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1
Introduction

High-tech original equipment manufacturers (OEMs) produce and assemble state-
of-the-art systems, consisting of many complex and expensive components or
modules. Such high-tech systems are produced in a joint effort by teams of highly
specialized engineers employed by the OEM, who acts as system integrator, and
dozens of suppliers. An example is the production of lithography machines for
the semi-conductor industry by ASML. To produce its end-product, ASML sources
components at many suppliers. Over the past decades ASML has introduced
multiple new generations of their machines featuring new technologies. Upon
introduction of a new generation, the OEM works together with its suppliers to
engineer the required components. An important supplier of ASML is VDL/ETG,
who produces critical components such as the wafer handler. To assemble their
lithography machines and deliver them to the end-customer, it is important for
ASML that VDL/ETG and all other suppliers have sufficient capacity to produce
the required components. However, some suppliers may be hesitant to invest as
unused capacity is costly. Therefore, it is important to coordinate and optimize
supply chain decisions. Other examples of high-tech supply chains include the
aircraft industry, with Boeing and Airbus sourcing components at many different
suppliers, including Yuasa and Saft who produce aircraft batteries, and production
of medical imaging equipment by Philips or Siemens.
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To assemble the final product and deliver it to the customer, the components
supplied by the different suppliers all need to be available. Because of the sheer
size and complexity of the supply chain, it is impossible to oversee this entire
operation and therefore production is not controlled centrally. Instead, the process
is somehow orchestrated by coordinating component inventory replenishment and
production planning between upstream parties that produce a sub-component of
the system and downstream parties that use these sub-components. Each party
manages its operations according to agreements with the other supply chain parties
as well as its own objectives. In order to effectively and efficiently operate the
supply chain and deliver the end-product to the customer, it is important to align
objectives between the different parties and coordinate between their operations.

Supply chain management has been widely studied over the past decades. Recent
reviews of literature focusing on assemble-to-order systems in specific and multi-
echelon systems in general are provided by Atan et al. (2017) and de Kok
et al. (2018), respectively. Cachon (2003) discusses different contracts that aim to
coordinate the supply chain, i.e. contracts that guarantee that the optimal control
policy in case of centralized control is also attained in the decentralized case where
different parties optimize their own objectives. However, some characteristics of
high-tech supply chains have profound consequences on application of available
theory. For example, most research on penalty contracts, in which the OEM
enforces a penalty on the supplier in case the supplier fails to deliver, assumes
no limitations on the penalty costs paid by the supplier and hence it is always
possible to coordinate the supply chain (see e.g. Sieke et al., 2012). In high-tech
supply chains, however, suppliers are typically unable to take over all shortage risk
from the OEM. Consequently, penalty contracts may not be feasible as the required
penalty may be too high for a supplier to pay. Another stream in literature focuses
on contracting based on established capacity (e.g. Brown and Lee, 2003; Roels and
Tang, 2017). However, in high-tech supply chains the OEM often cannot verify
the exact capacity established by the supplier, since the OEM does not have the
knowledge to infer exact production capacity resulting from installed equipment
and technically skilled staff. This hinders application of such capacity contracts in
high-tech supply chains.

On the other hand, some characteristics of high-tech supply chains offer new
opportunities for coordinating the supply chain or optimizing inventory decisions.



1.1 Research problems and contributions 3

In high-tech supply chains there is a certain level of interdependence between an
OEM and a supplier of a critical component. For the supplier, the OEM is an
important customer that generates a large share of their business. Since critical
components are often only sourced at a single supplier, as specific skills and
investments are needed, the OEM is dependent on the performance of this supplier
for receiving this component. This relationship can be utilized for improving supply
chain coordination. Also, the large scale of high-tech assembly systems consisting
of many components suggests potential for applying asymptotic analysis, where
a parameter, in this case the number of suppliers, approaches an extreme value.
We investigate how these characteristics can be used to improve supply chain
management in high-tech supply chains.

1.1. Research problems and contributions

We identify three research problems that are relevant for improving coordination
and control of high-tech supply chains. These problems are discussed in Sections
1.1.1, 1.1.2 and 1.1.3, which introduce the problems and discuss their relevance,
both in theory and in practice.

1.1.1 Overcoming double marginalization by considering multiple
product generations

It is a well-known result that simple wholesale price contracts, where a buyer offers
a wholesale price to a supplier and the supplier determines how much to deliver,
lead to a large loss compared to optimal supply chain profit. This phenomenon
is known as double marginalization and results from the fact that the decisions of
either party are aimed at optimizing its own profits as opposed to overall supply
chain profits. However, since this type of contract is easy to implement in practice,
it is commonly used, also in high-tech industries.

Contracts that are aimed at reducing double marginalization are often either
difficult to implement in high-tech supply chains, as both parties need to agree on
multiple cost or quantity factors early on in the design process, or not enforceable
in practice, such as penalty contracts. To illustrate this, we show in Chapter
2 that under a coordinating penalty contract the penalty charged for failing to
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satisfy demand may be a multiple of the supplier’s best-case profit. Instead, we
study contracts that are easily implemented in practice and improve supply chain
coordination. In high-tech manufacturing, the OEM and a supplier often work
together for extensive periods. When an OEM works with a reliable supplier
that is performing well, the OEM is likely to continue working with this supplier
as new generations of a product are introduced. Since one of the main drivers
for a supplier to perform well is the risk of loosing an important customer, we
investigate how this can be incorporated in supply chain contracting to counter
double marginalization. Specifically, we study whether the prospect of continued
collaboration in case of sufficient capacity can be used to motivate a supplier to
increase capacity investments.

Research Objective 1 Develop a supply chain contract that improves coordination by
offering the prospect of contract renewal.

The importance of long-term supplier-buyer relationships in high-tech supply
chains has been recognized in literature (Jin and Wu, 2007). However, research
on using contract renewal as a motivation for the supplier is limited. Taylor and
Plambeck (2007a,b) study informal relational contracts that are aimed at creating an
incentive for the supplier to invest by establishing a trust-based relationship over
multiple periods. The drawback of these contracts is that they may be complex and
difficult to implement in a high-tech setting. In Chapter 2, by introducing a renewal
contract where the decision of continuing the collaboration explicitly depends on
the supplier’s capacity investment, we offer a simple contract that only requires
agreements on a wholesale price.

In Chapter 2, we assume that there are many suppliers available. Based on this, once
the OEM does not renew the contract the supplier looses an important customer
that will never return. Since in reality high-tech components often result from co-
development between a supplier and the OEM and require complex technical skills
and equipment from the supplier, there is likely a limited number of suppliers
with the required capabilities. This means that the OEM deals with oligopolistic
suppliers, which increases the suppliers’ power. In Chapter 3, we investigate how
this affects the applicability of renewal contracts.

Research Objective 2 Analyze the potential of contingent renewal contracts with perfor-
mance dependent renewal probability in case of oligopolistic suppliers.
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When the number of suppliers with the required capabilities is limited, once the
OEM switches to an alternative supplier, the incumbent supplier expects the OEM
to return at some point. This results in competition between potential suppliers,
as the incumbent supplier wants to invest in capacity to satisfy demand and retain
the OEM’s business, but once the OEM switches to an alternative supplier, the
time it takes until the OEM returns to the incumbent supplier depends on the
capacity investment of the alternative supplier. Competition between supplier’s is
widely studied in literature, but the focus is mostly on quantity or price competition
between suppliers that are simultaneously offering substitute components (Tsitsiklis
and Xu, 2014; Hu et al., 2017). Li and Wan (2017) study how fostering supplier
competition can be used to support performance. In this case, we focus on a
supplier that is the sole supplier of a required component, but risks loosing the
OEM’s business to a competitor in case of bad performance. The performance
of that competitor then influences when the OEM may return to the incumbent
supplier. Supplier switching has been studied by Wagner and Friedl (2007)
and Pfeiffer (2010), who develop conditions for a buyer, in this case the OEM,
for switching. Merckx and Chaturvedi (2020) additionally analyze the trade-
off between fostering supplier competition by offering short-term contracts and
stimulating performance of the incumbent supplier by offering a single long-term
contract. We contribute to this analysis by designing a simple wholesale price
contract, where the probability of switching is endogenously determined by the
capacity decision of the incumbent supplier.

1.1.2 Synchronization between in-house production and supplier
sourcing

In Chapters 2 and 3 we focus on the supply process of a single component. Since
high-tech end-products consist of many components and unavailability of one of
the components has costly consequences for the production of the end-product,
it is important to coordinate between the ordering policy of different supplier-
sourced components and the production of components that are produced in-house
by the OEM. We study an assembly system with a combination of a fixed lead-time
component sourced at an outside supplier and a component that is produced in-
house once a customer order is placed. Our objective is to find an optimal inventory
policy for the lead-time component.
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Research Objective 3 Determine an optimal inventory policy for synchronizing orders of
a component sourced at a supplier with the in-house production process of a high-tech OEM.

We propose a state-dependent base-stock policy for ordering the fixed lead-time
component from the supplier while taking into account the number of outstanding
orders for the in-house produced component. We show that this policy is optimal
and verify numerically that it generates considerable savings compared to a static
policy that disregards this information. These results hold both in continuous time
and discrete time, demonstrating applicability in many practical settings.

Synchronization between order policies of different items has been studied.
Important results on coordination of orders for items with deterministic lead-time
are given by Rosling (1989). Coordination of multiple items with stochastic lead-
times was first studied by Benjaafar and ElHafsi (2006). The problem we study
in Chapter 4 contains a combination of these cases on which literature is lacking,
namely assembly systems consisting of components with a fairly predictable lead-
time as well as components with stochastic lead-times arising from a capacitated
supply system.

1.1.3 Capacity and inventory decisions in large-scale assembly
systems

Since high-tech end-products often consist of many components that need to be
available at the time of assembly, we finally study the problem of simultaneously
determining capacity and inventory in a large-scale assembly system with many
components. When one component is missing, this leads to costly delays in
production of the end-product. The probability of delays occurring can be reduced
by increasing capacity or keeping inventory, which both also have associated costs.
We formulate a stylized model that enables us to study the trade-off between
shortage risk, inventory costs, and capacity costs with the following objective:

Research Objective 4 Derive capacity and inventory decisions for components in a large-
scale assembly system that are asymptotically optimal as the number of components goes to
infinity.

Shortages can occur for example when there are disruptions in the component
production process or when a peak in demand occurs. Since the demand for
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all components results from demand of the end-product, delays of the different
components are correlated. We use asymptotic analysis to obtain an extreme value
result for the delay of the component with the largest backlog as the number of
components grows large. We translate these results to asymptotically exact methods
for cost-optimal inventory and capacity decisions and numerically evaluate their
performance for any realistic number of components.

Simultaneous optimization of capacity and inventory is considered to be a difficult
problem (Bradley and Glynn, 2002). Consequently, this is often tackled by studying
a sequential optimization problem instead. Recently, simultaneous optimization
of capacity and inventory has received more attention (Reed and Zhang, 2017;
Reddy and Kumar, 2020). An approach similar to ours is used by Bradley and
Glynn (2002), yet they do not encounter the problem of correlated delays as only
a single item is considered. We thus contribute by introducing asymptotically
exact methods for determining capacity and inventory for a large-scale assembly
system with dependent delays. We show numerically that these methods result
in costs that are close to the optimal costs already for a practical number of
components. Additionally, we introduce an important technical result by showing
that the dependence resulting from a common arrival process causes the scaled
maximum queue length to converge to a normally distributed random variable as
the number of components grows large.

1.2. Outline

This thesis analyzes the problems introduced in Section 1.1 in four Chapters. All
chapters can be read individually. Chapter 2, adapted from Meijer et al. (2021d),
introduces a contingent renewal contract and compares it to existing contracts. In
Chapter 3, which is based on Meijer et al. (2021b), we extend the application of the
contingent renewal contract to the case where there is only a limited number of
oligopolistic suppliers available. Relevant results from Chapter 2 are highlighted in
Chapter 3, such that the chapter can be understood without complete knowledge
of the contents of Chapter 2. In Chapter 4, which is based on Meijer et al. (2021c),
we apply a combination of queuing theory and Markov processes to derive an
optimal order policy for the synchronization problem introduced in Section 1.1.2.
In Chapter 5, we provide approximations for both inventory and capacity that are
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asymptotically optimal as the number of components grows large. This chapter is
based on Meijer et al. (2021a). Finally, this theses is concluded in Chapter 6 where
we summarize the main findings and their practical implications, followed by some
directions for future research.



2
Direct versus Indirect Penalties for

Supply Contracts in High-tech Industry

Unlike consumer goods industry, a high-tech manufacturer (OEM) often amortizes
new product development costs over multiple generations, where demand for
each generation is based on advance orders (i.e., known demand) and additional
uncertain demand. Also, high-tech OEMs usually source from a single supplier.
Relative to the high retail price, the costs for a supplier to produce high-tech
components are low. Consequently, incentives are misaligned: the OEM faces
relatively high under-stock costs and the supplier faces high over-stock costs.

In this chapter, we examine supply contracts that are intended to align the incentives
between a high-tech OEM and a supplier so that the supplier will invest adequate
and yet non-verifiable capacity to meet the OEM’s demand. When focusing on a
single generation, the manufacturer can coordinate a decentralized supply chain
and extract all surplus by augmenting a traditional wholesale price contract with a
“contingent penalty” should the supplier fail to fulfill the OEM’s demand. When
the resulting penalty is too high to be enforceable, we consider a new class of
“contingent renewal” wholesale price contracts with a stipulation: the OEM will
renew the contract with the incumbent supplier for the next generation only when

This chapter is based on Meijer et al. (2021d).
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the supplier can fulfill the demand for the current generation. By using non-renewal
as an implicit penalty, we show that the contingent renewal contract can coordinate
the supply chain. While the OEM can capture the bulk of the supply chain profit,
this innovative contract does not enable the OEM to extract the entire surplus.

2.1. Introduction

This chapter examines a supply contract problem arising from a high-tech supply
chain that involves an original equipment manufacturer (OEM) who designs and
manufactures state-of-the-art systems and a focal supplier who makes a critical
component for the system. Examples of high-tech industries (and corresponding
OEMs) include commercial aircraft (Boeing, Airbus), medical imaging equipment
(Philips, Siemens, GE), and lithography systems for the semiconductor industry
(ASML, CANON). Suppliers who make critical components include Yuasa (who
makes the batteries for Boeing’s 787), VDL/ETG (who makes the wafer handler
for ASML), and Neways (who makes control systems for Philips). To reduce
development cost and development time in the high-tech industry, most OEMs act
as system “integrators”: they initiate and develop different generations of a product,
which they engineer together with hundreds of suppliers (Tang and Zimmerman,
2009). However, based on our discussion with ASML in the Netherlands, we
learned that, unlike mass produced consumer products such as apparel and home
furnishings, the sourcing and supplier management for high-tech components are
fundamentally different as follows:

1. Multiple product generations. Because the research and development cost
of a new product involves billions of euros, each new product has multiple
generations so that the OEM can continue to improve the design for each
generation instead of starting from scratch. Therefore, accounting for the life
of different generations, the life cycle of a new product can last for decades.
For example, Boeing’s 747 was launched in 1970 and retired in 2018.

2. Advance orders and a highly uncertain additional demand. Like any
high-tech product, the demand for a new product (or a new generation of
the product) is highly uncertain because some customers are risk-averse in
adopting new technologies especially when they are uncertain about product
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performance. To reduce demand uncertainty, many OEMs (e.g., Boeing,
ASML) encourage customers to place their orders in advance even though
some customers prefer to order after product launch. For example, Boeing
received some 900 advance orders for the Boeing 787, but many airlines only
ordered after the aircraft was in production (Nolan, 2009). Hence, the base
demand associated with the advance orders is known, but a highly uncertain
additional demand remains prevalent.

3. Single-sourced. Because the production of high-tech components requires
component-specific equipment and technology-specific technical staff, the
production capacity of a high-tech component is also generation-specific.1

Also, due to high demand uncertainty, suppliers are reluctant to participate
unless it is sole-sourced. For these reasons, the OEM sources each component
from a single supplier for each generation. In fact, such supply contracts
are often renewed, and OEMs may work with the same supplier for multiple
product generations.2

4. Non-verifiable supply capacity. While the OEM can audit the equipment
acquired by the supplier for a specific generation, the actual production
capacity is difficult for the OEM to verify. Production often involves technical
staff and engineers to operate the required equipment, but the available staff
can also be assigned to work on other OEMs’ orders. Therefore, the actual
production capacity is difficult to judge for the OEM. While the actual capacity
is not verifiable ex-ante, the OEM will know the supplier’s capacity only when
the supplier failed to meet the ex-post realized demand (placed by the OEM).

5. Very high under-stock cost. In the high-tech industry, the selling price of each
system is in millions of euros. At the same time, the research and development
cost is in billions of euros, while the unit cost of a component is relatively
very low: it can range from a few hundred euros to hundreds of thousands of
euros.

Other issues such as varying product quality (see e.g. Transchel et al., 2016) may also
play a role, but are outside the scope of this chapter. The above context creates the

1This is because new technology is involved for each new generation, the extended use of equipment
for older generation production is normally infeasible or impractical.

2Also, due to the underlying advanced technology, OEMs usually work with a single supplier for
the development of each component to foster close cooperation with the intention of a longer-term
relationship. Examples include Boeing with Alcoa, ASML with VDL/ETG, Philips with Neways, etc.
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following challenges faced by many OEMs (e.g., ASML) in the high-tech industry.
First, due to high selling price and low unit production cost (excluding the research
and development cost), the OEM incurs a very high under-stock cost and would like
the supplier to invest ample capacity to meet both the base demand and additional
demand. However, under a standard wholesale price contract the supplier has little
incentive to invest in ample capacity because such capacity is costly and because
the wholesales price is relatively low. Such misaligned incentives have regularly
caused shortages of components, which in turn have caused failures of OEMs to
meet uncertain demand.3 Second, due to non-verifiable supply capacity ex-ante,
the OEM cannot contract directly based on the reserved capacity as examined in
the literature (Brown and Lee, 2003; Roels and Tang, 2017).

These two challenges motivate us to develop a new class of supply contracts that
is intended to entice the supplier to invest sufficient capacity to coordinate the
decentralized supply chain by aligning the incentives of the OEM and the supplier
when capacity is not verifiable ex-ante. In addition to the known base demand, we
assume that the additional uncertain demand follows an exponential distribution
to ensure tractability. We first examine the classic wholesale price contract arising
from a single product generation that may occur when the OEM treats the sourcing
decision of different product generations separately. When the OEM pays the
supplier a wholesale price for each unit delivered, we re-confirm a well-known
result: a traditional wholesale price contract can coordinate the supply chain only
when the wholesale price equals the OEM’s profit margin, which the OEM will
not oblige (Cachon, 2003). However, when the OEM offers a wholesale price
while imposing a “shortfall penalty” (i.e., the supplier fails to meet the OEM’s
demand), we find that the “augmented” wholesale price contract can enable the
OEM to coordinate the supply chain while capturing all the profit. Hence, such an
augmented contract is optimal to the OEM for managing the supply contract for a
single product generation.

While the augmented wholesale price contract is optimal and can coordinate the
decentralized supply chain for a single product generation, it may not be practical
when the penalty is too high to be enforced upon financially constrained suppliers.
Our analysis reveals that this happens primarily when the cost of underage is
extremely high, a situation that occurs in the high-tech setting as selling prices

3For example, a shortage of aircraft-grade fasteners, allegedly resulting from Alcoa’s insufficient
capacity investments, caused headline delivery delays of the Boeing 787 (Reuters, 2007).
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are much higher than the supplier’s capacity and production costs. In those
cases, instead of imposing a direct shortfall penalty, we consider a new class
of supply contracts that takes the sourcing of multiple product generations into
consideration by offering the option of renewing the contract. The aim of studying
the augmented wholesale price contract with penalty is thus two-fold. First, by
analyzing this contract we illustrate how penalties can be used as motivation, which
aids the understanding of the remainder of the chapter, but have shortcomings
when applied in high-tech supply chains. Second, the augmented wholesale price
contract with penalty serves a the basis on which we build our renewal contract,
where we frame non-renewal as indirect penalty.

Specifically, we consider a class of “contingent renewal” wholesale price contracts
that can be described as follows: in addition to the wholesale price, the OEM will
renew the contract with the incumbent supplier for the production of the next
generation only when it has sufficient capacity to fulfill the OEM’s demand for
the current generation. Observe that this contingent contract creates an “indirect
penalty” associated with non-renewal that affects the supplier’s future profit,4 and
this contingent contract is enforceable because the OEM has the option to work with
different suppliers for different generations (especially when the supplier capacity
is generation-specific). Alternatively, we could frame renewal as a reward, with
non-renewal being the baseline, as the OEM does not have legal commitment to
source from the same supplier for subsequent generations. We use the term penalty
for consistency.

By expanding our model to capture the characteristics of multiple product gener-
ations, we find that the contingent renewal supply contract can enable the OEM
to coordinate the decentralized supply chain; however, the OEM cannot extract the
entire surplus from the supplier. Even so, we find that the OEM can capture the
bulk of the total profit of the entire supply chain when the selling price is much
higher than the supplier’s capacity and production costs and when the supplier
has a high valuation of future profits or when a substantial fraction of total demand
is ordered in advance.

This chapter is organized as follows. We review relevant literature in Section 2.2.
In Section 2.3, we focus our analysis for the single product generation case and

4Discussions with high-tech manufacturers have revealed that long-term cooperations (and the
possibility to terminate them) are key to entice suppliers to comply.
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show that, by augmenting the wholesale price contract with a contingent penalty,
the OEM can coordinate the supply chain optimally by extracting the entire surplus
from the supplier. Section 2.4 extends our analysis to the multi-generation case.
By developing a wholesale price contract with endogenous renewal probability,
the OEM can coordinate the supply chain but it cannot extract the entire surplus
from the supplier. However, the coordinating contingent wholesale price contract
enables the OEM to capture the bulk of the total supply chain profit under certain
conditions. In Section 2.5 we show that our results continue to hold when we
consider for example other demand distributions. The chapter concludes in Section
2.6. All proofs are provided in Appendix 2.A.

2.2. Literature review

Some of the contracts studied in this chapter may be renewed over multiple
periods. Taylor and Plambeck (2007b,a) study informal, relational contracts that
create incentives for the supplier to invest in production capacity repeatedly over
multiple periods. Taylor and Plambeck (2007b) derive the optimal self-enforcing
relational contract. However, this contract may be complex and therefore difficult
to implement, for which reason an intermediate-complexity relational contract that
performs well in many parameter settings is considered as well. Since these
contracts are often still difficult to implement in practice, Taylor and Plambeck
(2007a) consider simple relational contracts that consist of agreements on price
only or on price and quantity. They specify conditions under which a price-only
contract is most applicable and when a price-quantity contract is more efficient and
compare the performance of the most suitable one to that of the optimal relational
contract from Taylor and Plambeck (2007b). They show that for large discount
factors, the performance of the simple relational contracts is close to that of the
optimal relational contract, but for moderate capacity cost and discount factors
the loss compared to the optimal relational contract is substantial. Similar to
Taylor and Plambeck (2007b,a), Sun and Debo (2014) show that informal long-
term relationships can be sustained when the discount factor of future profits is
sufficiently high, taking into account the effect of turbulent markets.

While Taylor and Plambeck focus on comparing various relational contracts, we
focus on assessing the relative merits of simple contracts and their applicability
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inspired by a practical application in high-tech supply chains. We show that
wholesale price contracts with penalty can coordinate the supply chain but may
not always be enforceable. Although our renewable wholesale price contracts are
similar to the price-only relational contracts, our contracts perform better especially
when the valuation of future profits is high (cf. Taylor and Plambeck).

Our model explicitly distinguishes between a known base demand (known before
product launch) and an uncertain tail demand (revealed after product launch).
We derive new analytic results for this model to generate clear insights that are
particularly relevant in the high-tech setting. In this setting retail prices are typically
high, and for the corresponding asymptotic limit we derive a simple closed-form
expression of the division of profit over the OEM and supplier. In this limit, the
renewable wholesale price contracts result in the OEM capturing a large share of
the profit, which motivates OEMs to adopt this very simple contract in practice.
Additionally, we show that a higher known base demand results in a higher share
of profit captured by the manufacturer.

Our work is also related to the capacity reservation literature (see e.g. Barnes-
Schuster et al., 2002; Brown and Lee, 2003; Erkoc and Wu, 2005; Ren et al., 2010;
Roels and Tang, 2017). Unlike these single-period models, our high-tech industry
context lends itself to long-term partnerships involving repeated interactions with
the supplier (Jin and Wu, 2007). While Serel (2007) considers a multi-period capacity
reservation contract between a manufacturer and a long-term supplier, we consider
the case when capacity cannot be verified and when the contract renewal hinges
on the supplier’s performance. Long-term supply contracts are also considered by
Frascatore and Mahmoodi (2008). Frascatore and Mahmoodi (2008) conclude that
the supplier can be induced to create higher capacity by offering a contract that
spans multiple periods and that including a penalty can encourage the supplier
to invest in the supply chain optimal capacity. Our model differs significantly
from the setting considered by Frascatore and Mahmoodi (2008), as they consider
a relation spanning a fixed number of periods while we consider a potentially
infinite collaboration where continuation depends on the supplier’s investment
decisions. Furthermore, we show that direct penalties may not be enforceable in
the considered setting. Decisions on continuing a supply chain relationship are
studied by Pfeiffer (2010) in a setting with information asymmetry. It is found that
the threat of switching between suppliers can be used as an instrument to reduce
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information asymmetry.

Our model is related to Vendor Managed Inventory (VMI) programs in which
the supplier is responsible for replenishing the manufacturer’s inventory. The
past decades VMI has been investigated increasingly (see e.g. Fry et al., 2001;
Lee and Cho, 2018; Hu et al., 2018). Corbett (2001) and Chintapalli et al. (2017)
study how supply chain efficiency can be increased by delegating replenishment
decisions to the supplier, as inefficiency due to sub-optimal order quantities is
reduced. However, these studies focus on one-off interactions or are based on
deterministic demand. Guan and Zhao (2010) consider repeated interaction in a
stochastic demand setting and find that parties are more willing to share private
information when engaging in repeated interactions. Our study is fundamentally
different from this stream of work. In our context, the contract renewal probability
is endogenously dependent on the supplier’s capacity decision and the contract will
not be renewed should the supplier fail to fulfill the OEM’s uncertain demand.

Finally, the study by Sieke et al. (2012) is closely related to our study. They
study supply chain coordination using service level contracts that enforce pre-
specified service levels with financial penalty payments. It is concluded that for
the considered types of contracts for every service level there exists a contract that
coordinates the supply chain, assuming there are no limitations on the penalty costs.
We show that in practice there often are limitations on the penalty costs and suggest
an alternative type of contracts that calls for non-renewal should the supplier fail to
fulfill the OEM’s uncertain demand.

2.3. Contracting for one product generation

In this section, we consider a contracting issue arising from the development of one
product generation between the OEM and the supplier. This setting occurs when
the underlying product has only one generation or when the OEM deals with the
supply contract for different product generations separately (i.e., one generation
at a time). In Section 2.4 we shall extend our analysis to the case when the OEM
takes the development of multiple product generations into consideration when
contracting with a supplier.



2.3 Contracting for one product generation 17

2.3.1 Centralized supply chain: a benchmark

To establish a benchmark, let us begin by analyzing a supply chain under
centralized control in which the OEM and the supplier are managed by a central
body. The centralized supply chain makes the capacity decision x “before” demand
D is realized. The cost for investing in the requisite capacity is c ≥ 0 per unit, and
the demand (for the single production generation) is D = b + A, where b ≥ 0 is the
“base demand” that is known in advance (e.g., advance orders) and A represents the
uncertain “additional” demand that is realized after the product is launched, with
A ∼ Exp(λ).5 (In Section 5.2, we examine numerically the case when A follows
an Erlang-n distribution as well as a general demand distribution, for which we
obtain similar structural results.) To capture the notion as explained in Section 2.1
that many customers are reluctant to place their orders of high-tech products in
advance, we shall assume that the expected additional demand is greater than the
base demand so that E[A] = 1

λ ≥ b.

Given the capacity x established at c per unit “before” the demand is realized, the
centralized supply chain can produce up to x units at cost k per unit “after” the
demand D is realized. If D ≤ x, then the gross revenue is equal to (r− k)D, where
r is the exogenously given retail price. To capture the notion that high tech products
have a high net profit margin (r− k− c), we shall assume that r− k− c > c.6

By assuming that unmet demand is lost and the established capacity x has no
salvage value,7 the profit of the centralized supply chain Π(x) can be written as:

Π(x) = −cx + E[(r− k)min{D, x}] = −cx + E[(r− k)min{b + A, x}] (2.1)

By considering the first order condition and by using the fact that A ∼ Exp(λ)
along with our assumptions that r− k− c > c and 1

λ ≥ b, we obtain:

Proposition 2.1 When the supply chain is controlled centrally, the optimal capacity

5The decomposition of demand into advance orders and uncertain late orders is for example seen
in the case of Boeing, where over 900 advance orders were received before the Boeing 787 was actually
produced, while some airlines would place the order only after the new aircraft is in production (Nolan,
2009).

6Without the assumption that r − k − c > c, additional conditions are necessary in Proposition 2.2
to satisfy the supplier’s participation constraint. All other results presented in this chapter continue to
hold without this assumption.

7Our model can be extended to the case when capacity has salvage value. For ease of exposition, we
scale the salvage value to zero.
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x∗ = b + 1
λ log

(
r−k

c

)
(where log refers to the natural logarithm with base e) and the

corresponding optimal supply chain profit Π∗ = (r− k− c)
(

b + 1
λ

)
− c

λ log
(

r−k
c

)
> 0.

Besides the base demand b, the optimal capacity x∗ includes some “additional
capacity” 1

λ log
(

r−k
c

)
> 0 that is intended to satisfy the uncertain additional

demand A. This additional capacity is increasing in E[A] = 1
λ and the gross margin

(r − k), but it is decreasing in the capacity unit cost c. Armed with the “first-best
solution” x∗ as a benchmark, we now consider the case when the underlying supply
chain is decentralized.

2.3.2 Decentralized supply chain: wholesale price contracts

In a decentralized supply chain, the OEM delegates the capacity investment
decision to an external supplier and offers a wholesale contract to the supplier based
on a wholesale price w (a decision variable). After the OEM has decided on and
communicated w, the supplier decides on capacity x, where x is “not verifiable” by
the OEM as explained in Section 2.1. In this case, the supplier establishes capacity
x at cost c per unit before the demand D is realized. After the demand is realized,
the supplier can produce up to x at cost k per unit. Hence, the supplier’s profit for
any given wholesale price w is:

π̃s(x, w) = −cx + E[(w− k)min{D, x}] = −cx + E[(w− k)min{b + A, x}]. (2.2)

By considering the first order condition and the fact that A ∼ Exp(λ), the supplier’s
optimal capacity is:

x̃(w) = b +
1
λ

log
(

w− k
c

)
(2.3)

if and only if w ≥ c + k.8 Substituting Equation (2.3) into Equation (2.2), the
corresponding optimal supplier profit is:

π̃s(w) ≡ π̃s(x̃(w), w) = (w− c− k)
(

b +
1
λ

)
− c

λ
log
(

w− k
c

)
. (2.4)

8Clearly, if the wholesale price is below cost (i.e., w < c + k), x̃(w) = 0.
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The following lemma asserts that the supplier’s participation constraint (i.e.,
π̃s(w) ≥ 0) holds9 when the wholesale price is greater than the effective unit cost
c + k. Hence, the supplier participation constraint holds when w ≥ c + k.

Lemma 2.1 The supplier’s profit π̃s(w) = (w− c− k)
(

b + 1
λ

)
− c

λ log
(

w−k
c

)
≥ 0 if

w ≥ k + c.

By comparing x̃(w) given in (2.3) and x∗ given in Proposition 1, we get:

Corollary 2.1 Under the wholesale price contract, one can coordinate the decentralized
supply chain so that x̃(w) = x∗ if and only if w = r.

In view of Corollary 2.1, the OEM can coordinate the supply chain by setting w = r
to entice the supplier to reserve the capacity x̃(r) = x∗; however, the OEM will earn
nothing which is undesirable.

2.3.2.1 Optimal wholesale price

Instead of focusing on supply chain coordination by setting w = r, let us consider
the case when the OEM optimizes its own profit.

By anticipating the supplier’s optimal capacity investment x̃(w) = b + 1
λ log

(
w−k

c

)
as given in (2.3), the OEM’s profit associated with any w ≥ c + k (to ensure supplier
participation) is:

π̃m(w) = E [(r− w)min {D, x̃(w)}]

= E

[
(r− w)min

{
b + A, b +

1
λ

log
(

w− k
c

)}]
= (r− w)

(
b +

1
λ

(
1− c

w− k

))
. (2.5)

Hence, the OEM’s problem is: maxw≥c+k π̃m(w). By noting that our assumptions
that r− k− c > c and 1

λ ≥ b imply r− k > (λb + 1)c, the first-order condition yields
the optimal wholesale price as follows:

9To ease our exposition and without loss of generality, we scale the minimum acceptable profit for
the supplier to accept a contract to 0, which is standard approach being used in the supply contract
literature (e.g., Cachon (2003)). For completeness, we shall extend our analysis to the case when this
minimum acceptable profit is any Z ≥ 0 in Section 2.5.1.
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Proposition 2.2 In a decentralized supply chain, the optimal wholesale price w̃ satisfies

w̃ = k +

√
(r− k)c
bλ + 1

,

and the corresponding capacity (selected by the supplier) is:

x̃ ≡ x̃(w̃) = b +
1
λ

log

(√
r− k

(bλ + 1)c

)
.

Because r − k > (λb + 1)c, it is easy to check that w̃ > c + k so that the
supplier’s participation constraint is satisfied. Also, Proposition 2 has the following
implications. First, direct comparison between x̃ and x∗ given in Proposition 1

reveals that x̃ < x∗. Hence, when operating under the wholesale price contract
w̃ that maximizes the OEM’s profit, the supplier will invest capacity level x̃ that
is lower than the first-best solution x∗ for the centralized case. Second, it is
easy to check that both the OEM’s optimal wholesale price w̃ and the supplier’s
“additional” capacity x̃ − b are increasing in the total margin r − k on the end
product and the expected additional demand 1

λ , but decreasing in the base demand
b.

By substituting the OEM’s optimal wholesale price w̃ and the supplier’s capacity x̃
given in Proposition 2 into (2.4) and (2.5), we find:

Proposition 2.3 When the OEM offers its optimal wholesale price w̃ to the supplier in a
decentralized supply chain, the supplier’s optimal profit π̃s and the OEM’s optimal profit
π̃m satisfy:

π̃s =

√ (r− k)c
bλ + 1

− c

 b +

√
(r−k)c
bλ+1

λ
− c

λ
− c

λ
log

(√
r− k

(bλ + 1)c

)
> 0, and

π̃m =

r− k−

√
(r− k)c
bλ + 1

b +
1
λ

1−

√
(bλ + 1)c

r− k

 > 0.

Also, π̃s + π̃m < Π∗, where Π∗ is the optimal profit of the centralized supply chain as
stated in Proposition 1.
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Figure 2.1: Efficiency of the wholesale price contract w̃.

Propositions 2 and 3 reveal that, when operating a decentralized supply chain by
using a wholesale price w̃, the supplier will invest at a lower capacity level x̃ (than
the first best solution x∗) so that the total profit of the decentralized supply chain is
lower than that of the centralized supply chain; i.e., π̃s + π̃m < Π∗.

We now numerically examine the efficiency of the wholesale price contract w̃
(measured in terms of π̃s+π̃m

Π∗ ) in Figure 2.1. Specifically, we set b = 1, but we
vary the ratio between gross margin and the capacity investment cost per unit r−k

c
from 2 to 50,10 and set expected additional demand E[A] = 1

λ = 1, 2, 10. Observe
from Figure 2.1 that the wholesale price contract w̃ can be rather inefficient when
expected additional demand 1

λ becomes large, which is the case in the high-tech
supply chain context we consider. When r−k

c increases, the inefficiency reduces
somewhat, which is mainly due to the fact that the r− k term becomes dominant.

In summary, we find that the wholesale price contract that coordinates the supply
chain by setting w = r is not practical, and the wholesale price contract that
optimizes the OEM’s profit as stated in Proposition 2 is deemed inefficient (Figure
2.1). These observations motivate us to consider ways to “refine” the wholesale
price contract in order to improve its efficiency in the next section.

10Because of our assumption (r− k− c) > c, r−k
c > 2.
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2.3.3 Augmented wholesale price contracts with lump-sum contin-
gent penalty

Recognizing that the traditional wholesale price contract cannot coordinate the
supply chain (unless we set w = r) and it is inefficient when we set w = w̃ to
maximize the OEM’s profit, we now consider an “augmented” wholesale price
contract that can be described as follows. In addition to the wholesale price w,
the OEM imposes a “lump-sum contingent” penalty ρ that the supplier is liable to
pay to the OEM when its capacity x is insufficient to fulfill the realized demand D;
i.e., when D > x. Once the wholesale price and penalty are known, the supplier
determines its optimal capacity. We shall show that this augmented wholesale price
contract is optimal: it can coordinate the supply chain and it enables the OEM to
attain the first best profit Π∗ as in the centralized system.

To analyze the augmented wholesale price contract (w, ρ) via backward induction,
let us first determine the supplier’s expected profit. In preparation, let us define an
indicator function 1{D>x} that equals 1 if D > x and equals 0, otherwise. Because
D = b + A, the contingent lump-sum penalty can be expressed as ρ · 1{b+A>x}.
By incorporating this penalty into the supplier’s profit given in Equation (2.2), the
supplier’s profit for any given augmented wholesale price contract (w, ρ) and any
capacity x is π̂s(x, w, ρ), where:

π̂s(x, w, ρ) = −cx + E[(w− k)min(b + A, x)− ρ1{b+A>x}]. (2.6)

By differentiating π̂s(x, w, ρ) in Equation (2.6) with respect to x and by considering
the first-order condition, the optimal supplier’s capacity x̂(w, ρ) for any given
augmented wholesale price contract (w, ρ) is:

x̂(w, ρ) = b +
1
λ

log
(

w− k + ρλ

c

)
. (2.7)

Anticipating the supplier’s capacity x̂(w, ρ), the OEM’s profit is π̂m(w, ρ), where:

π̂m(w, ρ) = E[(r− w)min{b + A, x̂(w, ρ)}+ ρ1{b+A≥x̂(w,ρ)}] (2.8)

By comparing the supplier’s capacity x̂(w, ρ) against the first best solution x∗

given in Proposition 1, we can identify the following conditions for the augmented
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wholesale price contract (w, ρ) to coordinate the decentralized supply chain so that
x̂(w, ρ) = x∗:

Proposition 2.4 Any augmented wholesale price contract (w, ρ) that satisfies w + ρλ = r
can enable the OEM to coordinate the decentralized supply chain so that x̂(w, ρ) = x∗.
However, among all coordinated augmented contracts, it is optimal for the OEM to set
the wholesale price ŵ = k + c + c

bλ+1 log
(

r−k
c

)
and the contingent lump-sum penalty

ρ̂ = 1
λ

(
r− k− c− c

bλ+1 log
(

r−k
c

))
≥ 0 so that the OEM can extract the entire surplus

from the supplier; i.e., π̂s = 0, π̂m = Π∗, and π̂s + π̂m = Π∗.

Proposition 2.4 reveals that there are infinitely many augmented wholesale price
contracts that can coordinate a decentralized supply chain so that the supplier will
invest its capacity x̂(w, ρ) = x∗. Also, there exists a coordinating contract (ŵ, ρ̂)

that can enable the OEM to extract the entire surplus from the supplier so that
her profit is equal to the profit of the entire centrally controlled supply chain. By
achieving the first best solution and the highest possible profit, we can conclude
that the coordinating contract (ŵ, ρ̂) is the optimal contract for the decentralized
supply chain with 100% contract efficiency (i.e., π̂s+π̂m

Π∗ = 1).

Proposition 2.4 specifies the optimal augmented wholesale price contract for the
OEM; however, the implementation of such an optimal contract would depend
on the underlying business environment. For instance, the lump-sum penalty
ρ̂ = 1

λ

(
r− k− c− c

bλ+1 log
(

r−k
c

))
can be too high for a financially constrained

supplier to pay so that such an optimal augmented wholesale price contract is not
enforceable. This situation can occur in the high-tech sector when the OEM’s retail
price r is much larger than c + k as illustrated in the following numerical example.

A numerical example. Consider the case when r = 107, c = 105, k = 0, the base
demand b = 50 and the expected additional demand E[A] = 1

λ = 100 so that
our assumptions r − k − c > c and 1

λ ≥ b hold. By substituting these parameter
values into the expressions from Proposition 2.4, we obtain: x̂ = 510, ŵ ≈ 0.4 · 106,
and ρ̂ = 959 · 106. Now consider a specific realization of the additional demand
where A = 460 so that the realized demand D = b + A = 510 = x̂. This demand
realization represents the best-case scenario for the supplier, under which he can use
its entire capacity to fulfill demand without subjecting to any penalty. The profit for
the supplier under this specific demand realization is equal to 156.7 · 106. However,
considering all possible demand realizations, because Prob{A > 460} ≈ 0.01, there
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is a 1% chance that D = b + A > 510 = x̂. When this happens, the supplier is
subject to a penalty ρ̂ = 959 · 106 that is six times his best-case profit of 156.7 · 106

and the supplier is unlikely to be able to pay. Therefore, this example illustrates
that, when the retail price r is much higher than k + c, the optimal augmented
wholesale price contract may not be enforceable even though it is optimal for the
OEM.

The above numerical example reveals that, when (r− k− c) is very high, the optimal
augmented wholesale price contract may not be enforceable because a “direct”
lump-sum penalty is too high for a financially constrained supplier to pay. One
could worry that the risk imposed by the supplier is too high in general, since the
supplier is held responsible for not meeting uncertain market demands. However,
we need to put this in perspective by considering the bigger picture. Suppose
that the supplier delivers a range of relatively inexpensive components to the
OEM. For each component the supplier and OEM enter an appropriate contract
with contingent penalty. Then obviously, for each single component there may be
stockouts that the supplier does not have full control over, but still has to pay for.
These stockouts are caused by outside influences beyond the control of the supplier,
such as exogenous stochastic demand. However, the supplier still controls the risk.
Under the wholesale price contract with contingent lump-sum penalty this results
in low stockout risks, rendering it likely that the supplier’s actual penalty payments
are low compared to his earnings. So overall the risk is low. Another option would
be switching to a per-unit penalty. In the following section we will investigate
whether this would make the augmented wholesale price contract more applicable
in high-tech supply chains.

2.3.4 Augmented wholesale price contracts with contingent unit
penalty

Instead of a lump-sum shortfall penalty that may appear to be harsh, let us consider
the case when the OEM imposes a per-unit shortfall penalty. In this case, the
expected penalty no longer equals ρE[1{b+A>x}], but is equal to ρ1E [(b + A− x)+]
with ρ1 representing the “per-unit shortfall penalty”. The supplier’s profit function
given by Equation (2.6) is thus adjusted to

π̂s(x, w, ρ1) = −cx + E[(w− k)min(b + A, x)− ρ1(b + A− x)+] (2.9)
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By considering the first order condition, the optimal supplier’s capacity x̂(w, ρ1) for
any given augmented wholesale price contract (w, ρ1) is:

x̂(w, ρ1) = b +
1
λ

log
(

w− k + ρ1

c

)
. (2.10)

In anticipation of the supplier’s capacity x̂(w, ρ1), the OEM’s profit is given by:

π̂m(w, ρ1) = E[(r− w)min{b + A, x̂(w, ρ1)}+ ρ1(b + A− x̂(w, ρ1))
+] (2.11)

Proposition 2.5 The augmented wholesale price contract (w, ρ1) with ŵ = k + c +
c

bλ+1 log
(

r−k
c

)
and ρ̂1 = r− k− c− c

bλ+1 log
(

r−k
c

)
coordinates the supply chain while

allowing the OEM to extract the entire surplus.

Proposition 2.5 shows that besides the coordinating augmented contract with lump-
sum shortfall penalty ρ presented in Proposition 2.4, there also exists a coordinating
augmented wholesale contract with a per-unit shortfall penalty ρ1 that allows the
OEM to capture the entire surplus. Hence, we can conclude that (ŵ, ρ̂1) is also an
optimal contract for the decentralized supply chain with 100% contract efficiency.
However, returning to the numerical example, in the following we will show that
this contract is equally unlikely to be enforceable in a high-tech setting as the lump-
sum penalty contract.

A numerical example. Let us revisit the example discussed in Section 2.3.3, with
r = 107, c = 105, k = 0, base demand b = 50 and expected additional demand
E[A] = 1

λ = 100. By substituting these parameter values into the expressions
obtained in Proposition 2.5, we find x̂ = 510 and ŵ ≈ 0.4 · 106. We now also
have a per-unit penalty ρ̂1 = 9.59 · 106, meaning that for every component that the
supplier is unable to supply, he incurs a penalty that is nearly 24 times as high as
the wholesale price he receives for every unit supplied.

This numerical example illustrates that when (r − k− c) is very high, the optimal
augmented wholesale price contract may not be enforceable, whether a lump-sum
penalty is used or a per-unit penalty. Upon discussing with an OEM, we discovered
a different form of “indirect” penalty that is enforceable by the OEM when it sources
components of multiple product generations over time. We explore this indirect
penalty next.
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2.4. Renewable wholesale price contracts for multiple

generations

We now consider the case when the OEM develops multiple generations of a
high-tech product. As explained in Section 2.1, because different generations are
based on different technologies, the supplier’s capacity is generation-specific: the
extended use of the capacity designated for one generation to the next generation is
not possible. Therefore, to produce components for a new product generation, the
supplier needs to invest in new capacity. Because the capacity is generation-specific,
the OEM has the option to work with different suppliers for different generations if
the incumbent supplier’s performance is unsatisfactory.11

We learnt from an OEM in the Netherlands that, even though there is an implicit
understanding that the OEM would normally renew its contract with the incumbent
supplier for the next generation, there is no explicit commitment for contract
renewals and there are no explicit conditions for contract non-renewals. This
revelation motivates us to examine a class of wholesale price contracts with
“contingent renewals”: the OEM will renew the contract with the incumbent
supplier for the next generation only if the supplier can fulfill the OEM’s demand
for the current generation. By specifying the condition for renewal/non-renewal
explicitly, the OEM can use contract non-renewal as an “indirect” penalty that
the OEM can enforce (as opposed to the lump-sum penalty that may not be
enforceable).

In this section, we shall extend our single generation model presented in Section
2.3 to the multi-generation case by incorporating the issue of contingent contract
renewals as described above. Our intent is to examine the coordinating capability
and the efficiency of the contingent wholesale price contract. To obtain tractable
results, we shall assume that the demand for each generation Dt = bt + At with
bt = b for every product generation t and At are i.i.d. exponential random variables
with mean E[At] =

1
λ . To account for inflation or other factors that may affect costs

over time, we scale costs for every generation t with a multiplicative factor β ≥ 1.
Hence, by letting c1 = c, k1 = k and r1 = r, the adjusted costs are: ct = βt−1c,

11In the high-tech industry, it is common practice for the OEM to work with the incumbent supplier to
ensure continuity and smooth transition between product generations unless the supplier’s performance
is unsatisfactory.
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kt = βt−1k and rt = βt−1r. Additionally, we introduce 0 < δ < 1 to discount future
profits. Assume that δβ < 1.

2.4.1 Centralized supply chain with renewals

We first establish a benchmark by considering a centrally controlled supply chain
for producing multiple generations with renewals. Because all costs scale with the
same factor β, the optimal capacity decision is generation-independent. Hence, for
any capacity x invested for any generation t, the profit obtained by the centralized
supply chain for this generation is equal to βΠ(x), with Π(x) as stated in Equation
(2.1). Then the net present value (NPV) of the total supply chain profit with
renewals over all generations is:

Πθ(x) =
∞

∑
t=0

δtβtΠ(x) =
1

1− δβ
Π(x) =

1
1− θ

Π(x)

=
1

1− θ
· (−cx + E[(r− k)min{b + A, x}]) , (2.12)

where θ = δβ. By considering the first order condition and by using the fact that
A ∼ Exp(λ) along with our assumptions that r − k − c > c and 1

λ ≥ b, we can
apply Proposition 2.1 to show that the optimal capacity for any generation is x∗ =
b + 1

λ log
(

r−k
c

)
. Hence, due to identically distributed demand per generation and

all costs scaling with factor β, the same optimization problem is faced for every
generation. Therefore, the optimal capacity decision is the same as in the single-
generation centralized supply chain. Similarly, the optimal discounted total profit
for the centralized supply chain (associated with the discount factor θ) is denoted
by Πθ , where Πθ = 1

1−θ

(
(r− k− c)

(
b + 1

λ

)
− c

λ log
(

r−k
c

))
≥ 0.

2.4.2 Wholesale price contracts with exogenous renewal probabil-
ity

We now consider a decentralized supply chain in which an OEM establishes a
supply contract with a focal supplier. Similar to the decentralized case for a single
generation, the OEM determines the wholesale price, after which the supplier
decides on capacity. In addition, the OEM can decide whether or not to renew the
contract with the incumbent supplier. Thus, the sequence of events is as follows:



28
Chapter 2. Direct versus Indirect Penalties for Supply Contracts in High-tech

Industry

1. OEM determines wholesale price

2. Supplier invests in production capacity

3. Demand is realized and supplier produces required components up to the
maximum capacity

4. OEM decides whether or not to renew contract with supplier

In Section 2.4.3, we shall analyze the contingent wholesale price contract under
which the renewal for the next generation depends on whether the supplier’s
capacity can satisfy the OEM’s demand for the current generation. To explicate
our analysis, let us first consider a base case in which contract renewal is based
on an “exogenously” given real-valued probability R that is independent of the
supplier’s capacity decision x. Once a contract is not renewed, we assume that
the supplier will never be allowed to work with the OEM in the future. This
assumption implies that the number of generations Y that the incumbent supplier
can work with the OEM follows a geometric distribution so that Y ∼ Geom(1− R)
and Prob{Y = t} = Rt−1(1−R) for t = 1, 2, . . . . We assume that the wholesale price
scales with the same factor β so that w1 = w and wt = βt−1w1. Hence, the supplier’s
capacity decision x is generation-independent because the distribution of demand
D remains the same for all generations and all cost parameters scale with the same
factor β. Consequently, the expected profit for the supplier in each generation
t is βt−1π̃s(x, w), with π̃s(x, w) as stated in Equation (2.2). By combining these
observations, the NPV of the supplier’s expected profit over Y product generations
can be expressed as:

πθ
s (x) = E[

Y

∑
t=1

θt−1π̃s(x, w)] =
∞

∑
t=1

P(Y ≥ t)θt−1π̃s(x, w)

=
∞

∑
t=1

(Rθ)t−1π̃s(x, w) =
π̃s(x, w)

1− θR
. (2.13)

It follows from Equation (2.13) that the term 1
1−θR is independent of x, so we can

conclude that, for any given R, the NPV of the supplier’s profit is maximized when
he maximizes his single-period profits π̃s(x, w). Combining this observation with
our analysis presented in Section 2.3.2, we can conclude that, when the contract
renewal probability R is exogenously given, it is optimal for the supplier to set
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its capacity according to x̃(w) = b + 1
λ log(w−k

c ) as stated in Equation (2.3), where
x̃(w) is independent of R. Since the supplier’s capacity investment does not affect
the renewal decision, there is no incentive for the supplier to invest in additional
capacity and the optimal capacity remains the same as in the single-generation
case. Also, we can use the same approach as presented in Corollary 2.1 to show
that a wholesale price contract with exogenously given renewal probability R can
coordinate the supply chain (i.e., x̃(w) = x∗) only when we set w = r, which the
OEM will not oblige.

Instead of coordinating the supply chain, the OEM can seek to maximize her own
profit. Because the distribution of demand D is generation-independent and all
costs scale with parameter β, we can use the same approach to show that the
optimal wholesale price w1 = w̃ is given in Proposition 2.2. Thus the corresponding
contract is inefficient (cf. Proposition 2.3).

Cognizant of the shortcomings of the wholesale price contracts with exogenous
renewal probability R, we now examine the coordinating capability and the
efficiency of the wholesale price contracts with renewal probability R(x) that is
“endogenously” determined by the supplier.

2.4.3 Wholesale price contracts with endogenous renewal proba-
bility

We now extend our analysis presented in the previous section to the case when
the contract will be renewed for the next generation only if the supplier’s capacity
x can meet with the OEM’s demand D for the current generation. This way, the
renewal probability R(x) is now “endogenously” dependent on the capacity x to
be selected by the supplier. Based on our assumptions that D = b + A and A ∼
Exp(λ) are generation-independent, it is easy to check that, for any given supplier
capacity x, the renewal probability R(x) = Prob{D ≤ x} = Prob{A ≤ (x − b)} =
1− e−λ(x−b) for x ≥ b, and R(x) = 0; otherwise. Hence, for any given supplier
capacity x, we can use the same approach as presented in Section 2.4.2 to show
that the number of generations Y(x) that the incumbent supplier can work with
the OEM will follow a geometric distribution so that Y ∼ Geom(1− R(x)), where
the renewal probability R(x) is defined above. As before, because the supplier’s
capacity decision x is generation-independent (because the distribution of demand
D is generation-independent and all cost parameters scale with β), the expected
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profit for the supplier in each generation t is βt−1π̃s(x, w), with π̃s(x, w) as stated
in Equation (2.2). These observations imply that the NPV of the supplier’s expected
profit over Y(x) product generations can be expressed as:

π̃θ
s (x) = E[

Y(x)

∑
t=1

θt−1π̃s(x, w)] =
∞

∑
t=1

P(Y(x) ≥ t)θt−1π̃s(x, w)

=
∞

∑
t=1

(R(x)θ)t−1π̃s(x, w) =
π̃s(x, w)

1− θR(x)
, (2.14)

where the renewal probability R(x) = 1 − e−λ(x−b) for x ≥ b, and R(x) = 0;
otherwise.

By considering the first-order condition and the assumption that w ≥ c + k, we can
determine the supplier’s optimal capacity x̃(w, θ) as follows:

Proposition 2.6 For any given wholesale price contract w (that has w ≥ c + k) with
endogenous renewal probability R(x), the supplier’s optimal capacity satisfies:

x̃(w, θ) = b +
1
λ

log
(

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ bλ(w−k−c)

c

))
(2.15)

where W(·) is known as the Lambert W function.12

Analogous to the supplier’s optimal capacity x̃(w) given in Equation (2.3) for the
single-generation case, the supplier’s optimal capacity x̃(w, θ) is equal to the base
demand b plus some additional capacity to cover the uncertain additional demand
A. Unlike x̃(w), observe from Equation (2.15) that the additional capacity

1
λ

log
(

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ bλ(w−k−c)

c

))
created by x̃(w, θ) under the “contingent” wholesale price contract depends on the
base demand b. The reason lies in the fact that, when b increases, the supplier
values contract renewals more because it can obtain a higher profit through the
base demand. Consequently, as the base demand becomes bigger, the supplier has
stronger incentive to invest in more capacity to increase its renewal probability.
Besides the impact of the base demand b, it is easy to show that as the combined

12The Lambert W function is the inverse function of f (x) = xex .
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discount factor θ increases, the supplier will value contract renewals more; hence,
the supplier will increase its capacity as θ increases so that x̃(w, θ) is increasing in
θ ∈ (0, 1). Thus high-tech manufacturers can benefit from seeking out suppliers
that have a focus on the long-term profit.

Next, through direct comparison between x̃(w) given in Equation (2.3) for the
single-generation case (which corresponds to the multi-generation case with
exogenous renewal probability R and yet x̃(w) is independent of R as explained
in Section 2.4.2) and x̃(w, θ) given in Equation (2.15) for the multi-generation case
with endogenous renewal probability R(x̃(w, θ)), we get:

Proposition 2.7 For any given wholesale price contract w (that has w ≥ c + k),
the supplier’s optimal capacity x̃(w, θ) corresponding to endogenous renewal probability
R(x̃(w, θ)) is higher than its optimal capacity x̃(w) corresponding to any exogenous
renewal probability R (i.e., x̃(w, θ) > x̃(w)).

While the supplier’s capacity (i.e., both x̃(w, θ) and x̃(w)) is increasing in the
wholesale price w, the above proposition suggests that the stipulated condition for
contract renewal provides an incentive for the supplier to invest more capacity. This
is also illustrated in Figure 2.2, where we show the supplier’s optimal capacity both
in case of an endogenous renewal probability (x̃(w, θ)) and in case of an exogenous
renewal probability (x̃(w)) for different values of wholesale price w, with b = 1,
λ = 1, θ = 0.9, c = 1 and k = 0. We observe that the optimal capacity under the
contract with endogenous renewal probability is indeed considerably higher than
in case of an exogenous renewal probability, for the same wholesale price.

2.4.3.1 Supply chain coordination

Recall from Section 2.4.2 that the wholesale price contract with exogenous renewal
probability R can coordinate the supply chain (i.e., x̃(w) = x∗) only when the OEM
sets w = r, which the OEM will not oblige because of zero profit. We now examine
whether the use of endogenous renewal probability R(x) would enable the OEM
to coordinate the supply chain. By considering the supplier’s optimal capacity
x̃(w, θ) given in Equation (2.15) and x∗ given in Proposition 1, obtain the result in
Proposition 2.8.
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Figure 2.2: Supplier’s optimal capacity for exogenous and endogenous renewal
probabilities for different wholesale prices, with b = 1, λ = 1, θ = 0.9, c = 1 and
k = 0.

Proposition 2.8 Suppose the OEM sets its wholesale price for each generation at wθ ,
where:

wθ = k +
θc
(

1 + bλ + log
(

r−k
c

))
+ (1− θ)(r− k)

1 + θbλ
< r.

Then corresponding contingent wholesale price contract with endogenous renewal probabil-
ity R(x̃(wθ , θ)) can coordinate the supply chain so that x̃(wθ , θ) = b+ 1

λ log
(

r−k
c

)
= x∗.

The above proposition reveals that, by imposing an explicit condition for contract
renewal with the incumbent supplier, the OEM can leverage the indirect penalty
associated with non-renewal to entice the supplier to select its capacity according
to the first best solution x∗ by offering the wholesale price wθ . Since wθ < r, supply
chain coordination is achieved at a strictly lower wholesale price compared to the
wholesale price of r that is required for coordination when renewal is exogenous
(cf. Section 2.4.2).

In Figure 2.3 we analyze numerically how the coordinating wholesale price changes
with the margin on the end-product for different discount factors θ, where c = 1,
k = 0, b = 1 and λ = 1. We observe that the coordinating wholesale price that
the OEM pays to the supplier increases with r−k

c . When the margin on the end
product is larger, the supplier will require a higher wholesale price to build the
first-best capacity x∗. However, when the valuation of future profits by the supplier
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Figure 2.3: Coordinating wholesale price as a function of r−k
c for different values of θ

(represented by θ) is larger, the increase in the coordinating wholesale price as r−k
c

increases becomes smaller as the supplier is more inclined to invest in future profits.

Let us now make a rough comparison between the single-generation wholesale
price contract and the wholesale price contract with contingent renewals for such a
high-tech end-product, based on a real-world case. The value of the end-product is
around 60 million euros. The costs of capacity for the components are estimated at
4.1 million euros investment costs and 1 million euros production costs. Expected
demand equals 20 units, of which 10 units are ordered in advance. In our model,
this means we have r = 60 · 106, c = 4.1 · 106, k = 1 · 106, b = 10 and λ = 1

10 ,
with θ = 0.96. For the single-generation wholesale price contract, the OEM’s
optimal wholesale price equals roughly 12 million euro resulting in a capacity of
20 units, with the OEM’s expected profit around 781 million euros. Under the
renewal contract, the OEM offers a wholesale price of 11.6 million euros to entice
the supplier to build the coordinating capacity of 37 units. The expected profit
for the OEM in this case equals 989 million euros, which is 1.2 times as high
as for the single-generation case. This illustrates that besides leading to higher
total supply chain profits due to coordination, the benefit for the OEM of using
contingent renewal is large. Next, we will further analyze the OEM’s share of the
profits.
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2.4.3.2 Supplier Surplus Extraction

Proposition 2.8 shows that the contingent wholesale price contract can coordinate
the supply chain by offering a wholesale price wθ < r. We now examine whether
such coordinating contract can enable the OEM to extract the entire surplus from
the supplier so that the corresponding contract is optimal. In preparation, let us
first compute the NPV of the OEM’s profit over all generations. For any given
supplier capacity x and wholesale price w, the OEM will earn a profit βt−1π̃m(x, w)

for generation t, with π̃m(x, w) = E[(r− w)min{b + A, x}], regardless of which
supplier its works with. In other words, even though the OEM may work
with different suppliers upon contract non-renewals, the OEM’s profit for each
generation stays the same and it is independent of the contract renewal probability
R(x). Because of the assumptions that demand Dt = bt + At with bt = b and At

i.i.d. for all t and all cost parameters scale with factor β, the NPV of the OEM’s
profit over all generations can be expressed as:

π̃θ
m(x, w) =

∞

∑
t=1

θt−1π̃m(x, w) =
π̃m(x, w)

1− θ
(2.16)

Now, the OEM offers a wholesale price wθ(< r) as stated in Proposition 2.8 (along
with the contingent renewal condition) to entice the supplier to set x̃(wθ , θ) = x∗ =
b+ 1

λ log
(

r−k
c

)
. Hence, we can use the fact that At ∼ Exp(λ) to determine the NPV

of the OEM’s profit as π̃θ
m = 1

1−θ

(
r− wθ

) (
b + 1

λ (1−
c

r−k )
)
> 0. By comparing π̃θ

m

against the optimal NPV of the centralized supply chain Πθ as defined in Section
2.4.1, we get:

Proposition 2.9 Under the coordinating contract (wθ) with endogenous renewal probabil-
ity, the OEM cannot extract the entire surplus from the supplier: the fraction of the NPV of
the total supply chain profit captured by the OEM π̃θ

m
Πθ < 1.

By considering different values of b and θ, for λ = 1, Figure 2.4 depicts the fraction
of the NPV of the total supply chain profit captured by the OEM (given by π̃θ

m
Πθ )

under the coordinating contract (wθ) with endogenous renewal probability as a
function of the margin on the end product. Figure 2.4 verifies that the fraction is
strictly below 1. Also, from these figures, we notice that the OEM can capture a
larger proportion of the NPV of the total supply chain profit when θ is large. This
is due to the fact that a supplier that has a high valuation of future profits requires
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Figure 2.4: Fraction of the NPV captured by the OEM (π̃θ
m/Πθ) under the coordinating

contingent wholesale price contract (wθ), for different values of the base demand b.

less incentive to invest sufficient capacity. Similarly, the supplier is more willing to
invest when the base demand, resulting in a certain profit, is higher, which results
in a higher fraction of the profit for the OEM. Furthermore, the fraction of the NPV
captured by the OEM is higher when his added value and thus r−k

c is large.

Next, to gain analytic insights into whether the coordinating contract with
endogenous renewal probability is suitable in the high-tech setting, we investigate
the fraction of NPV captured by the OEM for the following special case of our
general model that is very relevant in the high-tech setting, as explained in Section
2.1.

Special Case 1: When the ratio r−k
c is very large (or the margin r − k− c is very

large). The following proposition characterizes the fraction of the optimal NPV
captured by the OEM (π̃θ

m/Πθ) as defined in Proposition 2.9 when r−k
c → ∞. This

limiting case is of interest because it corresponds to the situation when the penalty
under the augmented wholesale price contract is exorbitant to enforce as explained
in Section 2.3.3.13

13The extreme case reflects situations where the supplier delivers a crucial part of the system
developed by the OEM, with a value that is much lower than the selling price of the product, as is
typical in high-tech manufacturing: r− k corresponds to the gross margin when selling the product (e.g.
an aircraft, a wafer-stepper), while c corresponds to the costs of capacity for producing a component of
that product (e.g. a wing section, a wafer handler).
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Proposition 2.10 Suppose the OEM offers the coordinating contract (wθ) with endogenous
renewal probability. Then, when r−k

c → ∞, the fraction of the NPV of the total supply chain
profit captured by the OEM π̃θ

m/Πθ → θbλ+θ
θbλ+1 .

The above proposition has the following implications. First, when the base demand
b = 0, the limit of the fraction π̃θ

m/Πθ is equal to θ. Hence, when the base demand
is low and when the combined discount factor is high, the OEM can extract the
bulk of the surplus from the supplier by adopting the coordinating contingent
wholesale price contract with endogenous renewal probability. Second, when the
base demand b is substantial in comparison to E[A] = 1/λ, the limit of the fraction
π̃θ

m/Πθ will approach 1. Hence, when a large portion of total demand is obtained
through advance orders, the OEM can extract almost the entire surplus from the
supplier. This means that having a strong market position, demonstrated by many
advance orders, also gives the OEM a strong position vis-à-vis her supplier. These
two observations enable us to characterize the business environment (i.e., when
r−k

c is high, base demand b is substantial compared to additional demand E[A], or
the combined discount factor θ is high) in which the coordinating wholesale price
contract with contingent renewal can enable the OEM to extract the bulk of the
surplus from the supplier so that this contract is close to optimal.

Special Case 2: When the ratio r−k
c is close to but strictly greater than 1 (or the

margin r− k− c is very small). This situation occurs when the supplier’s capacity
cost k and unit cost c are high, such that r−k

c → 1+.14 By considering the case when
θ → 1 we can compare the coordinating wholesale price wθ given in Proposition
2.8 for the multi-generation case associated with the contingent renewal contract
and the coordinating contingent penalty ρ̂ given in Proposition 2.4 for the single
generation case as examined in Section 2.3.3.

Proposition 2.11 When r−k
c → 1+ and θ → 1, the coordinating wholesale price wθ given

in Proposition 2.8 for the multi-generation case satisfies: wθ ≈ r. However, the coordinating
contingent penalty ρ̂ given in Proposition 2.4 for the single generation case satisfies: ρ̂ ≈ 0.

The above proposition has the following implications: when the margin r − k − c
is very small and θ is close to 1, the contingent penalty ρ̂ is very small so that
the augmented wholesale price contract is easily enforceable. Also, as revealed

14 r−k
c → 1+ denotes r−k

c approaches 1 from the right so that r−k
c > 1.
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in Proposition 2.4, it allows the OEM to capture the entire supply chain profit.
However, the wholesale price wθ is close to r so that the contingent renewal contract
renders the OEM essentially profitless. Therefore, when the margin r− k− c is very
small and θ is close to 1, the OEM is better off to treat each generation separately by
adopting the contingent penalty contract instead of the contingent renewal contract
for multiple generations.

Based on the analysis of these two special cases, we can make the following
conclusions. First, the long-term supply contract with contingent renewals is
effective for the OEM when the margin r− k− c is very large. This is because, when
the margin r− k− c is very large, the contingent penalty ρ̂ is exorbitant so that the
augmented contract with contingent penalty is deemed impractical. However, the
contingent renewal contract performs well because it enables the OEM to obtain
almost the entire supply chain profit. Second, the short-term contingent penalty
contract is more efficient for the OEM when the margin r− k− c is very small and
θ is close to 1. This is because, in this case, the coordinating contingent wholesale
price wθ ≈ r, leaving very little profit for the OEM under the contingent renewal
contract. However, the contingent penalty ρ̂ is very small so that the augmented
contract with contingent penalty can be easily enforced and yet it enables the OEM
to obtain the entire supply chain profit.

2.4.3.3 Duration of collaboration

Now that we have established the importance of long-term collaborations in high-
tech supply chains, the question can be asked how long these collaborations will
last. Since the duration of the collaboration Y is distributed geometrically with
parameter 1− R(x), where R(x) is the renewal probability, the expected duration
of the collaboration equals E[Y(x)] = 1

1−R(x) =
1

e−λ(x−b) . Proposition 2.12 shows that
the duration of the collaboration when the OEM sets coordinating wholesale price
wθ , to induce the supplier to set capacity x∗ = b + 1

λ log
(

r−k
c

)
, is equal to r−k

c . This
means that the higher the value of the end-product, the longer the collaboration
lasts. Also, due to our assumption that r− k− c > c, we find:

Proposition 2.12 Under the coordinating wholesale price wθ , the expected duration of the
collaboration is E[Y(x)] = 1

1−R(x) =
r−k

c > 2.
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2.4.3.4 Optimal wholesale price renewal contract

Now that we have shown that a renewal contract with endogenous renewal
probability can coordinate the supply chain while yielding a positive profit to both
parties, the question remains whether the manufacturer has incentive to set this
coordinating wholesale price. Since optimization of the wholesale price under an
endogenous renewal probability is intractable, we answer this question based on
numerical experiments. Since the OEM’s profit function is concave, the optimal
wholesale price can be determined numerically using Golden-section search.

We consider several instances with c = 1 and take r− k ∈ {10, 50, 100}, B ∈ {0, 1},
λ ∈ {0.1, 0.5, 1} and θ ∈ {0.85, 0.9, 0.95}. This gives in total 33 · 2 = 54 instances.
For every instance we calculate the profit for the OEM under the contingent renewal
contract with endogenous renewal probability for both the coordinating wholesale
price and the OEM’s optimal wholesale price and determine the percentage
difference. In addition, we determine the expected number of generations that
the collaboration will last, both under the optimal and the coordinating wholesale
price. The summarizing statistics of the full factorial experiment are given in Table
2.1.

We can observe that in all instances the OEM looses some money by setting the
coordinating wholesale price instead of optimizing the wholesale price. When we
first consider the effect of r− k, we observe that the profit lost by coordinating the
supply chain reduces as the value of the end product increases. Furthermore, we
observe that θ has a large effect on the difference in profit. When θ increases, the
difference in profit reduces considerably. The same holds for base demand b. The
parameter values for which the difference in profit between choosing the optimal
and coordinating wholesale price is smallest thus correspond to the case for which
the coordinating contract is most suitable, namely a high value end-product and
high valuation of future profits. When we additionally consider the duration of the
collaboration, we observe that under both the optimal and coordinating wholesale
price the collaboration is expected to span multiple generations. Furthermore,
we observe that collaboration lasts considerably longer under the coordinating
wholesale price than under the optimal wholesale price, especially for high-valued
end-products.
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Table 2.1: Results full factorial experiment on the difference in OEM’s profit per period
between using the coordinating (coord.) and optimal (opt.) wholesale price

Avg profit per period Difference profit (%) Avg duration
Opt. Coord. Average Max Min Opt. Coord.

r− k 5 9.98 9.27 6.81 11.89 1.71 3.21 5.00

10 29.23 27.81 4.67 8.97 0.96 5.79 10.00

20 71.91 68.55 4.46 8.78 0.90 9.88 20.00

θ 0.85 36.36 33.46 8.15 11.89 4.07 5.55 11.67

0.9 36.99 35.21 5.16 8.40 2.34 6.16 11.67

0.95 37.76 36.96 2.62 5.28 0.90 7.17 11.67

b 0 31.89 30.09 6.52 11.89 2.08 6.32 11.67

1 42.19 40.33 4.11 10.37 0.90 6.27 11.67

λ 0.1 78.69 74.49 6.12 11.89 1.84 6.31 11.67

0.5 19.87 19.01 5.19 11.89 1.26 6.29 11.67

1 12.56 12.12 4.63 11.89 0.90 6.28 11.67

Overall 12.56 12.12 5.31 11.89 0.90 6.29 11.67

2.5. Extensions

This section analyzes the effect of (1) a supplier’s reservation profit and (2) more
general demand distributions on the effectiveness of the different supply contracts
and the corresponding division of profit between the supplier and the OEM.

2.5.1 Supplier’s reservation profit

Until now we have assumed that the supplier will engage as long as the expected
profit is non-negative. However, it is likely that a supplier will request a positive
expected profit to justify his efforts. Since the contingent renewal contract already
guarantees a positive profit for both parties, we investigate in this section how
including a reservation profit, denoted by Z, affects our analysis of the single-
generation contracts.

2.5.1.1 Single-generation wholesale price contract

Since the supplier’s reservation profit does not affect the policy parameters, the
supplier’s profit function as given in Equation (2.2) remains the same. In Lemma
2.1, we analyzed for which values of wholesale price w the supplier’s expected
profit is non-negative. Analogously, Lemma 2.2 gives the minimum wholesale price
for which the supplier attains the reservation profit.
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Lemma 2.2 The supplier’s profit π̃s(w) = (w− c− k)
(

b + 1
λ

)
− c

λ log
(

w−k
c

)
≥ Z if

and only if w ≥ k− c
bλ+1 W

(
−(bλ + 1)e−(bλ+1+Z λ

c

)
.

This means that the supplier will engage in the wholesale price contract proposed
in Proposition 2.2 provided that the condition given in Lemma 2.2 is satisfied. If the
OEM’s optimal wholesale price does not satisfy this condition, the OEM will need
to pay a higher than optimal wholesale price to the supplier, leaving the OEM with
lower profits.

2.5.1.2 Augmented wholesale price contract with lump-sum penalty

Under the OEM’s optimal augemented wholesale price contract with lump-sum
penalty, which was proposed in Proposition 2.4 in Section 2.3.3, the OEM was able
to capture the entire supply chain profit. When the supplier has a reservation profit
Z > 0, this is no longer possible. In this case, it will be optimal for the OEM to
determine the policy parameters w and ρ for which the supplier builds the first best
capacity x∗ and the supplier’s expected profit is exactly equal to the reservation
profit. The details of this optimal policy are given in Proposition 2.13.

Proposition 2.13 Any augmented wholesale price contract (w, ρ) that satisfies w + ρλ =

r enables the OEM to coordinate the decentralized supply chain so that x̂(w, ρ) = x∗.
However, given the supplier’s reservation profit Z, it is optimal for the OEM to set the
wholesale price ŵ = k + c + c

bλ+1 log
(

r−k
c

)
− Z λ

bλ+1 and the contingent lump-sum

penalty ρ̂ = 1
λ

(
r− k− c− c

bλ+1 log
(

r−k
c

)
− Z λ

bλ+1

)
such that π̂s = Z, π̂m = Π∗− Z,

and π̂s + π̂m = Π∗. Furthermore, ρ̂ ≥ 0 for Z ≤ Π∗.

The optimal augmented wholesale price contract with unit penalty can be analyzed
accordingly.

2.5.2 Other demand distributions

To obtain tractable analytical results and to capture the “long tail” demand
characteristics of high-tech products, we have assumed that D = b + A, where
the base demand b is deterministic and the uncertain demand A is exponentially
distributed. We now investigate whether our structural results would continue to
hold when demand follows a more general distribution.

We will consider demand distributions that preserve the characteristics of high-tech
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industries. Specifically, we need to focus on demand distributions that only allow
for positive demands and have a long tail, because there is a small but positive
probability of very large demand. (Considering demand distributions with a finite
upper bound on the domain leads to a fundamentally different problem that is
less interesting, as it can be guaranteed that the supplier has sufficient capacity
when the capacity decision equals the maximum demand.) In view of the long tail
demand characteristics, we start by considering the case when A follows an Erlang-
n distribution. Thereafter, we will show that our results continue to hold for general
demand distributions.

2.5.2.1 Erlang-n distributed additional demand

Consider the case when the demand D = b + A, where A ∼ Erlang(λ, n) so that
the uncertain portion of the demand A follows an Erlang distribution for any
given value of n, yielding different coefficients of variation than the Exponential
distribution. Due to the subsequent optimization of capacity and wholesale price
with the renewal probability endogenously determined by these values, analytical
analysis is intractable and we resort to numerical analysis. To do so, we use the
expected sales defined in Lemma 2.3, such that we can express the supplier’s
and OEM’s expected profit functions that we analyze numerically. Then we use a
Golden-section search procedure to find the optimal capacity for a given wholesale
price and bisection search to find the coordinating wholesale price.

Lemma 2.3 For A ∼ Erlang(λ, n) and capacity x, the expected sales is given by:

E [min{D, x}] = b + E [min{A, x− b}]

= b +
γ(k + 1, λ(x− b))

λ(n− 1)!
+ (x− b)P(A > x− b) (2.17)

where γ(s, x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma function.

It can be verified numerically that also for Erlang-distributed demand, an aug-
mented wholesale price contract with lump-sum penalty may not be enforceable
in high-tech supply chains. For example, let us return to the numerical example
introduced in Section 2.3.3, with r = 107, c = 105 and k = 0 and assume that
b = 50 and A ∼ Erlang

( 3
100 , 3

)
such that again E[D] = 150. We find that under the

OEM’s optimal contract ŵ ≈ 0.14 · 106 and ρ̂ ≈ 25.2 · 106. The supplier’s optimal
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Figure 2.5: Fraction of the NPV captured by the OEM (π̃θ
m/Πθ) under the coordinating

contingent wholesale price contract with Erlang-n demand.

capacity then equals x̂ ≈ 191. When realized demand is exactly equal to x̂, the
supplier can use its entire capacity and earn 6.7 · 106, without being subjected to the
penalty. However, when realized demand does exceed the available capacity, the
supplier is subject to a penalty ρ̂ ≈ 25.2 · 106 that is 3.7 times as high as his best-case
profit. Hence, also for A ∼ Erlang

( 3
100 , 3

)
, the optimal augmented wholesale price

contract may not be enforceable when r is much larger than c + k.

Now that we have established that also for Erlang distributed demand an aug-
mented wholesale price contract may not be suitable, we will examine whether
a wholesale price contract with endogenous renewal probability again offers a
suitable alternative. We analyze whether under the coordinating wholesale price
both parties can earn a positive profit and how the total profits are divided. We can
observe from Figure 2.5 that under the coordinating wholesale price, the division
of profits between the supplier and the OEM for different Erlang distributions with
λ = 1 for θ = 0.9 has similar characteristics as the division that was found in Figure
2.4 (with Erlang-1 being equal to the exponential distribution). More specifically,
when a substantial part of demand is fixed, the distribution of profits is similar for
the different values of Erlang shape parameter n.

In Section 2.4.3.2, we found that the fraction of the profit captured by the OEM
increases with θ. From Figure 2.6 we observe that also for b = 1 and A ∼
Erlang(1, 3), θ has a positive effect on the share of profit captured by the OEM.
In summary, even when we extend our analysis to the case when the uncertain
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Figure 2.6: Fraction of the NPV captured by the OEM (π̃θ
m/Πθ) under the coordinating

contingent wholesale price contract with Erlang-3 demand for different values of θ.

demand A follows the Erlang(λ, n) distribution, the structural results presented in
Section 2.4.3 as depicted in Figure 2.4 continue to hold.

2.5.2.2 General distributions

Instead of considering the case when the demand D = b + A, we now assume
the demand D follows a general probability density function f (d) so that the
corresponding cumulative density function is F(d). Let R(x) again denote the
renewal probability, which is increasing in capacity x. Additionally, we assume
that R(0) = 0 and R(x) > 0. Akin to Proposition 2.7, Proposition 2.14 demonstrates
that, when D follows a general demand distribution, the wholesale price contract
with endogenous renewal probability motivates the supplier to build more capacity
than under a single-generation wholesale price contract.

Proposition 2.14 For any demand distribution that has support on the non-negative real
numbers, the supplier’s optimal capacity under the wholesale price contract with endogenous
renewal probability R(x), denoted by x̃(w, θ), is higher than the optimal capacity x̃(w) =

F−1
(

w−k−c
w−k

)
under a single-generation wholesale price contract for any w > c + k.

Using Proposition 2.14, we can also show that, under the wholesale price contract
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with endogenous renewal probability, the supply chain can be coordinated with a
lower wholesale price than with a single-generation wholesale price contract. For
any wholesale price w we have established in Proposition 2.14 that x̃(w) < x̃(w, θ).
Since x̃(w) = F−1

(
w−k−c

w−k

)
is increasing in w, it follows that x̃(w, θ) is also

increasing in w. Let w̃ be the wholesale price such that x̃(w̃) = x∗ and define
wθ such that x̃(wθ , θ) = x∗. Then it follows that w̃ > wθ . Thus, the required
wholesale price to entice the supplier to build coordinating capacity x∗ is lower for
the renewal contract than for a single-generation wholesale price contract.

The question then remains whether we can extend our result that under the
coordinating contract both parties are expected to earn positive profits for general
demand distributions. Proposition 2.15, demonstrates that this result continues to
holds.

Proposition 2.15 For any demand distribution that has support on the non-negative real
numbers, both parties are expected to earn positive profit for every generation.

2.6. Discussion and conclusions

Motivated by our discussions with different European OEMs in the high-tech
industry, we have examined different types of supply chain contracts between a
high-tech OEM who designs and manufactures multiple generations of a state-of-
the-art system and the supplier of a critical component of this system. Different
from the existing literature, our model captures certain unique characteristics
that are prevalent in the high-tech industry: demand consists of advance orders
and a highly uncertain additional demand; components for each generation are
single-sourced; capacity established by the supplier is not verifiable by the OEM;
and the under-stock cost is very high, or, equivalently, the selling price is very
high. Consequently, the cost of underinvestment by the supplier under a standard
wholesale price contract is high and the OEM seeks for opportunities to entice the
supplier to invest in more capacity.

Our work complements existing literature by examining two supply contracts that
are of practical relevance to the OEMs in the high-tech industry: (a) augmented
wholesale price contracts with contingent penalty for a single generation; and
(b) expanded wholesale price contracts with contingent renewal for multiple
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generations. By examining the equilibrium outcomes, we have established the
following results. First, the augmented wholesale price contract can coordinate
the supply chain and it is optimal (in the sense that the OEM can capture all profit
from the supply chain). Second, the contingent renewal contract can coordinate the
supply chain but the OEM cannot capture the entire supply chain profit. Third,
the augmented wholesale price contract is more efficient when the margin is very
low, but the contingent renewal contract is more practical when the margin is very
high. More specifically, in a high-tech setting, where the margin of the end product
is usually large, an augmented wholesale price contract may not be enforceable
in practice, while in this case the OEM can earn a large share of total profits
when using a contingent renewal contract. Such a contingent renewal contract
is especially attractive for the OEM when expected demand per period is large
or when the supplier has a high valuation of future profits, since the supplier
will be more willing to invest in capacity under these circumstances. Long-term
collaborations are thus not only useful, but also essential for the functioning of
high-tech supply chains.

Even though our problem setting differs from that of Taylor and Plambeck (2007b,a)
in important ways, there are some similarities in the obtained results. Most
importantly, both their studies and our study have shown that the gain from long-
term collaboration is largest when the valuation of future profits is high. In this
setting, Taylor and Plambeck (2007a) recommend a price-quantity contract. Our
analytic result for r−k

c large demonstrates that for θ large, even the price-only
contract may perform well, which is important since such contracts are easier to
adopt in the high-tech setting. We also found that the OEM can capture more profit
when the amount of base demand increases.

Additionally, we analyzed the effect of including a positive reservation profit of the
supplier and of using other demand distributions on our results. When considering
the supplier’s reservation profit we find that even though the supplier’s expected
profit is equal to the reservation profit, the augmented wholesale price contract with
lump-sum penalty faces the same problems as without reservation profit. Hence,
the main difficulties of the augmented wholesale price contract are not countered
by including a positive reservation profit. Next, we showed by means of numerical
analysis that the obtained results do not only hold when demand consists of a fixed
base demand and an exponential part, but extend to Erlang-distributed demand.
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On a higher level, we showed that our structural results even extend to general
demand distributions.

Several key insights for high-tech manufacturers can be derived from our results.
First, supply chain coordination in high-tech manufacturing may be vastly im-
proved if OEMs make the sourcing of components for a new product generation
dependent on the performance of suppliers for the previous product generation.
For this, it is important that the sourcing department focuses not only on costs
when selecting suppliers, but also on supply chain performance. Hence two-way
communication between the sourcing and the operations departments at the OEM is
important. Second, to reap actual benefits from making contract renewal dependent
on supplier performance, suppliers must be made aware of this policy either
through formal agreements or through clear communications. Finally, our insight
that manufacturer profit depends on the supplier discount factor demonstrates that
manufacturers in the high-tech industry may benefit from working with suppliers
that focus on long term sustainable business rather than short term profit.

Even though the model presented in this study provides insights into collaborations
in high-tech supply chains and shows the value of establishing long-term interac-
tions, it has several limitations for further examination in the future. First, in our
model we assume that the demand function is generation-independent. However,
there may be trends in demand that are not captured by this model. Therefore, it
is of interest to extend our model to generation-dependent demand functions, e.g.
bt = b0αt, with α > 1 the growth factor of demand. Another interesting aspect is
when production equipment (i.e. capacity investment) can be used for more than 1

product generation.
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2.A. Proofs

Proof of Lemma 2.1

Let f (y) = (y− k− c)(b + 1
λ )−

c
λ log

(
y−k

c

)
. We now prove the claim that f (y) ≥ 0

if y ≥ k + c. To begin, let z = y−k
c − 1 so that f (z) = cz(b + 1

λ )−
c
λ log(1 + z). By

noting that f (0) = 0 and f (z) is increasing and convex in z ≥ 0 and by noting that
z ≥ 0 when y ≥ k + c, we can conclude that f (y) ≥ 0. �

Proof of Proposition 2.1

For any x > b we have:

Π(x) = −cx + E[(r− k)min{b + A, x}]

= −cx + (r− k)b +
r− k

λ

(
1− e−λ(x−b)

)
Taking the derivative w.r.t x gives

d
dx

Π(x) = −c + (r− k)e−λ(x−b).

Thus, using that r− k > 2c, we find that d
dx Π(x) = 0 iff:

x = b +
1
λ

log
(

r− k
c

)
.

Hence, since (r− k)/c > 1, this implies that the x that maximizes Π(x) must satisfy
x∗ = b + 1

λ log
(

r−k
c

)
Also, the corresponding supply chain profit is:

Π∗ = −c
(

b +
1
λ

log
(

r− k
c

))
+ (r− k)b +

r− k
λ

(
1− c

r− k

)
= (r− k− c)

(
b +

1
λ

)
− c

λ
log
(

r− k
c

)
.

Now, to prove that Π∗ is positive, note that Π∗ = (r− k− c)(b+ 1
λ )−

c
λ log

(
r−k

c

)
=

f (r), with f (·) as in the proof of Lemma 2.1. From the lemma and the assumption
r > k + c, it then follows that Π∗ > 0. �
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Proof of Proposition 2.2

Taking into account the supplier’s capacity decision, the OEM’s profit is:

π̃m(w) = (r− w)b +
r− w

λ

(
1− c

w− k

)
of which the derivative w.r.t w equals

d
dw

π̃m(w) = −
(

b +
1
λ

)
+

1
λ

(r− k)c
(w− k)2

Clearly, d2

dw2 π̃(w) < 0 for w > k and thus π̃m(w) is maximized by setting the first
derivative equal to 0, yielding

w̃ = k +

√
(r− k)c
bλ + 1

.

Since r − k − c > c → r − k > 2c, and since 1
λ > b → bλ + 1 < 2, we find

w̃ = k +
√

(r−k)c
bλ+1 > k +

√
2c2/2 = k + c, thus the supplier participation constraint is

satisfied. The resulting capacity developed by the supplier follows by substituting
this in Equation (2.3)

x̃ = b +
1
λ

log

(√
r− k

(bλ + 1)c

)
.

�

Proof of Proposition 2.3

We first prove that the manufacturers and suppliers profit are strictly positive. Note
that the manufacturer’s profit is obtained by substituting w̃ into the manufacturer’s
profit function π̃m(w). Since r− k− c > c→ r− k > 2c, and since 1

λ > b→ bλ+ 1 <

2, we find w̃ = k +
√

(r−k)c
bλ+1 > k +

√
2c2/2 = k + c. Since r − k ≤ r, c < r, and

bλ + 1 ≥ 1, we also have w̃ < r. Thus π̃m = π̃m(w̃) = (r− w̃)(b + 1
λ (1−

c
w̃−k ) > 0.

The suppliers profit is obtained by substituting w̃ in π̃s(w). Note that π̃s(w̃) = f (w̃),
with f (·) as in the proof of Lemma 2.1. That π̃s > 0 then follows from Lemma 2.1
and because w̃ > k + c, as was shown above.
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To prove that the total profit is lower than in the centralized case, we substitute the
supplier’s capacity and OEM’s wholesale price decisions provided in Proposition
2.2 in the supplier’s and OEM’s profit functions given in Equations (2.4) and (2.5).
This confirms our expressions in the Proposition:

π̃s =

√ (r− k)c
bλ + 1

− c

 b +

√
(r−k)c
bλ+1

λ
− c

λ
− c

λ
log

(√
r− k

(bλ + 1)c

)
, and

π̃m =

r− k−

√
(r− k)c
bλ + 1

b +
1
λ

1−

√
(bλ + 1)c

r− k

 .

Supply chain profit thus equals

π̃s + π̃m =

√ (r− k)c
bλ + 1

− c

 b +

√
(r−k)c
bλ+1

λ
− c

λ
− c

λ
log

(√
r− k

(bλ + 1)c

)

+

r− k−

√
(r− k)c
bλ + 1

b +
1
λ

1−

√
(bλ + 1)c

r− k


=(r− k− c)

(
b +

1
λ

)
− c

λ
log

(√
r− k

(bλ + 1)c

)

−
r− k−

√
(r−k)c
bλ+1

λ

√
(bλ + 1)c

r− k

=(r− k− c)
(

b +
1
λ

)
− c

λ
log

(√
r− k

(bλ + 1)c

)
− 1

λ

√
(r− k)(bλ + 1)c +

c
λ

Since

c
λ

log

(√
r− k

(bλ + 1)c

)
+

1
λ

√
(r− k)(bλ + 1)c− c

λ
>

c
λ

log
(

r− k
c

)

or equivalently √
(r− k)(bλ + 1)

c
> 1 + log

(√
(r− k)(bλ + 1)

c

)

it follows that π̃s + π̃m < Π∗. �
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Proof of Proposition 2.4

Suppose that the supplier participates in the penalty contract. Then his profit
equals:

π̂s(x, w, ρ) = −cx + E[(w− k)min(b + A, x)− ρ1{b+A>x}]

= (w− c− k)b− c(x− b) +
w− k

λ

(
1− e−λ(x−b)

)
− ρe−λ(x−b).

By taking the derivative with respect to x, and setting it equal to zero, we find
the capacity level at which the supplier maximizes the profit of participating in the
contract:

x̂(w, ρ) = b +
1
λ

log
(

w− k + ρλ

c

)
.

Now note that by Proposition 2.1, the supply chain profit is maximized if x =

b + 1
λ log( r−k

c ). In view of the above, a necessary condition to achieve this is that
w−k+ρλ

c = r−k
c → ρλ + w = r. To arrive at a coordinating contract in which the

OEM captures all the profit, we must in addition set ρ and w such that the profit of
participating for the supplier equals 0. The supplier’s profit equals:

π̂s(x̂(w, ρ), w, ρ) = (w− c− k)b +
w− k− c

λ
− c

λ
log
(

w− k + ρλ

c

)
we impose ρλ + w = r by substituting w = r− ρλ, which yields

π̂s(ρ) = (r− ρλ− c− k)b +
r− ρλ− k− c

λ
− c

λ
log
(

r− k
c

)
We in addition impose π̂s(ρ) = 0, which holds for:

ρ̂ =
1
λ

(
r− k− c− c

bλ + 1
log
(

r− k
c

))
.
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Note that ρ̂ > 0 whenever r − k − c > c
bλ+1 log

(
r−k

c

)
, or equivalently r−k

c > 1 +

1
bλ+1 log

(
r−k

c

)
. For r−k

c = 1 both sides would equal 1. For r−k
c > 1 the left-hand

side increases linearly in r−k
c , while the right-hand side increases logarithmically.

Also, since bλ > 0, the fraction 1
bλ+1 < 1. Therefore, using our earlier assumptions

on r, b and 1
λ it holds that r−k

c > 1 + 1
bλ+1 log

(
r−k

c

)
and it thus follows that ρ̂ > 0.

To satisfy r = w + ρλ, the OEM sets

ŵ = k + c +
c

bλ + 1
log
(

r− k
c

)
.

By construction π̂s(x̂(ŵ, ρ̂), ŵ, ρ̂) = 0 and it follows that

π̂m(ŵ, ρ̂) =

(
r− k− c− c

bλ + 1
log
(

r− k
c

))(
b +

1
λ

)
= Π∗.

�

Proof of Proposition 2.5

The proof is along the same lines as for Proposition 2.4. Now the supplier’s profit
equals:

π̂s(x, w, ρ) = −cx + E[(w− k)min(b + A, x)− ρ1(b + A > x)+]

= (w− c− k)b− c(x− b) +
w− k

λ

(
1− e−λ(x−b)

)
− ρ1

λ
e−λ(x−b).

Since x̂(w, ρ1) = b + 1
λ log

(
w−k+ρ1

c

)
, it follows that to achieve coordination it must

hold that w + ρ1 = r. Under the coordinating contract that allows the OEM to
capture all profits, it must thus hold that:

(r− ρ1 − c− k)b +
r− ρ1 − k− c

λ
− c

λ
log
(

r− k
c

)
= 0.

Consequently, the augmented wholesale price contract with unit penalty ρ̂1 = r−
k− c− c

bλ+1 log
(

r−k
c

)
and wholesale price ŵ = k + c + c

bλ+1 log
(

r−k
c

)
coordinates

the supply chain, while allowing the OEM to extract the entire surplus. For the
same reasons as in Proposition 2.4, it holds that ρ̂1 > 0, π̂s(x̂(ŵ, ρ̂1), ŵ, ρ̂1) = 0 and
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π̂m(ŵ, ρ̂1) = Π∗. �

Proof of Proposition 2.6

Let y = e−λ(x−b). Then we can rewrite Equation (2.14) as

π̃θ
s (y) =

1
1− θ(1− y)

(
b(w− k− c) +

c
λ

log(y) +
w− k

λ
(1− y)

)
The first derivative with respect to y is given by

d
dy

π̃θ
s (y) =

(1− θ(1− y))
(

c
λ

1
y −

w−k
λ

)
−
(

b(w− k− c) + c
λ log(y) + w−k

λ (1− y)
)

θ

(1− θ(1− y))2

Equating the derivative to 0 yields

(1− θ(1− y))
(

c
λ

1
y
− w− k

λ

)
=

(
b(w− k− c) +

c
λ

log(y) +
w− k

λ
(1− y)

)
θ

which can be rewritten as

(w− k− θc + θb(w− k− c)λ) y + θcy log(y) = (1− θ)c

which is of the form

a1y + a2y log(y) = a3

with a1, a2, a3 > 0 since w ≥ c + k, b ≥ 0, λ > 0 and 0 < θ < 1. Therefore, we can
rewrite this as

ea1y+a2y log(y) = ea3

ea2y log(y) = ea3−a1y

elog(y) = e
a3−a1y

a2y

y = e
a3

a2y−
a1
a2

ye
a1
a2 = e

a3
a2y

a3

a2
e

a1
a2 =

a3

a2y
e

a3
a2y
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W
(

a3

a2
e

a1
a2

)
=

a3

a2y

to reach solution

y =
a3

a2W
(

a3
a2

e
a1
a2

)
where W is the Lambert’s W function. Substituting a1 = w− k− θc+ θb(w− k− c)λ,
a2 = θc and a3 = (1− θ)c and simplifying the expression yields

y =
1− θ

θW
(

1−θ
θ e

w−k
θc −1+ λb(w−k−c)

c

)

Since y = e−λ(x−b), we obtain

x̃(w, θ) = b +
1
λ

log
(

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c

))
For the supplier participation constraint, note that Lemma 2.1 proved that setting
capacity x̃(w) when offered a wholesale price w > k + c yields positive expected
profits π̃s(x̃(w), w) per generation for the supplier whenever w > k + c. Hence, for
any w > k + c, we must have that π̃θ

s (x̃(w)) = π̃s(x̃(w), w)/(1− θR(x̃(w))). This
shows that for any w > k + c, there exists a capacity level that yields positive profits
for the supplier, hence the supplier will participate in any contingent wholesale
contract with w > k + c. �

The main text claims the following, and we present a formal proof here for
completeness.

Proposition 2.16 For given w, x̃(w, θ) is increasing in θ ∈ (0, 1).

Proof of Proposition 2.16

Let Z = λb(w−k−c)
c . Then

x̃(w, θ) = b +
1
λ

log
(

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+Z

))
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For θ ∈ (0, 1) it is readily seen that both 1−θ
θ and e

w−k
θc −1+Z are strictly decreasing in

θ, thus so is 1−θ
θ e

w−k
θc −1+Z. Combined with the fact that W(x) is increasing in x ≥ 0

this shows that W
(

1−θ
θ e

w−k
θc −1+Z

)
is decreasing in θ.

Considering θ
1−θ W

(
1−θ

θ e
w−k

θc −1+Z
)

, this thus consists of a term f (θ) = θ
1−θ that

is strictly increasing in θ and the term g(θ) = W
(

1−θ
θ e

w−k
θc −1+Z

)
that is strictly

decreasing in θ, thus f ′(θ)g′(θ) < 0. Therefore, the entire term is increasing in θ if
and only if

( f (θ)g(θ))′ = f ′(θ)g(θ) + f (θ)g′(θ) > 0⇔ g(θ)
g′(θ)

< − f (θ)
f ′(θ)

Substituting

f ′(θ) =
−1

(1− θ)2

g′(θ) = −
W
(

1−θ
θ e

w−k
θc −1+Z

)
W
(

1−θ
θ e

w−k
θc −1+Z

)
+ 1

(
w− k

θ2c
+

1
θ(1− θ)

)

yields the equivalent inequality

W
(

1−θ
θ e

w−k
θc −1+Z

)
+ 1

w−k
θ2c + 1

θ(1−θ)

> θ(1− θ)

which can be rewritten as

w− k
c

+ Z > log
(

w− k
c

)
+ 1

Since Z ≥ 0, this holds for all w > c + k. Therefore, θ
1−θ W

(
1−θ

θ e
w−k

θc −1+Z
)

is

increasing in θ and so is log
(

θ
1−θ W

(
1−θ

θ e
w−k

θc −1+Z
))

. Thus we can conclude that
x̃(w, θ) is increasing in θ ∈ (0, 1). �
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Proof of Proposition 2.7

Under the single-epoch wholesale price contract, the supplier’s capacity decision
equals

x̃(w) = b +
1
λ

log
(

w− k
c

)
Under the long-term contract with performance contingency, the supplier’s capacity
decision equals

x̃(w, θ) = b +
1
λ

log
(

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c

))
.

It follows that x̃(w, θ) > x̃(w) if and only if

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c

)
>

w− k
c

This relationship holds if and only if

W
(

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c

)
>

w− k
c

1− θ

θ

⇔ 1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c > W−1
(

w− k
c

1− θ

θ

)
⇔ 1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c >
w− k

c
1− θ

θ
e

w−k
c

1−θ
θ

⇔ e
w−k

θc −1+ λb(w−k−c)
c >

w− k
c

e
w−k

c
1−θ

θ

⇔ w− k
θc
− 1 +

λb(w− k− c)
c

> log
(

w− k
c

)
+

w− k
c

1− θ

θ

⇔ λb(w− k− c)
c

− 1 > log
(

w− k
c

)
− w− k

c

⇔ λb(w− k− c)
c

+
w− k

c
− 1 > log

(
w− k

c

)
Here, in the first equivalence, we use that W(·) is strictly increasing, for the second
equivalence, we used the definition of W(·), while the third equivalence is obtained
by taking the logarithm on both sides. The remaining equivalences are simple
manipulations. This holds for all w− k > c and b ≥ 0. �
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Proof of Proposition 2.8

The supply chain is coordinated when the OEM sets w such that x̃(w, θ) = x∗. This
is the case when

θ

1− θ
W
(

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c

)
=

r− k
c

This equality holds if and only if

1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c = W−1
(

1− θ

θ

r− k
c

)
⇔ 1− θ

θ
e

w−k
θc −1+ λb(w−k−c)

c =
1− θ

θ

r− k
c

e
1−θ

θ
r−k

c

⇔ e
w−k

θc −1+ λb(w−k−c)
c =

r− k
c

e
r−k
θc −

r−k
c

⇔ w− k
θc
− 1 +

λb(w− k− c)
c

= log
(

r− k
c

)
+

r− k
θc
− r− k

c

⇔ w− k− θc + θλb(w− k− c) = θc log
(

r− k
c

)
+ r− k− θ(r− k)

⇔ (w− k)(1 + θbλ)− θc(1 + bλ) = θc log
(

r− k
c

)
+ (1− θ)(r− k)

⇔ w = k +
θc
(

1 + bλ + log
(

r−k
c

))
+ (1− θ)(r− k)

1 + θbλ

Thus wθ = k +
θc(1+bλ+log( r−k

c ))+(1−θ)(r−k)
1+θbλ . The resulting profits for the supplier

and the OEM are:

π̃s =(wθ − c− k)b +
wθ − k

λ

(
1− c

r− k

)
− c

λ
log
(

r− k
c

)

=
(1− θ)(r− k− c) + θc log

(
r−k

c

)
1 + θbλ

b

+
1
λ

θc
(

1 + bλ + log
(

r−k
c

))
+ (1− θ)(r− k)

1 + θbλ

(
1− c

r− k

)
− c

λ
log
(

r− k
c

)
and

π̃m =(r− wθ)b +
r− wθ

λ

(
1− c

r− k

)
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=
θbλ(r− k− c) + θ(r− k− c)− θc log

(
r−k

c

)
1 + θbλ

b

+
1
λ

θbλ(r− k− c) + θ(r− k− c)− θc log
(

r−k
c

)
1 + θbλ

(
1− c

r− k

)
Since w− k > c, the supplier’s participation constraint is satisfied and π̃s > 0.

We still need to prove wθ < r, which is equivalent to

θc
(

1 + bλ + log
(

r−k
c

))
+ (1− θ)(r− k)

1 + θbλ
< r− k

This equality holds if and only if

θc
(

1 + bλ + log
(

r− k
c

))
+ (1− θ)(r− k) < (1 + θbλ)(r− k)

⇔ θc
(

1 + bλ + log
(

r− k
c

))
− θ(r− k) < θbλ(r− k)

⇔ 1 + bλ + log
(

r− k
c

)
− r− k

c
< bλ

r− k
c

⇔ 1 + bλ + log
(

r− k
c

)
< (bλ + 1)

r− k
c

For r − k > c, since bλ ≥ 0 the left-hand side increases logarithmically in r−k
c ,

while the right-hand side increases linearly in r−k
c . Therefore, we conclude that the

inequality holds and the coordinating wholesale price when considering multiple
product generations is lower than r. �

Proof of Proposition 2.9

If the fraction of the NPV of the total supply chain profit captured by the OEM is
smaller than 1, this means that π̃θ

m < Πθ , or equivalently Πθ − π̃θ
m > 0. Inserting

π̃θ
m = 1

1−θ

(
r− wθ

) (
b + 1

λ (1−
c

r−k )
)

with wθ = k +
θc(1+bλ+log( r−k

c ))+(1−θ)(r−k)
1+θbλ

and Πθ = 1
1−θ

(
(r− k− c)

(
b + 1

λ

)
− c

λ log
(

r−k
c

))
and simplifying the resulting

expression yields the condition:

(cθ + (1− θ)(r− k))
((

b + 1
λ

)
(r− c− k)− c log

(
r−k

c

))
(1 + θbλ)(r− k)

> 0.
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Since r > k and θ < 1, this holds when
(

b + 1
λ

)
(r − c − k) > c log

(
r−k

c

)
, or

equivalently r−k
c > 1 + 1

bλ+1 log
(

r−k
c

)
. This holds for all r− k− c > 0, by the same

reasoning as in the proof of Proposition 2.8. �

Proof of Proposition 2.10

The OEM’s profit is denoted as in Proposition 2.8 by

π̃m =
θbλ(r− k− c) + θ(r− k− c)− θc log

(
r−k

c

)
1 + θbλ

b

+
1
λ

θbλ(r− k− c) + θ(r− k− c)− θc log
(

r−k
c

)
1 + θbλ

(
1− c

r− k

)
This means that the fraction of supply chain profit captured by the OEM equals

π̃m

Π∗
=

θbλ(r−k−c)+θ(r−k−c)−θc log( r−k
c )

1+θbλ b + 1
λ

θbλ(r−k−c)+θ(r−k−c)−θc log( r−k
c )

1+θbλ

(
1− c

r−k

)
(r− k− c)

(
b + 1

λ

)
− c

λ log
(

r−k
c

)
or equivalently, by dividing both the numerator and denominator by r− k

=

θbλ r−k−c
r−k +θ r−k−c

r−k −θ c
r−k log( r−k

c )
1+θbλ b + 1

λ

θbλ r−k−c
r−k +θ r−k−c

r−k −θ c
r−k log( r−k

c )
1+θbλ

r−k−c
r−k

r−k−c
r−k

(
b + 1

λ

)
− c

r−k
1
λ log

(
r−k

c

)
If r−k

c → ∞:

c
r− k

→ 0,
r− k− c

r− k
→ 1, and

c
r− k

log
(

r− k
c

)
→ 0

Therefore,

π̃m

Π∗
→

θbλ+θ
1+θbλ b + 1

λ
θbλ+θ
1+θbλ

b + 1
λ

=
θbλ + θ

θbλ + 1

�
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Proof of Proposition 2.11

For θ → 1 we obtain wθ ≈ k +
c(1+bλ+log( r−k

c ))
1+bλ . As r−k

c → 1+, log
(

r−k
c

)
→ 0+.

Therefore, wθ ≈ k + c(1+bλ)
1+bλ = k + c. Since r−k

c → 1+ means that r− (k + c) → 0+

this means that wθ ≈ r. Furthermore, in Proposition 2.4 it is defined that ρ̂ =
1
λ

(
r− k− c− c

bλ+1 log
(

r−k
c

))
. Again using r−k

c → 1+ and thus log
(

r−k
c

)
≈ 0 we

obtain ρ̂ ≈ 1
λ (0−

c
bλ+1 · 0) = 0. �

Proof of Proposition 2.12

From Y ∼ Geom(1 − R(x)) it follows that E[Y(x)] = 1
1−R(x) . Since R(x) = 1 −

e−λ(x−b), we have E[Y(x)] = 1
e−λ(x−b) = eλ(x−b). Under the coordinating contract

with capacity x̃(wθ) = x∗ = b + 1
λ log

(
r−k

c

)
, it follows that E[Y(x)] = r−k

c . �

Proof of Lemma 2.2

We want to determine the minimum wholesale price for which π̃s(w) = (w− c−
k)
(

b + 1
λ

)
− c

λ log
(

w−k
c

)
≥ Z. This holds if and only if

(
w− k

c
− 1
)
(bλ + 1)− Z

λ

c
≥ log

(
w− k

c

)
⇔ e

w−k
c (bλ+1)−(bλ+1+Z λ

c ) ≥ w− k
c

⇔ e−(bλ+1+Z λ
c ) ≥ w− k

c
e−(bλ+1) w−k

c

⇔ −(bλ + 1)e−(bλ+1+Z λ
c ) ≥ −(bλ + 1)

w− k
c

e−(bλ+1) w−k
c

⇔ W
(
−(bλ + 1)e−(bλ+1+Z λ

c )
)
≥ −(bλ + 1)

w− k
c

⇔ w− k
c
≥ − 1

bλ + 1
W
(
−(bλ + 1)e−(bλ+1+Z λ

c )
)

⇔ w ≥ k− c
bλ + 1

W
(
−(bλ + 1)e−(bλ+1+Z λ

c )
)

So we conclude that π̃s(w) = (w− c− k)
(

b + 1
λ

)
− c

λ log
(

w−k
c

)
≥ Z if and only if

w ≥ k− c
bλ+1 W

(
−(bλ + 1)e−(bλ+1+Z λ

c

)
. �
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Proof of Proposition 2.13

Similar to the proof of Proposition 2.4, we have as necessary condition to achieve
coordination that ρλ + w = r. To arrive at a coordinating contract in which the
supplier’s profit is equal to the reservation profit Z and the OEM captures the
remainder of the profit, we must in addition set ρ and w such that the profit of
participating for the supplier equals Z.

The supplier’s profit equals:

π̂s(x̂(w, ρ), w, ρ) = (w− c− k)b +
w− k− c

λ
− c

λ
log
(

w− k + ρλ

c

)
we impose ρλ + w = r by substituting w = r− ρλ, which yields

π̂s(ρ) = (r− ρλ− c− k)b +
r− ρλ− k− c

λ
− c

λ
log
(

r− k
c

)
.

Solving π̂s(ρ) = Z for ρ gives:

ρ̂ =
1
λ

(
r− k− c− c

bλ + 1
log
(

r− k
c

)
− Z

λ

bλ + 1

)
.

Note that ρ̂ > 0 whenever r − k − c > c
bλ+1 log

(
r−k

c

)
+ Z λ

bλ+1 , or equivalently

Z < (r− k− c) bλ+1
λ − c

λ log
(

r−k
c

)
= Π∗. To satisfy r = w + ρλ, the OEM sets

ŵ = k + c +
c

bλ + 1
log
(

r− k
c

)
+ Z

λ

bλ + 1
.

By construction π̂s(x̂(ŵ, ρ̂), ŵ, ρ̂) = Z and it follows that

π̂m(ŵ, ρ̂) =

(
r− k− c− c

bλ + 1
log
(

r− k
c

))(
b +

1
λ

)
− Z

= Π∗ − Z.

�
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Proof of Lemma 2.3

Since,

E [min{D, x}] = E [D|D < x]P(D < x) + xP(D > x)

we need to determine E [D|D < x].

E [D|D < x] =

∫ x
0 y λnyn−1

(n−1)! e−λydy

P(D < x)

The lower incomplete gamma function is defined as:

γ(s, x) =
∫ x

0
ts−1e−tdt

such that

γ(n + 1, λx) =
∫ x

0
tne−tdt

and

1
λ

γ(n + 1, λx) =
∫ x

0
(λy)ne−λydy.

Therefore,

∫ x

0
y

λnyn−1

(n− 1)!
e−λydy =

1
λ(n− 1)!

γ(n + 1, λx)

and consequently,

E [min{D, x}] = γ(k + 1, λx)
λ(n− 1)!

+ xP(D > x).

�

Proof of Proposition 2.14

For random demand D with pdf f (d) and CDF F(d) we have:

πs(x) = −cx + E[(w− k)min{D, x}]
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πθ
s (x) =

1
1− θR(x)

πs(x)

If d > x then the profit equals (w − k − c)x and if d ≤ x then the profit equals
(w− k)d− cx. Therefore, we can write πs(x) as:

πs(x) =
∫ x

o
((w− k)d− cx) f (d)dd +

∫ ∞

x
(w− k− c)x f (d)dd

=
∫ x

0
(w− k− c)x f (d)dd−

∫ x

0
(w− k)(x− d) f (d)dd +

∫ ∞

x
(w− k− c)x f (d)dd

= (w− k− c)x− (w− k)
∫ x

0
(x− d) f (d)dd

leading to the following derivatives:

d
dx

πs(x) =(w− k− c)− (w− k)F(x)

d
dx

πθ
s (x) =

d
dx

[
1

1− θR(x)

]
· πs(x) +

1
1− θR(x)

· d
dx

πs(x)

=
θR′(x)

(1− θR(x))2

(
(w− k− c)x− (w− k)

∫ x

0
(x− d) f (d)dd

)
+

1
1− θR(x)

((w− k− c)− (w− k)F(x)) .

When considering a single generation, the optimal capacity x̃ satisfies d
dx π(x) = 0,

so x̃(w) = F−1
(

w−k−c
w−k

)
. For x̃(w, θ) > x̃(w), with x̃(w, θ) the capacity under the

wholesale price contract with endogenous renewal probability, we need to show
that under the renewal contract higher expected profit can be attained by increasing
capacity beyond x̃(w), i.e., d

dx πθ
s (x)|x=x̃(w) > 0. In other words, we need to show

that

d
dx

πθ
s (x)|x=x̃(w) =

θR′
(

F−1
(

w−k−c
w−k

))
(

1− θR
(

F−1
(

w−k−c
w−k

)))2

(
(w− k− c)F−1

(
w− k− c

w− k

)

−(w− k)
∫ F−1( w−k−c

w−k )

0

(
F−1

(
w− k− c

w− k

)
− d
)

f (d)dd

)
> 0

Since R(x) is increasing in x, it follows that
θR′(F−1( w−k−c

w−k ))

(1−θR(F−1( w−k−c
w−k )))

2 > 0. So
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d
dx πθ

s (x)|x=x̃(w) > 0 if and only if

(w− k− c)F−1
(

w− k− c
w− k

)
>

(w− k)
∫ F−1( w−k−c

w−k )

0

(
F−1

(
w− k− c

w− k

)
− d
)

f (d)dd

or if we let y = w−k−c
w−k :

yF−1 (y) >
∫ F−1(y)

0

(
F−1 (y)− d

)
f (d)dd

⇔ yF−1 (y) > F−1 (y)
∫ F−1(y)

0
f (d)dd−

∫ F−1(y)

0
d f (d)dd

⇔ yF−1 (y) > F−1 (y) F
(

F−1 (y)
)
−
∫ F−1(y)

0
d f (d)dd

⇔ yF−1 (y) > yF−1 (y)−
∫ F−1(y)

0
d f (d)dd

⇔ 0 > −
∫ F−1(y)

0
d f (d)dd

When w > c + k, this holds for any probability distribution that has support on the
non-negative real numbers. �

Proof of Proposition 2.15

Since wθ < w̃ = r, it follows that the manufacturer’s expected profit under the
renewal contract with coordinating wholesale price is positive. When the supplier
decides not to invest in any capacity (x = 0), the supplier’s expected profit is 0.
Under the contingent renewal contract with endogenous renewal probability, we
find that d

dx πθ
s (x)|x=0 = w − k − c − (w − k)F(0) = w − k − c as R(0) = 0 and

F(0) = 0. Consequently, the supplier can increase profit by choosing capacity x > 0,
which then yields πθ

s (x) = 1
1−θR(x)πs(x) > 0. As 1

1−θR(x) > 0, this means that the
supplier’s expected profit per generation, denoted by πs(x) is positive. Since there
thus exists a positive capacity for which the supplier’s expected profit per period is
positive, this must also hold for the optimal capacity investment x̃(wθ , θ). �
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3
Contingent Renewal Contracts in

High-tech Manufacturing with
Oligopolistic Suppliers

High-tech manufacturers (OEMs) often produce multiple generations of high-tech
end-products. For each generation an OEM has to source complex components
from a few oligopolistic suppliers. Due to the high shortage costs for missing
components, resulting from costly delays in production of the end-product, it is
important to align incentives between OEMs and suppliers of these components
that are often single-sourced. We formulate an infinite horizon perfect information
game with two possible suppliers where the payoffs in the current generation and
transition probabilities for the next generation depend on the capacity investment
of the current supplier. We express the suppliers’ optimal capacity investment as
a function of the wholesale price paid by the OEM and the capacity investment
decision of the alternative supplier. We show that for every wholesale price there
exists an equilibrium where neither supplier has incentive to adjust their capacity
decision. Additionally, we show that the wholesale price for which in equilibrium
the supply chain optimal capacity decision is made is lower than the coordinating

This chapter is based on Meijer et al. (2021b).
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wholesale price when only a single supplier is present, but higher than in case there
is an unlimited number of suppliers.

3.1. Introduction

High-tech supply chains involve original equipment manufacturers (OEMs), who
design and produce high-tech end-products, and their suppliers. Production of
critical components of these high-tech end-products requires specific technical
knowledge and equipment. Due to this complex engineering, there often is a limited
number of suppliers that is capable of supplying these high-tech components.
This means that the OEM has to deal with oligopolistic suppliers. Additionally,
critical components of high-tech systems are often sourced at a single supplier.
Since suppliers need to invest in very specific production capacity and technical
staff, they are often unwilling to engage unless they are the sole supplier of the
component. Consequently, the OEM works closely with a single supplier to design
and engineer such component. This single sourcing poses a risk for the OEM that
the supplier invests insufficiently in production capacity. In this chapter, we focus
on how to align incentives between an OEM and these oligopolistic suppliers of a
critical component of the high-tech system, e.g., Yuasa who supplies the batteries
for Boeing’s 787 aircraft or VDL/ETG who makes the wafer handler for ASML’s
lithography machines.

In modeling this relationship between an OEM and a supplier, we need to take
into account several other characteristics of high-tech supply chains. Like any other
new product, demand is highly uncertain. To reduce this uncertainty, high-tech
OEMs provide the possibility to place advance orders already before production
has commenced. For example, for the Boeing 787 around 900 advance orders were
placed, while many other orders only arrived after the aircraft was in production
(Nolan, 2009). Therefore, demand consists of two parts: a fixed part representing
advance orders and an uncertain additional demand. Furhtermore, supply capacity
is not verifiable for the OEM: The OEM can audit the available equipment, but
cannot verify how much production capacity is generated by this. Finally, an OEM
continues to improve the end-product and introduces multiple generations. In this
way, the OEM does not have to create a completely new product every time and
avoids high development costs. The Boeing 747, which was launched in 1970 and
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had multiple upgrades before retiring in 2018, is an example of this.

We investigate how in a setting with oligopolistic suppliers this last characteristic of
multiple product generations can be utilized to entice a supplier to perform well by
offering the possibility of long-term collaboration. We analyze three situations with
regard to the supply base: (1) there is only a single supplier available, (2) there are
infinitely many suppliers available and (3) there are two oligopolistic suppliers. In
case (1), the problem essentially reduces to a repetition of single-period problems,
as there is no option to switch to another supplier and hence no credible threat.
Case (2) refers to the contingent renewal contracts studied in Chapter 2. Case (3) is
the main focus of this chapter. We model capacity investment of the suppliers as an
infinite horizon game, where only a single supplier (the one currently working with
the OEM) can invest in capacity at the same time. The capacity investment decision
of this supplier determines the pay-offs in the current generation and determines
the probability that the OEM continues working with this supplier or switches to a
different supplier for the next product generation.

We show that the possibility of renewing the contract contingent upon performance
works as a motivation for the supplier to perform well and invest in adequate
production capacity. When we analyze the wholesale price required to entice the
supplier to build the coordinating capacity, we find that this wholesale price in
case (3) is lower than in case (1), meaning that the OEM earns a positive expected
profit under this contract. However, when we compare this wholesale price to
case (2), we find that the OEM needs to pay a higher wholesale price when the
supplier pool is limited than in case the pool is unlimited, indicating that the
oligopolistic supplier has more power. Furthermore, we find that the capacity
investment of the incumbent supplier depends on the potential capacity investment
of the alternative supplier. When the alternative supplier would invest in higher
capacity, after switching to the alternative supplier the OEM is more likely to stay
with that supplier. Hence, when the alternative supplier is willing to invest more
capacity, so is the incumbent supplier, to avoid that the OEM switches. We show
that there exists an equilibrium of investment decisions such that neither supplier
has incentive to deviate.

This chapter is organized as follows. We review relevant literature in Section 3.2.
In Section 3.3, we study the centralized supply chain, which will be used as a
benchmark. Section 3.4 provides the analysis for the decentralized case, where we
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differentiate between the number of available suppliers (as described by cases (1),
(2) and (3) above) and compare the wholesale prices required to entice the supplier
to invest in coordinating capacity. The chapter concludes in Section 3.5. All proofs
are provided in Appendix 3.A.

3.2. Literature review

In high-tech manufacturing, supplier selection and contracting are important
decisions. An overview of possible sourcing strategies is given by Elmaghraby
(2000), where the options of single- and multiple-sourcing are considered, as well
as the possibility of having a single or multiple periods in which supplier selection
can take place. Capacity reservations contracts are widely studied in literature (see
e.g. Barnes-Schuster et al., 2002; Brown and Lee, 2003; Erkoc and Wu, 2005; Ren
et al., 2010; Roels and Tang, 2017), but are often not practical in high-tech settings
due to difficulties in verifying capacity investments. Furthermore, these studies
often focus on contracts between a manufacturer and a single supplier and do not
consider multiple suppliers or supplier switching.

Competition among suppliers is widely studied in literature. The vast majority of
literature on supplier competition considers standard duopoly games with Cournot
quantity competition or Bertrand price competition (cf. Sinha and Sarmah, 2010;
Tsitsiklis and Xu, 2014; Wu et al., 2019). Wu et al. (2019) study a combination of
these two types of competition, as the suppliers engage in price competition and the
multiple retailers in quantity competition. Li and Gupta (2011) consider suppliers
that may strategically invest in capabilities upfront to serve anticipated demand and
to get an advantage over competitors. Hu et al. (2017) study competition among
suppliers in an experimental laboratory study. They are interested in how decision
makers actually behave in a capacity investment game and whether this behaviour
is consistent with theoretical predictions. They conclude that suppliers invested in
higher capacity than was predicted based on theory. The empirical study by Wu
and Choi (2005) shows that the relationship between suppliers impacts the buyers
strategy. They identify five archetypes of supplier-buyer relations through case
studies. In many of these competitions it is assumed that the competing firms have
market power. In our case, however, the OEM has most power, not the competing
suppliers.
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A key characteristic of our problem is the small supply base, where the number
of suppliers having the required capabilities is limited. This is for example the
case when there are substantial barriers to enter the market. Wilhite et al. (2014)
study how to create incentives for suppliers to enter and stay in the market, to
foster supplier competition. Li and Wan (2017) study how to stimulate supplier
performance by fostering supplier competition and inducing supplier effort and
what the consequences of this are for the supply base. A trade-off between a large
number and small number of suppliers is studied by Li (2013): a small supply base
may motivate supplier effort, whereas a large supply base encourages competition
between suppliers. It is concluded that sole sourcing is preferred when supplier’s
cost uncertainty is low or when demand uncertainty is high. Nam et al. (2011)
also study optimal sizing of the supply base. They argue that a limited number of
suppliers may lead to opportunistic supplier behaviour. However, they also explain
that the past decades many contractors have adopted long-lasting partnerships
with fewer suppliers to increase cost-effectiveness and coordination. Our approach
differs from these studies as we take the small supply base as given and analyse the
effect thereof on supplier investments.

The main feature of the contracts considered in this chapter is the collaboration
between an OEM and its suppliers that is continued over multiple periods or
terminated based on supplier performance. A similar setting was considered by
Meijer et al. (2021d) (on which Chapter 2 of this thesis is based) for an unlimited
supply base, such that the OEM could always switch to a new supplier. Previous
research also considered continued collaboration through relational contracts where
an OEM and supplier make agreements that are not court-enforceable but are
enforced by trigger strategies (Taylor and Plambeck, 2007b,a; Sun and Debo, 2014).
Merckx and Chaturvedi (2020) study the trade-off between leveraging supplier
competition in each period by offering short-term contracts and incentivizing
investment by the incumbent supplier by offering a single long-term contract. Xia
(2011) studies competition between two suppliers of substitutable products with
multiple buyers choosing or switching between suppliers based on costs or their
own preferences. Li and Debo (2009) consider a manufacturer that chooses between
sole- and second-sourcing, where second-sourcing refers to keeping the option open
to source from new suppliers in the future. They show that second-sourcing may
lead to larger initial capacity investments. Pfeiffer (2010) and Wagner and Friedl
(2007) both study conditions for a manufacturer to switch to a different supplier.
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Pfeiffer (2010) considers a setting with asymmetric information, where complex
contracts are employed to provide proper incentives for the incumbent supplier
to share cost information truthfully. Wagner and Friedl (2007) also considers the
option of partial switching, resulting in multi-sourcing. The main motivation for
switching in the work of Pfeiffer (2010) and Wagner and Friedl (2007) is to source
components at a lower cost. This is different from the setting we consider, where
the threat of switching is used as an incentive to invest in higher capacity.

3.3. Centralized supply chain

We begin by analyzing a centralized supply chain, where the capacity decision x is
made by a central body before demand is realized. Demand consists of two parts: a
fixed part denoted by b representing advance orders and an uncertain part denoted
by A. We assume that the additional uncertain demand is exponentially distributed,
such that D = b + A with A ∼ Exp(λ). Capacity x is established at a cost c ≥ 0
per unit. Once demand is realized, up to x units can be produced at an additional
cost k per unit. The final product is sold to the customer at retail price r. We
consider a setting where multiple generations of a product are produced. To assure
tractability, we assume that the cost structure is generation independent, such that
in any generation t we have ct = c, kt = k and rt = r. Furthermore, we assume
that demand is stationary, i.e. Dt = bt + At with bt = b and At ∼ Exp(λ). Future
profits are discounted at rate 0 < δ < 1. Assuming that any demand exceeding
the available capacity is lost, this allows us to write the following net present value
(NPV) of the expected supply chain profit:

Πδ(x) = E

[
∞

∑
t=1

δt−1Π(x)

]
=

1
1− δ

Π(x), (3.1)

with Π(x) the expected profit function for each generation:

Π(x) = −cx + E[(r− k)min{D, x}] = −cx + E[(r− k)min{b + A, x}]. (3.2)

By using the first-order conditions, we can find the optimal capacity and corre-
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sponding supply chain profits, as derived by Meijer et al. (2021d), to be:

x∗ := b +
1
λ

log
(

r− k
c

)
(3.3)

and Πδ = 1
1−δ Π∗ with

Π∗ := Π(x∗) = (r− k− c)
(

b +
1
λ

)
− c

λ
log
(

r− k
c

)
> 0. (3.4)

We can observe that the optimal capacity x∗ covers the base demand b and has an
additional part to satisfy the uncertain demand. Now that we have established the
optimal capacity and corresponding profit as a benchmark, in the remainder of this
chapter we will analyze the case where the supply chain is decentralized.

3.4. Decentralized supply chain

In a decentralized supply chain there no longer is a central decision maker. Instead,
we study the interaction between a high-tech OEM and a supplier of a component
for its end-product. The OEM determines a wholesale price w that it will pay to
the supplier for each component and subsequently the supplier decides how much
capacity x to build. Similar to the centralized supply chain, the supplier builds
capacity at a cost c per unit and can produce up to x at a cost k per unit. The OEM
pays the supplier wholesale price w and sells the end-product to its customers at
retail price r.

Since the introduction of a new generation requires new technologies, production
capacity is generation-specific meaning that capacity established for components of
the current generation cannot be extended to the next generation. Consequently,
every time a new generation of the product is introduced the OEM can make
the decision to either stay with the incumbent supplier or switch to a different
supplier when the performance of the current supplier is unsatisfactory. However,
this requires the supply base to be sufficiently large for the OEM to choose another
supplier. We will study the interaction between the OEM and its incumbent supplier
in three cases: (1) the incumbent supplier is the only supplier that has the skills to
produce the required components; (2) there is an unlimited base of suppliers that
can produce the components; and (3) there are two suppliers having the required



72
Chapter 3. Contingent Renewal Contracts in High-tech Manufacturing with

Oligopolistic Suppliers

capabilities. The decisions corresponding to these cases are denoted by superscripts
1, ∞ and 2, respectively.

3.4.1 Single supplier

When there is only a single supplier that is able to produce the component required
for the end-product, the OEM will work with this supplier for every generation.
There is no alternative supplier, so the OEM has no possibility to switch. This
means that the NPV of the supplier’s profit function can be written as:

π1
s (x, w) = E

[
∞

∑
t=1

δt−1πs(x, w)

]
, (3.5)

with
πs(x, w) = −cx + E[(w− k)min{b + A, x}] (3.6)

the single-generation expected profit function. The supplier maximizes its profit
over all generations by maximizing its single-generation profit in each generation.
The problem thus reduces to a repetition of single-period problems.

By considering the first-order condition and the fact that A ∼ Exp(λ), the supplier’s
profit maximizing capacity is:

x1(w) = b +
1
λ

log
(

w− k
c

)
. (3.7)

This confirms the well-known result that the supply chain can only be coordinated
when the OEM sets wholesale price w1 = r, shifting all profit to the supplier.

3.4.2 Unlimited suppliers

The threat of switching supplier becomes credible when the OEM has many
alternative suppliers to work with. We assume that the OEM will continue working
with the incumbent supplier for the next generation, unless this supplier is unable
to satisfy all demand D for the current generation with the available capacity x.
This means that the OEM will continue working with the incumbent supplier
with probability R(x) = Prob{D ≤ x} = 1− e−λ(x−b) for x ≥ b, and R(x) = 0
otherwise. For any given supplier capacity x, the number of generations Y(x) that
the incumbent supplier can work with the OEM follows a geometric distribution:
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Y ∼ Geom(1− R(x)). The expected profit for the supplier in each generation t is
δt−1πs(x, w), with πs(x, w) as defined in Equation (3.6). We can then write the NPV
of the supplier’s expected profit function as:

π∞
s (x, w) = E

[
Y(x)

∑
t=1

δt−1πs(x, w

]
=

∞

∑
t=1

P(Y(x) ≥ t)δt−1πs(x, w)

=
∞

∑
t=1

(R(x)δ)t−1πs(x, w) =
πs(x, w)

1− δR(x)
. (3.8)

This case is analyzed in detail in Chapter 2, where it is shown that the supplier’s
optimal capacity as a function of the wholesale price in any generation equals

x∞(w) = b +
1
λ

log
(

δ

1− δ
W
(

1− δ

δ
e

w−k
δc −1+ bλ(w−k−c)

c

))
. (3.9)

Furthermore, it is shown that the coordinating wholesale price, as given in Equation
(3.10), is smaller than the retail price r.

w∞ = k +
δc
(

1 + bλ + log
(

r−k
c

))
+ (1− δ)(r− k)

1 + δbλ
< r. (3.10)

3.4.3 Two suppliers

In reality, the OEM will likely find itself in a situation in between the two cases
considered above, where there is a limited number of suppliers that it could work
with. Unlike in the single supplier case, the OEM can use the threat of switching as
an incentive for the supplier to build sufficient capacity. However, contrary to the
case with an unlimited number of suppliers, the OEM will at some point return to
the incumbent supplier.

We assume that the OEM has two potential suppliers to work with. We will refer
to the supplier that the OEM is currently working with as the ‘incumbent’ supplier
and the other supplier as the ‘alternative’ supplier. The interaction between the two
suppliers can be modeled as an infinite horizon stochastic game. Stochastic games
were introduced by Shapley (1953). In a stochastic game, the choices of the players
at a point in time do not only determine their immediate pay-offs, but also the
stochastic transitions to the game played in the next period. In our situation, only
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s1 s2R(x1)

1− R(x1)

1− R(x2)

R(x2)

Figure 3.1: Illustration of supplier switching probabilities

a single player, namely the incumbent supplier, can make a decision at the current
moment. This decision determines the expected pay-off in the current period. Next
to that, it determines the probabilities that either the same game is played in the
next period, i.e., the incumbent supplier continues to supply and again needs to
decide on capacity, or the OEM switches to the alternative supplier which then
becomes the decision maker.

The state space consists of two states: S = {s1, s2} where s1 denotes that supplier 1

is the incumbent supplier and s2 denotes that supplier 2 is the incumbent supplier.
When in state s1, supplier 1 determines capacity x1 and supplier 2 cannot choose
anything. This results in expected pay-off πs(x1, w), with πs(x, w) as defined in
Equation (3.6), for supplier 1 and pay-off 0 for supplier 2. Similarly, when in state
s2, supplier 2 determines capacity x2 and supplier 1 cannot choose anything. This
results in expected pay-off πs(x2, w) for supplier 2 and pay-off 0 for supplier 1.
The transition probabilities are illustrated in Figure 3.1. The costs of supplier 1

are equal to c1 and k1, while the costs for supplier 2 are c2 and k2. The OEM will
continue working with the incumbent supplier with probability R(x) = Prob{D ≤
x} = Prob{A ≤ (x− b)} = 1− e−λ(x−b) for x ≥ b, and R(x) = 0; otherwise. With
probability 1− R(x) = e−λ(x−b) the OEM will switch to the alternative supplier.

Next, we will analyze optimal strategies in every period from the perspective of
supplier 1, assuming that this is the supplier that is currently playing. Analysis for
supplier 2, when supplier 2 is playing, is analogous. We will focus our attention
to stationary strategies, where the same action, i.e., capacity investment, is chosen
every time a specific state is encountered.

3.4.3.1 Incumbent supplier’s stationary strategy

When the manufacturer leaves the incumbent supplier, every following period
there is a probability 1 − R(x2) that the manufacturer will return, with x2 the
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decision of the alternative supplier. Therefore, the number of periods until the
manufacturer returns to the incumbent supplier, denoted by Y2, is Geometric(1 −
R(x2)). Therefore, we can write the expected profit function of the incumbent
supplier, given in Equation (3.11), consisting of three parts: (i) the expected profit
for the current generation; (ii) the expected profit of the next generation, when
the OEM continues working with the incumbent supplier; (iii) the expected profit
for the next generation the OEM and incumbent supplier will work together again,
when the OEM now switches to the alternative supplier. The NPV of the incumbent
supplier’s profit therefore equals:

π2
s (x1) = −c1x1 + (w− k1)E [min{x1, D}] + R(x1)δπ2

s (x1)

+ (1− R(x1))E
[
δY2
]

π2
s (x1) (3.11)

where E
[
δY2
]

is the expected discount factor for the profit that the supplier earns
when the OEM returns Y2 periods from now, as given in Lemma 3.1.

Lemma 3.1 Since Y2 ∼ Geometric(1− R(x2)), it follows that E
[
δY2
]
= δ(1−R(x2))

1−δR(x2)
.

Using the first-order conditions, we can derive the optimal capacity decision of
the incumbent supplier in response to the capacity of the alternative supplier as a
function of the wholesale price.

Proposition 3.1 The optimal stationary capacity of supplier 1 (in response to the capacity
of supplier 2) is given by

x2
1(w, x2) = b +

1
λ

log
(

δ

1− δ

(
1− 1− R(x2)

1− δR(x2)

)
·

W
((

1
δR(x2)

− 1
)

e
w−k1

δc1R(x2)
−1+bλ

w−k1−c1
c1

))
, (3.12)

where W is the Lambert-W function, which is the inverse function of f (y) = yey, and
R(x2) = 1− e−λ(x2−b) is the probability that the OEM stays with the alternative supplier
after working with the alternative supplier for a generation.

Analogous to the supplier’s optimal capacity decision given in Equation (3.9) for the
unlimited supplier case, the optimal capacity can cover the base demand b plus a
certain amount of additional demand. The available capacity for covering additional
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demand in this case does not only depend on base demand b and discount factor
δ, but also on the probability that the OEM will stay with the alternative supplier
after switching, denoted by R(x2). When the probability that the OEM stays with
the alternative supplier is higher, it will take longer for the OEM to return to the
current supplier when he leaves. Hence, the current supplier is more willing to
invest in additional capacity to prevent the OEM from switching to the alternative
supplier. This is formalized in Proposition 3.2.

Proposition 3.2 The optimal capacity of supplier 1 is monotonically increasing in the
capacity investment of supplier 2.

When R(x2) → 1 the probability of the OEM leaving the alternative supplier to
return to the incumbent supplier goes to 0 (1− R(x2) → 0). This means that after
switching to the alternative supplier, the OEM will not return to the incumbent
supplier. Consequently, the incumbent supplier essentially faces the same decision
problem as in the unlimited supplier case. In Corollary 3.1, it is shown that the
incumbent supplier’s capacity decision in this case also converges to the capacity
decision in the unlimited supplier case.

Corollary 3.1 If R(x2)→ 1, x2
1(w, x2)→ x∞(w) for all wholesale prices w > c1 + k1.

Next, when we compare the capacity investment by the supplier in the case with
a limited number of suppliers to the capacity investment both when there is a
single supplier and an unlimited number of suppliers, assuming that capacity and
production costs are equal, i.e. c1 = c and k1 = k, we get:

Proposition 3.3 For all wholesale prices w > c + k and investment decisions of the
alternative supplier x2 such that 0 < R(x2) < 1, it holds that x1(w) < x2

1(w, x2) <

x∞(w).

Similar to the case with unlimited suppliers, Proposition 3.3 suggests that the
performance-based condition for switching to an alternative supplier poses an
incentive to the supplier to invest in capacity. However, since the OEM will in
this case, contrary to the unlimited supplier case, return the current supplier at
some point, the incentive is weaker.
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3.4.3.2 Equilibrium solution

Now that we have established the best response of the incumbent supplier to
the capacity decision of the alternative supplier, and analogously the alternative
supplier’s capacity decision in response to the incumbent supplier’s capacity
decision, the question arises whether there exists an equilibrium solution where
neither supplier has incentive to adjust their capacity decision. In Proposition 3.4
we show that for every wholesale price such that w > c1 + k1 and w > c2 + k2

such an equilibrium solution exists. Proposition 3.5 states that for pure exponential
demand, when b = 0, this equilibrium is unique.

Proposition 3.4 For every wholesale price w there exists at least one equilibrium (x̂1, x̂2)

such that x2
1(w, x̂2) = x̂1 and x2

2(w, x̂1) = x̂2.

Proposition 3.5 When there is no base demand, i.e., b = 0, for every wholesale price w
there exists a unique equilibrium (x̂1, x̂2).

3.4.3.3 Coordination

In Proposition 3.4, we have just shown that for every wholesale price there exists
an equilibrium solution. Next, we will investigate what wholesale price the OEM
should offer to the suppliers such that there exists an equilibrium solution where
both suppliers are enticed to build the coordinating capacity. To obtain a single
wholesale price for which both parties are enticed to build the coordinating capacity,
we will assume symmetric costs for both suppliers, such that c = c1 = c2 and
k = k1 = k2. This means we want to find the wholesale price w for which we
find x2

1(w, x∗) = x∗ (and due to symmetry x2
2(w, x∗) = x∗) as defined in Equation

(3.3). This coordinating wholesale price for the limited supplier case is given in
Proposition 3.6.

Proposition 3.6 Suppose the OEM sets its wholesale price for each generation at w2,
where:

w2 = k +
δc
(

1− c
r−k

) (
1 + bλ + log

(
r−k

c

))
+
(

1− δ
(

1− c
r−k

))
(r− k)

1 + δbλ
(

1− c
r−k

) .

Then there exists an equilibrium solution where the suppliers’ capacity decision equals
the supply chain optimal capacity decision so that the supply chain is coordinated, i.e.,
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x2
1(w, x∗) = b + 1

λ log
(

r−k
c

)
= x∗.

In Chapter 2, we concluded that the wholesale price required to coordinate the
supply chain in the unlimited supplier case is lower than the the coordinating
wholesale price when only considering a single supplier. Proposition 3.7 shows
that the coordinating wholesale price in the limited supplier case is in between
these two values.

Proposition 3.7 For the coordinating wholesale price, as given in Proposition 3.6, the
following holds: w1 > w2 > w∞.

The intuition behind this result is that the supplier requires more incentive, in terms
of a higher wholesale price, than in the unlimited supplier case as the incumbent
supplier knows the OEM will return to work with the incumbent supplier again
at some point. However, there is some risk to the supplier of loosing the OEM
temporarily to the alternative supplier, so that he is willing to invest in the
coordinating capacity already for a lower wholesale price than in the single supplier
case.

3.5. Conclusions

In this chapter, we have studied contracting between a high-tech OEM and suppliers
of a critical component of the high-tech end-product. Supplier-buyer relationships
are essential for the functioning of such high-tech supply chains. Since OEMs
often produce multiple generations, this can be used to incentivize suppliers to
perform well. We have investigated how a contingent renewal contract can entice
the supplier to invest sufficient capacity to coordinate the decentralized supply
chain by aligning the incentives of the OEM and the supplier when capacity is not
verifiable. The main focus of this chapter is the case where there is only a limited
number of suppliers that has the capacities to produce the required modules.
Specifically, we have considered the case of two possible suppliers. We modeled
their interaction as an infinite horizon stochastic game, where at any time only a
single supplier has a non-trivial decision to make. This is the incumbent supplier
that the OEM is currently working with. The capacity decision of the incumbent
supplier determines not only the pay-off for the current generation, but also the
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probabability with which the OEM continues collaboration with the incumbent
supplier.

We have formulated the optimal capacity investment decision of the incumbent
supplier that anticipates on the capacity decision of the alternative supplier. When
the alternative supplier is willing to invest more capacity, it is likely that the
OEM will stay for a longer period with the alternative supplier after switching
and therefore the incumbent supplier is also willing to invest in more capacity.
We showed that for every wholesale price that covers the supplier’s costs there
exists a stationary equilibrium where neither supplier has incentive to adjust their
capacity decision. Additionally, we have analyzed the coordinating wholesale price
for which in this stationary equilibrium both suppliers will make the supply chain
optimal capacity investment. This coordinating wholesale price is lower than in case
there is only a single supplier with a standard wholesale price contract, meaning
that both parties earn postive expected profits in every period. However, when
the number of available supplier is limited, the suppliers have more power than
in case there is an unlimited number of suppliers. Consequently, the coordinating
wholesale price in the limited supplier case is higher than in the unlimited supplier
case.
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3.A. Proofs

Proof of Lemma 3.1

Since Y2 ∼ Geometric(1− R(x2)) is a discrete random variable taking on positive
integer values and δ ∈ (0, 1), E

[
δY2
]

is the probability generating function of
Y2 evaluated at δ (Shaked and Shanthikumar, 2007). The probability generating
function of a random variable X that is geometrically distributed with parameter
p is given by GX(t) = E

[
tX] = pt

1−(1−p)t . Therefore, it follows that E
[
δY2
]
=

δ(1−R(x2))
1−δR(x2)

. �

Proof of Proposition 3.1

Let y = e−λ(x1−b) and z = e−λ(x2−b). Then we can rewrite Equation (3.11) as

πs(y, z) =
b(w− k1 − c1) +

c1
λ log (y) + w−k1

c1
(1− y)

1− δ(1− y)− δy z
1−δ(1−z)

The first derivative with respect to y is given by

d
dy

πs(y, z) =

(
1− δ(1− y)− δy z

1−δ(1−z)

) (
c1
λ

1
y −

w−k1
λ

)
(1− δ(1− y)− δy z

1−δ(1−z) )
2

−

(
b(w− k1 − c1) +

c1
λ log (y) + w−k1

λ (1− y)
) (

δ− δ z
1−δ(1−z)

)
(1− δ(1− y)− δy z

1−δ(1−z) )
2

such that the first-order condition yields

((
δ− δ

z
1− δ(1− z)

)
(bλ(w− k1 − c1)− c1) +

(
1− δ

z
1− δ(1− z)

)
(w− k1)

)
y

+

(
δ− δ

z
1− δ(1− z)

)
c1y log (y) = (1− δ)c1

which is of the form a1y + a2y log y = a3 with a1, a2, a3 > 0 since w ≥ c1 + k1, b ≥ 0,
λ > 0 and 0 < δ < 1.
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The solution to this equation is given by

y =
a3

a2W
(

a3
a2

e
a1
a2

)
where W is the Lambert’s W function. Substituting

a1 =

(
δ− δ

z
1− δ(1− z)

)
(bλ(w− k1 − c1)− c1) +

(
1− δ

z
1− δ(1− z)

)
(w− k1)

a2 =

(
δ− δ

z
1− δ(1− z)

)
c1

a3 = (1− δ)c1

and simplifying the expression yields

y =
1− δ

δ
(

1− z
1−δ(1−z)

) 1

W
((

1
δ(1−z) − 1

)
e

w−k1
δc1(1−z)−1+bλ

w−k1−c1
c1

) .

Since y = e−λ(x1−b) and z = e−λ(x2−b) = 1− R(x2), this gives

x∗1(w, x2) = b +
1
λ

log
(

δ

1− δ

(
1− 1− R(x2)

1− δR(x2)

)
·

W
((

1
δR(x2)

− 1
)

e
w−k1

δc1R(x2)
−1+bλ

w−k1−c1
c1

))
.

�

Proof of Proposition 3.2

d
dx2

x1(w, x2) = −
e−λ(x2−b)

1− e−λ(x2−b)

[
1

W(. . .) + 1
1

1− e−λ(x2−b)
·[

1− e−λ(x2−b)

1− δ
(
1− e−λ(x2−b)

) + w− k1

δc1

]
− 1

1− δ
(
1− e−λ(x2−b)

)] (3.13)
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Since e−λ(x2−b)

1−e−λ(x2−b) > 0, d
dx2

x1(w, x2) > 0 if and only if

1
W(. . .) + 1

1
1− e−λ(x2−b)

[
1− e−λ(x2−b)

1− δ
(
1− e−λ(x2−b)

) + w− k1

δc1

]
<

1
1− δ

(
1− e−λ(x2−b)

)
1− δ

(
1− e−λ(x2−b)

)
1− e−λ(x2−b)

[
1− e−λ(x2−b)

1− δ
(
1− e−λ(x2−b)

) + w− k1

δc1

]
< W(. . .) + 1

1 +
w− k1

δc1

(
1

1− e−λ(x2−b)
− δ

)
< W(. . .) + 1

w− k1

δc1

(
1

1− e−λ(x2−b)
− δ

)
< W(. . .)

Using the fact that the Lambert-W function is the inverse function of f (y) = yey,
we obtain

w− k1

c1

(
1

δ
(
1− e−λ(x2−b)

) − 1

)
e

w−k1
δc1
(

1−e−λ(x2−b)
)− w−k1

c1

<

(
1

δ
(
1− e−λ(x2−b)

) − 1

)
e

w−k1
δc1
(

1−e−λ(x2−b)
)−1+bλ

w−k1−c1
c1

which holds if and only if

w− k1

c1
e−

w−k1
c1 < e−1+bλ

w−k1−c1
c1

log
(

w− k1

c1

)
− w− k1

c1
< −1 + bλ

w− k1 − c1

c1

1 + log
(

w− k1

c1

)
< (1 + bλ)

w− k1

c1
− bλ

This holds for all w−k
c > 1 since bλ ≥ 0. �

Proof of Proposition 3.3

We will show that these inequalities hold for general demand distributions.
Consequently, they also hold for the case of base demand plus exponential demand.
First, we will show the first inequality holds: x1(w) < x2

1(w, x2).
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For random demand D with pdf f (d) and CDF F(d) we have:

πs(x) = −c1x + E[(w− k1)min{D, x}]

π2
s (x1) =

1

1− δR(x)− (1− R(x1))
δ(1−R(x2))
1−δR(x2)

πs(x1)

If d > x then the profit equals (w − k1 − c1)x and if d ≤ x then the profit equals
(w− k1)d− c1x. Therefore, we can write πs(x) as:

πs(x) =
∫ x

0
((w− k1)d− c1x) f (d)dd +

∫ ∞

x
(w− k1 − c1)x f (d)dd

=
∫ x

0
(w− k1 − c1)x f (d)dd−

∫ x

0
(w− k1)(x− d) f (d)dd

+
∫ ∞

x
(w− k1 − c1)x f (d)dd

=(w− k1 − c1)x− (w− k1)
∫ x

0
(x− d) f (d)dd

leading to the following derivatives:

d
dx

πs(x) =(w− k1 − c1)− (w− k1)F(x)

d
dx1

π2
s (x1) =

d
dx1

[
1

1− δR(x1)− (1− R(x1))γ

]
· πs(x1)

+
1

1− δR(x1)− (1− R(x1))γ
· d

dx1
πs(x1)

=
(δ− γ)R′(x1)

(1− γ− (δ− γ)R(x1))2

(
(w− k1 − c1)x1 − (w− k1)

∫ x1

0
(x1 − d) f (d)dd

)
+

1
1− γ− (δ− γ)R(x1)

((w− k1 − c1)− (w− k1)F(x1))

where γ = δ(1−R(x2))
1−δR(x2)

.

When considering a single generation, the optimal capacity x1(w) satisfies d
dx π(x) =

0, so x1(w) = F−1
(
(w−k1−c1)

w−k1

)
. For x2

1(w, x2) > x1(w), with x2
1(w, x2) the capacity

for the oligopolistic supplier, we need to show that higher expected profit can be
attained by increasing capacity beyond x1(w), i.e., d

dx1
π2

s (x1)|x1=x1(w) > 0. In other
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words, we need to show that

d
dx1

π2
s (x1)|x=x1(w) =

(δ− γ)R′
(

F−1
(

w−k1−c1
w−k1

))
(

1− γ− (δ− γ)R
(

F−1
(

w−k1−c1
w−k1

)))2

(
(w− k1 − c1)F−1

(
w− k1 − c1

w− k1

)
−(w− k1)

∫ F−1
(

w−k1−c1
w−k1

)
0

(
F−1

(
w− k1 − c1

w− k1

)
− d
)

f (d)dd

)
> 0

Since R(x) is increasing in x, it follows that
(δ−γ)R′

(
F−1

(
w−k1−c1

w−k1

))
(

1−γ−(δ−γ)R
(

F−1
(

w−k1−c1
w−k1

)))2 > 0. So

d
dx1

π2
s (x1)|x1=x1(w) > 0 if and only if

(w− k1 − c1)F−1
(

w− k1 − c1

w− k1

)
> (w− k1)

∫ F−1
(

w−k1−c1
w−k1

)
0

(
F−1

(
w− k1 − c1

w− k1

)
− d
)

f (d)dd

or if we let y = w−k1−c1
w−k1

:

yF−1 (y) >
∫ F−1(y)

0

(
F−1 (y)− d

)
f (d)dd

⇔ yF−1 (y) > F−1 (y)
∫ F−1(y)

0
f (d)dd−

∫ F−1(y)

0
d f (d)dd

⇔ yF−1 (y) > F−1 (y) F
(

F−1 (y)
)
−
∫ F−1(y)

0
d f (d)dd

⇔ yF−1 (y) > yF−1 (y)−
∫ F−1(y)

0
d f (d)dd

⇔ 0 > −
∫ F−1(y)

0
d f (d)dd

When w > k1 + c1, this holds for any probability distribution that has support on
the non-negative real numbers. Therefore, the capacity built by the supplier in the
oligopolistic supplier case is higher than in the single supplier case.

Next we will show that the second part of the inequality holds: x2
1(w, x2) < x∞(w).
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For this we will show that d
dx1

π2
s (x1)|x1=x∞(w) < 0, i.e., the oligopolistic supplier

can attain higher profits by decreasing capacity compared to the unlimited supplier
case. For d

dx1
π2

s (x1) < 0 it must hold that:

(δ− γ)R′ (x1)

(1− γ− (δ− γ)R (x1))
2 (w− k1 − c1)x1 +

1
1− γ− (δ− γ)R(x1)

(w− k1 − c1) >

(δ− γ)R′ (x1)

(1− γ− (δ− γ)R (x1))
2 (w− k1)

∫ x1

0
(x1 − d) f (d)dd

+
1

1− γ− (δ− γ)R(x1)
(w− k1)F(x1)

or equivalently,

w− k1 − c1

w− k1

(
(δ− γ)R′ (x1)

1− γ− (δ− γ)R (x1)
+ 1
)

<
(δ− γ)R′ (x1)

1− γ− (δ− γ)R (x1)

∫ x1

0
(x1 − d) f (d)dd + F(x1).

This can be rewritten as

w− k1 − c1

w− k1
(1− δR(x1) + δx1R′(x1))−

w− k1 − c1

w− k1
(γ− γR(x1)γx1R′(x1))

< (1− δR(x1))F(x1) + δR′(x1)
∫ x1

0
(x1 − d) f (d)dd

− (γ− γR(x1))F(x1)− γR′(x1)
∫ x1

0
(x1 − d) f (d)dd.

Since

d
dx

π∞
s (x) =

d
dx

[
1

1− δR(x)

]
· πs(x) +

1
1− δR(x)

· d
dx

πs(x)

=
δR′(x)

(1− δR(x))2

(
(w− k1 − c1)x− (w− k1)

∫ x

0
(x− d) f (d)dd

)
+

1
1− δR(x)

((w− k1 − c1)− (w− k1)F(x)) ,

it follows that the optimal x∞(w) for the unlimited supplier case satisfies w−k1−c1
w−k1

(1−
δR(x) + δxR′(x)) = (1− δR(x))F(x) + δR′(x)

∫ x
0 (x− d) f (d)dd. This means that in
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order for d
dx1

π2
s (x1)|x1=x∞(w) < 0, it must hold that:

− w− k1 − c1

w− k1
(γ− γR(x∞(w)) + γx∞(w)R′(x∞(w))) <

− (γ− γR(x∞(w)))F(x∞(w))− γR′(x∞(w))
∫ x∞(w)

0
(x∞(w)− d) f (d)dd.

Rewriting this inequality, using again that the optimal x∞(w) for the unlim-
ited supplier case satisfies w−k1−c1

w−k1
(1 − δR(x) + δxR′(x)) = (1 − δR(x))F(x) +

δR′(x)
∫ x

0 (x− d) f (d)dd, gives

w− k1 − c1

w− k1
(δ− δR(x∞(w)) + δx∞(w)R′(x∞(w))) >

(δ− 1)F(x∞(w)) +
w− k1 − c1

c1
(1− δR(x∞(w)) + δx∞(w)R′(x∞(w))).

This results in the condition that F(x∞(w)) > w−k1−c1
c1

. Since x1(w) = F−1
(

w−k1−c1
w−k1

)
and x1(w) < x∞(w) (cf. Proposition 7 Meijer et al. (2021d)), this condition holds
and it follows that d

dx1
π2

s (x1)|x1=x∞(w) < 0. Therefore, we can conclude that the
second inequality also holds. �

Proof of Proposition 3.4

Proposition 3.2 states that the optimal capacity investment of supplier 1 is increasing
in the capacity investment of supplier 2. Furthermore, the capacity of supplier 1 is
always larger than 0, also if supplier 2 does not invest, and the derivative of capacity
supplier 1 w.r.t. capacity supplier 2, as given by Equation (3.13), converges to 0 as
capacity supplier 2 becomes larger. The same holds for the capacity of supplier 2 in
response to the capacity of supplier 1. Therefore, there must exist an equilibrium
point (x̂1, x̂2) such that x2

1(w, x̂2) = x̂1 and x2
2(w, x̂1) = x̂2. �

Proof of Proposition 3.5

When b = 0, it can be shown that d
dx2

[x1(w, x2)− x2] < 0, so that x1(w, x2)− x2 is
strictly decreasing in x2. In Proposition 3.4 we have established that an equilibrium
solution, denoted by (x̂1, x̂2), exists. This equilibrium is located on the line x1 =

x2 + C for some constant C. For all x̄2 > x̂2 we know that x1(w, x̄2) < x̄2 + C and
x2(w, x̄1 = x̄2 + C) > x̄2 + C. Therefore, (x̂1, x̂2) is the only equilibrium solution.�
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Proof of Proposition 3.6

The supply chain is coordinated when the OEM sets w such that

δ

1− δ

1−
c

r−k

1− δ
(

1− c
r−k

)
W

 1

δ
(

1− c
r−k

) − 1

 e
w−k

δc(1− c
r−k )

−1+bλ w−k−c
c


=

r− k
c

This equality holds if and only if

W

 1

δ
(

1− c
r−k

) − 1

 e
w−k

δc(1− c
r−k )

−1+bλ w−k−c
c

 =
r− k

c

 1

δ
(

1− c
r−k

) − 1


⇔

 1

δ
(

1− c
r−k

) − 1

 e
w−k

δc(1− c
r−k )

−1+bλ w−k−c
c

=
r− k

c

 1

δ
(

1− c
r−k

) − 1

 e
r−k

c

(
1

δ(1− c
r−k )

−1

)

⇔ w− k

δc
(

1− c
r−k

) − 1 + bλ
w− k− c

c
= log

(
r− k

c

)
+

r− k
c

 1

δ
(

1− c
r−k

) − 1


⇔ w− k

c

 1

δ
(

1− c
r−k

) + bλ


= 1 + bλ + log

(
r− k

c

)
+ log

(
r− k

c

)
+

r− k
c

 1

δ
(

1− c
r−k

) − 1


⇔ (w− k)

(
1 + bλδ

(
1− c

r− k

))
= cδ

(
1− c

r− k

)(
1 + bλ + log

(
r− k

c

))
+ (r− k)

(
1− δ

(
1− c

r− k

))

⇔ w = k +
cδ
(

1− c
r−k

) (
1 + bλ + log

(
r−k

c

))
+ (r− k)

(
1− δ

(
1− c

r−k

))
1 + bλδ

(
1− c

r−k

)
�
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Proof of Proposition 3.7

1. The coordinating wholesale price in the limited supplier case is lower than in the
single supplier case if and only if

cδ
(

1− c
r−k

) (
1 + bλ + log

(
r−k

c

))
+ (r− k)

(
1− δ

(
1− c

r−k

))
1 + bλδ

(
1− c

r−k

) < r− k

This inequality holds if and only if

cδ

(
1− c

r− k

)(
1 + bλ + log

(
r− k

c

))
+ (r− k)

(
1− δ

(
1− c

r− k

))
< (r− k)

(
1 + bλδ

(
1− c

r− k

))

⇔ cδ

(
1− c

r− k

)(
1 + bλ + log

(
r− k

c

))
− δ

(
1− c

r− k

)
(r− k)

< bλδ

(
1− c

r− k

)
(r− k)

⇔ 1 + bλ + log
(

r− k
c

)
− r− k

c
< bλ

r− k
c

⇔ 1 + bλ + log
(

r− k
c

)
< (1 + bλ)

r− k
c

which holds true since bλ ≥ 0 and r > k + c.
2. The coordinating wholesale price in the limited supplier case is higher than in
the unlimited supplier case if and only if

cδ
(

1− c
r−k

) (
1 + bλ + log

(
r−k

c

))
+ (r− k)

(
1− δ

(
1− c

r−k

))
1 + bλδ

(
1− c

r−k

)
>

δc
(

1 + bλ + log
(

r−k
c

))
+ (1− δ)(r− k)

1 + δbλ

This inequality holds if and only if

cδ
c

r− k

(
1 + bλ + log

(
r− k

c

))
< δcbλ + δc
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⇔ c
r− k

(
1 + bλ + log

(
r− k

c

))
< bλ + 1

⇔ 1 + bλ + log
(

r− k
c

)
< (1 + bλ)

r− k
c

which again holds true since bλ ≥ 0 and r > k + c. �
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4
Synchronization between Ordering a

Fixed Lead-time Module and
Capacitated Make-to-Order Production

A high-tech manufacturer often produces products that consist of many modules.
These modules are either sourced from one of its suppliers or produced in-house.
In this chapter, we study the common case of an assembly system in which one
module is sourced from a supplier with a fixed lead-time, while the other module
is produced by the manufacturer itself in a make-to-order production system. Since
unavailability of one of the modules has costly consequences for the production
of the end-product, it is important to coordinate between the ordering policy
for one module and the production of the other. We propose an order policy
for the lead-time module with base-stock levels depending on the number of
outstanding orders in the production system of the in-house produced module.
We prove monotonicity properties of this policy and show optimality. Furthermore,
we conduct a computational experiment to evaluate how the costs of this policy
compare to those of a policy with fixed base-stock levels and show that average
savings of up to 17% are attained.

This chapter is based on Meijer et al. (2021c).
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4.1. Introduction

High-tech original equipment manufacturers (OEMs) produce complex products
composed of many different modules that are either produced by the OEM itself
or sourced from one of its suppliers. To be able to assemble the final product and
deliver it to the customer, the OEM needs to organize its production and ordering
activities such that all modules are available at the point of assembly and inventory
holding and waiting time costs are minimized. The key challenge herein is aligning
deliveries from external suppliers with internal production, which is complicated
since modules typically have long lead-times and considerable uncertainties are
present in the in-house production process.

To study this problem, we consider an assembly system with an end-product
consisting of two modules. One of the modules is produced by the OEM in a make-
to-order (MTO) fashion, in order for it to be produced in line with specifications
in the customer request, while the other module is sourced from a supplier with
a given lead-time. The OEM must coordinate the deliveries of the supplier-
sourced module with its internal production process. Such coordination challenges
arise frequently at high-tech manufacturers and overcoming them is a crucial
step towards controlling working capital while catering to ever more demanding
customers. A noteworthy example arises at an OEM of wafer-steppers that we have
extensively worked with. This OEM produces key modules of their product in its
own production facility using highly skilled staff and specialized equipment. In
addition to these modules, the final product contains the lens: a highly specialized
component that has a long and predictable production lead-time and that is sourced
from a specific supplier. Coordinating the deliveries of the lens with internal
production is a challenging coordination problem.

In general, the importance of coordination in assembly processes is reflected in
the amount of research on this general topic. Important results on coordination of
ordering decisions for items with deterministic lead-times are obtained by Rosling
(1989). Coordination of items with stochastic lead-times was first studied by
Benjaafar and ElHafsi (2006). The problem studied in this paper falls in a third
category that has to our knowledge not received attention in prior work: assembly
systems with components with a fairly predictable lead-time as well as components
with stochastic lead-times.
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We consider two different variants of such assembly systems: a continuous-time
model and a discrete-time model. In the continuous-time model, we assume a
Poisson demand process and a single-server production system with exponential
production times for the in-house produced module. Once a customer order
arrives, production of the module can start as soon as there is available capacity.
Until capacity becomes available, the order has to wait in the queue. We aim to
synchronize the output process of this production system with the order policy
of the other module, to avoid large inventories that give rise to holding costs
as well as penalty costs incurred for waiting customers. Useful information on
the expected production of the MTO module, and thus the required units of the
second module, can be obtained from the number of customer orders waiting
for production of the MTO module. Since the production capacity of the MTO
module is fixed and assembly starts as soon as both modules are available, the
inventory levels of both finished modules are influenced by the inventory position
of the module sourced from the supplier. We propose a base-stock policy where
the target inventory position of the supplier-sourced module is dependent on the
number of customer orders waiting for production of the MTO module. We prove
monotonicity properties of this policy and show optimality. Numerical results
demonstrate that the proposed policy can generate considerable savings compared
to a base-stock policy with fixed base-stock levels. We show that optimality of this
state-dependent base-stock policy extends to the case of synchronizing the order
policy of a lead-time module with the production of multiple MTO modules.

Next, we investigate whether the results we obtained for the continuous-time model
can be extended to discrete time. We consider a discrete-time model with a
production capacity per period that can either be random or fixed. This model
would be more suitable when there is a fixed number of products that can be
produced per period or when available equipment has a random yield per period.
Also in this setting, we can prove optimality of the base-stock policy with target
inventory positions depending on the number of outstanding orders. Numerical
results again indicate that considerable savings can be attained by considering
information on the number of waiting orders for the MTO module. However,
we also observe some differences in the results compared to the continuous-time
model. For example, in continuous time we observed an increase in the average
percentage savings as lead-time increased, whereas in discrete time we observe a
decrease.
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This paper is organized as follows. We review relevant literature in Section 4.2.
In Section 4.3 we explain our continuous-time model in detail. Using this model
we derive the optimal base-stock policy for the module sourced from the supplier
and show how to compute the policy parameters based on the state of the in-house
production system. A computational experiment is provided in Section 4.3.4, which
shows an example of what the inventory policy will look like and compares the
expected costs of this state-dependent policy to those of a policy with a fixed base-
stock level. In Section 4.4, we show optimality of this policy also for the discrete-
time model and show numerically that also in the discrete-time case considerable
savings can be attained. In Section 4.5, we reflect on some modeling assumptions.
The chapter is concluded in Section 4.6.

4.2. Literature review

Assembly systems have been studied extensively, for example by Schmidt and
Nahmias (1985) who provide optimal policies for assembly systems with two
components. de Kok et al. (2018) review the extensive literature on multi-echelon
inventory management over the past decades, covering convergent, divergent and
more general structures and any combination of make-to-order, make-to-stock and
assemble-to-order production. Atan et al. (2017) provide an overview of recent
literature studying assemble-to-order systems. They state that the main challenge
in continuous review models with a single end-product is the synchronization of
component orders.

We can classify literature on assembly systems in two groups with respect to
capacity constraints. Literature in the first group does not take into account capacity
constraints. They assume stochasticity on the demand side, but deterministic lead-
times and unlimited supply. In the second group we find literature concerning
assembly systems with capacity constraints, resulting in stochastic lead-times.

First, we will focus on literature that studies coordination in uncapacitated assembly
systems. Rosling (1989) shows that, under certain conditions, a multi-stage
assembly system with fixed assembly times can be reduced to an equivalent serial
system, for which optimal policies are derived by Clark and Scarf (1960). More
recently, variations of assembly systems have been studied, such as systems with
components that have both different lead-times and review periods (Karaarslan
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et al., 2018). Martı́nez-de Albéniz and Lago (2010) provide a closed-form formula
to determine whether or not an order should be placed. Additionally, they
provide conditions for optimality of such myopic policy. Lu et al. (2015) derive
(asymptotically) optimal policies for both inventory replenishment and inventory
allocation for assemble-to-order N- and W-systems.

Capacity constraints are often modeled using finite-capacity queueing systems.
Song et al. (1999) consider a production system with exponential production times
in single-server queues with a finite queue and show how to obtain performance
measures. In the past decades, such assembly systems with finite production
capacities are studied increasingly (e.g. Bollapragada et al., 2015; ElHafsi et al.,
2010; Plambeck, 2008; Toktaş-Palut and Ülengin, 2011). Benjaafar and ElHafsi
(2006) study an assembly system consisting of m components required to satisfy
demand of n customer classes. A policy needs to specify when to produce each
component and whether or not to satisfy incoming customer orders from on-
hand inventory. They show a base-stock policy with dynamic base-stock levels
is optimal. Benjaafar et al. (2011) extend this work to the case where production
facilities do not only produce components, but also sub-assemblies. Huh and
Janakiraman (2010) focus on base-stock policies, as these are often used in practice.
They show convexity of the shortage costs with respect to the order-up-to levels
and discuss algorithmic implications. Cheng et al. (2011) study a problem with
unpredictable machine breakdowns and endogenous load-dependent lead-times.
Song and Zipkin (1993) study an assembly system with stochastic lead-times and
Markov-modulated demand, meaning that demand rates are dependent on the state
of an underlying variable. Several variations and extensions of the work of Song and
Zipkin (1993) have been considered, including the work of Chen and Song (2001).
Gallego and Hu (2004) consider, besides a Markov-modulated demand process, also
a Markov-modulated supply process that was driven by an independent Markov
chain. Furthermore, they consider finite production capacities. Similarly, Mohebbi
(2006) studies a situation where supply and demand are subject to independent
random environmental conditions where production up to the storage capacity is
initiated as soon as the inventory level drops below the limit. Muharremoglu and
Tsitsiklis (2008) study a serial system with multiple stages and stochastic lead-times
with Markov-modulated demand. They provide an approach for decomposing the
serial inventory problem into decoupled subproblems each consisting of a single
unit and a single customer. They show that state-dependent base-stock policies are
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optimal and provide an efficient algorithm to compute the base-stock levels.

Our work combines the two research streams discussed above by studying
coordination in an assembly system that combines a module sourced from an
unconstrained supplier with fixed lead-time with a module that is produced
in a capacitated system with stochastic lead-time. Due to the prevalence of
combinations of two such supply streams in practice, this is a relevant topic to
study. However, besides its practical relevance, this problem is interesting from a
theoretical perspective. Clearly, theory on uncapacitated systems with deterministic
lead-times cannot be generalized to situations in which one supply stream has
uncertain lead-time, since it is no longer possible to order items based on their
lead-time. Furthermore, contrary to most studies on assembly with stochastic lead-
times, we assume the capacity investment decision for the stochastic production
system to be fixed and coordinate the availability of both modules through the
inventory policy of the supplier-sourced module.

4.3. Continuous-time model

In this section we consider a continuous-time model of the assembly system. In
Section 4.4 we will consider the case where the assembly process is modeled in
discrete time.

Consider a high-tech end product that is composed of two modules. The first
module, denoted by m1, is customer-specific and made to order by the OEM itself,
in order for it to be produced in line with specifications in the customer request.
Production of m1 starts as soon as capacity is available after arrival of the customer
order; this assumption is discussed in Section 4.5. The second module, denoted by
m2, is sourced from a supplier with lead-time L. Demand of the end product is
modeled as a Poisson process with customers arriving at rate λ. We assume that
m1 is produced in a single-server queue with exponential service times with rate µ.
As a consequence, the production of module m1 evolves as an M/M/1 queue. A
departure from the queuing system then represents a finished m1 module that can
be used to assemble the end product.

When module m1 is finished and module m2 is available, the final product can be
assembled. If module m2 arrives before m1 is available, it needs to be stored and
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holding costs are incurred. If module m2 has not yet arrived when module m1 is
finished, m1 needs to be stored. A sketch of this system is given in Figure 4.1. To
formulate our model of the given assembly system, we introduce the additional
notation given in Table 4.1.

MTO

L

Assembly

Figure 4.1: Sketch of the assembly system

Table 4.1: Notation

IP
1 (t) number of unfinished orders for module m1 in the MTO production

system at time t
I1(t) inventory of finished m1 at time t ready for assembly
O2(t) ordered m2 modules that are in transit at time t
I2(t) inventory of m2 at time t
IA(t) number of products in the final assembly step at time t
IP2(t) inventory position of module m2 at time t
M1(t) cumulative production of module m1 until time t
h1 unit holding costs for m1 per time unit
h2 unit holding costs for m2 per time unit
b costs for customers waiting for their final product per time unit
L lead-time for m2

Customers want to receive the final product as soon as possible after placing their
order, which is represented by waiting costs b. Since module m1 is made to order
and therefore there is a one-to-one correspondence between customer orders and
m1 modules, we can formulate the cost function at time t consisting of four parts:

1. m1 orders that are waiting to be processed represent customers that are
waiting, hence cost b is incurred for every item.
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2. Similarly, m1 modules that are finished, waiting to be assembled also represent
customers that are waiting. Additionally, holding costs are incurred for the
finished modules, leading to costs b + h1 per unit.

3. m2 modules that are delivered and are waiting to be merged with module m1

give rise to holding costs h2 per unit.

4. Final products that are being assembled consist of m1 and m2. Also, every
final product is coupled to a customer order and thus represents a waiting
customer. Therefore, costs b + h1 + h2 are incurred.

Combining these parts gives cost rate function

C(t) = bIP
1 (t) + (b + h1)I1(t) + h2 I2(t) + (b + h1 + h2)IA(t). (4.1)

Clearly, I2(t) depends on the ordering decision of module m2. Since assembly can
take place when both modules m1 and m2 are available and finished components
m1 are held on inventory when module m2 is not available, I1(t) also depends on
the ordering policy of module m2. IP

1 (t) is independent of this ordering policy, as it
depends on the incoming orders of the end-product and whether there is capacity
available to produce module m1. The order policy of module m2 can influence the
timing of assembly of the end-product and shift corresponding costs over time.
However, since the total number of assemblies that needs to take place is fixed
(equal to the total demand of the end-product) and we assume ample assembly
capacity, the total costs for assembly of the end-product are independent of the
order policy. This means that the costs of interest that can actually be influenced
by the order policy of module m2 are those corresponding to the inventory of both
modules:

C̃(t) = (b + h1)I1(t) + h2 I2(t).1 (4.2)

Since production of the MTO module starts as soon as possible, we aim to
synchronize the ordering of the lead-time module with the output of the MTO
production system. We are interested in finding an order policy for module m2,
denoted by π, that minimizes the average costs of operating the assembly system

1Since IP
1 (t) is independent of the order policy and the assembly costs can only be shifted in time, it

holds that limT→∞
1
T

∫ T
0 C(t)− C̃(t)dt = a for some constant a that is independent of the order policy.
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over time. This minimization problem is formalized in Equation (4.3), where C̃π(t)
denotes the value of C̃(t) under order policy π for module m2.

min
π∈Π

lim
T→∞

E

[
1
T

∫ T

0
C̃π(t)dt

]
(4.3)

4.3.1 Inventory policy for module m2

Since minimizing the average costs over time is not straightforward, we will first
try to solve a related problem of minimizing the expected costs at a certain point in
time. After obtaining the solution that minimizes the expected costs at a fixed point
in time, we will return to the problem of minimizing the average costs over time.
Since decisions at time t affect costs at time t + L, we consider the expected cost
rate C̃(t + L) given the relevant information about the state of the system available
at time t:

E[C̃(t + L)|I1(t), I2(t), O2(t), IP
1 (t)] = E[C̃(t + L)|I1(t), I2(t) + O2(t), IP

1 (t)]. (4.4)

The equality holds because all m2 in transit at time t will have been delivered at
time t + L. Since C̃(t + L) is determined by the values of I1(t + L) and I2(t + L),
we are interested in I1(t + L) and I2(t + L) given the information available at time
t (I1(t), I2(t) + O2(t) and IP

1 (t)).

Since M1(t) denotes the cumulative production of module m1 until time t, it
follows that the production during time interval [t, t + L] can be written as
M1(t + L)−M1(t). Since module m1 and m2 are combined into the final product,
the inventory level of module m1 can decrease by at most the availability of module
m2 during [t, t + L], which is equal to I2(t) + O2(t). This means that we can write
the inventory of module m1 at time t + L as

I1(t + L) = max {I1(t) + M1(t + L)−M1(t)− I2(t)−O2(t), 0} .

Similarly, we can write

I2(t + L) = max {I2(t) + O2(t)− I1(t)− (M1(t + L)−M1(t)) , 0} .

Normally, when analyzing an inventory system with a fixed lead-time, one knows
that one lead-time from now all currently outstanding orders have been delivered.
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This then forms the basis for the balance equations, in which information on
demand and outstanding orders is incorporated. However, in this case we have a
fixed lead-time L only for module m2, while module m1 is produced in a capacitated
process. Therefore, it is unknown how many modules m1 will be finished during
the lead-time of module m2. We thus introduce a different way of modeling this
problem, where the demand process of the end-product is transformed by the
production process of module m1 such that the demand process for module m2

is equal to the production process of m1. This is reflected in the expressions of
I1(t + L) and I2(t + L) given above. Since every demand occurrence initiates the
production of an m1 module, production of m1 during the time interval [t, t + L]
can only take place if there was a queue of orders being processed or waiting to be
processed at time t or new demand occurred in the time interval [t, t+ L]. Therefore,
demand is indirectly incorporated in these equations through the production of
module m1 which is denoted by M1(t + L)−M1(t).

The inventory position of module m2 increases when a new order for this module
is placed. When production of a module m1 is finished, the module is ready to
be merged with module m2, leading to a decrease in the inventory position of
m2. Therefore, the inventory position of module m2 at time t is equal to IP2(t) =

I2(t) +O2(t)− I1(t). This allows us to rewrite the expression for expected cost rate
given in Equation (4.4) as:

E[C̃(t + L)|IP2(t), IP
1 (t)] = E[(b + h1)(M1(t + L)−M1(t)− IP2(t))+

+ h2(IP2(t)− (M1(t + L)−M1(t)))+|IP
1 (t)]. (4.5)

The expected cost is thus determined by the production of module m1 and the
inventory position of module m2, which is controlled by the order policy.

Since the capacity for producing module m1 is fixed and hence the production
of m1 cannot be influenced, the inventory control policy for module m2 is the
only decision that can influence the inventory levels of both modules and thus the
expected costs. Therefore, we aim to find the inventory policy for module m2 that
minimizes the expected costs as given in Equation (4.5). We will consider a myopic
inventory policy, where at any time t the target inventory position of module m2 is
determined that minimizes E[C̃(t + L)|IP2(t), IP

1 (t)]. This yields the minimization
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problem given in Equation (4.6).

min
IP2(t)

E[(b + h1)(M1(t + L)−M1(t)− IP2(t))+

+ h2(IP2(t)− (M1(t + L)−M1(t)))+|IP
1 (t)] (4.6)

We denote the minimizing target inventory position by ˜IP2(t). Observation 4.1
allows us to write ˜IP2(t) = ˜IP2(IP

1 (t)). This myopic inventory policy thus consists
of a list of target inventory position levels for every current state of the system.

Observation 4.1 The target inventory position of module m2 is a function of the
number of waiting orders in the queue for module m1.

Next, we want to assess whether this myopic policy is a good policy. For this
purpose, we will further analyze how the target inventory position ˜IP2(IP

1 (t))
responds to changes in IP

1 (t). First of all, in Theorem 4.1 we show that the target
inventory position of module m2 is non-decreasing in the number of customers in
the queue. If this would not hold, there could be situations in which the target
inventory position is lower than the current inventory position and one would
like to place a negative order. Similarly, Theorem 4.2 shows that the increase of
˜IP2(IP

1 (t)) is at most one when IP
1 (t) increases by one. All proofs are given in the

Appendix.

Theorem 4.1 ˜IP2(IP
1 (t)) is monotonically non-decreasing in IP

1 (t).

Theorem 4.2 If an additional customer enters the system, the target inventory position of
module m2 increases by at most 1, i.e. ˜IP2(IP

1 (t) + 1)− ˜IP2(IP
1 (t)) ≤ 1

Combining Theorem 4.1 and Theorem 4.2, we conclude that if IP
1 (t) increases by

one, the target IP level remains the same or increases by one. We give an illustration
of this in Figure 4.2. On the horizontal axis we have the number of waiting order for
production of module m1 and on the vertical axis the inventory position of module
m2. The black dots indicate the target inventory position of m2 for different values
of IP

1 (t). The dotted arrows correspond to an assembly step where both m1 and m2

are used, reducing both IP
1 (t) and IP2(t) by one. The solid arrows correspond to

a customer order arrival, leading to an increase in IP
1 (t) of 1. The dashed arrows

show the required orders of module m2 to reach the target inventory position. We
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Figure 4.2: Illustration of order policy. Solid arrows correspond to customer order
arrivals, dashed arrows to orders of m2 and dotted arrows to assembly.

observe that both the solid and the dotted arrows never go to a point where the
inventory position of module m2 exceeds its target. Consequently, all dashed arrows
correspond to an order of size 1. Hence, this policy behaves well in all situations, in
the sense that it never prescribes negative orders.

The next question is how this policy performs when we return to the original
problem in which we aim to minimize the average costs over time. When we
consider the optimal inventory policy that minimizes the average costs there also
is a corresponding inventory position IP∗2 (t) at every time t. By definition, the
myopically optimal target inventory position minimizes the costs at every point
in time. Therefore, we can conclude that this myopic policy is also optimal for
minimizing average costs over time and thus that IP∗2 (t) = ˜IP2(IP

1 (t)). This is
formalized in Theorem 4.3.

Theorem 4.3 The myopic inventory policy for module m2 is optimal for minimizing
average costs.

4.3.2 Computing ˜IP2(IP
1 (t))

Now that we have characterized the myopic inventory policy, we are interested in
how the target inventory level ˜IP2(IP

1 (t)) can be computed for a given value of
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IP
1 (t). This requires us to take a closer look at the rate at which module m2 is used

in the assembly process and the cost structure.

When module m1 is finished and module m2 is available, the final product can be
assembled. However, if module m2 arrives before m1 is available it needs to be
stored and holding costs are incurred and if module m2 has not yet arrived when
module m1 is finished, m1 needs to be stored and the customer is waiting. In other
words, the minimization problem given in Equation (4.6) is a Newsvendor problem
with shortage costs for module m2 equal to b + h1 and overage costs h2.

The requirement for module m2 in the assembly system during period [t, t + L]
is equal to the production of module m1 during [t, t + L], which is denoted by
M1(t + L)−M1(t). Since the production during [t, t+ L] depends on the number of
waiting customers at time t, the distribution of M1(t + L)−M1(t) depends on IP

1 (t).
Therefore, when synchronizing the order policy of module m2 with the production
of module m1, we need to consider the distribution of M1(t + L) − M1(t) given
IP
1 (t). We then want to determine ˜IP2(IP

1 (t)) such that P(M1(t + L) − M1(t) <
˜IP2(IP

1 (t))) ≥ CF, where CF = b+h1
b+h1+h2

is the critical fractile.

Every demand occurrence of the end-product triggers the production of the MTO
module m1. Since the end-product can only be assembled once both the MTO
module and the lead-time module are available, we can use the output of the MTO
production system during time [t, t + L] as the demand process of the lead-time
module. To derive the distribution of the production of this module during the lead-
time of the second module, we model the state of the inventory system, consisting
of the number of waiting customer orders and the number of finished modules m1,
as a Markov process. Let (i, j) denote the state of the system with i the number
of m1 jobs waiting or currently in process in the system and j the number of m1

modules produced, with i = 0, 1, 2, . . . and j = 0, 1, 2, . . .. When time is scaled such
that λ + µ = 1, a customer order arrival occurs with probability λ and generates
a transition from (i, j) to (i + 1, j). An exit corresponds to finished production of
a module m1. This occurs with probability µ. When there are customers in the
system (i > 0), a completion of module m1 means that the process moves to state
(i− 1, j + 1). When i = 0, meaning that there are no customer orders in the system,
we do allow for exits, but the system then remains in the same state. This yields the
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following transition probabilities:

P(i,j),(i+1,j) = λ,

P(i,j),(i,j) = µ if i = 0, and

P(i,j),(i−1,j+1) = µ if i > 0.

We are interested in the number of modules m1 produced by time t + L, given that
there are IP

1 (t) jobs waiting in the system at time t. In other words, we are interested
in the value of j after L time units, starting from state (IP

1 (t), 0).

In order to analyze the production during [t, t + L], we condition on the total
number of transitions, consisting of both customer arrivals and finished production
of a module, during time period [t, t + L], denoted by X. When we condition on X,
both the number of customers in the queue and the number of modules m1 that are
produced during time interval [t, t + L] are bounded. As a result the state space is
bounded and we can define the transition probability matrix, which we denote by
P̄. Let s be a vector with length equal to the number of states with all zero entries,
except for a one at the state corresponding to (IP

1 (t), 0). The probability distribution
over the state space after X= k events is then given by sP̄k. Since the production of
m1 is modeled as an M/M/1 queue, X has a Poisson distribution with parameter
(λ + µ)L, i.e.

P(X = k) =
((λ + µ)L)k

k!
e−(λ+µ)L.

For each realization of X = k we can determine the probability distribution over the
output of m1 from sP̄k, from which we obtain the unconditional distribution over
the state space after L time units starting from state (IP

1 (t), 0). Then the distribution
over the number of modules m1 produced in the time interval [t, t + L] can be
obtained from Equation (4.7).

P(M1(t + L)−M1(t) = j|IP
1 (t) = i)

=
∞

∑
k=0

P(X = k)P(M1(t + L)−M1(t) = j|X = k, IP
1 (t) = i) (4.7)

Since the support of the Poisson distribution is all natural numbers starting from
0, i.e. k ∈ N0, we need to bound the states space in order to obtain closed-form
expressions. Therefore, we introduce an upper bound on the number of transitions



4.3 Continuous-time model 105

during [t, t + L], denoted by XU , such that P(X≥XU) is negligible. We specify XU

using Cantelli’s inequality, which is a one-sided Chebyshev inequality, as described
by Ghosh (2002). Since X∼ Poisson((λ+ µ)L), this gives the upper bound provided
in Lemma 4.1.

Lemma 4.1 For any 0 < ε < 1, P(X ≥ XU) ≤ ε holds if XU = (λ + µ)L +√(
1
ε − 1

)
(λ + µ)L.

To illustrate this procedure, we will now provide a small-scale example that shows
the intuition behind this approach.

4.3.2.1 Small scale example production m1

We consider a small example in which the parameters are such that the probabilities
of having more than 2 customers in the queue or of producing more than 2 units
of module m1 during [t, t + L] are negligible. This gives the following states and
transition probabilities, where (0, 3) is added as an absorbing state such that the
probabilities in each row add up to one:

P̄ =

(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2) (0, 3)



(0, 0) µ λ

(1, 0) λ µ

(2, 0) λ µ

(0, 1) µ λ

(1, 1) λ µ

(2, 1) λ µ

(0, 2) µ λ

(1, 2) λ µ

(2, 2) λ µ

(0, 3) λ + µ

Assuming we start in state (0, 0), the starting vector is s = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]. By
conditioning on X= 2, we obtain the distribution over the state space given by:

sP̄2 = [µ2, λµ, λ2, λµ, 0, 0, 0, 0, 0, 0]
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Since the first three states ({(0, 0), (1, 0), (2, 0)}) correspond to M1(t + L)−M1(t) =
0, the following three states ({(0, 1), (1, 1), (2, 1)}) to M1(t + L)−M1(t) = 1, etc. we
obtain the following conditional probabilities:

P(M1(t + L)−M1(t) = 0|IP
1 (t) = 0, X = 2) = µ2 + λµ + λ2

P(M1(t + L)−M1(t) = 1|IP
1 (t) = 0, X = 2) = λµ

P(M1(t + L)−M1(t) = 2|IP
1 (t) = 0, X = 2) = 0

Similarly, we can obtain the conditional probability distribution over the production
of m1 for different values of X. Using Equation (4.7) we can then determine the
distribution of the production given that there are IP

1 (t) = 0 customer orders
waiting in the queue.

When starting with i = 1 and starting with i = 2 customer orders in the
queue, we can repeat the calculations by using a different vector s (i.e., s =

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0] and s = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], respectively).

4.3.3 Cost calculations

Now that we have formulated the inventory policy with target inventory position
˜IP2(i) when IP

1 (t) = i and modeled the production of module m1, we want to
compare the costs of this policy to the costs of a policy with a fixed target inventory
position. First, we formulate the expected costs of the proposed policy in Equation
(4.8). By conditioning on the value of IP

1 (t) = i we determine the expected costs
for every i. Since the stationary probability of having i customers waiting in an
M/M/1 queue is equal to P(IP

1 (t) = i) = (1 − ρ)ρi, we can then calculate the
overall expected costs.

E[C̃(t + L)| ˜IP2(t)] =
∞

∑
i=0

P(IP
1 (t) = i)E[C̃(t + L)| ˜IP2(t), IP

1 (t) = i]

=
∞

∑
i=0

(1− ρ)ρi
XU

∑
j=0

P(M1(t + L)−M1(t) = j|IP
1 (t) = i)

(
(b + h1)(j− ˜IP2(i))+ + h2( ˜IP2(i)− j)+

)
(4.8)

For an inventory policy with fixed target inventory position IP2, the expected costs
are given in Equation (4.9). Without taking into account the current state of the
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queue, the output process of the M/M/1 queue during [t, t + L] in steady state is a
Poisson process with rate λL. Therefore, P(M1(t + L)−M1(t) = j) = (λL)j

j! e−λL.

E[C̃(t + L)|IP2(t)] =
XU

∑
j=0

(λL)j

j!
e−λL ((b + h1)(j− IP2)

+ + h2(IP2 − j)+
)

(4.9)

4.3.4 Computational analysis

In this section, we evaluate the effectiveness of the inventory policy that takes
into account the customers currently waiting at the in-house production facility of
module m1 by means of a computational experiment. The results of this analysis are
provided in Section 4.3.4.2. First, in Section 4.3.4.1 we illustrate how the procedure
described in Section 4.3 results in a table of target inventory positions for different
numbers of waiting customer orders. The complexity of the algorithm results from
determining the state distribution after a certain number of events for each starting
state. Therefore, the complexity is O(S3), where S denotes the size of the state
space. Note that in case the number of events that can occur during the lead-time
of module m2 is large and hence the output size can be large, there are a lot of
states that need to be considered. For example, when we increase lead-time such
that the maximum number of events grows from 81 to 104, the computation time
for the probability distribution of the output and the corresponding optimal policy
increases from 0.64 to 0.92 seconds, where the time required for finding the optimal
policy is negligible. We can thus observe that this maximum number of events has
a large effect on the size of the state space and thus on the computation time.

4.3.4.1 Illustrative example of inventory policy

Consider the following numerical example: λ = 0.8, µ = 1, L = 4, h1 = 4, h2 = 1,
b = 5, giving critical fractile CF = 0.9. In Table 4.2 we tabulate the target IP for
module m2 for different values of IP

1 (t).

Without taking into account the current state of the queue, the output process of
the M/M/1 queue in steady-state during [t, t + L] is a Poisson process with rate λL.
Using this information, we can determine the target inventory position for which
the cumulative probability reaches the critical fractile. In the given example, this
leads to a target inventory position of 6.
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Table 4.2: Target inventory position for different values of IP
1 (t)

IP
1 (t) Target IP

0 4

1 4

2 5

3 6

4 6

5 6

≥ 6 7

4.3.4.2 Policy evaluation

In order to assess the value of taking into account information on outstanding
orders in the order policy and its sensitivity to various model parameters, we
perform a full factorial experiment. In our experiment, we vary the rate of
production relative to the rate of incoming orders, the lead-time of module m2,
the holding costs of module m1 relative to those of module m2 and the waiting time
costs for customers. The setup of the experiment is given in Table 4.3. We set µ = 1
and h2 = 1. In total we have 2 · 33 = 54 instances.

Table 4.3: Parameter settings for experiments

Parameter Values
λ 0.8, 0.9
L 2, 3, 4

h1 1, 2, 4

b 1, 5, 10

For each instance we calculate the expected costs at time t + L under the reorder
policy with fixed target inventory position and the policy with state-dependent
target inventory position and the cost savings that can be achieved by taking into
account information on customer orders. The parameters given in Table 4.3 are fixed
one at a time and the remaining parameters are varied. The summary statistics are
provided in Table 4.4. The last row provides the summary over all 54 instances.

According to the results provided in Table 4.4, on average 17.00% cost reduction
can be achieved by letting the target inventory position depend on the number
of waiting customers. The minimum and maximum cost reduction are 8.72% and
22.07%, respectively. The benefit of using the available information on the number
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Table 4.4: Results of full factorial experiment continuous-time model

Avg cost Savings (%)
Fixed IP State-dep. IP Average Max Min

λ 0.8 2.71 2.30 14.65 18.27 8.72

0.9 2.87 2.31 19.34 22.07 15.02

L 2 2.34 1.95 16.05 20.90 8.72

3 2.82 2.33 16.95 20.77 10.68

4 3.22 2.63 17.98 22.07 13.33

h1 1 2.57 2.14 16.08 21.23 8.72

2 2.77 2.28 17.45 22.07 11.62

4 3.03 2.49 17.46 21.85 12.57

b 1 2.14 1.79 15.68 20.85 8.72

5 2.88 2.39 16.95 20.90 10.51

10 3.35 2.74 18.36 22.07 15.80

All 2.79 2.31 17.00 22.07 8.72

of waiting customer orders increases considerably in the arrival rate. When the
arrival rate is low compared to the service rate, the number of waiting customers is
likely to be small and the Poisson process with rate λL will be a good approximation
of the production of module m1, hence there is less value in using this information.
However, when λ is close to µ, the queue of waiting customers may be more
substantial and the information on the number of outstanding customer orders
becomes more useful. Furthermore, the value of this information is higher when
the holding cost of module m1 and/or the customer waiting costs are high relative
to the holding costs of module m2 or when the lead-time of module m2 is high.
Overall, Table 4.4 shows that including the information on waiting customer orders
in the order policy leads to substantial savings.

4.3.5 Extension: Multiple MTO modules

Until now, we considered the synchronization of a lead-time module with a single
MTO module for which the in-house production evolves as an M/M/1 queue.
However, in reality end-products may consist of multiple modules that need to
be assembled, rather than just two. Consider for example the production of
wafer-steppers that was mentioned in Section 4.1, where multiple key modules
are produced at the OEM’s own production facility, but the lens is sourced from
an outside supplier with long but stable lead-times. Therefore, in this section we
will extend this analysis to the synchronization of a lead-time module with N MTO
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modules, where the production of each of these modules evolves as an M/M/1
queue with arrival rates equal to the demand rate of the end-product. We again
assume that production of each of the MTO modules commences as soon as there
is capacity available in the corresponding production system. Whenever all MTO
modules and the lead-time module, denoted by mN+1, are available, assembly of
the final product can take place. The requirement for the lead-time module in
the assembly system during period [t, t + L] is thus equal to the minimum of the
production of all MTO components during this time period.

Similar to the original model, we incur holding costs and customer waiting costs
when all MTO modules are ready, but assembly cannot take place as the lead-time
module is missing. Holding costs for the lead-time module are incurred when this
module is available while (one of the) MTO modules are (is) missing. Additionally,
when one or more of the MTO modules are available while others are not, holding
costs for the available module(s) and customer waiting costs are incurred. However,
since the inventory policy of the lead-time module has no influence on these costs,
these costs are considered to be exogenous. Therefore, we can determine the
myopically optimal inventory position of the lead-time component as a function
of the current state of the production system.

To analyze the joint production of the MTO modules, we model the state of the
production system as a Markov process with N + 1-dimensional state space. For
the first MTO module, we include information on the number of outstanding orders
and the number of finished modules. For the other MTO modules it suffices to keep
track of the number of finished modules. Let (i1, j1, . . . , jN) denote the state of the
system with i1 the number of jobs waiting for production of module m1 and jk, k ∈
{1, . . . , N} the number of modules mk that are finished, with i1 = 0, 1, 2, . . . and jk =
0, 1, 2, . . . for k ∈ {1, . . . , N}. Since production of all MTO modules mk is triggered
by a customer order and all modules are combined in the assembly of the end-
product, for each state the corresponding number of jobs waiting for production
of module mk is equal to ik = i1 + j1 − jk. We can then find the distribution of
the requirement for the lead-time module in the assembly system during period
[t, t + L] in a similar way as for the initial case with a single MTO module. Based on
this, we determine the target inventory position of the lead-time module such that
P(min{M1(t + L)−M1(t), . . . , MN(t + L)−MN(t)} < ˜IPN+1(i1, j1, . . . , jN)) ≥ CF,

where CF =
b+∑N

k=1 hk

b+∑N+1
k=1 hk

is the critical fractile.
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Similar to the case with a single MTO module, Theorems 4.4 and 4.5 show that
the arrival of an additional customer order will never decrease the target inventory
position of the lead-time module and increases it by at most one. Therefore, this
myopic policy behaves well when considering multiple MTO modules in the sense
that it will never prescribe negative orders.

Theorem 4.4 The target inventory position of the lead-time module is monotonically non-
decreasing in the number of outstanding customer orders.

The reasoning remains the same as in the single MTO module case, namely that
we use the output process of the production system of the MTO modules as the
demand process for the lead-time module. Therefore, it is not surprising that this
monotonicity result extends to the case with N MTO modules. Similar to the
single MTO module case, the arrival of an additional customer order will never
reduce the output of the in-house production process. Therefore, intuitively, it also
seems reasonable that the target inventory position of the lead-time module does
not decrease.

Theorem 4.5 If an additional customer enters the system, the target inventory position of
the lead-time module increases by at most 1.

Similar reasoning can be used to explain why the target inventory position increases
by at most one, as is shown in Theorem 4.5. In Theorem 4.2, this result was proven
for the case with a single MTO module. It was shown that an additional customer
order can increase the output of the production process of the MTO module by
at most one. Now we consider the case with N MTO modules. If the output of
the combined MTO modules were to increase by more than one, then for at least
one of the MTO modules the output would need to increase by more than one. In
Theorem 4.2 we showed that this does not happen in case of a single MTO module
and therefore intuitively Theorem 4.5 should also hold.

Now that we have established that this myopic policy behaves well also for the case
of multiple MTO components and thus never prescribes negative orders, we can
again show that this myopic policy is optimal for synchronizing the ordering of the
lead-time module mN+1 with the in-house production of the N MTO modules. This
is formalized in Theorem 4.6.
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Theorem 4.6 The myopic inventory policy for module mN+1 is optimal for minimizing
average costs.

The structure of the optimal policy does not depend on the number of MTO
modules in the in-house production system. Both in case of a single MTO module
and in case of multiple MTO modules we have shown that the myopic state-
dependent base-stock policy that takes into account the number of outstanding
orders in the in-house production system is optimal. The optimal base stock levels
for the case with multiple MTO modules can be determined in the same way as
for the case with a single MTO module, with complexity O(S3). However, since
the dimensionality of the state space is now N + 1, the size of the state space will
be much larger than in the case with a single MTO module. Consequently, the
computation time for finding the optimal base-stock levels in case of multiple MTO
modules will also be larger than in case of a single MTO module.

4.4. Discrete-time model

In the previous sections we have shown that an inventory policy with a state-
dependent target inventory position is optimal and can generate considerable
savings compared to a policy with a fixed target inventory position in a continuous-
time model. Such a model may not be suitable for all assembly systems, for example
when using periodic review. Therefore, we will now consider a model in discrete
time. We will again consider the assembly system shown in Figure 4.1, consisting
of two modules that need to be merged in a single end-product. Module m2 is
sourced from a supplier with a lead-time of L periods. For the other module there
is in every period available production capacity that may either be fixed or random.
We denote the (random) number of units that can be produced per period by C and
demand per period by D.

The production of module m1 can still be modeled as a Markov process with states
(i, j), where i denotes the number of outstanding customer orders and j the number
of units produced. Every period production is equal to the minimum of available
capacity (C) and available customer orders consisting of both new demand and
outstanding orders (i + D). If the total number of orders exceeds available capacity,
the remaining orders will still be outstanding orders at the beginning of the next
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period. This means that we have the following transition:

(i, j)→
(
(i + D− C)+, j + min{i + D, C}

)
.

The transition probabilities can be determined based on the distributions of demand
and capacity.

The cost structure remains the same as in the continuous-time model. In every
period holding costs h1 are incurred for finished modules m1 that need to be stored
and similarly we have holding costs h2 for m2. Additionally, there is a per-period
back-order cost b. Costs per period are as given in Equation (4.1). Using similar
reasoning as for the continuous-time model, we can write the myopic inventory
policy at time t as:

min
IP2(t)

E[(b + h1)(M1(t + L)−M1(t)− IP2(t))+

+ h2(IP2(t)− (M1(t + L)−M1(t)))+|IP
1 (t)]. (4.10)

We can again show that the myopic inventory policy, in which the target inventory
position is determined for every period separately, is optimal. For this we prove
Theorems 4.7 and 4.8, which are similar to Theorems 4.1 and 4.2 in the continuous-
time model. These theorems show that the target inventory position of module m2

is non-decreasing in the number of outstanding customer orders and increases by
at most 1 as the number of outstanding orders increases by 1.

Theorem 4.7 For every period t, ˜IP2(IP
1 (t)) is monotonically non-decreasing in IP

1 (t).

Theorem 4.8 For every period t, an additional customer order in the system increases the
target inventory position of module m2 by at most 1.

Similar to the continuous-time model, we can use Theorems 4.7 and 4.8 to
conclude that the proposed policy behaves well also for the discrete-time model.
Furthermore, we can use the same reasoning as in Section 4.3.1 to conclude that the
myopic policy for module m2 is optimal in discrete time in Theorem 4.9.

Theorem 4.9 In a discrete-time setting with demand D and capacity C per period, the
myopic inventory policy for module m2 is optimal.
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In summary, the proposed inventory policy is not only optimal in the continuous-
time M/M/1 model, but all analytical results continue to hold when we consider
a setting with discrete time periods and a capacity per period that is either fixed or
random.

4.4.1 Computational analysis

Now that we have established that the proposed myopic policy is optimal also in
the discrete-time case, we will evaluate the effectiveness of this policy compared to
a base-stock policy with a fixed base-stock level. In our experiment, we vary the
lead-time of module m2, the holding costs of module m1 relative to those of module
m2 and the waiting time costs for customers. We set h2 = 1 and use the same
parameter values for L, h1 and b as given in Table 4.3. Furthermore, we consider
different cases with respect to the distributions for demand and capacity:

Case 1: P(D = d) =

0.4 if d = 1
0.4 if d = 2
0.2 if d = 3

, P(C = c) =
{

0.7 if c = 2
0.3 if c = 3

Case 2: P(D = d) =



0.1 if d = 0
0.2 if d = 1
0.2 if d = 2

0.25 if d = 3
0.15 if d = 4
0.1 if d = 5

, P(C = c) =

 0.2 if c = 2
0.45 if c = 3
0.35 if c = 4

In total we thus have again 2 · 33 = 54 instances. For each instance we calculate
the expected costs at time t + L under both the reorder policy with fixed target
inventory position and the policy with state-dependent target inventory position.
Subsequently, we determine the cost savings achieved by using the state-dependent
policy. We again perform a full factorial experiment, where we vary the parameter
values or demand and capacity distribution cases one by one. We determine the
distribution of the number of outstanding orders for module m1 by starting with an
empty system and taking the distribution over the number of outstanding orders
after n periods, where n is selected such that the probabilities have stabilized. The
results of the experiment are given in Table 4.5.

Similar to the continuous-time model, we observe an increase in the average savings
when considering the information on outstanding orders of module m1 in the
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inventory policy for module m2 as the holding costs h1 increase. There are also
some differences compared to the results for the continuous-time model. In the
continuous-time case, the average savings percentage increased as the lead-time
increased, whereas in the discrete-time case we observe the opposite effect. When
L = 2 the average savings from incorporating the information on outstanding
orders for module m1 are 11.70% and for L = 4 this has decreased to 9.05%. This
is due to the fact that we now have discrete distributions for demand and capacity
with a finite number of outcomes. Therefore, there is no possibility of high peaks
in the number of demands occurring during a certain time period and, hence, in
the discrete case, the value of synchronization reduces as the lead-time grows large.
When we consider the two cases with respect to the distributions of demand and
capacity, we observe that the expected demand relative to the expected capacity is
comparable in both cases. In the second case the variation in both capacity and
demand per period is larger. This has a large effect on the average savings, as in
case 1 the average savings are equal to 6.84% and in case 2 the average savings are
13.47%.

Table 4.5: Results of full factorial experiment discrete-time model

Avg cost Savings (%)
Fixed IP State-dep. IP Average Max Min

Case 1 1.55 1.45 6.84 25.02 0.02

2 2.85 2.45 13.47 26.28 4.24

L 2 1.78 1.53 11.70 26.28 0.02

3 2.21 1.96 9.71 21.28 1.21

4 2.62 2.35 9.05 18.79 1.77

h1 1 2.06 1.83 9.50 21.94 0.02

2 2.14 1.93 8.53 20.78 0.04

4 2.40 2.08 12.42 26.28 0.19

b 1 1.76 1.59 9.44 25.02 2.60

5 2.28 2.00 11.71 26.28 1.36

10 2.56 2.26 9.31 21.94 0.02

All 2.20 1.95 10.15 26.28 0.02

4.5. Discussion

Throughout this paper we have assumed that the production of module m1 starts
as soon as production capacity is available. Sometimes one may want to consider
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the possibility of postponing this production start time, to avoid inventory holding
costs for module m1 while m2 is not yet available. However, this would generate
high risks. If you decide right now to postpone the production of the MTO module
and after that many customer orders arrive, you may run into long customer waiting
times that could have been reduced by using this idle capacity. The long-term costs
resulting from this postponement decision may thus be much higher than the short-
term savings in inventory holding costs.

In Lemma 4.2 we formalize this argument. We consider the continuous-time
model with a single MTO module and assume that the inventory of module m2

is controlled using a base-stock policy with positive base-stock level. Under that
assumption, we show that postponing production is not attractive when the ratio
of customer waiting costs over holding costs for module m1 is sufficiently large, as
is usually the case in high-tech manufacturing.

Lemma 4.2 When b+h2
h1

> eµL it is optimal to start production of module m1 as soon as
there is available production capacity rather than postponing production.

When the number of MTO modules is larger than one, it could be beneficial to
coordinate among the production processes of the MTO modules to avoid large
inventories of some of these MTO modules while others are not yet finished.
However, combined with determining the order policy of the lead-time module
this results in a complex problem that is outside the scope of this paper.

Additionally, it would be interesting to consider the case with a single MTO module
and multiple modules that are sourced at a supplier with fixed lead-time. This
would resemble practical cases where a manufacturer produces a single module
in-house and sources all other modules at external suppliers. This system can be
modeled in a way that is similar to the system studied by Rosling (1989), but with
demand for the lead-time modules equal to the output of the MTO production
system instead of the end-product demand. This is a crucial difference, as this
means that demand for the lead-time modules at different times is dependent and
not i.i.d. as in Rosling’s work. Therefore, we cannot use the same approach
to transform this system to an equivalent serial system. Hence, the model with
multiple lead-time components alongside a single MTO component is intractable.
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4.6. Conclusions

We have examined an assembly problem where an OEM builds a final product
consisting of two modules, one of which is made-to-order by the OEM itself.
Since production of the make-to-order module commences as soon as a customer
order arrives and the final product can be assembled as soon as both modules are
available, intermediate stocks and thus costs are controlled by the order policy of
the module sourced from the supplier. Since the number of orders waiting for
production of the in-house produced module gives an indication of the demand
for the other module one lead-time from now, this information can be useful
in determining the inventory policy for this module. Therefore, we consider an
inventory policy where the target inventory position depends on the state of the
production system for the in-house produced module. When there is a large
number of orders waiting for production of the module, production during the
lead-time of the other module is likely to be higher than in case none or very few
orders are waiting. Consequently, the target inventory position of the supplier-
sourced module will be higher when there are many customer orders waiting in
the in-house production system.

We show that under this policy the target inventory position is monotonically
non-decreasing in the number of customer orders in the queue. Additionally,
we show optimality of this policy both in continuous and discrete time. We
show that this approach extends to the case of synchronizing the order policy of
a lead-time module with the production of multiple MTO modules. In support
of our analytical results and to illustrate the proposed policy, we conducted a
computational analysis. In this analysis we performed a full factorial experiment
to evaluate the benefits of taking information on outstanding customer orders into
account. We show that using this information can lead to considerable savings.
Furthermore, we assess sensitivity to various model parameters and show that
especially the arrival rate of customer orders relative to the production rate has
a large influence on the savings. Furthermore, we show that there are differences
in this sensitivity between the continuous-time and the discrete-time model. In the
continuous-time case we observed that a longer lead-time clearly leads to higher
savings from using the state-dependent base-stock policy, while in the discrete time
case the effect is opposite.
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4.A. Proofs

Proof of Theorem 4.1

We aim to show that ˜IP2(IP
1 (t)) is monotonically non-decreasing in IP

1 (t). Note that
˜IP2(IP

1 (t)) is the minimizer of Equation (4.6). This is a typical Newsvendor equation
with underage costs b + h1 and overage costs h2. Hence, the target inventory
position of module m2 that minimizes the expected costs, denoted by ˜IP2(IP

1 (t)),
satisfies P

(
M1(t + L)−M1(t) ≤ IP2(t)|IP

1 (t)
)
≥ b+h1

b+h1+h2
.

To prove our result, we show that for every possible sample path (sequence
of customer arrivals and production of m1) M1(t + L) − M1(t) will either stay
the same or will increase if IP

1 (t) increases. This implies that M1(t + L) −
M1(t)|IP

1 (t) is stochastically non-decreasing in IP
1 (t) (see Shaked and Shanthiku-

mar, 2007, Chapter 1), which implies that P(M1(t + L) − M1(t) < α|IP
1 (t) =

i) is non-increasing in i for every value of α. This immediately yields the
claim of Theorem 4.1. Indeed, for some i, define αi and αi+1 as the smallest
values for α that satisfy P

(
M1(t + L)−M1(t) ≤ α|IP

1 (t) = i
)
≥ b+h1

b+h1+h2
and

P
(

M1(t + L)−M1(t) ≤ α|IP
1 (t) = i + 1

)
≥ b+h1

b+h1+h2
, respectively. It then follows

that αi ≤ αi+1. Consequently, we can conclude that ˜IP2(IP
1 (t) = i) ≤ ˜IP2(IP

1 (t) =

i + 1) for every i, proving the main claim.

We now turn to proving that for every possible sample path M1(t + L)−M1(t) will
either stay the same or will increase if IP

1 (t) increases. We consider two cases: (i) we
start with i customer orders waiting for production of module m1 and (ii) we start
with i + 1 customer orders waiting for production of module m1. In each case, we
start of with no finished module m1 available. Conditioning on a specific sequence
of events, we show that after every event the number of finished modules m1 in
case (ii) will either stay the same as in case (i) or stay one ahead.

To formalize this, denote the following:

J(i) = # finished modules m1 when starting at (i, 0)

J(i + 1) = # finished modules m1 when starting at (i + 1, 0)

This means that J(i) = M1(t + L)−M1(t)|IP
1 (t) = i. We compare J(i) and J(i + 1),

so we consider starting at (i, 0) and (i + 1, 0). There are two transitions, namely
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arrival of a new customer order to the queue and finished production of a module.
This gives the following cases to consider.

1. Arrival of customer order gives transitions (i, 0)→ (i + 1, 0) and (i + 1, 0)→
(i + 2, 0).

2. Finished production & i > 0 gives transitions (i, 0) → (i − 1, 1) and (i +
1, 0)→ (i, 1).

3. Finished production & i = 0 gives transitions (i, 0) = (0, 0) → (0, 0) and
(i + 1, 0) = (1, 0)→ (0, 1).

For cases 1 and 2, the difference in number of customers in the queue remains 1

and the difference between the number of finished modules remains 0. Thus, J(i)
and J(i + 1) stay equal in these two cases. For case 3, the number of customers
in the queue becomes equal, but the difference in the number of finished modules
increases by one and will thus always stay one ahead from now on. After these
transitions, the next transition also falls within one of the three cases discussed
above.

Since J(i + 1) either remains equal to J(i) or stays one finished module ahead of
J(i), it follows that J(i) ≤ J(i + 1). This means that for every number of finished
modules j, P(J(i + 1) > j) ≥ P(J(i) > j). From this we can conclude that J(i + 1) is
stochastically larger than J(i). Based on this, we know that the number of modules
m1 produced during the lead-time of module m2 will be at least as high with
i + 1 waiting customer orders as with i waiting customer orders. This leads to
our statement that P(M1(t + L) − M1(t) < α|IP

1 (t) = i) is non-increasing in i for
every value of α. Therefore, the requirement for module m2 will not decrease when
an additional customer order is available and hence the target inventory position
of module m2 is non-decreasing in the number of customer orders waiting for
production of module m1, meaning that ˜IP2(IP

1 (t) = i) ≤ ˜IP2(IP
1 (t) = i + 1). Since

this holds for any sequence of events, it thus also holds for the expectation over all
possible event sequences. �

Proof of Theorem 4.2

We aim to show that an additional waiting customer order will increase the target
inventory position by at most 1, i.e. ˜IP2(IP

1 (t) = i + 1) − ˜IP2(IP
1 (t) = i) ≤ 1 for
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all i ≥ 0. This can be proven along the same lines as Theorem 4.1, but this time
we will show that M1(t + L) − M1(t)|IP

1 (t) = i + 1 is stochastically smaller than
M1(t+ L)−M1(t) + 1|IP

1 (t) = i. To do this, we show that for every possible sample
path that, for all values of i, M1(t + L)−M1(t)|IP

1 (t) = i + 1 will either be smaller
than or equal to M1(t + L)−M1(t) + 1|IP

1 (t) = i. Using the definitions of J(i) and
J(i + 1), it follows that J(i) + 1 equals the # finished modules m1 when starting at
(i, 1). We thus want to show that J(i) + 1 is stochastically larger than J(i + 1).

We will consider the case of i orders in the queue and already one finished module
and the case with i + 1 customers in the queue and no finished modules. Again,
there are two transitions, namely arrival of a new customer to the queue and
departure of a customer from the system, corresponding to finished production
of a module. This gives the following cases to consider.

1. Arrival gives transitions (i, 1)→ (i + 1, 1) and (i + 1, 0)→ (i + 2, 0).

2. Departure & i > 0 gives transitions (i, 1)→ (i− 1, 2) and (i + 1, 0)→ (i, 1).

3. Departure & i = 0 gives transitions (i, 1) = (0, 1) → (0, 1) and (i + 1, 0) =

(1, 0)→ (0, 1).

For cases 1 and 2, the difference in number of customers in the queue remains 1

and the difference between the number of exits remains 1. Thus, J(i) + 1 stays one
finished module ahead of J(i + 1) in these two cases. In case 3, both the number
of customers in the queue and the number of finished modules after the transition
are equal, meaning that J(i) + 1 and J(i + 1) are equal and will follow the same
trajectory when facing new arrivals or departures. After these transitions, the next
transition also falls within one of the three cases discussed above.

Since J(i) + 1 either stays one finished module ahead of J(i + 1) or they become
equal and follow the same trajectory, it follows that J(i + 1) ≤ J(i) + 1. This means
that for every number of exits j, P(J(i+ 1) > j) ≤ P(J(i)+ 1 > j) and thus that J(i+
1) is stochastically smaller than J(i) + 1. This means that the number of modules
m1 produced during the lead-time of module m2 with i + 1 waiting customer orders
will be at most 1 larger than with i waiting customer orders.

In other words,

P
(

M1(t + L)−M1(t) + 1 ≤ α|IP
1 (t) = i

)
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≤ P
(

M1(t + L)−M1(t) ≤ α|IP
1 (t) = i + 1

)
(4.11)

for all α and all i. From this we can conclude that the target inventory position
of module m2 increases by at most one if the number of waiting customer order
increases by one. Since this holds for any sequence of events, it thus also holds for
the expectation over all possible event sequences. �

Proof of Theorem 4.3

The optimal inventory policy, denoted by π, for module m2 is the one that
minimizes average costs:

min
π∈Π

lim
T→∞

E

[
1
T

∫ T

0
C̃π(t)dt

]
.

Given the lead-time L, the inventory levels and thus costs at time t are affected by
the decisions made at time t− L and corresponding inventory position. Since every
inventory policy for module m2 has a corresponding inventory position, it holds
that

min
π∈Π

lim
T→∞

E

[
1
T

∫ T

0
C̃π(t)dt

]
≥ lim

T→∞

1
T

∫ T

0
min
IPt−L

E[C̃(t)|IPt−L]dt

Hence, a lower bound on the costs is obtained for the policy in which the optimal
inventory position is selected at every time t. This lower bound is attained by the
proposed myopic inventory policy for module m2. Therefore, it can be concluded
that the proposed policy is optimal. �

Proof of Lemma 4.1

Cantelli’s inequality states that for X with mean µ̂ and variance σ̂2, P(X ≥ r) ≤
σ̂2

σ̂2+(r−µ̂)2 for r > µ̂. Since we have X ∼ Poisson((λ + µ)L), µ̂ = (λ + µ)L and

σ̂2 = (λ + µ)L, this gives P(X ≥ r) ≤ (λ+µ)L
(λ+µ)L+(r−(λ+µ)L)2 . To find r such that

P(X ≥ r) ≤ ε, we need to solve (λ+µ)L
(λ+µ)L+(r−(λ+µ)L)2 = ε. This yields r = (λ +

µ)L +

√(
1− 1

ε

)
(λ + µ)L. Therefore, P(X ≥ XU) ≤ ε holds if XU = (λ + µ)L +√(

1− 1
ε

)
(λ + µ)L. �
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Proof of Theorem 4.4

Also for the case of N MTO modules, by conditioning on a specific sequence of
events, we show that monotonicity holds for any possible event sequence and thus
also for the expectation over all possible event sequences. This goes along the same
lines as in the proof of Theorem 4.1.

Denote the following:

J(i1) = # finished modules of all modules m1, . . . , mN

when starting at (i1, j1, . . . , jN)

J(i1 + 1) = # finished modules of all modules m1, . . . , mN

when starting at (i1 + 1, j1, . . . , jN)

This means that J(i1) = min{M1(t + L) − M1(t), . . . , MN(t + L) − MN(t)|i1 +

1, j1, . . . , jN}.

We compare J(i1) and J(i1 + 1), so we consider starting at (i1, j1, . . . , jN) and (i1 +
1, j1, . . . , jN). There are three transitions, namely arrival of a new customer order to
the queue, finished production of a module m1 and finished production of a module
mk with k ∈ {2, . . . , N}. This gives the following cases to consider.

1. Arrival of customer order gives transitions (i1, j1, . . . , jN)→ (i1 + 1, j1, . . . , jN)

and (i1 + 1, j1, . . . , jN)→ (i1 + 2, j1, . . . , jN).

2. Finished production of module m1 & i1 > 0 gives transitions (i1, j1, . . . , jN)→
(i1 − 1, j1 + 1, . . . , jN) and (i1 + 1, j1, . . . , jN)→ (i1, j1 + 1, . . . , jN).

3. Finished production of module m1 & i1 = 0 gives transitions (i1, j1, . . . , jN)→
(i1, j1, . . . , jN) and (i1 + 1, j1, . . . , jN)→ (i1, j1 + 1, . . . , jN).

4. Finished production of module mk for k ∈ {2, . . . , N} & ik > 0 gives
transitions (i1, j1, . . . , jN) → (i1, j1, . . . , jk + 1, . . . , jN) and (i1 + 1, j1, . . . , jN) →
(i1 + 1, j1, . . . , jk + 1, . . . , jN).

5. Finished production of module mk for k ∈ {2, . . . , N} & ik = 0 gives
transitions (i1, j1, . . . , jN) → (i1, j1, . . . , jk, . . . , jN) and (i1 + 1, j1, . . . , jN) →
(i1 + 1, j1, . . . , jk + 1, . . . , jN).
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For cases 1, 2 and 4, the difference in number of customers in the queues remains 1

and the difference between the number of finished modules remains 0. Thus, J(i1)
and J(i1 + 1) stay equal in these two cases. For case 3, the number of customers in
the queue of module m1 becomes equal, but the difference in the number of finished
modules of m1 increases by one and will thus always stay one ahead from now on.
For case 5, the number of customers in the queue of module mk becomes equal, but
the difference in the number of finished modules of mk increases by one and will
thus always stay one ahead from now on. After these transitions, the next transition
also falls within one of the five cases discussed above.

Since J(i1 + 1) either remains equal to J(i1) or stays one finished module ahead of
J(i1), it follows that J(i1) ≤ J(i1 + 1). This means that for every number of finished
modules j, P(J(i1 + 1) > j) ≥ P(J(i1) > j). From this we can conclude that J(i1 + 1)
is stochastically larger than J(i1). The result follows by the same reasoning as in the
proof of Theorem 4.1. �

Proof of Theorem 4.5

Along the same lines as for Theorem 4.2, we show that this maximum increase in
the target inventory position of the lead-time module holds for any possible event
sequence and thus also for the expectation over all possible event sequences. Using
the definitions of J(i1) and J(i1 + 1), it follows that J(i1) + 1 equals the # finished
modules of all modules m1, . . . , mN when starting with one finished module of
each of them. We will compare J(i1 + 1) and J(i1) + 1, so we consider starting
at (i1 + 1, j1, . . . , jN) and (i1, j1 + 1, . . . , jN + 1). There are again three transitions,
namely arrival of a new customer order to the queue, finished production of a
module m1 and finished production of a module mk for k ∈ {2, . . . , N}. This gives
the following cases to consider.

1. Arrival of customer order gives transitions (i1 + 1, j1, . . . , jN) → (i1 +

2, j1, . . . , jN) and (i1, j1 + 1, . . . , jN + 1)→ (i1 + 1, j1 + 1, . . . , jN + 1).

2. Finished production of module m1 & i > 0 gives transitions (i1 + 1, j1, . . . , jN)→
(i1, j1 + 1, . . . , jN) and (i1, j1 + 1, . . . , jN + 1)→ (i1 − 1, j1 + 2, . . . , jN + 1).

3. Finished production of module m1 & i = 0 gives transitions (i1 + 1, j1, . . . , jN)→
(i1, j1 + 1, . . . , jN) and (i1, j1 + 1, . . . , jN + 1)→ (i1, j1 + 1, . . . , jN + 1).
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4. Finished production of module mk for k ∈ {2, . . . , N} & i > 0 gives
transitions (i1 + 1, j1, . . . , jN) → (i1 + 1, j1, . . . , jk + 1 . . . , jN) and (i1, j1 +

1, . . . , jN + 1)→ (i1, j1 + 1, . . . , jk + 2, . . . , jN + 1).

5. Finished production of module mk for k ∈ {2, . . . , N} & i = 0 gives
transitions (i1 + 1, j1, . . . , jN) → (i1 + 1, j1, . . . , jk + 1 . . . , jN) and (i1, j1 +

1, . . . , jN + 1)→ (i1, j1 + 1, . . . , jN + 1).

For cases 1, 2 and 4, the difference in number of customers in the queues remains
1 and the difference between the number of finished modules remains 0. Thus,
J(i1 + 1) and J(i1) + 1 stay equal in these two cases. For case 3 (5), the number
of customers in the queue of module m1 (mk for k ∈ {2, . . . , N}) and the number
of finished modules of m1 (mk for k ∈ {2, . . . , N}) become equal and will remain
the same from now on, so J(i1 + 1) and J(i1) + 1 become equal. For module mk

for k ∈ {2, . . . , N} (m1), the number of finished components will stay one ahead,
meaning that there is already one order less in the queue, meaning that total output
can increase by at most 1 when starting with one more finished combination. After
these transitions, the next transition also falls within one of the five cases discussed
above.

Since J(i1) + 1 either remains equal to J(i1 + 1) or stays one finished combination
of modules ahead of J(i1 + 1), it follows that J(i1 + 1) ≤ J(i1) + 1. This means that
for every number of finished modules j, P(J(i1) + 1 > j) ≥ P(J(i1 + 1) > j). From
this we can conclude that J(i1 + 1) is stochastically smaller than J(i1) + 1 and the
result follows from the same reasoning as in the proof of Theorem 4.2. �

Proof of Theorem 4.6

The proof is analogous to that of Theorem 4.3.

Proof of Theorem 4.7

The proof is along the same lines as for Theorem 4.1. We again compare J(i) and
J(i + 1). When we are in state (i, j), meaning that there are i product orders in
the system and j units produced so far, and demand D occurs, there are i + D
units to be produced. Since the available capacity is C units, production is equal to
min{i + D, C} and the remaining number of back-orders equals (i + D− C)+.

By conditioning on demand D = d and capacity C = c, the following transition
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occurs:

(i, j)→
(
(i + d− c)+, j + min{i + d, c}

)
.

We consider the following cases:

1. i + d < c (so i + 1 + d ≤ c): in this case we have transitions

(i, j)→ (0, j + i + d) and

(i + 1, j)→ (0, j + i + d + 1)

Since all product orders can be satisfied, the number of outstanding product
orders reduces to zero for both (i, j) and (i + 1, j). Therefore, from now on
production in any period will be the same and J(i + 1) will stay one unit
ahead of J(i).

2. i + d ≥ c: gives transitions

(i, j)→ (i + d− c, j + c) and

(i + 1, j)→ (i + 1 + d− c, j + c)

In this case the difference in the number of outstanding order stays 1 and the
number of produced items remains equal. Hence, the following period starts
of with the same situation as the current period.

Since J(i + 1) either stays equal to J(i) or stays one finished module ahead of J(i), it
follows that J(i) ≤ J(i + 1). This means that for every number of finished modules
j, P(J(i + 1) > j) ≥ P(J(i) > j). From this we can conclude that J(i + 1) is
stochastically larger than J(i) and thus that the target inventory position of module
m2 when i + 1 customer orders are in the system is equal to or larger than in case i
customer orders are in the system.

By conditioning on a specific occurrences of D and C, we have shown, following
the same reasoning as in the proof of Theorem 4.1, that for any possible event
sequence the target inventory position is monotonically non-decreasing in the
number of orders. Therefore, this also holds for the expectation over all possible
event sequences. �
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Proof of Theorem 4.8

The proof is along the same lines as for Theorem 4.2. We again compare J(i + 1)
and J(i) + 1.

We again condition on demand D = d and capacity C = c and consider the
following cases:

1. i + d < c (so i + 1 + d ≤ c): in this case we have transitions

(i, j + 1)→ (0, j + 1 + i + d) and

(i + 1, j)→ (0, j + i + d + 1)

The number of outstanding product orders again reduces to zero for both
(i, j + 1) and (i + 1, j). Also, the number of produced items becomes equal.
Therefore, from now on production in any period will be the same and J(i+ 1)
will remain the same as J(i).

2. i + d ≥ c: gives transitions

(i, j + 1)→ (i + d− c, j + 1 + c) and

(i + 1, j)→ (i + 1 + d− c, j + c)

In this case the difference in the number of outstanding order and the
difference in the number of produced items both remain equal. Hence, the
following period starts of with the same situation as the current period.

After these transitions, the next transition also falls within one of the two cases
discussed above. Since J(i) + 1 either stays one finished module ahead of J(i + 1) or
they become equal and follow the same trajectory, it follows that J(i + 1) ≤ J(i) + 1.
This means that for every number of exits j, P(J(i + 1) > j) ≤ P(J(i) + 1 > j) and
thus that J(i + 1) is stochastically smaller than J(i) + 1.

From this we can conclude, by the same reasoning as in the proof of Theorem 4.2,
that the number of finished products when starting with i + 1 orders in the queue is
at most one larger than in case there are i orders in the queue. Therefore, the target
inventory position of module m2 is also at most one higher. �
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Proof of Theorem 4.9

The optimal inventory policy, denoted by π, for module m2 is the one that
minimizes total costs:

min
π∈Π

lim
T→∞

E

[
1
T

T

∑
0

C̃π(t)

]
where T denotes the planning horizon.

Given the lead-time of L periods, the inventory levels and thus costs in period
t are affected by the decisions made in period t− L and corresponding inventory
position. Since every inventory policy for module m2 has a corresponding inventory
position, it holds that

min
π∈Π

lim
T→∞

E

[
1
T

T

∑
0

C̃π(t)

]
≥ lim

T→∞

1
T

T

∑
0

min
IPt−L

E[C̃(t)|IPt−L].

Hence, a lower bound on the costs is obtained for the policy in which the optimal
inventory position is selected in every period t. This lower bound is attained by the
proposed myopic inventory policy for module m2. Therefore, it can be concluded
that the proposed policy is optimal. �

Proof of Lemma 4.2

Consider a customer order. Suppose that at time t it is possible to start producing
the MTO module for this customer order, and suppose that instead of starting
at t, we postpone the production by z and start production at t + z. As a
consequence, production will be in expectation finished z time units later, resulting
in maximum savings of h1 · z. Since the order arrived before t, and since we
assume a base-stock policy with positive base-stock level, the lead-time module
that will be used to satisfy the order will arrive at or before t + L. Any delay in
the completion of the MTO module that occurs after t + L is thus guaranteed to
cause additional waiting time for the final product. Such a delay happens with
probability P(production time > L − z) = e−µ(L−z), in which case the expected
time until production is finished equals 1

µ . When this happens, holding costs h2 for
module m2 and customer waiting costs b are incurred. This means that an upper
bound on the expected savings is given by h1z − b+h2

µ e−µ(L−z). Using the first-

order condition, the optimal postponement equals z = L− 1
µ ln

(
b+h2

h1

)
. From this
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it follows that it is optimal to not postpone production of the MTO module when
eµL < b+h2

h1
. �



5
Extreme-value Theory for Large

Fork-join Queues, with Applications to
High-tech Supply Chains

We study extreme values in certain fork-join queueing networks: consider N
identical queues with a common arrival process and independent service processes.
All arrival and service processes are deterministic with random perturbations
following Brownian motions. We prove that as N → ∞, the scaled maximum of
N steady-state queue lengths converges in distribution to a normally distributed
random variable.

We explore repercussions of this result for original equipment manufacturers
(OEMs) that assemble a large number of components, each produced using
specialized equipment, into complex systems. Component production capacity is
subject to fluctuations, causing high risk of shortages of at least one component,
which results in costly system production delays. OEMs hedge this risk by investing
in a combination of excess production capacity and component inventories. We
formulate a stylized model of the OEM that enables us to study the resulting trade-

This chapter is based on Meijer et al. (2021a).
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off between shortage risk, inventory costs, and capacity costs. Our asymptotic
extreme value results translate into asymptotically exact methods for cost-optimal
inventory and capacity decisions, some of which are in closed form. We validate our
asymptotic results with a set of detailed numerical experiments. These experiments
indicate that our results are asymptotically exact, while for transient times the
accuracy of the asymptotic approximations depends on model parameters.

5.1. Introduction

Fork-join queueing networks are a key modeling tool in stochastic operations
research, as they capture many situations in which parts of jobs need to assembled.
One can think of applications as supply chains, manufacturing systems, and
computer and communication networks. The analysis of these networks poses
serious challenges; for example, the requirement that all components of a final
product need to be physically present for the assembly process causes dependencies
that are hard to analyze. In this chapter, we look at a fork-join queueing network
that consists of a large number of parallel queues. In large systems, one can expect
that delays due to stochasticity of demand and service processes grow without
bound as a function of the size of the system. Our aim is to analyze and quantify
this phenomenon, as well as its impact on determining the capacity of the system.

To this end, we consider a fork-join network of N statistically identical queues
driven by a common arrival process and having independent service processes.
All arrival and service processes consist of a deterministic term, perturbed by
(independent) Brownian motions. We are interested in the behavior of the maximal
queue length in steady state as the number of queues grows large. We examine
separately the cases of purely deterministic arrivals and of perturbed arrivals. Our
asymptotic results provide insight into the performance of large fork-join networks.
The proof techniques we use are quite generic. For deterministic arrivals, we use
standard extreme value theory, while for correlated arrivals, we rely on sample path
analysis and conditional limit theorems for large suprema of Brownian motions.

When the arrival process is deterministic, the stationary queue lengths are
independent and exponentially distributed. Standard results from extreme value
theory imply that the scaled maximum queue length converges to a Gumbel
distributed random variable as the number of queues N → ∞. A goal of this chapter
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is to investigate the impact of this scaling law on the simultaneous optimization
of capacity and inventory of this class of assembly systems. Such simultaneous
optimization is computationally challenging, but we show that this optimization
becomes tractable as N → ∞. The inventory and capacity induced by the extreme
value limit are asymptotically correct and the convergence rate is fast.

When the arrival process is deterministic plus a random perturbation following a
Brownian motion, the stationary queue lengths are still exponentially distributed,
but no longer independent. The question is now how this affects the maximum
queue length as the number of queues N → ∞. Most of the work in extreme value
theory has been done for independent random variables; cf. De Haan and Ferreira
(2006); Resnick (1987). It turns out that suitable results from extreme value theory
are absent for our setting. Thus, deriving a convergence result for the maximum
queue length for perturbed arrivals as N → ∞ is one of the key technical challenges
underlying this chapter. Our answer to this challenge is somewhat surprising: the
dependence structure causes the scaled maximum queue length to converge to a
normally distributed random variable as N → ∞. That this scaled maximum
is in the domain of attraction of the normal distribution is remarkable since for
independent random variables, such a scaled maximum can only converge to a
Gumbel, a Weibull or a Fréchet distributed random variable. Thus, our result shows
that the normal distribution has a non-empty domain of attraction in an extreme-
value theory context. An intuitive explanation of this fact, based on asymptotic
independence of hitting times, is provided in Section 5.5.

The above-mentioned theoretical results can be applied to develop structural
insights into the dimensioning of assembly systems. In particular, we explore
repercussions of our results for high-tech OEMs, for example Airbus and ASML.
High-tech equipment is typically assembled-to-order from thousands of specialized
components. The production of components involves highly skilled staff and spe-
cialized equipment: It is capacitated and subject to random fluctuations. Component
shortages result in delays in system assembly, which results in costly product
delivery delays. Also, when an assembly delay occurs because of a missing
component, all other components need to be stocked, incurring holding costs.

OEMs spend billions of dollars on spare component production capacity and
component inventories in the hope of guaranteeing a reliable production system
(ASML Holding N.V., 2021). However, despite decades of research in inventory
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management, the joint optimization of production capacity and inventory remains
a challenge (Bradley and Glynn, 2002), and there is a lack of analytical results
that can aid OEMs in analyzing the crucial trade-offs that underlie the outcome
of their investments. Indeed, while the topic has increasingly been studied (see e.g.
Reed and Zhang, 2017), the focus of analysis has been on problems with a single
component. We consider the much more common situation of assembling a system
from many components, and we aim to choose capacity and base-stock levels that
minimize the sum of holding, capacity and backorder costs.

To appropriately model fluctuations in production capacity in continuous time,
the cumulative production of each component is modelled as a Brownian motion
with drift. This is a natural extension of normally distributed production capacity
in discrete time, which is a common choice in the literature (e.g. Bradley and
Glynn, 2002; Wu and Chao, 2014). OEMs typically level the demand to smooth
the production process. Accordingly, in our base model we assume that demand
is completely levelled/deterministic. For this base model, in Section 5.4 we
derive easy to calculate expressions for capacity and base-stock levels that are
asymptotically optimal as the number of components grows large. We provide
order bounds between the costs under optimal and approximate base-stock level
and capacity.

In particular, inspired by the literature on call centers: Borst et al. (2004); Gans
et al. (2003) and van Leeuwaarden et al. (2019), we distinguish three regimes,
which depend on the growth rates of cost parameters and are determined by
the probability γN of not having enough inventory. Given that γN → γ, we
say that the regime is balanced if γ ∈ (0, 1). Furthermore we are in the quality
driven regime if γ = 0 and in the efficiency driven regime if γ = 1. For the
base model, we establish asymptotic cost optimality in all three regimes. For the
balanced, quality driven, and efficiency driven regimes, we have convergence rates
of 1/(N log N), γN/(N log(N/γN)) and 1/ log N respectively.

Despite efforts to level demand, typically some demand variation remains. There-
fore in Section 5.5, we assume that the stochastic demand for systems is modelled
by a Brownian motion. This implies that the demand over any finite time period is
a normal variable, which is a standard assumption in literature (e.g. Klosterhalfen
et al., 2014; Atan and Rousseau, 2016). As a consequence, component delays become
dependent, since they face the same stochastic demands from system assembly. Our
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main technical result for dependent Brownian motions implies that, with proper
scaling of holding and backorder costs, the optimal base-stock level for stochastic
demand converges to a scaled version of the quantile function of the normal
distribution, while this quantile function also appears in the limit of the optimal
capacity. Numerical experiments show that we typically are around 10% off the
optimum (e.g. when N is in the range from 10 to 100); cf. Tables 5.4 and 5.5.
Naturally, the difference goes to 0 as N → ∞; cf. Theorem 5.3.

We give an improvement of this approximation by combining our results for deter-
ministic demand and stochastic demand. Based on this approximation, we optimize
the capacity and base-stock levels and we test the quality of these approximations
through numerical experiments. It turns out that these approximations perform
well already when considering a limited number of components, and typically
result in costs that are less than 2% off the optimum.

This chapter generates novel insights in fork-join queues. These insights lead to
new analytical results for an important class of assembly systems: This chapter is
the first to consider simultaneous optimization of inventory and capacity in a multi-
component assembly system with dependent delays. Due to the dependencies
in delays, evaluating such a system with fixed capacity and base-stock levels is
already a difficult problem, unless you resort to simulation. We provide several
asymptotically optimal expressions for capacity and base-stock levels that are either
in closed-form or can easily be computed numerically.

The remainder of this chapter is organized as follows. In Section 5.2, we provide an
overview of relevant literature. The content of the chapter is then structured around
the application to high-tech assembly systems, with theoretical results appearing
as we need them. In particular, we introduce the general mathematical model in
Section 5.3 and subsequently present the optimization problem where we need to
decide on capacity and base-stock levels to minimize costs. We study the assembly
system with deterministic demand in Section 5.4. We provide explicit expressions
and approximations for optimal base-stock levels and capacity. The stochastic
demand case, with solutions to the minimization problem and convergence results,
is studied in more detail in Section 5.5. That section also includes our key
result on the extremal behavior of dependent Brownian fork-join queues, given in
Theorem 5.2. A refinement of the approximations from Section 5.5 is provided
in Section 5.6, where we combine the lessons learnt in Sections 5.4 and 5.5 to
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obtain better approximations for optimal capacity and base-stock levels. We give
a summary and conclusions in Section 5.7 and provide most of the proofs in
Appendix 5.A.

5.2. Literature review

In this chapter, we examine fork-join queueing networks with N servers where the
arrival and service streams are almost deterministic with a Brownian component.
Our goal is to find and investigate the maximum queue length as N goes to infinity.
The queue lengths are dependent random variables due to the joint interarrivals.
Thus, our work is related to the convergence of extreme values (maximum queue
lengths) of dependent random variables. An overview of early results on extreme
value theory for dependent random variables is given in Leadbetter et al. (1983).
The authors provide conditions when the sequence of random variables may be
treated as a sequence of independent random variables; this is the case when
the covariance of random variables Xi and Xj decreases when i and j are further
apart from each other. They also present a convergence result for the joint all-
time suprema of a finite number of dependent stationary processes. They prove
in Theorem 11.2.3 that, under some assumptions, the joint all-time suprema of a
finite number of dependent stationary processes are mutually independent. This
is somewhat related to the problem that we study; however, we only look at the
largest of the N all-time suprema, where N → ∞.

We investigate the extreme values for a sequence of N Brownian motions. To be
precise, we examine the joint all-time suprema of N dependent Brownian motions
with a negative and linear drift term, when N is large. A lot of work has been
done on joint suprema of Brownian motions. For instance, Kou et al. (2016)
give the solution of the Laplace transform of joint first passage times in terms
of the solution of a partial differential equation, where the Brownian motions
are dependent. Debicki et al. (2020) analyze the tail asymptotics of the all-time
suprema of two dependent Brownian motions. The joint suprema of a finite number
of Brownian motions is also studied; cf. Debicki et al. (2015), where the authors
give tail asymptotics of the joint suprema of independent Gaussian processes over
a finite time interval. These are just three examples, but the literature is rich
with variations around assumptions on independence and dependence or around
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whether or not drift terms are linear, with joint suprema of two or more than two
processes, with suprema over finite and infinite time intervals, and with extensions
to other Gaussian processes. In this chapter, we specifically examine the maximum
of N all-time suprema of dependent Brownian motions. In this respect, the work of
Brown and Resnick (1977) comes the closest to our work. In that paper, the authors
study process convergence of the scaled maximum of N independent Brownian
motions to a stationary limiting process whose marginals are Gumbel distributed.
However, we add to this by considering the maximum of the all-time suprema of N
dependent Brownian motions.

Our work also relates to the literature on fork-join queues. Specifically, we study
asymptotic results for a fork-join queueing system with N servers. Most exact
results on fork-join queues are limited to systems with two service stations; cf.
Flatto and Hahn (1984), Wright (1992), Baccelli (1985) and Klein (1988). For fork-join
queues with more than two servers only approximations of performance measures
are given; cf. Ko and Serfozo (2004), Baccelli and Makowski (1989) and Nelson
and Tantawi (1988). Most of these papers focus on fork-join queueing systems
where the number of servers is finite, while we investigate a fork-join queue
where N goes to infinity. Furthermore, in these papers, the focus lies on steady-
state distributions and other one-dimensional performance measures. Work on the
heavy-traffic process limit has also been done. For example, Varma (1990) derives a
heavy-traffic analysis for fork-join queues, and shows weak convergence of several
processes, such as the joint queue lengths in front of each server. Furthermore,
Nguyen (1993) proves that various appearing limiting processes are in fact multi-
dimensional reflected Brownian motions. Nguyen (1994) extends this result to a
fork-join queue with multiple job types. Lu and Pang study fork-join networks in
Lu and Pang (2015, 2017a,b). In Lu and Pang (2015), they investigate a fork-join
network where each service station has multiple servers under nonexchangeable
synchronization and operates in the quality-driven regime. They derive functional
central limit theorems for the number of tasks waiting in the waiting buffers for
synchronization and for the number of synchronized jobs. In Lu and Pang (2017a),
they extend this analysis to a fork-join network with a fixed number of service
stations, each having many servers, where the system operates in the Halfin-Whitt
regime. In Lu and Pang (2017b), the authors investigate these heavy-traffic limits for
a fixed number of infinite-server stations, where services are dependent and could
be disrupted. Finally, we mention Atar et al. (2012), who investigate the control of
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a fork-join queue in heavy traffic by using feedback procedures.

Besides the literature on extreme-value theory and fork-join queues, our work
relates to the supply chain management literature. Simultaneous optimization of
capacity and inventory is an important problem in supply chain management, but
literature on this topic is limited due to complexity of the problem (Bradley and
Glynn, 2002). Sleptchenko et al. (2003) study simultaneous optimization of spare-
part inventory and repair capacity. In the last decade, simultaneous optimization
of capacity and inventory in a single supplier-manufacturer relationship has been
studied increasingly (e.g. Reed and Zhang, 2017; Reddy and Kumar, 2020). Reed
and Zhang (2017) show that the square-root staffing rule of Halfin and Whitt (1981)
is a valuable tool in optimizing inventory and capacity in a multi-server make-
to-stock queue. Altendorfer and Minner (2011) study simultaneous optimization
of inventory and planned lead-time and Mayorga and Ahn (2011) study the joint
optimization of inventory and temporarily available additional capacity. Our work
differs fundamentally from these studies, as we consider the assembly of multiple
components that face the same (stochastic) demand instead of the interaction
between a manufacturer and a single supplier.

Brownian motion models are common in the literature on inventory control.
Optimal control of inventory that can be described by a Brownian motion is covered
by Harrison (2013, §7), who provides optimality conditions for both discounted
and average cost criteria. Closely related to our work is the Brownian Motion
Model presented by Bradley and Glynn (2002, §3) to study the trade-off between
capacity and inventory. They provide closed-form approximations to the optimal
capacity and base-stock levels in a system with a single item. We consider an
assembly system in which multiple components are merged into one end-product.
This is an essential difference, since in our model inventory does not only buffer
against uncertain demand, but a component may also need to be stored when other
components are not yet available.

A review of literature studying inventory control in a multi-supplier setting is
provided by Svoboda et al. (2020). However, this mainly concerns multi-sourced
items that can be delivered by any of the available suppliers. Masih-Tehrani et al.
(2011) add an additional dimension to these multi-sourced systems by considering
stochastically dependent manufacturing capacities. They state that disruptions
affecting one supplier are likely to have an effect on the other suppliers as well.
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Bernstein and DeCroix (2006) and Bollapragada et al. (2004) study base-stock
policies in a single-sourced assembly system with multiple suppliers. In these
systems, multiple components, each sourced from a single supplier, need to be
merged into a final product. Bernstein and DeCroix (2006) investigate the effect of
using information on pipeline inventories in a decentralized system. Bollapragada
et al. (2004) consider the performance of base-stock policies in case both demand
and the supplier’s capacity are uncertain. Literature concerning simultaneous
optimization of capacity and inventory in single-sourced assembly systems with
multiple components is limited. Zou et al. (2004) study how supply chain efficiency
can be increased by synchronizing processing times and delivery quantities. Pan
and So (2016) consider the simultaneous optimization of component prices and
production quantities in a two-supplier setting where one supplier has uncertainty
in the yield. Our main contribution compared to the work of Zou et al. (2004) and
Pan and So (2016) is that we provide approximations of the optimal capacity and
base-stock levels that only require two moments.

5.3. Problem formulation

We consider a manufacturing system in which a manufacturer assembles a final
product from N components, each of which is produced on a single production line,
where N is a large number. Random delays may occur in the production process for
each of the components. To efficiently satisfy demand of the end-product, which
may either be deterministic or stochastic, we need to decide how much capacity
to establish for each component and how many finished components to keep on
inventory as a buffer. Even though it is costly to establish capacity and to hold
inventory, not being able to satisfy demand gives rise to backorder costs. Therefore,
we need to find capacity and inventory levels that minimize total expected costs.

To formulate the cost-minimization problem, we model this assembly system by
a fork-join queue. Demand is represented by the arrival stream of jobs going to
each server and each server represents a component production line. The backlog
of each component is represented by a queue of jobs that have not been served yet.
After completion of a job, the finished component is stored in a warehouse. When
all servers have a finished component in their warehouse, the end-product can be
assembled. This system is visualized in Figure 5.1.
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Figure 5.1: Fork-join queue

To buffer against uncertainties in the supply and demand processes, we introduce
a base-stock level Ii for each component i ≤ N. We define βi > 0 as the net capacity
for component i, i.e. the difference between the production rate and arrival rate, in
other words, βi captures the capacity investment of server i. Qi(βi) is the number of
outstanding orders of component i ≤ N. We model this as Qi(βi) = sups>0(Wi(s)+
WA(s)− βis), where (Wi, i ≤ N) are independent Brownian motions with mean 0
and variance σ2 that represent fluctuations that occur during the production process
of component i and where WA is a Brownian motion with mean 0 and variance σ2

A
representing the fluctuations in the number of demands. One can see Qi(βi) as
a two-moment or heavy traffic approximation of the steady state queue length in
front of server i. If σ2

A > 0, (Qi(βi))i≤N are dependent random variables.

We proceed by developing an expression for the total system costs, which requires
expressions for the inventory and backorders. The inventory of component i
consists of two parts: first, the excess supply that works as a buffer against uncertain
demand; second, the committed inventory that consists of items that are committed
to realized demand but put aside because other components are not yet available.
The excess supply of component i is given by (Ii −Qi(βi))

+. Moreover, the number
of backorders for component i is equal to (Qi(βi)− Ii)

+, since for Qi(βi) ≤ Ii the
shortage is compensated by inventory Ii and only the part of Qi(βi) exceeding Ii

represents actual backorders that cannot be satisfied. Since all components need to
be available to assemble the final product, the number of backorders in the system
is equal to the number of backorders of the component with the largest backlog
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and is thus given by maxi≤N (Qi(βi)− Ii)
+. Therefore, the committed inventory of

component i equals the number of backorders in the system minus its own backlog
and can be expressed as maxi≤N (Qi(βi)− Ii)

+− (Qi(βi)− Ii)
+. The total inventory

of component i is thus given by

(Ii −Qi(βi))
+ + max

i≤N
(Qi(βi)− Ii)

+ − (Qi(βi)− Ii)
+

= Ii −Qi(βi) + max
i≤N

(Qi(βi)− Ii)
+ .

We scale the cost of building net capacity to one and let h(N) and b(N) denote
holding costs and backorder costs, respectively, which may depend on N. Our goal
is to minimize the expected total costs of the system. If we define

CN(I, β) =E

[
∑

i≤N

[
h(N)

(
I −Qi(β) +

(
max
i≤N

Qi(β)− I
)+
)]

+b(N)

(
max
i≤N

Qi(β)− I
)+
]

=E

[
Nh(N)(I −Qi(β)) + (Nh(N) + b(N))

(
max
i≤N

Qi(β)− I
)+
]

, (5.1)

then, if βi = β and Ii = I for given I and β, the expected total costs in the
system are equal to CN(I, β) + βN. In the centralized optimization problem, this
expression is minimized with respect to I and β. In Appendix 5.A.1, we show that
it suffices to consider symmetric solutions where both Ii and βi are constant in i
when (Qi(βi))i≤N are independent random variables or when we minimize over
one drift parameter. For these two cases, we utilize the self-similarity property of
Brownian motions, which allows us to simplify CN(I, β). Due to the self-similarity
of Brownian motion, we can write

β max
i≤N

sup
s>0

(Wi(s)− βs) = β max
i≤N

sup
t>0

(
Wi

(
t

β2

)
− β

t
β2

)
d
= max

i≤N
sup
t>0

(Wi(t)− t).

This means that maxi≤N Qi(β)
d
= 1

β maxi≤N Qi(1). Therefore, after rescaling the
variable I, we can write
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min
(I,β)

(
CN(I, β) + βN

)
= min

(I,β)

(
1
β

CN(Iβ, 1) + βN
)

= min
(I,β)

(
1
β

CN(I, 1) + βN
)

. (5.2)

In the last part of Equation (5.2), I has the interpretation of the base-stock level
where the net capacity β = 1. Therefore, from now on, the actual number of
products on stock at time 0 equals I/β. Similarly, the actual unsatisfied demands of
component i equals Qi(1)/β and we write Qi = Qi(1). This allows us to write the
cost function FN(I, β) to be optimized as given in Definition 5.1.

Definition 5.1 We define

FN(I, β) :=
1
β

CN(I) + βN, (5.3)

with CN(I) := CN(I, 1) and CN(I, β) given in Equation (5.1).

Our goal is to solve min(I,β) FN(I, β), focusing on the case where N is large. Before
we focus on this regime, we first derive some additional properties of this problem,
which are valid for each N. In the next lemma, we show that we can write this
minimization problem as two separate minimization problems. The proofs of this
section can be found in Appendix 5.A.1.

Lemma 5.1 Let (b(N))N≥1, (h(N))N≥1 be sequences such that h(N) > 0 and b(N) > 0 for
all N. Let (IN , βN) minimize FN(I, β). Then the optimal base-stock level IN minimizes
CN(I) and the optimal capacity βN minimizes 1

β CN(IN) + βN. Furthermore, the function
CN(I) is convex with respect to I, and the function 1

β CN(I) + βN is convex with respect
to β.

Using Lemma 5.1, we can characterize the optimal net capacity and base-stock level.
In Lemma 5.2 we provide expressions for the optimal net capacity and costs in terms
of the optimal base-stock level, which is given in Lemma 5.3.

Lemma 5.2 Given I∗N = arg minI CN(I), minimizing FN(I, β) with respect to β yields

β∗N =

√
CN(I∗N)

N . Furthermore, the corresponding costs are FN(I∗N , β∗N) = 2Nβ∗N =

2
√

CN(I∗N)N.
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The optimal value of I can be expressed as a quantile of the distribution of maxi Qi:

Lemma 5.3 I∗N is the unique solution of

P

(
max
i≤N

Qi ≤ I∗N

)
=

b(N)

Nh(N) + b(N)
.

The main technical issue is that the distribution of this maximum is in general
not very tractable, especially when N is large. The main theme of our work is to
consider approximations of this distribution using extreme-value theory, to analyze
their quality if N is large.

To explain our ideas, we mention the following first-order approximation of
maxi≤N Qi:

Lemma 5.4 maxi≤N Qi satisfies the first-order approximation

maxi≤N Qi
log N

L1−→ σ2

2
,

as N → ∞.

The lemma easily follows from more refined results that are proven later on in this
chapter.

This first-order approximation is valid regardless of whether σA = 0 or σA > 0.
In the subsequent two sections, we consider more refined extreme-value theory
approximations covering both cases. It turns out that the second-order behavior of
the maximum is qualitatively different when σA becomes strictly positive. This has,
in turn, an impact on the structure of the optimal solution of our cost minimization
problem when N grows large.

To better understand this structure, we heuristically analyze the first-order approx-
imation of the cost minimization problem and apply it to approximate I∗N and β∗N .
First, we use the approximation maxi≤N Qi ≈ σ2

2 log N to write

CN(I) ≈ C̄N(I) = Nh(N)

(
I −

σ2 + σ2
A

2

)
+ (Nh(N) + b(N))

(
σ2

2
log N − I

)+

.

The optimal value ĪN for the associated first-order minimization problem minI C̄N(I)
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is given by ĪN = σ2

2 log N, since b(N) > 0. Using this approximation, we see
that CN( ĪN) ≈ C̄N( ĪN) = (1 + o(1)) σ2

2 Nh(N) log N, β̄N =
√

C̄N( ĪN)/N = (1 +

o(1))
√

σ2

2 h(N) log N, and FN( ĪN , β̄N) ≈ 2
√

N
√

σ2

2 Nh(N) log N. These results can be
made rigorous and the decision rule ĪN can be shown to be asymptotically optimal,
i.e. that FN( ĪN , β̄N) = FN(I∗N , β∗N)(1 + o(1)). To prove this, we need to specify
how the cost parameters h(N) and b(N) scale with N. For this, we consider three
regimes. These regimes relate to the quantile b(N)/(Nh(N) + b(N)) of maxi Qi at
which I∗N attains its optimal solution. Assume that b(N)/(Nh(N) + b(N)) converges
to a constant 1− γ. We classify the three regimes in a similar way as is done in the
analysis of large call centers; cf. Borst et al. (2004):

• We are in the balanced regime if γ ∈ (0, 1).

• If γ = 0, for large systems, the base-stock level is always sufficiently high to
ensure that the manufacturer can assemble the end-product. We call this the
quality-driven regime.

• Finally, if γ = 1, base-stock levels are much lower, and we call this the
efficiency-driven regime.

When we are in the balanced or efficiency-driven regime we can prove how far the
costs under the first order approximation are from the real optimal costs. This is
established in Lemma 5.5:

Lemma 5.5 Assume γN = Nh(N)/(Nh(N) + b(N)), with γN
N→∞−→ γ ∈ (0, 1) or

γN
N→∞−→ 1. Then

FN(I∗N , β∗N)

FN( ĪN , β̄N)
= 1− o(1).

In the next two sections, we carry out a more elaborate program using more refined
extreme value estimates of maxi≤N Qi. This analysis gives sharper order bounds
than those given in Lemma 5.5. In particular, in the following sections we consider
the minimization in two distinct cases. First, in Section 5.4, we look at the case
where demand is assumed to be deterministic, such that WA = 0. Thereafter,
in Section 5.5, we consider the stochastic demand case. In the former case, we
utilize existing results in extreme value theory, while the latter case requires the
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development of a novel limit theorem. Furthermore, we use the result given in
Corollary 5.1; this corollary shows how the ratio between the optimal costs and
approximate costs can be represented, when the approximate base-stock level and
net capacity are a solution to a minimization problem as well. This corollary follows
trivially from Lemma 5.2.

Corollary 5.1 Assume we have a function F̃N(I, β) : (0, ∞)× (0, ∞)→ R. Furthermore,
assume that the function F̃N has the form

F̃N(I, β) =
1
β

C̃N(I) + βN,

where C̃N is a positive function with domain (0, ∞). Moreover, assume that the minimum

value F̃N( ĨN , β̃N) = 2Nβ̃N = 2
√

C̃N( ĨN)N, where ĨN and β̃N are minimizers, then

F(I∗N , β∗N)

F( ĨN , β̃N)
=

2
√

CN(I∗N)
√

C̃N( ĨN)

CN( ĨN) + C̃N( ĨN)
.

5.4. The basic model: deterministic arrival stream

5.4.1 Solution and convergence of the minimization problem

We now analyze the minimization of the cost function described in Definition 5.1
for the special case with WA = 0 representing deterministic demand. Although
we can simplify the minimization problem significantly, by using the self-similarity
of Brownian motions and by writing the minimization problem as two separate
minimization problems as shown in Lemma 5.1, the function FN still has a difficult
form, since we have the expression maxi≤N Qi in this function. In Lemma 5.6
we give the optimal base-stock level in order to minimize costs. We assume
that the holding and backlog costs h(N) and b(N) are positive sequences, and
we distinguish three cases. First of all, we consider the balanced regime γN =

Nh(N)/(Nh(N) + b(N)) = γ ∈ (0, 1) for all N > 0. Secondly, we consider the quality
driven regime, where γN

N→∞−→ 0. Finally, we investigate the efficiency driven
regime, where γN

N→∞−→ 1. All proofs for this section can be found in Appendix
5.A.2. We present numerical results for the three regimes in Section 5.4.2.
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Lemma 5.6 Let Qi = sups>0(Wi(s)− s), with (Wi, 1 ≤ i ≤ N) independent Brownian
motions with mean 0 and variance σ2. Let h(N) and b(N) be positive sequences. In order to
minimize FN(I, β), the optimal base-stock level I∗N satisfies,

I∗N = P−1
N (1− γN) =

σ2

2
log

(
1

1− (1− γN)
1
N

)
, (5.4)

with P−1
N the quantile function of P(maxi≤N Qi < x) and γN = Nh(N)/(Nh(N) + b(N)).

To get a better understanding of the limiting behavior of the solution to
min(I,β) FN(I, β), we would like to approximate the function FN . Since (Qi, i ≤ N)

are independent and exponentially distributed, we know by standard extreme value

theory (cf. De Haan and Ferreira (2006)) that 2
σ2 maxi≤N Qi − log N d−→ G, as N →

∞, with G ∼ Gumbel. Therefore, for N large, maxi≤N Qi
d≈ σ2

2 G + σ2

2 log N. We get
a new minimization problem when we replace maxi≤N Qi with this approximation
σ2

2 G + σ2

2 log N. In Definition 5.2 we give the resulting function F̂N(I, β) that is to
be minimized.

Definition 5.2

ĈN(I) := E

[
Nh(N) (I −Qi) +

(
Nh(N) + b(N)

)(
σ2

2
G +

σ2

2
log N − I

)+
]

, (5.5)

and

F̂N(I, β) :=
1
β

ĈN(I) + βN. (5.6)

In the remainder of this section, we investigate whether the capacity and base-stock
level minimizing F̂N(I, β) result in costs that are close to those when we minimize
FN(I, β). Note that we write (I∗N , β∗N) for the minimizers for the cost function FN

defined in Definition 5.1, and we write ( ÎN , β̂N) for the minimizers for the cost
function F̂N defined in Definition 5.2. Thus, throughout this chapter, we indicate
second-order approximations by the ∧-symbol.

In Proposition 5.1, we present the base-stock level that minimizes F̂N . This base-
stock level turns out to be a quantile of σ2

2 G added to σ2

2 log N.
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Proposition 5.1 (Approximation) Minimizing F̂N(I, β) with G ∼ Gumbel, gives
solution ( ÎN , β̂N , F̂N( ÎN , β̂N)), with

ÎN =
σ2

2
log N − σ2

2
log (− log (1− γN)) , (5.7)

and

ĈN( ÎN) = Nh(N)

(
ÎN −

σ2

2

)
+ (Nh(N) + b(N))

σ2

2(∫ ∞

− log(1−γN)

e−t

t
dt + Γ + log (− log (1− γN))

)
, (5.8)

where Γ ≈ 0.577 is Euler’s constant and γN = Nh(N)/(Nh(N) + b(N)).

Combining Equations (5.7) and (5.8) with the results in Lemma 5.2 gives the solution
( ÎN , β̂N , F̂N( ÎN , β̂N)).

We compare the costs under the optimal base-stock level and net capacity with
the costs under the approximate base-stock level and net capacity. We distinguish
the balanced regime, quality driven regime and efficiency driven regime. We first
present two lemmas that are needed to prove order bounds between the costs under
the optimal base-stock level and net capacity, and the costs under the approximate
base-stock level and net capacity. In Lemma 5.7 we show that we can define a
random variable that follows a Gumbel distribution, and is on the same probability
space as maxi≤N Qi. This gives us a very powerful result; namely that maxi≤N Qi

and GN are ordered and that their difference decreases as maxi≤N Qi becomes large.
Consequently, we obtain very sharp bounds on |CN(I∗N)− CN( ÎN)| and |ĈN( ÎN)−
CN( ÎN)| in Lemma 5.8, which leads to sharp results in Theorem 5.1 and Lemma 5.9.

Lemma 5.7 Define

GN := − log

(
− log

((
1− exp

(
− 2

σ2 max
i≤N

Qi

))N
))

, (5.9)

then P(GN < x) = e−e−x
, for all N. Moreover,

max
i≤N

Qi >
σ2

2
GN +

σ2

2
log N, (5.10)
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and maxi≤N Qi − σ2

2 GN − σ2

2 log N strictly decreases as a function of maxi≤N Qi with
limit 0.

Lemma 5.8 Let γN = Nh(N)/(Nh(N) + b(N)), then

∣∣CN(I∗N)− CN( ÎN)
∣∣ ≤

(I∗N − ÎN)(Nh(N) + b(N))

(
1− γN −

(
1 +

log(1− γN)

N

)N
)

, (5.11)

∣∣ĈN( ÎN)− CN( ÎN)
∣∣ ≤ (I∗N − ÎN)Nh(N)

(
1−

(
1 +

log(1− γN)

N

)N
)

. (5.12)

Finally, by using the results from Lemmas 5.7 and 5.8, we prove the order bounds
in the balanced, quality driven and efficiency driven regime in Theorem 5.1. In the
efficiency driven regime, we impose the additional condition γN < 1− exp(−N)

needed to make sure that ÎN > 0.

Theorem 5.1 (Order bounds) Assume γN = Nh(N)/(Nh(N) + b(N)), if γN = γ ∈
(0, 1), in the balanced regime, then

FN(I∗N , β∗N)

FN( ÎN , β̂N)
= 1−O(1/(N log N)), (5.13)

if γN
N→∞−→ 0, in the quality driven regime, then

FN(I∗N , β∗N)

FN( ÎN , β̂N)
= 1−O(γN/(N log(N/γN))), (5.14)

and if γN
N→∞−→ 1 and γN < 1− exp(−N), in the efficiency driven regime, then

FN(I∗N , β∗N)

FN( ÎN , β̂N)
= 1−O(1/ log N). (5.15)

Using the order bounds given in Theorem 5.1, we can establish for the three
different regimes how FN(I∗N , β∗N) scales with N as N becomes large.
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Lemma 5.9 Assume γN = Nh(N)/(Nh(N) + b(N)), if γN = γ ∈ (0, 1) in the balanced
regime, then

FN(I∗N , β∗N) =2
√

N
(

Nh(N) σ2

2
(log N − log(− log(1− γ))− 1)

+(Nh(N) + b(N))
σ2

2
E
[
(G + log(− log(1− γ)))+

]) 1
2

+ O(
√

h(N)/
√

log N), (5.16)

if γN
N→∞−→ 0 in the quality driven regime, then

FN(I∗N , β∗N) = 2
√

N

√
Nh(N) σ2

2
(log(N/γN)− 1) + (Nh(N) + b(N))

σ2

2
γN

+ O(γN

√
h(N)/

√
log(N/γN)), (5.17)

and if γN
N→∞−→ 1 and γN < 1− exp(−N) in the efficiency driven regime, then

FN(I∗N , β∗N) = 2
√

N

√
Nh(N) σ2

2
(log N − 1) + b(N) σ2

2
log(− log(1− γN))

+ O(N
√

h(N)/
√

log N). (5.18)

5.4.2 Numerical experiments

We now provide some numerical results to illustrate the solutions to the minimiza-
tion problem and their characteristics discussed in Section 5.4.1. In all experiments,
we let σ = 1 and let N vary from 10 to 1000. The results for the balanced regime,
quality driven regime and efficiency driven regime are given in Tables 5.1, 5.2 and
5.3, respectively. We can observe that in all regimes the approximate solutions are
close to the optimal solutions. Most importantly, already for small N, the fraction
of the costs corresponding to the optimal solution over the costs corresponding to
the approximate solution nearly equals 1.
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Table 5.1: Balanced
Regime, h(N) = 1,
b(N) = N such that
γN = 1
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Table 5.2: Quality Driven
Regime, h(N) = 1,
b(N) = N2 such that
γN = 1
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Table 5.3: Efficiency
Driven Regime,
h(N) = N, b(N) = 1
such that γN = N2
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5.5. Stochastic demand

We now extend our framework to the case where demand is stochastic. This means
that stochasticity not only arises from the production process of the individual
components, but also results from uncertain demands. Consequently, delays
may no longer only be caused by low production of a specific component, but
may also occur when there is a sudden peak in demand. Since all components
need to be available to assemble the end-product and satisfy demand, delays of
the different components are now correlated. We use the same strategy when
demand is stochastic as in the basic model with deterministic demand. However,
we can no longer approximate the maximum queue length distribution with the
Gumbel distribution. In Section 5.5.1 we show that for N large, maxi≤N Qi ≈
σ2

2 log N + σσA√
2

√
log NX with X a standard normal random variable. Using this

approximation, we obtain a new minimization problem, in which we minimize
F̂A

N (I, β) as given in Definition 5.3 with respect to I and β.

Definition 5.3

ĈA
N(I) = E

[
Nh(N) (I −Qi) +

(
Nh(N) + b(N)

)(
σ2

2
log N +

σσA√
2

√
log NX− I

)+
]

,

and

F̂A
N (I, β) =

1
β

ĈA
N(I) + βN.

In Section 5.5.2 we elaborate on the solution and convergence of the minimization
problem.

5.5.1 Extreme value limit

In this section, we focus on the maximum of N dependent random variables.
In Theorem 5.2 we prove that a scaled version of maxi≤N Qi(β) converges in
distribution to a normally distributed random variable, as N goes to infinity.

Theorem 5.2 Let (Wi, 1 ≤ i ≤ N) be independent Brownian motions with mean 0 and
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variance σ2, and WA be a Brownian motion with mean 0 and variance σ2
A. Then

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

d−→ σσA√
2β

X, (5.19)

with X ∼ N (0, 1). In other words, for all x ∈ R

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

> x

 N→∞−→ 1−Φ

(
x
√

2β

σσA

)
,

with Φ the cumulative distribution function of a standard normal random variable.

A heuristic explanation of the result in Theorem 5.2 is as follows: though (Qi, i ≤
N) are dependent random variables, since we are adding the same Brownian
motion WA, maxi≤N Wi(s) will dominate more and more over WA as N becomes
larger. Consequently, WA does not affect the time at which the supremum of
maxi≤N Wi(s) + WA(s) − βs is attained. Hence, for N large maxi≤N Qi(β) ≈
maxi≤N sups>0(Wi(s)− βs) + WA(τ), with τ the hitting time of the supremum of
maxi≤N(Wi(s)− βs). Based on theory on conditional expectations of Lévy processes
we know that the conditional expectation of the hitting time τ(x) to reach a point x
is linear with x, to be precise, for N = 1 it is known that E[τ(x) | τ(x) < ∞] = x/β.
Combining this with the fact that maxi≤N sups>0(Wi(s)− βs) ∼ σ2

2β log N, we expect

that the supremum of maxi≤N(Wi(s)− βs) is reached at τ ≈ 1
β

σ2

2β log N = σ2

2β2 log N.

Therefore, WA(τ)
d≈ σσA√

2β

√
log NX, with X standard normally distributed, which

results in Equation (5.19).

The proof of Theorem 5.2 consists of four parts, which are stated in Lemmas 5.10,
5.11, 5.12 and 5.13 for which the proofs are provided in Appendix 5.A.3. For a
process X we have for all t > 0 that

P

(
sup
s>0

X(s) > x

)
≥ P(X(t) > x).

Furthermore, for every 0 < t1 < t2,
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P

(
sup
s>0

X(s) > x

)
≤ P

(
sup

0<s<t1

X(s) > x

)
+ P

(
sup

t1≤s<t2

X(s) > x

)

+ P

(
sup
s≥t2

X(s) > x

)
.

We prove that these lower and upper bounds are tight for the process given in
Theorem 5.2 for appropriately chosen t, t1, t2. More specifically, in Lemma 5.10 we
prove the asymptotic behavior at the critical time d log N where d = σ2

2β2 , resulting
in the tight lower bound. We show that times before and after this critical time
have no influence in Lemmas 5.11 and 5.12, respectively, leading up to Lemma 5.13

that shows the concentration around the critical time d log N, proving a tight upper
bound.

Lemma 5.10 For d = σ2

2β2 ,

maxi≤N(Wi(d log N) + WA(d log N))− βd log N − σ2

2β log N√
log N

d−→ σσA√
2β

X, (5.20)

with X ∼ N (0, 1), as N → ∞.

Lemma 5.11 For d = σ2

2β2 and 0 < ε < d, and for all x,

P

maxi≤N sup0<s<(d−ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x

 N→∞−→ 0.

(5.21)

Lemma 5.12 For d = σ2

2β2 and all ε > 0, and x ∈ R,

P

maxi≤N sups≥(d+ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x

 N→∞−→ 0. (5.22)

Lemma 5.13 For d = σ2

2β2 and ε > 0 and for all x,

lim sup
N→∞

P

maxi≤N sup(d−ε) log N≤s<(d+ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x
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≤P

(
σA

√
σ2

2β2 − εX1 +
√

2εσA|X2| > x

)
, (5.23)

with X1, X2 ∼ N (0, 1) and independent.

In Appendix 5.A.3 we show how these lemmas can be used to prove Theorem 5.2.
In Lemma 5.14, we prove that convergence holds even in L1, when X is chosen
approprately.

Lemma 5.14 Define XN :=
√

2β
σσA

WA

(
σ2

2β2 log N
)

√
log N

. Then,

E

∣∣∣∣∣∣
maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

− σσA√
2β

XN

∣∣∣∣∣∣
 N→∞−→ 0.

The proof of Lemma 5.14 is also given in Appendix 5.A.3. In the next section, we
apply Theorem 5.2 and Lemma 5.14 to solve and approximate the minimization
problem. Specifically, Lemma 5.14 gives us an order bound between the optimal
base-stock level and the approximate base-stock level.

5.5.2 Solution and convergence of the minimization problem

We can use the convergence result proven in Theorem 5.2 to prove asymptotics of

the minimization of the function FN . Since
√

2β
σσA

maxi≤N Qi(β)− σ2
2β log N√

log N
is a continuous

random variable, we know that its quantile function converges to the quantile
function of a standard normal random variable; cf. van der Vaart (1998, p. 305,
Lem. 21.2). So we can use this to derive asymptotics of the minimization problem
of FN .

Using PA
N (z) as described in Definition 5.4, we can solve the minimization problem,

which yields the optimal base-stock level and net capacity given in Lemma 5.15. The
proofs concerning the solution and subsequent convergence results are provided in
Appendix 5.A.4.
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Definition 5.4 Let

PA
N (z) = P

( √
2

σσA

maxi≤N Qi − σ2

2 log N√
log N

≤ z

)
.

Lemma 5.15 Let (b(N))N≥1, (h(N))N≥1 be sequences such that h(N) > 0 and b(N) > 0
for all N, and γN = Nh(N)/(Nh(N) + b(N)). Let

(
βA

N , IA
N
)

minimize FN(I, β). Then

IA
N =

σ2

2
log N +

σσA√
2

PA
N
−1

(1− γN)
√

log N. (5.24)

When we are in the balanced regime, we can approximate the minimization
problem given in Definition 5.3, using the convergence result in Theorem 5.2, and
prove how far the approximate solution is from the optimal solution in terms of
costs. This is done in Proposition 5.2 and Theorem 5.3. In Lemma 5.16 we show
how the optimal costs scale with N when we are in the balanced regime. The proofs
are given in Appendix 5.A.4.

Proposition 5.2 For (b(N))N≥1, (h(N))N≥1 and γN = Nh(N)/(Nh(N) + b(N)),

ÎA
N =

σ2

2
log N +

σσA√
2

√
log NΦ−1 (1− γN) , (5.25)

and

ĈA
N( ÎA

N) = Nh(N)

(
σ2

2
log N −

σ2 + σ2
A

2

)
+

(Nh(N) + b(N))
σσA

√
log Ne−

1
2 Φ−1(1−γN)2

2
√

π
. (5.26)

Theorem 5.3 (Order bound) Assume γN = Nh(N)/(Nh(N) + b(N)), with γN = γ ∈
(0, 1). Then ∣∣∣∣∣ FN(IA

N , βA
N)

FN( ÎA
N , β̂A

N)
− 1

∣∣∣∣∣ = o

(
1√

log N

)
.

Lemma 5.16 (Balanced regime) Assume γN = Nh(N)/(Nh(N) + b(N)), with γN =
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γ ∈ (0, 1). Then

IA
N =

σ2

2
log N +

σσA√
2

√
log NΦ−1 (1− γ) + o(

√
log N), (5.27)

and

FN(IA
N , βA

N) = 2
√

N
√

ĈA
N( ÎA

N) + o(N
√

h(N)). (5.28)

The result in Lemma 5.16 only holds for the balanced regime, so a natural question
is what we can say about the efficiency and the quality driven regime. As is shown
in Lemma 5.5, in the efficiency driven regime, the first order approximation ĪN =
σ2

2 log N gives that the ratio of the approximate costs and the optimal costs converge
to 1. Thus we expect the approximation given in Equation (5.25) will also satisfy this
convergence result. In order to determine whether this approximation also satisfies
the order bound given in Theorem 5.3, a further analysis is needed. The analysis
we provide for the balanced regime heavily relies on van der Vaart (1998, p. 305,

Lem. 21.2), which says that if YN
d−→ Y, then for γ ∈ (0, 1), P−1

YN
(γ)

N→∞−→ P−1
Y (γ).

This gives us the convergence result in Equation (5.27) of the base-stock level in
the balanced regime. In order to be able to prove a similar result for the efficiency
driven regime, we should need an improvement of van der Vaart (1998, p. 305,
Lem. 21.2) which also holds when γN

N→∞−→ 1.

However, for the quality driven regime, this convergence result does not hold,
because we see in Lemma 5.9 that IA

N ≈
σ2

2 log(N/γN). In order to find a sharp
order bound such as given in Theorem 5.3 we should resort to the analysis of tail
asymptotics, which is beyond the scope of this study.

5.5.3 Numerical experiments

In Section 5.5.2, we provided expressions to calculate the asymptotically optimal
net capacity and base-stock level. The question remains how large the number of
components has to be for these approximations to be of use. Therefore, we now
examine the expected costs under both the optimal net capacity and base-stock
level and under these asymptotic approximations. Since it is not straightforward
to calculate E

[
(maxi≤N Qi − I)+

]
for dependent Qi, to evaluate the cost function

given in Definition 5.1 we resort to simulation. First, we explain the details of our
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simulation experiment, after which we discuss the numerical results.

In our simulation, we aim to determine the maximum delay over all components,
so maxi≤N Qi. For this, we use the algorithm proposed by Asmussen et al. (1995,
§4.5), who describe an exact algorithm for simulating a reflected Brownian motion
at the grid points. At every grid point, we draw normal random variables with the
required drift and variance for the supply and demand processes and update the
maximum. We use a step size of 0.001 for the grid points. Since we cannot simulate
over an infinite horizon, we have to determine when to terminate the simulation.
The maximum value is expected to be attained at a time which is smaller than

t̂ = σ2+σ2
A

2 ∑N
j=1

1
j . To simulate well beyond this point, we run the simulation until

t = 2t̂.

Using the above method to simulate maxi≤N Qi, we can estimate PA
N
−1

(1−γN) with
PA

N (z) as described in Definition 5.4. To obtain a median-unbiased estimate of the
quantile, we use the approach suggested by Zieliński (2009, p. 982-983). For this,
we sample maxi≤N Qi 100 times and randomly choose between the observations
(1− γN) · 100 and (1− γN) · 100 + 1, with weights depending on the value of the
fractile. Our estimate is equal to the median over 100 iterations. Once we have our
estimate of PA

N
−1

(1− γN), we determine the value of the optimal base-stock level
as given in Equation (5.24). Using the optimal base-stock level we determine the
optimal net capacity given in Lemma 5.2. Since this also requires the expectation of
(maxi≤N Qi − I)+, we determine this value by taking the average based on 10,000

simulations.

Next, we compare the costs under our asymptotic approximations of the net
capacity and base-stock level (provided in Proposition 5.2) to the costs under the
optimal net capacity and base-stock level obtained from the simulation. We again
sample (maxi≤N Qi − I)+ based on 10,000 new simulations and determine the costs
of the different policies using cost function FN(I, β).

In order to assess the performance of the approximations and its sensitivity
to various model parameters, we perform a full factorial experiment. In our
experiment, we vary the number of components, demand variability and backorder
costs. The setup of the experiment is given in Table 5.6. We set h(N) = 1 and σ = 1
in all experiments. In total we have 24 instances. The results are given in Tables 5.4
and 5.5 for b(N) = N and b(N) = 3N, respectively.
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Table 5.4: Comparison of costs approxi-
mate solution for h(N) = 1, b(N) = N
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Table 5.5: Comparison of costs approxi-
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Table 5.6: Parameter settings for experiments

Parameter Values
N 10, 50, 100

σA 0.1, 0.5, 0.75, 1

b(N) N, 3N

There are several important observations to be made from Table 5.4. First of all, we
can observe that for N = 10 the difference in costs between the simulated optimal
solution and the asymptotic solution is around 10% for most cases, except for the
case N = 10 and σA = 1 where the difference is around 15%. As N increases
to 50, the difference decreases. Furthermore, the difference becomes larger when
σA increases. In the last column, we verify the convergence result from Theorem
5.3. We observe that the difference decreases as N increases, and that increasing σA

causes the difference to increase.

When we consider the results for b(N) = 3N given in Table 5.5, we observe that the
difference between the asymptotic and optimal costs is considerably higher than
for b(N) = N. Especially for N = 10, the difference is around 15% of the optimum,
except for N = 10 and σA = 0.1, where the difference is around 20%. However,
for a larger number of components, the difference is around 10% of the optimum.
Interestingly, for the case σA = 1, the difference between b(N) = N and b(N) = 3N
is relatively small.

Overall, in most of our experiments the difference between the costs under the
optimal base-stock level and net capacity and the costs under the approximations
are around 10%. Furthermore, we can conclude that for small variations in demand
and low backorder costs, the asymptotic approach performs well in terms of costs
already for a reasonable number of components. Also, the performance indeed
improves when N increases. Finally, the performance of the approximations highly
depends on the backorder costs relative to the holding costs.

5.6. Mixed-behavior approximations

The numerical results in Section 5.5.3 show that the approximations are in most of
the cases around 10-15% off the optimal value. In this section, we show how we can
further improve the approximations.
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Under deterministic demand and stochastic demand, the approximate problems are
given in Definition 5.2 and Definition 5.3, respectively. If σA is small, then we know
that on the one hand,

max
i≤N

Qi ≈
σ2

2
G +

σ2

2
log N,

because Qi and Qj are only slightly correlated. But on the other hand,

max
i≤N

Qi ≈
σσA√

2

√
log NX +

σ2

2
log N ≈ σ2

2
log N.

Since the Gumbel term is missing here, this could be the reason that this
approximation is not working for small N. Thus, it could be beneficial to look
at the combination of these two approximations. Then, we have

max
i≤N

Qi ≈
σ2

2
log N +

σσA√
2

√
log NX +

σ2

2
G. (5.29)

When we replace maxi≤N Qi with Equation (5.29) in the minimization problem, we
get

min
I,β

(
1
β

E
[

Nh(N)(I −Qi) + (Nh(N) + b(N))·(
σ2

2
log N +

σσA√
2

√
log NX +

σ2

2
G− I

)+
]
+ βN

)
.

The optimal IM
N satisfies P

(
σ2

2 log N + σσA√
2

√
log NX + σ2

2 G < IM
N

)
= 1− γN . Thus,

∫ ∞

−∞
exp

(
− exp

(
− 2

σ2

(
IM
N −

σ2

2
log N − σσA√

2

√
log Nx

)))
φ(x)dx = 1− γN .

(5.30)

Now, IM
N can be computed through standard numerical methods such as the

bisection method. Furthermore, the optimal net capacity βM
N satisfies

βM
N =
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√
E

[
Nh(N)(IM

N −Qi) + (Nh(N) + b(N))
(

σ2

2 log N + σσA√
2

√
log NX + σ2

2 G− IM
N

)+]
√

N
.

Though we have a symbolic expression for βM
N , it is not completely clear how to

compute

E

[(
σ2

2
log N +

σσA√
2

√
log NX +

σ2

2
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N

)+
]

=
∫ ∞
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N
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2

√
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2
G > x

)
dx.

We can write

P
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2
log N +
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2

√
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2
G > x

)
=P
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σA
√

2
σ
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2
σ2 x− log N

)

=
∫ ∞
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P
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σA
√

2
σ

√
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2
σ2 x− log N − z

)
exp(− exp(−z)− z)dz.

Now, we use the substitution z = − log s. Then,

∫ ∞
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It turns out that

∫ ∞

IM
N

P

(
σA
√

2
σ

√
log NX >

2
σ2 x− log N + log s

)
exp(−s)dx

can be expressed in terms of error functions. Thus, since IM
N can be numerically

found by solving Equation (5.30), E

[(
σ2

2 log N + σσA√
2

√
log NX + σ2

2 G− IM
N

)+]
can

be computed numerically as well. Observe that the running time of the procedure
to obtain IM

N and βM
N is independent of the system size N and is efficient.

5.6.1 Numerical results mixed-behavior approximations

Using the same simulation procedure as described in Section 5.5.3, we evaluate
the performance of these adjusted approximations. The results for the cases of
h(N) = 1, b(N) = N and h(N) = 1, b(N) = 3N are given in Tables 5.7 and 5.8,
respectively.

From the simulation results we can conclude that these adjusted approximations
result in costs that are much closer to the optimal costs, already for small N.
When comparing the last two columns, where the last column repeats the results
from Section 5.5.3, we observe that the mixed-behavior approximations show better
convergence, also when σA is larger. Furthermore, where we saw in Section 5.5.3
that the cost difference increased considerably with the change in b(N), we now do
see an increase, but the difference is still small for a larger value of b(N). Therefore,
we can conclude that these mixed-behavior approximations perform well especially
when demand variations are no more than 75% of the variations in component
production, even with a small number of components.

5.7. Conclusions

In this study, we defined a large-scale assembly system in which N components are
assembled into a final product. The delays per component are written as an all-
time supremum of a Brownian motion minus a drift term. We aimed to minimize
the total costs in the system with respect to the inventory and net capacity per
component. The costs in the system consist of inventory holding costs for each
component and penalty costs for delay of assembling the final product, which is
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equal to the delay of the slowest produced component. Before we tried to solve
the minimization problem, we simplified the minimization problem, using the self-
similarity property of a Brownian motion, into two separate minimization problems.
We distinguished two cases, first of all we covered the case of deterministic demand,
resulting in all delays being independent. Secondly, we investigated the case that
demand is stochastic and consequently delays of the components are dependent.

For the deterministic demand scenario, we proved order bounds for three different
regimes: balanced, quality driven and efficiency driven. Additionally, we verified
numerically that already for a limited number of components, our approximations
result in costs that are very close to the costs corresponding to the optimal solution.
For the stochastic demand scenario, we developed a novel limit theorem that we
use to obtain approximate solutions. We showed numerically that even though
theoretically these approximations perform well, for practical situations there is
still room for improvement. Therefore, we provided additional approximations for
a mixed-behavior regime, where we use a combination of the approximations for
the deterministic and stochastic demand scenarios. We demonstrated numerically
that these approximations perform very well already for a practical number of
components.

Future work could extend the model to a decentralized minimization problem,
where the components are not produced in-house by the OEM but are sourced
at outside suppliers that have their own objectives, which results in an asymptotic
analysis of a game theoretical equilibrium, cf. Nair et al. (2016); Gopalakrishnan
et al. (2016) and Kumar and Randhawa (2010). Additionally, we expect that we
can extend the result in Theorem 5.2 to general Lévy processes. However, the cost
minimization problem relies heavily on the self-similarity property of Brownian
motions. Thus, to solve the minimization problem for Lévy processes, other
techniques are needed.
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Table 5.7: Comparison of costs master
solution for h(N) = 1, b(N) = N
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0

0
.2

1
0

8
7

1

5
0

1
2

.2
2

6
2

7
1

.5
7

1
3

6
1

9
2

.7
2

2
0

.0
7

6
6

8
4

0
.1

5
7

8
2

7

1
0

0
1

2
.5

7
4

3
4

1
.7

0
3

8
4

4
0

7
.3

4
3

0
.0

7
2

0
4

3
0

.1
4

1
7

2
4

Table 5.8: Comparison of costs master
solution for h(N) = 1, b(N) = 3N

N
σ

A
IM N

β
M N

F N
(I

M N
,β

M N
)

( 1
−

F N
(I

A N
,β

A N
)

F N
(I

M N
,β

M N
)

) √
lo

g
N

( 1
−

F N
(I

A N
,β

A N
)

F N
(Î

A N
,β̂

A N
)

) √
lo

g
N

1
0

0
.1

1
.7

8
2

3
8

1
.3

4
7

4
6

2
5

.9
9

6
5

0
.0

0
2

4
8

7
0

.2
5

6
1

1
3

5
0

0
.1

2
.5

9
2

7
1

1
.6

2
0

8
8

1
5

9
.1

6
2

0
.0

0
1

6
9

0
0

.1
6

1
2

4
3

1
0

0
0
.1

2
.9

4
1

6
8

1
.7

2
5

3
3

3
4

1
.4

9
0

.0
0

0
3

1
4

0
.1

5
2

5
8

1

1
0

0
.5

1
.9

4
3

4
5

1
.3

8
3

0
9

2
8

.3
6

7
1

0
.0

0
1

9
2

6
0

.1
4

2
2

0
1

5
0

0
.5

2
.8

3
7

7
5

1
.6

8
9

5
5

1
7

4
.2

8
4

0
.0

0
4

6
4

2
0

.1
0

0
3

2
7

1
0

0
0
.5

3
.2

1
8

6
1

1
.8

0
4

4
3

7
2

.6
1

7
0

.0
0

4
8

2
6

0
.0

8
8

7
0

3

1
0

0
.7

5
2
.0

9
4

2
9

1
.4

1
1

4
2

3
2

.0
0

5
5

0
.0

2
8

6
8

9
0

.1
7

5
7

6
0

5
0

0
.7

5
3
.0

4
6

4
8

1
.7

4
5

1
2

1
9

3
.8

5
4

0
.0

3
3

4
9

6
0

.1
4

0
7

7
3

1
0

0
0

.7
5

3
.4

4
8

1
9

1
.8

6
7

6
1

4
1

0
.6

2
4

0
.0

3
3

0
1

9
0

.1
2

6
2

5
6

1
0

1
2
.2

5
6

5
8

1
.4

3
0

9
5

3
6

.5
1

6
5

0
.0

7
9

2
4

0
0

.2
2

9
2

9
8

5
0

1
3
.2

6
5

3
8

1
.7

9
2

7
1

2
1

6
.9

1
0

.0
8

5
3

2
1

0
.1

9
5

2
1

1

1
0

0
1

3
.6

8
7

6
5

1
.9

2
2

8
1

4
5

6
.8

5
9

0
.0

8
0

6
8

9
0

.1
7

8
8

7
6
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5.A. Proofs

5.A.1 Proofs of Section 5.3

Lemma 5.17 (i) In the independent case σA = 0:

min
(β1,...,βN),(I1 ...,IN)

N

∑
i=1

(
E
[

h(N)(Ii −Qi(βi)) + βi

]
+(Nh(N) + b(N))E

[
max
j≤N

(Qj(β j)− Ij)
+

])

= min
(β,I)

E
[

Nh(N)(I −Qi(β))
]
+ βN + (Nh(N) + b(N))E

[
max
j≤N

(Qj(β)− I)+
]

,

(ii) in the dependent case σA > 0:

min
β,(I1,I2,...,IN)

N

∑
i=1

E
[

h(N)(Ii −Qi(β)) + β
]
+ (Nh(N) + b(N))E

[
max
j≤N

(Qj(β)− Ij)
+

]
= min

(β,I)
E
[

Nh(N)(I −Qi(β))
]
+ βN + (Nh(N) + b(N))E

[
max
j≤N

(Qj(β)− I)+
]

.

Proof of Lemma 5.17

In the independent case, we can write, by using the self-similarity property of
Brownian motions, that

N

∑
i=1

E
[

h(N)(Ii −Qi(βi)) + βi

]
+ (Nh(N) + b(N))E

[
max
j≤N

(Qj(β j)− Ij)
+

]

=
N

∑
i=1

E

[
h(N)

(
Ii −

1
βi

Qi(1)
)
+ βi

]
+ (Nh(N) + b(N))E

max
j≤N

(
1
β j

Qj(1)− Ij

)+
 .

We write ηi = 1/βi. Thus,

N

∑
i=1

E

[
h(N)

(
Ii −

1
βi

Qi(1)
)
+ βi

]
+ (Nh(N) + b(N))E

max
j≤N

(
1
β j

Qj(1)− Ij

)+
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=
N

∑
i=1

E

[
h(N) (Ii − ηiQi(1)) +

1
ηi

]
+ (Nh(N) + b(N))E

[
max
j≤N

(
ηjQj(1)− Ij

)+] .

It is easy to see that ∑N
i=1 E

[
h(N) (Ii − ηiQi(1)) + 1/ηi

]
is convex with respect to

(η1, . . . , ηN , I1, . . . , IN), with ηj, Ij > 0. In order to examine whether

E
[
maxj≤N

(
ηjQj(1)− Ij

)+] is convex we should prove convexity of ηjQj(1) − Ij,
because taking the expectation of a convex function and taking maxima of convex
functions preserve convexity. Since ηjQj(1)− Ij is linear in both ηj and Ij, convexity
holds. Now, assume

C = min
(β1,β2,...,βN),(I1,I2,...,IN)

N

∑
i=1

(
E
[

h(N)(Ii −Qi(βi)) + βi

]
+(Nh(N) + b(N))E

[
max
j≤N

(Qj(β j)− Ij)
+

])

with minimizers (β
(l)
1 , . . . , β

(l)
N ) and (I(l)1 , . . . , I(l)N ). Assume there exists i, j such that

β
(l)
i 6= β

(l)
j or I(l)i 6= I(l)j . Then, because of the symmetry of the problem with respect

to the N servers, all the permutations of the minimizers give solutions. Assume
there are k permutations, where the l-th permutation has minimizers (β

(l)
1 , . . . , β

(l)
N )

and (I(l)1 , . . . , I(l)N ). Now, define βi and Ii such that they satisfy 1/βi =
1
k ∑k

l=1 1/β
(l)
i ,

and Ii = 1
k ∑k

l=1 I(l)i . Because of the symmetry of the cost function around the N
servers, we have that βi = β j = β, and Ii = Ij = I. Since we have a convex function
with respect to Ii and 1/βi,

C ≥ E
[

Nh(N)(I −Qi(β))
]
+ βN + (Nh(N) + b(N))E

[
max
j≤N

(Qj(β)− I)+
]

.

Thus Ii = I, and βi = β are minimizers. An analogous derivation holds for the
dependent case where we only minimize over one drift parameter. �

Remark 5.1 In the dependent case where all servers choose a different drift
parameter, we have that sups>0(Wi(s) + WA(s) − βis) = sups>0(Ŵi(s) + ŴA(s) −
s)/βi where Ŵi(s) = Wi(s/β2

i )βi and ŴA(s) = WA(s/β2
i )βi. However,

E
[
WA(s/β2

i )βiWA(s/β2
j )β j

]
= σ2

Aβiβ js/ max(βi, β j)
2 6= σ2

As when βi 6= β j. Thus,
when we have different drift parameters βi and β j, the joint distribution of
sups>0(Wi(s) + WA(s)− βis) and sups>0(Wj(s) + WA(s)− β js) is not the same as
the joint distribution of sups>0(Wi(s) +WA(s)− s)/βi and sups>0(Wj(s) +WA(s)−
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s)/β j. So to prove Lemma 5.17 when the drifts are different, other techniques are
needed.

Proof of Lemma 5.1

FN(I, β) > 0, hence FN has a global infimum, and since limβ↓0 FN(I, β) = ∞,
limβ→∞ FN(I, β) = ∞ and limI→∞ FN(I, β) = ∞, FN has a global minimum. Now,
assume FN(IN , βN) = min(I,β) FN(I, β). Assume that there exists an ÎN such that

E

[
Nh(N)

(
ÎN −Qi +

(
max
i≤N

Qi − ÎN

)+
)
+ b(N)

(
max
i≤N

Qi − ÎN

)+
]

<E

[
Nh(N)

(
IN −Qi +

(
max
i≤N

Qi − IN

)+
)
+ b(N)

(
max
i≤N

Qi − IN

)+
]

.

Then FN( ÎN , βN) < FN(IN , βN). This contradicts the statement that (IN , βN) gives
the minimum of FN . Hence, the optimal inventory minimizes CN(I). The proof that
βN minimizes 1

β CN(IN) + βN goes analogously.

To prove that CN(I) is convex with respect to I, we observe that

d2

dI2 CN(I) =
(

b(N) + Nh(N)
) d2

dI2 E

[(
max
i≤N

Qi − I
)+
]

=
(

b(N) + Nh(N)
) d2

dI2

∫ ∞

I
P

(
max
i≤N

Qi > x
)

dx

=
(

b(N) + Nh(N)
)

f (I) ≥ 0,

because f is the probability density function of maxi≤N Qi. This density exists; cf.
Dai and Harrison (1992, Prop. 2a). In conclusion, we have a convex minimization
problem. Moreover, d2

dβ2

(
1
β CN(IN) + βN

)
= 2

β3 CN(IN) > 0. Thus 1
β CN(IN) + βN

is also convex with respect to β. �

Proof of Lemma 5.2

FN(I, β) has the form FN(I, β) = 1
β CN(I) + βN, thus in order to minimize FN(I∗N , β),

we know by Lemma 5.1 that we need to solve d
dβ FN(I∗N , β) = − 1

β2 CN(I∗N) + N = 0.

Thus, β∗N =

√
CN(I∗N)√

N
, and FN(I∗N , β∗N) = 2

√
NCN(I∗N) = 2Nβ∗N . �
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Proof of Lemma 5.3

To solve minI CN(I) we have to solve d
dI CN(I) = 0, this gives for the optimal

inventory I∗N that

Nh(N) −
(

Nh(N) + b(N)
)

P

(
max
i≤N

Qi > I∗N

)
= 0.

Hence I∗N = P−1
N

(
b(N)

Nh(N)+b(N)

)
, with P−1

N the quantile function of maxi≤N Qi. �

Proof of Lemma 5.5

Following Corollary 5.1, we have

FN(I∗N , β∗N)

FN( ĪN , β̄N)
=

2
√

CN(I∗N)
√

C̄N( ĪN)

CN( ĪN) + C̄N( ĪN)
.

Furthermore, observe that

E

[
max
i≤N

Qi

]
≥ E

[
max
i≤N

sup
s>0

(Wi(s)− s) + WA(τ)

]
=

σ2

2

N

∑
i=1

1
i
≥ σ2

2
log N,

where τ is the first hitting time of the supremum of maxi≤N(Wi(t) − t). From
this it follows that for I < σ2

2 log N, σ2

2 log N − I < E[maxi≤N Qi − I] <

E
[
(maxi≤N Qi − I)+

]
. For I > σ2

2 log N, ( σ2

2 log N− I)+ = 0 < E[(maxi≤N Qi − I)+].
In conclusion, CN(I) > C̄N(I). Therefore,

FN(I∗N , β∗N)

FN( ĪN , β̄N)
=

2
√

CN(I∗N)
√

C̄N( ĪN)

CN( ĪN) + C̄N( ĪN)
≥

√
CN(I∗N)

√
C̄N( ĪN)

CN( ĪN)
.

We have |CN(I∗N)− CN( ĪN)| ≤ (2Nh(N) + b(N))|I∗N − ĪN |, and

|C̄N( ĪN)− CN( ĪN)| ≤ (Nh(N) + b(N))E

[∣∣∣∣max
i≤N

Qi −
σ2

2
log N

∣∣∣∣].

In the case that γN = γ ∈ (0, 1), we have by applying Lemma 5.4 that |C̄N( ĪN)−
CN( ĪN)| = o((Nh(N) + b(N)) log N). Furthermore, CN( ĪN) ∼ Nh(N) σ2

2 log N, and

since maxi≤N Qi/ log N P−→ σ2/2, as N → ∞, we also have that I∗N/ log N N→∞−→
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σ2/2. Thus |CN(I∗N)− CN( ĪN)| = o((Nh(N) + b(N)) log N), and the lemma follows.

In the case that γN
N→∞−→ 1, we first observe that

C̄N( ĪN) = Nh(N)

(
σ2

2
log N −

σ2 + σ2
A

2

)
∼ Nh(N) σ2

2
log N.

Furthermore,

CN( ĪN) = Nh(N)

(
σ2

2
log N −

σ2 + σ2
A

2

)

+ (Nh(N) + b(N))E

[(
max
i≤N

Qi −
σ2

2
log N

)+
]

≤ Nh(N)

(
σ2

2
log N −

σ2 + σ2
A

2

)
+ (Nh(N) + b(N))E

[∣∣∣∣max
i≤N

Qi −
σ2

2
log N

∣∣∣∣].

Thus,

CN( ĪN)

Nh(N) log N
≤ σ2

2
+ o(1) +

1
γN

E
[∣∣∣maxi≤N Qi − σ2

2 log N
∣∣∣]

log N
.

By Lemma 5.4, we know that E
[∣∣∣maxi≤N Qi − σ2

2 log N
∣∣∣]/ log N N→∞−→ 0. Thus

lim sup
N→∞

CN( ĪN)/(Nh(N) log N) ≤ σ2/2.

Finally,

CN(I∗N) =Nh(N)

(
I∗N −

σ2 + σ2
A

2

)
+ (Nh(N) + b(N))E

[(
max
i≤N

Qi − I∗N

)+
]

≥Nh(N)

(
I∗N −

σ2 + σ2
A

2

)
+ (Nh(N) + b(N))E

[
max
i≤N

Qi − I∗N

]

≥− Nh(N) σ2 + σ2
A

2
+ (Nh(N) + b(N))

σ2

2
log N − b(N) I∗N .

I∗N = O(log N), and b(N)/(Nh(N))
N→∞−→ 0, therefore, lim infN→∞

CN(I∗N)

Nh(N) log N
≥ σ2/2.
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Combining these results gives

lim inf
N→∞

FN(I∗N , β∗N)

FN( ĪN , β̄N)
≥ lim inf

N→∞

√
CN(I∗N)

√
C̄N( ĪN)

CN( ĪN)
= 1.

�

5.A.2 Proofs of Section 5.4

Proof of Lemma 5.6

In Lemma 5.3, it is shown that I∗N = P−1
N (1− γN), with P−1

N the quantile function of
maxi≤N Qi. Because (Qi, i ≤ N) are independent and exponentially distributed,

P

(
max
i≤N

Qi ≤ P−1
N (x)

)
= x =

(
1− e−

2
σ2 P−1

N (x)
)N

.

From this it follows that P−1
N (x) = σ2

2 log
(

1
/(

1− x
1
N

))
. �

Proof of Proposition 5.1

Minimizing F̂N( ÎN , β̂N) goes analogously as minimizing FN(IN , βN) in Lemma 5.6.
Hence ÎN = P̂−1

N (1− γN). Thus, we have to solve

P

(
σ2

2
G +

σ2

2
log N ≤ P̂−1

N (x)
)
= P

(
G ≤ 2

σ2 P̂−1
N (x)− log N

)

= e−e
−
(

2
σ2 P̂−1

N (x)−log N
)
= x.

Therefore, P̂−1
N (x) = σ2

2 log N − σ2

2 log(− log x). Hence, the optimal inventory is
given in Equation (5.7). Furthermore,

E

[(
σ2

2
G +

σ2

2
log N − ÎN

)+
]
=E

[(
σ2

2
G +

σ2

2
log (− log(1− γN))

)+
]

=
σ2

2

∫ ∞

− log(− log(1−γN))
1− e−e−x

dx.
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By using partial integration and substitution we can write

σ2

2

∫ ∞

− log(− log(1−γN))
1− e−e−x

dx

=
σ2

2

(∫ ∞

− log(1−γN)

e−t

t
dt + Γ + log (− log(1− γN))

)
.

Hence, this gives us the expression of ĈN( ÎN) in (5.8). �

Proof of Lemma 5.7

To prove that GN follows a Gumbel distribution, we first observe that

P

(
max
i≤N

Qi < x
)
=

(
1− exp

(
− 2

σ2 x
))N

.

Therefore,
(

1− exp
(
− 2

σ2 maxi≤N Qi

))N
∼ Unif[0, 1]. Then,

P(GN < x) =P

(
− log

(
− log

((
1− exp

(
− 2

σ2 max
i≤N

Qi

))N
))

< x

)

=P

(
− log

((
1− exp

(
− 2

σ2 max
i≤N

Qi

))N
)

> e−x

)

=P

((
1− exp

(
− 2

σ2 max
i≤N

Qi

))N
< e−e−x

)
= e−e−x

.

To prove (5.10), we need to show that for all x > 0 and N

x >− σ2

2
log

(
− log

((
1− exp

(
− 2

σ2 x
))N

))
+

σ2

2
log N.

This is equivalent to the inequality x > − σ2

2 log
(
− log

(
1− exp

(
− 2

σ2 x
)))

, which

is equivalent to 1 − e−
2

σ2 x
< e−e

− 2
σ2 x

, with x > 0. This is equivalent to e−y >

1 − y for y ∈ (0, e−1]. Observe that for y = 0, we have equality, and we have
for y > 0 that (e−y)′ > −1 = (1 − y)′. The statement follows. To prove that
the larger maxi≤N Qi becomes, the smaller the difference between maxi≤N Qi and
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σ2

2 GN + σ2

2 log N becomes, we first observe that

σ2

2
GN +

σ2

2
log N =− σ2

2
log

(
− log

((
1− exp

(
− 2

σ2 max
i≤N

Qi

))N
))

+
σ2

2
log N

=− σ2

2
log
(
− log

(
1− e−

2
σ2 maxi≤N Qi

))
.

Thus we need to obtain that x + σ2

2 log(− log(1− e−
2

σ2 x
)) is strictly decreasing in x

for x > 0. Taking the first derivative gives the inequality

e−
2x
σ2(

1− e−
2x
σ2

)
log
(

1− e−
2x
σ2

) + 1 < 0.

This is equivalent to the inequality −y/((1− y) log(1− y)) > 1 for y ∈ (0, 1), which
can be rewritten to log y > 1− 1/y, which is a basic logarithm inequality. Finally,

limx→∞ x + σ2

2 log(− log(1− e−
2

σ2 x
)) = 0. �

Proof of Lemma 5.8

Due to the inequality in (5.10), I∗N > ÎN , then, we have

CN(I∗N)− CN( ÎN)

=Nh(N)(I∗N − ÎN) + (Nh(N) + b(N))E

[(
max
i≤N

Qi − I∗N

)+

−
(

max
i≤N

Qi − ÎN

)+
]

=Nh(N)(I∗N − ÎN) + (Nh(N) + b(N))E

[(
ÎN − I∗N

)
1

(
max
i≤N

Qi > I∗N

)]
− (Nh(N) + b(N))E

[(
max
i≤N

Qi − ÎN

)+

1

(
ÎN < max

i≤N
Qi < I∗N

)]
.

We have P
(
maxi≤N Qi > I∗N

)
= γN = Nh(N)/(Nh(N) + b(N)), thus

Nh(N)(I∗N − ÎN) + (Nh(N) + b(N))E

[
( ÎN − I∗N)1

(
max
i≤N

Qi > I∗N

)]
= 0.

Furthermore,
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E

[(
max
i≤N

Qi − ÎN

)+

1

(
ÎN < max

i≤N
Qi < I∗N

)]
≤

(I∗N− ÎN)P

(
ÎN < max

i≤N
Qi < I∗N

)
= (I∗N− ÎN)

(
1− γN −

(
1 +

log(1− γN)

N

)N
)

.

Equation (5.11) follows. To prove Equation (5.12), we observe that

|ĈN( ÎN)− CN( ÎN)|

=(Nh(N) + b(N))E

[(
max
i≤N

Qi − ÎN

)+

−
(

σ2

2
GN +

σ2

2
log N − ÎN

)+
]

=(Nh(N) + b(N))E

[(
max
i≤N

Qi −
σ2

2
GN −

σ2

2
log N

)
1

(
σ2

2
GN +

σ2

2
log N > ÎN

)]
(5.31)

+(Nh(N) + b(N))E

[(
max
i≤N

Qi − ÎN

)
1

(
σ2

2
GN +

σ2

2
log N < ÎN < max

i≤N
Qi

)]
.

(5.32)

Because GN and maxi≤N Qi are on the same probability space, we have

P
(

max
i≤N

Qi = I∗N
∣∣∣σ2

2
GN +

σ2

2
log N = ÎN

)
= 1.

Furthermore, x + σ2

2 log(− log(1− e−
2

σ2 x
)) is decreasing in x. Thus, we can bound

E

[(
max
i≤N

Qi −
σ2

2
GN −

σ2

2
log N

)
1

(
σ2

2
GN +

σ2

2
log N > ÎN

)]
≤(I∗N − ÎN)P

(
σ2

2
GN +

σ2

2
log N > ÎN

)
=(I∗N − ÎN)γN . (5.33)

Similarly, for (5.32), we observe that if σ2

2 GN + σ2

2 log N < ÎN , then maxi≤N Qi < I∗N ,
thus,

E

[(
max
i≤N

Qi − ÎN

)
1

(
σ2

2
GN +

σ2

2
log N < ÎN < max

i≤N
Qi

)]
≤(I∗N − ÎN)P

(
σ2

2
GN +

σ2

2
log N < ÎN < max

i≤N
Qi

)
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≤(I∗N − ÎN)

(
1−

(
1 +

log(1− γN)

N

)N
− γN

)
. (5.34)

Adding the bounds in (5.33) and (5.34) gives the result. �

Proof of Theorem 5.1

First of all, we assume that γN = γ ∈ (0, 1). Using Corollary 5.1, we have

FN(I∗N , β∗N)

FN( ÎN , β̂N)
=

2
√

CN(I∗N)
√

ĈN( ÎN)

CN( ÎN) + ĈN( ÎN)
.

Because of the inequality in (5.10), we have for all I that CN(I) > ĈN(I), thus

FN(I∗N , β∗N)

FN( ÎN , β̂N)
>

2
√

CN(I∗N)
√

ĈN( ÎN)

2CN( ÎN)
.

By computing the Taylor series around x = 0, we have

I∗1/x =
σ2

2
log
(

1
1− (1− γ)x

)
=− σ2

2
log x− σ2

2
log(− log(1− γ)))

− σ2

4
x log(1− γ) + O(x2)

= Î1/x −
σ2

4
x log(1− γ) + O(x2).

Thus, (I∗N − ÎN) ∼ −σ2 log(1− γ)/(4N). Following (5.12), we can conclude that
|ĈN( ÎN)−CN( ÎN)|

Nh(N) = O(1/N). We can do the same for P
(

ÎN < maxi≤N Qi < I∗N
)
, and

get (
1− γ−

(
1 +

log(1− γ)

N

)N
)
∼ 1

2N
(1− γ) log(1− γ)2.

Thus, after applying the inequality in (5.11), we get |CN(I∗N)− CN( ÎN)|/(Nh(N) +

b(N)) = O(1/N2). We have

ĈN( ÎN) =Nh(N) σ2

2
(log N − log(− log(1− γ))− 1)
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+ (Nh(N) + b(N))
σ2

2
E
[
(G + log(− log(1− γ)))+

]
∼Nh(N) σ2

2
log N,

because Nh(N)+b(N)

Nh(N) = 1
γ , and− log(− log(1−γ)) and E[(GN + log(− log(1− γ)))+]

are of O(1). In conclusion, we have

FN(I∗N , β∗N)

FN( ÎN , β̂N)
>

√
CN(I∗N)√
CN( ÎN)

√
ĈN( ÎN)√
CN( ÎN)

=

√
CN( ÎN)−O((Nh(N) + b(N))/N2)√

CN( ÎN)

√
CN( ÎN)−O(Nh(N)/N)√

CN( ÎN)

=
√

1−O(1/(N2 log N))
√

1−O(1/(N log N))

=1−O(1/(N log N)).

Now, we assume that γN
N→∞−→ 0, then we have that − log(− log(1 − γN)) ∼

− log(γN), thus ÎN ∼ σ2

2 log(N/γN). Also,

E
[
(GN + log(− log(1− γN)))

+
]
∼ E

[
(GN + log(γN))

+
]
∼ γN .

From this it follows that ĈN( ÎN) ∼ Nh(N) σ2

2 log(N/γN). Furthermore,

P

(
max
i≤N

Qi > ÎN

)
= 1−

(
1 +

log(1− γN)

N

)N
≤ N P

(
Qi > ÎN

)
= − log(1− γN) = γN(1 + O(γN/2)).

From this it follows that(
1− γN −

(
1 +

log(1− γN)

N

)N
)
≤ − log(1− γN)− γN =

γ2
N
2

(1 + o(1)).

Also

P

(
max
i≤N

Qi < I∗N

)
= P

(
σ2

2
GN +

σ2

2
log N < ÎN

)
= 1− γN

N→∞−→ 1.
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Earlier, we showed that when γN = γ, (I∗N − ÎN) = O(1/N), now I∗N is larger,

because P
(
maxi≤N Qi < I∗N

)
= 1 − γN

N→∞−→ 1. Following the statement in
Lemma 5.7 that the difference between maxi≤N Qi and σ2

2 GN + σ2

2 log N decreases
as maxi≤N Qi increases, we can conclude that (I∗N − ÎN) = O(1/N). Following the
proof before, and by using the order bounds in (5.11) and (5.12), we have that

FN(I∗N , β∗N)

FN( ÎN , β̂N)
= 1−O(γN/(N log(N/γN))).

Finally, we consider the case that γN
N→∞−→ 1 and γN ≤ 1− exp(−N). Then, ÎN ≥ 0.

Furthermore, when γN
N→∞−→ 1, we have log(− log(1− γN))

N→∞−→ ∞, from this it
follows that

E
[
(GN + log(− log(1− γN)))

+
]
∼ log(− log(1− γN)).

Thus

ĈN( ÎN) ∼
σ2

2
Nh(N)(log N − log(− log(1− γN)))

+
σ2

2
(Nh(N) + b(N)) log(− log(1− γN))

=
σ2

2
Nh(N) log N +

σ2

2
b(N) log(− log(1− γN)).

Since we consider the efficiency driven regime, we have b(N)/(Nh(N))
N→∞−→ 0. Also,

it is easy to deduce that when γN < 1− exp(−N), we have log(− log(1− γN)) <

log N. Thus ĈN( ÎN) ∼ σ2

2 Nh(N) log N. Furthermore, I∗N − ÎN = O(1), thus the
bounds in (5.11) and (5.12) are of O(Nh(N)). By using the same argument as in the
proof for the balanced regime,

FN(I∗N , β∗N)

FN( ÎN , β̂N)
= 1−O(1/ log N).

�
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Proof of Lemma 5.9

Following Equations (5.11) and (5.12) and using the same arguments as in the proof
of Theorem 5.1, we can find the same order bound for FN(I∗N , β∗N)/F̂N( ÎN , β̂N) =√

CN(I∗N)/
√

ĈN( ÎN).

In the case that γN = γ ∈ (0, 1), we have

ĈN( ÎN) =Nh(N) σ2

2
(log N − log(− log(1− γ))− 1)

+(Nh(N) + b(N))
σ2

2
E
[
(G + log(− log(1− γ)))+

]
.

Thus F̂N( ÎN , β̂N)/(N log N) = 2
√

N
√

ĈN( ÎN)/(N log N) = O(
√

h(N)/
√

log N).

When γN
N→∞−→ 0, we have that − log(− log(1 − γN)) ∼ − log(γN), thus ÎN ∼

σ2

2 log(N/γN). Also,

E
[
(GN + log(− log(1− γN)))

+
]
∼ E

[
(GN + log(γN))

+
]
∼ γN .

From this it follows that

ĈN( ÎN) ∼ Nh(N) σ2

2
(log(N/γN)− 1) + (Nh(N) + b(N))

σ2

2
γN .

Therefore, 2
√

N
√

ĈN( ÎN)γN/(N log(N/γN)) = O(γN
√

h(N)/
√

log(N/γN)).

When γN
N→∞−→ 1, we have

ĈN( ÎN) ∼
σ2

2
Nh(N)(log N − log(− log(1− γN)))

+
σ2

2
(Nh(N) + b(N)) log(− log(1− γN))

=
σ2

2
Nh(N) log N +

σ2

2
b(N) log(− log(1− γN)).

Thus, 2
√

N
√

ĈN( ÎN)/ log N = O(N
√

h(N)/
√

log N). �
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5.A.3 Proofs of Section 5.5.1

Proof of Lemma 5.10

Let bN =
√

2 log N − log(4π log N)/(2
√

2 log N). Then

bN

(
maxi≤N Wi(d log N)

σ
√

d log N
− bN

)
d−→ G,

with G ∼ Gumbel, as N → ∞, cf. De Haan and Ferreira (2006, p. 11, Ex. 1.1.7) for a
proof. Observe that

bN

(
maxi≤N Wi(d log N)

σ
√

d log N
− bN

)

=
1

σ
√

d

(√
2 log N − log(4π log N)

2
√

2 log N

)
maxi≤N Wi(d log N)− σ

√
2d log N +

σ
√

d log(4π log N)

2
√

2√
log N

.

Furthermore, βd + σ2

2β = σ
√

2d = σ2

β . From this it follows that

maxi≤N Wi(d log N)− βd log N − σ2

2β log N√
log N

P−→ 0.

Moreover, WA(d log N)√
log N

d
= σσA√

2β
X, with X ∼ N (0, 1). The statement follows. �

Proof of Lemma 5.11

To prove Lemma 5.11, we first observe that

maxi≤N

(
sup0<s<(d−ε) log N(Wi(s) + WA(s)− βs)

)
− σ2

2β log N√
log N

≤
maxi≤N

(
sup0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
))
− σ2

2β log N√
log N
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+
sup0<s<(d−ε) log N

(
WA(s)− 1

log log N s
)

√
log N

≤
maxi≤N

(
sup0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
))
− σ2

2β log N√
log N

+
sups>0

(
WA(s)− 1

log log N s
)

√
log N

.

Furthermore, we can write

P

 sup0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
− σ2

2β log N√
log N

> x


=P

(
sup

0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
> x

√
log N +

σ2

2β
log N

)
.

We know that sup0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)

is a reflected Brownian
motion, so we can write down its cumulative distribution function explicitly:

P

(
sup

0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
≤ x

)

=1−Φ

−x−
(

β− 1
log log N

)
(d− ε) log N

σ
√
(d− ε) log N


−exp

−2
(

β− 1
log log N

)
σ2 x

Φ

−x +
(

β− 1
log log N

)
(d− ε) log N

σ
√
(d− ε) log N

 .

It turns out that

P

(
sup

0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
< x

√
log N +

σ2

2β
log N

)N
N→∞−→ 1,

for all x. One can see this heuristically by observing that

max
i≤N

sup
s<(d−ε) log N

(Wi(s)− βs) ≈ max
i≤N

(Wi((d− ε) log N)− β(d− ε) log N) ,
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because the hitting time of the supremum of maxi≤N (Wi(s)− βs) is approximately
d log N. Thus, up to that time maxi≤N (Wi(s)− βs) is increasing. We know that
maxi≤N Wi((d− ε) log N) ≈

√
2(d− ε)σ log N. Therefore,

maxi≤N sups<(d−ε) log N (Wi(s)− βs)

log N
P−→ σ

√
σ2 − 2β2ε

β
− σ2

2β
+ βε

=
σ2

2β
+

(
σ
√

σ2 − 2β2ε

β
− σ2

β
+ βε

)
≤ σ2

2β
− Cε2, (5.35)

with C > 0. Hence,

maxi≤N sups<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)

log N

≤
maxi≤N sups<(d−ε) log N (Wi(s)− βs)

log N
+

(d− ε) log N
(log log N) log N

P−→ σ2

2β
+

(
σ
√

σ2 − 2β2ε

β
− σ2

β
+ βε

)
≤ σ2

2β
− Cε2.

Thus,

maxi≤N sups<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
− σ2

2β log N√
log N

≤ −Cε2√log N,

for N large. Therefore,

P

(
sup

0<s<(d−ε) log N

(
Wi(s)−

(
β− 1

log log N

)
s
)
< x

√
log N +

σ2

2β
log N

)N
N→∞−→ 1.

Furthermore, sups>0

(
WA(s)− s

log log N

)
∼ Exp

(
2

σ2
A log log N

)
. Therefore,

sups>0

(
WA(s)− s

log log N

)
√

log N
P−→ 0,

as N → ∞. The statement follows. �
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Proof of Lemma 5.12

Let ε > 0 be given. Choose δ < min
(

2(β3ε+βσ2)
2β2ε+σ2 − 2

√
β2σ2

2β2ε+σ2 , 2β3ε

2β2ε+σ2 , β

)
and

positive. Then

maxi≤N

(
sups≥(d+ε) log N(Wi(s) + WA(s)− βs)

)
− σ2

2β log N√
log N

≤
maxi≤N

(
sups≥(d+ε) log N(Wi(s)− (β− δ)s)

)
− σ2

2β log N√
log N

+
sups≥(d+ε) log N(WA(s)− δs)√

log N

≤
maxi≤N

(
sups≥(d+ε) log N(Wi(s)− (β− δ)s)

)
− σ2

2β log N√
log N

+
sups>0(WA(s)− δs)√

log N
.

We have

sup
s≥(d+ε) log N

(Wi(s)− (β− δ)s) d
= Wi((d + ε) log N)− (β− δ)(d + ε) log N

+ sup
s>0

(W ′i (s)− (β− δ)s),

with (W ′i , i ≤ N) independent Brownian motions with mean 0 and variance σ2. We
write Ei = sups>0(W

′
i (s)− (β− δ)s). Hence, Ei ∼ Exp

(
2(β−δ)

σ2

)
. So

maxi≤N

(
sups≥(d+ε) log N(Wi(s)− (β− δ)s)

)
− σ2

2β log N√
log N

d
=

maxi≤N (Wi((d + ε) log N) + Ei)−
(

σ2

2β + (β− δ)(d + ε)
)

log N√
log N

.

By using the union bound and Chernoff’s bound, we get that

P

(
max
i≤N

(Wi((d + ε) log N) + Ei) > x
)
≤NP (Wi((d + ε) log N) + Ei > x)
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≤NE
[
esWi((d+ε) log N)

]
E
[
esEi
]

e−sx,

for all s > 0. E
[
esWi((d+ε) log N)

]
= e

s2(σ
√

(d+ε) log N)2

2 = N
σ2(d+ε)s2

2 and E
[
esEi
]
=

2(β−δ)
σ2

/(
2(β−δ)

σ2 − s
)

. Hence,

P

(
max
i≤N

(Wi((d + ε) log N) + Ei) > x
√

log N +

(
σ2

2β
+ (β− δ)(d + ε)

)
log N

)

≤N1+ σ2(d+ε)s2
2 −s

(
σ2
2β +(β−δ)(d+ε)

)
e−sx
√

log N
2(β−δ)

σ2

2(β−δ)
σ2 − s

. (5.36)

Now, we choose s? = β

2β2ε+σ2 +
β−δ

σ2 . Because δ < 2β3ε

2β2ε+σ2 , s? < 2(β−δ)
σ2 . Also,

1 +
σ2(d + ε)s?2

2
− s?

(
σ2

2β
+ (β− δ)(d + ε)

)
< 0,

because δ <
2(β3ε+βσ2)

2β2ε+σ2 − 2
√

β2σ2

2β2ε+σ2 . Therefore

P

(
max
i≤N

(Wi((d + ε) log N) + Ei) > x
√

log N +

(
σ2

2β
+ (β− δ)(d + ε)

)
log N

)
N→∞−→ 0.

Moreover, sups>0(WA(s)− δs) ∼ Exp
(

2δ
σ2

A

)
. Therefore, sups>0(WA(s)−δs)√

log N
P−→ 0. The

limit in (5.22) follows. �

Proof of Lemma 5.13

First of all, we bound

maxi≤N sup(d−ε) log N≤s<(d+ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≤ sup
(d−ε) log N≤s<(d+ε) log N

WA(s)√
log N

+
maxi≤N sup(d−ε) log N≤s<(d+ε) log N(Wi(s)− βs)− σ2

2β log N√
log N
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≤ sup
(d−ε) log N≤s<(d+ε) log N

WA(s)√
log N

+
maxi≤N sups>0(Wi(s)− βs)− σ2

2β log N√
log N

.

We can write

sup
(d−ε) log N≤s<(d+ε) log N

WA(s)√
log N

=
WA((d− ε) log N)√

log N
+ sup

0≤s<2ε log N

W ′A(s)√
log N

d
=σA

√
σ2

2β2 − εX1 +
√

2εσA|X2|,

with X1, X2 ∼ N (0, 1) and independent, and W ′A a Brownian motion with mean 0

and variance σ2
A. Furthermore, we have that

2β

σ2

(
max
i≤N

sup
s>0

(Wi(s)− βs)− σ2

2β
log N

)
d−→ G,

as N → ∞, with G ∼ Gumbel. Therefore,

maxi≤N sups>0(Wi(s)− βs)− σ2

2β log N√
log N

P−→ 0,

as N → ∞. The statement follows. �

Proof of Theorem 5.2

We have the following lower bound:

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


≥P

maxi≤N(Wi(d log N) + WA(d log N))− βd log N − σ2

2β log N√
log N

≥ x

 .

From this and Lemma 5.10, we know that

lim inf
N→∞

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x
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≥ 1−Φ

(
x
√

2β

σσA

)
.

By using the union bound, we get

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


≤P

maxi≤N sup0<s<(d−ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


+P

maxi≤N sup(d−ε) log N≤s<(d+ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


+P

maxi≤N sups≥(d+ε) log N (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x

 .

Combining this with the results from Lemmas 5.11, 5.12 and 5.13 gives

lim sup
N→∞

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


≤P

(
σA

√
σ2

2β2 − εX1 +
√

2εσA|X2| > x

)
,

with X1, X2 ∼ N (0, 1) and independent. This upper bound holds for all ε > 0,
therefore

lim sup
N→∞

P

maxi≤N sups>0 (Wi(s) + WA(s)− βs)− σ2

2β log N√
log N

≥ x


≤ lim

ε↓0
P

(
σA

√
σ2

2β2 − εX1 +
√

2εσA|X2| > x

)

=1−Φ

(
x
√

2β

σσA

)
.

Hence, the statement follows. �
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Proof of Lemma 5.14

Because of the self-similarity property, we can assume without loss of generality
that β = 1. Let d = σ2

2 , and XN =
√

2
σσA

WA(d log N)√
log N

. It is easy to see that XN ∼ N (0, 1).

Let 0 < ε < d, we write

Qi = sup
s>0

(Wi(s) + WA(s)− s),

Q(1,N)
i = sup

0<s<(d−ε) log N
(Wi(s) + WA(s)− s),

Q(2,N)
i = sup

(d−ε) log N<s<(d+ε) log N
(Wi(s) + WA(s)− s),

and

Q(3,N)
i = sup

s>(d+ε) log N
(Wi(s) + WA(s)− s).

We want to prove that

E

[∣∣∣∣∣maxi≤N Qi − σ2

2 log N√
log N

− σσA√
2

XN

∣∣∣∣∣
]

N→∞−→ 0. (5.37)

First observe that

E

[∣∣∣∣∣maxi≤N Qi − σ2

2 log N√
log N

− σσA√
2

XN

∣∣∣∣∣
]

(5.38)

≤E

[∣∣∣∣∣maxi≤N Qi − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

∣∣∣∣∣
]

(5.39)

+E

[∣∣∣∣∣maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

− σσA√
2

XN

∣∣∣∣∣
]

. (5.40)
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Because Qi > Wi(d log N) + WA(d log N)− d log N, we can rewrite (5.39):

E

[∣∣∣∣∣maxi≤N Qi − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

∣∣∣∣∣
]

=E

(maxi≤N Qi − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+
.

(5.41)

Moreover, due to Pickands III (1968, Th. 3.1):

E

[∣∣∣∣∣maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

− σσA√
2

XN

∣∣∣∣∣
]

=E

[∣∣∣∣∣maxi≤N Wi(d log N)− σ2 log N√
log N

∣∣∣∣∣
]

N→∞−→ 0. (5.42)

If x = max(x(1), x(2), x(3)) , with x(1), x(2), x(3) ≥ 0, then x ≤ x(1) + x(2) + x(3). Thus,

E

(maxi≤N Qi − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


(5.43)

≤E

(maxi≤N Q(1,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


(5.44)

+E

(maxi≤N Q(2,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


(5.45)

+E

(maxi≤N Q(3,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+
.

(5.46)
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For (5.44), we have

E

(maxi≤N Q(1,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


≤E

(maxi≤N Q(1,N)
i − σ2

2 log N√
log N

− WA(d log N)√
log N

)+


+ E

(−maxi≤N Wi(d log N)− σ2 log N√
log N

)+
. (5.47)

By (5.42), the second term converges to 0. For the first term, following Lemma 5.11,
we observe that

E

(maxi≤N Q(1,N)
i − σ2

2 log N√
log N

− WA(d log N)√
log N

)+


≤E

[(maxi≤N(sup0<s<(d−ε) log N(Wi(s)− (1− 1/ log log N)s))− σ2

2 log N√
log N

+
sups>0(WA(s)− s/ log log N)√

log N
− WA(d log N)√

log N

)+
]

≤E

[(maxi≤N(sup0<s<(d−ε) log N(Wi(s)− (1− 1/ log log N)s))− σ2

2 log N√
log N

− WA(d log N)√
log N

)+]
+ E

[(
sups>0 (WA(s)− s/ log log N)√

log N

)+ ]
. (5.48)

The term in (5.48) converges to 0. Furthermore,

E

(maxi≤N(sup0<s<(d−ε) log N(Wi(s)− (1− 1/ log log N)s))− σ2

2 log N√
log N

−WA(d log N)√
log N

)+
]

=
∫ ∞

0
P

maxi≤N(sup0<s<(d−ε) log N(Wi(s)− (1− 1/ log log N)s))− σ2

2 log N√
log N
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−WA(d log N)√
log N

> x

)
dx

=
∫ ∞

0
P

(
max
i≤N

sup
0<s<(d−ε) log N

(Wi(s)− (1− 1/ log log N)s)−WA(d log N) >

x
√

log N +
σ2

2
log N

)
dx

≤
∫ ∞

0
NP
(

sup
0<s<(d−ε) log N

(Wi(s)− (1− 1/ log log N)s)

>x/2
√

log N +
(σ2

2
− 1

2
(σ2 − σ

√
σ2 − 2ε− ε)

)
log N

)
dx

+
∫ ∞

0
P

(
−WA(d log N) > x/2

√
log N +

(
1
2

(
σ2 − σ

√
σ2 − 2ε− ε

))
log N

)
dx

N→∞−→ 0;

see the inequality (5.35) in the proof of Lemma 5.11 for details. For the term in
(5.45), we have that

E

(maxi≤N Q(2,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


=E

[
maxi≤N Q(2,N)

i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

]

=E

[
maxi≤N Q(2,N)

i − σ2

2 log N√
log N

− maxi≤N Wi(d log N)− σ2 log N√
log N

]
.

By Pickands III (1968, Th. 3.1), we have that

E

[
maxi≤N Wi(d log N)− σ2 log N√

log N

]
N→∞−→ 0.

Furthermore, (here we use the same bounds as in Lemma 5.13)

E

[
maxi≤N Q(2,N)

i − σ2

2 log N√
log N

]

≤E

[
maxi≤N sups>0(Wi(s)− s)− σ2

2 log N√
log N

]
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+ E

[
WA((d− ε) log N)) + sup0<2ε log N W̃A(s)√

log N

]
N→∞−→ 0 +

√
2εσAE[|XN |] =

√
2εσA

√
2
π

. (5.49)

Similar as in (5.47), we have

E

(maxi≤N Q(3,N)
i − σ2

2 log N√
log N

− maxi≤N Wi(d log N) + WA(d log N)− σ2 log N√
log N

)+


≤E

(maxi≤N Q(3,N)
i − σ2

2 log N√
log N

− WA(d log N)√
log N

)+


+ E

(−maxi≤N Wi(d log N)− σ2 log N√
log N

)+
.

The second term goes to 0, following the proof of Lemma 5.12, for the first term we
have

E

(maxi≤N Q(3,N)
i − σ2

2 log N√
log N

− WA(d log N)√
log N

)+


≤E

[(maxi≤N sups>(d+ε) log N(Wi(s)− (1− δ)s)− σ2

2 log N√
log N

+
sups>(d+ε) log N(WA(s)− δs)−WA(d log N)√

log N

)+]

≤E

maxi≤N sups>(d+ε) log N(Wi(s)− (1− δ)s)− σ2

2 log N√
log N

+ (5.50)

+E

( sups>(d+ε) log N(WA(s)− δs)−WA(d log N)√
log N

)+
. (5.51)
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For (5.50), we have, by using the inequality from Equation (5.36) with s? = 1/(2ε +

σ2) + (1− δ)/σ2, that

E

maxi≤N sups>(d+ε) log N(Wi(s)− (1− δ)s)− σ2

2 log N√
log N

+
=
∫ ∞

0
P

maxi≤N sups>(d+ε) log N(Wi(s)− (1− δ)s)− σ2

2 log N√
log N

> x

dx

≤
∫ ∞

0
N1+ σ2(d+ε)s?2

2 −s?
(

σ2
2 +(1−δ)(d+ε)

)
e−sx
√

log N
2(1−δ)

σ2

2(1−δ)
σ2 − s?

dx

=N1+ σ2(d+ε)s?2

2 −s?
(

σ2
2 +(1−δ)(d+ε)

) 2(1−δ)
σ2

2(1−δ)
σ2 − s?

1
s?
√

log N
N→∞−→ 0.

For (5.51), we observe that

lim sup
N→∞

E

( sups>(d+ε) log N(WA(s)− δs)−WA(d log N)√
log N

)+


= lim sup
N→∞

E

(W̃A(ε log N)− δ(d + ε) log N + sups>0(WA(s)− δs)√
log N

)+


≤E

(W̃A(ε log N)√
log N

)+
+ E

(−δ(d + ε) log N√
log N

)+


+ E

( sups>0(WA(s)− δs)√
log N

)+


N→∞−→ σA
√

ε

√
1

2π
. (5.52)

Concluding, after we collect the non-zero answers which are given in (5.49) and
(5.52) we get

lim sup
N→∞

E

[∣∣∣∣∣maxi≤N Qi − σ2

2 log N√
log N

− σσA√
2

XN

∣∣∣∣∣
]
≤
√

2εσA

√
2
π

+ σA
√

ε

√
1

2π

ε↓0→ 0.

�
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5.A.4 Proofs of Section 5.5.2

Proof of Lemma 5.15

From Lemma 5.1, we know that the optimal inventory IA
N satisfies

d
dI

E

[
Nh(N)

(
IA
N −Qi +

(
max
i≤N

Qi − IA
N

)+
)
+ b(N)

(
max
i≤N

Qi − IA
N

)+
]
= 0.

We have

d
dI

E

[
Nh(N)

(
IA
N −Qi +

(
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i≤N

Qi − IA
N

)+
)
+ b(N)

(
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i≤N

Qi − IA
N

)+
]

=Nh(N) − (Nh(N) + b(N))P

(
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i≤N

Qi > IA
N

)
=Nh(N) − (Nh(N) + b(N))P

( √
2

σσA

maxi≤N Qi − σ2

2 log N√
log N

>

√
2

σσA

IA
N −

σ2

2 log N√
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)
.

Therefore, IA
N satisfies

√
2

σσA
(IA

N −
σ2

2 log N)/
√

log N = PA
N
−1

(1− γN). �

Proof of Proposition 5.2

We have to find I and β such that FN(I, β) is minimized. As before, we know that
the optimal ÎA

N should satisfy

Nh(N) − (Nh(N) + b(N))P

(
σ2

2
log N +

σσA√
2

√
log NX > ÎA

N

)
= 0.

Thus, ÎA
N as given in (5.25) minimizes ĈA

N(I). We know that

E
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2
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σσA√
2

√
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N
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]

=
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2

√
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2
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σσA√
2

√
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=

(
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2
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)
P

(
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2

√
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+
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√
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2π

exp
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N
)2

4σ2σ2
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√
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2
)
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The expression in Equation (5.26) follows. �

Proof of Theorem 5.3

Using Corollary 5.1, we have

FN(IA
N , βA

N)

FN( ÎA
N , β̂A

N)
=

2
√

CN(IA
N)
√

ĈA
N( ÎA

N)

CN( ÎA
N) + ĈA

N( ÎA
N)

.

First, assume ĈA
N( ÎA

N) > CN( ÎA
N). Then, FN(IA

N , βA
N)/FN( ÎA

N , β̂A
N) >

√
CN(IA

N)/ĈA
N( ÎA

N).
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|ĈA
N( ÎA
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N − ÎA
N |
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2
log N − σσA√

2
X
∣∣∣∣].

We know by van der Vaart (1998, p. 305, Lem. 21.2), that (IA
N − ÎA

N)/
√

log N N→∞−→ 0.
Furthermore, we prove in Lemma 5.14 that
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√
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√
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From this it follows that |ĈA
N( ÎA

N) − CN(IA
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√
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ĈA
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√
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Secondly, assume ĈA
N( ÎA

N) < CN( ÎA
N), then

FN(IA
N , βA

N)

FN( ÎA
N , β̂A

N)
>

√
CN(IA

N)Ĉ
A
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=

√
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N)√
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√
ĈA

N( ÎA
N)√

CN( ÎA
N)

.

With an analogous derivation, we obtain the same order bound. �

Proof of Lemma 5.16

We have ÎA
N = σ2

2 log N + σσA√
2

√
log NΦ−1(1 − γ). Furthermore, |IA

N − ÎA
N | =

o(
√

log N), thus (5.27) follows. Furthermore, by using the same argument as in
Lemma 5.9, (5.28) follows. �



192
Chapter 5. Extreme-value Theory for Large Fork-join Queues, with Applications

to High-tech Supply Chains



6
Conclusions and Future Work

In this thesis, we studied decisions regarding control of high-tech supply chains.
We considered three different research problems, as discussed in Chapter 1. In
Chapter 2, we focused on contracting between a high-tech OEM and a supplier of a
critical component of the end-product, in particular, how long-term collaborations
can help to achieve coordination. In Chapter 3, we further built on this analysis for
the case where only a limited number of suppliers has the capabilities to supply the
required component. Chapter 4 considered an assembly system in which an OEM
combines components produced in-house with components sourced at an outside
supplier into an end-product. We designed an order policy for the supplier-sourced
component that minimizes overall costs. Finally, in Chapter 5, we investigated
how the large scale of high-tech assembly systems can be used in optimizing both
capacity and inventory for the required components.

In Section 6.1, we discuss the main findings of this thesis followed by their practical
implications in Section 6.2. We conclude this thesis in Section 6.3 by providing
potential directions for future research.
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6.1. Main results

In Chapter 2, our research objective is to develop a supply chain contract that
improves coordination in high-tech supply chains by offering the prospect of
contract renewal. First, we study contracts that focus on a single generation.
We confirm the well-known result that a wholesale price contract leads to double
marginalization and hence a loss of total supply chain profit. A wholesale price
contract augmented with a penalty for failure to satisfy demand theoretically
performs well, as it coordinates the supply chain and allows the OEM to take all
profits. However, in a high-tech supply chain, with a very high-valued end-product,
such contract will likely not be enforceable as the required penalty is not achievable
in practice. For this reason, we extend a standard wholesale price contract to the
case where the OEM will source components for multiple generations of its end-
product. We show that the promise of contract renewal, or the indirect penalty
of non-renewal, contingent upon supplier performance can motivate the supplier
to invest in sufficient capacity. Even though under this contract the OEM cannot
capture the entire supply chain profits, we show that the OEM can capture a large
share of the profits and has considerable benefits compared to a single-generation
wholesale price contract.

Research objective 2 concerns the effectiveness of the renewal contract in case only
a limited number of suppliers has the required capabilities. To this end, in Chapter
3, we extend the wholesale price contract with contingent renewal to the case where
the OEM has two supplier options: the incumbent supplier and an alternative
supplier. Once the OEM switches to the alternative supplier, the incumbent supplier
knows that the OEM will return at some point, when switching back from the
alternative supplier. Since the supplier knows that the OEM will not be lost as
a customer forever, the supplier has a stronger position than in case there are
infinitely many possible suppliers. Despite the stronger position of the supplier,
we show that our structural results from Chapter 2 continue to hold and contract
renewal remains an effective incentive for the supplier to invest in capacity.

In Chapter 4, we switch our focus from contracting for a single component to
synchronizing between multiple components that are required in the production
process. Specifically, we study synchronization between a component that is
produced in-house by the OEM in a make-to-order production system and
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a component that is sourced at a supplier with a specific lead-time. Since
both components need to be available to assemble and deliver the end-product,
unavailability of one of the components gives rise to high holding costs and
customer waiting costs. As the in-house produced component is made-to-order,
every component is coupled to a customer order. Therefore, the number of orders
waiting for the capacitated in-house production process gives an indication of the
demand for the supplier-sourced module during its lead-time and can be used for
optimizing the order policy. We prove optimality of the myopic state-dependent
base-stock policy both in continuous time and discrete time. These results indicate
that synchronization between a capacitated process and a lead-time component
can be achieved by adjusting the order policy of the lead-time component to the
expected output of the production process.

Our final research objective, which is the topic of Chapter 5, concerns simultaneous
optimization of capacity investment decisions and inventory policies in large
assembly systems. As high-tech end-products often consist of many modules, we
investigate how the scale of these systems can be utilized to optimize decisions.
Since demand of the end-product is stochastic and delays may occur in the
production of individual components and shortage of a single components leads
to costly delays in assembly of the end-product, a trade-off arises between shortage
risk, capacity investments and inventory holding costs. The delay in assembly of the
end-product equals the delay of the component with maximum delay. Therefore,
the first step in deriving asymptotically optimal capacity and inventory decisions
is expressing the expected maximum delay over all components. When demand
of the end-product is deterministic, we use a well-known extreme value limit to
obtain approximations for capacity and inventory that result in costs that are close
to the optimal costs already for a limited number of components. For the case
where demand is stochastic, delays of the individual components are correlated.
We develop a novel limit theorem for the maximum delay as the number of
components grows large, which we use to obtain approximate solutions. Since
demand in high-tech supply chains is often predictable, resulting in a relatively
low standard deviation, we further improve these approximations by considering
a mixed-behavior regime where we use a combination of the approximations for
the deterministic and stochastic demand scenarios. We show numerically that these
approximations perform well already when the number of components in the end-
product is limited. Our results thus indicate that the size of high-tech assembly
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systems allows for application of extreme-value theory for optimizing decisions.

6.2. Practical implications

From these results, we obtain several key insights for high-tech manufacturers.
When considering the sourcing decision of a single component, there are some
important factors to consider. First, when the sourcing decisions of the OEM
for a new product generation depend on supplier performance for the previous
product generation, coordination in high-tech supply chains may be improved
tremendously. This means that the OEM’s sourcing department should not make
supplier selection solely dependent on costs, but also on past performance. This
requires communication and information sharing between sourcing and operations
departments at the OEM. Second, to entice the supplier to invest sufficiently by
offering contract renewal dependent on supplier performance, it is important that
the suppliers are aware of this policy. This requires either formal contracting with
the suppliers regarding contract renewal or clear communication of the OEM’s
intentions. Finally, we have shown that the manufacturer’s share of total profits
is dependent on the supplier’s valuation of future profits. A supplier that has a
high valuation of future profits is more likely to increase capacity investments to
increase the renewal probability. Consequently, it is beneficial for high-tech OEMs
to work with suppliers that focus on long-term sustainable business rather than
short-term profit.

When considering the assembly process of high-tech products, for which multiple
components or modules are required, we show that synchronization is important
to avoid costly delays in production of the end-product caused by shortages of a
single component. We show that considerable savings can be achieved by using all
available information when making ordering decisions for lead-time components,
including the number of outstanding orders for in-house produced make-to-order
components. Base-stock policies with varying base-stock levels that take into
account this information can generate considerable savings compared to fixed base-
stock levels. Also, when the end-product contains many components that are
produced in capacitated systems, it is important to align inventories and capacities
of the different components. In this way, one can avoid large backlog of a single
component resulting in costly delays of production of the end-product and high
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inventory holding costs due to large inventories of all other components. Our
asymptotic analysis provides easy to implement capacity and inventory decisions
that result in near-optimal costs.

6.3. Future research

In this thesis we have studied specific problems in coordination and optimization in
high-tech supply chains. To complete this thesis, we discuss some potential future
research directions.

In Chapter 3 we extended our study of renewal contracts form Chapter 2 to the
case where the supply base is limited. Specifically, we considered the case where
there are only two oligopolistic suppliers. Further research could consider the case
where there are N possible suppliers, with 2 < N < ∞. This would allow us to
analyze how fast our results converge to the unlimited supplier case as N grows
large. In this case, it will be of importance how the OEM selects the next supplier to
work with. When the supplier rotates through a fixed list of possible suppliers, the
same solution approach may be used. When the supplier selection rules are more
complex, we can no longer express E

[
δY2
]

in the same way.

Chapter 4 concerns synchronization between an in-house produced component and
a supplier-sourced component with lead-time. In practice, end-products often
consist of multiple components, as discussed in Chapter 5. In Chapter 4, we
considered the extension of synchronizing the order policy of a supplier-sourced
component with lead-time with the output of an in-house production system in
which multiple make-to-order components are produced and showed that the
myopic state-dependent base-stock policy remains optimal. To further optimize the
entire process, it would be beneficial to coordinate among the production processes
of the make-to-order components. However, combined with determining the order
policy of the lead-time component, this results in a complex problem.

In Chapter 5 we show that our approximations for capacity and inventory perform
well for practically sized supply chains. In this chapter, we assumed that the
assembly system is centrally controlled. In practice, many manufacturers source
components that are incorporated in their end-product from suppliers. In such
decentralized system, all suppliers make their own decisions regarding capacity
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investments. This results in different dynamics. Also, agreements need to be made
about division of overall profits and who is responsible for back-order costs. An
intuitive idea would be to transfer all penalty costs to the slowest supplier, who
ultimately delays production of the end-product, but as discussed in Chapter 2 this
may not always be feasible. To optimize this problem given all these dynamics, we
suggest to look at the problem from a game theoretical perspective.
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P. Toktaş-Palut and F. Ülengin. Coordination in a two-stage capacitated supply
chain with multiple suppliers. European Journal of Operational Research, 212(1):
43–53, 2011.



208 Bibliography

S. Transchel, S. Bansal, and M. Deb. Managing production of high-tech products
with high production quality variability. International Journal of Production
Research, 54(6):1689–1707, 2016.

J. N. Tsitsiklis and Y. Xu. Efficiency loss in a cournot oligopoly with convex market
demand. Journal of Mathematical Economics, 53:46–58, 2014.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998. doi: 10.1017/
CBO9780511802256.

J. S. van Leeuwaarden, B. W. Mathijsen, and B. Zwart. Economies-of-scale in many-
server queueing systems: Tutorial and partial review of the qed halfin–whitt
heavy-traffic regime. SIAM Review, 61(3):403–440, 2019.

S. Varma. Heavy and light traffic approximations for queues with synchronization
constraints. PhD thesis, University of Maryland, 1990.

S. M. Wagner and G. Friedl. Supplier switching decisions. European Journal of
Operational Research, 183(2):700–717, 2007.

A. Wilhite, L. Burns, R. Patnayakuni, and F. Tseng. Military supply chains and
closed-loop systems: resource allocation and incentives in supply sourcing and
supply chain design. International Journal of Production Research, 52(7):1926–1939,
2014.

P. E. Wright. Two parallel processors with coupled inputs. Advances in Applied
Probability, 24(4):986–1007, 1992.

J. Wu and X. Chao. Optimal control of a Brownian production/inventory system
with average cost criterion. Mathematics of Operations Research, 39(1):163–189, 2014.

J. Wu, H. Wang, and J. Shang. Multi-sourcing and information sharing under
competition and supply uncertainty. European Journal of Operational Research, 278

(2):658–671, 2019.

Z. Wu and T. Y. Choi. Supplier–supplier relationships in the buyer–supplier triad:
Building theories from eight case studies. Journal of Operations Management, 24(1):
27–52, 2005.

Y. Xia. Competitive strategies and market segmentation for suppliers with
substitutable products. European Journal of Operational Research, 210(2):194–203,



Bibliography 209

2011.
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Summary
Optimization and Coordination in High-tech Supply Chains

High-tech original equipment manufacturers (OEMs) produce and assemble state-
of-the art products that consist of many complex components sourced at dozens
of suppliers. Examples are the production of lithography machines by ASML
or the production of aircrafts by Boeing or Airbus. To assemble these high-tech
end-products and deliver them to the customers, it is important that all required
components are available as shortage of a single component may lead to costly
delivery delays of the end-product. This requires sufficient capacity at the suppliers,
who face their own trade-offs and may be hesitant to invest in too much capacity.
This thesis investigates multiple optimization and coordination problems in these
high-tech supply chains.

High-tech supply chains have characteristics that are not included in classical
supply chain models, e.g. long-term collaboration between a manufacturer and
supplier that may be terminated based on performance, large-scale assembly
systems with many components sourced at specialized suppliers, or single-sourced
components that are produced only by a single supplier. We introduce and analyze
models that incorporate and utilize these characteristics to derive results specifically
for high-tech supply chains. We extend classical single-period supply chain models
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to multi-period models where the collaboration between a manufacturer and a
supplier continues depending on the supplier’s performance. Next, we combine
ideas from queuing theory and Markov processes to develop an optimal inventory
policy for a module sourced at a supplier that is combined with an in-house
produced make-to-order module. Furthermore, we use the scale of large high-tech
assembly systems to find asymptotically optimal decisions in the joint inventory
and capacity optimization problem.

Most existing supply chain models focus on a single interaction between a
manufacturer and its supplier. In Chapter 2, we propose a model for the case
where a manufacturer and supplier work together for longer periods, as is often
the case in the high-tech industry. This research is inspired by discussions with
supply chain experts from ASML and Philips and several of their suppliers. We
examine supply contracts that are intended to align the incentives between a high-
tech manufacturer and a supplier so that the supplier will invest adequate and yet
non-verifiable capacity to meet the manufacturer’s uncertain demand. By using
non-renewal as an implicit penalty, we show that a contingent renewal contract
encourages a supplier to create more capacity and that the supply chain optimal
capacity investment can be reached with positive expected profits for both parties.
Subsequently, in Chapter 3, we consider a setting where only a limited number
of suppliers has the required capabilities to supply the manufacturer. Since high-
tech manufacturers often source specialized components at their suppliers, this is
very relevant in high-tech industries. We show that long-term relations contingent
on supplier performance continue to be valuable, but the supplier has a stronger
position when the number of suppliers with these capabilities is limited.

In Chapter 4, we study an assembly system with a combination of a fixed lead-time
component sourced at an outside supplier and an in-house produced component
that is produced once a customer order is placed. Since unavailability of one of
the components has costly consequences for the production of the end-product, it
is important to synchronize between the ordering policy for one component and
the production of the other. We propose a state-dependent base-stock policy for
ordering the fixed lead-time component from the supplier while taking into account
the number of outstanding orders for the in-house produced component. We
show optimality of this policy and verify numerically that it generates considerable
savings compared to a static policy that disregards this information. These results
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hold both in continuous time and discrete time, allowing for application in many
practical settings.

Since high-tech end-products often consist of many components that need to be
available at the time of assembly, we finally study a large-scale assembly system
in Chapter 5. When one component is missing, this leads to costly delays in
production of the end-product. Shortages can occur for example when there are
disruptions in the component production process or when a peak in demand
occurs. Since the demand for all N components results from stochastic demand
of the end-product, delays of the different components are correlated. We model
this as N identical queues with independent service processes and a common
arrival process. Random perturbations in the arrival and service processes are
modeled with Brownian motions. We prove that as N goes to infinity the scaled
maximum of N steady-state queue lengths converges in distribution to a normally
distributed random variable. We explore repercussions of this result for high-tech
manufacturers. The probability of delays occurring can be reduced by increasing
capacity or keeping inventory, which both also have associated costs. We formulate
a stylized model that enables us to study the resulting trade-off between shortage
risk, inventory costs, and capacity costs. Our asymptotic extreme value results
translate into various asymptotically exact methods for cost-optimal inventory
and capacity decisions, some of which are in closed-form. Numerical results
indicate that our methods are asymptotically exact, while for transient times their
performance depends on model parameters. Based on a simulation study we
conclude that, when the variation in demand is limited relative to the variation in
the component production processes, the expected costs using our approximations
are very close to the optimal costs for any realistic number of components.
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