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A B S T R A C T

A framework is presented for the formulation of a class of continuum constitutive models for sharp interfaces
with non-linear viscoelastic behaviour due to a considerable isotropic interfacial microstructure. For the
formulation of a thermodynamically consistent elastoviscoplastic interface constitutive model we adapt an
approach successful in describing the behaviour of bulk polymer glasses. The model has a clear separation
between dilatation and shear, and is used to predict phenomena related to the plasticity of interfaces observed
in the experimental literature, which is relevant for many applications. Stress–strain predictions in standard
interfacial rheological flows, i.e. shear and dilatation, are investigated numerically. A predominantly elastic
response is obtained at small deformations, with a transition to primarily plastic flow at high stress levels.
In interfacial shear flow, strain softening and eventually a plastic plateau occur upon further deformation
beyond the yield point. The yield stress and strain and (the relative strength of) the stress overshoot in
interfacial shear flow are shown to be controlled by two dimensionless groups of parameters in the model. In
interfacial dilatation, the model predicts elastoviscoplastic behaviour with a stress maximum and a decreasing
stress without a plateau at even larger deformations. These phenomena are studied for various choices for the
parameters in the model.
. Introduction

Plastic behaviour of fluid–fluid interfaces in foams and emulsions is
elevant in many applications such as foods, consumer products, phar-
aceuticals (drug delivery), petrochemicals (oil recovery), polymer

echnology (polymer blends), and also in nature and biology. The larger
he ratio between interfacial surface area and bulk fluid volume, or the
maller the corresponding length scale, the more the interfacial prop-
rties affect the overall mechanical behaviour of foams and emulsions.
n example of the effectiveness of interfacial plasticity is the stability
f foams and emulsions, where the strength of the interface should
e high enough to prevent bubble or drop coalescence upon collision.
ield-stress interfaces contribute for a large part to other macroscopic
aterial properties, e.g. to the bulk yield stress of foams/emulsions [1].
he single and collective behaviour of bubbles/drops where interfacial
ielding plays a role includes e.g. the deformation, break-up, coa-
escence, collision or closely approaching/passing of drops/bubbles,
nd film drainage between drops/bubbles. These phenomena are all
elevant for applications and require further investigation.

Experimental results on interfacial plasticity (measurements and
bservations) have been reported extensively in the literature for all
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P.D. Anderson).

kinds of different interfacial microstructures, e.g. particles, proteins,
lipids, (bio)polymers, asphaltenes, surfactant molecules. The experi-
ments use interfacial shear and dilatational/extensional rheometers
with well-defined kinematics, see for example [2–10]. The mechanical
behaviour of these systems is characterised by the presence of an
interfacial yield stress/strain with a transition from predominantly
elastic solid behaviour to primarily plastic flow, i.e. elastoviscoplastic
behaviour. For example, a strain-amplitude sweep in interfacial large-
amplitude oscillatory shear (LAOS) experiments has been performed
by Zang et al. [2]. Similar to strain sweeps in interfacial LAOS, Jung
et al. [3] performed step interfacial shear rate experiments in which the
interfacial shear stress is measured as a function of interfacial shear
strain, but here a constant interfacial shear rate is imposed. In these
experiments, although for different interfacial microstructures, i.e. dif-
ferent surfactant types, qualitatively similar behaviour was observed.
A linear dependence of the interfacial shear stress was measured at
smaller interfacial shear strains, followed by a stress maximum, the
interfacial yield stress, at the yield strain. Subsequently, the stress
decreases with increasing strain and eventually finds a plateau value.
The results from Martin et al. [4] for step interfacial shear rate also
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show this linear increase of the shear stress for smaller shear strains.
However, their results do not show a decrease in the shear stress
beyond the yield point followed by a plateau. Instead, either a yield-
stress plateau is attained immediately, or a continuing stress increase
with a constant but much smaller slope than in the linear regime. In
interfacial large amplitude oscillatory extension and step extensional
strain (rate) experiments, similar results as for their interfacial shear
experiment counterparts have been obtained [5–7]. Note, that these
experiments include pure dilatation, which is applying an isotropic
extensional strain, and uniaxial extension, by which we mean imposing
an extensional strain in one direction of the interface while keeping
the strain in the other direction fixed. In contrast to shear experiments,
for extension in [5–7] no overshoot in the stress was observed during
plastic flow.

When it comes to modelling the non-linear viscoelasticity of inter-
faces, two approaches are followed in the literature. A first is straight-
forward generalisation of bulk constitutive models [11], such as the
Boussinesq–Scriven viscous compressible interface model [12] and the
Hütter–Tervoort hyperelastic compressible interface model [13,14].
The other approach is using thermodynamic formalisms for multi-
phase systems to construct admissible interface constitutive models,
consistent with the second law of thermodynamics [13,15]. A linear
Maxwell constitutive equation for interfaces is obtained by writing
down an expression for the interfacial entropy-production rate and
constructing a differential constitutive equation for the interfacial stress
tensor by linear expansion [15]. To obtain a frame-invariant non-linear
viscoelastic interface model without loss of generality, the surface
material derivative in the equation for the deviatoric stress is replaced
by the surface upper-convected derivative, yielding the surface upper-
convected Maxwell model [11]. In a similar fashion, other thermody-
namically admissible non-linear viscoelastic models can be constructed,
such as the interfacial Giesekus model [15].

In this paper, we introduce a continuum modelling framework
for describing non-linear viscoelastic behaviour of sharp interfaces.
An adequate approach for modelling the elastoviscoplasticity of bulk
polymer glasses is adapted to describe the kinematics and stress of
isotropic interfaces with behaviour in between that of a fluid and a
solid. We use a Lagrangian description of the interface and assume
that there is no mass transport across the interface. Our aim is to
develop a rheologically complex interface modelling framework that
can be implemented in numerical multiphase flow solvers, as described
in e.g. [11,16–20]. The kinematics for describing arbitrary large de-
formations and the deformation rate of differentiable interfaces are
explained in Section 2. Section 3 provides general expressions for ther-
modynamically admissible constitutive relations for the plastic surface
rate-of-deformation tensor and the interfacial stress tensor. Interface
versions of well-known viscoelastic bulk fluid models are presented
in the rest of Section 3, whereas Section 4 introduces our elastovis-
coplastic interface model. Model predictions of the elastoviscoplastic
interface model for interfacial simple shear and dilatational flow, ob-
tained by numerical calculations, are shown in Section 5. These results
demonstrate that for these simple flows we can qualitatively describe
the elastoviscoplastic behaviour of interfaces observed in the literature.
In Section 6, the model is discussed in comparison with its counterpart
for bulk materials. Conclusions are drawn and recommendations for
further research are given in Section 7.

2. Kinematics of interfaces

We start in Section 2.1 with a recap and discussion on curvilinear
surface coordinates and how to write interfacial tensors, vectors and
derivative operators in such a coordinate system, since this will be
used throughout the paper. Interfacial tensors, vectors and derivative
operators appearing in this paper are defined on the interface only, i.e.
they are functions of position within the interface only, and are denoted
by a subscript () . For interfacial vectors and operators this subscript
2

s t
Fig. 1. Schematic representation of a cut-out of the interface on which points with 3D
spatial position 𝒙 are described by curvilinear coordinates

̃
𝜉 = (𝜉1 , 𝜉2). Also depicted

re covariant base vectors 𝒈𝑖 and contravariant base vectors 𝒈𝑖.

eans that these are directed tangential to the interface. However, they
re still described as vectors in 3D space. On the contrary, tensors with
his subscript are not necessarily directed tangential to the interface
nd can have additional out-of-plane directions that are perpendicular
o the interface. However, at least the left-hand or the right-hand side
f the tensor has directions that are tangential to the interface, unless
therwise stated. All interfacial tensors in this paper are 3D tensors of
ank two, which means that one of the eigenvalues equals zero. Which
f the two sides of the interfacial tensors has out-of-plane directions
ill be clarified for each tensor where it is introduced, and a separate

able will be presented that summarises this, see Table A.1.
The kinematics for describing arbitrarily large deformations of inter-

aces are explained in Section 2.2 and from this, the rate of deformation
f interfaces is derived in Section 2.3. We follow a Lagrangian approach
nd assume no transfer of mass across the interface. Einstein summation
onvention is used in the following, where summation is performed
ver repeated indices in the same term of an equation. In the literature,
he adjectives ‘surface’ and ‘interfacial’ are used interchangeably to
ntroduce tensors, vectors and derivative operators defined on the
nterface. We will also use this nomenclature.

.1. Curvilinear coordinates

For a mathematical description of the deformation and rheological
ehaviour of differentiable interfaces, it is convenient to use curvilinear
urface coordinates. All the quantities related to the interface only live
ithin and vary along the interface, which has a curved geometry in
eneral. These curvilinear coordinates are used to define local vector
ases that are tangential to the interface, with respect to which inter-
acial vectors, tensors and derivative operators can then be described.
or this purpose, the interface position 𝒙 in 3D space is parametrised
ccording to

=  (
̃
𝜉, 𝑡), (1)

here  is the function that uniquely maps the curvilinear surface
oordinates

̃
𝜉 = (𝜉1, 𝜉2) onto the position 𝒙 of the corresponding point

n the surface in 3D space, see Fig. 1. The base vectors 𝒈𝑖, 𝑖 = 1, 2, also
alled covariant base vectors, are given by

𝑖 =
𝜕𝒙
𝜕𝜉𝑖

, 𝑖 = 1, 2, (2)

with the index 𝑖 running from 1 to 2 since the interface is two-
dimensional. A dual basis is introduced by defining the biorthogonal
system

𝒈𝑖 ⋅ 𝒈𝑗 =

{

1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

≡ 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2, (3)

here 𝒈𝑗 , 𝑗 = 1, 2, are the dual or contravariant base vectors, and 𝛿𝑖𝑗
s the Kronecker delta. In the following, we will omit 𝑖, 𝑗 = 1, 2. Note
hat, in general 𝒈 are neither necessarily mutually perpendicular nor
𝑖
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of unit length and the same also holds for 𝒈𝑖. However, all four vectors
must be tangential to the interface. The vectors 𝒈𝑖 and 𝒈𝑖 can also be
xpressed in terms of each other:

𝑖 = 𝑔𝑖𝑗𝒈𝑗 , (4)
𝑖 = 𝑔𝑖𝑗𝒈𝑗 , (5)

ith the (covariant) metric matrix 𝑔𝑖𝑗 and dual (or contravariant)
etric matrix 𝑔𝑖𝑗 given by

𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 , (6)
𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 . (7)

qs. (4)–(5) give the rules for moving indices ‘‘up and down’’. The
etric matrices are symmetric and are each other’s inverse:
𝑖𝑗 = 𝑔−1𝑖𝑗 , or 𝑔𝑖𝑘𝑔𝑘𝑗 = 𝛿𝑖𝑗 , (8)

hich can be seen by premultiplying Eq. (4) by 𝑔−1𝑘𝑖 and then comparing
ith Eq. (5).

Using curvilinear surface coordinates, arbitrary interfacial vectors
s and tensors 𝑻 s, of which the directions are only tangential to the
nterface, such as the interfacial stress tensor 𝝉s, can now also be
xpressed in terms of covariant base vectors 𝒈𝑖 and contravariant base
ectors 𝒈𝑖. Using Eq. (3) these can be written as

s = 𝑣𝑖s𝒈𝑖 = 𝑣s,𝑖𝒈𝑖, (9)

s = 𝑇 𝑖𝑗s 𝒈𝑖𝒈𝑗 = 𝑇s,𝑖𝑗𝒈𝑖𝒈𝑗 , (10)

ith contravariant components 𝑣𝑖s = 𝒗s ⋅ 𝒈𝑖 and 𝑇 𝑖𝑗s = 𝒈𝑖 ⋅ 𝑻 s ⋅ 𝒈𝑗 , and
ovariant components 𝑣s,𝑖 = 𝒗s ⋅ 𝒈𝑖 and 𝑇s,𝑖𝑗 = 𝒈𝑖 ⋅ 𝑻 s ⋅ 𝒈𝑗 . Note that the
ules for moving indices up and down, given by Eqs. (4)–(5), are also
alid for the components, e.g. 𝑣𝑖s = 𝑔𝑖𝑗𝑣s,𝑗 .

The surface unit tensor 𝑰 s = 𝑰 − 𝒏𝒏, with 𝒏 the unit-normal vector
n the interface, can be written in the four equivalent representations

s = 𝒈𝑖𝒈𝑖 = 𝒈𝑖𝒈𝑖 = 𝑔𝑖𝑗𝒈𝑖𝒈𝑗 = 𝑔𝑖𝑗𝒈𝑖𝒈𝑗 , (11)

here the first two follow from substituting 𝑣𝑖s = 𝒗s ⋅ 𝒈𝑖 and 𝑣s,𝑖 = 𝒗s ⋅ 𝒈𝑖
nto Eq. (9) and then requiring that Eq. (9) must hold for all 𝒗s. The last
wo representations in Eq. (11) are obtained by substituting Eqs. (4)–(5)
nto the first two steps. The expressions for 𝑰 s in Eq. (11) are equivalent,
ut we will prefer one over the other depending on the context. Note
hat 𝑰 s is in general a function of position on the interface and of time,
ontrary to the rank-3 unit tensor.

The surface gradient operator, the gradient operator along the
nterface, is defined as

s = 𝒈𝑖 𝜕
𝜕𝜉𝑖

. (12)

The direction of 𝛁s is tangential to the interface since 𝒈𝑖 are tangential
ectors. Also, 𝛁s𝒙 = 𝒈𝑖𝜕𝒙∕𝜕𝜉𝑖 = 𝒈𝑖𝒈𝑖 = 𝑰 s, where Eqs. (2), (11) and (12)
ave been used.

.2. Deformation

.2.1. Surface deformation tensors
To derive models that are valid for arbitrarily large deformations

ritten in terms of finite strain tensors, we make use of the sur-
ace deformation gradient tensor 𝑭 s to describe the deformation. The
ensor 𝑭 s maps an infinitesimal material line element 𝑑𝒙0 between
wo particles on the interface in the reference configuration onto an
nfinitesimal material line element 𝑑𝒙 between the same two particles
n the deformed interface in the current configuration. In the following,
e will use the subscript ()0 if the corresponding quantity or derivative
perator is evaluated at the reference time 𝑡0, e.g. 𝒈𝑖,0 = 𝒈𝑖(𝑡 = 𝑡0). Since
e only consider a Lagrangian description in this paper, the curvilinear
3

oordinates
̃
𝜉 can be used as interface material point labels. Hence, we 𝐽
an determine the interface position 𝒙0 in a reference configuration at
ime 𝑡0 using Eq. (1) as

0 =  (
̃
𝜉, 𝑡 = 𝑡0). (13)

he surface deformation gradient tensor 𝑭 s is defined by (see [21])

𝒙 = 𝑭 s ⋅ 𝑑𝒙0, (14)

nd can be expressed as

s = 𝒈𝑖𝒈𝑖0 = (𝛁s,0𝒙)T, (15)

hich can be shown by substituting 𝑑𝒙 = 𝒈𝑖𝑑𝜉𝑖 into Eq. (14) and using
qs. (2), (3) and (12). Note that the directions of 𝑭 s on its left-hand side
re tangential to the interface in the current configuration, whereas on
ts right-hand side the directions are tangential to the interface in the
eference configuration. In case of no deformation, the reference and
urrent configurations are the same, and thus 𝑭 s(𝑡 = 𝑡0) = 𝑰 s,0 (see
qs. (11) and (15)).

The relative change in interfacial surface area 𝐽s is defined as the
atio between a surface area element 𝑑𝐴 spanned by two infinitesimal
nterface material line elements in the current configuration 𝑑𝒙1 and
𝒙2, and the surface area element 𝑑𝐴0 spanned by two infinitesimal
nterface material line elements in the reference configuration 𝑑𝒙0,1 and
𝒙0,2. Using the covariant base vectors, it is expressed as

s =
𝑑𝐴
𝑑𝐴0

=
‖𝒈1 × 𝒈2‖

‖𝒈1,0 × 𝒈2,0‖
≡ dets(𝑭 s), (16)

where dets is the surface determinant [21].
The Moore–Penrose inverse [22,23], a generalisation of the inverse

tensor applied to rank-2 tensors in this paper, of 𝑭 s, is defined by
𝑑𝒙0 = 𝑭 −1

s ⋅ 𝑑𝒙 (see Eq. (14)), and can be expressed as

−1
s = 𝒈𝑗,0𝒈𝑗 = (𝛁s𝒙0)T, (17)

in analogy to Eq. (15). In all of the following, the Moore–Penrose
inverse [22,23] of interfacial tensors will be denoted by ()−1. As a result
of Eqs. (15) and (17),

𝑭 s ⋅ 𝑭 −1
s = 𝑰 s, (18)

−1
s ⋅ 𝑭 s = 𝑰 s,0, (19)

ee also Eqs. (3) and (11). In addition, it can be shown that

s,0 = 𝒈𝑖0
𝜕
𝜕𝜉𝑖

= 𝒈𝑖0𝒈𝑖 ⋅ 𝒈
𝑗 𝜕
𝜕𝜉𝑗

= 𝑭 T
s ⋅ 𝛁s or equivalently,

𝛁s = 𝑭 −T
s ⋅ 𝛁s,0, (20)

here the superscript ()−T means taking both the inverse and the
ranspose of the corresponding tensor. To derive Eq. (20), which is also
n accordance with Eqs. (15) and (18)–(19), we have used Eqs. (3), (12)
nd (15).

The interfacial Finger tensor 𝑩s is given by

s = 𝑭 s ⋅ 𝑭 T
s = 𝑔𝑖𝑗0 𝒈𝑖𝒈𝑗 , (21)

here Eqs. (7) and (15) have been used. It can be seen that the direc-
ions of 𝑩s are tangential to the interface in the current configuration,
ince 𝒈𝑖 are tangential vectors. If no deformation is applied, 𝑩s reduces
o 𝑩s(𝑡 = 𝑡0) = 𝑰 s,0 (see Eq. (11)). Eq. (21) shows that 𝑩s = 𝑩T

s is
ymmetric, and is a positive-definite interfacial tensor so that

⋅ 𝑩s ⋅ 𝒂 = (𝑭 T
s ⋅ 𝒂)2 > 0 for all vectors 𝒂 such that 𝑰 s ⋅ 𝒂 ≠ 𝟎. (22)

s a consequence, one of the eigenvalues of 𝑩s equals zero with a corre-
ponding eigenvector perpendicular to the interface (see Eq. (21)). The
on-zero eigenvalues of 𝑩s are real and positive, and the corresponding
igenvectors can be chosen to be mutually perpendicular. It is shown
n Appendix B.1 that
s = dets(𝑭 s) = 𝜆1𝜆2, (23)



Journal of Non-Newtonian Fluid Mechanics 301 (2022) 104726M.A. Carrozza et al.
where 𝜆𝑖, 𝑖 = 1, 2, are the square root of the non-zero eigenvalues of
𝑩s.

Finally, using Eq. (6) and (17), 𝑩−1
s can be written as (see Eq. (21))

𝑩−1
s = 𝑭 −T

s ⋅ 𝑭 −1
s = 𝑔𝑖𝑗,0𝒈𝑖𝒈𝑗 . (24)

It can then indeed be verified that 𝑩−1
s is the Moore–Penrose in-

verse [22,23] of 𝑩s such that 𝑩−1
s ⋅𝑩s = 𝑩s ⋅𝑩−1

s = 𝑰 s (see Eqs. (3), (8),
(11), (21) and (24)).

In summary, we have expressed interfacial equivalents of bulk de-
formation tensors, 𝑭 s and 𝑩s (and their inverses), in terms of tangential
vectors using curvilinear coordinates on the interface as described in
Section 2.1. As will be explained later, these deformation tensors are
the only kinematic quantities required for describing the constitutive
behaviour of a general interfacial elastic solid, and are also useful in
integral-type viscoelastic interface models.

2.2.2. Decomposition into elastic and plastic deformation
For describing the non-linear viscoelastic behaviour of interfaces,

and in particular elastoviscoplasticity, it is useful to split the total
deformation of the interface into its elastic and plastic parts. For this,
we follow a successful approach for bulk materials by Lee et al. [24],
which is applied also in [13,25]. By analogy to the bulk, we use the
following decomposition of the surface deformation gradient tensor 𝑭 s,

𝑭 s = 𝑭 s,e ⋅ 𝑭 s,p, (25)

with 𝑭 s,e the elastic and 𝑭 s,p the plastic part of 𝑭 s, which are functions
of

̃
𝜉 and 𝑡. This decomposition is schematically depicted in Fig. 2,

which for each
̃
𝜉 visualises the introduction of an intermediate planar

configuration between the reference and current configurations. The
tensor 𝑭 s,e represents the elastic part of the deformation that is affected
by infinitely rapid unloading in the current configuration, hence leav-
ing the rate-dependent processes inactive, leading to the intermediate
configuration. Note that the intermediate configuration is not a physical
state the system reaches, and it cannot be described as a differen-
tiable curved interface surface. An infinitesimal interface material line
element in the intermediate configuration 𝑑𝒙I after infinitely rapid
unloading is determined by

𝑑𝒙I = 𝑭 −1
s,e ⋅ 𝑑𝒙 = 𝑭 −1

s,e ⋅ 𝑭 s ⋅ 𝑑𝒙0, (26)

where 𝑭 −1
s,e performs the inverse mapping of that by 𝑭 s,e. This interme-

diate configuration is therefore determined only by the plastic part of
𝑭 s, i.e. 𝑑𝒙I = 𝑭 s,p ⋅𝑑𝒙0, since 𝑭 s,p = 𝑭 −1

s,e ⋅𝑭 s, see also Eq. (25). To make
the multiplicative split in Eq. (25) unique, a constraint on the dynamics
in the intermediate configuration must be imposed [25], which will
be specified in Section 2.3.2. The elastic part of the relative change
in interfacial surface area, analogous to that for the total deformation
given by Eq. (16), reads

𝐽s,e = dets(𝑭 s,e). (27)

In summary, the surface deformation gradient tensor 𝑭 s is decom-
posed into elastic and plastic parts by introduction of an intermediate
configuration between the current and reference ones. Later in the
paper, this will turn out to be convenient for describing non-linear
viscoelastic behaviour.

2.3. Rate of deformation

2.3.1. Time derivative of surface deformation tensors
Taking the time derivative of Eq. (15), the evolution of 𝑭 s is

expressed as

̇

4

𝑭 s = 𝑳s ⋅ 𝑭 s, (28)
Fig. 2. Schematic representation of the multiplicative decomposition of the total
surface deformation gradient tensor 𝑭 s into an elastic part 𝑭 s,e and a plastic part
𝑭 s,p, for given

̃
𝜉, with an intermediate configuration between the reference and current

configurations, see also Eq. (25).

where we define the material derivative as

̇() =
𝜕()
𝜕𝑡

|

|

|

|

̃
𝜉
, (29)

which is the time rate of change of a quantity following the motion
of an interface particle [21]. In all of the following, ()⋅ denotes the
material derivative of the expression between parentheses. The surface
velocity gradient tensor 𝑳s appearing in Eq. (28) is given by

𝑳s = (𝛁s𝒖)T, (30)

with 𝒖 = �̇� the velocity vector at the interface. Eq. (28) is obtained by
substituting the time derivative of the base vectors 𝒈𝑖, see Appendix B.2.
Note that 𝑳s may have out-of-plane directions on its left-hand side,
since 𝒖 is the full velocity vector and not just the tangential part.
However, the surface-gradient ‘direction’ of 𝑳s, i.e. its right-hand side,
is tangential to the interface, see also Eq. (12). Therefore, projection
of 𝑳s onto the interface is only effective if the product with 𝑰 s is
performed from the velocity ‘direction’ side of 𝑳s. Hence, 𝑳s ⋅ 𝑰 s = 𝑳s
and 𝑰 s ⋅ 𝑳T

s = 𝑳T
s leave 𝑳s and 𝑳T

s unchanged, however, in contrast,
𝑰 s ⋅𝑳s ≠ 𝑳s and 𝑳T

s ⋅ 𝑰 s ≠ 𝑳T
s in general, see also Eq. (12).

By differentiating Eq. (16) with respect to time using the chain rule
for differentiation, the relative time rate of change of the interfacial
surface area �̇�s∕𝐽s is obtained (see Appendix B.4):

�̇�s
𝐽s

= tr(𝑫s), (31)

with the surface rate-of-deformation tensor defined by

𝑫s =
1
2
(𝑰 s ⋅𝑳s +𝑳T

s ⋅ 𝑰 s). (32)

It is not necessary to write Eq. (31) in terms of 𝑫s but we choose
to define 𝑫s here since it will be used throughout the paper. Note
that the directions of 𝑫s are tangential to the interface because of the
projections with 𝑰 s.

The evolution of the interfacial Finger tensor 𝑩s = 𝑭 s ⋅ 𝑭 T
s is

straightforward to write down using the product rule for differentiation
and Eq. (28):

�̇�s = 𝑳s ⋅ 𝑩s + 𝑩s ⋅𝑳T
s , (33)

or similarly,
∇
𝑩s = 𝟎, (34)

with the surface upper-convected derivative
∇
() defined by

∇
() = ̇() −𝑳s ⋅ () − () ⋅𝑳T

s . (35)

The notation ()∇ will be used for the surface upper-convected derivative

of expressions between parentheses. It can be proven that
∇
𝑨s = �̇�𝑖𝑗s 𝒈𝑖𝒈𝑗

for an arbitrary tensor 𝑨 = 𝐴𝑖𝑗𝒈 𝒈 tangential to the interface, by
s s 𝑖 𝑗
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applying the product rule for differentiation to 𝑨s and then substituting
Eq. (B.6) (see Appendix B.2 for details). This shows that the surface
upper-convected derivative keeps 𝑨s tangential, since the time rate of
change of 𝑨s is tangential at all times. Therefore, using the surface
upper-convected derivative as the time derivative in a constitutive
equation ensures the interfacial stress tensor to remain tangential to
the interface, as long as the other terms in the constitutive equation
(when added together) are also tangential to the interface. By applying
Eq. (35) to 𝑰 s, it turns out that (see Appendix B.3)
∇
𝑰 s = −2𝑫s. (36)

his result is similar to that for the upper-convected derivative of the
nit tensor in bulk rheology, but 𝑫s is the projected rate-of-deformation
ensor on the interface, see Eq. (32).

The evolution equation for 𝑭 −1
s , obtained by differentiating Eq. (18)

ith respect to time using the product rule for differentiation, then
ubstituting Eqs. (28) and (B.9) and rearranging terms, reads

𝑭 −1
s )⋅ = −𝑭 −1

s ⋅ (2𝑫s −𝑳T
s ). (37)

he dynamics of 𝑩−1
s are now obtained by applying the product rule

or differentiation to Eq. (24) and substituting Eq. (37):

𝑩−1
s )⋅ = −(2𝑫s −𝑳s) ⋅ 𝑩−1

s − 𝑩−1
s ⋅ (2𝑫s −𝑳T

s ). (38)

q. (38) can alternatively be written as

𝑩−1
s )∆ = 𝟎, (39)

ith the surface lower-convected derivative
∆

() given by
∆

) = ̇() + (2𝑫s −𝑳s) ⋅ () + () ⋅ (2𝑫s −𝑳T
s ). (40)

he notation ()∆ will be used for the surface lower-convected derivative

f expressions between parentheses. It can be proven that
∆

𝑨s = �̇�s,𝑖𝑗𝒈𝑖𝒈𝑗
or an arbitrary tensor 𝑨s = 𝐴s,𝑖𝑗𝒈𝑖𝒈𝑗 tangential to the interface,
y first substituting Eq. (10) and then applying the product rule for
ifferentiation and substituting Eq. (B.8) (see Appendix B.2 for details).
his shows that the surface lower-convected derivative keeps 𝑨s tan-
ential, since the time rate of change of 𝑨s is tangential. Therefore,
sing the surface lower-convected derivative as the time derivative in
constitutive equation ensures the interfacial stress tensor to remain

angential to the interface, as long as the other terms in the constitutive
quation (when added together) are also tangential to the interface. It
an furthermore be shown that

𝑰 s = 2𝑫s, (41)

y applying Eq. (40) to 𝑰 s and substituting the expression for �̇� s from
q. (B.9).

The surface convected derivatives defined on interfaces in Eqs. (35)
nd (40) are non-trivial generalisations of the convected derivatives
efined in the bulk [26]. The surface upper-convected derivative re-
uces to that for the bulk if 𝑳s = 𝑳 at the interface, with 𝑳 the
ransposed bulk velocity gradient tensor. The surface lower-convected
erivative reduces to that for the bulk if 2𝑫s−𝑳s = 𝑳T at the interface.
xamples of such flows are planar shear and dilatational deformation
f an interface. Moreover, note that both surface-convected derivative
perators in Eqs. (35) and (40) applied to an arbitrary interfacial
ensor yield an expression containing individual tensor terms with, in
eneral, out-of-plane directions. However, these terms added together
ield a tensor tangential to the interface, as shown in the text below
qs. (35) and (40). This ensures objectivity, keeping an interfacial
ensor tangential to the interface in the course of time. In contrast,
he material derivative in Eq. (29) of an interfacial tensor is in general
ot a tangential tensor, since the directions of such a tensor, e.g. the
nterfacial stress tensor, rotate along with the interface.

In summary, the evolution equations for the surface deformation
5

ensors 𝑭 s, 𝑩s (and their inverses) have been derived. This does not p
nly allow for a transient description of elastic solid and integral-
ype viscoelastic interface behaviour, but the surface velocity gradient
ensor and the surface upper- and lower-convected derivatives, help-
ul in the formulation of differential viscoelastic interface models,
aturally appear as a result. For a more general objective time deriva-
ive for interfaces, one could introduce an interface version of the
ordon–Schowalter time derivative, in analogy to the bulk [27–29].

.3.2. Decomposition in elastic and plastic deformation
The evolution equation for 𝑭 s,e, the elastic part of the surface defor-

ation gradient tensor 𝑭 s, can be obtained by rewriting the evolution
f Eq. (25) using the product rule for differentiation and substituting
q. (28). It is derived in detail in Appendix B.5; the result is (see [13,25]
or the case of bulk)

̇ s,e ⋅ 𝑰 s,I = (𝑳s −𝑳s,p) ⋅ 𝑭 s,e, (42)

ith 𝑰 s,I the surface unit tensor in the intermediate configuration.
urthermore, we have defined

s,p = 𝑭 s,e ⋅ �̇� s,p ⋅ 𝑭 −1
s,p ⋅ 𝑭 −1

s,e , (43)

he plastic counterpart of 𝑳s in the current configuration, for which
constitutive equation will be specified later. It can be seen from

q. (43) that 𝑳s,p is a tensor with directions in the plane of the interface
n the current configuration, as the directions of 𝑭 s,e on its left-hand
ide and those of 𝑭 −1

s,e on its right-hand side are tangential to the
nterface in the current configuration. This is because 𝑭 s,e and 𝑭 −1

s,e
ap infinitesimal interface line elements between the intermediate and

urrent configurations, see Eq. (26). Therefore, projection of 𝑳s,p onto
he interface as for 𝑫s in Eq. (32) is not required, since 𝑳s,p is already
n in-plane tensor. For the relative time rate of change of the elastic
art of the relative change in interfacial surface area, by analogy to
q. (31) we write

�̇�s,e
𝐽s,e

= tr(𝑫s −𝑫s,p), (44)

with 𝑫s,p = (𝑳s,p+𝑳T
s,p)∕2 the plastic surface rate-of-deformation tensor

for which a constitutive equation will be specified in the following. For
deriving Eq. (44), a similar calculation can be performed as for Eq. (31)
in Appendix B.4, using also Appendix B.5 to describe the intermediate
configuration. Note that 𝑰 s,I, although being present in Eq. (42) and
appearing in intermediate steps of the calculation, is absent from the
final result in Eq. (44).

The evolution equation for the elastic part of the interfacial Finger
tensor

𝑩s,e = 𝑭 s,e ⋅ 𝑭 T
s,e, (45)

can be written down by applying the product rule for differentiation
to Eq. (45), and then substituting Eqs. (42) and (45). In doing so,
we assume that plastic deformation occurs spin-free since for isotropic
materials the orientation in the intermediate configuration is irrele-
vant [30], which results in a vanishing plastic surface spin tensor 𝜴s,p =
𝑳s,p−𝑳T

s,p)∕2 = 𝟎, see Eq. (43). This makes the evolution of 𝑩s,e unique,
iven a constitutive equation for 𝑫s,p. Using 𝑳s,p = 𝑫s,p +𝜴s,p = 𝑫s,p,
his choice results in (see [30] for the case of bulk)

̇ s,e = (𝑳s −𝑫s,p) ⋅ 𝑩s,e + 𝑩s,e ⋅ (𝑳T
s −𝑫s,p), (46)

r equivalently,
∇

s,e = −(𝑫s,p ⋅ 𝑩s,e + 𝑩s,e ⋅𝑫s,p). (47)

ote, that 𝑰 s,I appearing in Eq. (42) is absent from Eqs. (46)–(47)
ventually. By comparing Eqs. (46)–(47) with Eqs. (33)–(34), it can
e seen that relaxation of the elastic deformation comes with non-zero

lastic deformation (rate) 𝑫s,p.
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The evolution equation for 𝑭 −1
s,e is obtained by applying the product

rule for differentiation to 𝑭 s,e ⋅ 𝑭 −1
s,e = 𝑰 s, substituting Eqs. (B.9) and

(42)–(43), and rearranging terms, resulting in

𝑰 s,I ⋅ (𝑭 −1
s,e)

⋅ = 𝑭 −1
s,e ⋅

(

𝑳s,p − (2𝑫s −𝑳T
s )
)

. (48)

The inverse of the elastic part of the interfacial Finger tensor 𝑩−1
s,e is

given by 𝑩−1
s,e = 𝑭 −T

s,e ⋅ 𝑭 −1
s,e (see Eq. (45)). The evolution equation of

𝑩−1
s,e then follows from applying the product rule for differentiation and

substitution of Eq. (48), and can be written as

(𝑩−1
s,e)

⋅ =
(

𝑫s,p − (2𝑫s −𝑳s)
)

⋅ 𝑩−1
s,e + 𝑩−1

s,e ⋅
(

𝑫s,p − (2𝑫s −𝑳T
s )
)

, (49)

or equivalently,

(𝑩−1
s,e)

∆ = 𝑫s,p ⋅ 𝑩−1
s,e + 𝑩−1

s,e ⋅𝑫s,p, (50)

where we have again used that 𝑳s,p = 𝑫s,p, since rotations in the
intermediate configuration are irrelevant for isotropic interface ma-
terials [25,30]. Also note, that 𝑰 s,I appearing in Eq. (48) is absent
from Eqs. (49)–(50) eventually. Comparison of Eq. (49)–(50) with
Eqs. (38)–(39) shows that relaxation of the elastic deformation comes
with non-zero plastic deformation (rate) 𝑫s,p.

In summary, evolution equations have been derived for the elastic
part of surface deformation tensors, 𝑭 s,e and 𝑩s,e (and their inverses).
If these evolution equations are complemented by appropriate consti-
tutive equations for the plastic surface rate-of-deformation tensor 𝑫s,p
and interfacial stress tensor 𝝉s, they enable the formulation of con-
stitutive models for non-linear viscoelastic interfaces with upper- and
lower-convected behaviour. This will be treated in the next sections.

3. Constitutive modelling

3.1. Mechanical representation

We will present a framework for the formulation of constitutive
models to describe rheologically complex, i.e. non-linear viscoelastic,
interface behaviour; in particular quasi-linear viscoelasticity and elas-
toviscoplasticity. The latter type of material behaviour is characterised
by a primarily elastic response at small deformations during a step
strain-rate experiment, with only minor viscous effects. Upon further
deformation and build up of elastic stress, a gradual but rather sharp
transition from elastic to predominantly viscous behaviour occurs when
the stress approaches the (dynamic) yield stress. At the yield point, the
stress attains either a maximum or a plateau value and the material
flows, i.e. it deforms plastically. Upon even further deformation, the
stress remains constant (plateau) or decreases (strain softening), after
which it will become stationary. Depending on whether the interfacial
microstructural environment is more solid or fluid like, additional
elastic and/or viscous stresses are present due to interfacial flow, and
the microstructure will/will not return to its undeformed configuration
after cessation of flow.

The type of material behaviour discussed in this section is com-
monly described in the case of bulk materials by so-called ‘generalised
Maxwell models’ [30]. In qualitative terms it represents a mechanical
model consisting of a combination of springs and dashpots linked in
series and in parallel. The mechanical analogue of this broad collection
of models is schematically depicted in Fig. 3. A combination of 𝑛
parallel Maxwell elements is connected to a spring and a dashpot
in parallel. The Maxwell element consists of a spring and a dashpot
linked in series; the stresses in the spring and in the dashpot are equal
and their strain rates are additive. The interfacial rate of deformation
equals the deformation rate in each of the parallel elements. The total
interfacial stress 𝝉s is the sum over the stresses in each parallel element
and can in general be written as
6

𝝉s = 𝝉s,ve + 𝝉s,e + 𝝉s,v, (51)
Fig. 3. Mechanical analogue of a framework for non-linear viscoelastic models for
interfaces. A combination of 𝑛 parallel Maxwell elements, consisting of an elastic spring
connected in series to a viscous dashpot, is linked to both a spring and a dashpot in
parallel. Material parameters 𝐾 and 𝐺 are interfacial elastic moduli and 𝜂D and 𝜂S are
interfacial viscosities for shear and dilatation, respectively.

where 𝝉s,e is the elastic stress in the parallel spring, 𝝉s,v is the viscous
stress in the parallel dashpot, and the viscoelastic stress 𝝉s,ve of the
combined parallel Maxwell elements is given by

𝝉s,ve =
𝑛
∑

𝑖=1
𝝉s,ve,𝑖, (52)

where 𝝉s,ve,𝑖 is the viscoelastic stress in Maxwell element 𝑖. For the
viscous and elastic stresses in the parallel dashpot and spring, one can
use the Boussinesq–Scriven viscous interface model [12] and a Neo-
Hookean type hyperelastic interface model, for example (a part of) the
interfacial Hütter–Tervoort model [13,14], respectively. The parallel
dashpot and spring are only suggested but will not be considered in
this paper. The parallel spring can for instance be used to include post-
yield strain hardening as already done for bulk (see [31–33]). In the
following, we will only consider a single Maxwell element, although
the extension to multiple elements is straightforward. Therefore, we
will drop the subscripts 𝑖 and write 𝝉s for the viscoelastic stress 𝝉s,ve,𝑖
for the ease of notation.

To relate interfacial stress to deformation (rate) for the generalised
Maxwell element, we make use of the interface kinematics as described
in Section 2. A constitutive equation for the plastic surface rate-of-
deformation tensor 𝑫s,p, a measure for the deformation rate of the
dashpot, is required to solve Eq. (46) for 𝑩s,e and Eq. (49) for 𝑩−1

s,e,
which are measures for the elastic deformation of the spring. Hence,
these tensors can be considered as structural variables. Furthermore,
a constitutive relation between the interfacial stress tensor 𝝉s and the
elastic deformation is needed. This will be the subject of the next
sections.

3.2. General equations

For the constitutive equation for the plastic interfacial rate-of-
deformation tensor 𝑫s,p, we assume that in the Maxwell element,
plastic deformation (of the dashpot) is driven by interfacial stress (in
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the spring), see also [30–34] for the case of bulk. For 𝝉s we use
interfacial equivalents of hyperelastic solid models similar to the Neo-
Hookean model for bulk, which are expressed in terms of powers of the
elastic part of the interfacial Finger tensor, 𝑩s,e, and invariants. To keep
the mathematical formulation of our subset of models more general, the
constitutive equation for 𝑫s,p will also be expressed in terms of powers
f 𝑩s,e and its principal invariants

1(𝑩s,e) = tr(𝑩s,e), 𝐽2(𝑩s,e) =
1
2 (tr(𝑩s,e)2 − tr(𝑩2

s,e)). (53)

Note that 𝐽2(𝑩s,e) = 𝐽 2
s,e, see Eq. (23), which also holds for the elastic

part of the deformation. In the following, we will write 𝐽1 and 𝐽2 for
the invariants of 𝑩s,e for the ease of notation. However, for an arbitrary
other tensor 𝑨s we will use the notation 𝐽1(𝑨s) and 𝐽2(𝑨s). The Cayley–
Hamilton theorem applied to 𝑩s,e, which is a rank-2 interfacial tensor
with determinant 𝐽3(𝑩s,e) = det(𝑩s,e) = 0, after multiplication with 𝑩−1

s,e,
reduces to

𝑩2
s,e − 𝐽1𝑩s,e + 𝐽2𝑰 s = 𝟎, (54)

showing that two subsequent powers of 𝑩s,e, e.g. the pair 𝑩s,e and
𝑰 s, or 𝑰 s and 𝑩−1

s,e, suffice for calculating any other power of 𝑩s,e. To
distinguish between plastic deformation of the interface at constant
shape but changing surface area, and at constant surface area but
changing shape, the tensor 𝑫s,p can be uniquely split as

𝑫s,p = 𝑫h
s,p +𝑫d

s,p, (55)

with hydrostatic part 𝑫h
s,p = 1

2 tr(𝑫s,p)𝑰 s and deviatoric part 𝑫d
s,p =

𝑫s,p − 𝑫h
s,p. Using Eq. (54), 𝑫s,p can in general be expressed in terms

of 𝑰 s and 𝑩s,e and invariants as

𝑫h
s,p = 1

2𝜆D(𝐽1, 𝐽2, 𝐽s)
𝑰 s, 𝑫d

s,p = 1
2𝜆S(𝐽1, 𝐽2, 𝐽s)

�̄�d
s,e, (56)

ith �̄�d
s,e = �̄�s,e − 1

2𝐽1(�̄�s,e)𝑰 s the deviatoric part of �̄�s,e. The tensor
d
s,p is expressed for later convenience in terms of �̄�d

s,e, with �̄�s,e the
isochoric part of 𝑩s,e, i.e. �̄�s,e = (1∕𝐽s,e)𝑩s,e so that dets(�̄�s,e) = 1.
The coefficients 𝜆D and 𝜆S are the interfacial dilatational and shear
relaxation times, respectively, which are functions of the invariants of
𝑩s,e and of 𝐽s; the dependence on 𝐽s will be explained below. Later in
this paper it will be shown why 𝜆D and 𝜆S are called relaxation times for
dilatation and shear, respectively. For practical use, however, specific
choices for the relaxation speeds 1∕𝜆D and 1∕𝜆S will be presented.
qs. (46) or (47) and (56) now form a closed set of equations in
erms of the internal deformation variable or structural variable 𝑩s,e,

the relative change in surface area 𝐽s, and the external deformation-
rate tensor 𝑳s. External/internal variable here means macroscopically
observable/unobservable quantity, respectively. For a closed form of
Eq. (49) or (50), it would be more convenient to express 𝑫s,p in terms
of 𝑰 s and 𝑩−1

s,e and invariants thereof. However, we will not use that in
this paper.

In addition, a constitutive equation for the interfacial stress 𝝉s is
required. To this end, we assume that the stress in the Maxwell element
(see Fig. 3) results from the deformation of the elastic spring, for
which the structural variables 𝑩s,e and 𝑩−1

s,e are measures. Therefore,
we will use hyperelastic interface constitutive equations for 𝝉s that
are defined in terms of the Helmholtz free energy per unit area in
the current configuration, 𝜓s. For isotropic interface materials, 𝜓s is
in general a function of the invariants of 𝑩s,e (or of 𝑩−1

s,e, which can be
obtained from those of 𝑩s,e), and of 𝐽s to describe the change in the
amount of interfacial area upon deformation. The latter is included as
an independent variable, since it cannot be obtained from the surface
determinant of 𝑩s,e, because generally 𝑫h

s,p ≠ 𝟎 [13,35], and therefore
𝐽s,e ≠ 𝐽s (see Eqs. (31) and (44)). Including 𝐽s as a separate variable
would not have been required if either the total interfacial Finger tensor
𝑩s (or its inverse 𝑩−1

s ) was used to describe the deformation [35], or
if 𝑩s,e (or 𝑩−1

s,e) was used while plastic deformation was incompressible
(𝑫h = 𝟎) [13], since 𝐽 could then be obtained indirectly based on
7

s,p s
these quantities. The Helmholtz free energy area density 𝜓s can now
be written as 𝜓s = 𝜓s(𝐽1, 𝐽2, 𝐽s), where 𝐽1 and 𝐽2 are the principal
invariants of 𝑩s,e (see Eq. (53)). Using nonequilibrium thermodynamics
arguments, it can be shown that the following expression for the inter-
facial stress holds (see Appendix B.6 for the derivation) [29,36–38]:

𝝉s =
𝜕�̂�s
𝜕𝐽s

𝑰 s + 𝝉s,c, (57)

with 𝝉s,c given by

𝝉s,c =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
𝐽s

𝑩s,e ⋅
𝜕�̂�s
𝜕𝑩s,e

, if 𝑩s,e is the structural variable

of choice with Eq. (47),

− 2
𝐽s

𝑩−1
s,e ⋅

𝜕�̂�s

𝜕𝑩−1
s,e
, if 𝑩−1

s,e is the structural variable

of choice with Eq. (50),

(58)

where �̂�s = 𝐽s𝜓s is the interfacial Helmholtz free energy density per
unit area in the reference configuration. Note that the expressions for
𝝉s,c in Eq. (58) are equivalent.1 About Eq. (58), it is particularly pointed
out that 𝝉s,c contains the prefactor 1∕𝐽s, rather than 1∕𝐽s,e, which is in
analogy to the treatment for 3D bulk materials (e.g., see [13]). How-
ever, in 3D bulk materials, one typically assumes that the viscoplastic
deformation is incompressible, which leads to 𝐽s,e = 𝐽s, and so this
subtlety is irrelevant for all practical purposes. In contrast, viscoplastic
deformation of interfaces may not be assumed to be incompressible,
and therefore attention must be paid at not taking 𝐽s and 𝐽s,e equivalent
to each other.

The interfacial stress tensor in Eq. (57) can be rewritten using the
chain rule for differentiation, 𝜕𝐽1∕𝜕𝑩s,e = 𝑰 s and 𝜕𝐽2∕𝜕𝑩s,e = 𝐽2𝑩−1

s,e,
and Eqs. (53)–(54), as

𝝉s =
𝜕�̂�s
𝜕𝐽s

𝑰 s +
2
𝐽s

𝑩s,e ⋅
𝜕�̂�s
𝜕𝑩s,e

=
𝜕�̂�s
𝜕𝐽s

𝑰 s +
2
𝐽s

𝑩s,e ⋅
(

𝜕�̂�s
𝜕𝐽1

𝜕𝐽1
𝜕𝑩s,e

+
𝜕�̂�s
𝜕𝐽2

𝜕𝐽2
𝜕𝑩s,e

)

= 𝑎D(𝐽1, 𝐽2, 𝐽s)𝑰 s + 𝑎S(𝐽1, 𝐽2, 𝐽s)�̄�d
s,e,

(59)

with 𝑎D and 𝑎S two functions, and where we choose to express the
second term in 𝝉s in terms of �̄�d

s,e for later convenience. Hence, 𝝉s can
be expressed in terms of powers of 𝑩s,e and its invariants (see Eqs. (53)–
(54)), and in terms of 𝐽s. Eq. (59) is the constitutive equation for the
stress in the Maxwell element. Eq. (59) can also be used to describe
the stress of a general interfacial solid that behaves purely elastically,
by replacing 𝑩s,e by 𝑩s and deleting the (𝜕�̂�s∕𝜕𝐽s)-contribution (to
avoid double-counting). In the following, we limit ourselves to models
for which 𝜓s (and hence also 𝝉s) is proportional to 1∕𝐽s (e.g. rubber
elasticity) and hence �̂�s is independent of 𝐽s. This means that the stress
tensor given in Eq. (57) reduces to 𝝉s,c from Eq. (58): 𝝉s = 𝝉s,c; in
general, however, additional isotropic terms would need to be included
in 𝝉s [36], as can be seen in the first term of Eq. (57).

The thermodynamic consistency of our framework is proven in
Appendix B.6 by calculating, beyond the expression for the interfacial
stress tensor in Eqs. (57)–(58), the interfacial entropy-production rate
for the irreversible dynamics. This yields the following condition on the
relation between 𝝉s,c and 𝑫s,p to be fulfilled [29,36]:

𝝉s,c ∶ 𝑫s,p ≥ 0, (60)

1 This can be shown by writing 𝝉s,c = (2∕𝐽s)𝑩s,e ⋅ 𝜕�̂�s∕𝜕𝑩−1
s,e ∶ 𝜕𝑩−1

s,e∕𝜕𝑩s,e,
pplying the chain rule for differentiation, and then substituting the expression
or 𝜕𝑩−1

s,e∕𝜕𝑩s,e obtained by applying the product rule for differentiation to
(𝑩−1

s,e ⋅ 𝑩s,e)∕𝜕𝑩s,e = 𝜕𝑰 s∕𝜕𝑩s,e = 𝟎. The latter is valid since 𝑩s,e is a tensor
tangential to the interface in the current configuration, see Eqs. (25)–(26) and
(45).
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i.e., only the second term in the stress Eq. (57) enters in this condition,
see Appendix B.6.

The fully-coupled closed set of equations for the generalised interfa-
cial Maxwell model now reads (see Eqs. (31), (46), (55)–(56) and (59))

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�̇�s,e = (𝑳s −𝑫s,p) ⋅ 𝑩s,e + 𝑩s,e ⋅ (𝑳s −𝑫s,p)T,
�̇�s
𝐽s

= tr(𝑫s),

𝑫s,p = 𝑫h
s,p +𝑫d

s,p; 𝑫h
s,p = 1

2𝜆D(𝐽1, 𝐽2, 𝐽s)
𝑰 s,

𝑫d
s,p = 1

2𝜆S(𝐽1, 𝐽2, 𝐽s)
�̄�d

s,e,

𝝉s = 𝑎D(𝐽1, 𝐽2, 𝐽s)𝑰 s + 𝑎S(𝐽1, 𝐽2, 𝐽s)�̄�d
s,e,

(61)

where the stress tensor is related to the Helmholtz free energy per
unit area, as shown by the first relation in Eq. (59). In the next
sections, specific constitutive equations for 𝑫s,p and 𝝉s are suggested.
Note, that the relative change in interfacial surface area 𝐽s must in
general be included as an additional independent variable, and that
for thermodynamic admissibility also the condition in Eq. (60) must
be fulfilled (see Appendix B.6). As explained in this section, in the
following we will restrict our attention to models for which 𝝉s = 𝝉s,c.

3.3. Viscoelastic models

In this section, interfacial equivalents of some well-known non-
linear viscoelastic bulk fluid models, namely the Upper-Convected
Maxwell (UCM), Lower-Convected Maxwell (LCM) and Giesekus mod-
els, are presented. The interfacial UCM and LCM models are quasi-
linear viscoelastic models, which we express in a Lodge-type integral
for 𝝉s, with an integrand consisting of an exponential memory func-
tion to account for stress relaxation using a single relaxation time,
multiplied by finite interfacial strain tensors, such as 𝑩s, and summed
(integrated) over all past times. For the interfacial UCM and LCM
models, in contrast to Eq. (61), we start by expressing the interfacial
stress tensor 𝝉s in terms of the total interfacial Finger tensor 𝑩s and
rate-of-deformation tensor 𝑫s, rather than their elastic and plastic
parts 𝑩s,e and 𝑫s,p, respectively. Only after that, the connection with
our framework of non-linear viscoelastic interface models, given by
Eq. (61), will be made by specifying 𝑫s,p and 𝝉s in terms of 𝑩s,e.

3.3.1. Upper-Convected Maxwell
To derive an interfacial equivalent of the Upper-Convected Maxwell

(UCM) differential model for bulk fluids, we start from the Lodge model
for interfaces given by (see [39])

𝝉s = ∫

𝑡

−∞

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(𝑩s − 𝑰 s) 𝑑𝑡′, (62)

here 𝝉s is the extra interfacial stress tensor, 𝐺 and 𝜆 are the constant
nterfacial shear modulus and relaxation time, respectively, and 𝑩s is
he interfacial Finger tensor at current time 𝑡 with respect to reference
ime 𝑡′, see Eq. (21), and 𝑰 s is a function of 𝑡. Using 𝑩s − 𝑰 s as the
train tensor in Eq. (62) ensures that 𝝉s is tangential to the interface at
ll times 𝑡, see Eqs. (11) and (21). Differentiating Eq. (62) with respect
o time 𝑡 using the Leibniz integral rule yields

̇ s =
𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(𝑩s − 𝑰 s)
|

|

|

|

|𝑡′=𝑡

+ ∫

𝑡

−∞

𝜕
𝜕𝑡

(

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(𝑩s − 𝑰 s)
)

𝑑𝑡′

= −1
𝜆
𝝉s + ∫

𝑡

−∞

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

𝜕
𝜕𝑡
(𝑩s − 𝑰 s)𝑑𝑡′

= −1 𝝉 +𝑳 ⋅ 𝝉 + 𝝉 ⋅𝑳T + 2𝐺𝑫 ,

(63)
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where we have used Eq. (21) and in the last step we have substituted
Eqs. (33), (62) and (B.9). Eq. (63) can then also be written as (see
Eq. (35))

𝜆
∇
𝝉s + 𝝉s = 2𝜂𝑫s, (64)

with 𝜂 = 𝐺𝜆 the interfacial shear viscosity.
The interfacial UCM model can also be expressed in terms of a

differential equation for the interfacial conformation tensor 𝒄s, which
is defined by 𝝉s = 𝐺(𝒄s − 𝑰 s). The evolution equation for 𝒄s is obtained
by substituting 𝝉s = 𝐺(𝒄s−𝑰 s) into Eq. (64) using Eq. (36), which yields

∇
𝒄s = −1

𝜆
(𝒄s − 𝑰 s). (65)

Note that the evolution of 𝒄s is identical to that of 𝑩s,e if 𝑫s,p =
1∕(2𝜆)(𝑰 s − 𝑩−1

s,e): Eq. (65) is equivalent to Eqs. (47) and (55)–(56) if
1∕𝜆D = (2𝐽2 − 𝐽1)∕(2𝜆𝐽2) and 1∕𝜆S = 1∕(𝜆𝐽s,e) (see Eq. (53)), which
can be shown using Eq. (54). The expression for 𝝉s is obtained by
using the interfacial Helmholtz free energy density per unit area in the
current configuration 𝜓s = (𝐺∕2)(𝐽1(𝒄s) − ln(𝐽2(𝒄s)) − 2) and applying
Eq. (58), using the chain rule for differentiation, 𝜕(𝐽1(𝒄s))∕𝜕𝒄s = 𝑰 s and
𝜕(𝐽2(𝒄s))∕𝜕𝒄s = 𝐽2(𝒄s)𝒄−1s , and Eqs. (53)–(54); in accordance with the
comment further above, it is assumed that 𝐺 ∝ 1∕𝐽s. For the rate of
entropy production, or mechanical dissipation, to be non-negative for
the interfacial UCM model, one must have (see Eq. (60)) 𝝉s ∶ 𝑫s,p =
𝐺∕(2𝜆)(𝐽1(𝒄s) + 𝐽1(𝒄−1s ) − 4) ≥ 0, which indeed holds for any 𝒄s, as
shown for the bulk UCM model [28]. This proves the thermodynamic
consistency of the interfacial UCM model. Note that the expressions in
this paragraph are the interfacial equivalents of those for the bulk UCM
model, see [28].

3.3.2. Lower-Convected Maxwell
The interfacial differential Lower-Convected Maxwell (LCM) model

can, in analogy to bulk, be derived from its integral form by replacing
𝑩s − 𝑰 s in the interfacial Lodge model from Eq. (62) by another
interfacial strain tensor: 𝑰 s − 𝑩−1

s . This results in [39]

𝝉s = ∫

𝑡

−∞

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(

𝑰 s − 𝑩−1
s
)

𝑑𝑡′, (66)

where 𝑩−1
s is the inverse of the interfacial Finger tensor at current time

𝑡 with respect to reference time 𝑡′, see Eq. (24), and 𝑰 s is a function of
𝑡. Note that 𝑩−1

s is tangential to the interface, see Eq. (24). Taking the
derivative of Eq. (66) with respect to 𝑡 yields

�̇�s =
𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(

𝑰 s − 𝑩−1
s
)

|

|

|

|

|𝑡′=𝑡

+ ∫

𝑡

−∞

𝜕
𝜕𝑡

(

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

(

𝑰 s − 𝑩−1
s
)

)

𝑑𝑡′

= −1
𝜆
𝝉s + ∫

𝑡

−∞

𝐺
𝜆
exp

(

− 𝑡 − 𝑡
′

𝜆

)

𝜕
𝜕𝑡
(

𝑰 s − 𝑩−1
s
)

𝑑𝑡′

= −1
𝜆
𝝉s − (2𝑫s −𝑳s) ⋅ 𝝉s − 𝝉s ⋅ (2𝑫s −𝑳T

s ) + 2𝐺𝑫s,

(67)

where we have used Eqs. (21) and (24) and in the final step we have
substituted Eqs. (38) and (B.9). Now, Eq. (67) can also be written as
(see Eq. (40))

𝜆
∆
𝝉 s + 𝝉s = 2𝜂𝑫s, (68)

showing, together with Eq. (64), that we can obtain objective constitu-
tive equations for interfaces by using objective time derivatives in the
differential equation and finite strain tensors in the integral equation.

The interfacial LCM model can also be expressed in terms of a
differential equation for the inverse of the interfacial conformation
tensor, 𝒄−1s , which is defined by 𝝉s = 𝐺(𝑰 s−𝒄−1s ). The evolution equation
for 𝒄−1s is obtained by substituting 𝝉s = 𝐺(𝑰 s − 𝒄−1s ) into Eq. (68) using
Eq. (41), giving

(𝒄−1)∆ = 1 (𝑰 − 𝒄−1). (69)
s 𝜆 s s
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Note that the evolution of 𝒄−1s is identical to that of 𝑩−1
s,e if 𝑫s,p =

1∕(2𝜆)(𝑩s,e − 𝑰 s): Eq. (69) is equivalent to Eqs. (50) and (55)–(56)
if 1∕𝜆D = (𝐽1 − 2)∕2𝜆 and 1∕𝜆S = 𝐽s,e∕𝜆 (see Eq. (53)), which can
e shown using Eq. (54). The expression for 𝝉s is obtained using the

interfacial Helmholtz free energy density per unit area in the current
configuration 𝜓s = 𝐺∕2(𝐽1(𝒄−1s ) − ln(𝐽2(𝒄−1s )) − 2) and by applying
Eq. (58), using the chain rule for differentiation, 𝜕(𝐽1(𝒄−1s ))∕𝜕𝒄−1s = 𝑰 s
and 𝜕(𝐽2(𝒄−1s ))∕𝜕𝒄−1s = 𝐽2(𝒄−1s )𝒄s, and Eqs. (53)–(54); in accordance with
the comment further above, it is assumed that 𝐺 ∝ 1∕𝐽s. For the rate of
entropy production, or mechanical dissipation, to be non-negative for
the interfacial LCM model, one must have (see Eq. (60)) 𝝉s ∶ 𝑫s,p =
𝐺∕(2𝜆)(𝐽1(𝒄s) + 𝐽1(𝒄−1s ) − 4) ≥ 0, which indeed holds for any 𝒄−1s , as
shown for the interfacial UCM model in Section 3.3.1. This proves the
thermodynamic consistency of the interfacial LCM model. Note that the
expressions in this paragraph are the interfacial equivalents of those for
the bulk LCM model, see [40].

3.3.3. Surface upper-convected Maxwell model from the literature
In addition to the interfacial UCM and LCM models presented in

Sections 3.3.1–3.3.2, we have also tried to derive the surface upper-
convected Maxwell (SUCM) model often encountered in the literature,
see [11,15], starting from a similar Lodge-type integral as for UCM and
LCM. The SUCM model is often written as two separate differential
equations for the isotropic and deviatoric parts of the interfacial stress,
with separate relaxation times and viscosities for dilatational and shear,
respectively. As an effort to derive a single differential equation for the
total interfacial stress tensor starting from a Lodge-type integral, we
write

𝝉s = ∫

𝑡

−∞
[𝑐D(𝑡′, 𝑡)(tr(𝑩s)∕2)𝑰 s + 𝑐S(𝑡′, 𝑡)𝑩d

s ]𝑑𝑡
′, (70)

where 𝑐D(𝑡′, 𝑡) and 𝑐S(𝑡′, 𝑡) are memory functions for dilatation and
shear, respectively. However, we were unfortunately not able to dif-
ferentiate Eq. (70) with respect to time 𝑡 and rewrite the result as
a differential equation with isotropic and deviatoric parts of 𝝉s. This
formulation of the SUCM model is often presented in the literature,
see [11,15].

3.3.4. Giesekus model
The interfacial Giesekus model in the conformation-tensor formula-

tion, with the interfacial conformation tensor defined by 𝝉s = 𝐺(𝒄s−𝑰 s),
is written down by adding a quadratic term to account for anisotropic
mobility to Eq. (65) for the interfacial UCM model. The evolution
equation for 𝒄s then becomes (see [28])

𝜆
∇
𝒄s + (𝒄s − 𝑰 s) + 𝛼(𝒄s − 𝑰 s)2 = 𝟎, (71)

with 𝛼 a parameter that determines the magnitude of the anisotropic
drag. It can be shown that the evolution of 𝒄s in Eq. (71) is equivalent
to that of 𝑩s,e if 𝑫s,p = 1∕(2𝜆)(𝛼𝑩s,e + (1 − 2𝛼)𝑰 s − (1 − 𝛼)𝑩−1

s,e): Eq. (71)
is equivalent to Eqs. (47) and (55)–(56) if 1∕𝜆D = [−(1 − 𝛼)𝐽1∕(2𝐽2) +
(𝛼∕2)𝐽1 + (1 − 2𝛼)]∕𝜆 and 1∕𝜆S = 𝐽s,e[(1 − 𝛼)∕𝐽2 + 𝛼]∕𝜆 (see Eq. (53)),
which can be shown using Eq. (54). The stress-tensor expression for
the interfacial Giesekus model is the same as that for the interfacial
UCM model, since the expression for the Helmholtz free energy area
density 𝜓s is the same for these models, see Section 3.3.1. For the rate
of entropy production, or mechanical dissipation, to be non-negative
for the Giesekus model, one must have (see Eq. (60)) 𝝉s ∶ 𝑫s,p =
𝐺∕(2𝜆)[(1 − 𝛼)(𝐽1(𝒄s) + 𝐽1(𝒄−1s ) − 4) + 𝛼(𝒄s ∶ 𝒄s − 2𝐽1(𝒄s) + 2)] ≥ 0 for
0 ≤ 𝛼 < 1, which indeed holds for any 𝒄s, as already shown for the bulk
Giesekus model [28]. This proves the thermodynamic consistency of the
interfacial Giesekus model. Note that the expressions in this paragraph
are the interfacial equivalents of those for the bulk Giesekus model,
9

see [28].
3.3.5. Summary
The interfacial upper- and lower-convected Maxwell (UCM and

LCM) models are derived by expressing the interfacial stress tensor
in a Lodge-type integral using finite strain tensors 𝑩s,e and 𝑩−1

s,e, re-
spectively. These models are re-formulated in terms of an interfacial
conformation-tensor 𝒄s; by adding a term that is quadratic in the
conformation tensor to the UCM equation, the interfacial Giesekus
model is obtained. These models can also be derived from their cor-
responding interfacial Helmholtz free energy area density in terms of
𝒄s (or its inverse in case of the LCM model), have a non-negative
entropy-production rate for relevant choices of material parameters,
and furthermore fit into our framework for non-linear viscoelastic inter-
face models. Note, that the models discussed in this section do not have
separate material parameters for dilatation and shear with separate
equations for the isotropic and deviatoric parts of the stress tensor. This
is in contrast with the surface UCM model often encountered in the
literature, which we were unfortunately not able to write in the form
of a Lodge-type integral for the total stress tensor.

4. Elastoviscoplastic interface model

Our framework for non-linear viscoelastic interfaces described in
Eq. (61) is used to model elastoviscoplastic behaviour of interfaces as
explained in Section 3. A specific constitutive equation for the inter-
facial stress tensor 𝝉s and for the plastic surface rate-of-deformation
tensor 𝑫s,p is chosen. This choice describes a generalised interfacial
Maxwell model with relaxation speeds for shear and dilatation that
depend on stress. For this non-linear viscoelastic model, the elastic
stress in the spring equals the viscous stress in the dashpot, see the
mechanical representation of the Maxwell element in Fig. 3. Hence,
plastic deformation (of the dashpot) is driven by interfacial stress (in
the spring). The viscoelastic interfacial stress in the Maxwell element
is obtained from the Helmholtz free energy area density based on
the Hütter–Tervoort model for hyperelastic solid interfaces [13,14].
As theirs is a hyperelastic interface model while we aim at modelling
interfacial elastoviscoplasticity, we choose the interfacial Helmholtz
free energy density per unit area in the reference configuration, �̂�s, as
follows:

̂ s =
𝐾
2
(ln(𝐽s,e))2 +

𝐺
2

tr(�̄�s,e − 𝑰 s), (72)

where 𝐾 and 𝐺 are the interfacial dilatational and shear moduli,
respectively, with 𝐾 ≥ 0 and 𝐺 ≥ 0. This expression for �̂�s is obtained
from the one in Pepicelli et al. [14] by replacing 𝑩s with 𝑩s,e. The
interfacial stress 𝝉s can then be derived using Eq. (58), the chain
rule for differentiation, 𝜕𝐽1∕𝜕𝑩s,e = 𝑰 s and 𝜕𝐽2∕𝜕𝑩s,e = 𝐽2𝑩−1

s,e, and
Eqs. (53)–(54), giving

𝝉s =
𝐾 ln(𝐽s,e)

𝐽s
𝑰 s +

𝐺
𝐽s

�̄�d
s,e. (73)

Other choices for �̂�s, and hence for 𝝉s, could also have been made.
An argument in favour of Eq. (73) is the following: Using 𝑩s,e instead
of 𝑩s in �̂�s means that there is no permanent network, and all of the
microstructure can relax (e.g. independent polymer coils that can be
distorted individually, but these coils are not connected to form a net-
work). Therefore, if such a system is continuously dilated, the distortion
of such individual elastic coils remains finite while at the same time
their area density decreases, and therefore the stress decreases. This
‘‘dilution’’ effect is accounted for by the factor 1∕𝐽s.

For specifying 𝑫s,p in Eq. (61), expressions for the relaxation speeds
are given by

1
𝜆D

= 1
𝜆ref,D

ln(𝐽s,e)
𝐽s

sinh(𝜏eq,D∕𝜏ref,D)
𝜏eq,D∕𝜏ref,D

,

1
𝜆S

= 1
𝜆ref,S

1
𝐽s

sinh(𝜏eq,S∕𝜏ref,S)
𝜏eq,S∕𝜏ref,S

, (74)
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which are based on an Eyring viscosity function [30–34] to account for
the gradual but rather sharp transition from a predominantly elastic
response at low stress levels to primarily viscous behaviour at high
stress levels. A motivation for why these are called relaxation speeds
for dilatation and shear, respectively, will be provided later in the
paper. In Eq. (74), 1∕𝜆ref,D and 1∕𝜆ref,S are relaxation speed constants
for interfacial dilatation and shear, respectively. The scalars 𝜏eq,D =

𝐽1(𝝉s)∕2 = 1
2 tr(𝝉s) and 𝜏eq,S =

√

−𝐽2(𝝉d
s ) are equivalent stress scalars,

and 𝜏ref,D and 𝜏ref,S are material constants with the units of stress. It can
be seen that for an interfacial stress tensor given by 𝝉s = 𝜎(𝒆𝑥𝑥 + 𝒆𝑦𝑦) +
𝜏(𝒆𝑥𝑦 + 𝒆𝑦𝑥), 𝜏eq,D = 𝜎 and 𝜏eq,S = 𝜏. In particular, it can be shown for
he representation in Eq. (73) that

eq,D =
𝐾 ln(𝐽s,e)

𝐽s
, 𝜏eq,S = 𝐺

𝐽s

√

−𝐽2(�̄�d
s,e). (75)

he rate of interfacial entropy-production, or the mechanical dis-
ipation, for the elastoviscoplastic interface model is non-negative
ince 𝝉s∶𝑫s,p = (𝐾∕𝜆ref,D)(ln(𝐽s,e)∕𝐽s)2 sinh(𝜏eq,D∕𝜏ref,D)∕(𝜏eq,D∕𝜏ref,D) +
1
2 (𝐺∕𝜆ref,S)(1∕𝐽s)2 sinh(𝜏eq,S∕𝜏ref,S)∕(𝜏eq,S∕𝜏ref,S)(�̄�d

s,e∶�̄�
d
s,e) ≥ 0 (see Eqs.

(60)–(61) and (73)–(74)). This shows that the specific choices for
𝝉s, 1∕𝜆D and 1∕𝜆S of Eqs. (73) and (74) guarantee thermodynamic
dmissibility if both 1∕𝜆ref,D ≥ 0 and 1∕𝜆ref,S ≥ 0. In the next section,
he elastoviscoplastic model for interfaces in Eqs. (61) and (73)–(74)
ill be evaluated for interfacial dilatational and shear flow.

In summary, the equations for our elastoviscoplastic interface model
howing a clear separation between dilatation and shear, become (see
lso the more general Eq. (61))

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̇�s,e = (𝑳s −𝑫s,p) ⋅ 𝑩s,e + 𝑩s,e ⋅ (𝑳s −𝑫s,p)T,
�̇�s
𝐽s

= tr(𝑫s),

𝑫s,p = 1
2𝜆ref,D

ln(𝐽s,e)
𝐽s

sinh(𝜏eq,D∕𝜏ref,D)
𝜏eq,D∕𝜏ref,D

𝑰 s

+ 1
2𝜆ref,S

1
𝐽s

sinh(𝜏eq,S∕𝜏ref,S)
𝜏eq,S∕𝜏ref,S

�̄�d
s,e,

𝝉s =
𝐾 ln(𝐽s,e)

𝐽s
𝑰 s +

𝐺
𝐽s

�̄�d
s,e.

(76)

The interfacial stress tensor 𝝉s is derived from the expression for
the interfacial Helmholtz free energy area density for a hyperelastic
interface, by replacing in that expression the interfacial Finger tensor
with its elastic part 𝑩s,e. Thermodynamic consistency is guaranteed for
relaxation time constants that satisfy 1∕𝜆ref,D ≥ 0 and 1∕𝜆ref,S ≥ 0, see
the text below Eq. (75).

5. Application to homogeneous flows

In order to examine whether our elastoviscoplastic model for in-
terfaces qualitatively describes the behaviour observed in the experi-
mental literature, see Section 1, model predictions have been examined
numerically. For this purpose, Eq. (76) is applied to the cases of
the homogeneous interfacial simple shear and dilatational flows. The
equations are integrated in time using a second-order explicit Runge–
Kutta time-discretisation scheme (Heun’s method) [41] using a time
step of 10−4𝜆ref,S for shear and 10−4𝜆ref,D for dilatation. The initial
condition 𝑩s,e(𝑡 = 0) = 𝑰 s,0 is used. Results of single-point calculations
are presented and discussed in the next sections.

5.1. Single-point calculations for simple shear

Focussing on shear first, the surface velocity gradient tensor for
this homogeneous flow is given by 𝑳s = �̇�𝒆𝑥𝒆𝑦, with �̇� the constant
shear rate and where 𝒆𝑥 is the velocity direction and 𝒆𝑦 is the gradient
direction, both tangential to the flat interface. Therefore, �̇�s = 0 since
10

tr(𝑫s) = 0 (see Eq. (31)), and 𝐽s = 1 for all times 𝑡, by virtue of the
initial condition 𝐽s(𝑡 = 0) = 1. Furthermore, it can be shown on the
basis of the dynamics of 𝐽s,e (see Eqs. (44), (55)–(56) and (74)) that
̇s,e∕𝐽s,e = (ln(𝐽s,e))⋅ = −1∕𝜆D ∝ − ln(𝐽s,e), which represents relaxation
owards ln(𝐽s,e) = 0, i.e., towards 𝐽s,e = 1; therefore, if one starts with
s,e(𝑡 = 0) = 𝑰 s, one will have 𝐽s,e = 1 for all times. As a consequence,
s = 𝝉d

s (see Eq. (73)), 1∕𝜆D = 0 (see Eq. (74)), 𝑫s,p = 𝑫d
s,p (see

qs. (55)–(56)), and 𝐽s,e = 𝐽s = 1 if the initial condition is 𝑩s,e(𝑡 = 0) =
s (see Eq. (44)). The elastoviscoplastic model for interfaces applied to
imple shear is then expressed as (see Eq. (76)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�s,e = (𝑳s −𝑫s,p) ⋅ 𝑩s,e + 𝑩s,e ⋅ (𝑳s −𝑫s,p)T,

𝑫s,p = 1
2𝜆ref,S

sinh(𝜏eq,S∕𝜏ref,S)
𝜏eq,S∕𝜏ref,S

𝑩d
s,e,

𝝉s = 𝐺𝑩d
s,e, 𝜏eq,S = 𝐺

√

−𝐽2(𝑩d
s,e).

(77)

By substituting 𝑫s,p and 1∕𝜆S into the equation for �̇�s,e, it can be easily
seen why 1∕𝜆S (1∕𝜆ref,S) is called the relaxation speed for shear (at zero
stress).

Making the equation for �̇�s,e in Eq. (77) dimensionless by scaling
time with 1∕�̇�, it can be seen that there are two dimensionless groups:
�̇�𝜆ref,S and 𝜏ref,S∕𝐺. These groups govern the entire evolution of 𝑩s,e,
or equivalently that of 𝝉s, for this flow. Fig. 4 shows the shear stress
𝜏 as a function of the shear strain �̇� 𝑡 for different values of �̇�𝜆ref,S
and 𝜏ref,S∕𝐺. In Fig. 4a, 𝜏ref,S∕𝐺 = 1 is chosen and �̇�𝜆ref,S is varied,
while in Fig. 4b �̇�𝜆ref,S = 10 is set and a range of 𝜏ref,S∕𝐺 values is
chosen. An elastic response is observed at small �̇� 𝑡, for which 𝜏 increases
approximately linearly with �̇� 𝑡. While 𝜏 is increasing, it is deviating
more and more from the elastic behaviour as relaxation occurs and
hence plastic flow sets in. An overshoot in 𝜏 follows for higher values of
�̇�𝜆ref,S and 𝜏ref,S∕𝐺; the lower the values of the dimensionless numbers,
the smaller the overshoot. Eventually, 𝜏 reaches a steady-state value.
This linear-elastic regime at smaller stresses with a transition at higher
stresses towards a plastic plateau directly or via strain softening, is in
qualitative agreement with interfacial shear rheometry results from the
literature, see e.g. [2–4]. The overshoot and subsequent strain softening
of the shear stress 𝜏 in Fig. 4 are related to the tensorial structure of
Eq. (77) as a result of our choice for 𝑫s,p. For the overshoot to occur it
is required (though not sufficient) that the non-shear components of 𝝉s,
or equivalently those of 𝑩s,e, are still evolving while for the shear stress
̇ = 0 at the maximum in 𝜏, see Eq. (77). The values of the shear stress
𝜏os and the shear strain 𝛾os at the overshoot are plotted as functions of a
wide range of both �̇�𝜆ref,S and 𝜏ref,S∕𝐺 in Fig. 5. In addition, Fig. 6 plots
the relative strength of the overshoot (𝜏os−𝜏∞)∕𝜏∞, with 𝜏∞ the steady-
state value of 𝜏, versus �̇�𝜆ref,S and 𝜏ref,S∕𝐺. In both Figs. 5–6, for the
given ranges of �̇�𝜆ref,S and 𝜏ref,S∕𝐺, only the region is plotted for which
(𝜏os−𝜏∞)∕𝜏∞ ≥ 10−3 holds true. This region has been projected onto the
𝜏os = 𝛾os = 0 planes of Fig. 5, indicated by the black-shaded areas. The
dependence of 𝜏os, 𝛾os and (𝜏os − 𝜏∞)∕𝜏∞ on �̇�𝜆ref,S and 𝜏ref,S∕𝐺 shown
in Figs. 5–6 is highly non linear, which becomes more pronounced at
higher values of 𝜏ref,S∕𝐺 and �̇�𝜆ref,S, respectively. It can also be seen
in the same figures that 𝜏os → 0, 𝛾os → 0 and (𝜏os − 𝜏∞)∕𝜏∞ → 0 if
𝜏ref,S∕𝐺 → 0, which means that the overshoot occurs at smaller values of
the shear strain �̇� 𝑡 and becomes less significant as 𝜏ref,S∕𝐺 is decreased
(see also Fig. 4b).

5.2. Single-point calculations for dilatation

For dilatation, the surface velocity gradient tensor is given by 𝑳s =
(�̇�∕2)(𝒆𝑥𝒆𝑥+𝒆𝑦𝒆𝑦), with constant dilatational rate �̇� and where 𝒆𝑥 and 𝒆𝑦
are perpendicular directions in the plane of the flat interface. Because of
isotropic deformation, the interfacial stress is isotropic and hence shear
stresses are not present. This implies that �̄�d

s,e = 𝟎 (see Eq. (73)) and
therefore 𝑫s,p = 𝑫h

s,p (see Eqs. (55)–(56)). Then, the evolution of 𝑩s,e
in Eq. (76) applied to dilatation reduces to Eq. (44) for the evolution of
𝐽 , since there is just interfacial surface area deformation. This gives
s,e
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Fig. 4. Shear stress 𝜏 as a function of the shear strain �̇� 𝑡 for 𝜏ref,S∕𝐺 = 1 and different values of �̇�𝜆ref,S (a), and for �̇�𝜆ref,S = 10 and different values of 𝜏ref,S∕𝐺 (b).
Fig. 5. Shear stress (a) and shear strain (b) at the overshoot as a function of the dimensionless numbers �̇�𝜆ref,S and 𝜏ref,S∕𝐺.
Fig. 6. Overshoot in shear stress relative to the steady-state shear stress for different
values of the dimensionless numbers �̇�𝜆ref,S and 𝜏ref,S∕𝐺.

the following elastoviscoplastic interface model applied to dilatation

(see Eq. (76)):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

�̇�s,e
𝐽s,e

= tr(𝑫s −𝑫s,p),

�̇�s
𝐽s

= tr(𝑫s),

𝑫s,p = 1
2𝜆ref,D

ln(𝐽s,e)
𝐽s

sinh(𝜏eq,D∕𝜏ref,D)
𝜏eq,D∕𝜏ref,D

𝑰 s,

𝝉s =
𝐾 ln(𝐽s,e)𝑰 s, 𝜏eq,D =

𝐾 ln(𝐽s,e) .

(78)
11

⎩
𝐽s 𝐽s
By substituting 𝑫s,p and 1∕𝜆D into �̇�s,e∕𝐽s,e it can be seen why 1∕𝜆D
(1∕𝜆ref,D) is called relaxation speed (constant) for dilatation. It is also
observed that initially the response is purely elastic, i.e. 𝑫s,p = 𝟎 since
ln(𝐽s,e) = 0 for the initial conditions 𝐽s,e(𝑡 = 0) = 𝐽s(𝑡 = 0) = 1.

Non-dimensionalising the equation for �̇�s,e∕𝐽s,e in Eq. (78) by scal-
ing time with 1∕�̇�, it can be seen that there are two dimensionless
groups: �̇�𝜆ref,D and 𝜏ref,D∕𝐾. However, the value of the dilatational rate
�̇� itself is also important as it governs the dynamics of 𝐽s appearing in
𝑫s,p and 𝝉s (see Eq. (78)). These dimensionless groups and �̇� govern
the evolution of the interfacial dilatational stress 𝜎 = 𝐾 ln(𝐽s,e)∕𝐽s (see
Eq. (78)) for this flow. The evolution of 𝜎 as a function of the Hencky
strain ln(𝐽s) = �̇�𝑡 is plotted in Fig. 7a for 𝜏ref,D∕𝐾 = 1 and three sets
of values for �̇�𝜆ref,D, and in Fig. 7b for �̇�𝜆ref,D = 0.2 and three sets of
values for 𝜏ref,D∕𝐾. The value of the relaxation-time constant is kept
constant at 𝜆ref,D = 1. Fig. 7a shows that at small �̇�𝑡, 𝜎 increases linearly
as a function of �̇�𝑡; upon further deformation, the slope of 𝜎 gradually
decreases and 𝜎 reaches a maximum. The larger the value of �̇�𝜆ref,D, the
larger the linear regime (in terms of �̇�𝑡), and the larger the stress and
strain at the maximum. Upon even further deformation, 𝜎 decreases
as a function of �̇�𝑡. Fig. 7a shows that this decrease in 𝜎 beyond the
maximum can be postponed (in terms of �̇�𝑡) by decreasing 𝜏ref,D∕𝐾.
Decreasing 𝜏ref,D∕𝐾 leads in turn to a lower stress and strain at the
maximum.

6. Discussion: comparison with the Eindhoven Glassy Polymer
model

The elastoviscoplastic interface model introduced in this paper can
be considered as the interfacial equivalent of the Eindhoven Glassy
Polymer (EGP) model [30–34]. The EGP model is a constitutive equa-
tion including yielding and the large-strain post-yield deformation of
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lassy-polymer bulk materials. It is not a yield-surface model but it
ses a strongly stress-dependent Eyring viscosity to mimic the transition
rom elastic to plastic behaviour. Plastic flow at yield is considered as
tress-induced rearrangements of microscopic entities. The difference
etween our model and the EGP model is that our model describes
eformation (rate) and stress of an interface material using interfacial
ensors of rank two, compared to bulk tensors of rank three with the
GP model for a bulk material. Therefore, the tensors 𝑩s,e and 𝝉s in
ur model have no components in the direction perpendicular to the
nterface, generally in contrast with the bulk Finger and stress tensors
n the 3D version of the EGP model. In addition, the 3D version of
he EGP model assumes incompressible plastic flow so that the volume
esponse is purely elastic, which is a valid assumption for bulk polymer
lasses. In contrast, our model does take into account changes in the
nterface surface area due to plastic deformation, by choosing 𝑫h

s,p ≠ 𝟎,
ince for interfaces this has been shown to be important [5–7,12]. In
omparing an interface model with a bulk model, furthermore note that
olume (in)compressibility of material adjacent to the boundary does
ot imply that the boundary itself is (in)compressible. If one assumes
lastic incompressibility of the interface (𝐽s = 𝐽s,e), the structure of
qs. (61) and (73)–(75) is very similar to that of the EGP model.
evertheless, the predictions are different if the models are applied to

he cases of simple shear and dilatation, for example, see Eqs. (77)–(78)
nd [30–34].

. Conclusions and recommendations

A constitutive framework has been developed to model the non-
inear viscoelastic behaviour of sharp interfaces, with applications to
uasi-linear viscoelasticity and elastoviscoplasticity. For this purpose,
he total deformation of the interface is multiplicatively split into
n elastic and a plastic part. The framework has been formulated in
erms of an evolution equation for the internal deformation variable,
he elastic part of the interfacial Finger tensor, as a function of the
xternal deformation-rate variable, the surface velocity gradient tensor.
onstitutive equations have been provided for the plastic surface rate-
f-deformation tensor and the extra interfacial stress tensor in terms
f the elastic part of the interfacial Finger tensor and the relative
hange in interfacial area. This framework, with a proper description of
nterface kinematics and stress, is used for modelling isotropic elasto-
iscoplasticity of interfaces, i.e. the interface shows behaviour between
hat of a fluid and a solid. The model has a clear separation between
nterfacial dilatation and shear, which is also useful for experiments.
or this purpose, separate Eyring relaxation times for dilatation and
hear that depend on stress are chosen to describe the relaxation of
lastic deformation. The approach is similar to one that has already
een successful in describing the mechanical behaviour of bulk poly-
12

er glasses. Our interface material model is a generalisation of the l
indhoven Glassy Polymer (EGP) model for bulk polymer glasses, by
lso taking into account the effect of plastic surface-area changes of
he interface. The thermodynamic admissibility of our model has been
roven by showing that the entropy-production rate is non-negative for
on-negative relaxation time constants.

Applied to the case of simple shear flow, our elastoviscoplastic
nterface model has been shown to qualitatively describe the behaviour
bserved in the experimental literature, see e.g. [2–4]. These exper-
ments involve standard interfacial rheometric tests at flat air–water
nd oil–water interfaces, which are typically covered with surface-
ctive particles, asphaltene molecules, surfactant molecules, proteins,
olymers and lipids. For qualitative agreement with experiments we
efer to our model prediction of a primarily elastic response at small
eformations, followed by a gradual but rather sharp transition to
ainly plastic flow as the stress increases. By qualitative agreement
e furthermore mean that at the yield point, the shear stress reaches
maximum; upon further deformation it decreases again until it finds
plateau. It has been shown how (the relative strength of) the shear

tress and the shear strain at the overshoot are controlled by varying
he dimensionless groups of parameters in the model. Furthermore, the
odel predicts a non-zero first normal-stress difference in shear (not

hown in this paper). In interfacial dilatational flow, elastoviscoplastic
ehaviour with a stress maximum is predicted, followed by a decreasing
tress without a plateau upon deformation beyond the strain at the
tress maximum. The linear elastic regime, the stress and strain at
he maximum, and the rate at which the stress decreases after the
aximum, have been shown to be controlled by the parameters in the
odel.

If so desired, strain softening in dilatation can be finetuned by
ncluding a softening parameter in the Eyring relaxation-time functions
see [31–33] for the case of a 3D bulk description). Another extension
o the model presented in this paper is incorporating post-yield strain
ardening effects with a spring linked in parallel with the Maxwell
lement, by adding a Neo-Hookean hardening stress tensor to the
nterfacial stress [31–33]. An increase in interfacial shear stress after
ielding has been observed for e.g. proteins at an air–water interface.
his has been attributed to the build-up of a transient network during
hearing [4]. Strain hardening has also been observed for polymer
ayers at an air–water interface in interfacial uniaxial extension [6], and
n dilatation [7]. Developing interfacial rheometers that can measure
irst normal stress differences (which to the best of our knowledge are
ot yet discussed in the literature) would be useful for model selection.
urther research steps include implementing this model framework
n our validated in-house finite-element code [18] and applying this
o a relevant complex flow problem to investigate the influence of
nterfacial rheology, e.g. interfacial plasticity, on the behaviour on

arger scales.
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Table A.1
List of interfacial tensors appearing in this paper, stating which of their two sides have
out-of-plane directions with respect to the tangent space of the interface in the current
configuration.

Name Symbol Out-of-plane directions
in current configuration

Interfacial (extra) stress tensor 𝝉s No
Surface unit tensor 𝑰 s No
Surface deformation gradient tensor 𝑭 s Right
Elastic part of surface deformation gradient tensor 𝑭 s,e Right
Plastic part of surface deformation gradient tensor 𝑭 s,p Both
Interfacial Finger tensor 𝑩s No
Elastic part of interfacial Finger tensor 𝑩s,e No
Interfacial left-stretch tensor 𝑽 s No
Rotation tensor 𝑹s Right
Surface velocity gradient tensor 𝑳s Left
Plastic part of surface velocity gradient tensor 𝑳s,p No
Surface rate-of-deformation tensor 𝑫s No
Plastic part of surface rate-of-deformation tensor 𝑫s,p No
Plastic part of surface spin tensor 𝜴s,p No
Interfacial conformation tensor 𝒄s No
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Appendix A. Table of interfacial tensors

See Table A.1.

Appendix B. Auxiliary calculations for derivations

B.1. Surface determinant in terms of interfacial stretch ratios

The spectral form of 𝑩s is given by

s = 𝜆2𝑖 𝒆s,𝑖𝒆s,𝑖, (B.1)

ith 𝜆𝑖, 𝑖 = 1, 2, the principal interfacial strain ratios and 𝒆s,𝑖, 𝑖 = 1, 2,
re the principal interfacial strain directions in the current configura-
ion, which are of unit length. Note that 𝑩s additionally has a zero
igenvalue with an eigenvector perpendicular to the interface. The
eft-polar decomposition of 𝑭 s reads [21]

s = 𝑽 s ⋅𝑹s = 𝜆𝑖𝒆s,𝑖𝒆s,𝑖,0, (B.2)

here (see Eq. (B.1))

s =
√

𝑩s = 𝜆𝑖𝒆s,𝑖𝒆s,𝑖 (B.3)

s the interfacial left stretch tensor. The tensor 𝑹s = 𝑽 −1
s ⋅ 𝑭 s, with

−1
s the Moore–Penrose inverse [22,23] of 𝑽 s, is a rotation tensor

(dets(𝑹s) = 1), and 𝒆s,𝑖,0, 𝑖 = 1, 2, are the dyad of vectors corresponding
o 𝒆s,𝑖 but in the reference configuration. The tensor 𝑹s can be expressed
s (see Eqs. (B.2)–(B.3))

s = 𝒆s,𝑖𝒆s,𝑖,0, (B.4)

from which it becomes clear that, similar to 𝑭 s, the directions on its
13

left- and right-hand side are tangential to the interface in the current
and reference configuration, respectively. Using Eqs. (16) and (B.2)–
(B.3) and dets(𝑨s ⋅𝑩s) = dets(𝑨s)dets(𝑩s) for interfacial tensors [21], it
can be shown that

𝐽s = dets(𝑭 s) = dets(𝑽 s ⋅𝑹s) = dets(𝑽 s)dets(𝑹s) = dets(𝑽 s) = 𝜆1𝜆2.

(B.5)

B.2. Time derivative of the (dual) base vectors and (dual) metric matrices

The time derivative of the base vectors 𝒈𝑖 is given by

�̇�𝑖 =
(

𝜕𝒙
𝜕𝜉𝑖

)⋅
= 𝜕𝒖
𝜕𝜉𝑖

= 𝜕𝒖
𝜕𝜉𝑗

𝒈𝑗 ⋅ 𝒈𝑖 = (𝛁s𝒖)T ⋅ 𝒈𝑖 = 𝑳s ⋅ 𝒈𝑖, (B.6)

where we have used Eqs. (2), (3) and (12).
The time derivative of the metric matrix 𝑔𝑖𝑗 is expressed as

̇ 𝑖𝑗 = −𝑔𝑖𝑘�̇�𝑘𝑚𝑔𝑚𝑗

= −𝑔𝑖𝑘(�̇�𝑘 ⋅ 𝒈𝑚 + 𝒈𝑘 ⋅ �̇�𝑚)𝑔𝑚𝑗

= −𝑔𝑖𝑘
(

(𝑳s ⋅ 𝒈𝑘) ⋅ 𝒈𝑚 + 𝒈𝑘 ⋅ (𝑳s ⋅ 𝒈𝑚)
)

𝑔𝑚𝑗

= −𝒈𝑖 ⋅ (𝑳s +𝑳T
s ) ⋅ 𝒈

𝑗

= −𝒈𝑖 ⋅ 𝑰 s ⋅ (𝑳s +𝑳T
s ) ⋅ 𝑰 s ⋅ 𝒈𝑗

= −𝒈𝑖 ⋅ 2𝑫s ⋅ 𝒈𝑗 ,

(B.7)

here we have substituted Eqs. (5), (6) and (B.6), applied the product
ule for differentiation, and applied �̇� = −𝑀 ̇(𝑀−1)𝑀 for any matrix

of which the inverse exists, to the matrix 𝑔𝑖𝑗 (see Eq. (8)).
The time derivative of the dual base vectors 𝒈𝑖 reads

̇ 𝑖 = (𝑔𝑖𝑗𝒈𝑗 )⋅

= �̇�𝑖𝑗𝒈𝑗 + 𝑔𝑖𝑗 �̇�𝑗
= −𝒈𝑖 ⋅ 2𝑫s ⋅ 𝒈𝑗𝒈𝑗 + 𝑔𝑖𝑗𝑳s ⋅ 𝒈𝑗
= −𝒈𝑖 ⋅ 2𝑫s ⋅ 𝑰 s +𝑳s ⋅ 𝒈𝑖

= (𝑳s − 2𝑫s) ⋅ 𝒈𝑖,

(B.8)

n which we have used the product rule for differentiation and have
ubstituted Eqs. (5), (11), (B.6) and (B.7).

.3. Time derivative of the surface unit tensor

The evolution of 𝑰 s is derived by differentiating the third expression
or 𝑰 s in Eq. (11) with respect to time:

̇ s = (𝑔𝑖𝑗𝒈𝑖𝒈𝑗 )⋅

= �̇�𝑖𝑗𝒈𝑖𝒈𝑗 + 𝑔𝑖𝑗 �̇�𝑖𝒈𝑗 + 𝑔𝑖𝑗𝒈𝑖�̇�𝑗
= −(𝒈𝑖 ⋅ 2𝑫s ⋅ 𝒈𝑗 )𝒈𝑖𝒈𝑗 +𝑳s ⋅ 𝑔

𝑖𝑗𝒈𝑖𝒈𝑗 + 𝑔𝑖𝑗𝒈𝑖𝒈𝑗 ⋅𝑳T
s

= −2𝑫s +𝑳s ⋅ 𝑰 s + 𝑰 s ⋅𝑳T
s

= −2𝑫s +𝑳s +𝑳T
s ,

(B.9)

here we have applied the product rule for differentiation and have
ubstituted Eqs. (10), (11), (B.6) and Eq. (B.7).

.4. Rate of relative interfacial surface area change

Using the chain rule for differentiation, the time rate of change of
s, defined in Eq. (23), can be written as

�̇�s
𝐽s

= 1
𝐽s

𝜕𝐽s
𝜕𝑭 s

∶ �̇� T
s = 𝑭 −T

s ∶ �̇� T
s = tr(�̇� s ⋅ 𝑭 −1

s ) = tr(𝑳s) = tr(𝑫s), (B.10)

y substituting 𝜕𝐽s∕𝜕𝑭 s = 𝐽s𝑭 −T
s and Eq. (28). The identity 𝜕𝐽s∕𝜕𝑭 s =

𝐽s𝑭 −T
s can be shown to hold by first taking the derivative of 𝐽 2

s =
𝑐∕2‖𝒈 × 𝒈 ‖

2 = 𝑐∕2
∑

([𝒈 × 𝒈 ] )2 = 𝑐∕2
∑

(𝜖 𝑔 𝑔 )2, with 𝑐 =
1 2 𝑖 1 2 𝑖 𝑖 𝑖𝑘𝑙 1,𝑘 2,𝑙
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2∕‖𝒈1,0 × 𝒈2,0‖2, as follows (see Eq. (15))

𝜕𝐽 2
s

𝜕𝐹s,𝑝𝑞
= 𝑐[𝒈1 × 𝒈2]𝑖

𝜕
𝜕𝐹s,𝑝𝑞

(𝜖𝑖𝑘𝑙𝑔1,𝑘𝑔2,𝑙)

= 𝑐[𝒈1 × 𝒈2]𝑖𝜖𝑖𝑘𝑙(𝛿𝑘𝑝𝑔1,0,𝑞𝑔2,𝑙 + 𝑔1,𝑘𝛿𝑝𝑙𝑔2,0,𝑞)

= 𝑐[𝒈1 × 𝒈2]𝑖(𝜖𝑖𝑝𝑙𝑔1,0,𝑞𝑔2,𝑙 + 𝜖𝑖𝑘𝑝𝑔1,𝑘𝑔2,0,𝑞)

= 𝑐[𝒈1 × 𝒈2]𝑖𝜖𝑖𝑝𝑘(𝑔1,0,𝑞𝑔2,𝑘 − 𝑔1,𝑘𝑔2,0,𝑞),

(B.11)

with 𝜖𝑖𝑗𝑘 the Levi-Civita symbol. Then, multiplication of Eq. (B.11) by
𝐹s,𝑟𝑞 gives (see Eq. (15))

𝜕𝐽 2
s

𝜕𝐹s,𝑝𝑞
𝐹s,𝑟𝑞 = 𝑐[𝒈1 × 𝒈2]𝑖𝜖𝑖𝑝𝑘(𝐹s,𝑟𝑞𝑔1,0,𝑞𝑔2,𝑘 − 𝑔1,𝑘𝐹s,𝑟𝑞𝑔2,0,𝑞)

= 𝑐[𝒈1 × 𝒈2]𝑖𝜖𝑖𝑝𝑘(𝑔1,𝑟𝑔2,𝑘 − 𝑔1,𝑘𝑔2,𝑟)

= 𝑐(−
[

[𝒈1 × 𝒈2] × 𝒈2
]

𝑝𝑔1,𝑟 +
[

[𝒈1 × 𝒈2] × 𝒈1
]

𝑝𝑔2,𝑟)

= 𝑐([(𝒈2 ⋅ 𝒈2)𝑔1,𝑝 − (𝒈1 ⋅ 𝒈2)𝑔2,𝑝]𝑔1,𝑟 + [(𝒈1 ⋅ 𝒈1)𝑔2,𝑝
− (𝒈1 ⋅ 𝒈2)𝑔1,𝑝]𝑔2,𝑟),

(B.12)

where the vector triple product is related to the inner product using
(𝒂× 𝒃) × 𝒄 = 𝒃(𝒂 ⋅ 𝒄) − 𝒂(𝒃 ⋅ 𝒄). In tensor notation, Eq. (B.12) is rewritten
as

𝑨s ≡
𝜕𝐽 2

s
𝜕𝑭 s

⋅𝑭 T
s = 𝑐([(𝒈2 ⋅𝒈2)𝒈1−(𝒈1 ⋅𝒈2)𝒈2]𝒈1+[(𝒈1 ⋅𝒈1)𝒈2−(𝒈1 ⋅𝒈2)𝒈1]𝒈2).

(B.13)

To show that 𝑨s is proportional to 𝑰 s, we compute (see Eq. (3))

𝑨s ⋅ 𝒈1 = 𝑐[(𝒈2 ⋅ 𝒈2)𝒈1 − (𝒈1 ⋅ 𝒈2)𝒈2]

= 𝑐[(𝒈2 ⋅ 𝒈2)𝒈1 − (𝒈1 ⋅ 𝒈2)𝒈2] ⋅ 𝒈𝑘𝒈𝑘

= 𝑐[(𝒈2 ⋅ 𝒈2)(𝒈1 ⋅ 𝒈1) − (𝒈1 ⋅ 𝒈2)2] ⋅ 𝒈1

= 𝑎𝒈1,

(B.14)

ith 𝑎 = 𝑐[(𝒈2 ⋅ 𝒈2)(𝒈1 ⋅ 𝒈1) − (𝒈1 ⋅ 𝒈2)2]. Similarly, it can be shown that
s ⋅ 𝒈2 = 𝑎𝒈2. So 𝑨s = 𝑎𝑰 s, since 𝑨s is tangential to the interface and it
aps any tangential vector by keeping its direction. Tensor 𝑨s can be

ewritten using the chain rule for differentiation as (see Eq. (B.13))

s = 2𝐽s
𝜕𝐽s
𝜕𝑭 s

⋅ 𝑭 T
s , (B.15)

from which it can be concluded that
𝜕𝐽s
𝜕𝑭 s

= 𝑎
2𝐽s

𝑭 −T
s = 𝐽s𝑭 −T

s , (B.16)

ince (see Eq. (16))

= 𝑐[(𝒈2 ⋅ 𝒈2)(𝒈1 ⋅ 𝒈1) − (𝒈1 ⋅ 𝒈2)2]

= 𝑐‖𝒈1 × 𝒈2‖2

= 2‖𝒈1,0 × 𝒈2,0‖−2‖𝒈1 × 𝒈2‖2

= 2𝐽 2
s .

(B.17)

.5. Evolution equation for the elastic part of the deformation

The split of the surface deformation gradient tensor 𝑭 s into an
lastic part 𝑭 s,e and a plastic part 𝑭 s,p reads (see Eq. (25))

𝑭 s = 𝑭 s,e ⋅ 𝑭 s,p. (B.18)

The tensors 𝑭 s,e and 𝑭 s,p are functions of the curvilinear coordinates
𝜉 and time 𝑡, just as 𝑭 s (see Eqs. (2)–(3) and (15)). These tensors and
their inverses operate in the following way:

𝑑𝒙 = 𝑭 s,e ⋅ 𝑑𝒙I, 𝑑𝒙I = 𝑭 s,p ⋅ 𝑑𝒙0,

𝑑𝒙I = 𝑭 −1
s,e ⋅ 𝑑𝒙, 𝑑𝒙0 = 𝑭 −1

s,p ⋅ 𝑑𝒙I,
(B.19)

where 𝑑𝒙0, 𝑑𝒙I and 𝑑𝒙 are infinitesimal interface line elements in
the reference, intermediate and current configurations, respectively,
see Fig. 2. Eq. (B.19) shows that 𝑭 maps infinitesimal interface
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s,p
line elements from the reference configuration onto the intermediate
configuration, which in their turn are mapped by 𝑭 s,e onto the cur-
rent configuration, point by point (constant

̃
𝜉). Since the mapping is

linear, and the reference and current configurations are in each point
𝜉 described by just two linearly independent vectors in 3D space, the
intermediate configuration can also in each point be described by a
plane in 3D space. However, note that the intermediate configuration
is not a tangent space, since it is not obtained by differentiation of a
parametrised curved surface. Still, we can introduce the base vectors
𝒈𝑖,I and dual base vectors 𝒈𝑖I for each point on the interface in the
intermediate configuration. This allows us to express the elastic and
plastic parts of the deformation in a similar manner as 𝑭 s (see Eqs. (15)
and (17)):

𝑭 s,e = 𝒈𝑖𝒈𝑖I, 𝑭 s,p = 𝒈𝑖,I𝒈𝑖0,

𝑭 −1
s,e = 𝒈𝑖,I𝒈𝑖, 𝑭 −1

s,p = 𝒈𝑖,0𝒈𝑖I.
(B.20)

This is convenient for deriving the evolution equation for 𝑭 s,e as
presented in Eq. (42). For example, the surface unit tensor in the
intermediate configuration 𝑰 s,I can now be expressed as (see also
Eqs. (18)–(19))

𝑰 s,I = 𝑭 −1
s,e ⋅ 𝑭 s,e = 𝑭 s,p ⋅ 𝑭 −1

s,p. (B.21)

Taking the time derivative of Eq. (B.18) at constant curvilinear
oordinates

̃
𝜉 (see Eq. (29)) using the product rule for differentiation,

ields

̇ s = �̇� s,e ⋅ 𝑭 s,p + 𝑭 s,e ⋅ �̇� s,p. (B.22)

ultiplying Eq. (B.22) by 𝑭 −1
s,p from the right, substituting Eqs. (28),

B.18) and (B.21), using that 𝑭 s,e ⋅ 𝑰 s,I = 𝑭 s,e and 𝑭 −1
s,p ⋅ 𝑰 s,I = 𝑭 −1

s,p (see
q. (B.20)), and rearranging terms, gives

̇ s,e ⋅ 𝑰 s,I = (𝑳s −𝑳s,p) ⋅ 𝑭 s,e, (B.23)

here we have defined the plastic surface velocity gradient tensor in
he current configuration 𝑳s,p = 𝑭 s,e ⋅ �̇� s,p ⋅ 𝑭 −1

s,p ⋅ 𝑭 −1
s,e.

.6. Thermodynamic consistency

In this appendix, we examine the implications of nonequilibrium
hermodynamics arguments on the constitutive relations for the inter-
acial stress tensor 𝝉s and for the plastic surface rate-of-deformation
ensor 𝑫s,p. To that end, we proceed along the procedure outlined
n [38] – as explained in the following – , but applied here to an
nterface. It is pointed out that the following steps are taken in order
o check the thermodynamic admissibility of interfacial constitutive
elations, and the interest is not in solving a concrete dynamic problem
n which the interface is coupled to the adjacent bulk; so doing gives us
he freedom to neglect the coupling to the adjacent bulk phases. This
mplies that the interface can be considered as a closed system, in both
thermal and mechanical sense.

We depart from specifying expressions for the total energy and
ntropy of the interface. Namely, these quantities are written as inte-
rals over the corresponding densities. For the further procedure, it is
eneficial to express the integrals in the reference state, since in that
ase the interfacial domain does not change in the course of time. In
articular, we write

s = ∫

(

𝜌s,0
𝑢2

2
+ 𝑒s

(

𝐽s, 𝑇s, �̃�s
)

)

𝑑𝐴0 , (B.24)

𝑆s = ∫ �̂�s
(

𝐽s, 𝑇s, �̃�s
)

𝑑𝐴0 , (B.25)

where 𝜌s,0 is the interfacial mass density in the reference configuration,
̂s and �̂�s denote the densities of internal energy and entropy per unit
area in the reference configuration, 𝑇s is the interfacial temperature,
and �̃�s is the internal interfacial deformation variable, which will be
specified later.
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Before proceeding with the application of the thermodynamics con-
ditions on the constitutive equations in the model, let us first examine
the time evolution of the energy. Using that the integration domain in
the reference state does not change in time, and by virtue of the chain
rule of differential calculus, one obtains

�̇�s = ∫

(

𝜌s,0𝒖 ⋅ �̇� +
𝜕𝑒s
𝜕𝐽s

�̇�s +
𝜕𝑒s
𝜕𝑇s

�̇�s +
𝜕𝑒s
𝜕�̃�s

∶ ̇̃𝒄s

)

𝑑𝐴0 . (B.26)

o proceed, we first examine particularly the first term on the r.h.s.
f Eq. (B.26). For a single component interface without adjacent bulk
hases (see comment above) and in the absence of body forces, the
omentum balance is given by 𝜌s�̇� = ∇s ⋅ 𝝉s [21], where the latter can

e expressed in the form 𝜌s,0�̇� = ∇s,0 ⋅
(

𝐽s𝑭 −1
s ⋅ 𝝉s

)

. With this, one obtains

𝜌s,0𝒖 ⋅ �̇�𝑑𝐴0 = ∫ 𝒖 ⋅
(

∇s,0 ⋅
(

𝐽s𝑭 −1
s ⋅ 𝝉s

))

𝑑𝐴0

= ∫
(

∇s,0 ⋅ 𝒏0
) (

𝒏0 ⋅ 𝑭 −1
s ⋅ 𝝉s ⋅ 𝒖

)

𝐽s𝑑𝐴0

−∫
(

∇s𝒖
)

∶ 𝝉s𝐽s𝑑𝐴0 , (B.27)

where 𝒏0 is the unit-normal vector on the interface in the reference
onfiguration. In the second equality, we have used the surface diver-
ence theorem [42] as well as Eq. (20); boundary terms are absent
f the integration domain is closed or under particular conditions on
ymmetry. The first term on the right-hand side of Eq. (B.27) vanishes
ince 𝒏0 is perpendicular to 𝑭 −1

s (see Eq. (17)). Inserting Eq. (B.27) into
Eq. (B.26), and using �̇�s = 𝐽s(∇s ⋅ 𝒖) (see Eq. (31)), one finds

�̇�s = ∫

(

−𝐽s𝝉s ∶
(

∇s𝒖
)

+ 𝐽s
𝜕𝑒s
𝜕𝐽s

(∇s ⋅ 𝒖) +
𝜕𝑒s
𝜕𝑇s

�̇�s +
𝜕𝑒s
𝜕�̃�s

∶ ̇̃𝒄s

)

𝑑𝐴0 .

(B.28)

With this auxiliary calculation, we have paved the way for implement-
ing the thermodynamic conditions in the elastoviscoplastic interface
constitutive model.

In the course of reversible (i.e. non-dissipative) dynamics, both the
total energy as well as the entropy are conserved, i.e., 𝑑𝐸s∕𝑑𝑡|rev =
0 and 𝑑𝑆s∕𝑑𝑡|rev = 0 [29,38]. Using Eq. (B.28) and an analogous
calculation for the entropy, these two conditions can be cast into the
following local conditions,

−𝐽s𝝉s ∶
(

∇s𝒖
)

+ 𝐽s
𝜕𝑒s
𝜕𝐽s

(∇s ⋅ 𝒖) +
𝜕𝑒s
𝜕𝑇s

�̇�s||rev +
𝜕𝑒s
𝜕�̃�s

∶ ̇̃𝒄s||rev = 0 , (B.29)

𝐽s
𝜕�̂�s
𝜕𝐽s

(∇s ⋅ 𝒖) +
𝜕�̂�s
𝜕𝑇s

�̇�s||rev +
𝜕�̂�s
𝜕�̃�s

∶ ̇̃𝒄s||rev = 0 . (B.30)

q. (B.30) can be solved for �̇�s|rev, which in turn is then inserted into
q. (B.29), from which the interfacial stress tensor can be determined
or given reversible dynamics of �̃�s. Particularly, performing these
alculations for upper-convected behaviour (Eqs. (46)–(47)) and lower-
onvected behaviour (Eqs. (49)–(50)) of �̃�s, respectively, one obtains,

s =
𝜕�̂�s
𝜕𝐽s

𝑰 s ±
2
𝐽s

�̃�s ⋅
𝜕�̂�s
𝜕�̃�s

, (B.31)

here the ‘‘+’’ is to be used if �̃�s = 𝑩s,e is upper-convected, and ‘‘−’’ is
to be used if �̃�s = 𝑩−1

s,e is lower-convected; �̂�s = 𝑒s − 𝑇s�̂�s denotes the
interfacial Helmholtz free energy density per unit area in the reference
configuration.

In the course of irreversible (i.e., dissipative) dynamics, the total
energy is conserved, i.e., 𝑑𝐸∕𝑑𝑡|irr = 0, while the entropy must not
decrease, i.e., 𝑑𝑆∕𝑑𝑡|irr ≥ 0. Also in this case, we employ the chain
rule in order to relate these conditions to the time evolution of the
quantities of interest. In the absence of irreversible contributions to
the momentum balance, i.e., in the absence of viscous stresses, one
can rewrite 𝑑𝐸∕𝑑𝑡|irr = 0 and 𝑑𝑆∕𝑑𝑡|irr ≥ 0 into the following local
conditions,
𝜕𝑒s �̇�s|| +

𝜕𝑒s ∶ ̇̃𝒄s|| = 0 , (B.32)
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𝜕𝑇s
irr 𝜕�̃�s

irr
𝜕�̂�s
𝜕𝑇s

�̇�s||irr +
𝜕�̂�s
𝜕�̃�s

∶ ̇̃𝒄s||irr ≥ 0 . (B.33)

Eq. (B.32) can be solved for �̇�s|irr, which in turn is then inserted into
Eq. (B.33), from which one obtains a condition on the plastic sur-
face rate-of-deformation tensor. Particularly, performing these calcu-
lations for the irreversible dynamics of �̃�s = 𝑩s,e with upper-convected
behaviour (Eqs. (46)–(47)) and of �̃�s = 𝑩−1

s,e with lower-convected
behaviour (Eqs. (49)–(50)), respectively, one obtains,

𝝉s,c ∶ 𝑫s,p ≥ 0 , (B.34)

for both cases, where 𝝉s,c denotes the second, conformation-dependent
contribution to the stress tensor on the right-hand side of Eq. (B.31).
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