the follow- 

ng constraints to SFMP: 
 

j∈ J v 
k 

∑ 

k ∈ K 
e d jτk Y D k Q 

v 
jτk ≤ E a τ (19) 

 

j∈ J v 
k 

∑ 

k ∈ K 
e d jtk Y D k Q 

v 
jtk ≤

∑ 

j,k 

e d j,t−1 ,k Y D k Q j,t−1 ,k ∀ t ≥ τ + 1 . (20) 

Progressive savings targets can be achieved by adding the fol- 
owing constraints to SFMP: 

 

j∈ J v 
k 

∑ 

k ∈ K 
e d jtk Y D k Q 

v 
jtk ≤

(
100 − E p 

100 

)∑ 

j∈ J v 
k 

∑ 

k ∈ K 
e j,t−1 ,k Y D k Q 

v 
j,t−1 ,k ∀ t > 0 . 

(21) 

.5. Shared infrastructure investments 

So far we have considered a focal firm that invests in its own 

harging infrastructure, either due to lack of existing charging fa- 

ilities or for strategic reasons aimed at ensuring high productive 

riving times. Nevertheless, the focal firm might not have to bear 

ll of the charging infrastructure investment costs. We envision 

hree possibilities to that end: 

• The investment might be (partially) subsidized by the govern- 

mental bodies in an effort to incentivize firms in their transi- 

tion to renewable energy use. This could be, for example, by 

designating places for the transportation firms to install their 

charging network. These designated facilities can be used by 

more than one transportation firm, and each firm can install 

its own charging network at these locations—in order not to 

risk longer waiting times. Such an initiative taken by public 

authorities will eliminate the charging facility installation and 

maintenance costs for the firms. When designing this incentive 

mechanism, the public authority should decide on the num- 

ber of facilities provided in the service area. This variable can 

be controlled by the δ parameter in our setup. For any given 

value of δ, the transportation firm will solve the SFMP by set- 

ting A = 0 and m 

f 
t = 0 ∀ t . Obviously, smaller δ values will en-

tice a transportation firm to switch to e-trucks earlier, result- 

ing in lower CO 2 emissions; however, the total installation and 

maintenance costs for the public authority will be higher. The 

decision should be made by resolving this trade-off. 
• The focal firm might want to make use of the already available 

public charging facilities that are also open to personal vehi- 

cles -in addition to its own charging stations-, possibly cover- 

ing only a fraction of the area that the firm serves, e.g., in the 

urban areas only. In order to avoid long non-productive driving 

times due to congestion in those public charging facilities, it 

could be in the focal firm’s interest to invest in increasing the 

charging capacity of these public charging facilities so that it 

can meet the average waiting time target ω. In this way, the 

focal firm engages in a public-private partnership (PPP) with 

the government, creating a triple win situation (for the focal 

firm, government, and the public users as they will also enjoy 
8 
shorter waiting times). While this will eliminate the charging 

facility installation and maintenance costs for the focal firm as 

in the previous case, the firm will be bearing investment costs 

of some charging instruments that will also serve public users. 

In Appendix C we present how the SFMP can be modified to 

address such a PPP mechanism. Furthermore, in Section 4.9 we 

analyze this option numerically and discuss the conditions that 

lead to a profitable PPP. 
• The focal firm might want to collaborate with a potential part- 

ner (or partners) who will co-invest and co-use the charging in- 

frastructure with the focal firm. This is a typical application of 

resource pooling and it will result in decreased (shared) charg- 

ing infrastructure investment costs, but the capacity should be 

carefully decided in order not to jeopardize the productive driv- 

ing time requirements of the focal firm. To facilitate the analy- 

sis with our model, we let W partner = φW and assume a propor- 

tional share of the facility and instruments costs among part- 

ners, such that the focal firm’s share is 1 / (1 + φ) . Observations

that we make through our numerical analysis are presented in 

Section 4.9 . 

. Numerical study 

In this section, we present a numerical study (i) to demonstrate 

ow our model can help practitioners in making strategic decisions 

or transitioning to sustainable transportation and (ii) to generate 

nsights into identifying the key technological, economical, and po- 

itical factors that influence this transition, which can be valuable 

or the practitioners and governing bodies. 

.1. The data set 

As is expected for a product category in its introductory phase, 

he technical specifications and costs of e-trucks and the related 

cosystem are constantly evolving. Furthermore, the need to tran- 

ition to a more sustainable economy implies shifts in the energy 

arket that are expected to affect fuel and electricity prices as well 

s the energy mix. Given that our goal is to provide a strategic 

ransition plan, we are interested in the medium to long term evo- 

ution of said technologies and costs. We surveyed the state of the 

rt of the competing vehicle technologies (diesel and electric), the 

elated costs, and their expected evolution to come up with a real- 

stic data set to use in our numerical analysis. We use sources from 

he literature, governmental agencies, and personal interviews with 

wo North American large-sized carriers, an in-house and a for- 

ire fleet operator. Details of the collected data are given in Ap- 

endix A and the specific values of the parameters are summarized 

n Table 3 . 

Naturally, our numerical results predicate on the curated data 

et, therefore, they should not be considered as a plug-and-play 

olution; however, we expect all the high-level insights that we 

enerate to prevail in relative terms under different problem pa- 

ameters. In addition to the parameters given in Table 3 (see Ap- 

endix A for details), we consider the demand for transportation 

perations to be 2400 daily productive driving hours, with an an- 

ual increase of 3% for a small and a large region 

1 over which 

he trucks operate, the small region being 160,0 0 0 km 

2 represent- 

ng a high demand density case and the large one being 640,0 0 0 

m 

2 representing a low demand density case, which we refer to 

s “dense” and “sparse” cases, respectively. We consider a carbon 

ost that increases annually by 20%. The inflation and the discount 

ates are set to 2% and 10%, respectively. Hourly wage of a driver 
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Table 3 

Summary of parameters for base run of computational experiments. 

Parameter Diesel Trucks Electric Reference 

Vehicles 

Type Class 8 d-truck Class 8 e-truck [12] 

Purchase cost $118,000 $118,000 (without battery) [85] 


 purchase cost 0.8%/year 0.8%/year [85] 

Maintenance costs $0.13/km $0.09/km [16,86] ; Interviews 


 maintenance costs 20%/year 20%/year [87] 

Salvage period 7 Years 7 Years [16] 

Fuel economy 2.98 km/liter 0.8-1.15 km/kWh 

Refueling time 15 min 30 min (80% charge) [88] 

60 min (100% charge) 

Range 800 km 350 km (300 kWh Battery) [89] 

800 km (1000 kWh Battery) [90] 

Payload efficiency 1 1 [91] 

Emissions 

Carbon emissions (use) 3.3 kg CO2e/liter 0.456 kg CO2e/kWh [92,93] 

Carbon emissions (manufacture) 350 kg CO2e 350 kg CO2e (truck) [92] 

100 kg/kWh (battery) [94] 

Carbon tax $20 /Ton $20 /Ton [95] 


 Carbon tax 20% /year 20% /year 

Batteries 

Cost - $200/kWh [96] 


 battery cost - −8 % year 

Salvage period - 7 Years [16] 

Charging Stations 

Charging station cost - $15,000 /year [97] 

Charging instrument cost - $15,000 /year [98] 

Charging station maintenance - $10,000 /year 

Target service level ( ω) - 15 min 

Energy 

Energy cost $0.66 /liter $0.1 /kWh [99] 


 energy cost 3.2% /year 2% /year [100] 

Electricity mix - 67% fossil/biomass [101] 

20% nuclear 

14% renewables 
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s set to $20. We set the number of working days in a year as

50 and the number of operating hours per day for both type of 

rucks as 12 hours. We do not implement any of the operational 

onstraints defined in Section 3.4 to focus on the behavior of the 

nconstrained model, but they can easily be incorporated by a de- 

ision maker. We solved the linear relaxation of the model 2 using 

urobi Optimizer with a 3.2 Ghz Intel i5 CPU and 12 GB RAM. We 

et the planning horizon to t F = 22 years and report the results of

he first 15 years to avoid any end-of-horizon effects. We parame- 

erize one truck type per technology for each run, ie. K = { electric, 

iesel } , and use sensitivity analysis to understand the effect of each 

arameter on the model’s results. 

.2. Impact of battery capacity and price 

Figure 1 shows the total costs, emissions, and average green 

atio over 15 years for two types of batteries: 300 kWh and 

0 0 0 kWh. Under our current battery cost assumptions, an e- 

ruck equipped with a 300 kWh battery has a purchasing cost of 

180,0 0 0, and one equipped with a 10 0 0 kWh battery has a pur-

hasing cost of $320,0 0 0. Note, however, that Tesla has announced 

he intention of selling 10 0 0 kWh e-trucks at a price in the order of

180,0 0 0 – 20 0,0 0 0 3 [10] . This price implies a battery cost of $60

er kWh: less than half the current estimates. Therefore, we ana- 

yze this scenario separately, as a third battery option “10 0 0 kWh 

 $60/kWh”. 
2 This solution is obtained within a second and deviates from the integer optimal 

olution by a fractional percentage. 
3 As of May 2020, the reservation price for a base-model 500-mile range Tesla 

emi is $180,0 0 0, see https://www.tesla.com/semi . 

4

f

a

9 
We observe that neither too closely nor too widely placed 

harging facilities are preferable from a cost perspective. This is be- 

ause the charging facility costs are dominant in the former case, 

nd detouring to recharge the e-trucks becomes excessive in the 

atter case (which also results in a lower green ratio in the optimal 

olution). This is counter to the general expectation of the practi- 

ioners, who might think that the e-trucks would only be feasible 

ith a ubiquitous charging network similar to diesel refueling sta- 

ions or that the creation of a private recharging network would 

ring excessive costs. For the parameter set that we consider, the 

ptimal δ is 40 or 50 km, depending on the cost of the battery. An- 

ther counter intuitive result is about the battery size. Despite the 

xtended driving range of 10 0 0 kWh batteries, the optimal choice 

s a 300 kWh battery under our regular cost assumptions. Observe 

hat this optimal result also lowers carbon emissions. What might 

eem intuitive—that one would be better off with larger batteries, 

ue to the extended driving range resulting in higher productive 

ours and less detouring to recharge—only holds if the cost of the 

attery decreases, as is the case for the battery cost of $60/kWh 

n our numerical setting. This would also result in a higher green 

atio, i.e., 0.53 instead of 0.47. It is interesting to observe that 

maller batteries typically result in lower total emissions because 

f the lower manufacturing emissions associated with smaller bat- 

eries and earlier adoption associated with lower capital costs, as 

eflected by higher green ratios. 

.3. Impact of charging choices 

Table 4 compares the characteristics of the optimal solutions 

or sparse and dense demand under the 300 kWh battery option 

nd different charging choices. We show the effect of waiting until 

https://www.tesla.com/semi
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Fig. 1. Total cost and total CO 2 emissions for varying δ values for 30 0 and 10 0 0 kWh batteries in dense demand scenario. The labels accompanying each of the cost-values 

indicate the average green ratio (GR) over 15 years. 

Table 4 

Characteristics of optimal solution for sparse/dense demand with small battery un- 

der different charging choices (base scenario in boldface). 

Demand Charging Choice δ∗ Total Cost Total CO 2 Green Ratio 

(km) ($) (Ton) 

Dense 30 Min/80% 40 495 591 0.47 

60 Min/100% 40 511 636 0.40 

Sparse 30 Min/80% 60 516 723 0.27 

60 Min/100% 60 526 860 0.07 

t

8

i

d

t

t

e

p

F

i

w

m

i

v

m

c

4

l

t

i

a

d

a

p

m

s

o

r

i

t

(

s

i

d

i

a

s

i

t

m

i

m

d

a

t

4

d

l

p

he battery is fully charged (recall that the base scenario assumes 

0% at 30 mins). The results show that the optimal infrastructure 

nvestment depends strongly on the demand density, with higher 

emand density associated with higher infrastructure density. The 

rade-off is such that the infrastructure cost limits the density of 

he charging infrastructure, which, in turn, limits the adoption of 

-vehicles. This effect is also visible in all other tables that we 

resent, i.e., the optimal green ratio is higher for dense demand. 

urthermore, the optimal solution involves quickly charging batter- 

es to “almost full” status (cf. rapid charging to 80%), rather than 

aiting for a full charge. Charging choice is particularly crucial in 

aking electric truck investment decisions. The optimal green ratio 

s significantly affected by that choice and under some parameter 

alues not shown here, the effect can go inasmuch as no invest- 

ent in electric trucks being made if the charging policy is to fully 

harge the batteries. 

.4. Comparison of alternative fleet strategies 

Table 5 shows the absolute increase or decrease in Cost (mil- 

ion $) and CO 2 Emissions (million kg) associated with opting for 

he optimal solution over the status quo (i.e., all d-trucks) and the 

ncrease/decrease associated with two “fully green” policies: (1) 
10 
dopting 100% e-trucks at time 0 with the infrastructure density 

erived from the optimal policy, and (2) adopting 100% e-trucks 

t time 0 with a high infrastructure density ( δ = 10 ). Numbers in 

arentheses show the percentage increase or decrease. The opti- 

al strategy achieves lower costs and emissions in both demand 

cenarios. For additional emissions savings, decision-makers can 

pt for an “all green” strategy, in which the entire diesel fleet is 

eplaced at time zero with an electric fleet. When this strategy 

s compounded with the optimal infrastructure density, the addi- 

ional emission savings can be achieved at a moderate cost penalty 

or even with cost savings for some parameter values that are not 

hown here). However, going all green and investing heavily in the 

nfrastructure density to maximize productive driving times intro- 

uces significant cost penalties for relatively incremental savings 

n emissions. 

Increasing the green ratio has a large direct effect on emissions 

nd a relatively minor effect on cost. Increasing infrastructure den- 

ity, on the contrary, has a large direct effect on costs and dimin- 

shing returns on emissions; additional infrastructure only affects 

he non-productive time per truck. These results suggest that firms 

ay realize a large portion of the potential emissions and cost sav- 

ngs by moving a relatively low percentage of transportation de- 

and to e-trucks. Fleet composition decisions, however, cannot be 

issociated from infrastructure decisions; optimizing both fleet size 

nd charging infrastructure appears critical for the success of e- 

ruck adoption. 

.5. Effect of carbon cost 

Table 6 shows the effect of a change in the carbon cost under 

ense and sparse demand conditions. 

These results show that an increase in the carbon cost is fol- 

owed by an increase in the green ratio. This is consistent with 

rior research, which suggests that increasing emission costs in- 
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Table 5 

Absolute Increase (+) or Decrease (-) in Cost and Emissions with respect to Status Quo. 

Demand Measure Optimal Strategy ( δ∗) All Green at δ∗ All Green at δ = 10 

Dense Cost –59 (11%) + 32 (6%) + 351 (63%) 

CO2 –301 (34%) –563 (63%) –593 (66%) 

Sparse Cost -40 (7%) + 19 (3%) + 1723 (310%) 

CO2 –169 (19%) –543 (61%) –593 (66%) 

Table 6 

Effect of carbon cost on the optimal solution (base scenario in boldface). 

Dense Demand Sparse Demand 

ε1 δ∗ Cost CO 2 GR δ∗ Cost CO 2 GR 

($/Ton CO 2 ) (km) ($) (Ton) (km) ($) (Ton) 

10 40 480 592 0.47 – 496 892 0.00 

20 40 495 591 0.47 60 516 723 0.27 

40 40 524 562 0.53 60 549 599 0.47 

100 40 601 416 0.80 60 638 535 0.60 
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(

entivizes the move to more sustainable transport modes [i.e., from 

ir/truck shipping towards barge and deep sea, see 102 ]. Whereas 

aid research shows that carbon costs need to increase drastically 

o affect the transport mode choice, our results show that a sig- 

ificant effect on the green ratio can be observed within the order 

f magnitude of the current carbon price (the carbon allowance 

rice of the EU emission trading scheme, EUA, has been within 

0–30 Euros/ton in 2019). Accordingly, carbon taxes can be effec- 

ively used to steer existing truck fleets towards electric alterna- 

ives. These results also indicate that carbon tax achieves the de- 

ired effect typically through increasing the attractiveness of con- 

erting additional vehicles to electric; as the infrastructure inten- 

ity decision remains robust in our scenarios, as long as the green 

atio is positive. 

.6. Effect of energy mix 

Table 7 shows the effect of the assumptions behind the adop- 

ion rate of renewable electricity generation and the initial propor- 

ion of renewable content in the energy mix. The base scenario is 

erived from the average energy mix in the USA, as discussed in 

ppendix A , and an increase in renewables of 5% per year. The next 

cenario considers an energy mix with half the emissions of the 

ase scenario. (For reference, this is close to the average emission 

alues in California of 0.206 kg/kWh.) Finally, we also consider a 

ully renewable scenario, with zero emissions from electricity gen- 

ration. 

The results show that the source of electricity has a significant 

ffect on the total emissions. All else equal, a greater percentage 

f renewables is directly related to less emissions. We observe that 

he energy mix also shows a second order effect: the greener the 

ower source, the larger the average green ratio becomes (in the 

eak sense), because the energy mix plays an important role in 

he dynamics of e-truck adoption. For the parameter set that re- 

ulted in Table 7 , the increase in green ratio is observed only for

he sparse demand case, but in the extended numerical experi- 

ents we conducted, we observe that for the dense demand case, 

s well. Renewable energy generation offsets the (relatively high) 

missions related to the production of e-trucks—a large proportion 

f renewables speeds up the adoption of e-trucks. 

.7. Impact of diesel engine efficiency 

Table 8 shows the effect of technological advances in diesel en- 

ines. Observe that if the diesel efficiency increases significantly, 

ts environmental benefits can even surpass the benefits of e-truck 
11 
doption (under the sparse demand case here). Thus, when diesel 

ngines become “good enough”, it is optimal not to invest in any 

harging/e-truck infrastructure, potentially resulting in lower total 

missions. The side effect is that in some cases the optimal solu- 

ion with higher diesel efficiency is environmentally outperformed 

y the optimal solution with lower diesel efficiency (e.g., under 

ense demand here, but also for sparse demand in some other nu- 

erical experiments we have run). These results suggest that, even 

hough an increase in diesel efficiency can be rightly viewed as a 

ositive development, there is a risk that efficiency increases are 

uch that d-trucks become good enough to postpone investments 

n e-trucks, but not good enough to bring about a substantial de- 

rease in emissions. In such cases, policy-makers may have to in- 

ervene (see Table 6 ) to ensure the transition to green technologies. 

.8. Fleet transition over time 

In our numerical setup, e-trucks become cheaper in time with 

dvancements in technology. In the scenarios that a transition to 

-trucks is observed, there is a time period in which investing in e- 

rucks (together with the charging infrastructure at a correspond- 

ng density) becomes cheaper than operating with brand new d- 

rucks. Starting from that period and on, it is optimal to invest in 

-trucks only. However, based on the cost factors, there can be a 

ransition period during which the d-trucks of older ages are kept 

or a while until their end of life or until they become relatively 

ostly to operate. The salvage value, useful life of the trucks, and 

he increasing cost of maintenance by age are among the factors 

hat determine the length of this transition. Figure 2 depicts a 

roblem instance of such a transition period with a hybrid fleet 

omposition. 

.9. Analysis of shared infrastructure investments 

In this section, we experiment with the shared investment 

odels presented in Section 3.5 . First, we consider the case of gov- 

rnmental subsidy. Figure 3 depicts the trade-off between emission 

avings obtained and the corresponding cost for the public with 

his initiative, considering a single firm. On this graph, each point 

s an efficient solution, and the point (0,0) denotes the default ac- 

ion of not providing this subsidy. If the public authority solves 

his problem for the firm with the densest demand, the result- 

ng charging facility network will enable longer productive driv- 

ng times for the firms with sparser demand (in comparison to the 

ptimal charging network that the firm would have invested on its 

wn), benefiting the whole transportation sector operating in the 

egion. Therefore, the emission savings reported in Figure 3 for a 

articular public cost will be (much) higher. The figure shows that 

or higher levels of subsidy, the green ratio increases, as might be 

xpected. The “biggest bang for the buck” depends on the network 

ensity (at δ = 70 for sparse demand and δ = 30 for dense de- 

and), but comparable savings can be materialized both in sparse 

nd dense demand cases. 

Next, we analyze the PPP model. We first consider a base sce- 

ario in which there exist public charging facilities in 10% of the 

ervice region with an average of 10 km distance between them 

i.e., δP = 10 , see Appendix C for notation and formulation). In this 
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Table 7 

Effect of renewable content in electricity generation (base scenario in boldface). 

Dense Demand Sparse Demand 

CO 2 Release Annual δ∗ Cost CO 2 GR δ∗ Cost CO 2 GR 

(kg/kWh) Increase (km) ($) (Ton) (km) ($) (Ton) 

0.456 5% 40 495 591 0.47 60 516 723 0.27 

10% 40 486 (2%) 536 (9%) 0.47 60 507 (2%) 636 (12%) 0.33 

25% 40 479 (3%) 476 (20%) 0.47 60 500 (3%) 534 (26%) 0.40 

0.228 5% 40 487 (2%) 528 (11%) 0.47 60 508 (2%) 634 (12%) 0.33 

0 – 40 478 (3%) 465 (21%) 0.47 60 499 (3%) 526 (27%) 0.40 

Table 8 

Effect of the increase in diesel engine efficiency (base scenario in boldface). 

Dense Demand Sparse Demand 

Annual δ∗ Cost CO 2 GR δ∗ Cost CO 2 GR 

Increase (km) ($) (Ton) (km) ($) (Ton) 

1.50% 40 495 591 0.47 60 516 723 0.27 

2.50% 40 493 575 0.47 60 510 806 0.07 

5.00% – 481 705 0.00 – 490 705 0.00 

Fig. 2. Fleet composition over 15 years under dense demand and base scenario with annual maintenance cost increase equals 3%. 
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Table 9 

Savings Under Private Partnerships - Dense Demand Scenario. 

φ δ∗ Cost CO2 GR 

0 40 495 591 0.47 

0.25 30 493 (0.5%) 587 (0.7%) 0.47 

1 30 487 (1.7%) 558 (5.7%) 0.53 

4 20 476 (3.9%) 475 (19.8%) 0.67 
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cenario, if the traffic ratio at the public facilities is 0.95 then 

PP brings 0.65% reduction to total system costs (i.e., not just the 

harging infrastructure costs, but all costs as given in the objective 

unction of SFMP) for the focal firm, corresponding to $3.6 Million. 

PP stays to be the preferred option under the same setting for all 
P < 60 km. In these cases, the density of the private network δV 

s 40 km. When δP = 60 km, then the best PPP alternative starts 

ecoming more costly than the status quo because of the elevated 

nproductive driving times at the public charging space caused by 

ong detours. Another scenario in which PPP is not desirable is 

hen the public charging network is denser with δP = 5 km un- 

er a higher traffic ratio of 0.989. This time, the extensive charging 

nstrument requirement to reduce the waiting times to acceptable 

evels and excessive number of facilities to be invested become too 

ostly to make it a viable option. Nevertheless, we observe several 

ases for which PPP is desirable in our numerical tests. 

Finally, regarding the private partnership model, we present an 

llustration in Table 9 . This table presents the cost and CO2 emis- 

ion savings as well as improvement in green ratio for different 

alues of φ where the partner’s demand is equal to φ times the 
12 
ompany’s demand. These results indicate that the biggest benefit 

s obtained for the smaller company in this partnership. We also 

bserve that as the size of the partnership increases, the charging 

etwork becomes denser and the green truck adoption starts ear- 

ier. 

.10. Sensitivity to other parameters 

In addition to the above, we also analyzed the sensitivity of the 

esults to a number of parameters: ratio of e-truck/d-truck price, 

ate of price increases, payload efficiency, detour length coefficient, 
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Fig. 3. Efficient frontier for emission savings versus public cost. First numbers in the boxes indicate the Green Ratio at that efficient solution. 
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ost of the charging facility, and the charging level on the adop- 

ion decisions. The insights discussed thus far are generally robust. 

ower values of the e-truck to d-truck price ratio predictably favor 

igher e-truck adoption: the GR drops to a minimum of 0.4 when 

 

v 
0 e /c v 

0 d 
= 2 under dense demand. (Here the sub-indices e and d de- 

ote, respectively, the electric and diesel truck types.) Under sparse 

emand, c v 
0 e 

/c v 
0 d 

= 1 . 25 is required to achieve the same GR. The GR

s well above 0.27 for l e ≥ 0 . 9 and θ ≤ 1 for both dense and sparse

emand. We observe that the optimal solution is not sensitive to 

he choice of charging facility costs; GR does not change even if 

he annual investment cost is increased to 20,0 0 0. Finally, we ob- 

erve that the transition to sustainable transportation is only pos- 

ible using Level 3 chargers. 

. Conclusions 

In this study, we model the adoption of electric trucks in the 

ontext of an existing fleet of commercial d-trucks. In contrast to 

rior research, our model explicitly considers sequential invest- 

ent decisions within a time horizon and includes charging in- 

rastructure costs, as part of the investment strategy of a firm that 

xplores the possibility of adopting e-trucks. Our model also dis- 

inguishes itself from prior research by considering the effect of 

nfrastructure density on the fleet size itself. Infrastructure is not 

nly required to enable access to a larger service area, but a denser 

harging infrastructure also implies shorter unproductive driving 

imes (driven by shorter detours and queueing times) and, thus, af- 

ects the total capacity requirements. Our model, therefore, enables 

rms to evaluate medium to long-term investment strategies by 

imultaneously considering the effects of the adoption of e-trucks 

nd the required infrastructure. 

Through a numerical experiment based on a realistic parameter 

onfigurations, we generate a number of insights. First, in most of 

he scenarios we consider, it is cost-optimal to invest in e-trucks. 

onsidering that e-trucks are also generally more environment- 
13 
riendly, this result suggests that the adoption of e-trucks has the 

otential to bring about the disruptive change required, if emission 

argets are to be met. However, the adoption potential of e-trucks 

epends to a large extent on the demand density in the area they 

re assigned to serve. The optimal fleet for scenarios with a dense 

emand is consistently greener than that for a sparse demand, 

ainly due to the infrastructure requirements. Infrastructure needs 

o be developed regardless of whether demand is dense or sparse, 

hus, all else equal, a dense demand area will utilize a given charg- 

ng instrument to a higher degree and thus result in less unpro- 

uctive time. In the case that firms can introduce/pilot the fleet 

hanges in different areas, denser demand areas appear to be par- 

icularly well suited for this technology shift. Our results suggest 

hat when demand is dense enough, the optimal policy of invest- 

ng in e-trucks seems to be quite robust to parameter changes; 

hereas in sparse demand areas, the optimal solution can shift 

rom no investment in electric technology towards the majority of 

he fleet being e-trucks, as particular problem parameters change. 

oreover, our results suggest that, in such dense environments, e- 

rucks need not have a comparable range to d-trucks to become at- 

ractive. E-trucks can therefore be equipped with smaller (cheaper 

nd lighter) batteries. In fact, our results show that fast charging 

mall batteries to 80% capacity provides enough autonomy to the 

rucks. In particular, we see that 300 kWh batteries with charging 

tations spaced 40 km apart are the sweet spot for the demand 

ensity we analyzed. 

Our results demonstrate the importance of coupling the e-truck 

doption strategy with the charging infrastructure investment de- 

isions. If there is no or scarce charging infrastructure that a firm 

an utilize for their operations, then transitioning to greener fleets 

an become economical only if the firm optimizes these two de- 

isions simultaneously. Because otherwise, existing infrastructure 

ay lead to excessive unproductive driving times or the firm may 

resume that the only feasible path for the transition is to invest 

n an infrastructure that will maximize the utilization of the e- 
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rucks. In both cases, the firm will be mistaken to identify the 

-truck transition as non-economical. Moreover, over-investing in 

nfrastructure with the aim of minimizing emissions results in rel- 

tively low emission savings at the expense of severe increases in 

otal costs, in comparison to the coupled optimal solution. 

Given that we compare diesel trucks to electric ones, it stands 

o reason that the fuel used in the electricity generation plays a 

ecisive role. We show that even a relatively clean energy mix 

uch as the one implemented in California results in higher e-truck 

doption and brings about substantial reductions in total trans- 

ortation emissions. The question remains, though, what the effect 

f a substantial increase in energy demand would be on the energy 

ix. While we assumed those two to be independent in our study, 

he results could shift in either direction, depending on whether 

he demand could only be met by heavier utilization of fossil fu- 

ls, or expedite an overall transition to renewable energy. 

Our results also show that the optimal policy may be a grad- 

al shift towards e-trucks resulting in a mixed fleet during the 

ransition to a greener fleet. Moreover, the timing of said transi- 

ion is dependent on firm-level parameters in addition to global, 

echnology-dependent parameters. Thus, even though regulators 

re already envisioning a hard cut-off point after which all vehi- 

les should be zero-emissions, the decision itself need not be “all 

t once”, and certainly not “every firm at once”. 

Our model is useful when a firm makes strategic analysis of if 

nd when they should start the transition process and in what 

ype of e-trucks that they should invest in. When the firm de- 

ides to initiate this process based on this strategic analysis, they 

hould resort to custom-design models that pertain to the specifics 

f their operating characteristics to make operational decisions. 

It may be possible for the focal firm to alleviate the burden of 

ndertaking the whole charging infrastructure investment on its 

wn by engaging in a shared investment model. We considered 

hree possibilities in this article. Concerning regulatory interven- 

ion, if the charging infrastructure is to be subsidized to entice 

he transition, the usual suspect is to invest in dense-demand re- 

ions. Our results show that even pricing the transport emissions 

t moderate levels has a significant impact on the adoption of the 

leaner transport alternative, unlike previous findings in literature 

oncerning the transition to cleaner transport modes. Concerning 

PP, we demonstrate that it is generally beneficial for the focal 

rm to engage in such a partnership, unless the public charging 

etwork is too sparse or too dense, the former resulting in high 

nproductive driving times and the latter resulting in too high in- 

estment costs. Finally, the private partnership model benefits the 

arties due to resource pooling, particularly favoring the smaller 

ompany. Furthermore, larger partnerships speed up green truck 

doption. 

Our motivation to study e-trucks as the contending green tech- 

ology stems from the current technological developments. How- 

ver, there are many uncertainties as to which will be widely 

dopted. For example, in this article, we have considered plug-in 

harging as it seems to be obtaining wider acceptance than the 

attery-swapping technology. We refer the reader to Avci et al. 

103] , Sun et al. [104] , and Sun et al. [42] , for analyses of adopt-

ng battery-swapping technology and Appendix B for a sketch of 

ow our model could be adjusted to incorporate battery-swapping. 

imilarly, we have not considered other AFVs such as fuel cell elec- 

ric vehicles powered by hydrogen. Furthermore, there are other 

reen technologies in preparation, lab, or idea phase making the 

uture of e-trucks precarious. Our model is generic enough to an- 

lyze the adoption of any given truck fueling technology, barring 

 fundamentally different freight transporting technology, such as 

yperloop. An interesting problem is which technology to invest 

n, given multiple promising contenders with inherent uncertainty, 

hich requires future research attention. 
14 
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ppendix A. Technological State of the Art and Operational 

osts 

We group the relevant parameters into four categories: Vehicle 

echnology, battery technology, charging infrastructure, and energy 

nd regulatory considerations. 

Vehicle technology 

Purchasing Costs: In this paper, we consider heavy duty Class 

 trucks that can accommodate about 15 tons. The average price 

f a Class 8 d-truck in 2017 was $118,0 0 0 (USD), and the average

rice increase since 2011 was 5% [85] . There are no e-trucks avail- 

ble in the market as of 2020, but several manufacturers such as 

aimler, Scania, and Tesla have announced plans to produce and 

ell functionally comparable e-trucks with varying prices and tech- 

ological characteristics in the near future [11,12,89,105] . Because 

hese announcements are in the form of marketing initiatives to 

reate public interest, the announced price information is spec- 

lative. In the consumer e-vehicles market, however, we observe 

hat the price differential between an e-vehicle and a comparable 

C-vehicle is mostly explained by the battery price [7] . Based on 

his assumption, the potential price of an e-truck with a 300 km- 

00 km autonomy is in the range of $180,0 0 0-320,0 0 0 (USD). (See

elow for battery price information.) 

Salvage Value: The useful life of industrial trucks is accepted 

s seven years, even though many trucking firms prefer to renew 

heir fleets more frequently. We assume that both d- and e-trucks 

epreciate based on sum-of-the-years method (cf. Danielis et al., 

6 , who report that the consumer EVs retain 10% of their value af- 

er 6 years). 

Maintenance Costs: Both firms interviewed reported that their 

aintenance and repair costs are approximately $0.2 per mile. 

aintenance and repair costs of e-trucks are expected to be lower 

han d-trucks, as electric engines are much simpler than combus- 

ion engines [106,107] . Such potential savings reported in literature 

ary between 18 – 45% [15,16,86] . Regarding the evolution of main- 

enance costs along the lifetime of a vehicle, it’s intuitive to infer 

hat such costs increase with age and cumulative usage [87] . There 

s, however, to the best of our knowledge no consensus estimate 

n the literature to quantify said costs; studies typically assume 

aintenance costs to be fixed throughout the lifetime of a vehi- 

le [16] or a function of a mean time between failures assumed to 

e identically distributed over the lifetime of a vehicle [25] . 

Consumption Rates: The U.S. Environmental Protection Agency 

as recently proposed Phase II standards for fuel efficiency—which 

nclude Class 7 and 8 trucks for the first time—that will take ef- 

ect starting in the model year 2021 [108] . According to these stan- 

ards, average fuel economy for 2019 is 6 miles per gallon (mpg) 

or diesel Class 7–8 trucks and is expected to rise to 7.8 mpg by 

he year 2050 [109] . Interviews with our contact carrier firms are 

n line with this data: they reported their current consumption 
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ate to be around 7 mpg, with the help of their recent sustain- 

bility initiatives. The electricity consumption rate for consumer 

Vs is heavily dependent on the make and model and ranges (ac- 

ording to EPA fuel economy tests) between 4.6 km per kWh (2019 

esla model S P100D) and 6.4 km per kWh (2019 Hyundai Ionic). 

or e-trucks, standardized tests are not available but manufacturer 

laims suggest a much higher consumption rate; Daimler’s eCas- 

adia is expected to incorporate a 550 kWh battery for a range of 

00 km (1.38 km per kWh) and their Freighliner eM2, a 325 kWh 

attery and a 370 km range [1.15 km per kWh; 110 ]. Tesla has

ot announced the size of the battery for their semi e-truck, but 

ources suggest 10 0 0 kWh are needed to achieve the announced 

00 km range [0.80 km per kWh – 111 ]. The most recently an- 

ounced e-truck fleet, from Scania, present similar estimates: up 

o 250 km range on 300 kWh batteries [0.83 km per kWh; 112 ]. 

Payload Efficiency: All else equal, electric vehicles tend to hold 

ess payload than their diesel counterparts due to the excessive 

eight of the battery [91] . Technical data is not available at the 

ime of writing regarding the announced Class 8 trucks from, e.g., 

aimler and Tesla. However, the payload efficiency of existing elec- 

ric light delivery vehicles (e.g., Renault Master Z.E) is in the order 

f 0.85-0.95 [113] . 

Carbon Emissions : The carbon emissions associated with trucks 

omprise the usage of the trucks and the emissions related to 

anufacturing and transporting the fuel. The main difference be- 

ween total CO 2 emissions in the manufacturing process of a diesel 

nd electric vehicle is largely due to the difference between the 

nergy storage systems [93] . Sen et al. [92] report the total GHG 

missions due to the manufacturing of a truck as 0.35 tons of CO 2 e.

ao et al. [94] estimate the GHG emissions of a battery during the 

anufacturing stage as 0.1 tons CO 2 e per kWh of capacity. 

The emissions associated to the combustion of one liter of 

iesel fuel (i.e., tank-to-wheel) is 2.64 kg of CO 2 [114] . Reasonable 

stimates inflate this value by 25% to adjust for fuel production 

nd transport (i.e., well-to-wheel) emissions [115] . For electric ve- 

icles, “well-to-wheel” emissions are entirely attributed to the pro- 

uction phase of the electricity, the value of which depends on the 

nergy mix of a particular grid. Based on the latest figures reported 

y the EPA, the average mix in the USA corresponds to approxi- 

ately 65% fossil and biomass, 20% nuclear, and 15% renewables 

see 116 , for detailed data]. Such an energy mix emits 0.456 kg of 

O 2 per 1 kWh of electricity [117] . The DoE [100] projects, in their

eference scenario, that the percentage of renewable energy in the 

otal electricity generation capacity will increase up to around 25% 

n 2030. Therefore the GHG emissions related to electric vehicle 

sage are expected to decrease as a function of the shift in energy 

ources. 

Battery technology 

Battery Size: The range of currently pre-announced Class 8 

-trucks is between 370 km (e.g., Daimler Freighliner eM2) and 

00 km (e.g., Tesla semi) [89] . Such an autonomy implies battery 

izes between 30 0–10 0 0 kWh. 

Battery price : The current industry-standard battery pricing is 

n the order of $200 per kWh [96,118] , with a projected 8% rate of

ecrease per year [15,119] . However, the pre-announced expected 

rice of Tesla’s “semi” e-truck implies a battery price in the order 

f $60 per kWh. (The feasibility of this pricing is disputed as of 

his writing, see Teslarati, 90 .) 

Charging Times : Battery charging times rely on the battery ca- 

acity, charging voltage, and power of the charger. There is a vast 

rray of different EV chargers; some use 120/240 V single-phase 

C, others use triple-phase 400 V connections, and yet others feed 

C voltage directly to the battery. In addition to the input voltage, 

he current (and thus power) can also vary dramatically. The power 

f the charger, expressed in kilowatts (kW), directly determines the 

peed at which a battery can charge. A general rule of thumb is 
15 
hat the approximate time–in hours–required to charge a battery 

s equal to the battery capacity in kilowatt hours (kWh) divided 

y the charger power in kW. Even though charging speed is non- 

inear, the first 80% of the capacity charges at an approximately 

inear rate [55] . The goal set by manufacturers is for almost-full ( ∼
0% ) charging in 30 minutes, as an industry standard [88,105,120] . 

Charging technology 

Charging Facilities : Charging instruments can be housed in exist- 

ng facilities, such as gas stations, or at locations that might require 

ew construction. Hence, establishment costs of charging facilities 

ay vary significantly from one facility to another. Smith and Gon- 

ales [97] estimate installation costs between $50,0 0 0 (e.g., modi- 

cations required at an existing facility) and $350,0 0 0 (maximum 

nstallation). 

Charging Instruments There exist a number of different stan- 

ards for electric chargers. Most well known are the American SAE 

tandard, which defines charging technology as Level 1 (AC up to 

.92kW), Level 2 (AC up to 19.2kW), and Level 3 (DC up to 400kW) 

nd the IEC, which defines Mode 1 (slow AC), Mode 2 (slow AC 

ith protection), Mode 3 (fast AC), and Mode 4 (fast DC) [121,122] . 

n addition, firms also develop and trademark their own charging 

echnology (e.g., Tesla “superchargers”, which are 150Kw DC charg- 

rs). The expected battery sizes of e-trucks will require the de- 

loyment of high-end Level 3 charges to achieve reasonable charg- 

ng speeds. These DC chargers require an elevated upfront cost of 

rocurement and installation compared to Level 1 and 2 counter- 

arts. The list prices of Level 3 chargers sold by a North American 

V charging station installation company vary between $12,500 for 

ingle-headed chargers to $35,800 for two-headed chargers, de- 

ending on the power provided [98] . 

Energy and regulatory considerations 

Energy Prices : The price of diesel fuel depends on volatile oil 

nd gas prices in the global commodity market, whereas electric- 

ty prices are driven by the demand/supply dynamics of a given 

egulated market, which might differ from region to region. The 

.S. Department of Energy [100] projects, in their reference sce- 

ario, that retail prices of diesel oil will increase in 2018 dollars 

y 13% from 2020 to 2030 and that electricity prices will remain 

table during the same period. Current energy prices in the USA 

re in the order of $2.5 per gallon for diesel and $0.1 per kWh for

lectricity. 

Carbon price : The cost of carbon can be a direct tangible cost 

or transportation operations in regions where a carbon tax is im- 

lemented and is directly reflected in fuel prices. As of this writ- 

ng, a carbon tax is in effect in 24 national jurisdictions around 

he world [123] . Canada has one of the most ambitious carbon tax 

rograms, in which the per-ton price is around C$40 as of 2021, 

nd the projected price is set to increase further [95] . Some firms 

nternalize a carbon cost to improve their corporate social respon- 

ibility performance, even when there is no carbon pricing regula- 

ion in effect. EDF [124] estimates that the intangible social costs of 

arbon emissions add up to $40 per ton. Some countries adopt an 

mission Trading System (ETS) to control carbon emissions (37 na- 

ional jurisdictions, according to WorldBank, 123 ), but transporta- 

ion is typically not included in this system. The average price of 

O 2 European Emission Allowance per ton in 2018 was 15.48 Eu- 

os, which is almost triple the average 2017 price [125] , and the 

rice as of December 2021 is around 80 Euros per ton, continuing 

he increasing trend since mid-2017. 

ppendix B. Battery Swapping 

In order to incorporate battery swapping instead of plug-in 

harging in our approach, one needs to make some basic changes 

n the model to reflect the characteristics associated with battery 

wapping operations. A battery swapping system works as follows: 
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he battery of an arriving vehicle is taken out by some swap- 

ing machinery and possibly operator(s) -when its turn comes-, 

nd replaced by a charged spare battery whenever available. The 

emoved battery is brought to an available charging instrument 

o recharge it immediately. If no charging instrument is available, 

hen this battery joins a queue to be charged later whenever there 

s availability. The charged battery joins the spare battery pool. 

While the plug-in charging system can be described by the 

umber of charging stations, the number of charging instruments 

n those stations, and the vehicle arrival pattern, modeling the bat- 

ery swapping alternative requires taking the following additional 

actors into account: 1) the battery inventory at a charging station 

o be used for swapping, 2) the swapping machinery and the oper- 

tor(s) to be deployed, and 3) choice of charging technology (level 

, 2, or 3) for each of the charging instruments. Consequently, the 

attery swapping system can no longer be modeled as an M/D/c

ueuing system unlike the plug-in charging model. Rather, it re- 

embles an M/G/c queue in which the service time is generated 

y a two-echelon (spare parts) inventory system. In specific, the 

rocess of removing the depleted battery by machinery/operators 

enerates a demand for a charged battery from the lower echelon 

f the inventory system (cf. retailer) which is operated with a base 

tock policy and each such order triggers a recharging request to 

he upper echelon operated with limited number of charging in- 

truments (cf. a capacitated warehouse at the upper echelon). 

If this system is to be adopted to our approach, then the deci- 

ion maker should first find the minimum costly combinations of 

he (i) number of swapping machinery/operator used, (ii) number 

f spare batteries to operate with, (iii) number of charging instru- 

ents, and (iv) charging level used that satisfy the design parame- 

er ω k for every year in the planning horizon. A parameter similar 

o γt should be defined for each of the first three factors men- 

ioned here and decision variables similar to Q 

i 
jt 

and P i t should be 

efined accordingly. 

ppendix C. Implementation of Public Private Partnership 

odel 

In what follows, we modify the SFMP to incorporate the option 

f PPP for demonstrative purposes. We do not attempt to engineer 

he full-fetched system, but lay out a simple approach that is suf- 

cient to capture the main dynamics of such partnerships. 

Let 

ψ : Fraction of the service region G that accommodates the public charging 

network 

δP : Average distance between two public charging facilities 

λP : Average arrival rate of e-vehicles to the public charging facilities 

γ P : Number of public charging instruments installed in each public facility 

define the characteristics of the public charging network. Then, 

he number of public charging facilities in region ψG and the ex- 

ected waiting time at the public charging stations can be es- 

imated by F P = 

ψG 

(δP ) 2 
and ω 

P 
k 

= 

C 2 a 
2 

(λP 
k 
μk /γ

p ) 

√ 

2(γ P +1) −1 

γ P −λP 
k 
μk 

respectively, 

ith k ∈ K e (because only e-trucks use charging stations). If ω 

P 
k 

≤
 k then the public charging network aligns with the company’s 

ervice level target and hence PPP model will be beneficial for the 

ompany. Otherwise, the company will investigate the viability of 

nstalling γ ′ P 
t charging instruments in each public facility in each 

ear t so that the expected waiting time at these facilities can be 

owered to an acceptable level. In such a case, the productive driv- 

ng time of the e-trucks in the public region and the rate of arrivals

n year t to the public charging facilities by the company’s e-trucks 

an be approximated by 

 

pP 

k 
= 

R k /νk 

R k /νk + θ
√ 

2 δP /νk + ω k + μk 

and λ′ P 
tk = 

νk W t 

R k l k D 

pP F P 
k 

16 
espectively, with k ∈ K e . Let δV be the design parameter for the 

rivate charging network that the company establishes in the re- 

aining service area, (1 − ψ) G and F V = 

(1 −ψ) G 

(δv ) 2 
be the number of 

rivate charging facilities installed. Similarly, the productive driv- 

ng time and the arrival rate of the e-trucks to the private facilities 

n each year t can be approximated by 

 

pV 

k 
= 

R k /νk 

R k /νk + θ
√ 

2 δV /νk + ω k + μk 

and 

λV 
tk = 

νk W t 

R k l k D 

pV 

k 
((1 − ψ) G/ (δV ) 2 ) 

espectively in the private region. The weighted average produc- 

ive driving time under the PPP model can then be estimated as 

 

p 

e = ψD 

pP 
e + (1 − ψ) D 

pV 
e . Let γ V 

t be the charging instruments in- 

talled in each private facility. Then, the company can identify all 

γ ′ P 
t , γ V 

t ) pairs for all t that make 

 k = ψω 

′ P 
tk + (1 − ψ) ω 

V 
tk ≤ ω 

here 

 

′ P 
tk = 

C 2 a 

2 

((λP 
tk 

+ λ′ P 
tk 
) μk / (γ

p + γ ′ P 
t )) 

√ 

2((γ P + γ ′ P 
t )+1) −1 

(γ P + γ ′ P 
t ) − (λP + λ′ P 

t ) μk 

and 

 

V 
tk = 

C 2 a 

2 

(λV 
tk 
μk /γ

V 
t ) 

√ 

2(γ V 
t +1) −1 

γ V 
t − λV 

tk 
μk 

, 

here k ∈ K e . For each possible (γ ′ P 
t , γ V 

t ) vector pairs, the follow- 

ng optimization model can be solved to find out the least costly 

PP model. If this minimum cost is less than the optimal cost of 

perating with private network only, then PPP model is not a vi- 

ble option. Otherwise, the company can choose to get engaged in 

 PPP model and make use of the already available public charging 

etwork. Given this set-up, the decision maker needs to solve the 

ollowing optimization problem: 

SFMP − PPP ( F P , F V , γ
′ P 

t , γ V 
t | δP , δv , ω k ) : 

Minimize 
∑ 

t∈ T 

∑ 

k ∈ K 
βt c 

v 
tk P 

v 
tk + · · · + 

∑ 

t∈ T 
βt (A + m 

f 
t ) F 

V 
t 

+ · · · −
∑ 

j∈ J i 

∑ 

t∈ T 
βt s 

i 
jt S 

i 
jt 

subject to: (5) − (12) 

W t ≤
∑ 

j∈ J v 
k 

∑ 

k ∈ K 
l k D 

p 

k Q 

v 
jtk t ∈ T (A.1) 

∑ 

j∈ J v 
k 

∑ 

k ∈ K e l k D 

p 

k Q 

v 
jtk 

W t 
− ψ ≥ −X 

P 
t t ∈ T (A.2) 

∑ 

j∈ J v 
k 

∑ 

k ∈ K e l k D 

p 

k Q 

v 
jtk 

W t 
− ψ ≤ 1 − X 

P 
t t ∈ T (A.3) 

Z P t −
∑ 

j∈ J v 
k 

∑ 

k ∈ K e l k D 

p 

k Q 

v 
jtk 

W t 
≥ −(1 − X 

P 
t ) t ∈ T (A.4) 

Z P t ≥ ψ(1 − X 

P 
t ) t ∈ T (A.5) 

Z P t 

ψ 

F P ≤ F P t t ∈ T (A.6) 

∑ 

j∈ J v 
k 

∑ 

k ∈ K e l k D 
p 

k Q 
v 
jtk 

W t 
− ψ 

1 − ψ 

F V ≤ F V t t ∈ T (A.7) 
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γ V 
t F V t + γ P 

t F P t ≤
∑ 

j ∈ j i 
Q 

i 
jt t ∈ T (A.8) 

F P t , F 
V 

t , P v tk , P 
i 
t , Q 

v 
jtk , Q 

i 
jt , S 

v 
jtk , S 

i 
jt ∈ Z ≥0 ; Z P t , X 

P 
t ∈ { 0 , 1 } (A.9) 

In this formulation, the original objective function is updated 

ith the number of charging facilities in the private domain. Con- 

traint set (A.1) assures that the total driving demand is satisfied 

ith the weighted average productive driving times under the PPP 

odel. Constraint sets (A.2) – (A.5) are a series of logical con- 

traints which ensures that the auxiliary decision variable Z P t , the 

roportion of the demand satisfied within the public charging ser- 

ice area, is less than or equal to ψ . Another auxiliary binary vari- 

ble X P t is used in these constraints to setup the logic. Note that 
 

j∈ J v 
k 

∑ 

k ∈ K e l k D 

p 

k Q 

v 
jtk 

/W t is the proportion of the whole demand 

atisfied with e-trucks and at most ψ of this proportion can be 

atisfied within the public service area. We assume that the com- 

any deploys their e-truck fleet starting from the area served by 

he public charging stations. Constraint sets (A.6) and (A.7) ensures 

hat sufficient charging facilities are opened in the public and pri- 

ate service areas. Constraint set (A.8) relates the required num- 

er of charging instruments to the number of instruments owned. 

n the numerical results presented in Section 4.9 , we simplify the 

bove model by assuming that the switch to e-trucks materialize 

ll at once. 
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