
 

Generating video game puzzles through planning

Citation for published version (APA):
James, L. (2021). Generating video game puzzles through planning. Paper presented at UK PlanSIG 2021
(ONLINE). https://plansig2021.files.wordpress.com/2021/12/plansig_2021_paper_5.pdf

Document status and date:
Published: 20/12/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jul. 2024

https://plansig2021.files.wordpress.com/2021/12/plansig_2021_paper_5.pdf
https://research.tue.nl/en/publications/817a5d55-bcee-464d-a0c8-fe2e5590e384


Generating video game puzzles through planning

Lorenzo James
Industrial Engineering and Innovation Sciences, Information Systems

Eindhoven University of Technology
Eindhoven, The Netherlands

L.J.James@tue.nl

Abstract

Planning is an AI concept that is well-known in the video
game industry and has been applied to video games. A large
number of these applications have focused on using planning
to control the behaviours of agents within video games. How-
ever, there is comparatively little research about the applica-
tion of planning in video games for non-behavioural AI; that
is the focus of this work. Many video games consist of puz-
zles or puzzle elements that players have to solve. Puzzles
have a defined search space that can often be considered a
planning domain, and planners provide a useful tool for find-
ing a valid series of actions that can efficiently solve such
problems. The aim of this work is to explore whether it is
possible to create valid and challenge-appropriate puzzles for
players in video games through automated planning.

Introduction
The most common use of AI in video games is to to develop
behaviors for controlling reactive systems and agents, often
coded using techniques like Behavior Trees and Finite State
Machines (Yannakakis and Togelius, 2018). For the major-
ity of games these approaches are sufficient; however, as the
number of different behaviors for these agents increases, the
combination of possible interactions and behaviors can be-
come unmanageable using these techniques (Orkin, 2006).
Another downside to using reactive agents is that they can-
not be used to create long-term action plans and they have
limited to no coordination of interactions with other agents.
In contrast, automated planning allows agents to look fur-
ther ahead in time and implement appropriate strategies to
behaviors that apply to the current context. This makes it
possible to overcome some of the drawbacks of purely re-
active agents. For these reasons, there has been an increased
interest in using planning approaches within video games in
recent years (Neufeld et al., 2017).

Planners excel at finding a valid series of actions that ef-
ficiently achieve a goal-directed problem within a domain.
While a large amount of the published research and applica-
tions of planning within video games have focused on using
planning to control the behaviors of agents within games,
there is a lack of research when it when it comes to us-
ing planning for non-behavioral AI within games (Neufeld

et al., 2017). An interesting non-behavioral element within
video games that can be tackled by planning are puzzles,
because they are problems that can be solved by logically
piecing together elements (Schell, 2008). Information given
by the puzzle leaves clues to the player as to which ele-
ments need to be manipulated in order to solve the puzzle.
These elements can be manipulated by the actions permitted
within the game rules. Once the right combination of actions
is found, the actions need to be successfully performed by
the player to solve the puzzle. In this sense, problems that
are tackled by automated planning are similar to puzzles, as
solving these problems through planning also requires the
right sequence of actions to be found by the planner. Gen-
erating a puzzle within a specific game context is a puzzle
in itself. This is because puzzles exist within a game level
and the difficulty of levels generally increases as players
progress through the game. The increase in difficulty is of-
ten aligned with keeping players engaged by matching their
current skill with an appropriate level of difficulty (Schell,
2008).

This paper explores the possibility of using planning to
procedurally generate unique puzzles of an appropriate dif-
ficulty within video game levels. As part of this work, a sys-
tem prototype that generates puzzles within video games us-
ing a planner has been developed. In the remainder of the
paper, we will detail related work that describes planning for
non-behavioral AI in games and puzzle generation with non-
traditional AI concepts in video games. We will then outline
our approach for using automated planning for puzzle gener-
ation in a game environment and describe how our approach
is currently implemented. Lastly we will conclude by sum-
ming up the current system and describing future work that
will be done to the system.

Related work
Prior work on planning for non-behavioral AI in games has
been done, mostly in the area of video game narrative which
overlaps with the field of Interactive Storytelling (IS), where
planning has become a prominent technology for generating
IS (Porteous et al., 2010). Planning can be used to generate a
narrative and adapt it dynamically, based on the action of an
interactor within an IS. This can be done by building a narra-



tive incrementally, decomposing it into subproblems and as-
signing each of these subproblems a goal. User interactions
change the domain, which then causes the planner to re-plan
and in turn influences how the next iteration of the narrative
is generated. Player Specific Automated Storytelling (PAST)
is an AI experience manager that similarly generates narra-
tive based on player actions within video games, and keeps
track of the actions players have performed (Ramirez and
Bulitko, 2014). If an action results in the narrative going in
a direction the author did not intend, the planner generates
an alternative narrative that aligns with the author’s intention
(Ramirez and Bulitko, 2014). Generating narrative through
Non-Player Character (NPC)-level planning is also possible.
NPCs are the characters within the video game world that
the player cannot play as. NPCs can individually use plan-
ning to generate their own narrative segments outside of the
original story of the game, for instance, by using actions to
change the minds of other NPCs in an attempt to change the
story to align more with their own goals. This allows NPCs
to generate a narrative within the game’s universe (Chang,
2009).

Planning can also be used as a tool to help the game design
process. This possibility has been explored by modeling the
actions within a game, in a domain, and allowing a planner
to reason about how these actions can effect the gameplay
of the overall design (Zook, 2016). This system allows the
planner to create new game mechanics that can be used to
tune the design of the game and its gameplay loop (Sicart,
2008).

Our work focuses on the task of procedurally generating
puzzles within video games, which is not a new idea: there
are a plethora of algorithms that are capable of this task,
such as the Breadth First Search algorithm, which can be
used to create mazes, and the Monte Carlo Tree Search al-
gorithm, which can be used to generate Sokoban game puz-
zles (Kartal et al., 2016). Many AI concepts have been used
to explore the generation of puzzles such as using evolu-
tionary algorithms to create puzzles with a specific difficulty
(Ashlock, 2010) and genetic algorithms to generate Shinro
puzzles through natural selection (Oranchak, 2010).

The novel contribution of this project is using the concept
of planning to generate puzzles. To the best of our knowl-
edge, there is little prior research in this area. Since planners
have the ability to look further ahead in time and plan ap-
propriate strategies, using planning may lead to interesting
puzzles. Planners can take into account the current state of
the game world and the player. This may be the biggest ben-
efit of using planning to generate puzzles, as this may be
able to tailor the generated puzzles to the player and game
world circumstances.

Puzzle Game Description
A custom puzzle game prototype has been developed for this
project, intentionally designed with the use of planning in
mind. Within the game, an environment with multiple puz-
zles which the player can explore is generated. The goal of
the game is for the player to secure the keys, which are each
trapped behind the generated puzzles. The player can secure
a key once the puzzle is solved.

Figure 1: Current implementation of the proposed system

Players have three ability types: Jump, Shoot and Grab.
There are four variations of each ability type that can be as-
signed to the player. The planner generates a puzzle based
on the ability types assigned to the player. Puzzles are made
out of multiple obstacles, obstacles have the same four vari-
ations as player abilities, if an equipped player ability type
matches it then the player is able to overcome this obstacle.
A puzzle is considered solved when the player has success-
fully overcome every obstacle within it.

System Overview
The architecture of the system consists of three parts: the
puzzle game prototype, the Unity3D game engine and the
api.planner.domains planner, as seen in Figure 1. The design
of the system aims for high cohesion and low coupling, with
the intention of possibly replacing any of the parts in future
work.

The puzzle game provides the context and information
which the planner uses to generate a plan that will result in
a puzzle being generated. The prototype is being developed
using the Unity3D game engine, as it provides many stan-
dard features found in game engines, such as a rendering
engine, physics engine, scene graph and a file management
system. Using a game engine cuts down development time
and allows for rapid prototyping.

The current prototype consists of multiple levels, the lev-
els describe how many puzzles need to be generated and the
difficulty of each one. The levels provide all the information
needed for the problem description of the planner. The state
manager takes this description and parses it to a PDDL prob-
lem file, which is saved in the resources folder in Unity3D
and the game manager executes the plan to generate the puz-
zle in the game world.

The game manager reads both the PDDL problem and do-
main files from the resources folder, then loads the infor-
mation into the game, and sends an HTTP Post request to
the planner that contains the PDDL problem and domain
files. Once the planner has generated a plan, it returns a
JSON file containing a PDDL plan to the game manager,
as seen in Figure 2. Using SimpleJSON, this file is parsed
into the Action class, which holds a list of Action types. All



Figure 2: A generated plan in plain JSON which needs to be
parsed by the JSON parser

instances of the Action class have a name and a list of pa-
rameters. When parsed, the name and parameters from each
action in the PDDL plan are mapped into an instance of the
Action class and are placed into the Actions Queue in the
game manager class.

Additionally, the game manager holds a collection of
IEnumerators with names that match the actions found in
the PDDL Domain file. An IEnumerator is a generic collec-
tion class in .NET1 that can be iterated through. IEnumer-
ators use threading and have the ability to temporarily stop
the process of the main system thread until the IEnumera-
tor has fully been executed, so that tasks are executed one at
a time. When executing the plan, the game manager loops
through the queue of actions and executes the IEnumerator
with the matching name of the current action which is be-
ing executed. Once the game manager has looped through
all the actions in the Action queue, the environment should
be generated with the puzzles described by the plan.

Listing 1: Description of a PDDL action for creating a room
( : a c t i o n crea te Room

: p a r a m e t e r s ( ? l o c a t i o n − l o c a t i o n )
: p r e c o n d i t i o n

( and
( n o t ( i n i t i a l i z e d ? l o c a t i o n ) )
)

: e f f e c t
( and
( i n i t i a l i z e d ? l o c a t i o n )
)

)

In the current implementation of the system, the IEnu-
merators are used as functions and are hardcoded to match
the names of the actions within the PDDL problem file.
The functionality of the IEnumerator is also hardcoded to
match the description of the PDDL action; the IEnumerator
is matching, as can be seen in Listing 1.

1https://docs.microsoft.com/en-
us/dotnet/api/system.collections.ienumerator?view=netcore-3.1

When executing an action, the game manager calls the
procedural content generator to create a random object of
a type defined by the plan. In Listing 2, the IEnumerator
calls the Procedural Content Generator to create a random
Object of the type room at the location specified within the
parameters of the action.

Listing 2: The IEnumerator create room which matches the
PDDL action of the same name found in the domain file
I E n u m e r a t o r

c r e a t e r o o m ( L i s t<s t r i n g >p a r a m e t e r s )
{

s t r i n g loca t ionName = p a r a m e t e r s [ 0 ] ;
c o n t e n t G e n e r a t o r . GetRandomObjectOfType (
Ob jec tTypes . Room , loca t ionName ) ;

y i e l d re turn n u l l ;
}

Depending on the difficulty, there are multiple rooms gen-
erated within a level. The generated rooms consist of mul-
tiple prefab game assets and a puzzle. A puzzle consists of
multiple obstacles which in turn also consist of smaller pre-
fabs. Prefabs in Unity3D are meshes that are saved together
as a bundle. Some of these prefabs have scripts attached to
them to make them interactable with the player. The prefabs
that make up a room form choke points to restrict the player
from navigating out of the generated rooms and point play-
ers towards the puzzles.

Puzzles and rooms are semi-procedurally generated
through the procedural content generator and the actions of
the game manager. The planner plans which types of prefabs
have to be placed within the room or puzzle. The function
that executes the plan and places these prefabs, calls the pro-
cedural content generator. The procedural content generator
then picks a random prefab of the specific type needed and
places it randomly on one of the predefined locations within
the room or puzzle. Puzzles consist of multiple obstacles that
the player has to overcome in order to solve them. Each ob-
stacle is a miniature puzzle of its own and is independent
of other obstacles. The obstacles also require the player to
have a specific type of ability to solve them. The procedu-
ral content generator chooses a random variation of the type
needed and places that into the world. When the planner cre-
ates a plan to generate a level with puzzles within it, it takes
into account the current abilities of the player. The difficulty
of a level is determined by the amount of abilities the player
needs to use to overcome it and the amount of variety of
obstacle types found within the level.

Api.planning.domains was chosen as the planner for this
system, because it can act as an independent external system
through its API. The API allows PDDL problem and domain
files to be sent over HTTP POST requests. Once the files are
sent, the planner handles the planning, and if a successful
plan is found, the generated plan is sent back in a JSON file
which is then parsed by the PDDL parser.

The PDDL problem file used in this project defines all
the objects that will be instantiated within the game. Cur-
rently, it is also the only PDDL file which gets modified by
the system. When there are changes made in the state man-



Figure 3: A generated level with 5 rooms that are placed ad-
jacent to each other. Here there are two difficult rooms, one
medium room and one easy room. The room in the middle
is where the player and locked door are placed.

Figure 4: A player attempting to solve one of the three gen-
erated puzzles, within a room generated by the planner.

ager script, these changes will be reflected in the problem
file, as the initial states of the predicates within the problem
file need to represent the current state of the state manager.
The state manager decides which and how many rooms need
to be generated, it determines the difficulty of each of those
rooms, and it also sets the goal of the planner. Before the
problem file is sent to the planner, the state manager updates
the problem file with the current state of the state manager.
Currently, there are some limitations in what can be mod-
ified in the problem file. In the (:Init) function of PDDL,
which defines the initial state of the world, there must al-
ways be at least one room present since the system is not
prepared to handle scenarios in which there are no puzzles
or rooms to be generated. Presently, there must always be
one room generated, which is done by the following PDDL
code: (Difficulty easy room2). Another limitation is that the
first goal set in the (:goal) function of PDDL needs to be
(playerset player). Otherwise, the player will never be placed
in the game world.

This project makes use of PDDL typing, which allows
PDDL to assign a type to each object within the problem
file. This is used to force certain parameters of PDDL ac-
tions found in the domain file to be of a specific type. The
following are all the types that are defined and used in the
problem file of this project:
• Element types are elements in the game world which are

tied to the win/lose conditions in the game. (Objects that
fall under elements are doors and keys.)

• Location types are prefab rooms that up the level where
the elements, obstacles, and player can be placed.

• Obstacle types are the type of puzzle prefabs that can be
placed within a level.

• Level type represents the difficulty level of a level.
• Player type represents a playable character.

The domain file used in this project goes largely un-
changed; it describes the actions that the planner searches
through to reach the goal state described in the problem file.
It also describes the IEnumerators that are used in the game
manager class. The predicates in the domain file also use
PDDL typing.

Currently, the system generates puzzles by checking the
player’s current abilities, and then based on that, it spawns
a predefined puzzle piece that can be solved by using the
player’s abilities as found by the system. The amount of
puzzle pieces that are spawned are based on the level of dif-
ficulty that is set. In the current implementation, puzzles are
only semi-generated by the system, as they are built by piec-
ing together level pieces. In future work, the design of the
system will be updated so that the system is able to generate
level pieces based on the player’s current abilities and the
difficulty of the level. Each ability type has a standard puz-
zle to begin with, and based on the difficulty of the level to
which the puzzle is added, this standard puzzle will be mod-
ified. The goal state of the planner will be based on the mod-
ified puzzle. Actions of the planner will be assigned a diffi-
culty, through an equivalent of PDDL typing. The difficulty
of the puzzle will determine the amount of easy, medium or
hard actions it should take for the puzzle to be completed.
This redesign is also being considered in order to make it
possible for the system to fully generate puzzles. Not only
would the level pieces be generated, but the whole puzzle
would be fully generated through this redesigned system.
Future iterations of the systems will be tested by users, to
generate feedback on the practicality and entertainment level
of the generated puzzles. In future study, a more classical
implementation of level generation will also be implemented
and bench-marked against the proposed system, in order to
compare if planning can indeed handle generating larger and
more complex puzzles better than traditional techniques.

Conclusion and Future Work
The work described in this paper was developed as part of
a larger project aimed at exploring the possibility of us-
ing planning to procedurally generate unique puzzles within
video games. Currently, the system is made up of three com-
ponents: prototype of a game, Unity3D Game Engine, and



the API.Planning.Domains planner. The puzzles in the game
prototype are a collection of prefabs. This system is capa-
ble of semi-procedurally generating puzzles within the level.
The puzzles are generated by following the plan defined by
the planner, and the game manager parses and executes this
plan. The actions that are executed make use of the procedu-
ral content generator to generate parts of the obstacles which
make up the puzzles within the game. By using a planner,
the system considers all the elements needed to both solve
and generate the puzzle, and creates a plan based on that.
The state of the game world is reflected in the problem file,
when the planner fails to generate a plan based on the cur-
rent game state, the planner is equipped to change elements
in the game world. The changing of said elements, changes
the game state into a state that makes it possible to gener-
ate a plan. Currently, the planner is only able to manipu-
late the game world, by adding abilities to the current game
state, which are needed for players to be able to solve the
generated puzzle. The manipulation of the game world can
be extended to other game elements, allowing the system to
possibly dynamically alter the game in interesting ways.

The current design has limitations to it, such as the lack of
support for real-time planning and re-planning of goals, the
lack of ability to create plans to fully generate puzzles and
obstacles, and the lack of ability to truly randomize the po-
sition of the generated puzzles and objects. Furthermore, the
current setup of the game manager actions and the domain
file actions are highly coupled and hardcoded.

In future work, the project may be expanded by using the
planner to also generate obstacles themselves. This would
result in the system being less reliant on randomly choosing
from prefabs to build puzzles and it would make it a more
procedural system. Another facet to be added is real-time
puzzle generation. In order to achieve real-time puzzle gen-
eration, the system would need to be able to dynamically
change the goals of the domain files and have the ability
to re-plan. Future implementations include redesigning the
system to decouple the actions of the game manager and the
actions in the domain file. The planner will also be replaced
by a planner built into the Unity3D engine to improve plan-
ning time. Overall, the system prototype is promising and
with more iterations of the system and abstractions of the
plans, we aim to improve the system to result in more fully
procedurally generated puzzles.

Acknowlegments
This work has been done as part of an Artificial Intelligence
MSc dissertation project at Heriot-Watt University, under
the guidance of Dr. Ron Petrick.

References
Ashlock, D. (2010). Automatic generation of game elements
via evolution. In Proceedings of the 2010 IEEE Conference
on Computational Intelligence and Games, pages 289–296.
IEEE.
Kartal, B., Sohre, N., and Guy, S. (2016). Generating
sokoban puzzle game levels with monte carlo tree search. In
The IJCAI-16 Workshop on General Game Playing, page 47.

Neufeld, X., Mostaghim, S., Sancho-Pradel, D., and Brand,
S. (2017). Building a planner: A survey of planning sys-
tems used in commercial video games. IEEE Transactions
on Games.
Oranchak, D. (2010). Evolutionary algorithm for genera-
tion of entertaining shinro logic puzzles. In European Con-
ference on the Applications of Evolutionary Computation,
pages 181–190. Springer.
Orkin, J. (2006). Three states and a plan: the ai of fear. In
Game Developers Conference, volume 2006, page 4.
Porteous, J., Cavazza, M., and Charles, F. (2010). Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology (TIST), 1(2):1–21.
Ramirez, A. and Bulitko, V. (2014). Automated plan-
ning and player modeling for interactive storytelling. IEEE
Transactions on Computational Intelligence and AI in
Games, 7(4):375–386.
Schell, J. (2008). The Art of Game Design: A book of lenses.
CRC press.
Sicart, M. (2008). Defining game mechanics. Game Studies,
8(2):n.
Yannakakis, G. N. and Togelius, J. (2018). Artificial intelli-
gence and games, volume 2. Springer.
Zook, A. (2016). Automated iterative game design. PhD
thesis, Georgia Institute of Technology.


