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ABSTRACT
We demonstrate the use of a wavelength converter, based on cross-gain modulation in a semiconductor optical amplifier (SOA), as a nonlinear
function co-integrated within an all-optical neuron realized with SOA and wavelength-division multiplexing technology. We investigate the
impact of fully monolithically integrated linear and nonlinear functions on the all-optical neuron output with respect to the number of
synapses/neuron and data rate. Results suggest that the number of inputs can scale up to 64 while guaranteeing a large input power dynamic
range of 36 dB with neglectable error introduction. We also investigate the performance of its nonlinear transfer function by tuning the
total input power and data rate: The monolithically integrated neuron performs about 10% better in accuracy than the corresponding hybrid
device for the same data rate. These all-optical neurons are then used to simulate a 64:64:10 two-layer photonic deep neural network for
handwritten digit classification, which shows an 89.5% best-case accuracy at 10 GS/s. Moreover, we analyze the energy consumption for
synaptic operation, considering the full end-to-end system, which includes the transceivers, the optical neural network, and the electrical
control part. This investigation shows that when the number of synapses/neuron is >18, the energy per operation is <20 pJ (6 times higher
than when considering only the optical engine). The computation speed of this two-layer all-optical neural network system is 47 TMAC/s, 2.5
times faster than state-of-the-art graphics processing units, while the energy efficiency is 12 pJ/MAC, 2 times better. This result underlines
the importance of scaling photonic integrated neural networks on chip.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0066350

I. INTRODUCTION
Massive volume of data demands wider capacity and higher

speed of information processing. The extraction of effective infor-
mation from databases remains a challenge as it requires huge
power and processing time. The new computing paradigm of non-
von-Neumann architectures has begun to unfold,1 leading to the
development of large neuromorphic machines that now exceed the
energy and size-efficiency walls of classical platforms,2–8 because
of their inherent parallel computational schemes. These deploy-
ments are mainly based on the spiking architectural model9 that very
recently have shown the potential to outperform multi-layer per-
ceptron (MLP) models.10 Nevertheless, being more complex, these
models are still not fully understood, unlike the more advanced
Deep Learning (DL) models. The rich DL model portfolio can be
indeed utilized in digital graphics processing unit (GPU) and tensor

processing unit (TPU) engines as well as in the constantly growing
number of emerging artificial neural network (ANN)-based analog
electronic AI chipsets: Mythic’s architecture,11 for example, can yield
high accuracy inference applications within a remarkable energy
efficiency of just 0.5 pJ/MAC. However, the size and energy advan-
tages of electronic processing elements are naturally counteracted
by the speed and power limits of the electronic interconnects inside
the circuits due to RC parasitic effects, with current machines hardly
exceeding GHz clock frequencies, exacerbating power dissipation
issues, and limiting the achievable data throughput.12

Neuromorphic approach has been applied to optical com-
puting: In contrast to electronics, there is negligible energy over-
head for moving light encoded information around, which enables
unprecedented circuit interconnectivity and speed. Moreover, bit-
rate agnostic photonics has the potential to enable higher bandwidth
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applications. A number of photonic accelerators have been proposed
based on discrete optical components and micro-optics as well as
on photonic integrated devices.13–15 This emerging technology is
capable of producing high processing bandwidths with high power
efficiency.16 The large parallelism, energy efficiency, and ease of
broadcast/multicast capabilities of photonics are well suited for the
design of highly efficient and scalable neural network accelerators.
By exploiting the properties of photonics, linear transformations can
efficiently be performed at high data rates without consuming sig-
nificant power.17,18 The advantages of the parallel nature of light are
now being exploited via coherent electrical field summation19,20 and
wavelength-division multiplexing (WDM) optical power addition
based photonic integrated networks;21–24 however, crosstalk, noise
accumulation, and low dynamic range prevent further scalability,
even when using phase change materials for zero-electrical power
computation.23

Recently, we have proposed a new deep neural network (DNN)
architecture that exploits indium phosphide based photonic inte-
grated circuits.24,25 By setting the gain of the semiconductor optical
amplifier (SOA) as the (trained) weighted factor to the WDM input,
the cross-connect is used as an analog engine with off-line nonlin-
ear functions. Feeding the layer output back to the optical input
and reconfiguring the on-chip weight matrix, a feed-forward pho-
tonic neural network is demonstrated.25 A linear synaptic function,
also called weighted addition, and a nonlinear function, known
as activation function, are the base functions of an artificial neu-
ron. Photonic integrated linear19,26,27 and nonlinear functions26,28

have been recently demonstrated, relying on hybrid integration
schemes or involving electro-optical conversions, preventing further
scalability of photonic neural networks.

In this paper, we analyze the performance of a deep neural
network architecture concept based on the use of photonic cross-
connects, where the combination of space and wavelength selection
is exploited to implement, respectively, the axon terminals and the
synaptic operations in a photonic artificial neural network. After
the description of the overall computational architecture in Sec. II,
the co-integration of SOA-based synaptic operations [in the form
of a combination of SOAs and array waveguide gratings (AWGs)]
and nonlinearity [in the form of a fully integrated wavelength con-
verter (WC) based on cross-gain modulation (XGM)] is studied in

Sec. III to enable a fully monolithically integrated all-optical neu-
ron and therefore an all-optical neural network (AONN). In Sec. IV,
we simulate the all-optical network to solve the handwriting digit
classification problem to evaluate final accuracy. Finally, in Sec. V,
we analyze the energy consumption of the complete end-to-end
system.

II. ALL-OPTICAL SOA-BASED DNN
The overall envisaged all-optical deep neural network scheme

based on the use of the cross-connect circuitry is depicted in Fig. 1.
The wavelength division multiplexed (WDM) signal from N input
neurons (one wavelength from each input neuron) is fan-out toward
the following M neurons of the first hidden layer. At each ith neuron
of this layer (highlighted through an orange box), the multiple-
wavelength signal is demultiplexed into N signals, which are mul-
tiplied, via an SOA, by the weight wi,j,k of the ith neuron from the jth
axon (λj) and in the kth layer. The weighted signals, being encoded
in different colors, are then summed up via an AWG-based multi-
plexer. This first circuitry (black dashed box in Fig. 1) corresponds
to the linear part of the ith neuron, whose output is sent out to a
nonlinear function block NLi,k of the same neuron of the kth hidden
layer. This is realized via an SOA (red dashed box in Fig. 1), where
the enabled XGM is used to output a wavelength-converted light,
modulated by the total power of all WDM channels at the input of
the SOA-based wavelength converter (SOA-WC), for the conversion
into a different single wavelength, λi

′, which represents the output
of this neuron. The outputs from all the neurons of the kth hidden
layer are then combined and broadcast again toward all the neurons
of the next hidden layer, and so on and so forth. It is important to
note that the shuffle network here is obtained by combining AWGs
and one big 1:M splitter (for example, moving from the first to the
second hidden layer), in place of M times AWGs, which would dete-
riorate crosstalk as well as introduce a deleterious path dependent
loss.

Here, the SOA technology is exploited in combination with
the AWG technology for multiple reasons: The optical amplifiers
are employed for setting the weight matrix and providing on-chip
gain for scalability, while the AWGs are used to filter out the out-
of-band noise built up by cascading multiple stages of SOAs in

FIG. 1. Schematic of the foreseen deep neural network based on SOA-based weight and non-linear functions. NL: non-linear function. wi,j,k = weight of the ith neuron, of
the jth axon (λj), and of the kth layer.
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order to increase the weight resolution as well as to carry out the
needed multiplexing and demultiplexing functions. In Ref. 25, we
have demonstrated the synaptic operation using an 8 × 8 InP SOA-
based cross-connect chip, followed by an array of photodetectors,
to further process the signals in the electrical domain and to per-
form an analysis of the sources of error. Indeed, a reduction in
accuracy happened, which was dominated by the electro-optical
conversions needed to move from the optical linear function to
the electrical nonlinear function as well to progress from one layer
on chip to the next one, which suggested moving to an all-optical
approach.25

We now investigate other sources of errors and scalability prop-
erties of the linear neuron, specifically the crosstalk as a function of
the number of channel inputs (axons). The optical crosstalk, com-
ing from the AWGs, limits the linear circuitry scalability as soon as
the number of neuron inputs (channels) increases. For this reason,
we analyze the normalized root mean square error (NRMSE) of the
synaptic unit of the neuron, as shown in Fig. 1 (black dashed box),
while tuning the total input power and the total number of neuron
inputs for a channel spacing of 100 GHz. This has been analyzed
via the VPIphotonic Design Suite (using parameters as detailed in
Ref. 29). In Fig. 2(a), the colored lines represent the error obtained
after the synaptic unit for 4, 8, 16, 32, and 64 inputs/neuron while
tuning the total input power of the WDM input to the neuron from
−25 to 20 dBm. The results show that there is an optimized opti-
cal power operation point for reaching the minimum error. It is
notable how this point shifts down right side for a larger number of
neuron inputs. To better visualize and explain this trend, the same
NRMSE is plotted as a function of the number of the input channels
for a fixed input power of 5 dBm at the AWG input [see Fig. 2(b)].
When increasing the number of neuron inputs, the error decreases,
as shown in blue line, while it starts slightly increasing only for a
number of channels higher than 32: The vertical scalability of the
neural network (height), and therefore a higher channel number,
results in an increase in the resolution of the linear summation out-
put, since more channels at the input contribute to increasing the
total number of the output signal levels within the same dynamic
range, resulting in a smoother output signal pattern. In particular,
the error is found to increase for 64 channel inputs due to the lim-
ited modeled SOA bandwidth (71.5 nm 3-dB gain bandwidth); in

FIG. 2. (a) Error obtained when tuning the total input power to the neuron from
−25 to 20 dBm per different input channel numbers. (b) Error variation (5 dBm
input power, blue line) and IPDR (NMRSE <0.09, red line) when changing the
numbers of input channels from 4 to 64 channels. The AWG channel spacing is
set at 100 GHz.

fact, 64 channels spaced 100 GHz already fill up 51.2 nm bandwidth.
The red line in Fig. 2(b) plots the input power dynamic range (IPDR)
as a function of the number of the input channels per neuron and for
an NMRSE <0.09: for this level of error, we have previously shown
that a three-layer neural network results in <5% degradation of the
prediction accuracy for an image classification problem.29 The IPDR
increases from 25 to 36 dB, which is partly attributable to the large
SOA linear regime (−5 dBm input saturation power) but also to the
fact that with the increasing number of input channels, the power
fed to the individual weight SOA will be much lower than the input
saturation power, making the SOAs working in the linear regime for
a wider input power range. The trend slows down when the number
of channels approaches 64 since we come closer to the bandwidth
edges of the SOA.

III. SOA-BASED INTEGRATED ALL-OPTICAL NEURON
So far, we have proposed to use SOA and AWG to imple-

ment optical linear neurons.24 In this section, we investigate the
possibility of realizing an all-optical SOA-based neuron to realize
multi-layer neural networks and avoid electro-optical conversions
for improving energy efficiency while still guaranteeing a good accu-
racy. To this aim, the optical output of the synaptic operation is input
straight to an SOA-based nonlinear function. The exploitation of
SOA-based circuits for both the linear and nonlinear functions of
an artificial photonic neuron enables the monolithic integration of
both functionalities to overcome optical loss issues deriving from
a hybrid approach. We first study the nonlinear function based
on a wavelength converter (Sec. III A), and then we investigate
the overall performance of the complete neuron, integrating the
optical linear neuron with the SOA-WC optical nonlinear function
(Sec. III B).

Before describing the experimental measurements and simu-
lations in Subsections III A and III B, it is important to discuss
the assumptions made on any four-wave mixing (FWM) effect hap-
pening within the nonlinear SOA. Depending on the wavelength
separation, input power, and the number of WDM channels, the
FWM inside the SOA may have a non-negligible influence on the
overall performance. However, this is not considered in the simula-
tion, neither is observed in the experimental phase. In fact, this effect
is neglectable when the detuning between the probe channel and the
pump frequency Δf ≫ 1/(2π ⋅ τ), where τ is the carrier lifetime of
the used SOA. In this work, the carrier lifetime is estimated to be
200 ps in the worse case,30 and the channel spacing at the input is 100
and 400 GHz for the simulations and the experimental work, respec-
tively, which results in detuning that is far greater than 1/(2π ⋅ τ)
≈ 1 GHz. By exploiting the methods in Refs. 31 and 32, we estimate
that the conjugate signal generated by the FWM effect has a power
of the order of <−64 dBm when the detuning used in simulation is
>100 GHz, which is even lower than the spontaneous emission noise
at the neuron output. Moreover, in order to suppress the FWM for
larger number of input channels, we control the total input power of
the neuron by defining an appropriate scaling of the neural network.
In our approach, the network size is considered scaling up with input
channels N and with the same number of neurons M. In this way,
the total input power to the neuron will stay constant when scaling
N and M, i.e., for each channel power p0, the total input power at the
layer input N ⋅ p0 will be split toward M neurons as N ⋅ p0/M. When
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setting N =M, the total power to each neuron (yellow box in Fig. 1)
will be p0, and the power for each channel will be p0/N. For such a
condition, the FWM effect results reduced due to the decrease in the
input signal power as well as to further detuning of the individual
input channels. Finally, using unequal channel spacing at the WDM
inputs,33,34 the FWM effect can be further eliminated.

The experimental setup used for the SOA-based all-optical neu-
ron investigation is depicted in Fig. 3(a) with a micrograph of the
fabricated chip shown in Fig. 3(b). A four-channel WDM optical
input is composed of signal wavelengths set at 1544.0, 1546.0, 1551.0,
and 1554.0 nm in order to match the nominal 3.2 nm channel sep-
aration of the on-chip AWGs with a 3-dB bandwidth of 0.8 nm
and to maximize each channel optical power output. The input
is modulated with pseudorandom binary sequence (PRBS) on–off
keyed (OOK) data, generated by the arbitrary waveform generator
(Tektronix, AWG7122B), and sent to the input of the integrated all-
optical neuron after de-correlation. The WDM optical inputs are
equalized and set at −12 dBm power per channel.

Inside the neuron in Fig. 3(b), the inputs are amplified with
a booster SOA, which is utilized to optimize the total power at
the input of the weighting SOAs. Then, the signals are weighted
with individual SOAs after channel demultiplexing by the AWG
and combined again with an AWG-based multiplexer and fed to
the SOA-WC based optical nonlinear function, whose pump laser
is fully integrated on chip. This provides a converted output at
1549.0 nm, chosen to be close to the center of the WDM channel
bandwidth for optimizing the wavelength conversion.

The weighting SOAs are controlled by a weighting current con-
troller (Thorlabs, MLC8200CG), with 50 μA resolution, to provide
the weights in 10-bit precision, which exceeds the required precision
for image classification. The current synapse control is envisioned to
be realized by means of an field-programmable gate array (FPGA)

FIG. 3. (a) Experimental setup for SOA-based all-optical neuron investigation. (b)
Micrograph of the integrated all-optical neuron.

controlling multi-channel current drivers35 when further scaling the
number of neuron synapses. In the future, the parallel development
of ultra-compact driver ICs, of new electronic interface techniques,
and of cleaver electrical control schemes seems to be a viable
route toward enabling control of larger size photonic networks on
chip.

The individual weight SOAs are calibrated to compensate for
the wavelength conversion non-uniformity among the different
channels: This calibration happens prior to the assignments of the
actual weighting factors. The noise figure and the saturation output
power of these SOAs are 7 dB and 8 dBm, respectively. The output
of the all-optical neuron is detected by a linear avalanche photode-
tector (PD) and the time trace is recorded by a digital phosphor
oscilloscope. The performance of the neuron is again evaluated by
calculating the NRMSE between the recorded and the expected time
traces at the output of the NL function, calculated using the refer-
ence pre-recorded inputs. The synaptic operation of the neuron can
be expressed as a weighted addition of parallel inputs: y = ∑wixi,
where wi is the ith weight element for input xi, and the final output
of the neuron is o = φ(y), where φ is the nonlinear transfer function
of the SOA-WC.

A. Integrated SOA-based non-linear function
The wavelength converter is the nonlinear device that we

exploit as an optical nonlinear function within the neuron. The
SOA-WC is also integrated on the InP platform, with an on-chip
tunable laser.36 The integration of the all-optical nonlinear function
allows us to demonstrate a monolithically integrated SOA-based all-
optical neuron.37 In order to measure only the transfer function of
the nonlinear part working at first as a simple inverter, we record
the PRBS OOK input of the neuron and the output of the SOA-WC.
The correlation map of the two is the nonlinear transfer function
(NL-TF), which we can use to calculate the expected output for the
entire all-optical neuron. The blue line time trace in Fig. 4(a) plots
the pre-recorded 2 Gbit/s single channel input signal. Figure 4(b)
presents the detected output of the SOA-WC based NL-TF in the
blue line and the expected inverted signal [calculated from Fig. 4(a),
with the linear transform as reference—Lin. Ref.] in the red line,
resulting in an error of 0.14. By plotting the correlation map between
the input and the output of the integrated SOA-WC detected at the
PD, the optical nonlinear transfer function is illustrated in Fig. 4(d),
where the blue crosses are the data, the black line is the linear trans-
form, and the red line is the third-order polynomial fitted nonlinear
transform. The nonlinear function shape is mainly due to the contri-
bution of the nonlinear response of the SOA used as the wavelength
converter when the booster works in transparency, with a current
density of 1 kA/cm2 and a weighting current density at 3 kA/cm2 on
average (linear regime). Then, the same nonlinear function shape is
utilized as a nonlinear reference (Nonlin. Ref.) to calculate the real
expectation of the output, as shown in Fig. 4(c), resulting in a smaller
error of 0.08.

The pump input power of the wavelength converter can be
tuned by increasing the current of the booster: A different level
of pump input power provides a different transfer function shape.
Figure 5(a) presents the nonlinear functions when the current den-
sity of the booster is set at 0.5, 1.0, 1.5, and 2.0 kA/cm2, with lines
in blue, red, yellow, and purple, respectively. The outputs near to
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FIG. 4. (a) The input data in channel 1 at 2 Gbit/s. (b) The recorded output (blue)
comparing to the expectation (red) with linear transformation as reference at the
SOA-WC. (c) The recorded output (blue) and the expected output (red) with non-
linear referenced calculation. (d) The nonlinear transfer function of the SOA-WC,
with correlation mapping of the input to output, with linear transformation (black)
and nonlinear transformation (red).

level “−1” (for input level “1”) tend to saturate when increasing
the booster current because of the nonlinearity changes due to the
increased input probe power to the SOA-WC and because of the
nonlinearity contributed from the booster SOA itself. This confirms
that we can tailor the nonlinear transfer function by acting on the
booster current. We also explore the SOA-WC based NL-TF shape
as a function of the data rate: Fig. 5(b) plots the nonlinear function
when the input data rate is 2, 4, 6, 8, and 10 Gbit/s, with the blue,

FIG. 5. (a) The nonlinear transfer function when the booster current density is
set at different levels. (b) The nonlinear transfer function when the input data rate
changes from 2 to 10 Gbit/s. Error obtained at the neuron output when tuning the
booster current density (c) and when tuning the input data rate (d), comparing to
expectation calculated using linear transform as reference (blue) and nonlinear
transform as reference (red).

red, yellow, purple, and green line, respectively, when the booster
is at 1 kA/cm2. The shape of the nonlinear function changes only
slightly when increasing the input data rate. We then translate these
findings into performance metrics of the optical nonlinear function
by calculating the NRMSE with respect to different shapes of the
nonlinear function. Figure 5(c) plots the error variations of the out-
put of the NL-TF when tuning the injection current density of the
booster SOA from 0 to 2.5 kA/cm2, with the blue line obtained when
considering the neuron output as the linear inverted output (with
linear transform as reference) and the red line when considering the
nonlinear transform as reference. The booster SOA is operated in
the linear regime to minimize the nonlinearities introduced at the
weighting element inputs, since the overall weighted addition oper-
ation is meant to be a linear operation. By changing the booster SOA
current, we can find the optimal operation point for minimized error
induced by the nonlinear function, in this case corresponding to a
current of 1 kA/cm2 [Fig. 5(c)]. The noticeable offset between the
blue and red curves indicates that the nonlinearity of the SOA-WC
has quite some effect on the error reduction. Figure 5(d) plots the
error variation when changing the data rate of the input from 2 to
10 Gbit/s, with the blue line showing the error related to the lin-
ear transform reference and the red line showing the error related
to the nonlinear transform reference. In both cases, the error of the
nonlinear function increases with the input data rate. Again, the
nonlinear function improves accuracy, moving from 0.08 to 0.15
NRMSE when increasing the data rate up to 10 Gbit/s. The deteriora-
tion in accuracy for the higher data-rate is mainly due to the limited
carrier lifetime of the integrated SOA-WC, which cannot fully fol-
low the speed of the incoming optical signal. The offsets between
the blue and red lines in both Figs. 5(c) and 5(d) show that the use
of the correct nonlinear transfer function reduces the error of up to
50%, compared to the case when we use the SOA-WC with its simply
linear response.

B. All-optical monolithically integrated neuron
The monolithic integration of the synaptic operation and the

optical nonlinear function allows us to investigate the performance
of the SOA-based all-optical neuron concept. The four-channel
WDM PRBS-OOK input is coupled at the neuron input, with a data
rate of up to 10 Gbit/s. The output is detected and compared to the
calculated time trace with the NL-TF obtained following the pro-
cedure explained in session III-A. Figure 6(a) plots the time traces
as a linear combination of the weighted input data, where the red
line presents the recorded signal and the blue line is the expected
linear combination of the weighted addition, without NL-fitting,
resulting in an error of 0.17. Figure 6(b) instead shows the output
of the recorded output signal with the nonlinear transform refer-
ence, where the blue line is the recorded signal and the red line is the
expectation, resulting in a smaller error of 0.15—a 10% error reduc-
tion. We also change the number of input channels and tune the
data rate of the input signals to better analyze the performance of
this all-optical neuron. Figure 6(c) illustrates the error of the com-
plete optical neuron output. The blue circle, red triangle, and yellow
square symbols represent the errors of the all-optical neuron when
the input channel changes from 1, 2 to 4 channels, respectively. In
line with Fig. 5(d), the curves show that the output error increases
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FIG. 6. The four-channel weighted addition recorded output (blue) comparing to
the expected (red) (a) linear transformed reference, without NL-fitting, and (b) non-
linear transformed reference with NL-fitting. (c) The error obtained at the neuron
output for 1, 2, and 4 channel weighted addition (blue, red, and yellow) when tun-
ing the data rate from 2 to 10 Gbit/s per channel, with green filled triangle denoting
the error of the two-channel hybrid integrated neuron and the unfilled triangle of
denoting the error of the two-channel discrete neuron with optimized SOA-WC.

with the input data rate. Moreover, with the increase in the chan-
nel number, the error tends to increase as well. With more channel
input to the SOA-WC, the nonlinearity at the SOA-WC is reduced
as the increasing input probe power will push the cross-gain modu-
lation regime toward a linear conversion regime. This means that
an optimization of the operation regime of the wavelength con-
verter is needed to help increase its nonlinearity, e.g., by tuning the
power of the CW laser. Moreover, in Fig. 6(c), we also add a green-
filled triangle to show an average error of 0.15, which is obtained
when combining the integrated linear unit with a discrete nonlin-
ear SOA wavelength converter,38 with 10 Gbit/s per channel input
and two channel weighted addition. This shows that the monolith-
ically integrated all-optical neuron performs 10% better in terms of
error introduction than the hybrid case under the same data rate
condition. One reason for that can be that a discrete implementation
generates additional noise due to the off-chip amplification. Finally,
the integration of the tunable laser and SOA-WC also reduces the
total power consumption as the external laser is not required, neither
the additional off-chip amplifier. Further investigation shows that
by using discrete SOA-WCs with optimized carrier dynamics, the
multi-level conversion brings to a calculation error less than 0.09,39

shown as green-unfilled triangles in Fig. 6(c). In Sec. IV, we show the
simulation of an all-optical multi-layer neural network by exploiting
both the synaptic operation and the nonlinear function as realized
and measured so far.

IV. MNIST DATASET CLASSIFICATION WITH AN
SOA-BASED ALL-OPTICAL NEURAL NETWORK

The combination of the linear neuron with the wavelength
converter (Sec. III) eventually converts the multiple weighted wave-
length inputs, after their addition, into one single wavelength which
is the actual output of the complete neuron (yellow box in Fig. 1).
In particular, the recorded transfer function of the integrated SOA-
based wavelength converter, shown in Fig. 4(d), has been evaluated
in an analog manner, with the power summation at the input of the
SOA-WC being a multi-level signal. Therefore, the same transfer

function will also work with multi-level WDM signals. This non-
linear function is then used to train the neural network on the
computer via TensorFlow,40 while the pre-trained weighted matrix
can be applied to the all-optical neural network to run inference and
evaluate the accuracy.

The handwritten digit classification problem41 with modified
National Institute of Standards and Technology (MNIST) dataset
is one of the benchmarking problems used for the performance
appraisal of a neural network. The MNIST dataset contains 60 000
training samples and 10 000 testing samples and includes ten cate-
gories of digits from 0 to 9. In Sec. II, we have discussed that the
linear synaptic operation of the SOA-based neuron can allow more
than 64 channel inputs, with the introduction of negligible error.
Here, we indeed simulate the all-optical neural network with input
layer neurons with 64 channel inputs each. To encode the input
image into 64 channels by means of multi-level modulation with
9-bit resolution, we preprocess the images in the dataset to reduce
their resolution from 28 × 28 to 8 × 8 pixels. Figure 7(a) illustrates
the data preprocessing for the input of the neural network (NN). The
256 level gray data are first converted into a black and white image
with a threshold at level 128 and cropped into 24 × 24 pixels at the
center. The images are then converted to 8 × 8 pixels with every 3
× 3 pixels encoded into 512 grayscale levels, i.e., 9 bits-resolution.
For solving this digit classification, a two-layer NN is structured as
shown in Fig. 7(b). On the first layer, there are 64 neurons where
each of the weighted addition output is followed by the optical non-
linear function obtained in Sec. III, and on the second (output) layer,
ten linear neurons are used to represent the ten digits, from 0 to 9. In
the optical neural network (ONN) implementation, the inputs and
the weights are usually normalized in order to ease the optical mod-
ulation and the dynamic weighting control. This is implemented in
simulation by applying batch normalization and weight normaliza-
tion. To train the NN for MNIST dataset classification, the ADAM
optimizer is utilized due to its fast convergence,42 which makes the
training process more efficient.

FIG. 7. (a) Preprocessing of the input MNIST handwritten images from 728 to
64 pixels. (b) The two-layer neural network structure for classifying MNIST hand-
written digits. (c) The test accuracy per epoch when training the two-layer neural
network with the sigmoid function (blue line) and the nonlinear functions when the
data rate is 2 GS/s (red) and 10 GS/s (yellow).
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We train this two-layer structure with the current third order
polynomial nonlinear function without noise induction as a refer-
ence. The trained weighted matrix is then applied to the ONN model
to investigate the performance of the optical network under error
induction and contribution from the linear and the nonlinear units.
Moreover, we benchmark this same shallow neural network for the
same data in Fig. 7(a), but using the sigmoid nonlinear function. The
test accuracy is recorded after every update of the weighting matri-
ces when training the neural network in TensorFlow. Figure 7(c)
presents the test accuracy as a function of the training epochs for
different nonlinear functions: when the nonlinear function is the
conventional mathematical sigmoid function (blue), when it cor-
responds to the transfer function observed at 2 GS/s per channel
(orange), and when it corresponds to the transfer function obtained
at 10 GS/s as input (yellow). Note that here we do not consider
yet the influence of the all-optical neuron impairments. The curves
show that the NN is converging after 15 epochs of training and that
all considered nonlinear functions yield a similar final test accuracy
of ∼94.5% after training.

To take into account the error induced by the all-optical neu-
ron, we consider the distortion contribution due to the linear part
of the neuron (described in Sec. II) and the distortion contribution
due to the nonlinear part of the neuron (analyzed in Sec. III). In par-
ticular, the distortions are included here as additive white Gaussian
noise, assuming that the signal spontaneous emission beating noise
dominates the contribution,43 which is added after the linear output
and the nonlinear output. By tuning the standard deviation of the
Gaussian noise, the same error levels as the ones observed experi-
mentally can be reproduced. The same inference is now run in the
case that impairments are induced in the optical neuron: Figs. 8(a)
and 8(b) illustrate the colormap of the prediction accuracy (Acc.)
as a function of the noise levels of both the linear and nonlinear
functions of a neuron: these are scanned from 0 to 0.5 for both 2
and 10 GS/s input per channel, respectively. The accuracy in both
cases obviously decreases when increasing the error at the output of
both linear and nonlinear units. The red line shapes in Figs. 8(a) and
8(b) show the expected accuracy that the AONN system will have
for a measured error level ranging from 0.05 to 0.10 for the linear
operation (according to the error induced with 64 channel inputs,
discussed in Sec. II) and for the nonlinear errors ranging between
0.08 and 0.11 for 2 Gbit/s input and between 0.10 and 0.15 for
10 Gbit/s input, respectively, as recorded during the experiments.

FIG. 8. The accuracy of the simulated noised ONN for the nonlinear function
recorded when input at (a) 2 GS/s and (b) 10 GS/s. Red circles represent the
expected performance of using our all-optical neuron in the ONN.

For these same areas, an accuracy degradation of 2%–8% and
5%–15% for 2 and 10 GS/s input, respectively, is obtained, compared
to the trained accuracy of 94.5%. The elliptical shape in Fig. 8(a) is
due to a different deviation of the Gaussian noise distribution on the
linear and nonlinear unit, while the circular shape in Fig. 8(b) is due
to a more uniform variation for both units. These suggest that with
10 GS/s input, the two-layer all-optical engine, including 64 neu-
rons in the first layer, with 64 synapses per neuron, and 10 neurons
at the second layer fully connected, can perform 4.7 × 1013 MAC/s,
which provides ∼2.5 times faster computation than the state-of-the-
art GPUs44 and the same order as the TPU,45 considering only 5%
best-case accuracy degradation and 10 GHz speed nonlinear pro-
cessing, which is not available in GPUs and TPUs. Training the
AONN with the addition of the estimated distortion from the lin-
ear and the nonlinear unit is expected to reduce the influence of the
noise and preserve the high prediction accuracy of the NN using
the wavelength converter as the nonlinear function instead of the
conventional sigmoid function. In the future, we envision that the
scaling to 64 input neurons in our network system can be realized
by interfacing the chip with high-speed state-of-the-art transceiver
modules46 or with co-packaged optics47 in a multi-chip package.

V. SYSTEM ENERGY CONSUMPTION ANALYSIS
In this section, we estimate the power consumption on the

end-to-end (digital-to-optical-to-digital) system enabling the imple-
mentation of the optical neural network. Figure 9 shows the schema
of the complete ONN system, which includes the transmitter, the
optical chip, the receiver, the digital signal processor, and the con-
trol unit. The system overall is controlled by the control unit
(Ctrl), which is interfaced with the computer and includes a field-
programmable gate array (FPGA) and a digital signal processor
(DSP). Here, we use an FPGA for the sake of fast development
and reconfiguration flexibility.48,49 However, application specific
integrated circuits (ASICs) can also be used to reduce the power
consumption even further.50 To analyze the effective power con-
sumption of the ONN, all the components in the system should
be taken into account. The transmitter (Tx) includes lasers, mod-
ulators, and DACs, which are used to drive the modulators. The
ONN includes the ONN chip and its control DACs and drivers
for weighting. The receiver (Rx) consists of photodetectors and the
corresponding ADCs.

The energy consumption of the system is analyzed by consid-
ering different operation modes of the ONN within the end-to-end

FIG. 9. Schematic of the considered end-to-end optical DNN system.
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system. Here, we consider three scenarios: (1) E/O/E with one lin-
ear layer (E/O/E), (2) All-Optical with one complete layer (AO-1L),
and (3) All-Optical with multiple layers (AO-TL), where T stands
for T layers. In the E/O/E approach, the optical chip is used to
calculate linear matrix multiplication, while the nonlinear func-
tion is realized on the DSP, with the data received at the PDs. In
the all-optical approaches, the nonlinear function is co-integrated
with the linear optical neuron, and the output (at each layer output
for the AO-1L case or at the end of the complete multiple-layer
NN for the AO-TL case) is obtained via linear PDs. A more gen-
eral ONN with N-inputs M-outputs and T-layers is now analyzed,
including the end-to-end system performance, for these three differ-
ent operation modes. The operations executed by the ONN systems
are different for these cases, depending on if a single layer or mul-
tiple layers are implemented. For the single-layer implementations,
as in cases (1) and (2), the DNN needs to be decomposed into layers
and analyzed layer by layer, which is not necessary in case (3) for the
same network implementation.

For the inference of a trained DNN, the data and weight matrix
are loaded to the FPGA via the interface with a computer. The FPGA
generates the electrical patterns as well as the weight control cur-
rents, which feed to the modulator DACs and the weight DACs and
drivers, respectively, as shown in Fig. 9. The electrical patterns are
imprinted on the laser beams and sent to the optical neural net-
work chip. The chip is controlled with the analog currents coming
from the respective DACs and amplified at the drivers, with which
the matrix multiplications are calculated. For the E/O/E case, the
detected linear output is converted into digital signals by the ADCs,
and then the DSP unit processes the signals executing the nonlinear
transfer function. The outputs are then sent back to the FPGA, which
generates the patterns for the next layer. The next layer follows the
same procedure. At the output layer, the outputs of the last layer
nonlinear functions will be further processed by the FPGA and com-
pared with the reference labels to provide the final prediction, which
is then passed to the computer. Therefore, the power consumption
of the E/O/E single-layer system can be calculated as

PE/O/E = N × PTx + (N ×M) × Pw +M × (PRx + PeNL + Pctrl), (1)

where PTx is the power of transmitter per channel, Pw is the power
for each weighting, including the power of DAC and the current
driver for the ONN, PRx is the power of receiver, PeNL is the power for
the electrical nonlinear function, and Pctrl is the power of the control.

For AO-1L case, the procedure is similar to the E/O/E case,
with the only difference that the nonlinear function is co-integrated
on the optical chip. Therefore, the DSP does not carry out the non-
linear function calculation and only calculates the final accuracy at
the output layer. Hence, the power of the AO-1L system can be
calculated as

PAO−1L = N × PTx + (N ×M) × Pw +M × (PoNL + PRx + Pctrl), (2)

where PoNL is the power of the photonic nonlinear function. Finally,
for the AO-TL case, the FPGA and DSP are not required to process
and update the inputs and weights for the next layer, but the DSP will
calculate the loss and accuracy based on the final outputs and the
reference labels. Therefore, the power consumption of the AO-TL
system can be calculated as

PAO−TL = N × PTx + (N ×M × T) × Pw

+M × T × PoNL +M × (Pd + Pctrl). (3)

The required number of components of the three different scenarios
and the power values used in the system power analysis are listed
in Table I. These values are considered when using state-of-the-art
components that fit into the scheme of the SOA-based all-optical
neural network structure as described in Sec. II.

Considering the delays related to all the components, the total
time for the E/O/E system to execute one epoch can be specified as

tE/O/E = T × (SN/ fTx + 1/ fTx + tTx + toLin + 1/ fRx + tRx

+ SN/ feIO + teNL + tFPGA + te−inter) + tacc, (4)

for an AO-1L single layer system is calculated as

tAO−1L = T × (SN/ fTx + 1/ fTx + tTx + toLin + toNL + 1/ fRx

+ tRx + SN/ feIO + tFPGA + te−inter) + tacc, (5)

TABLE I. Components in the optical neural network system.

Components E/O/E AO-1L AO-TL Unit P (mW) References

Tx
Laser N N N 150 51
Mod. N N N 20 52
DACs N N N 25 53

ONN

Weight N ×M N ×M N ×M × T 30 25Elements
DACs N ×M N ×M N ×M × T 25 53
o-NL - M M 150 37

Rx
PDs M M M 5 54

ADCs M M M 25 53
e-NL M - - 200 49

Ctl
Accuracy M M M 200 49Cal. Unit

FPGA M M M 200
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and for an AO-TL multi-layer system is calculated as

tAO−TL = SN/ fTx + 1/ fTx + tTx + T × (toLin + toNL)
+ 1/ fRx + tRx + SN/ feIO + tFPGA + te−inter + tacc, (6)

where SN is the number of samples per epoch at the input of each
layer and fTx and fRx are the speed of the transmitter and receiver,
respectively; tTx, toLin, toNL, tRx, teNL, and te-inter are the time delay
from the transmitter, the optical linear unit, the optical nonlinear
unit, the receiver, the electrical nonlinear function, and electrical
interconnection, respectively; tFPGA is the computational time for
the FPGA to generate the patterns and the current values for the
weights; and tacc is the computational time of the DSP for the accu-
racy calculation. The average total energy consumption for epoch
can be expressed as Esyst = Psyst ⋅ tsyst , where Esyst is the total energy
consumptions for the whole neural network system per epoch, tsyst
is the time for computing one epoch of samples, and Psyst is the total
power of the end-to-end system, all calculated, respectively, for the
three operational system cases.

The energy consumption for the optical MAC operation, i.e.,
the synaptic operation, depends on the number of controlled ele-
ments which provide the weights if only the optical engine is con-
sidered. Here, we use the same weighting elements, i.e., the SOAs,
for which the power is 30 mW on average per weight, excluding the
DACs. Therefore, for an operational input data rate of 10 GHz, the
resulting power consumption for one MAC is 3.0 and 5.5 pJ/MAC
if we include the weight DACs. However, this estimation misses the
contribution of the transceiver, the overall electrical controller, the
receiver, and the off-chip computations. Therefore, the end-to-end
system power and the total computational time should be consid-
ered to obtain the real performance metrics of the optical neural
network. For an N-input M-neuron T-layer DNN, the total number
of MAC operations is SN ×M × N × T. Hence, the effective energy
consumption—effective as we now include the end-to-end system
overall contribution—per MAC operation is the total power of the
specific end-to-end system times the total time to execute one epoch
over the total number of MAC operations,

EMAC−e f f = Psyst × tsyst/(SN ×M ×N × T). (7)

The delays and computational speed for different components
are listed in Table II. The values used in the calculations are con-
sidered based on off-the-shelf components. In particular, all optical
delays are obtained from the actual path length, while all the electri-
cal delays are related to the processing clock time of the off the-shelf
electronics.

We first investigate the size scaling of the optical neural net-
work. As mentioned in Sec. II, the network is considered to be
scaling up with M = N, i.e., this energy analysis is done with respect
to a quadratic scaling of the network. When the increasing num-
ber of neurons M, the splitting loss will increase. As a consequence,
we compensate these losses with additional laser power by increas-
ing N, the input channel number. From Table II, it is clear that
the largest DNN that we will investigate is an M × N × T DNN
with a maximum number of 64 input ×64 neuron/layer × 10 layers.
Figure 10 illustrates EMAC-eff obtained from Eqs. (1)–(7) for differ-
ent system modes of operation and looking at different parameters.
Figure 10(a) illustrates the energy consumption per MAC operation

TABLE II. Computing time of the components in the system.

Symbol Description Value Unit

N Max. synapsis number in a neuron 64
M Max. neuron number per layer 64
T Max. layer number 10
SN Input sample number 104

fTx/Rx Speed of the optical transmitter/receiver 10 GHz
tTx Time delay, transmitter 5 ps
toLin Time delay, optical linear unit 10 ps
toNL Time delay, optical nonlinear unit 20 ps
tRx Time delay, receiver 2 ns
teNL Time delay, electrical NL unit 3 ns
te-inter Time delay, electrical connection 100 ns
feIO Speed, I/O connection, FPGA 10 GHz
tFPGA Time, signal processing of FPGA 3 ns
tacc Time, acc./loss calculation of FPGA 6 ns

when increasing the number of synapses per neuron, N, with the
layer number T = 10 (solid lines) and increasing the layer numbers
T when fixing M = N = 64 (dashed lines). EMAC-eff for the multi-
layer DNN is inversely proportional to the number of synapses for
all the cases. The EMAC-eff for E/O/E (in blue) and AO-1L (in red) are
very close, as in both cases the FPGA and transmitter for the signal
processing and pattern regeneration, respectively, notably increase

FIG. 10. The system energy consumption per MAC, EMAC-eff . (a) EMAC-eff obtained
when changing the synapses number N (solid) and layer number T (dashed); (b)
EMAC-eff (solid) and total computing time (dashed) vs input sample numbers SN;
(c) EMAC-eff (solid) and total computing time (dashed) vs speed of transceiver; (d)
EMAC-eff calculated (solid) and total computing time (dashed-dotted) when chang-
ing the power of weighting elements Pw (for the E/O/E (blue), AO-1L (red), and
AO-TL(black) neural network).
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the power consumption as well as computing time after each layer.
EMAC-eff tends gradually to the asymptotic value of 14 pJ/MAC. The
lower limit of energy consumption is set by the power consump-
tion at the transmitter side and at the weighting elements (this power
relates to the weight unit power, and therefore, it does not depend on
the synapses number). For the AO-TL neural network system, avoid-
ing the electronics to optics to electronics conversions when moving
layer by layer, the computing time gets reduced considerably: The
rate of change of EMAC-eff is faster than for the E/O/E and AO-1L
cases and reaches 12 pJ/MAC for a number of 64 synapses/neuron.
If the FPGA was replaced with an ASIC with optimized designs to
reduce the power consumption, the effective energy consumption
would have not been changed dramatically since, in these particu-
lar large-scale network systems, the elements for the control of the
weight represent the main contribution. Always in Fig. 10(a), we
observe that the number of synapses per neuron in the system with
single layer implementations should be greater than 20 for case (1)
and greater than 18 for case (2) in order to guarantee EMAC-eff down
to 20 pJ/MAC, while for the AO-TL neural network, this value is
only 6. On the other hand, the dashed lines plot EMAC-eff with respect
to the number of layers when the synapses number N is 64. EMAC-eff
is, in general, very flat for all three cases. The difference among the
single layer cases, E/O/E (1) and AO-1L (2), with the multi-layer
case, AO-TL (3), is set by the synapse number: a bigger difference
is expected for a smaller synapse number.

All the graphs in Fig. 10(a) tend to an asymptotic value because
the lower limit is bound to the energy consumption on each synapse
control component for M = N > 64 and T > 10. Hence, we carry
out all the other investigations for M = N = 64 and T = 10 while
changing other parameters, such as the input sample number SN ,
the speed of the transceivers fTx/Rx, and the power of the weighting
elements Pw. Figure 10(b) presents EMAC-eff and the total computing
time when changing input sample numbers. The power efficiency
only slightly decreases with varying the input sample numbers from
10 to 100 k (solid lines) for two reasons: EMAC-eff is calculated on
each MAC operation of each sample and the total processing time
for computing (dashed lines) increases linearly from 20 to 200 μs
for the single-layer E/O/E and AO-1L neural network. The comput-
ing time for the AO-TL neural net case, instead, is at least 10 times
faster. On the other hand, Fig. 10(c) shows EMAC-eff as a function of
the transmitter and receiver operation frequency. The energy con-
sumption can be decreased 5 pJ for all the cases, when increasing the
speed of the transmitter and receiver from 10 to 100 GHz, due to the
reduction of the total computing time. Improvements of the SOA
performance are though needed to enable high-speed all-optical sig-
nal processing: This is considered possible when exploiting concepts
such as quantum dot SOAs55 or SOAs with the carrier reservoir
layer,56 for which carrier recovery times down to 0.5–10 ps have
been demonstrated, which can facilitate operation bandwidth up to
100 GHz.

Finally, we tune the power of the biased weighting elements
to see the energy consumption for 64-input 64-neuron ten-layer
implementation with a transceiver speed of 10 GHz. Figure 10(d)
illustrates the resulting EMAC-eff when changing the power of the
weighting elements from 0 to 30 mW (solid lines). The energy con-
sumption per MAC rises linearly with the weight power from 8
to 14 pJ for the single layer cases and from 6 to 12 pJ for the
AO-TL DNN so that the use of an all-optical multi-layer network

gives a 14% improvement in effective energy consumption per MAC,
with respect to E/O/E and the AO-1L implementations. In addi-
tion, the dashed lines show EMAC-eff for the case when a non-volatile
weighting element is used, such as phase change materials:23 For
single-layer cases, the power consumption is 2.4 pJ/MAC, while for
the AO-TL, an energy consumption as low as 0.7 pJ/MAC is cal-
culated. This energy is non-zero because of the transceiver and the
post-processing on the FPGA, as shown in Eqs. (1)–(3) (setting Pw
= 0 and PDAC = 0). This result suggests that the current control of
the weighting elements contributes 5.3 pJ/MAC more for all the
cases and that the SOA weighting consumes 6.3 pJ/MAC (obtained
subtracting the energy consumption at 0 mW from the energy con-
sumption at 30 mW). When substituting volatile and current biased
elements with non-volatile elements in the AO-10L neural network,
we can reach up to 94% energy saving for each MAC operation.
In any case, the energy consumption for AO-TL neural network
outperforms single-layer neural network system implementations.

VI. CONCLUSION
We analyze the performance of an all-optical neural network

structure with WDM connectivity and SOA-based all-optical neu-
rons. The linear neural network can be easily scaled as a function of
WDM signals for multi-synapsis neurons: the linear processing unit
can scale up to 64 c while guaranteeing a large input dynamic range
under neglectable error introduction. A fully monolithically inte-
grated all-optical neuron is experimentally demonstrated exploiting
an SOA WC-based optical nonlinear function based on cross-gain
modulation. The performance of the fully integrated all-optical neu-
ron is 10% better than the hybrid case in terms of error introduction.
The all-optical neural network is simulated with noise induction for
benchmarking the inference of a noisy DNN built for the MNIST
handwritten digit classification problem, showing that, working with
10 GS/s inputs, the all-optical approach is about 2.5 times faster
than the state-of-the-art electronic GPU while guaranteeing similar
accuracies.

Furthermore, we emulate the complete end-to-end system by
introducing in the overall system performance calculation also
the contribution of a control unit, transmitter and receiver units,
together with D/A and A/D converters. The energy consumption
is analyzed at a system level when an N-input M-neuron T-layers
DNN is implemented. The calculation results show that the effec-
tive energy per MAC operation for an all-optical connected DNN
always outperforms the single-layer DNN system. Eventually, the
energy efficiency results are constrained by the speed and power
consumption of the electronic side, including the DAC/ADC at the
transceivers and the control FPGA for the pattern generation and
signal processing, when we increase the number of synapses/neuron.
Nevertheless, the AONN still performs more than 2 times better than
state-of-the-art GPUs at the server level, excluding the energy for the
cooling.
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