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Chapter 1

Introduction

1.1 Deep Learning for Maintenance and Logistics

The topic of this thesis is the study of machine learning (ML) and operational research
(OR) methods for problems in maintenance and logistics. Our focus is on predic-
tion and optimisation problems that arise when considering policies to maintain a
network of industrial assets operational whilst minimising maintenance and travel
costs. Traditionally, methods for solving these problems relied on handcrafted and
expert-dependent solutions that might be costly to obtain, inaccurate or inefficient
to the problems at hand. We move away from this traditional view and propose
to use data-driven methods based on ML to improve the accuracy, efficiency, and
effectiveness of previous solutions.

The overall structure of the thesis follows from breaking down the main problem
into three main components. In particular, we first consider the estimation of the
remaining lifetime of assets, essential for better planning of maintenance activities.
Thus, we study asset prognostics problems (see Section 1.2), in which the objective is
to arrive at accurate remaining life predictions, i.e., point-estimates of the remaining
lifetime of assets, from sensor data gathered via monitoring devices. Additionally,
we study the problem of learning remaining useful life forecasts when previous
observed run-to-failure data is not directly available for the asset of interest, but
data from other similar assets exist. We then study how to use this previously
labelled failure data from pre-existing assets to make inferences for other (newer)
assets with only sensor information.

Secondly, we consider optimisation problems that arise when planning the vis-
itation of locations in the network. Specifically, we consider routing problems (see
Section 1.3) and study how to leverage information from the network instance,
such that routes can be obtained with minimum travelling costs. We study well-
known combinatorial optimisation (CO) problems such as the fravelling salesman
problem and the vehicle routing problem and propose methods that can learn to select

1



2 Chapter 1

tour perturbation operations requiring only information on locations and distances.
Later, we consider the scenario in which previous expert heuristics to solve routing
problems exist (as is often the case) and study how such heuristics can be leveraged
to learn good policies more efficiently.

Lastly, we combine the first two scenarios in a routing and maintenance decision-
making problem (see Section 1.4). In this problem, we consider the existence of
partial information on asset degradation from asset prognostics algorithms for each
asset in a network. The goal is to optimise preventive (prior to failure) and correct-
ive (after failure) maintenance costs for a repairperson serving a network of assets
considering their uncertain failure times. Therefore, we wish to learn policies that
consider the failure time uncertainty while optimising joint maintenance and travel
decisions.

In all studied problems, we consider the availability of data sources, including
geographical locations, remote monitoring sensors and personnel availability. We
assume access to sampled data from these problems and aim to learn predictions
and decisions directly from these heterogeneous data sources. The methodologies
proposed in this thesis focus on end-to-end ML, leveraging deep learning methods.
These methods excel in the presence of high-dimensional heterogeneous data, learn-
ing new representations of its inputs needed to approximate complex functions.
Thus, the methods proposed in this thesis comprise algorithmic solutions based on
deep learning, leveraging the input data of each problem to arrive at final outputs
requiring little human intervention.

The remainder of this chapter is organised as follows. In sections 1.2, 1.3 and
1.4 we provide some background knowledge about the main problems and research
questions studied in this thesis. In particular, Section 1.2 provides background on
asset prognostics, Section 1.3 on routing problems, and Section 1.4 on combined
maintenance and routing problems. Next, in Section 1.5, we discuss the main con-
tributions of this thesis for each studied problem. Lastly, Section 1.6 provides an
outline of how the remainder of this thesis is organised.

1.2 Asset Prognostics

When considering the reliability of assets, it is often desired that maintenance is
performed to keep equipment running for as long as possible at minimum costs.
For this reason, proactive strategies such as condition-based maintenance (CBM)
have been replacing classical maintenance strategies such as corrective maintenance
(CM), i.e., waiting for the entire useful life period of assets to exhaust before taking
any maintenance actions, and preventive maintenance (PM), e.g., performing main-
tenance in regular intervals. Unlike its predecessors, CBM uses direct information
from the degradation of assets to make maintenance decisions. Note that CBM can
be seen as a specific form of PM. The main distinction between the two relies on
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the fact that CBM uses information coming from a specific component/system to
plan maintenance. In contrast, PM is more general and often employs population-
based information, e.g., the probability distribution of failure times, to decide on
maintenance activities.

A common way to retrieve degradation information for CBM is to employ re-
mote monitoring devices. Historically, decision-makers would decide on the best
time to schedule downtime based on manual inspection of logged sensor values.
With the recent abundance of interconnected devices, decision-makers need better
tools to make use of vast amounts of gathered data. In such cases, models and
algorithms can be used to analyse the incoming data, providing insights regarding
the health condition and future operation of assets. Prognostics and health manage-
ment (PHM) is the component of CBM concerned with assessing the current and
the future health state of systems [47]. The main goal of PHM is to utilise health
information such that maintenance policies can be optimised. PHM-fuelled policies
can reduce maintenance time due to better fault identifications, minimise disrup-
tion due to better planning of downtime, and reduce costs due to more efficient
asset operation and reduced repair costs. A primary component of PHM is having
accurate prognostics, i.e., being able to tell when an asset or part will fail before it
occurs.

Prognostics mainly focuses on the analysis of failure modes and the detection of
early signs of degradation. The most known metric in prognostics is the remaining
useful lifetime (RUL) of assets and components, i.e., the remaining time (sometimes
measured in the number of cycles) that an asset/component will remain opera-
tional. To arrive at accurate RUL predictions, decision-makers need to take multiple
factors into consideration, such as operating conditions, usage, and age of assets.
Having accurate RUL predictions allows maintenance decision-makers to realise
their part replacement plans and improve process safety, availability, and efficiency.
In recent years, prognostics methods have evolved to consider advanced signal pro-
cessing methods based on pattern recognition. The core idea of these methods is to
analyse the remote monitoring data automatically, identify early signs of degrad-
ation and, provided this information, output RUL predictions that can be used in
maintenance decision support systems.

1.2.1 Remaining Useful Lifetime Prediction

Arriving at accurate RUL predictions is no easy task. Predictions based on mon-
itoring data need to adapt in real-time to the degradation data and the evolution
of the signals over time. Additionally, monitoring devices can generate erroneous
readings due to sensor malfunction, noise and wrong calibration. Thus, data-driven
predictive methods need to filter the noise coming from devices and adapt the pre-
dictions considering only actual degradation experienced by assets. Assets can also
have different ages, be operated in distinct operating conditions and under vari-
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ous loads. Moreover, assets and components can fail due to many reasons (failure
modes). As a result, models capable of detecting a specific type of failure mode
may fail to identify other kinds of failures even when considering the same asset.

Data-driven methods based on ML have gained much attention due to their high
expressive power and performance results surpassing other methods in prognostics
[137]. These can automatically analyse heterogeneous data from remote monitor-
ing devices such as cameras, vibration sensors, and spectrograms. Moreover, they
require little expert knowledge about the underlying degradation process of as-
sets, unlike other classes of methods based on physics and statistical models [47].
However, the main drawback of ML-based models is the requirement of available
previous run-to-failure data for training. In some cases, this data can be expensive
or even impractical to obtain. Additionally, in classical ML, experts still need to
devise useful features from incoming data, which is time-consuming and requires
expert knowledge about the available data and degradation process.

1.2.2 Problem Statement

In this thesis, we study the problem of predicting the RUL of single assets directly
from acquired sensor information. This is a crucial problem when planning main-
tenance policies both for single and multiple assets in a network. In this problem,
we consider the existence of multiple sensor readings acquired over time, which are
related to monitoring values of different components of an asset. The main goal is
to arrive at accurate RUL predictions directly from data with minimal human inter-
vention. Inspired by practical problems requiring RUL prediction for assets with no
previous run-to-failure information, we assume that previous run-to-failure data is
only partially available and pertaining to previous assets operated in different con-
ditions with different fault (failure) modes. To adequately address these scenarios,
we separate the main problem into two sub-problems, explained below.

The first problem assumes that sensor data comprises non-independent time-
varying sequential data. An effective model for this scenario is required to mon-
itor multiple sensor readings retaining long term information from sensor data to
identify faulty behaviour. An example of this scenario is when an asset starts show-
ing faulty behaviour but continues running for an extended period of time before
showing other signs of degradation and finally failing. This data can be highly
complex and impractical for experts to monitor and analyse manually. Therefore,
successful data-driven RUL prediction models need to retain information over ex-
tended periods to arrive at accurate RUL predictions. In this scenario, we assume
that previously labelled run-to-failure data is available, and the goal is to arrive at
accurate RUL predictions from this complex input data.

The second problem is to achieve accurate RUL predictions for new or replace-
ment assets with no previous degradation data. Often, when a new part or asset
is installed, only data from previously installed assets with different operating con-
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ditions, fault modes and installed sensors are available. In these cases, decision-
makers would need to wait for actual run-to-failure information to be gathered
before producing accurate predictions. This process is undesirable due to possible
high downtime costs and unplanned maintenance. Thus, we consider the problem
in which previous run-to-failure data exists but are related to assets under different
operating conditions and fault modes. In this problem, we assume that assets for
which we aim to produce RUL predictions have available sensor information but
no run-to-failure labels. In other words, we can observe the sensor information, but
we have no information about the realised remaining useful life of assets.

Research Question

We study the main problem of devising data-driven RUL estimates based on
sequential data gathered by monitoring devices on the degradation of assets. The
central question we consider is how to develop algorithms that can provide accurate
RUL predictions directly from remote monitoring data? Based on this central question,
we focus on two critical prognostics problems and their related questions, namely:

RQ1 How to effectively achieve accurate RUL predictions that can retain long term
information about degradation data?

RQ2 How to adapt RUL predictions from previous run-to-failure data to new assets with
only sensor information under different operating conditions and fault modes?

This thesis then focuses on these two research questions and studies data-driven
RUL prediction algorithms in chapters 3 and 4.

1.3 Route Scheduling

In practice, industrial assets are usually present at multiple locations simultan-
eously, constituting a network of assets. When a central logistics operator is re-
sponsible for multiple assets at different locations, it is crucial to factor in other
decisions, such as travelling to specific locations to repair or inspect assets. The
objective is to ensure that personnel, parts and supplies arrive at their destinations
efficiently at minimum costs. Failing to do so can result in increased transportation
time, delays and overall maintenance costs.

Due to the impact that travelling can have on devising efficient plans and redu-
cing costs [68], routing problems have been previously studied in the OR literature
and practical applications. Most routing problems aim at serving transportation re-
quests of customers in a road network while minimising the total service costs and
respecting one or several constraints. These optimisation problems usually utilise
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the notation of graphs. These offer the necessary components to define the locations
in a network as nodes and the connections between nodes as (un-)directed edges.

There exist multiple variants of routing problems fitting different situations. We
focus our attention on general problems that can easily be extended to multiple
applications domains. That is, we study classical routing problems encompassing
our application domain when assets are assumed to need visitation, ensuring min-
imum travelling costs. The attention on the general problems allows us to focus
on methods that can be employed in other application domains. In the follow-
ing subsections, we briefly introduce two classical definitions of routing problems
extensively studied in the OR literature, namely the travelling salesman problem
(TSP) and the vehicle routing problem (VRP).

1.3.1 Travelling Salesman Problem

Figure 1.1: A travelling salesman problem (TSP) solution as a graph. In the TSP, a
single route with the minimum travelling costs is sought.

The TSP is a well-known problem in which customer nodes in a network need to
be visited exactly once by a single “salesman” ensuring the lowest travelling costs.
The TSP is probably the most well-studied problem in CO, and it is commonly used
to benchmark more general optimisation algorithms in OR. The problem is known
to be NP-hard [76] and the attempts to solve it have resulted in many theoretical
and algorithmic results in other areas of CO [134] (see Figure 1.1).

Given its broad applicability and relevance in multiple domains, several variants
of the classic TSP problem exist. These include formulations with different added
constraints, such as time windows, asymmetric edge costs, and tour budgets. A
particular formulation of interest is when routing problems include more than one
salesman in the problem formulation. This multiple TSP (mTSP) considers that
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more than one salesman is available to visit nodes. Constraints can be added to
break tours between the salesmen and restrain the number of nodes being visited
by each salesman. An even more general formulation that includes the TSP and
mTSP as particular cases is the VRP.

1.3.2 Vehicle Routing Problem

route 2

Figure 1.2: A vehicle routing problem (VRP) solution as a graph. In the VRP,
the goal is to minimise the travel costs of all routes while respecting operational
constraints.

The VRP [56] is a central problem in OR [133]. In its most basic formulation,
i.e., the Capacitated VRP, it assumes the existence of a set of vehicles, each with a
maximum capacity and the existence of nodes to be served, each with its demand.
The goal of the VRP is to find the set of routes starting and ending at an initial
node, named the depot, that minimises the total travelling costs of serving each
node in the network exactly once without the collected customer demand of each
route exceeding the total capacity of each vehicle (see Figure 1.2).

Following from its simplest form, i.e., the TSP (one vehicle with infinite capa-
city), the VRP is also an NP-hard problem. Moreover, like the TSP, the VRP can
accept multiple variations, for example, requiring a specific vehicle type to serve
certain locations due to specific customer demands, heterogeneous vehicles, and
others. For a more thorough review of VRP and TSP problems, see [69, 134, 212].

1.3.3 Solving Routing Problems

The economic importance and general academic interest in CO and routing prob-
lems such as the TSP and VRP have led to many solutions. Recent successes in
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solving these problems are multifaceted and can be attributed to new mathematical
methods and advances in computing power. We focus our attention on algorithmic
improvements, which can be broadly classified into exact methods, and approxim-
ation algorithms and metaheuristics.

Exact methods aim at finding optimal solutions via mathematical optimisation.
Usually, exact algorithms for the TSP and VRP are based on mixed integer lin-
ear programming (MILP) formulations. However, other methods, such as dynamic
programming (DP) [20] and constraint programming, are also suitable. While many
advances in exact methods have been achieved in previous literature, exact methods
are seldom utilised in practical applications given the extensive amount of compu-
tational time required to solve large instances of routing problems.

In most practical scenarios, metaheuristics are chosen as solution methods for
solving CO problems. Metaheuristics implement high-level expert-based policies
aimed at optimising the objective of a CO problem. In general, metaheuristics are
not guaranteed to find the optimal solution at the end of the computation; how-
ever, they can result in sufficiently good solutions without requiring the amount
of computation of exact methods. The general working of metaheuristics involves
searching through a subset of candidate solutions of the optimisation problem. Al-
though efficient and effective heuristics exist, metaheuristics often work well for
specific classes of instances but may fail to generalise to instances outside of devel-
opment.

In general, solving such complex problems either takes too long if optimality
is the main goal or can be too far from the optimal solution if the heuristic is
not well-tailored for the instances of interest. Critical to both exact methods and
metaheuristics approaches are algorithmic decisions that depend on expert know-
ledge about the optimisation algorithm and the problem at hand. However, these
decisions may be sub-optimal and fail to explore the desired search regions appro-
priately. For example, the branch-and-bound algorithm [136] used to solve MILP
formulations requires many heuristic decisions, such as picking the next variable
to branch. Moreover, replacing current algorithms usually involves designing new
heuristics, a process that is time-consuming and requires specific knowledge. This
knowledge may not be available, sufficient, or some of these design decisions may
be unsatisfactory [24].

Furthermore, previous solvers may not take into account the regularity and the
data distributions of problem instances. That is, a method that works well for
specific instances may not provide the same performance in different instances of
the same problem family. For example, solvers for transportation problems in a
road network in Hong Kong may work poorly in problems that consider the road
network of Istanbul. Moreover, when considering stochastic problems, i.e., where
some of the variables of the problem are random variables, most previous methods
make assumptions about the distribution of random variables without considering
the actual sampled data. Thus, methods that fail to adapt to the characteristics
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of instances and do not consider the observed data of the real problem can have
reduced performance, especially if these instances are different and follow different
distributions from those used during development.

1.3.4 Problem Statement

In this thesis, we consider the problem of automatically learning policies to solve
routing problems. We assume that instance data containing location information is
available and evaluate data-driven algorithms that account for statistical similarities
of the instances, resulting in adaptive solvers. The main objective is to explore the
space of heuristic decisions and learn from experience the best performing policies,
potentially improving the current state-of-the-art of exact solvers and metaheur-
istics [24]. As typical in many CO problems, many heuristics containing expert
knowledge about the problem structure exist and can achieve good performance re-
quiring less computation than exact methods. Thus, we extend the original goal of
learning adaptive solvers while taking advantage of previous heuristics to acceler-
ate learning and reuse expert information embedded in expert-designed methods.
In particular, we focus on improvement heuristics based on edge swap operators
commonly employed in local search heuristics for routing problems.

Research Question

We consider the primary problem of improving heuristics solvers and effectively
learning to solve routing problems directly from instance data. To address this
problem, we focus on the following two main research questions:

RQ3 How to learn better heuristics to solve routing problems directly from observed data
of previous instances?

RQ4 How to take advantage of expert heuristics to learn to solve routing problems?

We study methods to address these questions in chapters 5 and 6, respectively.

1.4 Combining Routing and Maintenance Decisions

Learning to solve routing problems is an important task of the more general prob-
lem of serving a network of assets that possibly degrade over time. When consid-
ering the existence of multiple assets at different locations, the problem of jointly
planning maintenance and travelling schedules for a network of assets becomes ap-
parent. Naturally, including the uncertainty of failures combined with maintenance
and travelling decisions increases the complexity compared to the disjoint problems.
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Several previous works for maintenance policy optimisation have focused on
multi-asset problems without considering travelling implications [59, 171]. In most
cases, they assume that assets have a series (un-)observable states representing their
health conditions. Uncertainty in the failure times is considered via asset state trans-
itions from healthy to failure states following stochastic processes, typically with the
Markovian property, i.e., assuming that future degradation states’ conditional prob-
ability distribution depends only on the current state. Under such assumptions, DP
can be used to find optimal policies for reasonably sized state spaces.

Finding the lowest cost routes for maintenance applications have been modelled
as variations of the TSP. For example, in the travelling maintainer problem (TMP),
the objective is to find a route that visits assets that minimises the mean waiting
times of machines [1]. A variant to the TMP studied the objective of minimising
the sum of functions of response times (latency) to degrading assets [31]. This
TMP variant integrates CBM prognostics with the TSP, where the predicted failure
information represents a non-linear effect on the latencies.

Similarly, in recent practical applications, decision-makers are often posed with
problems that involve analysing the data from multiple CBM prognostics mod-
els and deciding on the maintenance plans to best serve a network of assets. For
example, hospital systems equipped with remote monitoring devices can employ
prognostics models to predict the remaining life of assets. When these assets are
located in different geographical locations, central operators are posed with a list of
predicted failure moments to be reacted. The optimisation of maintenance policies
in this scenario can lead to saved costs and improved reliability of critical assets.
However, performing too much maintenance can lead to unnecessary operational
costs, and failing to maintain degrading machines can lead to catastrophic failures
and reduced service levels.

Thus, we consider the recent shift to use CBM prognostics and focus on prob-
lems that use health information from predictive models to plan maintenance
policies. Ideally, we want to ensure that assets are maintained just before failure
to ensure the highest availability at minimum costs. However, two main problems
arise: an asset’s failure mechanism is unknown, and assets are often part of a more
extensive network of similar assets. In these cases, even when if we could somehow
directly observe the health states of assets and estimate transition probabilities un-
der the Markov property, DP methods quickly become intractable due to the curse
of dimensionality [207]. That is, for large networks, it becomes intractable to solve
problems to optimality under reasonable computational time. Moreover, most pre-
vious combined maintenance and routing problems have focused on penalties to
the objective function that may not consider the costs of delaying and postponing
maintenance in the presence of real-time data. Additionally, most proposed solu-
tions are based on exact methods or metaheuristics, requiring expert knowledge
and not necessarily considering the problem’s observed data.
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1.4.1 Problem Statement

We study a problem where maintenance costs, i.e., costs incurred due to repairs,
are asset-dependent and increase if the decision-maker does not perform mainten-
ance before its failure time. The failures are triggered by the assets’ degradation
processes, unknown and unavailable to decision-makers. Furthermore, we consider
that predictions from CBM prognostics are available and represent an indication of
the health conditions of assets adapting in real-time.

In practice, such as the maintenance of wind-turbine farms [120], these pre-
dictions are based on remote monitoring data and are communicated to decision-
makers in the form of alerts, which serve as an early indication of future failures
and carry censored information about the actual degradation of assets, i.e., some
indication of the RUL of assets. However, alerts often carry uncertain information
about the failure time due to misreadings, sensor malfunction and prediction errors.

If a predictive model indicates that a failure happens sooner than it will happen,
decisions considering this information may incur unnecessary preventive mainten-
ance costs. On the other hand, if predictions indicate that failure will happen after
the real failure time, higher corrective maintenance costs and increased downtime
will be incurred if the predictions are followed blindly. Ideally, if one could predict
the exact moment in which failures will happen, then maintenance policies would
only need to focus on scheduling the visitation of assets just prior to their failure to
ensure minimum costs. In reality, there is uncertainty in the failure times, and even
an accurate prediction model fails to predict the real failure time.

Thus, this thesis considers a sequential decision-making problem requiring joint
travel and repair decisions in a network. In this problem, we assume the existence
of alerts from prognostics models referring to the predicted RUL of assets. Addi-
tionally, we assume that this network needs to be served by the capacity of a single
repairperson responsible for travelling and repairing actions to minimise the over-
all maintenance costs. In this setup, we consider that the degradation of assets is
stochastic, and the time that failures will happen is uncertain. Thus, our goal is to
learn a policy directly from available locations and alert data to serve the network
and ensure that maintenance is performed just-in-time to avoid high preventive and
corrective maintenance costs.

Research Question

We consider the primary problem of learning policies to solve the decision-making
problem presented above directly from observed data, and we study the following
research question:

RQ5 How to automatically learn policies to solve a dynamic routing and maintenance
problem in an asset network directly from observed data?



12 Chapter 1

In Chapter 7, we present the proposed methods to address this question.

1.5 Contributions of this Thesis

We split our study into three parts, i.e., prognostics, routing, and combined main-
tenance and routing decision-making, representing relevant problems that arise
when travelling and serving a network of industrial assets. Sections 1.2, 1.3, and
1.4 provided background information on these problems and their relevance to our
application domain. Considering the available data and objectives, we propose
learning algorithms based on the previous ML theory on supervised learning, transfer
learning, reinforcement learning and imitation learning. The methods comprised in this
thesis aim at addressing the research questions posed in the previous sections. Our
main contributions are detailed below.

1.5.1 Learning Asset Prognostics
Asset Prognostics from Sequential Data

Accurate real-time RUL predictions enable equipment health assessment and main-
tenance planning. In particular, ML methods based on neural networks have re-
ceived much attention given their ability to approximate functions directly from
raw data. In Chapter 3, we propose a deep learning model based on a long short-
term memory (LSTM) network [97] that can handle the temporal dependencies of
sequential data and provide insights on the learned relationships between sensor
reading inputs and predicted RUL for single assets. In this supervised learning
setup, we assume that previous labelled run-to-failure information exists, and our
objective is to learn to approximate the RUL of unseen data during training of the
learning algorithm. Our proposed method can produce accurate RUL predictions
while not requiring knowledge of the actual physical degradation mechanism of
assets. Compared to previous works, we do not incur additional pretraining or ex-
tensive optimisation of the model’s hyperparameters. Additionally, a trained model
can be used to visualise temporal relationships between inputs and predicted out-
puts providing managerial insights between the sensor inputs and RUL outputs.

Assets Prognostics under Varying Operating Conditions

When concerned with ML methods for asset prognostics, observed sensor data
and RUL information are usually critical for supervised learning-based prognostics.
Most previous methods assume that training data is available and labelled. How-
ever, due to different operating conditions, fault modes and noise, distribution and
feature shift exist across different data sources (domains). Additionally, a new gen-
eration system might exist without enough operational data and run-to-failure in-
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formation, but that still require failure prognostics. These discrepancies can re-
duce the performance of predictive models when no observed run-to-failure data
is available or prevent the use of previous models when new asset versions contain
different sensors and operate in different conditions. Chapter 4 proposes a transfer
learning method for domain adaptation in prognostics employing an LSTM archi-
tecture. We assume that only sensor information is available for new assets and
propose a method that leverages the data coming from different distributions to
learn RUL predictions. Our method is proposed so that it can automatically learn
feature spaces that attempt to reduce the discrepancy between different data do-
mains. We show that our method can adapt remaining useful life estimates from
labelled data with different operating conditions and fault modes to data containing
only sensor information and no observed RUL labels.

1.5.2 Learning to Route
Learning Improvement Policies

When the goal is to find a suitable solution for routing problems such as the TSP,
a common heuristic approach is to search for improving solutions in the neigh-
bourhood of previously generated solutions. However, such approaches depend
on expert knowledge to build successful policies that effectively search the solution
space. ML methods can potentially use data to learn better policies reducing hu-
man interventions. Recent works using deep learning to solve CO problems have
focused on learning construction heuristics, but they still require search procedures
to reach good quality solutions. Chapter 5 proposes learning a local search heuristic
based on two edge swap operators, namely 2-opt, via (deep) reinforcement learn-
ing, requiring no supervision. We propose a policy gradient algorithm to learn a
stochastic policy that selects 2-opt operations given a current solution. Moreover, we
introduce a neural network architecture to encode instance and sequence features
that can be extended to more general k-opt moves. Learned policies can improve
over random initial solutions and approach near-optimal solutions faster than pre-
vious state-of-the-art deep learning methods for the TSP and on par with heuristics
and learning methods for the mTSP and the VRP.

Learning Improvement Policies Imitating Expert Heuristics

In Chapter 6, we propose a framework that can leverage data from previously hand-
crafted heuristics for the TSP. The goal is to accelerate learning and take advantage
of previous expert knowledge in handcrafted heuristics. In this setting, the method
first attempts at imitating previous demonstrations, i.e., from handcrafted 2-opt
improvement policies. We learn policies that can surpass the quality of the demon-
strations while requiring fewer samples than pure reinforcement learning. This
study proposes to first learn policies with imitation learning, leveraging a small set
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of demonstration data to accelerate policy learning. Afterwards, we combine policy
and value approximation updates from reinforcement learning to improve the ex-
pert’s performance. We show that our method learns good policies in a shorter time
and uses less data than learning policies from scratch.

1.5.3 Learning to Maintain and Route

We finally consider a combined problem of maintenance and routing decisions. We
assume that modern industrial assets are part of a network of assets. These assets
are expected to experience minimal downtime and, ideally, are maintained right
before failure to ensure maximum availability at minimum maintenance costs. As
in practical scenarios, failure times of assets are unknown a priori. Moreover, we
assume that assets are equipped with CBM prognostics models are employed to
emit alerts, typically triggered by the first signs of degradation. Thus, it is crucial
to plan maintenance considering the information received via alerts, asset locations
and maintenance costs. This problem is referred to as the dynamic travelling main-
tainer problem with alerts (DTMPA). Chapter 7 proposes a modelling framework
for the DTMPA, where the alerts are early and imperfect indicators of failures. The
objective is to minimise discounted maintenance costs accrued over an infinite time
horizon. Moreover, we propose a deep reinforcement learning method to solve this
problem based on value approximation methods trained to minimise the long-term
costs using the observations from the network and history of alerts. The proposed
method can find effective policies for large asset networks, where computing the
optimal policy is intractable and outperforms baseline greedy heuristics that rank
assets based on proximity, urgency and economic risk and a TMP heuristic lever-
aging classical OR methods to optimise near-future costs.

1.6 Thesis Outline

The general theme of this thesis is the study of methods and problems common
to ML and OR literature from a data-driven perspective. This thesis is written as-
suming that readers already have some familiarity with ML and OR problems. The
overall view throughout this thesis is that, in some problems, expert knowledge can
be automated and augmented with algorithms learning from experience and data.
Each chapter of this thesis introduces the relevant problem, its formalisation and
presents the proposed algorithms followed by experimental results. The chapters
are based on papers published in or submitted to peer-reviewed journals and con-
ferences in ML and OR venues. As a result, chapters can be read in any desired
order, and each chapter has its notation independent from the other chapters. The
remaining chapters of this thesis follow this general theme and are organised as
follows.
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Figure 1.3: Thesis outline.

We provide a brief background and references to the ML concepts explored in
this thesis in Chapter 2. Specifically, we provide background on deep learning and
introduce the different learning tasks considered in the following chapters, namely
supervised, transfer, reinforcement and imitation learning. The following chapters
present the algorithmic methods for the problems detailed in the previous sections.
Particularly, Chapter 3 and Chapter 4 focus on learning asset prognostics problems.
Chapter 5 and 6 focus on learning to route and Chapter 7 focuses on learning to
maintain and route problems. Lastly, Chapter 8 concludes the main findings of this
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thesis, providing a holistic view of the main contributions of the presented work,
discussing limitations and possible future research directions. Additionally, we put
our contributions in a broader context, considering other application domains and
previous ML and OR literature. The overall organisation of the thesis is depicted in
Figure 1.3.



Chapter 2

Background

This chapter introduces the relevant background and in-depth references of the
machine learning topics explored throughout this thesis. In this thesis, we consider
prediction and control problems that assume different data availability and learn-
ing tasks. As presented in Figure 2.1, Chapter 3 and Chapter 4 study prediction
problems based on supervised learning and transfer learning literature. Chapters 5, 6
and 7 study control problems based on reinforcement learning and imitation learning.
Common to all proposed methods are deep learning architectures aimed at approx-
imating functions for these machine learning tasks. Therefore, we present a review
of the important background information of deep learning and the relevant ma-
chine learning tasks studied in this thesis. Those already familiar with these topics
can skip this chapter entirely or several sections without affecting the remaining
chapters.

Prediction problems Control problems
Expert
Partially-labelled data and demonstrations?
different domain/tasks ? et o .
Supervised learning - Transfer learning Imitation learning Reinfocerment learning
Different domain
same task?
 Domain adaptation
-
Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Figure 2.1: An overview of the type of problems and relevant machine learning
literature studied in this thesis.

The remainder of this chapter is organised as follows, in Section 2.1 we introduce
neural networks and deep learning concepts, including several neural architectures

17
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in Section 2.2. In Section 2.3 we introduce the machine learning tasks considered in
the problems of this thesis. In particular, we discuss the relevant tasks within the
literature of supervised learning in Section 2.3.1, transfer learning in Section 2.3.2,
reinforcement learning in Section 2.3.3 and imitation learning in Section 2.3.4.

2.1 Deep Learning

Deep learning is concerned with methods based on artificial neural networks.
Neural networks are machine learning (ML) methods initially inspired by an ab-
straction of how information is collected and distributed in biological brains [185].
A classical neural network, also called a feed-forward neural network or multi-
layer perceptron (MLP), is a function gy(x) parameterised by learnable parameters
f trained to approximate a function between input and output vectors x and y, say
y = §*(x). MLPs are called networks because they are usually represented as a dir-
ected acyclic graph with information flowing from inputs to outputs [80]. Neural

Input Hidden Output
layer layers layer

Figure 2.2: A feed-forward neural network with two hidden layers. Neurons and
weights are nodes and edges in the graph, respectively.

networks are composed of a collection of individual units, named artificial neurons
(nodes in the graph), responsible for simple (non-)linear computations from its in-
puts. Neurons receive information from previous neurons stacked in layers. The
first layer (usually represented as the leftmost one) is the input layer, as it represents
the inputs x. Layers following the first layer take as input the outputs of previous
layers in a connected chain of functions over a number of layers L, i.e.,

go(x) = o (@ V(oW (x))).
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A neural network represented in this manner has the layers 1,...,L — 1 referred
to as hidden layers, and layer L as the output layer (see Figure 2.2). Neurons are
responsible for computing outputs, via activation functions, taking the information
from previous layers and trainable weights and biases (edges in the graph). It is
common for neurons in the same layer to share the same activation function. In this
case, we can represent the inputs to layer I coming from activations in the previous
layer as x=D = (=D eM(x)), where x(71) ¢ Rd(lfl), di=1 represents the
number of neurons (dimension) of layer / — 1, and x(?) := x. The output of layer !
is computed as
x = O WB =1 4 pD)y

where WO € R *d"Y and p() € RY are trainable weights and biases of the

layer, and 6 := {W(l),b(l)}lL:1 are the trainable parameters of the entire network.
Activation functions are usually element-wise non-linear functions of their inputs.
Well-known activation functions include the sigmoid function, and the rectified linear
unit (ReLU) function [79]. A neural network in this form can be seen as the con-
catenation of multiple non-linear transformations of the activations in the previous
layers making itself a nonlinear function.

To learn weights, we need to define a metric that measures the error between
the outputs of the neural network and the expected outputs of the function we
would like to learn. In a supervised learning setting, we assume access to a dataset
D := {(x;,y;)}}Y,, sampled from an unknown distribution P(x,y), and a learning
algorithm seeks to learn a function g : & — Y where X is the input space, ) is the
output space and g belongs to a hypothesis class G of functions. Depending on the
problem, we can have a classification problem when labels y correspond to discrete
classes or regression when y are real numbers. A loss (cost) function/: Y x Y — R
measures the error between the model and outputs, and the overall objective is to
find parameters 6 that minimise the population risk £(g) = E, . p(x) [£(v,g(x))],
usually approximated via the the empirical risk, expressed as

A 1
Lp(0) = N
1

™M=

(i go(xi))-

1

It is common that we seek the parameter (model) approximation of P(y|x;0) [166],
thus ¢(y,g9(x)) = —logP(y|x;6) reduces to the negative log-likelihood. Par-
ticular cases of the equation above include the squared error in regression, i.e.,
U(y,80(x)) = (v — go(x))? and the multiclass cross-entropy function ¢(y, gg(x)) =
— YKy log(ge(x)(©)) for classification problems with K classes, where ylgc) cor-
responds to the dimension ¢ of a one-hot encoded vector with dimension K. The
equation above is often augmented with regularisation terms to control overfitting
and provide better generalisation to unseen data. The ML objective is to minimise
the generalisation gap, usually estimated by the gap associated with the empirical
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risk between the data used for training, i.e., the data used to optimise the equation
above, and the empirical risk when evaluating the model on unseen (test) data.

The nonlinearity of neural networks typically implies a non-convex optimisation
problem [80]. Neural networks are usually trained with stochastic gradient descent
methods that take incremental steps towards the minimisation of the risk, evaluated
using samples Dy from D following

01 = Ok — 0k VoL, (0)]o—0,

where |Dg| < N, ay is a learning rate, and k = 0,1,2,..., K, with K typically large.
Stochastic gradient descent methods applied to non-convex functions have no con-
vergence guarantees, are sensitive to initial parameters and can get stuck in local
optima. Several gradient descent improvements have been proposed that can cir-
cumvent some of these issues. A thorough examination of these methods can be
found in textbooks [80, 239] and surveys [188]. In most cases, the backpropagation
algorithm [189] is the procedure utilised to compute the gradients of the loss w.r.t.
to the learnable parameters. The algorithm is based on the repeated application
of the chain rule of calculus to compute the gradient of the loss function w.r.t. the
parameters in each layer sequentially. For a detailed description of the algorithm,
see [80, 166]. Since this computation usually starts from the output layer and moves
backwards in the network, this is often called the backward pass. In contrast, com-
puting the outputs and the loss given the inputs is referred to as the forward pass.

An MLP with at least one hidden layer is known to be a universal function
approximator [48, 100], i.e., regardless of the function we want to learn, an MLP
can represent this function to arbitrarily small errors, provided it is given “enough”
hidden units. However, it is not guaranteed that the training algorithm will be able
to learn that function; for example, the optimisation algorithm may fail to learn
the parameters of the function we want to approximate [80]. Moreover, it is not
clear how large this hidden layer must be to represent this function. In many cases,
using deeper (stacking more layers) networks can potentially reduce the number
of parameters necessary to learn functions and lead to better generalisation. In
particular, the regained interest in neural networks came from the study of the
depth of these methods [129], and the strengthening of their inductive bias [161].
Various previous works, both from an experimental and theoretical perspective,
have shown that deep neural networks can outperform shallow ones [165, 179, 182].

One of the reasons for the success of deep learning is attributed to learning
the representation of data necessary to map inputs to outputs in a compositional
and hierarchical way. That is, deep neural networks build more complex repres-
entations based on simpler learned representations in the previous layers. Thus, a
deep learning model can both approximate the function from input to output and
learn the necessary representation to build this approximation in a process akin
to representation learning [80]. Learning this representation often results in much
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better performance than those obtained with human-designed representations as in
classical ML [80].

The training of neural networks is often posed with many design choices such
as the activation functions, number of layers, number of neurons in each layer, op-
timisation algorithm [124], regularisation parameters [201], initialisation of weights
and biases [78], to name a few. Recently, several advances have been made to
each of these algorithmic choices leading to higher performance and faster train-
ing of deeper methods. These recent advances become especially apparent under
the availability of large amounts of unstructured, complex and high dimensional
data. In most of these cases, devising human-designed features is either hard or
impractical. For this class of problems, deep learning has shown incredible success
in learning tasks that were otherwise impractical using classic ML.

2.2 Neural Network Architectures

In this thesis, we study several problems in which large amounts of unstructured
data is the norm. To take advantage of this data, we propose several neural net-
work architectures to extract and learn features directly from raw data while solving
prediction and decision-making (control) tasks. This form of strengthening the in-
ductive bias, i.e., the assumptions embedded in the learning algorithm, of models
has led to many different architectures to better take advantage of the input data
regularity, reducing the sample complexity and achieving better generalisation per-
formance [16]. Reviewing all possible architecture advances is not the scope of
this chapter. Instead, we focus on the architectures studied in the problems con-
sidered in this thesis, namely, recurrent neural networks, attention methods and
graph neural networks.

Recurrent Neural Networks

A recurrent neural network (RNN) [189] is a neural network that accepts sequential
data as input. In general, sequential data is not independently identically distrib-
uted (ii.d.). That is, data generated sequentially at a given point in time is typically
correlated to data generated in the past. This requires particular care in taking into
account the previous temporal information contained in sequences. For example, if
we would like to predict the next word in a sentence, it is usually the case that we
need to take into account a long sequence of words that came before the word we
would like to predict.

An RNN can map input sequences to output sequences by maintaining a series
of hidden states capable of retaining temporal information and ordering about the
sequences. RNNs have been employed for multiple tasks, such as sequence gener-
ation, classification, and natural language processing (NLP) tasks, for example, in
machine translation, i.e., translating a sentence from one language to another. The
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Figure 2.3: A recurrent neural network unfolded over three time steps. The recur-
rent network takes as input at each time step x; and the previous hidden state ;1
and computes a new hidden state ;.

general working of an RNN is as follows, an RNN takes as input a vector x; at
time t and maintains a hidden vector h;_1, representing a summary of the inform-
ation received up until time f — 1. Thus, an RNN model aimed to predict the next
element of a sequence approximates P(x¢|x;_1,...,x1) with a latent variable model
P(x¢|h;—1) where hy_1 depends on the past history. An RNN (see Figure 2.3) is a
function defined as

he = f(he—1, xt).

Classically, f has been defined as the hyperbolic tangent function (tanh) in which
case the previous equation can be written as

ht = tal’lh(Whht,1 + WXJCt + b)

where hg is usually a vector of zeros and b € R is a bias term, W;, € R**¢ and
Wy € R?*? are trainable weights for previous hidden vectors #; 1 € R? and current
input x; € RP, respectively. Unfolding the recurrence of the equations above shows
that the hidden vector at time ¢ depends on the entire past sequence by repeatedly
calling the function f. The definition of the computation in this manner allows the
RNN function to take always the same input size, regardless of the sequence length
[80]. Moreover, the independence of the learned weights and biases from t makes
the number of parameters independent of the length of the input (parameter shar-
ing) and enables generalisation to sequences with varying lengths. Typically, RNN
implementations will add further computations such as output layers responsible
for mapping the hidden vectors to outputs at each time step.

In many cases, we are interested in generating another sequence from an original
sequence given as input, such as in a machine translation task. In this sequence-to-
sequence task, computing the loss of an RNN, i.e., the error between the generated
and desired output sequence, requires aggregating the loss of each time step t in
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the sequence. For example, assuming independence of previous outputs, the loss ¢
for a training example can be expressed as the sum of the individual losses at each
time step ¢; given the input sequence x1, ..., x;, expressed as

t
g(ytl~ . -rylrgﬂ(xtr* . .,.Xl)) = Z Et’(yt//yﬂ)
=1

where §; = gp(x¢,...,x1) is the prediction of the RNN at time f. Similar to the
MLP case, computing ¢(y:, J:) when outputs y; correspond to discrete classes can
be achieved via a suitable classification loss such as the cross-entropy. For example,
if y; corresponds to words in a dictionary, we can use a classification loss function
to predict the correct sequence of words from this dictionary.

In a neural network (especially in RNNSs), gradients propagated over many mul-
tiplicative terms tend to vanish if they become too small or explode if they become
too large. Gated architectures form a family of RNN architectures aimed at captur-
ing long-term dependencies and reducing gradient vanishing and exploding issues.
Well-known implementations include the long short-term memory (LSTM) [97] and
the gated recurrent unit (GRU) [42]. These use a series of learned information gates
and self-loops that allow important information to be retained in the hidden states
within the RNN “cells”, creating paths through time that have derivatives that do
not vanish nor explode [80]. More importantly, gated architectures have shown
better results in tasks that require retaining memory for long sequences [206].

Attention

Attention-based neural networks were initially introduced in RNNs for sequence-
to-sequence tasks in NLP, such as machine translation [13]. After reading an input
sequence, attention methods allowed for a time-shifted output sequence to refer
directly to parts of the input sequence. That is, it allowed neural network modules
to learn to focus on important input parts when generating (decoding) a sequence.
For example, when learning to translate a word from English to French, we may be
interested in specific parts of the input sentence in English that will help us translate
to a word in French. Note that this is different from the vanilla RNN case, in which
generating a new sequence would only use the aggregated information at the end
of the input sequence of size T, i.e., hT.

Later, self-attention [41], positional embeddings and multi-head attention were
introduced in [220]. These techniques combined allowed any position of the input
sequence to have access to multiple representations of the entire input sequence
(context) and the relative positions of each input element. These new embeddings
were followed by another attention mechanism between the learned embeddings
and outputs. This architecture made it possible to replace the recurrence of RNNs
in the inputs, allowing for better parallelisation of sequence models, i.e., replacing
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the necessary sequential computations of RNNs.

In general, an attention function is an alignment score function between
(learned) vectors. We can roughly map this function to a querying operation in
which we would like to discover how related a given query is to a set of keys and
value pairs. Mathematically, consider a query vector g € R and m key-value pairs
{(k1,v1),..., ((km,vm)}, where k; € R", and v; € R°. An attention function is a
learnable function a(q, k;) where a can take many forms such as additive attention
[13], dot-product attention [154], scaled-dot product attention [220] among others.
For example, assuming d = n and the scaled dot-product case, the function above
can be expressed as
q'ki
Vd

where V/d is introduced to normalise the variance of the dot-product assuming
that vectors g and k; are composed of independent random variables with mean
zero and unit variance. These attention scores (scalars) are then normalised and
transformed into attention “weights” (not to be confused with neural network’s
trainable weights) using the softmax function as

a(q, ki) =

B _exp(a(q, ki)
a; = softmax(a(q, k;)) = Lty exp(a(q, ky))”

Finally, an attention pooling function f is defined as weighted sum of values v; as

f(q/ (ki,01), s (ki om)) = itxivi

where «; is the associated attention weight (scalar) between g and k;.

Graph Neural Networks

A graph neural network (GNN) is a neural network that takes as inputs graphs
G := {V,E} where V := {v;}}V, represents the set of n vertices v; (nodes) in the
graph and E the set of edges. Each edge ¢;; := (vi, vj) € E is a pair of (un)directed
connections between node v; and v;. The immediate neighbourhood of a node is
defined as NV (i) = {v; € V|(vj,v;) € E}. Normally, graphs carry information in the
form of node and edge features, we represent the vector of node features for node v;
as x; € R%, and features for edge ¢;j as ¢;; € RY. In the architecture considered in this
thesis, a GNN layer [16], also referred to as a message passing layer (see Figure 2.4),
is a function responsible for learning and aggregating neighbouring information
considering the topology of the graph. That is, a GNN layer [ is responsible for
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passing messages between connected nodes and edges represented as

xl(l) _ f(l) (xlgl*l),OjeN(i) 4,(1) (xi(lfl),x](l*l),e_j,o) ,

where ¢ denotes a permutation invariant (aggregation) function such as the sum,
computed over the neighbourhood of node v;; ¢(!) is a differentiable function that
takes as input the node features from the neighbouring nodes of v; as well as edge
features, usually defined as an affine transformation of inputs followed by a non-
linearity and f() is a (learnable) update function that takes as input the current
node features from the previous and the representation from the node’s neighbour-
hood to build a new representation of the node (and edge) features for the next
layer. A GNN layer defined in this manner can be seen as an aggregating function

O Aggregation

function
(e.g. sum)

Node's own
hidden vector

Figure 2.4: A message passing layer. The node representation for the next layer
(right) aggregates information from nodes and edges on its neighbourhood as well
as the previous node features (left).

that pulls information from the direct neighbourhood of a given node. This 1-hop
aggregation can be extended to an I-hop aggregation by concatenating layers as
FOFEDCLL, F@(FA(4)))). Note that it is also possible to define a single GNN
layer that aggregates information not only from its direct neighbours but from a lar-
ger neighbourhood. GNNSs can also generalise other neural network architectures.
For example, GNNs can be made equivalent to attention-based methods [220] by
learning an attention function to aggregate information from neighbouring nodes
[67]. A review about GNN architectures is out of the scope of this chapter but can
be found in recent surveys [16, 233]. GNNs have been utilised in numerous applic-
ations in which the input data can be defined as graphs, including combinatorial
optimisation problems.
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2.3 Machine Learning Tasks

In ML, we are often posed with the task of learning directly from data and experi-
ence. Depending on the problem and the type of available data, different learning
tasks can be defined. In this thesis, we study several learning tasks for prediction
and control problems. Particularly, for prediction problems, we study supervised
learning and transfer learning tasks, and for control problems, we study reinforce-
ment learning and imitation learning tasks. We present a brief introduction of each
studied ML task in the following sections.

2.3.1 Supervised Learning

Supervised learning is the most well-studied ML task. In supervised learning, and
the task is to infer an otherwise unknown function g* : X — Y from inputs x € X
to outputs y € V. The experience E is acquired in the form of N input-output
training pairs Dyain = {(x;, ¥i)}~,, known as the training set. Training is usually
performed by minimising the empirical risk with a suitable loss function (see Sec-
tion 2.1). A trained model should then be able to generalise this learned function to
new examples not observed in the training set, i.e., have good approximated gener-
alisation error on some test data Dest = { (%}, y;) }f\i 1- The performance of a trained
model is measured through this error. Common supervised learning tasks include
classification and regression problems.

2.3.2 Transfer Learning

One of the assumptions of supervised learning is that training data and test data are
sampled from identical distributions and feature set [174]. However, these assump-
tions may not hold in real-world cases where data may come from different data
generating processes with different features. When these assumptions fail, previous
models need to be rebuilt from scratch using newly collected data, a process that
can be time-consuming and expensive.

In transfer learning, the goal is to learn to transfer knowledge present on pre-
viously acquired data (a domain) to another observed set of data and possibly dif-
ferent learning tasks. This general definition gives rise to many different categories
of transfer learning settings by breaking one or more assumptions of classical su-
pervised learning about the feature sets, the underlying distribution of data, the
prediction problems, among others. Note that transfer learning has also been stud-
ied in reinforcement learning, for example, learning to adapt agents across different
tasks. In this thesis, we focus on the case in which transfer learning is applied to
classification and regression problems in a sub-category of transfer learning re-
ferred to as domain adaptation. An in-depth review of the different assumptions in
transfer learning problems can be found in surveys [174, 227].
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Unsupervised Domain Adaptation

We now present a general definition of the unsupervised domain adaptation prob-
lem. A domain D := {X,P(x)} is defined by a feature space X and a marginal
probability distribution P(x), where x € X'. A task T, consists of two components,
an output space ) and a predictive function g that we aim to learn, denoted as
T := {Y,g}. As in supervised learning, we are usually concerned with learning
the conditional probability P(y|x), where y € ). We consider the existence of a
source domain Dg (the one we are transferring from) and a target domain Dy (the
one we are transferring to) and the existence of data from the source domain, that
is, Dg = {(xi,yi)}fisl and data for the target domain Dy = {(xi,yi)}f\fl and corres-
ponding learning tasks 7s, 7r. The general transfer learning task aims to improve
the learning of the target function gt for domain D7 and task 7t using knowledge
from Dg and Ts, where Dg # Dt or Tg # Tr.

In the unsupervised domain adaptation setting studied in this thesis, we as-
sume that we have no access to outputs in the target domain, i.e., we have ac-
cess to a dataset of the target domain Dy = {xi}f\fl and one for the source do-

main Dg = {(x;,¥;) ZN:Sl. Furthermore, we assume that the marginal probabilities
and the feature space are distinct, but the task we aim to learn is the same, i.e.,
Pr(x) # Ps(x), Xs # X1 and Tg = Tr. The goal is to minimise the risk of the target
domain, measured via the empirical risk ﬁT. That is, we aim to find parameters 0

that minimise

N 1 N
Lr(0) = Ny ;f(]/i/ge(xi))

without having access to labels of the target domain y;.

A major objective in more general domain adaptation is reducing the difference
between the distributions of the source, and target domain data [174]. Intuitively,
if we can find a feature representation in which the discrepancy between domains
is reduced, we can use this representation for learning [23]. A feasible strategy to
control the domain discrepancy is then to attempt to find a representation space
at which source and target domain are as similar as possible while preserving the
important statistical properties of the data, especially in the target domain [174].

Theoretical works showed that it is possible to bound the error risk of the target
domain, ie., L1(0) = E, , p(xy) [((y,86(x))] by the risk of the source domain, i.e.,
Ls(0) =, py(xy) [((y,80(x))], adding a discrepancy between domains under the
assumption that the ideal hypothesis leads to a small error on both domains, i.e.,
that the labelling function is similar across domains [22, 46, 156, 164]. Combining
these ideas with neural networks approximation, as it is explored in Chapter 4,
resulted in methods that aim at learning representation spaces for which the dis-
crepancy between domains is minimised, for instance, using discrepancy metrics
such as the maximum mean discrepancy (MMD) [198], ‘H-divergence [22, 123] and
the discrepancy distance [156]. When employing such discrepancies resulted in ad-
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versarial objectives [81], methods employing this idea define a minimax objective in
which the goal is to minimise the source risk while learning to reduce the discrep-
ancy across domains using as estimates to the target risk the empirical distributions
of provided input data from target and source domains [60, 75].

2.3.3 Reinforcement Learning

Reinforcement learning (RL) is the sub-field of ML that aims to learn intelligent
agents via observing the results of the interaction of such agents in an environment.
A complete review of RL can be found in textbooks [27, 207] and surveys [116, 126].
This section provides a brief overview of the methods and terminology relevant to
this thesis.

RL is concerned with problems in which data is generated sequentially by an
agent acting in an environment and receiving as inputs the results of its actions in
the form of observations and rewards (see Figure 2.5).

action

[ |

Agent Environment

L )

observation, reward

Figure 2.5: A reinforcement learning problem setup.

The main goal in RL is to learn a policy, such that the overall agent’s utility,
measured in the form of numerical rewards, is maximised [207]. However, unlike
supervised learning, the agent is not told which actions to take by an external su-
pervisor, and the observations depend on the agent’s current policy. An RL method
seeks to optimise the agent’s behaviour considering the exploration (exploring ac-
tions not selected before) and exploitation (preferring actions found in the past
that led to good outcomes) dilemma. The RL problem is extremely general and
has been explored in multiple applications such as automated game-playing [200],
robotic control [197], and combinatorial optimisation [21].

Markov Decision Process

The environment for RL problems is typically represented as a Markov decision
process (MDP) [19]. An MDP is a general formalisation of sequential decision
making [207]. It provides a mathematical framework to model stochastic control
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processes where decisions (actions) taken by a decision-maker (agent) influence the
immediate and future outcomes. There are different branches of MDPs, such as
discrete-time MDPs, continuous-time MDPs, partially observable MDPs (POMDP),
with extensive literature exploring each variation [103]. We focus our attention on
discrete-time MDPs and POMDPs.

A MDP can be defined by the following components:

e S: a state space, i.e., a set of states of the environment.
e A: an action space, i.e., a set of possible actions available to the agent.

e P(ry = 1,841 = §'|sy = s,a; = a) the transition probabilities, i.e., the probab-
ility of arriving at next state s’, receiving reward r, given previous state s and
action a.

v € [0,1), a discount factor, used to discount future reward contributions.

e 7, a reward function, attributed to immediate transitions.

Environment

Figure 2.6: A Markov decision process environment.

Assuming an initial state probability P(sg) from which we sample initial states, the
discounted infinite horizon RL problem is defined as follows. An agent (policy)
produces trajectories T over discrete time steps t = 0,1,2,.... That is, an agent
observes states s;, takes actions a;, and after an action is selected, the environment
transitions to the next state according to the transition probabilities, and the agent
receives a reward r;, usually, a function of states, action and next states, representing
the immediate result of that action (see Figure 2.6). Note that for the problems in
this thesis with deterministic rewards we sometimes write the transition probabilit-
ies as P(s'|s,a), a shorthand for P(s;11 = §'|s; = s,a; = a). The general assumption
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is that the probability of arriving in the next state after selecting an action depends
only on the current state and not the entire history of states and actions (Markovian
property). A typical application of MDPs is to the maintenance of deteriorating
assets. For example, one can define an MDP in which the states represent the cur-
rent health condition assets. In this example, our goal can be to find a strategy
(policy) to replace and repair an asset to maximise its uptime based on the states of
the system. Other applications areas of MDPs include robotics, finance, production
systems, biology, among others [228].

A (stochastic) policy 7 is a function mapping states to action probabilities, rep-
resented as 7t(als), ie., 7 : S x A — [0,1]. The objective is typically to maximise
the received rewards, measured as the expected cumulative sum of (discounted)
rewards, i.e.,

" = argmax E,
T

2 ’th’t] ,
t=0

where E[-] denotes the expected value given that the agent follows policy 7 in all
time steps.

Partially Observable Markov Decision Process

In a POMDP, the agent has access to censored information from the (latent) states.
Most real-world problems are partially observable because one seldom has access
to full information. Reverting to the maintenance example from before, in the
POMDP case, we do not know with full certainty the states of the system. That
is, we cannot observe all the relevant aspects for optimal decision making. So in-
stead of observing the current health condition of assets, we may observe only the
age, previous repairs and indirect information about the asset such as visual wear
and tear. Thus, we have to reason about the best repair policy based on partial
information about the states. This partial-observability introduces a differentiation
between states (full information), observations o (partial information) and intro-
duces a probability of an observation as P(0|s’), an observation space O and a
history hy = (09, a9,01,41,...,a;-1,0¢). In this formulation, the agent should take
actions under uncertainty of the true environment state (see Figure 2.7). POMDPs
are notoriously hard to solve since observations only carry partial information for
choosing an action. Therefore, information must be aggregated over time and in
general, the entire history of observations must be taken into account. This history
can be kept track of by retaining memory of all past transitions. Otherwise, one can
estimate distributions of the latent spaces, i.e., a belief state. In fact, a POMDP can
be described as a fully-observable belief-MDP with continuous state space. How-
ever, when the transitions probabilities are not available, a belief over states cannot
be inferred. Luckily, if a good approximation exists for the history (or of belief
states), RL methods can be employed to learn policies for POMDPs [86, 110].
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Figure 2.7: A partially observable Markov decision process environment.

Dynamic Programming

When solving MDPs, it is customary to define value functions. These are functions
of states V (or state-action pairs Q) that compute the expected return of following
a policy starting from a given state. That is,

V7 (s) = Ex

[e9)
Z 'Yt7t|50 =5\,
t=0

Q" (s,a) = Ex

Y Alrilso =s,a0 = a] )
t=0

Solving an MDP translates to finding the policy that maximises the value functions
for all possible states. An optimal policy’s value function must satisfy the Bellman
optimality equations [20], i.e., a function that expresses the fact that the value of
a state under an optimal policy must equal the expected return for the best action
from that state [207]. That is,

V*(s) = m;axZP(s’,ﬂs,a) (r+9V*(s)),

V*(s) = maxQ*(s,a) = max ) _P(s',r|s,a) <r + ymax Q*(s/, a’)) .
? gy a

The optimal policy can be extracted by acting greedily with respect to the optimal
value functions. When transition probabilities of the environment are known, find-
ing the optimal policy can be achieved via dynamic programming (DP). Value iter-



32 Chapter 2

ation and policy iteration are well-known interactive algorithms that turn the Bell-
man equation into update rules for the value estimates and converge to the optimal
policies for finite-state MDPs.

Reinforcement Learning Methods

DP forms the backbone of RL algorithms. The main difference between DP methods
and RL methods is the assumption about the available information from the envir-
onment (model). In DP, it is typically assumed that information about the mathem-
atical model that governs the environment is known, i.e., the results of the agent’s
action in the environment are known from the transition probabilities. In typical
model-free RL, the assumptions about the mathematical model of the environment
are dropped, and learning must emerge solely from observing the (uncertain) res-
ults of actions. There exist many different RL methods, and describing each method
in detail is out of the scope of this thesis. For more information on other classical
RL algorithms see [27, 207].

Value-based algorithms are based on the value functions and the Bellman op-
timality equations. The main objective is to learn the optimal value function using
DP. Classic methods leverage the idea of temporal-difference (TD) learning - a com-
bination of ideas of Monte Carlo methods and DP [207]. That is, like Monte Carlo
methods, TD-based methods can learn directly from experience while sampling tra-
jectories from an environment. Like DP, TD updates estimates of value functions
based on previously learned estimates, i.e., they bootstrap. An important metric for
TD methods is the TD-error, which measures the error of the current value function
for s¢ in comparison to one step ahead, i.e., 7 + YV (s;41), represented as

Ot =1+ 9V (st11) — V(st),

where s is the initial state and s; is the state at the ¢-th step. The Monte Carlo error
(for fixed V) can be written as

T—1
G —V(st) =Y 2"
k=t

where Gy = 2{,;} 'yt,_trt/ is the return (discounted sum of future rewards) from
state s;.

In the tabular case, i.e., when both state and action spaces are finite and can be
represented in a tabular format, control methods based on well-known on-policy
and off-policy TD methods include SARSA [190] and Q-Learning [226], respect-
ively. On-policy methods use the transitions experienced from the current beha-
viour policy to update estimates of the value function. Off-policy methods can use
the previous experience of other policies to improve on the value estimates. Both
SARSA and Q-learning are tabular methods that seek to find the optimal state-
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action value functions (Q). In Q-learning, the behaviour policy still has an effect
determining which state and action-pairs are visited [207]. Nonetheless, Q-learning
only requires that state-action pairs are visited enough times for correct convergence
to the optimal policy. Typically, data is acquired following an e-greedy policy, i.e.,
taking a random action with probability €, otherwise choosing the action with the
highest Q value. Q-learning updates its estimates as follows,

Q(st, ar) < Q(st,ar) +afre + 7 max Q(seg1,a") — Q(st ar)]

where « € R is a learning rate.

Similar to DP, tabular RL methods suffer from the curse of dimensionality.
Therefore, neither can be applied to combinatorial state and action spaces under
reasonable assumptions about computational time. To address these issues, RL em-
ploys function approximation to learn policies or values functions without storing
the entire state X action space. When the function approximation is a deep neural
network, this combination is referred to as deep reinforcement learning (DRL). DRL
allows for agents to be trained without feature engineering of the state represent-
ations and leverage large unstructured inputs that otherwise would be impractical
with classical ML. In general, function approximation cannot represent the value
function (or policy) exactly, and the resulting error can lead to poor convergence.
Nevertheless, recent results have shown that function approximation methods can
surpass human-based policies in multiple complex tasks.

Deep Reinforcement Learning

The recent advances in DRL have led to an ever-growing number of algorithms.
We refer the reader to recent surveys [8, 111] for a detailed overview. We focus on
methods that achieved recent success in various applications, that is, value-based,
distributional DRL, and policy gradient methods.

Deep Q-Learning Value-based methods employ deep neural networks as func-
tion approximations for the (optimal) value functions. The use of neural networks
allows for the application of RL methods in domains that depend on visual, tem-
poral and graph inputs. Video games are a classic example in which the inputs are
made of images and actions are possible combinations of controls. A seminal DRL
algorithm is deep Q-learning (DQN)! [163]. The main idea of DQN is to adapt the
value update step of Q-learning to consider a neural network function Qy(s, a) with
trainable parameters 0 and perform gradient steps towards the minimisation of the
TD-error via a loss function £(y:, Qg(st,at)), where y; = rt + ymaxy Qp(st41,4).
That is, the parameters 6 are optimised such that the current estimate for Qg (s¢, a¢)

1 Also referred to as deep Q-network
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approaches the value of the one-step estimate in the future as

Ok+1 < Ok — aVoEy _p(sjsa) [E(y, Qa(s,a))] lo=p,

where the expectation is approximated with samples from a policy acting on the en-
vironment. The loss function is usually the squared error, and y considers a fixed Qg
when updating the current values, i.e., TD targets remain fixed while updating the
current estimates. Note that this is similar to the TD updates when the function Q
is a lookup table. Several algorithmic improvements make training DQN possible,
such as the introduction of a target neural network, i.e., a copy of the Qy network
that is only updated after a number of computation steps and the introduction of
an experience replay, responsible for storing previous transitions (s¢, as, ¢, S¢41) in
a hash table. This replay is used to sample and decorrelate past transitions, which
in turn are employed to update the Qg estimates, allowing for more efficient use of
previous data and better convergence when training a function approximator due
to the i.i.d. data assumption in supervised learning. An example of neural network
architecture for DQN uses the states as input features (neurons in the input layer)
and have the output layer dimensions correspond to the number of possible actions
an agent can perform. In this case, the learnable parameters 6 correspond to the
weights and biases of the neural network approximation. Other improvements to
DON include, double Q-learning [85], prioritised experience replay [193], Dueling
DQN [225], among others.

Distributional Approaches The RL problem setting usually involves some
stochasticity from the environment. For example, after selecting an action in a given
state, the result of that action can result in multiple future states. This stochasticity
can greatly affect learning and how much return is received by the agent during
learning. Most value-based methods focus on learning the expectation of the ran-
dom variable of returns. Nonetheless, distributional methods attempt to learn the
distribution of the returns. The idea is that by modelling (and learning) the whole
distribution of returns agents can better learn the result of actions in stochastic en-
vironments, especially when taking actions in this environment represents some
measure of a risk-reward trade-off. Using distributional approaches can also lead
to more stable learning and preserves the multi-modality in value distributions [18].

For a given MDP and policy 71, we can define the value distribution of a policy
as the random variable Z™ for given s and a as

[e9)

Z7(s,a) =Y o't
=0

which in expectation is
Q" (s,a) :=Ex[Z7(s,a)].
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Using this definition, the Bellman equation can be rewritten for the distributional
case [18], as

Z™(s,a) 4 r(s,a) +vZ2™(s',a"),

where s ~ P(s'|s,a), a’ ~ rt(a’|s'), r(s,a) is the random variable of rewards, and 4
indicates that the cumulative distribution functions are equivalent (follow the same
law). That is, the value distribution Z™ € S x A — P(R) is in a space of map-
pings from state-action pairs to the space of continuous distributions, shortened
as Z™ € Z. An important implication is that the convergence of such a distribu-
tional equation depends on the chosen metric. In particular, we are interested in
the maximal form of the Wasserstein metric, i.e.,

dp(Zl, Zz) = sup dp(Zl (S, a), Zz(S, a)),

s,a

which is shown to be a metric in the space of value distributions, where d, (X, Y) is
the p-Wasserstein metric in space P(R), 1 < p < oo, and Zy,Z, € Z are distribu-

tions with p-bounded moments [18].

A following result, shows that the distributional Bellman operator 77, T™Z(s,a) 4

r(s,a) +yZ(s',a"), is a contraction mapping in d, and the point iteration converges
to Z [18]. The previous result suggests a way to learn value distributions by
minimising the Wasserstein metric between a distribution Z and its Bellman up-
date 77 Z similar to how Q learning minimises the TD error. However, we can-
not directly minimise the Wasserstein metric using stochastic gradient descent [55].
Thus, several distributional approaches attempt to estimate the Wasserstein metric
in the presence of gradient descent and function approximation [18, 55]. A partic-
ular method of interest in Chapter 7, named quantile regression DQN (QR-DQN),
showed that selecting a family of distributions to approximate the distributions of
Z reduces the Wasserstein minimisation task to search for quantiles of these distri-
butions [55].

Note that for policy improvement, the distributional Bellman optimality operator
T*, 1e, T*Z = T"Z for some 7t acting greedily with respect to the expectation
of Z, under point iteration may diverge. Nonetheless, it preserves means, and the
mean will eventually converge to the optimal policy, i.e., it converges to Q*(s,a)
with similar guarantees as Q-learning [18].

Policy Gradients In policy gradient methods, the goal is to directly approxim-
ate a policy rather than value functions. A (stochastic) policy in this context is a
function with learnable parameters 6, referred to as 7y(als). Note that we use 7
and 7y interchangeably in the following equations, being explicit when computing
gradients. The general objective of the RL problem remains the same, but unlike
before, we have access to a differentiable policy function. Since the goal is typically
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to maximise performance, policy gradient methods work by taking gradient steps
towards the maximisation of a performance metric J(6) that depends on the policy
parameters 6. In this thesis, we assume, without loss of generality, that policies are
neural network functions and define the performance of a policy as

J(8) = ET~P9(T) [G(7) EPg

Z Y rtISO]

where the expectation E;_p (1)[-] is taken with respect to the randomness of a full
trajectory T = (so, ap,s1,41,--.,a7-1,5T) following the trajectory distribution Py(T)
induced by policy 7y, and G(7) is the return of a trajectory 7. Note that, for sim-
plicity, we derive the following results for the finite horizon case and state the more
general theorem (for the discounted infinite horizon) later.

To estimate the gradient of the expectation, we make use of the log-derivative
trick, i.e.,

Vepo(x) = po(x)Velogpe(x)

and the score function estimator, i.e,

= / pe(x)Vglog pg(x)f(x)dx (log-derivative trick)
= ]EXNP(;(X) [Vglog pe(x)f(x)].

where py(x) is a probability density of random variable x and f is real function and
use this result to arrive at

VoEp,(r)[G(T)] = Ep,(r)[Velog Py (T)G(T)].

Using the chain rule of probabilities, the probability of a single trajectory can be
written as

Py(T) = P(s0)7g(aolso) P(s1,70ls0, a0) e (a1s1)
P(s,r1ls1,a1) ... mg(ar—1lst—1)P(st,r7—1ls7-1,47-1)

Taking the log and differentiating with respect to 6 allows us to represent the gradi-
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ent of J(0) as

T-1

VoEp,)[G(1)] = Ex | ), Vglog my(at|st)G(T)
t=0

The important result from the above equation is that learning a policy requires a
return but no information about the system dynamics. Intuitively, learning requires
taking gradient steps towards actions that increase the chance of higher returns.

More generally, for the discounted infinite horizon case, the policy gradient
theorem states that the gradient of J(0) can be written as

Theorem 1. Policy gradient theorem [208]. For the infinite horizon discounted re-
ward MDP and (discounted) state visitation distribution d” (s) = imr_e Y13 7' P(st =
s|so, 70),

Vo] (0) = Edn(s) Zvﬂn9<a|s)Qn(S/‘Z) = ]ESNd”(s),aNn(als) [Volog mg(als)Q (s, a)] .

That is, the gradient of the performance J(6) can be expressed in terms of the gradient of the
policy w.r.t. 6.

In general, policy gradient methods consider (unbiased) gradients of the form

T-1
Vol(0) = Ex | Y Vologmo(at|si)er|,
=0

where the expectation is usually estimated using Monte Carlo samples over a num-
ber of trajectories and large T, and ¢ is the return of the trajectories. Other vari-
ations of ¢; exist to reduce the variance of the estimators, such as computing the
returns considering only the future rewards at time step ¢ and the inclusion of a
baseline, i.e., an arbitrary function (conditionally independent of sampling from
mg) that can depend on states b(s;) subtracted from the future sum of rewards and
maintains the expectation unbiased, i.e., ZZ;} 3ty — b(st). Other approaches
include estimating the state-action value function Q” (st,at), the TD error, ie.,
i + V7™ (s441) — V7 (s¢) or an advantage function A7 (sy,a;) = Q7 (st,a1) — V™ (s¢),
i.e.,, measuring how good is to that action 4; at state s; in comparison to the current
estimated value of state s; [196]. Classical algorithms include REINFORCE [229]
and more recent advances to reduce sample complexity include, trust-region policy
optimisation (TRPO) [195] and proximal policy optimisation (PPO) [197]. When
function approximation is used for both the policy and value functions these are
commonly referred to as actor-critic methods [162], these are of particular interest
in chapters 5 and 6.
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2.3.4 Imitation Learning

In imitation learning (IL), it is assumed that learning does not have to start from
scratch. In the case when IL is employed for sequential decision-making problems
defined on MDPs (see Section 2.3.3), the aim is to learn to imitate a previously ex-
isting policy. Thus, it assumes that previous policies usually provided by a human
expert or an existing algorithm already exist. These policies are commonly referred
to as oracles or experts. The goal of imitation learning is to use the information
from these policies and learn to imitate their behaviour, mapping states to expert
actions instead of learning from scratch as in RL [108]. This type of learning can
potentially reduce the burden of learning the desired behaviour of agents entirely
from scratch [108] and reduce the need for costly interactions with the environment.

IL is related to offline RL, in which the goal is to learn optimal policies from fixed
offline data without requiring interaction with an environment. Note that IL may
not impose such assumptions about offline data and sometimes consider that the
expert is available online, i.e., while learning via interaction with the environment.
Moreover, the IL objective may be solely to reproduce the behaviour of the expert
policy. When the expert policy is sub-optimal, however, the goal of imitating an
expert is typically to accelerate learning, extracting knowledge from this policy
before moving towards exploratory actions that improve upon the expert. This
objective is similar to the offline RL case when the assumption of no interaction with
the environment is dropped. One can also relate IL with transfer learning in which
the source domain corresponds to expert demonstrations and the target domain to
learning to generalise to unseen states in the demonstrations (see Section 2.3.2). IL
is also related to apprenticeship learning and inverse RL, where the goal is to learn
the typically unknown objectives of the desired behaviour from demonstrations
(rewards). A complete review of IL and its relationships with other learning tasks
can be found in [108, 172].

Imitation Learning from Demonstrations

In this thesis, we consider the task of learning from demonstration data in a model-
free IL setup without access to trajectory returns from demonstrations. Our ob-
jective is to learn from demonstrations acquired by following an expert policy
a = 1°(s), mapping states to actions, where s € S is a state in state space S and
a € Ais an action in action space \A. Ideally, one would aim to learn a policy that
approximates the performance of the expert as much as possible; that is, we want
to learn a policy 71y, with parameters 6 that can mimic the same actions 4 from an
expert policy 7t¢, given a state s.

In our setting, we assume that the acquired demonstration data is from a sub-
optimal expert that is not available during the interaction with the environment
(online). That is, we assume the existence of a set of expert trajectories gathered to
form of a dataset D¢ = {(s;, ;) }); where s; and a; are states and actions performed
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by the expert acquired from previous trajectories ° = sg, ag, 51,41, . . . following the
environment dynamics P(r,s’|s,a) induced by an MDP environment (see Section
2.3.3). Our goal is to learn to replicate the actions from the expert agent, learning
from the gathered expert data D°. A direct approach to solving this problem is to
use the demonstration data to learn an approximation of the policy via supervised
learning on i.i.d. training samples (behaviour cloning) [187]. Let d"™ (s) define the
state distribution of the expert’s policy induced by the trajectories followed by the
expert. If we are learning directly from these trajectories, the objective becomes

L(0) = By gnt (5) g re(s) [, T0(5))]

where / is a surrogate loss, such as the Kullback-Leibler divergence that we wish to
minimise. However, this objective is slightly different from the true objective of im-
itation learning. That is, when sampling from the behaviour policy, any deviations
from the expert policy would induce different distributions of states d(s). Thus,
in reality, we would like to minimise the objective

L0 = Egogmo () a=re(s) [£(a, 70 (5))]-

From the above equations, it is clear that when the two distributions do not match,
i.e., the behaviour distribution of states shifts from the expert’s state distribution,
the approximation of the first equation may not approximate the real objective.
What is worse, if no data exists on the states visited by the behaviour policy in the
dataset, then the learned policy may not be able to recover from states not seen in
the training data. Under mild assumptions, the bound of the imitation learning
objective grows quadratically with the size of the trajectory times the generalisation
error of the behaviour cloning objective [186]. To alleviate this issue, online IL meth-
ods attempt to reduce the distributional shift between the demonstration data and
the behaviour policy by assuming some level of access to the expert during training
[36, 187]. These interactive direct policy learning methods aim at acquiring more
information about the expert policies, such as the expert’s action or reward-to-go
information in regions of the state space not covered by demonstrations assuming
an interactive demonstrator or the property of revisiting states.

When the goal is to learn optimal policies starting solely from sub-optimal ex-
pert demonstration, as is the case in Chapter 6, we are interested in learning to
surpass the quality of the expert policy. Building upon these ideas, learning can
be achieved by employing IL to learn initial policies from the demonstration data
and then refine these policies with RL in a second stage [40, 183]. Another op-
tion is to use the demonstration data to approximate value functions (see Section
2.3.3) of the expert and later use the learned values function in combination with
policy improvement of the behaviour policy [40, 204, 205]. The overall objective
of combining IL and RL is to reduce the need for exploration of bad actions, res-
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ulting in much lower sampling complexity and guiding policy search to explore
more promising areas that can quickly improve upon expert policies. Note that this
objective is similar to offline RL, in which the objective is to learn optimal policies
from demonstrations. However, offline RL normally assumes access to demonstra-
tions of transitions including states, actions, next states and rewards and no access
to online training [139].
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Predicting Remaining Useful
Lifetime

Machine prognostics and health management is often concerned with
predicting the remaining useful lifetime (RUL) of assets. Accurate real-
time RUL predictions enable equipment health assessment and optimal
maintenance planning. In this chapter, we consider the problem of pre-
dicting the RUL of engineering assets degrading over time. In this
problem, maintenance planners have access to assets” sensor informa-
tion and are interested in predicting the RUL of assets such that pre-
ventive maintenance actions can take place before failures occur.

This chapter is based on [50].

41
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3.1 Introduction

In this chapter, we study the remaining useful lifetime (RUL) prediction problem
faced by maintenance planners. In machine prognostics and health management
(PHM), RUL relates to the amount of time left before a piece of equipment can-
not perform its intended function [199]. The RUL of an asset (or a component)
is generally a random variable that may depend on various aspects of the asset,
such as age, usage, location, operating conditions, among others. Accurate RUL
prognostics, i.e., predicting point-estimates of the remaining lifetime of assets, is critical
for condition-based maintenance (CBM) and enables the interested parties to plan
future maintenance actions, e.g., logistics of personnel, spare parts, and services
[176]. With the introduction of remote monitoring devices, one can use raw sensor
data to extract information about the current condition of assets. This information
can then be used to predict the future point in time that assets may stop functioning
by learning from past data of previous failures.

In PHM and CBM, physics, statistical and machine learning (ML) approaches
have been proposed to address the RUL prediction problem. We focus on ML
approaches because they require little to no prior knowledge about the underly-
ing degradation of assets and have progressively outperformed other methods in
prediction performance [137]. Moreover, ML methods are preferred when multi-
dimensional data is present, as is usually the case of remote sensors. In particu-
lar, several deep neural networks architectures have been receiving attention given
their ability to achieve high accuracy learning directly from raw data. These include
convolutional neural networks (CNN) [140] and recurrent neural networks (RNN)
implementations, such as, long short-term memory (LSTM) [144, 243] and gated
recurrent unit (GRU) [232].

However, it can be hard to interpret the relationship between the raw sensor in-
put signals and the prediction outputs in deep neural network methods due to the
high dimensionality of these methods. In our application, it is often necessary to
identify failure causes and points in time when maintenance is optimal. Therefore,
one is often posed with the choice of a low-performance white box method or a
black box method that performs well but gives little insight into when the assets
started showing degradation signals. In this chapter, we present a deep learning
method that improves the overall performance of previous methods and provides a
representation between temporal inputs and RUL outputs in the well-known Com-
mercial Modular Aero-Propulsion System Simulation (C-MAPSS) datasets [191] (see
Appendix 3.A). Our proposed method implements an attention module [13, 154]
that provides a visual representation of trained weights while retaining the predict-
ive power of deep learning. The proposed method can help decision-makers plan
precise maintenance actions whilst providing information about the relationships
between input sensors and RUL outputs.
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Contributions and Organisation In our proposed model, we demonstrate that
when combined with a variable-level attention mechanism, an LSTM [97] can learn
the temporal relationship of input variables and output RUL. We show the effective-
ness of the proposed method against other methods for RUL prediction of aircraft
engines in the C-MAPSS datasets. The main contributions are summarised as fol-
lows.

e Our method learns accurate RUL estimates directly from raw multidimen-
sional sensor readings.

e We use a soft attention mechanism to visualise the learned attention weights
at each RUL prediction step. The learned weights offer more transparency on
important input timesteps at each RUL prediction step.

e The proposed method achieves high-performance RUL prediction results in
the C-MAPPS datasets compared to previous state-of-the-art methods.

e Unlike previous deep learning methods, it does not require pretraining nor
extensive hyperparameter optimisation.

The remainder of this chapter is organised as follows. In the next section, we
briefly discuss the state-of-the-art methods for RUL prediction in the C-MAPPS
datasets. In section 3.3, we present our model detailing the learning algorithm and
the architecture of our proposed LSTM. In section 3.4, we present the experimental
setup and the selected hyperparameters of our method. Finally, in section 3.5,
we compare and contrast the performance of proposed methods and provide an
analysis of the results.

3.2 Related Literature

Deep Learning in Prognostics In the prognostics literature, several artificial in-
telligence methods have been proposed to predict the RUL of assets, e.g., linear
regression [88], support vector regression (SVR) [26], fuzzy-logic systems [244] and
(deep) neural networks [106, 210]. The latter has received much attention given
their ability to approximate complex functions without prior degradation know-
ledge and feature engineering. In many PHM applications, sequential temporal
data coming from sensors are the norm. Thus, we focus our attention on previous
neural network architectures that have been successfully employed to learn RUL
estimates in this scenario. In particular, RNNs are a natural fit for such problems,
given their recurrent internal structure and shared parameters over time. However,
due to vanishing gradients, RNNs have issues when learning long-term dependen-
cies [25]. LSTMs [97] and GRUs [43] networks were introduced to address issues
with long-term dependency by preserving memory states and reducing the van-
ishing gradient problem of RNNs. Other architectures, such as CNNs, have also
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been successful in sequential prediction problems. In this case, the model learns to
extract features by sliding multiple feature extractors over the output from the pre-
vious layers using convolution operations. We discuss recently proposed methods
based on these architectures below.

In PHM, [237] recently showed that LSTMs could outperform RNNs and GRUs
in RUL prediction. [243] showed that a sequence of LSTM layers followed by a
feed-forward neural network (FFNN) could outperform other methods, including
CNNgs, in three distinct degradation datasets. In [232], the authors presented similar
results by extracting features based on a dynamic difference procedure and later
training an LSTM. Results showed that the LSTM also outperformed simpler RNNs
and GRU architectures under similar machinery conditions. More recently, [144]
showed that restricted Boltzmann machines could be used to extract useful weight
information by pretraining on degradation data in an unsupervised manner. In this
two-stage method, weights extracted in the first step are used in a second step to
fine-tune a supervised LSTM and FENN model. A genetic algorithm (GA) is used
to select the best performing hyperparameters. The methodology holds the state-
of-the-art results for the RUL prediction problem in the C-MAPSS datasets to the
best of our knowledge.

CNN:is are notable for extracting spatial information from 2D, and 3D data [101].
Nonetheless, CNNs can also handle 1D sequential data and extract high-level fea-
tures by performing a convolution operation of feature extractors over local recept-
ive fields of its inputs. In machine prognostics, [11] proposed a 2D deep CNN to
predict the RUL of a system based on normalised variate time series from sensor
signals. They show the effectiveness of the CNN in comparison to an FFNN and
classical ML methods such as SVR and relevance vector regression. More recently,
[140] proposed to apply 1D convolutions to the sequential input data without any
pooling operations, which are commonly used in CNN architectures to reduce di-
mensionality. The results show that the proposed architecture can extract useful
features for RUL prediction and show competitive results on the C-MAPPS dataset
without incurring high training times of autoregressive methods.

Attention Mechanism Attention has been used in a wide range of neural network
architectures. It was initially introduced in natural language processing (NLP) for
machine translation tasks [13], but has been successfully applied in other tasks, e.g.,
computer vision [235]. In such tasks, we are often interested in learning to attend
to specific parts of the input instead of the whole input or the last timestep in the
sequential case. As it is common in recurrent architectures, the last hidden vector
usually summarises the information about the entire sequence. However, we often
wish to attend to different parts of the input that are more relevant to the output
we want to produce at a given timestep. Attention allows the neural network to
learn to focus on specific parts of the input when predicting outputs, resulting in
better performance over long sequences [13]. Besides performance gains, attention
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mechanisms can also be used to interpret the behaviour of neural architectures by
analysing the parts of the input that the network learns to attend [73]. That is,
learned attention weight could be used to visualise and investigate the relationship
between inputs and outputs of the network.

Based on recent promising results showing that LSTMs and CNNs architectures
can outperform traditional prognostics algorithms, we propose a deep learning ar-
chitecture capable of learning RUL predictions directly from sensor data. Unlike
previous works, our method does not require pretraining or the extensive search
of hyperparameters to perform well on the task. Moreover, it can be used for se-
quences of varying sizes, unlike methods based on CNNs under the constraint of
a fixed receptive field. Our method incorporates a self-attention mechanism that
attends to different input sequence parts relevant to the RUL prediction at a given
timestep. We show that the learned attention weights can also be used to provide
more insights between the predicted RUL and the sensor information passed as
input.

3.3 Attention Model

This section presents our proposed method to predict the RUL from sensor data.
We first introduce the problem, notations and discuss the proposed method and its
components.

3.3.1 Problem Definition

We denote our training data pairs as {(x;, y;)}Y,, containing N € N training ex-
ample pairs. Where x; denotes a multivariate time-series input of length T; and g
features, i.e., x; = [xl,...,le.] € R7*Ti. Moreover, y; denotes the RUL values of
length T; where y; = [y, . ..,yT’.]—r € REO. Where for each t € {1,2,..., T;}, x; € RY
and y; € R> represent the t-th measurement of g sensor inputs and RUL labels
(the observed RUL values from the data), respectively. Further details about the
input time-series and RUL labels are provided in Section 3.4.1. We aim to learn a
function g with learnable parameters 6 such that we can approximate the corres-
ponding RUL at testing time directly from degradation data, i.e., y; = gg(x;). In our
case, the learnable parameters 6 are the weights and biases of our neural network
model.

3.3.2 Rolling Time Windows

We employ a rolling time window approach to allow temporal sequences to influ-
ence the RUL prediction time step ¢ and increase the number of data points used
for RUL prediction. That is, we define a function that divides each sequence of size
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T; in sequential time windows of size Ty, i.e., ¢t(x) = [x¢_1, 11, ..., X¢] for t > Typ. In
words, at time ¢ all previous sensor data within the time window ¢;(x) are collected
to form T, input vectors used to predict y;,1. Thus, after the transformation, each
original time series will have n; = T; — Ty, training samples, where T; > T,,. We
denote total number of data points after the transformation as N, = Zfil n;.

3.3.3 Long Short-Term Neural Networks

LSTMs have recurrent connections capable of learning the temporal dynamics of
sensor data in prognostics scenarios. Moreover, they control how information flows
within the LSTM cells by updating a series of gates capable of learning long-term
relationships in the input data.
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Figure 3.1: LSTM memory cell.

In our LSTM implementation, the memory cell (Figure 3.1) consists of three
non-linear gating units that update a cell state C; € R/, using a hidden state vector
hi_1 € R and inputs x; € R7, where [ is the dimension of the LSTM hidden state
and g the input dimension

ft = U'(fo,} + tht—l + bf) (3.1)
iy = (T(Wl'xt + Rihy_1+ bz) (3.2)
0y = D'(Woxt + Rohy_1 + bo) (3.3)

where ¢ is a sigmoid activation function responsible for squeezing the output to the
0-1 range, W, € R'* are the input weights, Rg € R'*! are the recurrent weights,
and by € R are biases. Where the subscript ¢ € {f,i,0} can either be the forget gate
f, input gate i or the output gate o, depending on the activation being calculated.
After computing f;, iy and o; € R/, the new cell state C; candidate is computed
as follows
ét = tanh(WCxt + Rchy_1+ bc) (3.4)

where, tanh represents the hyperbolic tangent function and similar to the gate op-
erations, We € R, Rc € R™!, and bc € R! are learnable parameters.
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The previous cell state C;_; is then updated to the new cell state C;
C=fOC1+i0C (3.5)

where ©® denotes the element-wise multiplication.

In the previous equations, the forget gate f; is responsible for deciding which
information will be thrown away from the cell state. Next, the input gate i; decides
which states will be updated from a candidate cell state. The input and forget gates
are then used to update a new cell state for the next time step. Lastly, the output
gate o; decides which information the cell will output, and the new hidden state h;
is computed by applying a tanh function to the current cell state times the output
gate activations.

hy = 0; ® tanh(Ct) (3.6)

3.3.4 Attention Mechanism

Our self-attention mechanism is based on [154]. At each time step t we take as
input the hidden states h; at the top layer of stacked LSTM layers. After, we decide
on a context vector c; that captures relevant information about the next target y; .
Given the target hidden state h; and the context vector c¢;, we concatenate both
vectors and learn W, € R¥*?2 to produce an attention vector a; of the form

ar = tanh(Wc[ctHht]) (37)

where -||- represents the concatenation operation, tanh is the hyperbolic tangent
function and the context vector ¢; is defined as

t
Ct = 2 Oét,]'hj (38)
j=1

In words, we consider all the hidden states of the LSTM encoder weighted by at-
tention weights a; ;. In our implementation, the attention weights are derived by
comparing the current hidden state /; with the complete sequence hidden states h;,
j € {1,.,t}. Where the attention weights a; ; are computed via the softmax function

as
exp(s(he, j))
= = ! (3.9)
Yj—q exp(s(ht, hy))
and s(ht, h;) is given by the multiplicative compatibility function [154]:
s(he, hj) = h{ Wh; (3.10)

where W € R!*!. Thus, given attention weights at j the context vector ¢; is computed
as the weighted average over all the hidden states and attention vectors a; are passed
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to the fully-connected (dense) layers in the network of the form
u = ReLU(Wgat + ba) (311)

where ReLU(x) = max(0,x) is the rectified linear unit, W, € R**¢, b, € R“
Note that a; summarises information from the context vector (including h;) and
h; itself. Therefore, we expect that the learned attention weights will mostly focus
on previous timesteps given that the information from #; is directly available in ;.
The schematic of the proposed architecture is shown in Figure 3.2.
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Figure 3.2: LSTM Architecture with attention. At each time step ¢, the model infers
a variable-length alignment weight vector a; based on the current target state /1; and
a context vector ¢; based on all previously seen states.
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3.3.5 Loss Function

During training, we aim at minimising a regression loss based on the empirical
risk minimisation using the observed RUL at time f 4+ 1 and inputs between t —
Tw +1 and t. The parameters of neural architecture are optimised towards the
minimisation of the squared error loss function defined as

T—1

L0) = Y (80(¢e(x:) —yi11)? (3.12)

t=Ty

where 0 are the learnable parameters of the neural network, and the overall training
objective is
£0) = o L0 + 21113 @13)
Nr, & 2! '
where A € R is a hyperparameter of the L, regularisation of the weights ¢’, i.e.,
excluding biases. We compute the loss for a batch of training examples following

the stochastic gradient descent updates of the Adaptive Moment Estimation (Adam)
[124] algorithm.

3.4 Experimental Settings

In this section, we describe the experiments using the proposed model to predict
the RUL of turbofan engine degradation data. We describe the datasets used in the
experiments and the details about the implementation.

3.4.1 C-MAPPS Datasets

The proposed method is evaluated using the benchmark Commercial Modular
Aero-Propulsion System Simulation (C-MAPPS) [191] datasets containing turbofan
engine degradation data. The C-MAPPS datasets are composed of four distinct
datasets that contain information coming from 21 sensors as well as 3 operational
settings. Each of the four datasets possesses several degradation engines split into
training and testing data. Moreover, the datasets contain run-to-failure information
collected under various operating conditions and fault modes.

Engines in the datasets are considered to start with various degrees of initial
wear but are considered healthy at the start of each record. As the number of cycles
increases, the engines begin to deteriorate until they can no longer function. Unlike
the training datasets, the testing datasets contain temporal data that terminates
some time before a system failure.

The original prediction task is to predict the RUL of the testing units using the
training units [191]. The details about the four datasets are given in Table 3.1. We
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refer to the datasets as FD001, FD002, FD003 and FD004. The operating conditions
in the datasets vary between one (sea level) in FD001 and FDO0O03, to six, based on
different combinations of altitude (0 - 42000 feet), throttle resolver angle (20 - 100)
and Mach (0 - 0.84) in FD002 and FD004. Also, fault modes vary between one (HPC
degradation) in FD001 and FD002 and two (HPC degradation and Fan degradation)
in FD003 and FD004.

Data FD001 FD002 FD003 FDO004
Engines: Training (N) 100 260 100 249
Engines: Testing 100 259 100 248
Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

Table 3.1: The C-MAPPS datasets. Each dataset contains a number of training
engines (Engines: Training (N)) with run-to-failure information and a number of
testing engines (Engines: Testing) with information terminating before a failure is
observed.

3.4.2 Data Preprocessing

The temporal input data coming from 21 sensor values and 3 operational settings
are used across all experiments. We note that for both FD001 and FD003 datasets,
7 sensor values have constant readings and have little impact in predicting target
RUL values. We normalise the input data and RUL values by scaling each feature
individually such that it is in the [0, 1] range via min-max normalisation as

xi’j — min; s (xi’j )
ij

Si
X/ = —
max;¢(x,”) — mini,t(x;’] )

(3.14)

where x;’ denotes the scalar input corresponding to the i-th training example and
the j-th feature at time ¢.

RUL targets, i.e., the number of time steps that an engine will remain opera-
tional, are only available at the last time step for each engine in the test datasets.
In RUL prediction tasks, it is reasonable to estimate the RUL as a constant value
when the engines operate under normal conditions [89]. Similar to [137, 144], we
propose a piece-wise linear degradation model to define the observed RUL values
in the training sets. That is, after an initial period with constant RUL values, we
assume that the RUL targets decrease linearly as the number of observed cycles
progresses. We denote as R, the initial period when the engines are still working in
their desired conditions.
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3.4.3 Performance Metric

Similar to other prognostic studies using the same datasets, we measure the per-
formance of the proposed method using two metrics, the root mean squared error
(RMSE) and the scoring function Eq. (3.15), proposed in [191], i.e.,

Nt

s=Y 1(c;<0)e @ +1(c; > 0)e™ —1 (3.15)
i=1

where 1(-) is an indicator function that takes value 1 when the predicate is true
and 0 otherwise, a1 = 13, ay = 10, ¢; = §; — y;, and J; = gg(¢i—1(x)). That is, ¢; is
the difference between predicted and observed RUL values. The scoring function
penalises positive errors more than negative errors as these have a higher impact
on RUL prognostics tasks. That is, predicting a higher RUL value is worse than
predicting a lower value due to usually higher costs of corrective maintenance and
machine downtime.

3.4.4 Hyperparameter Search

We perform 10-fold cross-validation to estimate the performance of the models and
choose the best hyperparameters. To ensure that we do not validate the model on
different parts of the same sequence, we split engine units uniformly at random in
the original training datasets into training and validation sets containing 90% and
10% of the original engines, for example, following this procedure for FD001 results
in 90 engines selected for training and 10 for validation.

Hyperparameter Range
Learning rate {0.001, 0.01, 0.1}
Batch size {256, 512, 1024}
Number of layers (LSTM, Dense) {1, 2}

Number of units (LSTM) {20, 32, 64, 100}
Number of units (Dense) {20, 30}
Number of units (Attention) {128}

Ly Regularisation (A) {0.0, 0.01, 0.1}
Tw {15, 20, 30, 40}

Table 3.2: Hyperparameter values evaluated in the proposed methodology.

For each hyperparameter setup, we start from a base network of the form
LSTM(32) + Drorout(0.5) + RELU(DENSE(30)) + DrorouT(0.1) + RELU(DENSE(20))
+ DENsE(1). In this notation, a layer in the network is denoted as AcTiva-
TION(LAYER(UN1TS)), dropout [201] layers are introduce to control overfitting and
are denoted as DROPOUT(RATE). In all experiments, the base network is trained for
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200 epochs with a learning rate of 0.001, batch size of 256, a T, of 30, for FD001 and
FDO003, and a Ty, of 20 for FD002 and FD004. We point out that these base paramet-
ers were chosen based on previous architectures for the same datasets [140, 144].
During each hyperparameter search, we start from the base architecture and we
consider the range of values presented in Table 3.2. We discuss the most sensitive
hyperparameters, i.e., the number of LSTM neurons, the number of LSTM layers,
the size of time window Ty, and the batch size, and report the average RMSE on the
test C-MAPPS datasets in Figure 3.3.

Time Window In our experiments, the time window T, was the most sensitive
hyperparameter. In the tests, we considered values of Ty, in {15, 20, 30, 40}. Results
in Figure 3.3a show that for FD001 and FD003, a T;, of 30 timesteps yields the best
performing scores, i.e., 14.0 and 13.4, respectively. For the remaining two datasets,
the lowest RMSE values are found for a Ty, of size 20. FD002 has its lowest RMSE
at 17.4 and FD004 at 19.4. Moreover, a change in the time window results in RMSE
up to 28.4 for FD004 and 20.6 for FD002. We point out that in the test datasets, the
shortest Ty, length of FD001, FD002, FD003, FD004 are 31, 21, 38 and 19, respectively.

Batch Size The batch size has a small effect on the performance of the model but
can still affect the training time of the algorithm. That is, a larger batch size can
reduce the number of mini-batches needed to complete a single epoch. The results
in Figure 3.3b show that increasing the batch size does not lead to a substantial
change in RMSE performance. Across all datasets, a batch size of 256 results in the
lowest average RMSE values.

Number of LTSM Units The number of units (neurons) in the LSTM layer impacts
datasets differently, as shown in Figure 3.3c. In most cases, increasing the dimen-
sion of the LSTM layers results in lower errors. However, in the FD004 dataset, 32
neurons result in the lowest RMSE at 19.5. On the other hand, the performance
on FD003 seems to improve as we increase the number of units in the LSTM layer.
Since we seek a general architecture with good performance, we select the number
of LSTM units based on the overall best result across all four datasets in the final
model.

Number of LTSM Layers We report the results of the number of LSTM layers
in Figure 3.3d. We can observe that the number of layers has adverse impacts on
the performance of the models, with more than one layer typically resulting in
larger errors than a single LSTM layer in most cases. We note, however, that this
observation is not consistent across all datasets. For instance, FD004 has improved
performance with 2 LSTM layers with 100 nodes compared to a single one. Overall,
adding more LSTM layers adding more layers added more computational burden
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without further performance gains. In general, a single layer containing 100 neurons
resulted in the best overall results across all datasets.

15

20
Time Steps

30 40

(a) Average RMSE on the test datasets for dif-
ferent values of Ty,.
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(c) Average RMSE on the test datasets for dif-
ferent number of neurons in the LSTM layer.
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(d) Average RMSE on the test datasets for dif-
ferent number of LSTM layers and neurons.

Figure 3.3: Average RMSE on the test datasets for the models’ hyperparameters

neurons.

3.4.5 Trai

ning Parameters

Based on the results obtained from the previous section, we select the following ar-
chitecture for all the studied datasets, LSTM(100) + DrorouT(0.5) + ATTENTION(128)
+ ReLU(DENsE(30)) + Drorout(0.1) + RELU(DENSE(20)) + DENsg(1). We point out
that our goal is to evaluate a single architecture that can perform well for all data-
sets. However, better performance can be obtained if we search for specific hyper-
parameters for each dataset [144]. Similar to our hyperparameter search, we split
the data into training and validation datasets containing 90% and 10% engines of
the original training dataset. To reduce the effect of randomness in our final results,
we report the average and standard deviation of 10 experiments.
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The inputs features and RUL outputs are normalised individually according to
Eq. (3.14), and dropout is introduced to control overfitting. We train the models
for a maximum of 200 epochs and select mini-batches of 256 samples for gradient
updates. We stop training if no improvement is seen for 20 epochs in the validation
dataset. We train the network for the Adam algorithm and clip gradient norms to 1.
We select the learning rate of 0.001 based on grid-search after the remaining parts
of the architecture have been defined. Finally, T, is 30, for FD001 and FDO003, and
20 for FD002 and FD004.

We evaluate our models using the C-MAPPS testing datasets, where the goal
is to predict the RUL of input sequences seen up to a point before failure. In our
results, we use rectified labels based on the value R, = 125 for training, validation
and testing. That is, if y; > R, then they are replaced with R,. Since we train on
normalised outputs, we multiply the outputs of our LSTM model by R, to retrieve
their original scale.

All our experiments are performed on an Intel Core i5 7th generation processor
with 16 GB RAM and a GeForce GTX 1070 graphics processing unit. We implement
the models using the Python 3.6 programming language using the Keras [44] library
with the TensorFlow [158] backend.

3.5 Results

In this section, we present and compare the results using the proposed architecture
against other methods in the literature. We present the performance of our architec-
ture using the RMSE and scoring function. We also present the attention activations
to visualise time-related features used for RUL prediction at each time step.

3.5.1 Prediction Performance

We implement two versions of the proposed architecture: one containing the at-
tention layer (LSTM + A) and one without the attention mechanism (LSTM). Addi-
tionally, we present a comparison of the models to the state-of-the-art results in the
C-MAPPS datasets using the RMSE and scoring performance in Tables 3.3 and 3.4.

We compare our model to other deep learning architectures trained on the same
datasets. First, we compare to LSTM methods proposed by [144] (GA + LSTM) and
[243] (LSTM) to test whether our LSTM implementation can offer any gains over
previously implemented LSTM architectures. Our approach is similar to the one
proposed in [243], but we do not learn to output an entire sequence of RUL estim-
ates for each timestep of the input sequence, i.e., we learn from temporal inputs of
size Ty, ¢¢(x) to predict the RUL of the next time step y;.1. Moreover, different
from the previous LSTM models, we do not perform pre-clustering of operating
conditions in datasets FD002 and FD004 nor perform unsupervised pretraining as
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RMSE
Method FD001 FD002 FD003 FD004 R.
LSTM [243] 16.14 24.49 16.18 28.17 130
MODBNE [240] 15.04 25.05 12.51 28.66 -
CNN [140] 12.61 22.36 12.64 23.31 125
GA + LSTM [144] 12.56 2273 12.10 22.66 115-135
LSTM (= StDev) 13.64 (£ 0.80) 17.76 (£ 043) 12.49 (£ 0.29) 2130 (+1.06) 125

LSTM + A (+ StDev) 13.95 (+ 0.43) 17.65 (+ 047) 12.72 (£ 0.73) 2021 (+0.63) 125

Table 3.3: RMSE comparison between the proposed LSTM methods and other meth-
ods in the literature on the C-MAPPS datasets

Scoring Function

Method FD001 FD002 FD003 FD004 R,
LSTM [243] 338 4,450 852 5,550 130
MODBNE [240] 334 5,585 422 6,558 -
CNN [140] 274 10,412 284 12,466 125
GA + LSTM [144] 231 3,366 251 2,840 115-135
LSTM (& StDev) 300 (& 31) 1,638 (£ 192) 267 (£42) 2,904 (£979) 125

LSTM + A (% StDev) 320 (£ 30) 2,102 (£250) 223 (£17) 3,100 (% 576) 125

Table 3.4: Scoring function comparison between the proposed LSTM methods and
other methods in the literature on the C-MAPPS datasets

reported in [144]. We also compare to the CNN method proposed in [140] and the
multiobjective deep belief networks ensemble (MODBNE) proposed by [240] all of
which reported high-performance results in the studied datasets.

In Table 3.3, we present the results of the proposed model using the RMSE
performance. As it can be observed, our model achieves lower RMSE values for
datasets FD002 and FD004, i.e., in datasets with more operating conditions. Our
model results in 21% (FD002) and 11% (FD004) relative improvement over the best-
reported RMSE. For the remaining datasets, our models are worse than the ones
reported in [144] but still comparable, with an 8% (FD001) and 3% (FDO003) per-
formance reduction. We point out that unlike the GA + LSTM method, we do not
use heuristic search to select the best-performing hyperparameters for each dataset
and thus expect that the single architecture may not yield the best results without
tailoring its hyperparameters.

We compare our models in more detail with LSTM [243] and GA + LSTM [144].
In the first, the architecture proposed is similar to our model; however, several dif-
ferences are present. In our implementation, we do not pre-cluster the operating
conditions on datasets FD002 and FD004. Moreover, we train our model over time
windows of the input sequence, as seen in Section 3.4.4, tuning the time-window
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size leads to the most improvement. When compared to GA + LSTM, our method
differs on the lack of pretraining of the network and in the overall final architecture,
including activation functions. Furthermore, we use a much smaller time window
for training. Lastly, different from both methods, we normalise both inputs and
outputs to the 0-1 range, which helps to stabilise learning. After weight optimisa-
tion, the output is multiplied by R, to recover the original (rectified) values. As
shown in Tables 3.3 and 3.4, the rectified RUL values are similar to other others in
the literature and match the ones proposed in [140].

Notably, the architecture results in higher performance gains for FD002 and
FD004 than the other datasets. We have noted that including the raw operating
conditions features in the model, selecting the correct time window for propagat-
ing gradients in the network and increasing the number of hidden neurons in the
LSTM layers led to the most benefits for these datasets. Different from previous
approaches, using non-clustered operational settings leads to better predictions in
our proposed architecture. Moreover, increasing the number of hidden neurons
increases the neural network’s capacity to extract more complex features of the
multiple operating conditions of FD002 and FD004. We argue that this modifica-
tion also improves performance in the attention model as the attention mechanism
can attend to a more complex hidden representation of the input space before a
prediction.

In Table 3.4, we observe that our method can achieve much lower scoring val-
ues for dataset FD002 yielding a 52% relative improvement over the best-reported
results. In our tests, the average observed rectified RUL of FD002 is 73.69 while the
predicted values from our method average at 71.34. These results do not necessarily
translate in the same magnitude as the RMSE results because the RMSE weighs both
positive and negative errors equally and averages the errors. On the other hand, the
scoring function is summed across all test engines, and any positive deviation can
cause major changes in its value. We can observe that results present similar per-
formance to previously proposed methods with the attention model, even though
we do not optimise for the scoring metric.

3.5.2 Attention Weights

The model combined with an attention layer has achieved similar performance to
the models containing just LSTM and fully connected layers. A small improvement
in RMSE can be achieved for FD004 and FD002. While for the scoring function, the
LSTM + A model only outperforms the original LSTM model for the FD003 dataset.
We expect attention to be beneficial when generating long sequences in which out-
puts may depend on a different part of the input sequence. In our prediction task,
the output is the RUL at the next step, and the hidden vectors at time ¢ are expected
to learn most of the relevant information for predicting this next step. Nonetheless,
adding the attention mechanism benefits the more complex datasets with more op-



Chapter 3 57

erating conditions and fault modes. The data in FD002 and FD004 are more diverse
and have different sensor value variations of the multiple operating conditions and
fault modes. In this case, we argue that the attention network is given a chance to
learn these more diverse temporal relationships and attend to different parts of the
input relevant to different engines under multiple conditions.

The attention weights in Eq. (3.9) can be retrieved to observe the importance the
networks give to each time step of the context vector. This can help us interpret
which timesteps the network focuses on to make the RUL predictions for the next
time step. It is important to notice that in our attention mechanism, the network
has access to both a context vector and the last hidden state /;. This architecture
choice has the effect of forcing the network to attend to parts different from the last
timestep before a prediction, which we expect to be the most relevant hidden state
for the prediction at the next timestep.
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Figure 3.4: Average attention weights starting 100 time steps before a failure for
validation examples in each dataset.

In Figures 3.4 and 3.5, we present the average and standard deviations of at-
tention weights over validation examples starting 100 timesteps before a failure. In
the figures, the vertical axis corresponds to a timestep, with the topmost value cor-
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Figure 3.5: Standard deviation of attention weights starting 100 time steps before a
failure for validation examples in each dataset.

responding to 100 timesteps before a failure and the horizontal axis representing
the size of the time window, with the leftmost side representing the farthest time
step from the current RUL prediction, i.e., x;_t1,4+1. Thus, each row in the graphs
corresponds to the average and standard deviation of the attention weights of the
validation examples for each timestep in the time window.

We observe that at the start (top), the network does not focus on specific tem-
poral parts of the inputs to make a prediction, assigning similar attention weights
to all previous timesteps. In general, Figure 3.4 shows that as time progresses and
the predictions approach the end of lifetime, attention is shifted to either the begin-
ning of the time window (farther away from the prediction time on the left) or to
the last timesteps (closer to the prediction time on the right). This is can be seen in
more details for FD001, in Figures 3.4a and 3.5a, and for FD003 in Figures 3.4c and
3.5¢c. In these cases, at the end of the lifetime, the average attention weights shift to-
wards the beginning of the time window, i.e., further away in the past. Nonetheless,
the standard deviation values show that attention is shifted towards the end of the
time window, closer to the current timestep. As it can be observed in Figures 3.4b
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and 3.4d, the attention weights of FD002 and FDO004, present a similar pattern with
attention shifting towards the beginning of the time window as engines degrade.
However, weights are more uniform across the other timesteps in comparison to
FDO001 and FD003.

We also present two specific examples, one for an engine of FD001 in Figure 3.6
and one for an engine of FD004 in Figure 3.7. In the figures, we present selected
sensor values, the learned attention weights and the RUL prediction at each time
step. In Figure 3.6, we observe how attention weights shift towards the end of
the time window as sensors start to show a degradation trend. This indicates that
the network can attend to the changing values in the input. We also notice that
the learned attention weights are lower in the central part of the time window as
degradation increases. As the trend and slope of the sensor sequences are important
for degradation estimation, the network learns to focus both on older and more
recent values, indicating that it is focusing on how much the sensors are changing
in the given time window. In Figure 3.7, we observe that the sensors in Figure
3.7a are more irregular and tend to show smaller changes of slope as degradation
increases. Nonetheless, the learned attention weights in Figure 3.7b show that the
network has learned to focus its attention on similar parts of the input as time
progresses, mostly focusing at the beginning and end of the time window as RUL
approaches zero. However, the weights are more evenly spread across the time
window. That is, the weights focus on information from different parts of the time
window, possibly due to the spikes observed in the sensor data.

These results offer new insights into how the time-related features are used by
the LSTM architecture while making RUL predictions. For example, a network con-
taining attention mechanisms trained to identify faulty behaviour can be used to
inspect input sensor values as time progresses. As it is hard to inspect all incom-
ing sensor data visually, attention mechanisms could offer a visualisation method
for fault prognostics and identification. In such cases, a temporal visual inspec-
tion would offer a representation as to when faulty behaviour starts. Such early
warnings could be used to predict future failures in highly complex systems with a
multitude of sensors.
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3.6 Conclusions

In this chapter, we proposed an architecture based on long short-term memory
(LSTM) for RUL prediction. Our architecture is enhanced with an attention mechan-
ism that focuses on different parts of the sequential input relevant for the prediction.
Moreover, the attention weights can be used to visualise the temporal relationships
between inputs and predicted RUL outputs.

Our results show that the proposed methodology is competitive with other pro-
posed methods for RUL predictions. We show the model’s effectiveness in compar-
ison to other state-of-the-art deep learning methods on the same task. The learned
attention weights show that the LSTM network focuses on different parts of the tem-
poral input while predicting which part of the degradation cycle. Our results show
that the learned attention mechanism can be used to visualise the trained weights
and offer better insights into the relationship between temporal inputs coming from
sensors and the output RUL predictions.
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Appendix

3.A Appendix A: C-MAPSS datasets

The Commercial Modular Aero Propulsion System Simulation (C-MAPSS) datasets
are engine degradation simulation datasets. Four different datasets are simulated
under different combinations of operating conditions and fault modes. Each dataset
records several sensor channels and fault evolutions. These datasets are provided
by the Prognostics Center of Excellence at the American National Aeronautics and
Space Administration’s (NASA) website [167].

The C-MAPSS simulates an engine model of the 90,000 b thrust class (see Figure
3.8) and atmospheric models capable of simulating (i) altitudes from sea level to
40,000 ft, (ii) Mach from 0 to 0.9 and (iii) sea-level temperatures from -60 to 103 °F
[191]. The C-MAPSS also allows for a power management system that allows the
engine to be operated over a wide range of thrust levels throughout the full range
of flight conditions. Moreover, the control system consists of a fan speed controller,
regulators and limiters. The limiters include high-limit regulators that prevent the
engine from exceeding its designed limits for core speed, engine-pressure ratio, and
high-pressure turbine (HPT) exit temperature, and a limit regulator that prevents
the static pressure at the high-pressure compressor (HPC) exit from being too low
and acceleration limiters of the core speed [191]. The C-MAPSS can produce several
outputs of the simulated engines.

F Combustor N1
an LPT

Nozzle

LPC  HPC N2 HpT

Figure 3.8: A schematic overview of an engine modelled via C-MAPSS. HPC: high-
pressure compressor, LPC: low-pressure compressor, HPT: high-pressure turbine,
LPT: low-pressure turbine, N1: low-pressure spool speed, N2: high-pressure spool
speed. Adapted from [191].

Each of the four datasets (FD001, FD002, FD003 and FD004) has multiple time
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series. Each time series corresponds to a different engine, i.e., each dataset has a set
of engines of the same type. Each engine starts with different degrees of initial wear
and manufacturing variation, which is unknown. This level of wear is considered
normal, i.e., not faulty. There are three operational settings that have a substantial
effect on engine performance. These settings are also included in the data. The data
is also contaminated with sensor noise.

The engines are operating under normal conditions at the start of each time
series and start to degrade at some point during the series. In the training sets, the
degradation grows in magnitude until a predefined threshold is reached beyond
which the machines are considered to have failed (run-to-failure data). In the test
set, the time series end some time prior to complete degradation. The C-MAPPS
datasets contain information coming from 21 sensors measurements as well as 3
operational settings. A detailed description of the sensor measurements is presen-
ted in [191]. The operating conditions in the datasets vary between one (sea level)
in FD001 and FDO003, to six, based on different combinations of altitude (0 - 42000
feet), throttle resolver angle (20 - 100) and Mach (0 - 0.84) in FD002 and FD004.
Also, fault modes vary between one (HPC degradation) in FD001 and FD002 and
two (HPC degradation and Fan degradation) in FD003 and FD004.
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Predicting Remaining Useful
Lifetime under Varying
Operating Conditions

In data-driven asset prognostics, sufficient prior observed degradation
data is critical for remaining useful lifetime predictions. Most machine
learning methods assume that training (source domain) and testing
(target domain) condition monitoring data have similar distributions
and feature representations. However, due to different operating condi-
tions, fault modes and noise, distribution and feature shift exist across
different domains. In the best case, this shift reduces the performance
of predictive models when no run-to-failure data is available for re-
training in the target domain. In the worst case, it is necessary to wait
for run-to-failure information to train new methods. To address these
issues, this chapter focuses on a data-driven approach for domain ad-
aptation in prognostics to adapt remaining useful life estimates to a
target domain, containing sensor information from remote monitoring
devices but no data about the remaining life of assets.

This chapter is based on [51].

65
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4.1 Introduction

Prognostics and health management (PHM) is aimed at increasing reliability, avail-
ability and reducing maintenance costs of assets [10]. In PHM, remaining useful
lifetime (RUL) relates to the amount of time left before a piece of equipment is con-
sidered not to perform its intended function. Therefore, accurate RUL prognostics,
i.e., predicting point-estimates of the remaining lifetime of assets, enable the inter-
ested parties to assess an equipment’s health status and to plan future maintenance
actions, e.g., logistics of personnel, spare parts and services [176].

With abundant conditioning monitoring data, machine learning methods can
be used to learn degradation models directly from data. Unlike physics-based [47]
and statistical-based [199] models, machine learning models in PHM can be applied
without prior degradation knowledge [137]. Specifically, neural networks have been
receiving much attention given their ability to approximate high dimensional non-
linear functions directly from raw data [70]. Moreover, several deep neural network
architectures built to support temporal inputs have been successfully applied to pro-
gnostics problems, e.g. recurrent neural networks (RNN), long short-term memory
(LSTM) [144, 243] and gated recurrent units (GRU) [232].

However, in classical machine learning, models need enough annotated histor-
ical data to achieve a significant performance level [140, 243]. Presumably, interested
parties already adopt time-based maintenance policies and observing run-to-failure
data is difficult. To overcome this problem, methods have to find ways to handle
censored data [98] or use simulated data, which may lead to imperfect models that
do not represent real-world scenarios. Even when enough run-to-failure data are
available, algorithms trained for one specific task cannot be generalised to different
but related tasks. For example, an algorithm trained for prognostics for a partic-
ular fault mode often does not generalise well to other fault modes under similar
machinery conditions [137].

To address these issues, learning models trained with specific run-to-failure data
have to adapt to data with different input features, data distributions and lim-
ited fault information, i.e., different domains. In machine learning, this situation is
referred as domain adaptation [174], a sub-problem of transfer learning. Several al-
gorithms were proposed to different flavours of the domain adaptation problem [71,
75, 114, 214]. More recently, adversarial deep neural networks have shown strong
performance in domain adaptation in fault diagnosis and other complex tasks, e.g.,
computer vision. However, many adaptation methods are less suitable for mul-
tivariate sensor data as they do not consider temporal dependencies of sequential
data. As a result, general deep domain adaptation methods are hardly applicable
to common scenarios in RUL prognostics.

In this chapter, we propose to use LSTMs [97] to address the problem of learning
from temporal data across related domains with different operating conditions and
fault modes. We learn from a source domain with run-to-failure annotated data and
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a target domain containing only sensor data, i.e., we consider an unsupervised do-
main adaptation problem. We perform adversarial learning similar to [75] to learn
common domain-invariant feature representations in an RUL regression task. To
the best of our knowledge, we are the first to focus on unsupervised domain ad-
aptation for PHM under the given setup. To showcase the efficacy of the proposed
algorithms, we use the NASA Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPPS) turbofan degradation datasets [191]. We present the results of
the proposed method against other adapted and non-adapted models in predicting
the RUL of aircraft engines.

Contributions and Organisation We summarise the main contributions of this
chapter as follows:

1. We propose a novel methodology for RUL prediction that can handle feature
distribution shift across domains under different operating conditions and
fault modes.

2. Unlike most unsupervised domain adaption methods in PHM, we incorpor-
ate heterogeneous temporal data from multiple sensors in an RUL estimation
task.

3. We show in our experiments that the proposed method improves prognostics
predictions on unlabelled target data, i.e., without observed RUL values, com-
pared to non-adapted methods.

The remainder of this chapter is structured as follows. In the next section, we
briefly discuss previous works in deep learning for prognostics and domain ad-
aptation. In the subsequent section, we present our model detailing the learning
algorithm and architecture. In Section 4.4, we describe the experimental design
used in this paper. In Section 4.5, we present the learning procedure and detail the
choice of model hyperparameters. Lastly, in Section 4.6, we compare and contrast
the performance of proposed methods and provide an analysis of the results.

4.2 Related Literature

Deep Learning for RUL Prediction In PHM, several artificial intelligence methods
have been proposed to predict the RUL of engineering assets [26, 88, 210, 244]. In
special, feed-forward neural networks (FFNN) have drawn special attention given
their ability to approximate complex functions directly from raw data [106, 135].
However, in many PHM applications, multi-dimensional temporal data is present.
Architectures such as RNNs are a natural fit as their recurrent structure can handle
temporal input data. However, RNNs have limitations when learning long-term
dependencies due to vanishing gradient issues [25]. To address these issues LSTM
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[97] and GRU [43] networks were introduced. Such networks have internal gates
that enable them to preserve their memory state over a longer period and reduce
vanishing gradient problems.

In particular, LSTMs have shown strong performance in RUL prognostics. [237]
showed that LSTMs could outperform RNNs, GRUs and Adaboost-LSTM for an
RUL prediction. [232] showed similar results by training an LSTM after extracting
dynamic difference features. [243] showed that a sequence of LSTM layers could
outperform other architectures, including convolutional neural networks (CNN).
Recently, [144] showed that restricted Boltzmann machines could be used for unsu-
pervised pretraining. In this two-stage method, a parameter optimised LSTM yields
high performance in the C-MAPPS datasets outperforming previous architectures
[140].

Other deep architectures have been proposed for PHM applications. For in-
stance, [11] proposed a 2D CNN based and showed competitive results when com-
pared to an FFNN, a relevance vector regression and support vector regression.
[140] proposed a 1D CNN that show competitive results on the C-MAPPS datasets
with lower training times when compared to recurrent models. However, vanilla
CNNs do not maintain long-term temporal dependencies and are less suitable for
long sequences of varying lengths.

Deep Domain Adaptation Methods Most prognostics studies have assumed ac-
cess to enough run-to-failure information. Assumptions also included training
(source) and future (target) data coming from the same distribution and feature
space [11, 140, 144, 237, 243]. However, in real-life PHM scenarios, RUL values may
be absent and come from different marginal distributions. Examples include data
coming from different devices in varied operating conditions.

In unsupervised domain adaptation, algorithms are built to handle domain shift
in the distribution and feature spaces [174]. Initial methods in unsupervised ad-
aptation attempted to re-weight source example losses to reflect the target distribu-
tion [105, 114]. However, re-weighting often assumes a restricted form of domain
shift and selection bias. On the other hand, subspace alignment methods attempt
to learn a mapping function that aligns the source and target in a different sub-
space [71]. Maximum mean discrepancy (MMD) [82] based methods (e.g., transfer
component analysis (TCA) [173] and joint distribution adaptation (JDA) [149]) can
be interpreted as moment matching methods over first-order statistics using ker-
nel tricks. Similarly, CORrelation ALignment (CORAL) [202] attempts to align the
second-order statistics between source and target domains.

In classification, domain-adapted neural networks have outperformed previous
methods. In general, methods have attempted to restrain the target error by the
source error plus a notion of the discrepancy between the source and the target do-
mains [22]. For example, [148, 215] incorporate MMD metrics in the loss function to
reduce domain discrepancy. Similarly, [203] propose to incorporate a CORAL loss
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function for the same purpose. Another approach, based on [22], uses a proxy of the
‘H-divergence to minimise the difference between source and target domains to dir-
ectly find common representations that reduce the difference across domains [75].
Adpversarial learning [81] methods have also shown high performance on domain
adaptation [75, 180, 214]. For example, [214] proposes to pre-train a classifier in the
source domain task and a discriminator to learn a target representation. Domain
adversarial neural networks (DANN) [75] aims at finding a common feature space
where source and target domain distributions are minimised via a loss inspired
by the theory in [22]. More important, DANN can outperform metric minimisa-
tion methods while requiring a simple regularisation term based on a classification
loss function. Similar to our work, [180] proposed an adversarial method using
variational recurrent autoencoders and showed promising results in a classification
task using healthcare data.

In regression, the theory in [46] presented point-wise loss guarantees in domain
adaptation for a broad class of kernel-based regularisation algorithms. The res-
ults are based on the more general discrepancy distance that is tailored to compare
distributions in adaptation with arbitrary loss functions [156], building upon the
theory for 0-1 loss functions in [23]. Other works proposed to factorise a multivari-
ate density into a product of bi-variate copula functions to identify independent
changes between domains [150]. Recently, [169] have introduced a domain-invariant
partial-least-squares regression using a domain regulariser to align source and tar-
get distributions in a latent space. However, few works have attempted to perform
domain adaptation in regression when the input data are composed of temporal
multivariate data [9].

Domain Adaptation in Prognostics In PHM, most methods for domain adapta-
tion have focused on classifications tasks. On classic unsupervised domain adapt-
ation, [234] have achieved better cross-domain classification results using TCA for
gearbox fault diagnosis. In neural networks, [152] proposed a deep model where
the MMD metric is employed to reduce domain discrepancy in fault diagnosis. A
CNN approach based on wide first-layer kernels is proposed to perform adaptation
in the presence of noisy data [241]. Similarly, [142] have proposed a muti-kernel
MMD regularisation CNN. Recently, [141] proposed a deep generative model to
generate fault target data using a labelled source domain and an unlabelled target
domain resulting in better classification performance.

Relevant to our work, [238] proposed a supervised domain adaptation approach
by exploiting labelled data from the target domain using the C-MAPPS datasets.
The method aims to “fine-tune” a bi-directional LSTM previously trained on the
source domain. Unlike our approach, this method requires target labelled RUL
data and does not optimise towards common feature representations. In our work,
we build upon previous works using LSTMs for RUL prediction [144, 232, 237, 238,
243]. To handle domain shift, we perform unsupervised domain adaptation from a
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labelled source domain (containing observed RUL values) to an unlabeled target
domain. We use a gradient reversal layer (GRL) [75] to learn domain-invariant
features via adversarial learning (see Section 4.3.5). We validate our method on
the C-MAPPS datasets using source-target pairs under different fault modes and
operating conditions.

4.3 LSTM Domain Adaptation Network

In this section, we detail our domain adaptation model to predict the RUL of assets
across domains with different fault modes and operating conditions. We first intro-
duce the problem and the notations used in the paper and then further discuss the
proposed method and its components.

4.3.1 Problem Definition

We denote a source domain data Dg = {(x, y’) lN:Sl, containing Ng training ex-
amples, where xs belongs to a feature space Xs and denotes a multivariate se-

quential data of length T; and g5 features, i.e., xfs = [xt}til e RIs*Ti, Moreover,
y's € Vs denotes RUL values of length T; with y's = [yt]til € IR1>XOTi. Where for
each t € {1,2,.., T;}, xt € RS and y; € R>( represent the t-th measurement of all
variables and RUL labels, respectively. Similarly, we assume a target domain data
Dy = {x’T}lI\Z, where x%— € X7 and X7 € R97*Ti but no labels are available. We
assume Dg and D7 are sampled from distinct marginal probability distributions,
and have different feature spaces.

Our goal is to learn a function gy with learnable parameters 6 such that we can
approximate the corresponding RUL in the target domain examples at testing time,
ie., y%- ~ gg(xir). Clearly, our assumption is that the true mapping between input-
output pairs is somewhat similar across domains for adaptation to be possible. At
training time, we have access to source training examples and their real-valued
labels Dg and we assume access to training examples from the target domain D,
i.e., an unsupervised domain adaptation setup. We assign a domain label d € {0,1}
to each i-th training example to indicate the domain it originates.

4.3.2 Time Windows Processing

To handle different sequence lengths in different domains, we employ a sliding
time window approach. Let x = [xt}til, where T; denotes the size of each sequence
length. We define a function ¢; that divides each sequence of size T; in sequential
time windows of size Ty, i.e., ¢;_1(x) = [x;_1,, ..., X;—1]. After the transformation,
previous sensor data within the time window [x;_7,,...,x;_1] are collected to form
an input vector to predict y;, where t > Ty,. If T; < T, we apply zero-padding
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(pad the sequence with zeros) on the left side of x' until T; has size T, + 1. This
ensures that each original time series will have n; = T; — T, training samples. We
define as Ng and Ny the updated number of examples after the transformation,
ie, Ng = le-\isl n; and Ny = Zf\z n;. In a slight abuse of notation, we assume that
the labels of each complete time series are broadcasted to all inputs after the time
window transformation, where d’ = 0 for i € {1,...,Ns} represents inputs from
the source domain and d’ = 1 for i € {1,..., Ny} representing samples from the
target domain. We maintain T, fixed across source and target domains to allow the
same number time steps influence RUL predictions.

4.3.3 Long Short-Term Memory Neural Network

LSTMs have been proposed to accommodate temporal relationships between inputs
and outputs in PHM when enough training data is available [11, 140, 144, 237, 243].
Such networks offer recurrent connections to encode temporal data and control how
information flows within its cells by updating a series of gates. In our proposed
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Figure 4.1: LSTM memory cell. Adapted from [170].

model, we use LSTM layers to extract temporal features from the time window of
size Ty. In our implementation, the memory cell (Figure 4.1) consists of three non-
linear gating units that update a cell state C; € R¥, using a hidden state vector
hi—1 € R* and inputs x; € RY of the form:

fi=0o (fot + tht,1 + bf) 4.1)
=0 (Wl-xt + Rihy_1 + bl) (4.2)
oy =0 (Woxt + Roht—l + bo) (4.3)

where ¢ is the sigmoid activation function responsible for squeezing the output
to the 0-1 range, W; € R**1 are the input weight matrices, R, € R*** are the
recurrent weight matrices, and bs € R" are bias vectors. The subscript s can either
be the forget gate f, input gate i or the output gate 0, depending on the gate.
After computing f;, iy and o; € R¥, the new cell state Et candidate is computed
as follows:
ét = tanh(cht + Rchy_1+ bc) (4.4)
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Similar to the gate operations: W € R**1, Rc € R***, and b € R*. The
previous cell state C;_1 is then updated to the new cell state C;:

Ci=fOC1+it©C (4.5)

with © denoting the element-wise multiplication.

In the previous equations, the forget gate f; is responsible for deciding which
information will be thrown away from the cell state. Next, the input gate i; decides
which states will be updated from a candidate cell state. The input and forget gates
are then used to update a new cell state for the next time step. Lastly, the output
gate o; decides which information the cell will output and the new hidden state h;
is computed by applying a tanh (hyperbolic tangent) function to the current cell
state times the output gate results.

]’lt =0 ©® tanh(Ct) (46)

4.3.4 Domain Adversarial Neural Networks

Unlike other domain adaptation methods, domain adversarial neural networks
(DANN) [75] aims at combining domain adaptation and feature learning in one
training procedure, such that predictions can be made on features that are both
discriminative and invariant to the domains. This way, learned weights could be
applied directly to the target domain without having its predictive quality degraded
by domain shift. DANN achieves this goal by relying on the notion of H-divergence
[22, 23] measuring the distance between two domain distributions.

Definition 4.1 ([22, 23]). Given two domain distributions DS and D, and a hypothesis
class H being the set of binary classifiers h : X — {0,1}, the H-divergence between ng
and D% is

dy(Ds, D7) =2 sup | P,_pr (h(x) =1) = P_px (h(x) = 1) |
her s T
In words, the H-divergence relies on the capacity of the hypothesis class to dis-
tinguish between domains [75]. [22] showed that for a symmetric hypothesis class
H, one can calculate the empirical #-divergence dy;, by measuring the divergence
between two samples Dg ~ D% and Dy ~ D)T“/ of the marginal distributions as

. 1 Ns . 1 Nz )
dy (Ds, D7) = 2<1 - 21;171{1 {Ns Z‘:Z%]l[h(xfg) =0]+ N—T ;]l[h(x’fr) = 1]}) 4.7)

where 1 4] is the indicator function which is 1 if argument 4 is true, and 0 otherwise.
[22] shows that even if dy, is too hard to compute, we can approximate it by
learning a classifier on the problem of discriminating between source and target
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examples. Then, the risk of the classifier trained on this problem approximates the
minimisation part of Equation (4.7) [23]. Given an empirical risk € on this domain
classification problem, the H-divergence is then approximated by the proxy .A-
distance [23]:

dy=2(1-2e). (4.8)

The A-distance, for which the above equation is a proxy, can be expressed as
dA(Dg,D7)§) = 2suUp,c 4 |PD§ (a) — PD%((a)|, where A is a set of subsets of X, is
the same as the 7{-divergence by choosing A to be the set represented by the binary
characteristic function h(x) = 1 [22, 23].

DANN works by estimating the minimisation part of Equation (4.7) by including
a regularising term in a neural network loss function. It proposes to learn a trade-off
between the source risk (main task) and the empirical H-divergence. It attempts to
control the H-divergence by finding representations where both the source and the
target domain are as indistinguishable as possible [75]. In other words, it ensures
that the representation of the neural network contains less discriminative inform-
ation about the domain of the inputs while inducing low approximation error on
source examples.

To learn features that are at the same time discriminative and domain-invariant,
the loss function of DANN is designed to include a regularisation factor that ap-
proximates the #-divergence. First, source and target inputs are mapped through
feature extraction layers that map inputs into a new space representation paramet-
rised by ;. Prediction layers map this new space to an output of the original
classification task parametrised by weights 6,. Training such a neural network us-
ing a prediction loss £} for the i-th example leads to the following optimisation
problem:

in [ £1(6,,6,) + aR(0 49
min ngﬁy(p y) +aR(6f) (4.9)
where R(0y) is a regularisation factor and « is a scalar.

Inspired by the proxy of the A-distance, DANN works by using a domain clas-
sifier parameterised by 6; and learns a logistic regressor £fj (see Equation (4.15))
modelling the probability that a given input belongs to the source or target do-
main. It then computes an approximation of the H-divergence in Equation (4.7) as
2(1—R(0¢)), by including a regularisation term:

(¢ L3 230500 - 5 Y- £40,00)

R(Of) =max | — — ) LL(0,0;) —— ) L,(0+0, (4.10)
f 04 Ns 1:21 s Nt ,:21 s

Combining Egs. (4.9) and (4.10) gives rise to a minimax (adversarial) optimisation
procedure. DANN proposed to learn this problem by stochastic gradient proced-
ure, in which updates are made in the negative direction of the gradient for min-
imisation steps and the direction of the gradient for maximisation steps. Important
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to training the algorithm is the gradient reversal layer (GRL). During the forward
propagation, the GRL acts as an identity transformation. However, during back-
propagation, the GRL takes the gradient from the subsequent level and changes its
sign. The GRL is inserted between the feature extractor and the domain classifier.
Therefore, running stochastic gradient descent (SGD) in the resulting architecture
implements the adversarial updates (see Equations (4.18) - (4.20)) optimising to-
wards a saddle point of the DANN loss function.

In our problem, the (empirical) source risk is computed for a regression loss
instead of the 0-1 loss of [22, 23]. To approximate the 0-1 source risk with our re-
gression risk we bound the labelling function f : X — [0,1], where y = f(x) are
the values that we aim to learn and employ a loss function L,(g, f) = [g(x)—f(x)],
where ¢ : X — [0,1] [23]. Note that we relate functions ¢ and h, by a shared
mapping function z, where ¢(x) = (goz)(x) and h(x) = (hoz)(x). In our im-
plementation, we approximate the error of the classifier between the two domains
as logistic regression, bound the labels of the source regression risk between [0, 1]
and ensure that the initial parameters of the neural network module do not output
values outside the bounds of the labelling function (see Section 4.3.5).

One can theoretically achieve better bounds on the domain adaptation task for
regression by bounding the target risk using the empirical source risk Rp s(8) =

N%g Ef\isl L(g(x'),y) plus an approximation of the more general discrepancy metric

[156], defined as disc, (DY, D) = maxg,g/eﬂRDg (¢,9) — RD¥ (¢,¢")|, where F
is a set of functions mapping X to Y and Rq(g,8') = Eg[L(g,g)] is the risk
under distribution Q over X considering the loss function £ : Y x Y — Rxo.
The discrepancy metric includes the .4-distance as a special case under the 0-1 loss
and A = HAH = {|h—H| : h i € H}, ie., the disagreement set between the
two hypothesis [156]. Note that one can more explicitly minimise the regression
objective using the discrepancy metric as

min Rpg(g) +discc(Ds, D7) (4.11)
ge<

where approximating the maximisation in the empirical discrepancy measure,
discy(Dg, D7) leads to a similar minimax problem as the one solved in DANN.
For example, one can solve for ¢ and g’ the empirical approximation of the discrep-
ancy measure disc, as

1 Ns 1 N

s s L8006 (5 02)(x6) — - L £((g02) (). (5 02) ()
(4.12)

in combination with the objective in Eq. (4.11). However, even for fixed g, applying
the minimax objective to the above equations can lead to numerical instability due
to unbounded g(x) in the maximisation. In our implementation, we approximate
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the discrepancy metric employing as a proxy the empirical H-distance, which upper
bounds the HAH-distance [22, 156], by learning a classifier to distinguish between
domains. In the following sections, we show that this approximation allows us
to adapt RUL predictions to the target risk learning from the bounded labelling
function of the source domain.

43.5 LSTM Deep Adversarial Neural Network

Our model, referred as LSTM-DANN and depicted in Figure 4.2, is trained to
predict for each input x, real values y for the source domain, and domain labels
d € {0,1} for the source and target domains, respectively. Similar to [75], we use a
DANN approach and decompose our learning method in three parts. Our feature
extractor gy, first decomposes the temporal inputs by a combination of LSTM lay-
ers mapping to a hidden state h;_; € R*. Later, it embeds the LSTM outputs via
a fully-connected (FC) layer into a feature space f € R!. We denote the vector of
learnable parameters in this combination of layers as 0, i.e., f = g¢(¢1-1(x);0y).
This new feature space f is first mapped to an otherwise real-valued y; label via
a function gy (f;6,) composed of FC layers with parameters 0,. Lastly, the same
feature vector f is mapped to a domain label d by a mapping function of FC layers
24(f;0,) with parameters 6.

During training, we aim at minimising a source regression loss ﬁ; using the
observed RUL values from the source domain yk. Thus, the parameters of the fea-
ture extractor and regressor are optimised towards the same goal, i.e., minimising a
regression loss. This ensures that features f are trained towards the main learning
task. We also aim at finding features that are domain invariant, i.e., find a feature
space f in which D§ and D% are similar. To address this contrasting objective, we
look at an auxiliary loss £, over the domain classifier function g;(f;6;). We want
to estimate the dissimilarity between domains by inducing a high adversarial loss
in features 0y when the domain classifier g;(f; ;) has been trained to discriminate
between the two domains [75]. We consider the losses from here onwards to be the
loss of each time step of the transformed time series.

We train the model in an adversarial procedure [81]. In the first pass, we learn
features by minimising the weights of the feature extractor in the direction of the
regression loss L, between a prediction and a label y. In the second pass, we
train the algorithm to maximise the same weights in the direction of a domain-
classification loss that is being trained to minimise its overall domain classification
error L. In other terms, we define the model loss functions in terms of the learning
function g and parameters 6 = {6 iz Oy, 6,;} and minimise the combined loss function
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Figure 4.2: The proposed LSTM-DANN architecture (best seen in colours). Source
and target temporal inputs are divided in sequential time windows of size Ty,. The
network’s shared weights first extract temporal information from input features via
LSTM layers (light grey). After, the last hidden state of the LSTM layer is passed
to the feature map f (dark grey). The feature map f is mapped to two functions: a
source regression loss on the source examples responsible for learning weights that
predict the RUL at time t (yellow), and a domain classification loss on the source
and target examples aimed at classifying domains (blue). A GRL is inserted in the
connection between features f and the classifier. This layer inverts the sign of the
gradient in the backward pass, making the weights of the feature extractor maxim-
ise towards the domain classification loss while the specialised weights minimise
towards the same loss.

based on the empirical risk £ expressed as:

1 Ns T;
£(6f,6y,6d Ns Z;t ;+ E Gf, < Zﬁd Bf,é)d Zﬁd Gf,Gd)>

(4.13)
where we write the Lh.s. of the empirical risk explicitly w.r.t. each timestep, and

1
the losses £yt,

Ef;l are expressed as:
i|P

Ly, (05,6y) = ’12’2 -, (4.14)

L5(04,0y) = — (di logd' + (1 —d)log(1 — di)>, (4.15)
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respectively. In the equations, §J; is the RUL prediction at time t coming from the
source domain, ie., i = gy (gf(cpt_l(xfg) ;0¢);0y) and d' is the domain prediction
from source and target domains, i.e., d; = gy (gf(xi; 0r);04)- E;(Qf, 6y) is a regres-
sion loss that when averaged takes the form of the mean absolute error (MAE)
when p = 1 and the mean squared error (MSE) when p = 2. Efi(@d, fy) is the binary
cross-entropy loss between domain labels d* and « is a positive hyperparameter that
weighs the domain classification loss during training.

We optimise the loss function £ by searching for a saddle point solution 8 Iz éy, 0.,
of the minimax problem below:

(éf, éy) = arggrfl,ieryl E(Bf, 0y, @d) (4.16)
0, = arg max E(éf, éy, 64) (4.17)
d

and update the learning weights in the network we use gradient updates [75] of the
form:

oL! oL!
. v d
9f<—6f A(aef Oéaef>, (4.18)
0, < 6, — A 9Ly, (4.19)
Y Y agy ’ :
oL!
6d<—9d—)\<zxagd>. (4.20)
d

We use stochastic estimates of the updates in Equations (4.18) - (4.20) via SGD
and its variants. The learning rate A represents the learning steps taken by the SGD
algorithm as training progresses. To achieve the desired updates, we use a GRL [75]
alongside the gradient updates. The GRL makes it possible to learn the weights
without many transformations of current implementations of the backpropagation
algorithm in deep learning libraries.

43.6 LSTM-DANN Architecture

The architecture of our proposed network, depicted in Figure 4.3, is composed
as follows. We implement two network architectures, one taking source training
examples optimising towards the source regression loss and one taking the source
and target examples optimising towards the adversarial objective of the domain
classifier. The LSTM layers and FC layer are shared across the two networks. This
implementation allows for two learning rates (A4, Ay) that can be selected while
training the algorithm. The number of LSTM layers and FC layers in the source
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regression and domain classification networks are hyperparameters of the model.
However, the number of FC layers in the feature extraction portion of the networks
is fixed at one. Moreover, we use dropout [201] after each layer in the feature
extractor, source regression and domain classification networks. Additionally, we
apply Ly regularisation on the weights 6; of the domain classifier and 6, of the
source regression in Equation (4.13).

Weight updates w.r.t. Source Regression Weight updates w.r.t. Domain Classifier
S 04 f (2]
o) . [2) Domain
LsTM 8 > re+reu o | {xs,xr} —> LSTM B > Fo+Relu —{ |>gonin
! shared : i shared
U oweights | | weights !
Loe 7
o 0, ; 2%
Source LSTM FC +RelLU —>
{xs.ys} —> LSTM + FC+ReLU —> > o

Figure 4.3: The architecture of the LSTM-DANN. LSTM layers and an FC layer are
shared among two networks. During training, source examples and RUL values in
the first network are passed to the network to update weights 6 and 6, to minimise
the source regression loss. Source and target examples are passed to a second
network aimed at optimising towards a domain classification loss. Weights 8; are
minimised towards the classification loss, while weights 6, are maximised towards
the same loss via the GRL.

In the source regression, both the shared weights 6y and the source regression
weights ¢, are minimised towards the regression loss in Equation (4.14). In the
domain classification network, a GRL is inserted between the minimisation and
maximisation portion of the network, i.e., between f and FC layers in the domain
classifier. This way, feature extraction weights ¢ are minimised towards the regres-
sion loss in the first network and maximised over the minimised weights 6, of the
domain classifier network in the second pass. We continue this dual optimisation
procedure until no further improvement is seen (see Section 4.5.1). An identity
function maps the output of the source regression to the normalised RUL in the
0-1 range at each time step, whereas a sigmoid function squeezes the output of the
domain classifier between 0-1. All FC layers, albeit those in the output layers, are
followed by a rectified linear unit (ReLU) activation function in our implementation.

4.4 Design of Experiments

In this section, we describe the dataset details, the data prepossessing steps and the
performance metrics used in our experiments.
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4.4.1 C-MAPPS Datasets

The method is evaluated using the Commercial Modular Aero-Propulsion System
Simulation (C-MAPPS) [191] datasets containing turbofan engine degradation data.
The C-MAPPS datasets are composed of four distinct datasets, each containing in-
formation coming from 21 sensors and three operational settings. Each dataset has
several degradation engines split into training and testing examples.

Data FD001 FD002 FD003 FDO004
Engines: Training (N) 100 260 100 249
Engines: Testing 100 259 100 248
Operating Conditions (OC) 1 6 1 6
Fault Modes (FM) 1 1 2 2

Table 4.1: The C-MAPPS datasets. Each dataset contains a number of training
engines (Engines: Training (N)) with run-to-failure information and a number of
testing engines (Engines: Testing) with information terminating before a failure
is observed. Operating Conditions: Each dataset can have one or six operating
conditions, based on altitude (0 - 42000 feet), throttle resolver angle (20 - 100) and
Mach (0 - 0.84). Fault Modes: each dataset can have and one (HPC degradation) or
two (HPC degradation and Fan degradation) fault modes.

Engines in the datasets start with various degrees of initial wear but are con-
sidered healthy at the start of each record. As the number of cycles increases, the
engines begin to deteriorate until they can no longer function. At this point, en-
gines are considered unhealthy. Training datasets have run-to-failure information
collected over the entire life until failure. Unlike training datasets, testing data-
sets contain temporal data that terminates some time before a system failure. The
original task is to predict the RUL of the testing units [191].

In our experiments, we consider the case when enough run-to-failure data is
available in a set of fault modes and operating conditions, but only sensor inform-
ation is available in a different set, i.e., no observed failures. We consider each one
of the datasets as source and target domains (only the training sets for training the
algorithm) and perform domain adaptation on all source-target pairs. Operating
conditions in the datasets vary between one in FD001 and FD003 and six in FD002
and FD004, and fault modes vary between one in FD001 and FD002 and two in
FD003 and FD004. The details about the four datasets are presented in Table 4.1.

4.4.2 Data Preprocessing

Sensor values and operational settings data are used as input to our architecture. In
our datasets, FD001 and FD003 have seven sensors with constant readings. How-
ever, as the constant readings are not consistent across the four datasets, we main-
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tain these values in our analysis. Original distributions and feature values across
datasets with the same fault modes and operating conditions can be similar. Thus,
we need to ensure that enough distribution shift exists so that performing adapt-
ation is desirable. To induce a higher discrepancy between domains and aid SGD
updates, we normalise each dataset individually and scale inputs and RUL values
to the (0-1) range using min-max normalisation:

Iy X — min (x/)
%/ = L —— (4.21)
max(x/) — min(x/)

where x;/ denotes the original i-th data point of the j-th feature at time t and x/ is
the vector of all input examples and timesteps of the j-th feature.

It is reasonable to estimate RUL as a constant value when the engines operate
in normal conditions [89]. Therefore, we use a piece-wise linear degradation model
to define the observed RUL values in the training datasets. That is, after an initial
period with constant RUL values, we assume that the RUL targets decrease linearly.
We denote as R, the initial period when the engines are still working in their desired
conditions. A constant R, of 125 cycles is selected to based on previous works [137,
144].

4.4.3 Domain Shift

In Figure 4.4, we present two normalised sensor values between 100 and one time
step before a failure occurs for each dataset. We observe a lower distribution shift
between dataset pairs FD001-FD003 and FDO002-FD004, i.e., pairs that have data
simulated under the same operating conditions [191]. However, there is still a sig-
nificant distribution shift between FD001 and FD003 due to varying fault modes.
On the other hand, a smaller distribution shift exists between FD002 and FD004. In
practice, the different distributions make models data-specific, i.e., a model trained
in one dataset often does not perform well in a different dataset unless the sensor
values driving the fault behaviour are similar across source-target pairs.

44.4 Performance Metrics

Similar to previous works, we measure the performance of the proposed method
using two metrics. We use the root mean squared error (RMSE) as this can be
directly related to equations (4.13) and (4.14) and provide an estimation of how
well the model is performing in the target prediction task. We also evaluate our
model using a scoring function shown in equation (4.22) proposed by [191]:

s=Y 1(c;<0)e @ +1(c; > 0)e2 —1 (4.22)

M=

I
—
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FDOO01 (1 OC, 1 FM) FDOO01 (1 OC, 1 FM)
FD002 (6 OC, 1 FM) FD002 (6 OC, 1 FM)
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Figure 4.4: Distribution of normalised sensor values between 100 and one time step
before a failure. Sensor distributions are more similar between FD001 and FD003
and FD002 and FD004 pairs due to identical operating conditions.

where 1(-) is an indicator function that takes value 1 when the predicate is true
and 0 otherwise, a7 = 13 and 4 = 10 and ¢; = §; — y; [191]. In other words,
c; is the difference between predicted and observed RUL values and s is summed
over all examples. We assume no access to y; in the target domain during training.
However, we utilise the values of y; in the target datasets for evaluation of the
adaptation performance. Note that the scoring metric penalises positive errors more
than negative errors as these have a higher impact on maintenance policies.

4.5 Training Procedure and Hyperparameter Selection

In this section, we present the training procedure of the proposed algorithm as well
as the hyperparameters selection for each experiment in our tests.

4.51 Training Procedure

For training, we select the input sensors, operational settings and labelled RUL val-
ues from the source data and only sensors and settings from target datasets. After
the C-MAPPS datasets are normalised according to Equation (4.21), a time win-
dow of size Ty, is used to generate the temporal input data arranged as (N, Ty, q),
where N is the number of training samples and ¢ the number of input features. We
separate the original training data into training (seen by the algorithm) and cross-
validation (used for stopping criteria) data containing 90% and 10% of the original
dataset. For testing, the last sliding window of every trajectory in the testing data
is selected as input data.

We split the training set into mini-batches (collection of data samples). Dur-
ing training, we randomly select mini-batches of the same size coming from the
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source and target domains. As it can be seen in Table 4.1, the datasets have a dif-
ferent number of training samples. To cope with this difference, we oversample the
domain containing the smaller number of samples to match the same number of
samples from the larger dataset. After the network has seen all training examples,
we consider an epoch finished.

Next, the proposed LSTM-DANN architecture is defined, including the number
of LSTM and FC layers, number of units in each layer, learning rate and gradient
update algorithm. Weights are initialised using the Xavier initialisation method
[78]. We train the models for a maximum of 200 epochs and interrupt training if no
cross-validation improvement in the source regression is seen for 20 epochs. In our
experiments, the MAE loss (p = 1) in Equation (4.14), presents the best performing
results and is selected as loss function. Moreover, it better approximates the 0-1 loss
function and the hypothesis class of the proxy domain discrepancy metric. We start
with fixed learning rates, and after 100 epochs, the learning rate is multiplied by a
0.1 factor to allow for stable convergence. We clip gradient norms to one to avoid
exploding values. After training, the data coming from the target domain, including
RUL values, are fed to the network to generate RUL estimations and performance
measures.

4.5.2 Hyperparameter Selection

We perform grid-search on the gradient update optimiser and learning rates (A,
Ay), after fine-tuning the remaining parameters manually (Table 4.2). To assess per-
formance, we observe source regression and domain classifier error on the source
domain. We generally observe better results for lower regression source error while
high domain classification loss is induced, with its value controlled by the ad-
versarial classification loss, i.e., no distinction between domains. In our tests, the
SGD algorithm results in better performance, and the L, regularisation factor is
selected as 0.01 for all experiments pairs. The remaining hyperparameters settings
are presented in Table 4.3.

Hyperparameter Range

L, Regularisation Weight {0.0, 0.01, 0.1}

Layers (LSTM, source regression, domain classification) {1,2}

Units (LSTM, f, source regression, domain classification) {16, 20, 30, 32, 64, 100, 128, 512}
Dropout Rate {0.1, 0.3, 0.5, 0.7}

o {0.8, 1.0, 2.0, 3.0}

Batch Size {256, 512, 1024}

Learning Rate (source regression (A, ), domain classification (14)) {0.001, 0.01, 0.1}

Optimiser {SGD, RMSProp [211], Adam [124]}
Tw {30, 20, 15}

Table 4.2: Hyperparameter values evaluated in the proposed methodology.
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S Target LSTM f Source regression Domain classification ~ Batch oA T
ource - large Layers, (Units), [Dropout] (Units) Layers, (Units), [Dropout] Layers, (Units), [Dropout] % Gize yr M w
FD001 FDO002 1, (128), [0.5] (64) 1,(32), [03] 1,(32), [03] 08 25 001,001 20
FD001 FD003 1, (128), [0.5] (64) 1,(32), [0.3] 1,(32), [0.3] 08 25 001,001 30
FD001 FD004 1, (128), [0.7] (64) 2, (32, 32), [0.3] 1,(32), [03] 10 25 001,01 15
FD002 FD001 1, (64), [0.1] (64) 1, (32), [0.0] 2, (16, 16), [0.1] 10 512 001,001 30
FD002 FD003 1, (64), [0.1] (512) 2, (64, 32), [0.0] 2, (64, 32), [0.1] 20 25 01,001 30
FD002 FD004 2, (32,32), [0.1] (32) 1, (32), [0.0] 1, (16), [0.1] 10 25 01,01 15
FD003 FD001 2, (64, 32), [0.3] (128) 2, (32,32), [0.1] 2, (32,32), [0.1] 20 256 001,001 30
FD003  FD002 2, (64, 32), [0.3] (64) 2, (32, 32), [0.1] 2, (32, 32), [0.1] 20 25 001,001 20
FD003 FD004 2, (64, 32), [0.3] (64) 2, (32,32), [0.1] 2, (32,32), [0.1] 20 25 001,001 15
FD004 FD001 1, (100), [0.5] (30) 1, (20), [0.0] 1, (20), [0.1] 10 512 001,001 30
FD004 FD002 1, (100), [0.5] (30) 1, (20), [0.0] 1, (20), [0.1] 10 512 001,001 20
FD004 FD003 1, (100), [0.5] (30) 1, (20), [0.0] 1, (20), [0.1] 10 512 001,001 30

Table 4.3: Selected hyperparameters for each source-target experiment pair.

4.6 Experimental Results

In this section, the prognostic performance of the proposed domain adaptation
method is presented. All experiments were performed on an Intel Core i5 7" gener-
ation processor with 16 GB RAM and a GeForce GTX 1070 GPU. We implemented
our architecture using Python 3.6 and Keras [44] with TensorFlow [158] backend.
Experiments consider each of the C-MAPPS datasets as the source domain and the
remaining datasets as target domains. In total, we have 12 different experiments
and results are averaged over 10 trials to reduce the effect of randomness, i.e., 120
experiments in total. For each experiment, we report the mean and standard devi-
ations of the performance metrics.

We start by comparing the proposed method with baseline non-adapted LSTM
models trained in the source domain and applied on the target domain (Source-
Only), and trained in the target domain using the target domain labels (Target-
Only) representing the ideal situation when target RUL values are available. We
also run our algorithms with CNN, RNN and FC architectures as feature extractor
gf to showcase the effect of using LSTM for temporal feature learning. Further-
more, we assess our method against other well-known unsupervised domain ad-
aptation methods: transfer component analysis (TCA) and CORrelation ALignment
(CORAL) and the supervised domain adaptation method proposed in [238]. Lastly,
we compare our proposed architecture to performing standardisation before train-
ing in the C-MAPPS datasets.

4.6.1 Non-adapted Models under Domain Shift

In this section, we compare the proposed model with Source-Only models serving
as a baseline and Target-Only models serving as “upper bound" for LSTM-DANN.
For the models without adaptation, we train a network of the form: LSTM(100)
+ Drorourt(0.5) + RELU(FC(30)) + DrorouTt(0.1) + RELU(FC(20)) + FC(1), where
we denote each learning layer in the network as ActivatioN(LAYER(UNITS)) and
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dropout layers as DROPOUT(RATE). We train each model for 100 epochs using the
Adam [124] optimiser with a learning rate of 0.001. We use an MSE loss function
and Ty equal to 30, 20, 30, 15 for FD001, FD002, FD003, FD004. In Figure 4.5, we
present the target RUL values as well as the predictions coming from the LSTM-
DANN, Source-Only and Target-Only models for examples in the cross-validation
sets. We analyse the results splitting the analysis for each domain, as its selection
poses distinct difficulties in the adaptation results.

Source FD004 RUL predictions for FD004 acting as source domain are presented
in Figures 4.5a, 4.5b, 4.5c. We note that Source-Only predictions for target domains
FDO001 (Fig. 4.5b) and FD003 (Fig. 4.5¢c) do not fit the observed RUL values. On the
other hand, LSTM-DANN shows a better fit of the degradation model leading to
smaller errors. For target domain FD002, the Source-Only model already provides
a good fit for the observed RUL values (Figure 4.5b), due to low discrepancies
between the two datasets. In this case, domain adaptation results in predictions
similar to Source-Only. We point out that FD004 contains six operating conditions
and two fault modes. Therefore, LSTM-DANN can find correspondences between
operating conditions and fault modes in each source-target pair.

Source FD003 In the figures, adaptation from FD003 to FD002 (Fig. 4.5e) and
FD004 (Fig. 4.5f) show worse results than for FD001 (Fig. 4.5d). FD003 is more sim-
ilar to FDOO1, varying only the number of fault modes. As it can be seen in Table
4.4, the LSTM-DANN model yields a lower RMSE value when compared to the
Source-Only model. For target domains FD002 and FDO004, the differences between
domains are more prominent. FD003 has one operating condition, while FD002 and
FDO004 have six. LSTM-DANN can improve over the Source-Only model, showing
a better prediction error in the test sets despite the difficulties in transferring from
such domains. However, estimated values are noisy and do not fit the linear de-
gradation model completely.

Source FD002 In Figures 4.5g, 4.5h and 4.5 we present engines from FDO001,
FDO003 and FD004 sets. Similar to the inverted experiment, the similarities between
the FD004 and FD002 make Source-Only and LSTM-DANN models fit the target
data with high accuracy. Predictions are improved on FD001 and FD003 sets in
comparison to Source-Only. FD001 and FD002 share the same fault mode (HPC
degradation), but FD002 has more operating conditions. While FD003 has one op-
erating condition and two fault modes, our algorithm can produce lower errors and
a better fit than a model without adaptation. In other words, it was possible to
transfer from a domain that has more operating conditions than the target domain
under the same (FD001) or different (FD003) fault modes.
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Figure 4.5: RUL predictions of the Target-Only, Source-Only and LSTM-DANN
models for one engine coming from the target domain cross-validation datasets.
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Source FD001 FDO001 presents the highest errors when functioning as a source
domain. When target domains are FD002 and FD004 (Figs. 4.5j and 4.5]) the
best solution found is one that yields flattened predictions. FDO0O1 is the dataset
containing only one operating condition and fault mode. Similar to other results,
transferring from fewer operating conditions results to be a much harder problem.
When the target domain is FD0O0O3 (Fig. 4.5k), we adapt to a domain with similar
operating conditions. For this case, the model results in RUL prediction curves that
fit the linear degradation model.

Source Target Source-Only LSTM-DANN (A%) Target-Only
FDO001 (1 OC, 1 EM) FDO002 (6 OC, 1 FM) 71.7 £ 3.9 48.6 (-32%) + 6.8 178 £ 0.4
FD001 (1 OC,1FM) FD003 (10C,2FM) 512 +34 45.9 (-10%) + 3.6 125+ 0.3
FDO001 (1 OC, 1 EM) FD004 (6 OC, 2 FM) 739 £ 4.5 43.8 (-41%) + 4.1 213+ 1.1
FDO002 (6 OC, 1 FM) FDO001 (1 OC, 1 FM) 164.8 £ 23.0 28.1 (-83%) + 5.0 13.7 £ 0.8
FD002 (6 OC, 1 FM) FDO003 (1 0C,2FM) 154.0 £21.8 37.5(-76%) £ 1.5 127 £ 0.3
FDO002 (6 OC, 1 EM) FD004 (6 OC, 2 FM) 378 £ 22 31.8 (-16%) £+ 1.6 213+ 1.1
FDO003 (1 OC, 2 EM) FDO001 (1 OC, 1 FM) 499+ 76 31.7 (-36%) + 9.4 13.7 £ 0.8
FDO003 (1 OC,2 EM) FD002 (6 OC,1FM) 703 +4.0 44.6 (-36%) £ 1.2 178 £ 04
FDO003 (1 OC, 2 EM) FD004 (6 OC, 2 FM) 693 +45 47.9 (-31%) + 5.8 213+ 1.1
FD004 (6 OC, 2 FM) FDO001 (10C,1FM) 188.0 £259  31.5(-83%) £+ 24 13.6 £ 0.8
FDO004 (6 OC,2 FM) FD002 (6 OC,1FM) 209 + 1.7 249 (+19%) £ 1.8 178 £ 04
FDO004 (6 OC, 2 FM) FD003 (1 OC,2 FM) 157.3 £ 204 27.8 (-82%) + 2.7 125+ 0.3

Table 4.4: RMSE =+ Standard Deviation - Comparison between Source-Only, Target-
Only and LSTM-DANN on the test datasets.

Source Target Source-Only LSTM-DANN  Target-Only
FDO001 (1 OC,1FM) FDO002 (6 OC, 1 FM) > 10° 4+ > 10° 93,841 + 55493 1,638 + 203
FDO001 (1 OC, 1 FM) FD003 (1 OC, 2 FM) 206,778 4 59,887 27,005 4+ 12,385 267 + 49
FDO001 (1 OC, 1 EM) FDO004 (6 OC,2 FM) > 10° + > 10° 57,044 + 60,160 2,904 + 49
FDO002 (6 OC, 1 FM) FDO001 (1 0C, 1 FM) > 10° £+ > 10° 8,411 + 11,855 300 =+ 33
FD002 (6 OC, 1 FM) FD003 (1 OC,2 FM) > 106+ >10° 17,406 + 5,702 267 + 49
FD002 (6 OC, 1 FM) FD004 (6 OC, 2 FM) 134,531 4+ 54,923 66,305 + 14,723 2,904 + 492
FD003 (1 OC,2 FM) FDO001 (1 OC, 1 FM) 37,559 4 19,248 5,113 + 4,865 300 + 33
FD003 (1 OC,2 FM) FDO002 (6 OC, 1 FM) > 10° 4+ >10° 37,297 + 15578 1,638 + 203
FD003 (1 OC,2 FM) FD004 (6 OC,2 FM) > 10° 4+ > 10° 141,117 + 66,218 2,904 + 492
FD004 (6 OC,2 FM) FDO001 (10C, 1 FM) > 10° 4+ > 10° 7,586 + 2,735 300 + 33
FD004 (6 OC, 2 FM) FD002 (6 OC, 1 FM) 1,944 + 446 17,001 4 12,927 1,638 + 203
FD004 (6 OC,2 FM) FDO003 (1 0C,2 FM) > 10° 4+ > 10° 5,941 + 1791 267 + 49

Table 4.5: Scoring + Standard Deviation - Comparison between Source-Only,
Target-Only and LSTM-DANN on the test datasets.

In Tables 4.4 and 4.5, we present the average RMSE followed the percentage
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change (A%) over Source-Only models dataset as well as the average Scoring per-
formances for all experiment pairs. The proposed method can improve perform-
ance over almost all Source-Only models. In particular, adaptation results change
depending on the operating conditions in the source domain. We achieve better
outcomes for source domain FD004, as it contains all operating conditions and fault
modes in the other datasets. Also, when the domain shift in small, Source-Only
models already achieve reasonable performance in the target domain. Particularly,
while transferring from FD004 to FD002, Source-Only yields lower RMSE than
LSTM-DANN. For this experiment, RMSE values of Source-Only, LSTM-DANN
and Target-Only are close. That is, adding information from the target domain
adds little improvement.

Moreover, among 10 runs, LSTM-DANN was able to find lower RMSE and Scor-
ing values than Source-Only indicating that hyperparameters could be tweaked
to achieve better adaptation performance. As a rule of thumb, results show that
LSTM-DANN performs whenever the source domains “shares" information with
the target domain (either same fault modes or operation conditions). The model
achieves the best results when source domain data under more conditions or fault
modes are used for adaptation.

4.6.2 Feature Extractor Comparison

In this section, we assess the effect of using an LSTM combined with an FC layer as
the feature extractor g, in the proposed architecture. The following feature extract-
ing architectures are carried out: fully-connected (FC-DANN), convolutional (CNN-
DANN) and recurrent (RNN-DANN). In other words, we substitute the LSTM lay-
ers in Figure 4.3 by FC, CNN and RNN layers. To allow comparison, the remaining
parts of the architecture g; and g, remain unchanged in all implementations, in-
cluding the loss function. We select the hyperparameters of the architectures by
changing the learning rates, &, dropout rates and optimisation algorithm according
to Table 4.2.

FC-DANN We implement a multi-Layer perceptron (MLP) by first flattening the
input vectors to an input of size Ty, x g. In effect, the FC network has no information
on the temporal dependencies of the input data. We replace the original LSTM and
FC layers with a single FC layer containing 100 units followed by a ReLU non-
linearity. We train the network using the Adam algorithm and pass mini-batches
of 512 examples from each domain. Therefore, FC-DANN offers a comparison to
a simpler architecture that does not consider recurrent connections while having
comparable depth and size.

CNN-DANN Our second implementation incorporates a 2D CNN feature ex-
tractor based on the effective implementation reported in [140]. For training, our
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inputs are shaped as (Ty,g,1) tensor, i.e., one feature channel. We use four convo-
lutional layers, each containing 10 filters with size 10 x 1 and one layer containing
one filter of size 3 x 1 to replace the LSTM layers. Later, the convolved features
are flattened, and an FC layer with 100 units completes the feature extraction. A
dropout layer is inserted between the flattened layer and the FC layer. The extracted
features are then passed to the remaining of the architecture, as reported in Table
4.3. The network is trained using the SGD algorithm over batches of 512 train-
ing examples from each domain. Since CNN architectures have been successfully
applied to RUL prediction using the C-MAPPS datasets, we want to evaluate the
performance results in comparison to recurrent architectures.

RNN-DANN We replace the LSTM layers with vanilla RNN layers (no gating)
using the same parameters of Table 4.3. We want to test whether having a gated
architecture helps to learn domain invariant features. This architecture is trained in
the same manner as the proposed LSTM network.

Source Target FC-DANN CNN-DANN RNN-DANN LSTM-DANN
FDO001 (1 OC, 1 FM) FDO002 (6 OC, 1 FM) 67.1 £ 24.1 50.3 + 6.4 51.8 +82 48.6 +£ 6.8
FDO001 (1 OC,1FM) FD003 (1 0OC,2FM) 6424287 428 +33 433 +32 459 £ 3.6
FDO001 (1 OC, 1 FM) FD004 (6 OC,2 FM) 748 £325 87.0 £60.8 531+18 43.8 £ 4.1
FDO002 (6 OC, 1 FM) FDO001 (10C,1FM) 5214273 474 +16.3 25.5+29 28.1+5.0
FD002 (6 OC, 1 FM) FD003 (1 OC,2 FM) 739 £464 408 0.2 413 +27 375+ 15
FDO002 (6 OC, 1 FM) FDO004 (6 OC,2 FM) 263 £ 0.5 38.0+73 321 +08 31.8 £ 1.6
FD003 (1 OC,2 FM) FDO001 (1 OC, 1 EM) 28.7 £ 10.1 33.8+6.0 314 +11.8 31.7+93
FD003 (1 OC,2 FM) FD002 (6 OC,1FM) 772 +£165 682+ 152 54.6 £ 7.0 44.6 £ 12
FDO003 (1 OC,2 FM) FD004 (6 OC,2 FM) 92.7 +472  73.7 £ 67.5 585+72 479 +58
FD004 (6 OC,2 FM) FD001 (10OC,1FM) 713 +£474 674 +243 27.3 £ 3.6 315+ 24
FD004 (6 OC, 2 FM) FDO002 (6 OC,1 FM) 249 +1.8 39.1+25 264 +25 249 £ 1.8
FD004 (6 OC, 2 FM) FD003 (1 OC,2 FM) 47.5+251 455+11.0 343 + 8.6 278 +27

Table 4.6: RMSE =+ Standard Deviation - Comparion of different architectures for
domain adaptation.

In Table 4.6, we present the average RMSE results of each of the tested architec-
tures. Performance results show that LSTM-DANN outperforms other architectures
in the majority of the experiments. However, FC-DANN can outperform recurrent
and convolution architectures in two experiments. In these cases, source and tar-
get domains share the same number of operating conditions, facilitating domain
adaptation. For the other instances, the recurrent models RNN-DANN and LSTM-
DANN outperform both architectures with FC and CNN layers as feature extract-
ors. These results show that using recurrent layers helps adaptation performance
in the studied datasets. In particular, RNN-DANN outperforms LSTM-DANN in
two experiments when the target domain is FD001, i.e., FD004 to FD001 and FD002
to FD0O1. For the remaining experiments, LSTM-DANN outperforms RNN-DANN
and the other architectures showing that having a gated architecture helps to learn
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better RUL estimates.

As [135] has shown, it is possible to learn simple MLP networks that can result
in reasonable RUL performance in the studied datasets. In our experiments, an
MLP network coupled with a DANN mechanism could only perform adaptation
when the data from the source and target domains were already “similar”". That
is, although we can train simpler architectures such as FC-DANN, we could only
outperform more complex networks in two experiments with the same operational
conditions. Adding the complexity of the recurrent connections increases training
times in comparison to FC-DANN and CNN-DANN but also helps at learning
better temporal features from different domains.

4.6.3 Comparison to Classic Domain Adaptation Methods

In this section, we provide a comparison of the proposed LSTM-DANN architec-
ture to out-of-the-box unsupervised domain adaptation methods, transfer compon-
ent analysis (TCA) [173], and CORrelation ALignment (CORAL) [202]. We also
compare to the supervised adaptation method based on a Bidirectional LSTM ar-
chitecture [238]. There, our goal is to showcase the effectiveness of our method in
comparison to another architecture that can leverage target labels for training.

Out-of-the-box Unsupervised Domain Adaptation

We compare the proposed method to two well-known unsupervised domain adapt-
ation methods TCA and CORAL.

Source Target TCA-NN  TCA-DNN CORAL-NN CORAL-DNN LSTM-DANN
FDO001 (1 OC, 1 FM) FD002 (6 OC,1FM) 941+10 90.0 £29 99.2 £ 3.6 775+ 4.6 46.4 £ 3.6
FDO001 (1 OC, 1 FM) FD003 (10C,2FM) 1200+1.0 1161+10 60.0£0.7 69.6 £5.2 373 £34
FDO0O01 (1 OC, 1 FM) FD004 (6 OC,2 FM) 120.1+1.0 1138+69 107.7 £2.8 84.6 £7.0 43.5 £5.3
FDO002 (6 OC, 1 FM) FD001 (10C,1FM) 947 +11 856 £55 779 £ 19 809 £9.4 31.2+54
FD002 (6 OC, 1 FM) FD003 (1 0C,2FM) 1074 +3.7 1115+72 609 +15.1 79.8 £ 10.1 322+ 31
FDO002 (6 OC, 1 FM) FD004 (6 OC,2 FM) 935428 944 +6.7 375+ 0.5 43.6 £ 3.6 27.7 £ 15
FDO003 (1 OC,2 FM) FD001 (10C,1FM) 98.7+0.4 90.5 + 4.6 26.5 + 0.5 26.5 + 1.9 30.6 £ 6.2
FDO003 (1 OC,2 FM) FD002 (6 OC,1FM) 905+ 03 80.8+43 1132+ 45 75.6 £ 9.5 431+ 14
FDO003 (1 OC, 2 FM) FD004 (6 OC,2FM) 789 +£53 102.6 =32 1139 £5.5 772 +£9.1 49.7 £9.1
FDO004 (6 OC,2 FM) FD001 (10C,1FM) 985404 856=+50 119.1 +£16.7 94.0 + 8.8 254 +42
FD004 (6 OC, 2 FM) FD002 (6 OC,1FM) 753 +17 808 +£58 373+ 0.6 309 £ 1.4 269 + 3.3
FD004 (6 OC, 2 FM) FD003 (10C,2FM) 772+6.0 1029 +27 68.1+11.1 68.6 + 11.2 23.6 + 5.0

Table 4.7: RMSE =+ Standard Deviation - Comparion of unsupervised domain ad-
aptation methods on cross-validation target data.

TCA TCA uses a reproducing kernel Hilbert space (RKHS) and the MMD function
to construct a feature space that minimises the difference between the domains. We
use TCA to find a feature representation and train an FFNN with one FC layer
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and 32 units (TCA-NN) and a Deep FFNN (TCA-DNN) with the same number of
layers and units as our Target-Only models. In our tests, we apply the Radial Basis
Function (RBF) kernel extracting 20 transfer components with A =1 and y = 1.

CORAL Different from TCA, CORAL minimises domain shift by aligning the
second-order statistics of source and target distributions. After the alignment, the
new space can be used to train a model in the transformed source domain. Similar
to TCA, we use the CORAL feature space to learn an FFNN (CORAL-NN) and a
Deep FFNN (CORAL-DNN). For all FFNN methods, we use the same input data,
ReLU as hidden activation, MSE as loss function and Adam [124] with a learning
rate of 0.001.

Both TCA and CORAL are not entirely suitable for temporal data. Thus, we
learn on input features from ¢ — 1 and RUL at time ¢. Results are summarised for
target datasets in Table 4.7. On average, LSTM-DANN yields lower RMSE than the
methodologies tested in all but one experiment pair. In other terms, this means
that the methodology performs better than the tested out-of-the-box adaptation
methods not tailored for temporal sensor data. However, CORAL can achieve low
RMSE results when the source domain has more operating conditions (FD004 to
FDO002) or fault modes (FD003 to FD001) than the target domain.

Supervised Domain Adaptation

We compare our method to the supervised domain adaptation architecture BLSTM-
SDA [238]. In BLSTM-SDA, a Bidirectional LSTM architecture is first trained in the
source domain and fine-tuned in the target domain using RUL labels. Thus, we
expect this methodology to perform better than LSTM-DANN over our domain
adaptation experiments. In Table 4.8, we present the results obtained from the
original paper for BLSTM-SDA, BLSTM-SDA (Target-Only) and LSTM-DANN.

As expected, results show that leveraging RUL labels in the target domain in-
deed result in lower RMSE values. However, for source domains FD004 and FD002,
our results are surprisingly close to those obtained via BLSTM-SDA, e.g. FD002 to
FDO004. That corresponds to our previous findings in which we show that transfer-
ring from more operating conditions yields a better fit to target domain degradation
functions. However, unlike our results, pre-training the BLSTM-SDA on the source
domain does not always lead to improved results on the target domain, e.g. FD004
to FD003 and FD002 to FD001. BLSTM-SDA has no domain alignment mechanism,
and transferring from different operating conditions results in mixed performance
gains. Even though our method cannot achieve the same results as using target
labels, it manages to either improve or remain close to all Source-Only (only source
labels are available to our model) models in our experiments.
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Source Target LSTM-DANN BLSTM-SDA BLSTM-SDA

(Target-Only)
FD001 (1 OC, 1 FM) FD002 (6 OC, 1 FM) 48.6 20.8 21.7
FD001 (1 OC, 1 FM) FD003 (1 OC, 2 FM) 459 14.3 16.3
FD001 (1 OC, 1 FM) FD004 (6 OC, 2 FM) 43.8 - 259
FD002 (6 OC, 1 FM) FD001 (1 OC, 1 FM) 28.1 18.3 14.3
FD002 (6 OC, 1 FM) FD003 (1 OC, 2 FM) 37.5 - 16.3
FD002 (6 OC, 1 FM) FD004 (6 OC, 2 FM) 31.8 25.5 259
FD003 (1 OC, 2 FM) FD001 (1 OC, 1 FM) 317 13.6 14.2
FD003 (1 OC, 2 FM) FD002 (6 OC, 1 FM) 44.6 - 21.7
FD003 (1 OC, 2 FM) FD004 (6 OC, 2 FM) 479 23.4 259
FD004 (6 OC, 2 FM) FD001 (1 OC, 1 FM) 315 - 14.3
FD004 (6 OC, 2 FM) FD002 (6 OC, 1 FM) 249 20.8 21.7
FD004 (6 OC, 2 FM) FD003 (1 OC, 2 FM) 27.8 24.1 16.3

Table 4.8: RMSE - Comparison between LSTM-DANN and BLSTM-SDA supervised
domain adaptation architecture.

4.6.4 Relationship to Standardisation

A straightforward way to align source and target domains and reduce the difference
in input distributions is to perform standardisation. That is local mean centring and
division by the standard deviation of each input feature. To test whether such trans-
formation already suffices as an alignment strategy, we standardise the data before
feeding it to Source-Only and Target-Only architectures. We select FD004 as the
source domain as results have shown that adaptation is possible for all remaining
C-MAPPS datasets. We compare the original LSTM-DANN trained on the data
with min-max normalisation to a model trained on the standardised data (LSTM-
DANN-STD) and reference models Source Target-Only trained on the standardised
data. We present the RMSE values for each methodology in the target domains in
Table 4.9.

Source Target Source-Only-STD LSTM-DANN LSTM-DANN-STD  Target-Only-STD
FDO004 (6 OC, 2 FM) FDO001 (1 OC, 1 FM) 533 £5.0 315+ 24 32.6 £2.0 145+ 15
FDO004 (6 OC, 2 FM) FD002 (6 OC, 1 FM) 232 + 1.0 249 +1.8 21.8 +£ 1.7 184 + 0.4
FD004 (6 OC, 2 FM) FD003 (1 OC, 2 FM) 628 £75 278 £2.7 402 +7.0 16.0 + 0.3

Table 4.9: Test performance (RMSE =+ Standard Deviation) of Source-Only, Target-
Only, LSTM-DANN-STD. Models are trained on standardised training data with
zero-mean and unit-variance.

The results in Table 4.9 show that, on average, the RMSE performances of
Source-Only models are considerably improved in comparison to Table 4.4. How-
ever, our proposed methodology (LSTM-DANN-STD) still outperforms the baseline
models and provide a better fit to the target data (Figure 4.6). Furthermore, train-
ing on standardised data causes the LSTM-DANN-STD models to saturate and
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Source: FD004
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(a) Target: FD001 (b) Target: FD002 (c) Target: FD0O03

Figure 4.6: RUL predictions of the Target-Only, Source-Only and LSTM-DANN-STD
models in the standardised target cross-validation datasets.

start overfitting much faster than in previous experiments. This effect negatively
impacted the adaptation performance on FD003 as training progressed for more
epochs than necessary. To address this effect, simple changes in the models’ hy-
perparameters could be made, for example, by considering lower values of « and
reduced learning rates.

4.7 Conclusions

In this chapter, a deep learning method for domain adaptation in prognostics is
proposed based on a long short-term memory and a domain adversarial neural
network (LSTM-DANN). Experiments are carried out on the popular Commercial
Modular Aero-Propulsion System Simulation (C-MAPPS) datasets to show the ef-
fectiveness of the proposed method. The goal of the task is to estimate the remain-
ing useful lifetime of aircraft engines units while transferring from a source domain
with observed RUL values to a target domain with only input features.

We propose an architecture aimed at finding weights that can accommodate
domain shift via adversarial learning. In general, we can achieve lower performance
errors compared to a model with no adaptation (Source-Only). A more effective
transfer is achieved when the source domain has more fault modes or operating
conditions than the target counterpart. On the other hand, transferring from a
domain with fewer operating conditions and fault modes is a much harder task.
However, even in the latter scenario, LSTM-DANN can correct the RUL predictions
to alleviate performance errors.

Our remaining experiments show that recurrent architectures yield better adapt-
ation performance in comparison to non-temporal methods such as Convolutional
and Fully-Connected architectures. Moreover, we compare our proposed approach
to a supervised domain adaptation LSTM architecture [238] and show that our
model can achieve close performance results to a method that can leverage target
labels. Furthermore, we compare our method against out-of-the-box domain adapt-
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ation methods. In our tests, the proposed network has shown superior performance
in comparison to networks learned on transfer component analysis (TCA) [173], and
CORrelation ALignment (CORAL) [202] feature spaces. We point out that no thor-
ough evaluation of domain adaptation methods was performed as most methodo-
logies do not focus on sequential data. Lastly, we show that our proposed model
yields better performance results than a simple zero-mean unit-variance alignment
between source and target domains.






Chapter 5

Learning 2-opt Heuristics for
Routing Problems

In this chapter, we study the problem of learning to solve routing prob-
lems. We focus on improvement methods, that is, methods that, given
a poor initial solution, can search for an improved solution in a pro-
cess akin to local search. Our method is tailored to search for good two
edge exchanges but can be expanded to a more general number of edge
exchanges with minor modification and extra care about the feasibility
of the solutions. The main objective is to learn improvement policies
from instance information that can approach near-optimal solutions.
This objective gives rise to a more general search procedure than local
search as we are not concerned with the immediate improvement of a
solution but rather the entire chain of changes that results in the op-
timal solution.

This chapter is based on [49, 52].

95
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5.1 Introduction

The travelling salesman problem (TSP) is a well-known combinatorial optimisation
problem. In the TSP, given a set of locations (nodes) in a graph, we need to find
the shortest tour that visits each location exactly once and returns to the departing
location. The TSP is NP-hard [175] even in its Euclidean formulation, i.e., nodes
are points in the 2D space. Classic approaches to solving the TSP can be classi-
fied in exact and heuristic methods. The former methods have been extensively
studied using integer linear programming [4] which are guaranteed to find an op-
timal solution but are often too computationally expensive to be used in practice.
The latter methods are based on (meta)heuristics, and approximate algorithms [7]
that find solutions requiring less computational time, e.g., edge swaps such as k-
opt [91]. However, designed heuristics require specialised knowledge, and their
performances are often limited by algorithmic design.

Recent works in machine learning and deep learning have focused on learn-
ing heuristics for combinatorial optimisation problems [24, 147]. For the TSP, both
supervised learning [115, 223] and reinforcement learning [21, 62, 121, 128, 231]
methods have been proposed. The idea behind the proposed methods is that a
machine learning method could learn better heuristics by extracting useful inform-
ation directly from data rather than having an explicitly programmed behaviour.
Most approaches to the TSP have focused on learning construction heuristics, i.e.,
methods that can generate a solution sequentially by extending a partial tour. These
methods employed sequence representations [21, 223], graph neural networks [115,
121] and attention mechanisms [62, 128, 231] resulting in high-quality solutions.
Construction methods still require additional procedures such as beam search, clas-
sical improvement heuristics, and sampling to achieve such results. This limitation
hinders their applicability as it is required to revert to handcrafted improvement
heuristics and search algorithms for state-of-the-art performance. Thus, learning
improvement heuristics, i.e., when a solution is improved by local moves that search
for better solutions remains relevant. Here, if we can learn a policy to improve a
solution, we can use it to get better solutions from a construction heuristic or even
random solutions. Recently, a deep reinforcement learning method [231] has been
proposed for such a task, achieving near-optional results using node swap and 2-
opt moves. However, the architecture has its output fixed by the number of possible
moves, making it less favourable to expand to general k-opt [92].

Two natural extensions of the TSP are the multiple TSP (mTSP) and the capacit-
ated vehicle routing problem (CVRP). In the first, we consider the original problem
augmented with more salesmen, constrained on the size of tours or number of
visits. The CVRP also considers multiple salesmen (vehicles) with a maximum ca-
pacity. Customers have certain demand values that need to be fulfilled by vehicles
without exceeding their total capacity. These problems are harder to solve than
the TSP due to the added constraints and usually require tailored heuristics. Both
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problems have also been the subject of the recent interest in combining machine
learning and combinatorial optimisation [66, 104, 117, 177]. However, few previ-
ously proposed models can be seamlessly used in multiple routing problems [128,
231].

Contributions and Organisation In this chapter, we propose a deep reinforce-
ment learning algorithm trained via policy gradient to learn improvement heuristics
based on 2-opt moves. Our architecture is based on a pointer attention mechanism
[223] that outputs nodes sequentially for action selection. We introduce a rein-
forcement learning formulation to learn a stochastic policy of the next promising
solutions, incorporating the search’s history information by keeping track of the
current best-visited solution. Our results show that we can learn policies for the
Euclidean TSP that achieve near-optimal solutions even when starting with poor
quality solutions. Moreover, our approach can achieve better results than previous
deep learning methods based on construction [21, 62, 115, 121, 128, 155, 223] and
improvement [231] heuristics. Compared to [231], our method can be easily adap-
ted to general k-opt, and it is more sample efficient. Our method outperforms other
effective heuristics such as Google’s OR-Tools [178] for simulated instances and are
close to optimal solutions. Lastly, it can be easily expanded to the mTSP and CVRP.

5.2 Related Literature

Exact approaches for the TSP, such as linear programming, may require a large
amount of computational time to find optimal solutions. For this reason, designing
fast heuristics for the TSP is often necessary. However, classical heuristics require
specialised knowledge, which may be unavailable or scarce and may have sub-
optimal handcrafted design rules. Note that the same can be said about machine
learning methods. That is, they also require expert knowledge to be built and
tuned. However, machine learning methods are allowed to exploit the search space
of the combinatorial problems and can potentially learn to select better heuristics
rules using patterns learned from data. Such patterns and information learned
from data may not be apparent or lacking for human experts. Moreover, machine
learning methods can be retrained to fit the underlying data distribution of problem
instances, making them adaptive to instance distribution shifts. Thus, methods that
can automatically learn good heuristics have the potential to be more effective and
efficient than handcrafted ones, replacing some parts of the human-based design of
solutions with learned ones.

In machine learning, early works for the TSP have focused on Hopfield net-
works [99] and deformable template models [3]. However, the performance of these
approaches has not been on par with classical heuristics [132]. Recent deep learn-
ing methods have achieved high-performance learning construction heuristics for
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the TSP. Pointer networks (PtrNet) [223] learned a sequence model coupled with
an attention mechanism trained to output TSP tours using solutions generated by
Concorde [4]. In [21], the PtrNet was further extended to learn without supervision
using policy gradient, trained to output a distribution over node permutations.
Other approaches encoded instances via graph neural networks. A structure2vec
(52V) [121] model was trained to output the ordering of partial tours using deep
Q-learning. Later, graph attention was employed to a hybrid approach using 2-opt
local search on top of tours trained via policy gradient [62]. Graph attention was
extended in [128] using REINFORCE [229] with a greedy rollout baseline, resulting
in lower optimality gaps. Recently, the supervised approach was revisited using
graph convolution networks (GCN) [115] learning probabilities of edges occurring
in a TSP tour. It achieved state-of-the-art results up to 100 nodes whilst also com-
bining with search heuristics.

Recent machine learning approaches specialised for the mTSP include [117],
which proposed a neural network architecture trained via supervised learning.
Combined with constraint enforcing layers, they can achieve competitive results
in comparison to OR-Tools. In [104], multi-agent reinforcement learning is used to
learn an allocation of agents to nodes, and regular optimisation is used to solve
TSP associated with each agent. The VRP has gained much interest since [168].
In this chapter, a policy gradient algorithm is proposed to generate solutions as
a sequence of consecutive actions. Later, [128] extended the attention method to
the VRP outperforming [168]. Followed by [231] who also expanded their model
to the VRP case obtaining lower gaps. A specialised VRP model combined rein-
forcement and supervised learning to learn to construct solutions, outperforming
[128], but trained on different distributions of node locations [66]. Another VRP
method, named neural large neighbourhood search (NLNS) [102] proposed integ-
rating learning methods and classical search. In the method, the policy is trained
to reconstruct randomly destroyed solutions. Another approach named Learn to
Improve (L2I) [151] considered learning improvements policies by choosing from a
pool of operators. Recently, deep policy dynamic programming (DPDP) [127] was
proposed with the aim to combine neural heuristics with dynamic programming.
The method is trained to predict edges from example solutions and outperforms
previous neural approaches solving TSPs and VRPs with 100 nodes.

It is important to previous end-to-end methods to have additional procedures
such as beam search, classical improvement heuristics, and sampling to achieve
good solutions. Thus, in this chapter, we encode edge information using graph
convolutions and use classical sequence encoding to learn node orderings. We de-
code these representations via a pointing attention mechanism to learn a stochastic
policy of the action selection task. In the TSP, our approach resembles classical 2-
opt heuristics [84] and can outperform previous deep learning methods in solution
quality and sample efficiency.
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5.3 Background

5.3.1 Travelling Salesman Problem

We focus on the 2D Euclidean TSP. Given an input graph, represented as a sequence
of 1 locations in a two dimensional space X = {x;}! ;, where x; € [0, 1)?, we are
concerned with finding a permutation of the nodes, i.e., a tour S = (sq,...,5y), that
visits each node once (except the starting node) and has the minimum total length
(cost). We define the cost of a tour as the sum of the distances (edges) between
consecutive nodes in S as

n—1
L(S) = [Jxs, — x5 [l + Z ||x5i - x5i+1H2 (5.1)
i=1
where ||-||, denotes the ¢, norm.

5.3.2 k-opt Heuristic for the TSP

Improvement heuristics enhance feasible solutions through a search procedure. A
procedure starts at an initial solution Sy and replaces a previous solution S; with
a better solution S;;1. Local search methods such as the effective Lin-Kernighan-
Helsgaun (LKH) [91] heuristic perform well for the TSP. The procedure searches for
k edge swaps (k-opt moves) that will be replaced by new edges resulting in a shorter
tour. A simpler version [143] considers 2-opt (Figure 5.1) and 3-opt moves altern-
atives as these balance solution quality and the O(n*) complexity of the moves.
Moreover, sequential pairwise operators such as k-opt moves can be decomposed
into simpler I-opt ones, where | < k. For instance, sequential 3-opt operations
can be decomposed into one, two or three 2-opt operations [91]. However, in local
search algorithms, the quality of the initial solution usually affects the quality of the
final solution, i.e., local search methods can easily get stuck in local optima [84].

To avoid local optima, different metaheuristics have been proposed, including
simulated annealing and tabu search—these work by accepting worse solutions to
allow more exploration of the search space. In general, this strategy leads to bet-
ter solution quality. However, metaheuristics still require expert knowledge and
may have sub-optimal rules in their design. To tackle this limitation, we propose to
combine machine learning and 2-opt operators with learning a stochastic policy to
improve TSP solutions sequentially. A stochastic policy resembles a metaheuristic,
sampling solutions in the neighbourhood of a given solution, potentially avoiding
local minima. Our policy iterates over feasible solutions, and the minimum cost
solution is returned at the end. The main idea of our method is that taking fu-
ture improvements into account can potentially result in better policies than greedy
heuristics. Our approach is detailed in the following sections.
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Sj+1

Figure 5.1: TSP solution before a 2-opt move (left), and after a 2-opt move (right).
Added edges are represented in dashed lines and removed edges are represented
with a strike through. Note that after the change the sequence of nodes s;, ..., s; is
inverted.

5.4 Reinforcement Learning Formulation

Our formulation considers solving the TSP via 2-opt as a Markov decision process
(MDP), detailed below. In our MDP, a given state S is composed of a tuple of
the current solution (tour) S and the lowest-cost solution S’ seen in the search.
The proposed neural architecture (Section 5.5) approximates the stochastic policy
79(A|S), where 0 represents trainable parameters. Each A = (ay,a;) corresponds
to a 2-opt move where a1, a; are node indices. Our architecture also contains a value
network that outputs value estimates Vj(S), with ¢ as learnable parameters. We
assume TSP samples drawn from the same distribution and use policy gradient to
optimise the parameters of the policy and value networks (Section 5.6).

5.4.1 Markov Decision Process

States A state S is composed of a tuple S = (S,S’), where S and S’ are the current
and lowest-cost solution seen in the search, respectively. That is, given a search
trajectory at time f and solution S,

5t=S, (5.2)

Si=5 =arg minsfe{so,wst}L(S;). (5.3)

Actions Actions correspond to 2-opt operations that change a solution S to new
solution. We model actions as tuples A = (ay,a) where ay,a; € {1,...,n},a > my
correspond to index positions of solution S = (s1,...,5,).
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Transitions Given A = (i,j) transitioning to the next state defines a determ-
inistic change to solution S = (...,si,...,sj,...), resulting in a new solution
S=(. < /8i-1,8js+ -+ /SisSjt1 - - .) and state S = (S, S’). That is, selecting i and j in S
implies breaking edges at positions (i — 1,i) and (j,j + 1), inserting edges (i — 1, )
and (i,j + 1) and inverting the order of nodes between i and j (See Figure 5.1).

Rewards Similar to [231], we attribute rewards to actions that can improve upon
the current best-found solution, i.e.,

Ry = L(S) — L(S;41) (5.4)

Environment Our environment runs for T steps. For each run, we define episodes
of length T < T, after which a new episode starts from the last state in the previous
episode. This ensures access to poor quality solutions at t = 0 and high-quality
solutions as t grows.

Returns Our objective is to maximise the expected return G;, which is the cumu-
lative reward starting at time step ¢ and finishing at T at which point no future
rewards are available, i.e., G; = 2?,;} 'yt/_th/ where v € (0,1] is a discount factor,
introduced to stabilise learning.

5.5 Policy Gradient Neural Architecture

Our neural network, based on an encoder-decoder architecture is depicted in Figure
5.2. Two encoder units map each component of S = (S, S) independently. With a
slight abuse of notation, we define inputs to each encoder unit as X = [xq,...,x,] "
and X’ analogously, where x; are node coordinates of node s; in S and S’. The en-
coder then learns representations that embed both graph topology and node order-
ing. Given these representations, the policy decoder samples action indices ay, . .., a;
sequentially, where k = 2 for 2-opt. The value decoder operates on the same encoder
outputs but outputs real-valued estimates of state values. We detail the components
of the network in the following sections.

5.5.1 Encoder

The purpose of our encoder is to obtain a representation for each node in the in-
put graph given its topological structure and its position in a given solution. We
incorporate elements from graph convolution networks (GCN) [125] and sequence
embedding via recurrent neural networks (RNN) to accomplish this objective [97]
and use edge information to build a more informative encoding of the TSP instance
graph.
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Figure 5.2: In the architecture, a state S = (S, S’) is passed to a dual encoder where
graph and sequence information are extracted. A policy decoder takes encoded
inputs to query node indices and output actions. A value decoder takes encoded
inputs and outputs state values.

Embedding Layer

We input two dimensional coordinates x; € [0, 1]2, Vi € 1,...,n, which are embed-
ded to d-dimensional features as

x) = Wyx; + by, (5.5)

where Wy € R4*2, b, € RY. We use as input the Euclidean distances € between co-
ordinates x; and x; to add edge information and weigh the node feature matrix. To
avoid scaling the inputs to different magnitudes we adopt symmetric normalisation

[125] as
ei,j

&)= (5.6)

- .
—1€ij Xj—1Cij

X

Then the normalised edges are used in combination with GCN layers to create
richer node representations using their neighbouring topology.

Graph Convolutional Layers

In the GCN layers, we denote as x! the node feature vector at GCN layer ¢ associated
with node i. We define the node feature at the subsequent layer combining features
from nodes in the neighbourhood N/ (i) of node i as

X =l oy ar( Y e (Wil + bg)), (5.7)
jeNi)
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where Wgz € R¥x4, bﬁ, € RY, ¢, is the rectified linear unit and N (i) corresponds to
the remaining n — 1 nodes of a complete TSP network. At the input to these layers,
we have ¢ = 0 and after IL layers we arrive at representations z; = xI leveraging
node features with the additional edge feature representation.

Sequence Embedding Layers

Next, we use node embeddings z; to learn a sequence representation of the input
and encode the ordering of nodes. Due to symmetry, a tour from nodes (1,...,n)
has the same cost as the tour (n,...,1). Therefore, we read the sequence in both
orders to explicitly encode the symmetry of a solution and the order of the nodes.
To accomplish this objective, we employ two long short-term memory (LSTM) as
our RNN functions, computed using hidden vectors from the previous node in the
tour and the current node embedding resulting in

(hi7,c;7) = RNN(z;7, (hiZq,¢i21)), Vied{l,...,n} (5.8)

(hi~,¢;") =RNN(z{, (hi 1, ¢11)), Vie{n,...,1} (5.9)

where in (5.8) a forward RNN goes over the embedded nodes from left to right,
in (5.9) a backward RNN goes over the nodes from right to left, and h;,c; € R4
are hidden vectors. We point out that the RNN modules are included to impose
order in the tour for the policy decoder. That is, the bi-LSTM imposes ordering
for the 2-opt operation and aids node (edge swap) selection. With the bidirectional
orderings, even if the same tour is observed in one of its circular permutations,
the predecessor and successor information of each node is maintained, which helps
edge selection, i.e., remove (i —1,i), (j,j+1) and add (i —1,), (i,j +1). Note that
a 2-opt move only requires the difference between the costs of the removed and
inserted edges.

Our representation reconnects back to the first node in the tour ensuring we
construct a sequential representation of the complete tour, i.e.,

(hy",¢g") = RNN(z, 0) (5.10)

and
(M1, Cnr1) = RNN(z,0) (5.11)

Afterwards, we combine forward and backward representations to form unique
node representations in a tour as

0; = tanh((wfhf +by) + (Wi + bb)), (5.12)

and a tour representation h, = h,” + h;;_, where h;,0; € RY, We, W, € R*4 and
bf/ by € R
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Dual Encoding

In our formulation, a state S = (S,S’) is represented as a tuple of the current
solution S and the best solution seen so far S’. We encode both S and S’ using inde-
pendent encoding layers (Figure 5.2). Following this notation we define a sequential
representation of S after going through encoding layers as /), € R?. Note that in
the proposed MDP, it is necessary to know the cost of the best solution seen in the
search to be able to compute the rewards. Thus, we consider that the agent has com-
plete information about the state space necessary to compute the cost improvement
over the best-seen solution.

5.5.2 Policy Decoder

We aim to learn the parameters 6 of a stochastic policy 7rg(A|S) that given a state
S, assigns high probabilities to moves that reduce the cost of a tour. Following [21],
our architecture uses the chain rule to factorise the probability of a k-opt move as

k

m9(A|S) =T [ pe (aila<i,S), (5.13)
=1

and then uses individual softmax functions to represent each term on the RHS of
(5.13), where a; corresponds to node positions in a tour, a.; represents previously

sampled nodes and k = 2. At each output step i, we map the tour embedding
vectors to the following query vector

9; = tanh (Wygi 1 +by) + (Wooi1 +by)), (5.14)

where W;, W, € R4*4, by, bo € R9%4 are learnable parameters and oy € RY is
a fixed parameter initialised from a uniform distribution U( \_7,1;' %) Our initial

query vector gg receives the tour representation from S and S’ as
hs = (Wshy + bs)|| (Wyh), + by) (5.15)
and a max pooling graph representation zg = max(zy,...,z,) from S to form

qo = hg + Zg, (516)

where learnable parameters Ws, Wy € ]R%Xd, bs, by € ]R% and -||- represents the
concatenation operation. Our query vectors g; interact with a set of n vectors to
define a pointing distribution over the action space. As soon as the first node is
sampled, the query vector updates its inputs with the previously sampled node
using its sequential representation to select the subsequent nodes.



Chapter 5 105

Pointing Mechanism

We use a pointing mechanism to learn a distribution over node outputs given en-
coded actions (nodes) and a state representation (query vector). Our pointing mech-
anism is parameterised by two trainable attention matrices K € R¥*? and Q € R¥*¢
and vector v € R as

i ol tanh(Ko; + Qq;), ifj > a; 4 (5.17)
—o00, otherwise, .
where '
pe (a; | a<;, S) = softmax(C tanh(u')) (5.18)

represents a probability distribution over n actions, given a query vector g; with
u’ € R". We mask probabilities of nodes prior to the current a; as we only consider
choices of nodes in which a4; > a;_1 due to symmetry. This ensures a smaller action
space for our model, i.e.,, n(n —1)/2 possible feasible permutations of the input.
We clip logits in [—C, +C]| [21], where C € R is a parameter to control the entropy
of u'.

5.5.3 Value Decoder

Similar to the policy decoder, our value decoder works by reading tour representa-
tions from S and S’ and a graph representation from S. That is, given embeddings
z for each node, the value decoder works by reading the outputs z; for each node in
the tour and the sequence hidden vectors h,, 1, to estimate the value of a state as

Vp(S) = W, o, (wz(% izi n hv) n bz) tb, (5.19)
i=1

with
hy = (Wyhy + by) || ( Wy hl, + by), (5.20)

where W, € R4 W, ¢ R4 b, € R?, b, € R are learned parameters that map
the state representation to a real valued output, W,, W,y € ]R% xd p. b, € ]R% map
the tours to a combined value representation and ¢ are the combined learnable
parameters of the value approximation®. We use a mean pooling operation in (5.19)
to combine node representations z; in a single graph representation. This vector is
then combined with the tour representation /, to estimate current state values.

2Note that parameters 0 and ¢ have shared parameters in the form of the encoding layers.



106 Chapter 5

5.6 Policy Gradient Optimisation
In our formulation, we maximise the expected rewards given a state S defined as
J(0]S) =Eg[G: | S]. (5.21)

Thus, during training, we define the total objective over a distribution S of uni-
formly distributed TSP graphs (solutions) in [0,1]? as

J(0) = Es.s5[1(0 | S)]- (5.22)

To optimise our policy, we resort to the policy gradient learning rule, which
provides an unbiased gradient estimate w.r.t. the model’s parameters 6. During
training, we draw B i.i.d. transitions and approximate the gradient of J(6), indexed
att=0as

B T-1
Vo (6 H Z Y Volog (A7 | 57)(G — V¢(5f))} (5.23)
b—1 =0

UU\H

where the advantage function is defined as A? = G? — V(5?) and the superscript b
represents a transition sample from the the mini-batch of size B, i.e., b € {1,...,B}.
To avoid premature convergence to a sub-optimal policy [162], we add an entropy

bonus
T

—_

" H(m(- | §Y)), (5.24)

1 B
= E 2
with H(7a(- | S!)) = —Er,[log (- | S_tb)}, and similarly to (5.23) we normalise
values in (5.24) dividing by k, i.e., the number of indices to select (k = 2 for 2-opt).

Moreover, we increase the length of an episode after a number of epochs, i.e.,
at epoch ¢, T is replaced by T.. The value network is trained on a mean squared
error objective between its predictions and Monte Carlo estimates of the returns,
formulated as an additional objective

» =575 L ot -wepl). =

Afterwards, we combine the previous objectives and perform gradient updates via
adaptive moment estimation (ADAM) [124], with By, By € R representing weights
of (5.24) and (5.25), respectively. Note that our model is close to REINFORCE [229]
with periodic episode length updates and added value function approximation. In
our case, this is beneficial as, at the start, the agent learns how to behave over small
episodes for easier credit assignment, later tweaking its policy over larger horizons.
The complete algorithm is depicted in Algorithm 1.
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Algorithm 1: Policy gradient training

Input: Policy network 77y, critic network Vj, number of epochs E, number of
batches N, batch size B, step limit T, length of episodes T, learning
rate A

1 Initialise policy and critic parameters 6 and ¢;
2 for e=1,...,Edo

3 T <+ T,
4 forn=1,...,Ngdo
5 t<+ 0;
6 Initialise random 5_8, Vbe{1,...,B};
7 while t < T do
8 t <t
9 whilet—t/<Td0
10 A ~ 71'9 |5_b
11 Take A’t’, observe St+1' ¢, Vb;
13 t e t+1;
14 foric {t,. tfl} do
t’ ,
15 G+ Z 'yttRb Vb;
t:z
16 %0 % [ bz T Vologm(A? | S).AL + B VoH(my(- | S1))];
= z t
17 8¢ < 51 [ﬁv 3 IEH Vo HG — V(S H }
18 0,¢ < ADAM()\, —860,8¢);

5.7 Experiments and Results

We conduct extensive experiments to investigate the performance of our proposed
method. We consider three benchmark tasks, Euclidean TSPs with 20, 50, and 100
nodes, named TSP20, TSP50, and TSP100, respectively. For all tasks, node coordin-
ates are drawn uniformly at random in the unit square [0,1]? during training. For
validation, a fixed set of TSP instances with their respective optimal solutions is
used for hyperparameter optimisation. For a fair comparison, we use the same test
dataset as reported in [115, 128] containing 10,000 instances for each TSP size. Thus,
previous results reported in [128] are comparable to ours in terms of solution qual-
ity (optimality gap). Results from [231] are not measured in the same data but
use the same data generation process. Thus, we report the optimality gaps repor-
ted in the original paper. We note, however, that because the number of instances
is large, the difference in average performance is mitigated. Moreover, we report
running times reported in [115, 128, 231]. Since time can vary due to implement-
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ations and hardware, we rerun the method of [128] in our hardware to assess the
running times. Due to provided supervised samples, the method of [115] is not
ideal for combinatorial problems. Thus, we compare our results in more detail to
[128] (running time and solution quality), and [231] (solution quality and sample
efficiency).

5.7.1 Experimental Settings

All our experiments use a similar set of hyperparameters defined manually using
the validation performance. We use a batch size B = 512 for TSP20 and TSP50 and
B = 256 for TSP100 due to limited GPU memory. For this reason, we generate 10
random mini-batches for TSP20 and TSP50 and 20 mini-batches for TSP100 in each
epoch. TSP20 trains for 200 epochs as convergence is faster for smaller problems,
whereas TSP50 and TSP100 train for 300 epochs. We use the same v = 0.99, ¢,
penalty of 1 x 107> and learning rate A = 0.001, A decaying by 0.98 at each epoch.
Loss weights are By = 0.5, By = 0.0045 for TSP20 and TSP50, By = 0.0018 for
TSP100. By decays by 0.9 after every epoch for stable convergence. In all tasks,
d =128, IL = 3 and we employ one bi-LSTM block. The update in episode lengths
are T1 = 8, TlOO = 10, T150 = 20 for TSP 20, Tl = 8, T100 = 10, T200 = 20 for
TSP50; and T = 4, Tio0 = 8, Taoo = 10 for TSP100. C = 10 is used during training
and testing. v is initialised as U (\_/—%, %) and remaining parameters are initialised
according to PyTorch’s default parameters.

We train on an RTX 2080Ti GPU, generating random feasible initial solutions on
the fly at each epoch. Each epoch takes an average time of 2m 0l1s, 3m 05s, and
7m 16s for TSP20, TSP50, and TSP100, respectively. We clip rewards to 1 to favour
non-greedy actions and stabilise learning. Due to GPU memory, we employ mixed-
precision training [113] for TSP50 and TSP100. For comparison with [231], we train
for a maximum step limit of 200. Note that our method is more sample efficient
than the proposed in [231], using 50% and 75% of the total samples for TSP20 and
TSP50/100 during training. During testing, we run our policy for 500, 1,000, and
2,000 steps to compare to previous works. Our implementation is available online.

5.7.2 Experimental Results and Analysis

We learn TSP20, TSP50, and TSP100 policies and depict the optimality gap and
its exponential moving average in the log scale in Figure 5.3. The optimality gap is
averaged over 256 validation instances and 200 steps (same as training) in the figure.
The results show that we can learn effective policies that decrease the optimality
gap over the training epochs. We also point out that increasing the episode length
improved validation performance as we consider longer planning horizons in (5.23).
Moreover, it is interesting to note that the optimality gap grows with the instance

Shttps://github.com/paulorocosta/learning-2opt-drl
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Figure 5.3: Optimality gaps on 256 validation instances in the log scale. Strong
colours represent the exponential moving average of the optimality gaps. Light
colours show the average optimality gap at each epoch of the validation instances
whilst sampling 200 solutions (steps).

size as solving larger TSP instances is harder. Additionally, we report the gaps of
the best performing policies in Figure 5.4. In the figure, we show the optimality
gap of the best solution for 512 test instances over 2,000 steps. Here, results show
that we can quickly reduce the optimality gap initially, and later steps attempt to
fine-tune the best tour. In the experiments, we find the optimal solution for TSP20
instances and stay within optimality gaps of 0.1% for TSP50 and 0.7% for TSP100.
Overall, our policies can be seen as a solver requiring only random initial solutions
and sampling to achieve near-optimal solutions.

To showcase that, we compare the learned policies with classical 2-opt first im-
provement (FI) and best improvement (BI) heuristics, which select the first and best
cost-reducing 2-opt operation, respectively. Since local search methods can get stuck
in local optima, we include a version of the heuristics using restarts. That is, we re-
start the search at a random solution as soon as we reach a local optimum. We run
all heuristics and learned policies on 512 TSP100 instances for a maximum of 1,000
steps starting from the same solutions. The boxplots in Figure 5.5 depict the results.
We observe that our policy (TSP100-Policy) outperforms classical 2-opt heuristics
finding tours with lower median and less dispersion. These results support our ini-
tial hypothesis that considering future rewards in the choice of 2-opt moves leads
to better solutions. Moreover, our method avoids the worst-case O(n?) complexity
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Figure 5.4: Optimality gaps of best-found tours on 512 testing instances over 2,000
sampled solutions (steps) in the log scale.
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heuristics with restarts on TSP100 instances after sampling 1,000 solutions (steps).
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of selecting the next solution of FI and BL

Comparison to Classical Heuristics, Exact and Learning Methods

We report results on the same 10,000 instances for each TSP size as in [128] and
rerun the optimal results obtained by Concorde to derive optimality gaps. We
compare against Nearest, Random and Farthest Insertion constructions heuristics.
Moreover, we include the vehicle routing solver of OR-Tools [178] containing 2-opt
and LKH as improvement heuristics.

We add to the comparison recent deep learning methods based on construction
and improvement heuristics, including supervised [115, 223] and reinforcement [21,
62, 121, 128, 231] learning methods. We note, however, that supervised learning is
not ideal for combinatorial problems due to the lack of optimal labels for large
problems. Previous works to [128] are presented with their reported running times
and optimality gaps as in the original paper. For recent works, we present the op-
timality gaps and running times as reported in [115, 128, 231]. We report previous
results using greedy, sampling and search decoding and refer to the methods by
their neural network architecture. We note that the test dataset used in [231] is not
the same, but the data generation process and size are identical. For this reason,
we report the optimality gaps of the original paper and recalculate the correspond-
ing costs based on the optimal costs in our datasets. We focus our attention on
GAT [128], and GAT-T [231] (GAT-Transformer) representing the best construction
and improvement heuristic, respectively. Note that we omit LKH for the TSP as
it achieves optimal results. Note that for the TSP, new works such as in [127] ap-
peared after the first version of this chapter and are not included in the table with
the results.

Our results, in Table 5.1, show that with only 500 steps, our method outperforms
traditional construction heuristics, learning methods with greedy decoding and
OR-Tools achieving 0.01%, 0.36% and 1.84% optimality gap for TSP20, TSP50, and
TSP100, respectively. Moreover, we outperform GAT-T requiring half the number
of steps (500 vs 1,000). We note that with 500 steps, our method also outperforms
all previous reinforcement learning methods using sampling or search, including
GAT [62] applying 2-opt local search on top of generated tours. Our method only
falls short of the supervised learning method GCN [115], using beam search and
shortest tour heuristic. However, GCN [115], similar to samples in GAT [128], uses
a beam width of 1,280, i.e. it samples more solutions. Increasing the number of
samples (steps) increases the performance of our method. When sampling 1,000
steps (280 samples short of GCN [115], and GAT [128]) we outperform all previous
methods that do not employ further local search improvement and perform on par
with GAT-T on TSP50, using 5,000 samples (5 times as many samples). For TSP100,
sampling 1,000 steps results in a lower optimality gap (1.26%) than all compared
methods. Lastly, increasing the sample size to 2,000 results in even lower gaps,
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0.00% (TSP20), 0.12% (TSP50) and 0.87% (TSP100).

Table 5.1: Performance of TSP methods w.rt. Concorde. Type: SL: Supervised
Learning, RL: Reinforcement Learning, S: Sampling, G: Greedy, B: Beam Search,
BS: B and Shortest Tour and T: 2-opt Local Search. Time: Time to solve 10,000
instances reported in [115, 128, 231] and ours.

Method Type TSP20 TSP50 TSP100

M Cost Gap  Time | Cost Gap  Time | Cost Gap  Time
Concorde [4] Solver | 3.84 0.00% (lm) | 570 0.00% (2m) | 7.76  0.00%  (3m)
OR-Tools [178] S 385 0.37% 580 1.83% 799  2.90%
Nearest Insertion G 433 1291%  (1s) 6.78 19.03%  (2s) 946 21.82%  (6s)

Random Insertion G 4.00 4.36% Os) | 613  7.65% (Is) | 852  9.69% (3s)
Farthest Insertion G 393  236% (Is) | 6.01 5.53% (2s) | 835 7.59% (7s)

PtrNet [223] SL | 38 1.15% 7.66 34.48% -

GCN [115] SL | 386 060% (6s) | 587 310% (55s) | 841 838% (6m)
PtrNet [21] RL | 389 142% 595 4.46% 830  6.90%

S2v [121] RL | 389 142% 599 5.16% 831  7.03%

GAT [62] RLT | 385 042% (4m) | 585 277% (26m) | 817 521%  (3h)

GAT [128] RL | 385 034% (0s) | 580 176% (25) | 812 453%  (6s)

GCN [115] SLB | 384 010% (20s) | 571 026% (2m) | 792 211% (10m)
GCN [115] SLBS | 384 001% (12m) | 570 0.01% (18m) | 7.87 1.39%  (40m)
PtrNet [21] RLS - 575 0.95% 8.00  3.03%

GAT [62] RLS | 384 011% (5m) | 577 128% (17m) | 875 1270% (56m)
GAT [62] RLST | 384 009% (6m) | 575 1.00% (32m) | 8.12 4.64%  (5h)

GAT {1280} [128] RLS | 384 0.08% (5m) | 573 0.52% (24m) | 7.94 2.26% (1h)

GAT-T {1000} [231] RL 384 0.03% (12m) | 575 0.83% (16m) | 8.01 3.24% (25m)
GAT-T {3000} [231] RL 384 0.00% (39m) | 572 0.34% (45m) | 791 1.85% (1h)
GAT-T {5000} [231] RL 3.84 0.00% (th) | 571  0.20% (th) | 7.87 142% (2h)

Impr.4+-Sampling Const.4+-Search Const.+Greedy Heuristics

Ours {500} RL | 384 001% (5m) | 572 036% (7m) | 7.91 1.84% (10m)
Ours {1000} RL | 384 000% (10m)| 571 021% (13m) | 7.86 126% (21m)
Ours {2000} RL | 384 000% (15m)| 570 0.12% (29m) | 7.83 0.87% (41m)

Generalisation to Larger Instances

Since we are interested in learning general policies that can solve the TSP regard-
less of its size, we test the performance of our policies when learning on TSP50
instances (TSP50-Policy) and applying it on larger TSP100 instances. Results, in
Table 5.2, show that we can extract general enough information to still perform well
on 100 nodes. Similar to a TSP100-Policy, our TSP50-Policy can outperform pre-
vious reinforcement learning construction approaches and requires fewer samples.
With 1,000 samples, TSP50-Policy performs similarly to GAT-T [231] using 3,000
samples, at a 1.86% optimality gap. These results are closer to optimal than previ-
ous learning methods without further local search improvement as in GCN [115].
When increasing to 2,000 steps, we outperform all compared methods at a 1.37%
optimality gap.
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Table 5.2: Performance of policies trained on 50 and 100 nodes on TSP100 instances

TSP100-Policy TSP50-Policy
Steps Cost  Gap Cost  Gap

500 791 1.84% 798 2.78%
1000 7.86 1.26% 791 1.86%
2000 7.83 0.87% 787  1.37%

Running Times and Sample Efficiency

Comparing running times is difficult due to varying hardware and implementa-
tions among different approaches. In Table 5.1, we report the running times to
solve 10,000 instances as reported in [115, 128, 231] and ours. We focus on learn-
ing methods, as classical heuristics and solvers are efficiently implemented using
multi-threaded CPUs. We note that our method cannot compete in speed with
greedy methods as we start from poor solutions and require sampling to find im-
proved solutions. This is neither surprising nor discouraging, as one can see these
methods as a way to generate initial solutions for an improvement heuristic like
ours. We note, however, that while sampling 1,000 steps, our method is faster than
GAT-T [231] even though we use a less powerful GPU (RTX 2080Ti vs Tesla V100).
Moreover, our method requires fewer samples to achieve superior performance. The
comparison to GAT [128] is not so straightforward as they use a GTX 1080Ti and a
different number of samples. For this reason, we run GAT [128] using our hardware
and report running times sampling the same number of solutions in Table 5.3. Our
method is slower for TSP20 and TSP50 sampling 2,000 solutions. However, as we
reach TSP100, our method can be computed faster and, overall, requires less time
to produce shorter tours.

Table 5.3: Performance of GAT [128] vs our method. Results are compared on the
same hardware sampling the same number of solutions.

TSP20 TSP50 TSP100

Method Cost Time | Cost Time | Cost Time

GAT {500} | 3.839 (3m) | 5727 (10m) | 7.955 (27m)
Ours {500} | 3.836 (5m) | 5716 (7m) | 7.907  (10m)

{
GAT {1,000} | 3.838 (m) | 5.725 (14m) | 7.947  (42m)
Ours {1,000} | 3.836 (10m) | 5.708 (13m) | 7.861  (21m)
{

GAT {2,000} | 3.838 (5m) | 5722 (22m) | 7.939 (1h13m)
Ours {2,000} | 3.836 (15m) | 5.703 (29m) | 7.832  (41m)
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Ablation Study

In Table 5.4, we present an ablation study of the proposed method. We measure
the performance at the beginning and towards the end of the training procedure,
i.e., at epochs 10 and 200, rolling out policies for 1,000 steps for 512 TSP50 instances
and 10 trials. We point out that our main objective is to find good policies as
early as possible. In other words, good policies found earlier are considered better
than waiting more time to obtain the same results. We observe that removing the
LSTM (a) affects performance the most, leading to a large 134.42% gap at epoch 200.
Removing the GCN component (b) has a lower influence but also reduces the overall
quality of policies, reaching a 0.30% optimality gap. We then test the bidirectional
LSTM (c) effect, replacing it with a single LSTM. In this case, gaps are even higher,
at 2.20%, suggesting that encoding the symmetry of the tours is important. We also
compare two variants of the proposed model, one that does not take as input the
best solution (d) and one that shares the parameters of the encoding units (e). For
these cases, we note that the final performance is similar to the proposed method,
i.e. 0.22% optimality gap. However, in our experiments, the proposed method can
achieve better policies faster, reaching a 3.0% gap at epoch 10, whereas (d) and (e)
yield policies at the 4.55% and 5.15% level, respectively.

Table 5.4: Ablation studies on 512 TSP50 instances running policies for 1,000 steps.

Epoch: 10 Epoch: 200

Opt. Gap (%) Cost Opt. Gap (%) Cost
Proposed 3.00 + 0.08 5.87 0.22 + 0.01 5.72
(a) w/o bi-LSTM 203.87 + 0.61 17.33 134.42 + 056 13.37
(b) w/0 GCN 9.74 + 0.08 6.26 0.30 £+ 0.01 5.72
(c) w/o bidirectional 1794 £ 0.15 6.73 2.20 + 0.05 5.82
(d) w/o best solution ~ 4.55 + 0.04 5.96 0.22 + 0.02 5.72
(e) shared encoder 5.15 £+ 0.06 6.00 0.23 + 0.01 5.72

Generalisation to Real-world TSP instances

In Table 5.8 in Appendix 5.A, we study the performance of our method on TSPlib
[184] instances. In general, these instances come from different node distributions
than those seen during training, and it is unclear whether our learned policies
can be reused for these cases. We compare the results of the policy trained on
TSP100 sampling actions for 2,000 steps to results obtained from OR-Tools. We
note that of 35 instances tested, our method outperforms OR-Tools in 12 instances.
These results are encouraging as OR-Tools is a very specialised heuristic solver.
When we compare optimality gaps 8.61% (ours) and 3.70%, we see that our learned
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policies are not too far from OR-Tools even though our method never trains on
instances with more than 100 nodes. The difference in performance increases for
large instances, indicating that fine-tuning or training policies for more nodes and
different distributions can potentially reduce this difference. However, similar to
the results in Table 5.2, our method still can achieve good results on instances with
more than 100 nodes, such as ts225 (0.86% gap).

5.8 Expanding to other Routing Problems

In this section, we show how the proposed methodology can be extended to more
general routing problems. In particular, we expand the proposed model to search
for solutions for the multiple TSP and the VRP. The specific changes to handle these
problems are detailed in the following sections.

5.8.1 The Multiple Travelling Salesmen Problem

The multiple TSP (mTSP) [17] is an extension to the original TSP that includes a
number of salesmen m starting and ending their tours at a depot location. The
goal is to construct tours for the m salesmen such that the total cost of the tours is
minimised. In our formulation, we include an extra depot node with index 0 and
coordinates xg € [0,1]* and the remaining customer nodes {1,...,n}. Since adding
more salesmen without any imposed constraint would lead to the same solution as
the TSP, we include two additional constraints in the problem formulation, (i) each
salesman needs to be utilised in a feasible solution and (ii) in a given salesman tour
at least v = 2 nodes have to be visited, excluding the depot. The latter ensures that
a tour cannot be formed by visiting just one node and returning to the depot, redu-
cing the remaining problem to a TSP with n — 1 nodes. The remaining constraints
are usual TSP constraints.

Instance Generation

We follow the same instance generation procedure as the TSP, i.e., we draw n +
1 nodes (including the depot) at random from a uniform distribution in the 0-1
square.

Initial Solution Generation

We represent a solution S to the mTSP, as an ordered list of nodes, S = (sq, .. .,sp),
where s; € {0,...,n}. In our solution, each tour is represented by adding the depot
index at the beginning and ending of each tour without repetition. For example, a
solution with two tours and n = 5 is represented as S = (0,1,2,0,4,3,5,0), where
the first tour visits nodes 0, 1, 2 and 0 and the second tour visits nodes 0, 4, 3, 5 and
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0. The size of a solution p depends on n (number of customers) and m (number of
salesmen) and it is expressed as p = n +m + 1.

We generate initial solutions by first sampling instances and then breaking the
canonical ordering of nodes into m tours. We start from a solution containing all
the nodes, i.e., S = (0,1...,n) and find the depot positions of the tours by first
computing the number of required splits # = |2 |, then for m — 1 depot positions
(the last depot position is always at the end of the solution), we find the indices of
the depot by:

(i) =({—-1)y+v+2 Viel,....m—1 (5.26)

and we insert each depot at its corresponding index. Lastly, we add a depot to
the end of the solution S, ensuring we have short and long tours in a given initial
solution.

mTSP Neural Architecture

Encoder We use the same encoding architecture for the mTSP as for the TSP;
however, the embedding layer and the I. GCN layers operate only on the n + 1
node coordinates of the underlying instance graph, ensuring we only encode the
information about the instance. That is,

XH = o +c7r( | %') & (Wix! + bg)),\ﬁ €{0,...,n} (5.27)
JeEN (1

here we define x; as the coordinates of node i € {0,...,n}, i.e., respecting the labels
of the nodes 0 until n in the instance graph. Note that this is different (although
equivalent) from the TSP case where we read the input features from each node in
the order defined by the solution, i.e., xs;. This difference in the mTSP and VRP
cases ensures that we embed the features in the GCN layers that correspond to the
instance graph and not to the solutions, which repeats the depot multiple times.
To encode the ordering of a solution, the RNN layers take as input the graph
embedded node features and proceed to perform the solution encoding, i.e.,

(hi7,¢;7) = RNN(z;7, (hi2q,¢i24)), Vie{l,...,p} (5.28)

(hi~,¢;7) =RNN(z{, (hj;1,¢51)), Vied{p,...,1} (5.29)

where z; corresponds to the node features of node s;, ie, z; € {xg“,.., x],I;}, and
L
Zi = Xsl_.

Tour Length Constraints and Masking The first action masks all depot positions
and the last customer node at the end of the last tour. Then the second action con-
siders only customer nodes indices that are greater than the index a; that, when
selected, results in the tour with the minimum length to be greater or equal than
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v. Let ¢(S,a1,j) = min(c'(S,a1,j),...,c"(S,a1,])), denote the number of customer
nodes in the shortest tour in the resulting solution when applying the 2-opt opera-
tion defined by (a3, j) to a solution S, then the masking becomes:

2 {ﬁf, ifj>a1 ANc(S,a1,j) >v (5.30)

—o0, otherwise.

where ﬁ; = tanh(Ko; + Qg;). To encode the previous masking, we keep track
of an auxiliary indicator b; € {—1,0,1}, where i € {1,..., p}, represents if a node
is right before (-1), after (1) or further away (0) from a depot when traversing the
solution from left to right. Thus, checking if ¢(S,a1,j) > 2 can be achieved by

0, ifby = —1Ab #-1Nj >
@2, ifby, =1Ab;#1ANj>a
2 o ‘17& J =& (5.31)
i, ifby, =0Aj >

—o0, otherwise.

Training and Experimental Parameters

We make a few modifications to the training parameters in comparison to the TSP
case. We reduce the size of the mini-batches to 64, 128 and 256 for mTSP20, 50, and
100, respectively. This modification allows for faster training when using a more
complex masking operation and longer solutions. We train models on instance
problems with two values of m € {2,4}. Similarly to the TSP, we sample 10 mini-
batches at each epoch and train mTSP20 for 200 epochs and mTSP50 for 300 epochs.
To avoid high training times of mTSP100, we use the best-learned policy on mTSP50
as a warm-start for mTSP100 and train for 100 epochs. Our random initial solutions
are far from optimality with costs 11.51, 26.98, 52.78 for m = 2 and 12.46, 27.94,
53.80 for m = 4 over the increasing instance sizes. Each epoch takes on average 2m,
6m, and 10m for mTSP20, 50, and 100, respectively. We run two sets of experiments,
one containing 1,000 instances to mitigate the high running times of our baselines
and one with 10,000 instances to be comparable with the TSP experiments. The
remaining parameters of the model remain the same as for the TSP.

Experimental Results and Analysis

We roll out the learned policies by sampling 2,000 solutions on each of the 1,000 and
10,000 sets of instances to assess the performance of our method. We compare the
performance to an integer linear programming (ILP) formulation of the problem
running the Gurobi solver [83] for a max of 30s for each instance. We also include
the highly effective LKH3 [92] heuristic as a baseline as it balances solution quality
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and speed. Moreover, LKH3 is the state-of-the-art algorithm for several routing
problems. We implement both baselines in a serialised manner. This is comparable
to our results as even though we sample actions in batches taking advantage of
batch parallelisation, we perform the 2-opt actions in series.

Table 5.5: mTSP results on 1000 instances compared to the best results obtained
using Gurobi (30s) and LKH3.

mTSP20 mTSP50 mTSP100
Salesmen Method Cost  Gap Time | Cost Gap Time | Cost Gap Time
Gurobi (30s) | 421 0.00% (m) | 595 0.31% (5h) | 9.62 21.55% (8h)
m=2 LKH3 421 0.00% (12m) | 593 0.00% (25m) | 791 0.00% (27m)

Ours {2000} | 421 0.02% (3m) | 595 033% (5m) | 805 1.69%  (9m)

Gurobi (30s) | 533 0.00% (3m) | 658 0.10% (5h) | 9.68 15.84%  (8h)
m=4 LKH3 533 0.00% (25m) | 658 0.00% (28m) | 8.35 0.00% (32m)

Ours {2000} | 533 0.08% (3m) | 6.60 042% (5m) | 851 191%  (9m)

Table 5.6: mTSP results on 10000 instances compared to the best results obtained
using Gurobi (30s) and LKH3. Gurobi is only run to mTSP20 due to high running
times when solving mTSP50 and mTSP100 instances.

mTSP20 mTSP50 mTSP100
Salesmen Method Cost  Gap Time | Cost Gap Time | Cost Gap Time
Gurobi (30s) | 420 0.00% (38m) - - - - - -
m=2 LKH3 420 0.00% (2h) 592 0.00%  (3h) 792 0.00% (4h)

Ours {2000} | 420 0.02% (25m) | 594 035% (39m) | 8.05 1.65% (lh)

Gurobi (30s) | 531 0.00% (30m) | - - - - - -
m=4 LKH3 531 0.00% (5h) | 656 0.00% (5h) | 835 0.00% (6h)

Ours {2000} | 531 0.06% (25m) | 659 042% (40m) | 851 1.91% (1h)

Comparison to Exact and Heuristics Baselines The results for the set of 1,000
instances are presented in Table 5.5. We observe that the learned policies are close
to the performances of both Gurobi and LKH3 when solving instances with 20
nodes with 0.02%, 0.08% optimality gaps, respectively. Similar to the TSP, the gap
increases as we increase the size of the instances. Moreover, as we increase the
size of the instances, the performance of Gurobi running for just 30s decreases
considerably, taking significantly longer (8h) and yielding results far from LKH3.
On the other hand, our learned policies remain much closer (1.69% for 2TSP100,
1.91%for 4TSP100) to the best results found by LKH3 whilst requiring less time.
We also present the results on 10,000 instances as these should provide better
estimates of the performance of our policies. We present the results in Table 5.6.
Since Gurobi does not scale, we only provide the results from Gurobi for mTSP20.
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The results are similar to those obtained in 1,000 instances, with our model finding
similar costs to those found by LKH3 whilst requiring less running time than the
heuristic.

5.8.2 The Capacitated Vehicle Routing Problem

In the capacitated vehicle routing problem (CVRP) [212], each customer node has an
associated demand, and multiple routes should be constructed starting and ending
at a depot. The CVRP is a generalisation of the mTSP. It considers that each vehicle
(salesman) has a given capacity and that tours have to be formed such that the
combined demand of all customers does not exceed the capacity of the vehicles.

Similar to mTSP, we add an extra depot node with index 0 and coordinates
xXp € [0,1}2 and consider the remaining nodes as customer nodes. We adopt the
same formulation as in [128, 168], and define a capacity D for a single vehicle
traversing all the routes. We associate each customer node i € {1,...,n} with a
demand 0 < §; < D. Each route should start and end at the depot and should not
exceed the vehicle’s total capacity. Similar to [128] we assume a normalised capacity
D =1 and use normalised demands &; = %, this allows us to learn general policies
that can be used with different capacity magnitudes.

Instance Generation

For comparison, we follow [128, 168] and generate node coordinates sampled
uniformly at random in the unit square. The unnormalised demands J; where
i€ {1,...,n}, are sampled following a discrete uniform distribution from {1,...,9}
and the demand of the depot is Jp = 0. Each problem size n defines different capa-
cities D, with D = 30, 40,50, for n = 20,50, 100, and remain fixed for all instances.

Initial Solution Generation

Similar to the mTSP, we represent a solution S to the CVRP, as an ordered list of
nodes, S = (sq,...,5p), where s; € {0,...,n}. A tour is represented by adding the
depot at the start and beginning of each tour. However, unlike the mTSP, where the
number of salesmen is fixed, in the CVRP, a solution can have different lengths
depending on the number of tours traversed. To allow for batching solutions,
we compute the maximum length of a solution p. Let the maximum demand be
oM = max(dy,...,0;) and maximum the number of customers served at max-

imum demand be { = (sm% . Then we define the maximum number of possible

tours m™®* = [%—‘ , and finally, the length of the tour is given by p = n +m™* 4 1.
With our parameters, p corresponds to 28, 64 and 121 for n = 20, 50, 100.

We generate initial solutions by first sampling the node coordinates and de-
mands. We define an initial solution traversing nodes in the sampled order, i.e., we
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start with a solution S = (0,1,...,n). We accumulate the sum of demands whilst
traversing the nodes and construct a tour when Eﬁ':o 5y > 1. At which point we
add a depot to the solution and start a new tour with the last visited node i. We
repeat this procedure until we visit all customer nodes. Since not all solutions have
the same length, we pad the solutions with depot nodes at the end. This allows us
to batch solutions respecting their maximum sizes p and lets the algorithm add new
depot locations to a solution if deemed necessary. For instance, a CVRP solution of
the form S = (0,1,2,0,3,6,5,4,0,...,0) represents two tours, one traversing nodes
0, 1, 2, 0 and the other traversing nodes 0, 3, 6, 5, 4, 0. The remaining depots are
padded to complete the solution.

CVRP Neural Architecture

Embedding Layer To allow our model to use both node coordinates and demands
of the nodes, we provide the normalised demands 5,- of each node to the embed-
ding layer, where each x; is the coordinate of node i € {0,...,n} and adjust the
dimension of the parameter Wy accordingly. The embedding layers then produces
node features following

x) = Wex;||8] + by (5.32)
GCN Layers We compute the Euclidean distances using the node coordinates x;

as in the TSP case and use the normalised edges ¢;; to compute the graph node
features similar to the mTSP case by applying IL GCN layers following Eq. (5.27).

RNN Layers We adjust the dimensions and follow the same architecture of the
mTSP, i.e. Egs (5.28) and (5.29), in which the node features x]iL, ie{0,...,n} are
used to compose nodes in a solution where S = (sl,...,sp), s; € {0,...,n} and
Zi = xsi.
Capacity Constraints and Masking To allow for only feasible solutions, we need
to ensure that a 2-opt action will not create tours that do not respect the capacity
constraints. Thus, before the action selection starts, we create a feasibility matrix
P € {0,1}P*? and go through all possible p(p — 1)/2 node exchanges and check
if it forms a feasible solution where the maximum demand across all tours do not
exceed the capacity D. Then for the first element of the action a;:

I/lj:

-1 . i =
1 {”jr if maxees,.,py Pl Kl =1 (5.33)

—o0, otherwise.
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and for ay:

u]-:

o) . 1 —
) {”j' if Play,j] =1 (5.34)

—oo0, otherwise.

Training and Experimental Parameters

We train on CVRP20 and CVRP50 instances with a mini-batch size of 64 and 128. We
do not train our policies on CVRP100 due to high training times in our hardware,
but we report the performance of the policy trained on CVRP50 instances tested
on CVRP100. For the same reason, we warm-start CVRP50 with a policy trained
on CVRP20 and train for additional 200 epochs. Our initial solutions have average
costs of 12.53, 29.79, 58.19 for n = 20,50,100. Each epoch takes 1m83s and 7m30s
for instances with 20 and 50 nodes. The remaining training parameters remain
identical to the TSP.

Experimental Results and Analysis

We compare our results to other end-to-end deep learning methods and CVRP heur-
istics. We run our policies for 500, 1000 and 2000 steps on the same 10,000 instances
as in [128]. This allows us to compare both optimality gaps and costs. We include
the LKH3 baseline from the previous paper and rerun both the deep learning model
and the baselines to compare running times. We also compare to the improvement
method GAT-T [231] and report the objective gaps and times reported in their ori-
ginal paper since no pre-trained model is available. While learning the CVRP, we
note that GAT-T starts from the nearest neighbour heuristic, with much lower costs
than our initial solutions. This allows for the model to experience a higher number
of solutions that are closer to optimality, i.e., when the action selection is harder. We
do not employ such a strategy and always start learning from randomised solutions
and thus have to learn in a more complex setup. We also include in the comparison
the improvement method L2I; however, the reported results are only averaged over
2,000 instances and cannot be compared to the remaining methods. We also include
in the comparison the results obtained with NLNS. Lastly, we compare to the recent
DPDP, reporting results for the VRP with 100 nodes and DPDP with beam sizes of
10K (10 thousand), 100K (100 thousand) and 1M (one million), for the VRP with 100
nodes.

Comparison to Heuristics and Learned Baselines We present the comparison to
previously proposed methods in Table 5.7. Our method outperforms other reported
deep reinforcement learning baselines for CVRP20. The best results are found after
sampling 2000 solutions resulting in a 0.37% gap to LKH3. Note that our policy
performs better than GAT-T, even when sampling 5000 solutions. For CVRP50, our
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Table 5.7: CVRP Results on 10,000 instances reported in [128]. *Costs are estimated
from the reported gaps and times are presented as reported in [102, 231]. ** Repor-
ted costs are averaged only on 2000 instances and not directly comparable. TTrained
on CVRP50.

CVRP20 CVRP50 CVRP100
Method Cost Gap  Time | Cost Gap  Time Cost Gap  Time
LKH3 | 614 0.00% (2h) 1038 0.00% (8h) | 15.65  0.00% (12h)

GAT (greedy) [128] | 640 430% (Is) | 1098 586% (Is) | 1680  7.34%  (3s)
GAT {1280} [128] 625 1.86% (7m) | 1062 240% (20m) | 1623 3.72%  (2h)

GAT-T {1000} [231] | 6.19* 090% (23m) | 10.71* 3.16% (48m) | 16.30* 4.16% (1h)
GAT-T {3000} [231] | 6.17* 061% (1h) | 10.55* 1.65% (2h) | 16.11* 299%  (3h)
GAT-T {5000} [231] | 6.16* 0.39% (2h) | 1045* 0.70% (4h) | 16.03* 247%  (5h)

NLNS [102] | 619 090% (7m) | 1054* 154% (24m) | 1599* 217% (1h)
L21 [151] | 6.12% - - | 1035* - - | 1557 - -

DPDP 10K [127] - - - - - - 1583  1.18%  (2h)
DPDP 100K [127] - - - - - - 15.69  0.30%  (6h)
DPDP 1M [127] - - - - - - 1563  -0.13% (48h)
Ours {500} 622  1.32% (10m) | 1092 529% (1th) | 1758 12.31% (5h)
Ours {1000} 618  0.69% (19m) | 1076 3.70% (2h) | 17.06" 8.80%  (10h)
Ours {2000} 616 0.37% (39m) | 1065 266% (4h) | 16.72"  6.83%  (20h)

learned policy matches GAT (greedy) after sampling 500 solutions. However, GAT-
T can achieve lower optimality gaps when sampling more solutions than both our
proposed method and GAT. We report CVRP100 results for completeness, although
we do not train on instances with 100 customer nodes. As expected, our evaluated
policies are farther from the LKH3 baseline when compared to the other learned
methods that train on CVRP100 instances, including DPDP 1M. However, the results
show that the learned policies can generalise to instances of different sizes. An
important aspect of our results in comparison to a constructive method is that we
are required to check feasibility each time a solution is generated. This leads to high
running times due to the polynomial growth in the feasibility checks as we increase
the size of the instances. This issue can be alleviated by running multiple instance
mini-batches in parallel, but it is not implemented in our evaluations.

5.9 Conclusions

In this chapter, we introduced a deep reinforcement learning formulation and al-
gorithms to approximate improvement policies based on 2-opt local search oper-
ators for the travelling salesman problem (TSP), the multiple TSP, and the capacit-
ated vehicle routing problem. We proposed a neural architecture with graph and
sequence embedding capable of outperforming learned construction and improve-
ment heuristics requiring fewer samples for the TSP. Our learned heuristics also
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outperformed classical 2-opt and achieved similar performance to state-of-the-art
classical heuristics as well as exact solvers in all problems studied.
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Appendix

5.A Appendix A: Results on TSPLib

Table 5.8: Performance of OR-Tools vs our method on TSPlib instances.

Instance | Opt. | Ours {2,000} OR-Tools
eil51 426 427 439
berlin52 7,542 7,974 7,944
st70 675 680 683
eil76 538 552 548
pr76 108,159 111,085 110,948
rat99 1,211 1,388 1,284
rd100 7,910 7,944 8,221
kroA100 21,282 23,751 21,960
kroB100 22,141 23,790 22,945
kroC100 20,749 22,672 21,699
kroD100 21,294 23,334 22,439
kroE100 22,068 23,253 22,551
eil101 629 635 650
lin105 14,379 16,156 15,363
pr107 44,303 54,378 44 573
pri24 59,030 59,516 60,413
bier127 118,282 121,122 121,729
ch130 6,110 6,175 6,329
prl36 96,772 98,453 102,813
prl44 58,537 61,207 59,286
ch150 6,528 6,597 6,733
kroA150 26,524 30,078 27,503
kroB150 26,130 28,169 26,671
pr152 73,682 75,301 75,832
ul59 42,080 42,716 43,403
rat195 2,323 2,955 2,375
kroA200 29,368 32,522 29,874
ts225 126,643 127,731 127,763
tsp225 3,919 4,354 4,117
pr226 80,369 91,560 83,113
gil262 2,378 2,490 2,517
pr264 49,135 59,109 51,495
a280 2,579 2,898 2,742
pr299 48,191 59,422 50,617
pr439 107,217 143,590 117,171
Avg. Opt. Gap | 0.00% | 8.61% 3.70%




Chapter 6

Learning 2-opt Heuristics from
Expert Demonstrations

This chapter builds upon Chapter 5 and aims at learning improvement
policies for routing problems focusing on the travelling salesman prob-
lem. Unlike the previous chapter, we study the setting where a training
agent has access to previous expert heuristics used to gather demon-
stration data. The agent’s goal is to extract information from these
expert heuristics to learn policies that can surpass the quality of the
heuristics reducing the sample complexity and accelerating the emer-
gence of good quality policies.

This chapter is based on [54].

125
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6.1 Introduction

The travelling salesman problem (TSP) is a well-known combinatorial optimisation
(CO) problem where the aim is to find an optimal tour that visits n locations once
and returns to the origin. The TSP is known to be NP-hard [175], and solving it
to optimality is usually achieved via integer linear programming and dynamic pro-
gramming methods. However, solving large TSP instances to optimality can be im-
practical due to high computational costs. For this reason, several (meta)heuristics
have been proposed to solve the problem. Heuristics for the TSP can be classified
in constructive and improvement methods. In the first, the goal is to compose a
solution by iteratively extending a partial tour. In the latter, a complete solution is
improved by certain operators searching for better solutions, such as using k-opt
edge swaps [90].

Recently, using machine learning to solve CO problems has gained much in-
terest. For many problems, heuristics exist to make algorithmic decisions that oth-
erwise would be too expensive to compute. This makes machine learning a vi-
able option for making decisions in a more automated and optimised manner [24].
Thanks to the advances in deep learning, reinforcement learning (RL) methods have
succeeded in learning effective constructive and improvement policies for the TSP
[21, 49, 52, 62, 115, 128, 223, 231]. However, these methods require many steps of
poor performance in simulation during training, partly due to their simple explora-
tion rules, such as e-greedy for value learning methods and noise-based exploration
for policy learning methods.

Since most previous RL methods attempted to learn either improvement or con-
structive heuristics, it is natural to consider reusing expert information embedded
in handcrafted heuristics to accelerate learning. In imitation learning (IL), the goal
is precisely to reproduce the behaviour of an expert policy in a sequential decision-
making problem [186]. However, classical IL can only learn policies as good as
expert policies [186]. In the case of CO problems, these expert policies are usually
not optimal. When a suboptimal expert is available, policies learned with standard
IL can be inferior to policies learned via RL with approaches such as policy gradient
[40].

Moreover, in the case of expert heuristics policies, it is desirable to learn without
online access to the policies, given the high cost of computing expert heuristics
rules. Thus, we focus on the case when a suboptimal improvement policy exists but
can only be used to gather demonstrations, i.e., expert trajectories. Our objective is
to incorporate the information from such demonstrations to learn faster than with
pure RL and better than the expert policy for the TSP.

To achieve this goal, we propose to combine RL leveraging online interactions
with a Euclidean TSP environment and a small number of demonstrations from
2-opt improvement heuristics. We combine a classical policy gradient objective
with a previously trained policy via an offline supervised loss, leading the agent
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Figure 6.1: In the figures, we present a schematic representation of the proposed
method. a A behaviour cloning policy is trained on data D, made of trajectories
from 2-opt local search heuristics acting as experts. b The trained policy in a is
used to warm-start a reinforcement learning policy trained via policy gradient to
maximise cost reductions of the next search steps.
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to prefer actions experienced in the demonstrations. Then, during its online phase,
the method performs updates considering its self-generated data. Our method,
depicted in Figure 6.1, is straightforward and can be applied to other CO problems
where good heuristics already exist. Our method can outperform IL methods such
as behaviour cloning (BC) and pure policy gradient training in our experiments.
Moreover, our method performs similar to a recently proposed RL method [49, 52]
but requires only 10% of the number of iterations to obtain comparable policies to
other effective deep RL methods.

Contributions and Organisation We summarise our main contributions as fol-
lows:

e We combine a classical policy gradient objective with a previously trained
policy via behaviour cloning on expert demonstrations.

e Our method can learn good policies faster than with pure RL starting from
suboptimal 2-opt heuristics as experts.

e We only make use of a small amount of demonstration data, retaining similar
sample complexity to RL methods.

The remainder of this chapter is organised as follows. In Section 6.2 we present
the related literature. Section 6.3 provides a formal description of the sequential
decision-making model of the problem and its background. In Section 6.4 we form-
alise the proposed algorithm. Section 6.5 presents the experimental results and
comparisons to previously proposed methods. Finally, Section 6.6 concludes this
chapter and provides some interesting directions for future research.

6.2 Related Literature

The TSP is a challenging problem in CO with applications in many domains [138].
Past successes in solving hard instances have been accredited to heuristics or a
combination of heuristics and exact methods. Such heuristics include local search
methods such as Lin-Kernighan-Helsgaun (LKH) [91] and metaheuristics such as
simulated annealing [217]. In common, these methods aim to reduce expensive
computations by exploiting the structure of the problem combined with local and
global neighbourhood search.

Recently, deep learning has emerged as a viable option to solve routing problems
[24]. Many works have considered approximating a function that attempts to con-
struct a solution or improve a given solution. These approaches resemble heuristics
and, as such, can be classified in constructive and improvement methods. These
methods have had considerable success, using either supervised or reinforcement
learning.
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Supervised Learning Supervised learning approaches for the TSP [115, 223] have
considered the setting of given offline data containing optimal solutions as outputs.
The goal is to learn a function that can reproduce optimal tours directly from node
and distance data. Results show that supervised learning can be applied to this
setup with fairly reasonable results. However, ensuring optimal labels for larger
instances can be too computationally expensive. Note that these methods rely on a
given optimal policy. Thus, they can also be seen as a type of Imitation Learning.
However, we make a distinction to differentiate between learning from optimal and
suboptimal strategies.

Reinforcement Learning Model-free RL breaks the assumption of given optimal
solutions [21, 49, 52, 62, 128, 231]. Previous methods used deep function approxim-
ation to learn directly from interactions. Most methods have focused on the setting
where a solution must be constructed sequentially, starting from a given location
(node). In this case, training attempts to find policies that reduce the overall cost
of a tour. In practice, to achieve good solutions, these methods have to sample
multiple tours to find near-optimal ones [21, 62, 128].

Another approach considers learning over multiple steps, improving a given
solution over a series of local operators [39]. For the TSP, these improvement-
seeking methods have achieved good results when sampling a similar amount of
operators as in construction methods [49, 52, 231]. Note that [49, 52] are this au-
thor’s previous works detailed in Chapter 5. One major drawback of RL methods
is their sample complexity, typically requiring many hours of training. Another
aspect of previously proposed methods is that they learn from scratch, i.e., no pre-
vious policy is used to aid learning. As it is true that optimal solutions may not be
available or expensive to compute, the same is not valid for heuristics. These are
cheaper to compute than optimal solutions and can be used as a suboptimal expert
to guide policy search. In this chapter, we focus our attention on recent improve-
ment methods that learn over a class of 2-opt policies [49, 52, 231]. In this case,
heuristics already exist and can potentially be used to accelerate learning.

Imitation Learning In imitation learning (IL), expert policies can be used as
demonstrations of successful behaviour. A simple approach to IL is known as be-
haviour cloning (BC), which learns a policy through supervised learning on expert
demonstrations [186]. Although BC has been used successfully in several instances,
it suffers from problems such as distribution shift between expert and behaviour
(training) policies [187]. Generative adversarial imitation learning (GAIL) [96] is a
more recent approach that obtains performance gains over BC but requires an addi-
tional generative adversarial network (GAN) [81] for training. Other approaches in
IL considered online access to the expert to surpass the expert policy [36, 40, 204].
However, even when an expert is available for online interactions, as is the case
of heuristics, querying expert heuristics can become computationally prohibitive.
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Thus, we consider a typical case in CO, i.e,, when expert demonstrations exist,
but online interaction with the expert is not available or expensive. In CO, IL has
been previously applied to learn branching strategies and accelerate branch and
bound in the context of integer programming, [77, 122, 157] and predict the objective
improvement of cutting planes selection in semidefinite programming problems
[15].

Reinforcement Learning from Demonstrations Methods combining RL with
demonstrations have shown good results guiding policy learning in robotics and
game playing. In [200], demonstration data was used to pre-train the policy network
over expert player data. [95] proposed the deep Q-learning from demonstrations
(DQID) and stored the demonstrations in an experience replay buffer. [38, 119] pro-
posed expanding policy gradient with additional GAIL regularisation terms. Like
GAIL, these require additional networks for generating expert-like policies. Instead,
we focus on a simple BC initialisation term that does not require additional neural
networks and can be trained using a pre-existent policy network. Similar to our
work, [183] use BC pre-trained policies and natural policy gradient (NPG) [118]
with BC augmented loss to learn dexterous manipulation on robotics hands. Simil-
arly, we propose to guide initial exploration via behaviour cloning and combine it
with on-policy policy gradients. We note that the general idea of bootstrapping RL
with BC while learning TSP heuristics is not yet explored.

6.3 Preliminaries

6.3.1 Traveling Salesman Problem

In the Euclidean TSP, given an input graph, represented as a sequence of n locations
in a two-dimensional space X = {x;}_,, where x; € [0,1]%, we are concerned with
finding a permutation of the nodes, i.e. a solution s = (5y,...,5,), that visits each
node once (except the starting node) and has the minimum total length (cost). We
define the cost of a solution as

(6.1)

n—1
L(s) = ||xs5, — x5 ||2 + 2 ||x§i - x§i+l| 27
i=1

where |[|-||, denotes the ¢, norm.

6.3.2 First and Best Improvement 2-opt Heuristics

General improvement heuristics enhance feasible solutions through a search pro-
cedure. Local search methods start at an initial solution and proceed to replace
previous solutions with better solutions. In the effective Lin-Kernighan-Helsgaun
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Figure 6.2: TSP solution before a 2-opt move (top), and after a best improvement
move (3,4) (bottom left) and a first improvement move (1, 3) (bottom right). Indices
represent the order in which nodes are visited.

(LKH) [91] heuristic for the TSP, the procedure searches for k edge swaps (k-opt
moves) that will be replaced by new edges resulting in a shorter tour. A simpler
version [143] considers 2-opt (Figure 6.2) and 3-opt moves alternatives as these bal-
ance solution quality and the O(n¥) complexity of the moves.

At each iteration of a 2-opt local search, two edges are selected to be deleted
and replaced by two edges that result in a better tour. In doing so, 2-opt moves
can be expressed by selecting two index positions (d1,d) = (i,j) of a tour s, i.e.,
ay,ay € {1,...,n},a; < ap, breaking edges between nodes at positions (i —1,7) and
(j,j + 1), inverting the tour between i and j and adding edges between (i — 1, )
and (i,j +1). The selection of the edges is normally done by scanning the current
solution for suitable edge pairs.

Since there can be many such pairs, a decision must be made over which move
is considered first. Two well-studied choices are selecting the first set of edges at
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which an improvement is possible, i.e., first improvement (FI) and the best reducing
cost move, i.e., best improvement (BI). On average, selecting BI over FI gives worse
results if the initial solution is chosen at random. However, when initialised with a
greedy constructive heuristic, Bl is better and faster on average [84].

6.3.3 Markov Decision Process

We adopt a standard Markov decision process (MDP) M, defined by a tuple M =
(S, A,P,r,7v) where S is the state space, A is the action space, P(s'|s,a) is the
transition distribution after taking action a at state s, (s, a) is the reward function,
v € (0,1) is a discount factor, detailed below.

States A state s is a solution to the TSP defined by a permutation of n nodes. Note
that we only consider a current solution as a state as opposed to both the current
and best solution as in [49, 52], and allows us to consider experts that only operate
in s when picking the next action.

Actions An action a is a tuple (i,j), where i,j € {1,...,n}, i < j corresponding to
two indices of s.

Transitions Transitions are deterministic and defined by (s,a) pairs. Given ac-
tion (7,j), transitioning from s = (sl,...,si,...,sj,...,sn) is defined by a 2-opt
exchange inverting the tour segment between i and j resulting in a next state
8" = (S1,++,8j,--/8is+,5n)

Objective Given a stochastic policy 7t(als)* : S — P(A) which maps states to
action probabilities, its performance is evaluated by the expected discounted sum
of rewards (return):

J(t) = Ex[r(s,a)] = Esyu,... [ io'ytr(st,at)} , (6.2)

where sg, 4y, . . . is a trajectory induced by policy 7, i.e. so ~ po(sp), with po(-) being
the distribution over initial states, a; ~ 7(-|s¢) and s;11 ~ P(-|s¢,a¢). We define
standard characterisations of the value function

V7(s) = Exl[ Y ¥ r(serk aria)lst = s], (6.3)
k=0

“We refer to deterministic policies as 7(s).
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action value function

Q7(s,a) = Exl[Y_ V1 (st arsa) st = 5,01 = a] (6.4)
k=0

and the advantage function as A (s,a) = Q" (s,a) — V7 (s), reflecting the expected

additional return of a at state s.

Rewards Rewards are attributed to actions that can improve upon the cost of the
best-found state s; in a trajectory, i.e.,

s; = argmin L(sy) (6.5)
sy €{50,.-,5¢}
and
r(st,ar) = L(sy) — min{L(s{), L(s11)}- (6.6)

In RL, we are interested in finding a policy that maximises J(7r) by using a set of
trajectories D = {t;}, where 7; = {(si, a})), (s},a}), ...} are sampled from the current
policy in on-policy methods or different policies in off-policy methods. We consider
policies 7ty with parameters 6; thus, we use 71, 71y and J(71), J(0) interchangeably.

6.4 Learning 2-opt from Demonstrations

In this chapter, we use a combination of RL and IL to learn 2-opt exchange heurist-
ics. To reduce sample complexity and help exploration, we collect expert demon-
strations from FI and BI heuristics, extract a policy from demonstrations and do
policy gradient updates over environment interactions. In the following sections,
we detail each component of the proposed method.

6.4.1 Policy Gradient

We are mainly concerned with policy gradient methods, which are a class of on-
policy model-free RL. In policy gradient, the parameters of the policy are directly
optimised towards maximising the main objective defined as

J(0) = Egwgr| ZA mg(als)Q" (s, a)], (6.7)

where d”(s) is the stationary distribution of the Markov chain induced by 7ty (als).
Then, according to the policy gradient theorem [208], the gradient of J(6) can be
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estimated as:

Vel (6) « }_ d™(s) ) Veme(als)Q(s,a) (6.8)

s€S acA

where 6 can be optimised via gradient ascent. In practice, to reduce variance,
Q7 (s,a) is replaced by the advantage function A”(s,a) [207]. In this work, we con-
sider the REINFORCE algorithm [229]; thus, during training, we collect on-policy
trajectories D™ and replace expectations by empirical samples to compute gradient
estimates as:

g ), Y Vologm(ails) A" (s}, ai) (69)

TI'ED” t

where A”(st, a;) = Gy — Vg (s¢) is an estimate of the advantage function, and

T
Gt = r(se,at) + 2 Vor(sesk assk) (6.10)
k=1

are Monte Carlo estimates of returns up until T and V{ (s¢) is an approximation of
V7 (st) with parameters ¢ trained over mean squared errors between G; and V' (s).

6.4.2 Learning from Demonstrations

Directly optimising policy gradients with rewards defined in M can lead to good
policies that surpass simple greedy 2-opt heuristics [49, 52, 231]. However, doing
so requires a large number of samples and many hours of training. Demonstrations
can help alleviate this issue and help to guide exploration to promising reward
regions. In this work, we consider demonstrations from deterministic 2-opt policies
FI and BI that select actions from states as a = 7t°(s), where 7° is the expert’s policy.

Note that the objective in M recovers the total improvement over an initial state,
albeit the discount factor. Thus, having expert demonstrations from greedy heur-
istics can help to find regions with more significant improvement. Moreover, the
BI heuristic is the optimal policy of a one-step M. Therefore, quickly extracting
information from this policy can potentially help to guide policies over larger hori-
Zons.

Behaviour Cloning

Exploration in policy gradient methods is done by implicitly using the stochasticity
of policies or by explicitly introducing an entropy term to the objective. If the initial
policy is poor, learning can be slow, as the algorithm explores states that lead to
poor rewards. An effective way to combat this issue is to use expert policies and
attempt to mimic their behaviour. Behaviour cloning (BC) is a simple IL method
that attempts to learn good policies over expert trajectories D¢ and does not require
additional interactions with the expert. The main objective in BC is to train a policy
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7y on a supervised signal from the distribution of states d™ (s) induced by the
expert policy 71¢ defined as C(0) = E__ e [{(7rg(7t°(s)]s), °(s)], where £(-) is a
suitable performance loss. In our case, we approximate the objective above over
state-action pairs in D¢ by the log-likelihood loss as

C(0) < Y Y logmg(ails}). (6.11)

TeDe ¢

Taking the gradient of this objective resembles the one in (6.9), but here we average
over expert and not on-policy trajectories and do not have access to an advantage
function. In fact, (6.11) can perform well when states observed by expert policies
are similar to states observed by learned policies [186]. The BC policy is then the
one that finds parameters 6 such that C(6) is maximised, and the distribution of
actions given a state approaches those on demonstration data. In our study, each
trajectory demonstration 7/ relates to a TSP instance, and cloning a policy corres-
ponds to cloning different actions in different instances. Since states visited by the
expert policy are diverse due to the many instances seen during training, we expect
BC to perform reasonably well in the given setting, assuming we can replicate the
expert’s policy. Moreover, even if learning fails, the BC policy may still perform
well by encountering good alternative decisions with a low probability under ex-
pert trajectories. Such alternative decisions can result in high rewards under the
performance of (6.2) [24], which is ultimately what we care about in the optim-
isation problem. Nonetheless, in general, we do not expect BC to outperform the
expert systematically. Thus, we still need better exploration strategies to discover
new policies that can perform better than the expert.

Algorithm 2: Policy Gradient with Behaviour Cloning

Input: Expert demonstrations D¢; parameters 6, ¢, weight f; maximum
steps T > T, number of epochs m and number of iterations L,K.

forl=1,2,...Ldo

Update 6 with demonstrations for m epochs by:

Y(s,0)epe Velog mg(als);

end

fork=1,2,... Kdo

Sample D™ = {g} |, 7 ~ 7p;

Update 6 and ¢ every T steps by:

Y(s.a)epr Vologmy(als) A (s,a) + PVeH(6);

3V Lisayenn |Gt — Vi (s) |13

end
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Guiding Exploration with Behaviour Cloning

As demonstrated in [183], we can use demonstration data to both provide good
initialisation for RL or use them to guide exploration during RL. In our case, as
the number of iterations grow the policy is given a chance to let go of demonstra-
tions and perform policy updates only on on-policy samples aided by an entropy
term H(0) o BY scpr Earn,(log my(-|s)], where B € [0,1). The pseudocode of the
procedure is presented in Algorithm 2.

6.4.3 Policy and Value Networks

We adopt the effective neural network architecture reported in [49, 52]. In the
paper, an encoder-decoder architecture is proposed to output estimates of both
mo(als) and Vi (s) for a given state s°. However, in the original paper, a state is
composed of the tuple (s, s;), whereas we only consider a solution s;. Although
this modification makes convergence slower, this allows us to have comparable state
distributions between expert and online policies since s; = s} for both FI and BI.
In the architecture, depicted in Figure 6.3, the shared encoder is composed of three

GCN Bi-LSTM

--------------------- Attention

0,08,0,0,00 5 EraE

Dense

‘ na a a a _> g (als)
pﬁ) N .

Figure 6.3: A state (solution) s is fed to an encoder where graph and sequence
information are extracted. A policy decoder takes encoded inputs to output actions
sequentially. A value decoder operates outputs state values estimates.

graph convolutional [125] layers to extract node information and a bi-directional
long short-term memory network (LSTM) [97] layer responsible for encoding tour
sequence information. The policy decoder then uses both graph and sequence in-
formation to generate actions sequentially via a pointing attention mechanism [223].
That is, it generates 2-opt indices sampling over softmax operators pg(-) and uses
the chain rule to factorise 75(als) as

1o (als) = po(ar|s)pe(azlay,s), (6.12)

where, a = (a1,a), a; € {1,...,n}. The value decoder employs two dense layers
that take combined graph and sequence representations to output value estima-

5A portion of parameters 6 and ¢ are shared in the encoding layers.
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tions. We refer the reader to [49, 52] for details on the original implementation for
the TSP.

6.5 Experiments

This section aims to investigate whether initialising policy gradient with a BC policy
can help with learning 2-opt heuristics faster than a method that uses no previous
demonstration data. We conduct extensive experiments to investigate the perform-
ance of warm starting policy gradient with BC (BC+PG) to a policy gradient (PG)
policy. We consider three tasks in our experiments, Euclidean TSP instances with
20 (TSP20), 50 (TSP50), and 100 nodes (TSP100). For all tasks, node coordinates are
drawn uniformly at random in the unit square [0, 1]?. We measure the performance
of policies on the optimality gap between the best-found solution, and the optimal
solution computed using Concorde [5]. We compare our results on the test dataset
as reported in [128] containing 10,000 instances for each task. To benchmark our
method, we compare learned policies to other highly specialised RL methods for
the TSP. Here, the objective is to achieve near-optimal solutions and compare how
achieving a certain performance level depends on the number of samples.

6.5.1 Experimental Settings

In our experiments, a maximum of 100,000 samples of demonstration data is
gathered using either FI or BI on 5,120 TSP instances over trajectories of a max-
imum of 400 steps. When this procedure generated more than 100,000 samples,
we undersampled the expert samples uniformly at random. Each experiment block
is repeated for FI and BI demonstrations separately. During RL, 5,120 instances
of the TSP were generated on the fly and simulated for T = 200 steps. Every T
steps policy and value updates were performed, where returns are computed over
a maximum of T = 8 steps in the future (truncation). In all tasks, we pass twice
over the expert demonstrations i.e. m = 2 for each iteration ! € {1,...,200} and use
a batch size of 512 during BC, and k € {1,...,200} iterations over a batch size of
512 x T samples during RL. During BC, a teacher forcing [230] ratio of 25% is used
to accelerate learning. A fixed validation dataset of 128 instances with their respect-
ive optimal solutions was used for manual hyperparameter optimisation rolling out
policies for 200 steps.

Following the implementation in [49, 52], we employed the same ¢ = 0.99, ¢,
penalty of 1 x 1075 and learning rate A = 0.001, A decaying by 0.98 at each k. Loss
weights B = 0.0045 decay by 0.9 after every iteration, and parameter updates were
performed via Adam [124]. The remaining neural network hyperparameters were
unchanged from the original implementation. We train on an RTX 2080Ti GPU and
Ryzen 3950X CPU hardware using PyTorch 1.6. Each iteration takes an average time
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Figure 6.4: Optimality gaps when rolling out policies for 200 steps on 128 instances
using best improvement (BI) demonstrations. Policies: Expert, behaviour cloning
(BC), behaviour cloning followed by policy gradient (BC+PG), and policy gradient
(PG).
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Figure 6.5: Optimality gaps when rolling out policies for 200 steps on 128 instances
using first improvement (FI) demonstrations. Policies: Expert, behaviour cloning
(BC), behaviour cloning followed by policy gradient (BC+PG), and policy gradient
PG).
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of 1m 52s, 2m 23s, and 3m 58s for TSP20, TSP50, and TSP100 during the RL phase.
We roll out our policy for 1,000 steps during testing to allow for a fair comparison
with previous literature. Our implementation will be made available online.

6.5.2 Experimental Results and Discussion

We present the optimality gaps of the tested policies using Bl and FI demonstrations
in the log scale in Figures 6.4 and 6.5. In Figure 6.4, we observe that for all tested
instances, warm starting PG with a cloned policy using BC yields better solutions
(lower optimality gaps). The difference is between the two is more prominent at
early iterations due to PG having to sample more exploratory actions. Aided by
BC, BC+PG can, in fewer iterations, surpass the performance of the BC policy and
the expert. For example, in TSP20 instances, BC+PG can surpass the expert in
one iteration, whereas PG requires 10 iterations. To reach a 2% optimality gap in
TSP50, PG requires 80 iterations, whereas BC+PG requires 40 iterations, i.e., around
0.42 x 10® samples. Results are similar for TSP 100, where we observe that it takes
only 5 iterations (0.06 x 10® samples) for BC+PG to reach a 20% gap, whereas PG
requires 20 iterations.

Table 6.1: Performance w.r.t. Concorde. S: Number of samples. Type: Solver, SL:
Supervised learning, BC: behaviour cloning, RL: reinforcement learning.

Method Type TSP20 TSP50 TSP100
YPE€ | Cost Gap S(x10%) | Cost Gap  S(x10%) | Cost Gap S (x10%)

Concorde Solver | 3.84  0.00% - | 570 0.00% - | 776 0.00% -
GCN SL ‘ 3.84 0.01% 0.15 ‘ 5.70 0.01% 0.15 ‘ 7.87 1.39% 0.15
GAT-C RL 3.84  0.09% 0.05 5.75 1.00% 0.05 8.12 4.64% 0.05
AM-C RL 3.84  0.08% 1.28 5.73 0.52% 1.28 7.94 2.26% 1.28
GAT-1 RL 3.84 0.03% 4.09 5.75 0.83% 4.09 8.01 3.24% 4.09
GCN-I RL 3.84 0.00% 2.05 5.71 0.21% 3.07 7.86 1.26% 3.07
PG@1 RL 7.62  98.72% 0.01 14.08 147.30% 0.01 33.66 333.50% 0.01
PG@5 RL 4.04 5.26% 0.05 7.59 33.30% 0.05 11.06  42.50% 0.05
PG@20 RL 3.85 0.21% 0.21 5.94 4.28% 0.21 8.56 10.29% 0.21
PG@200 RL 3.84 0.01% 2.05 5.71 0.30% 2.05 7.89 1.61% 2.05
BC+PG@1 BC,RL | 3.88 1.17% 0.01 6.28 10.29% 0.01 8.86 14.15% 0.01
BC+PG@5 BC,RL | 3.84 0.07% 0.05 5.84 2.61% 0.05 8.47 9.02% 0.05
BC+PG@20 BC,RL | 3.84 0.02% 0.21 5.74 0.86% 0.21 8.07 3.98% 0.21
BC+PG@200 BC,RL | 3.84 0.00% 2.05 5.71 0.21% 2.05 7.87 1.41% 2.05

In our MDP, increasing the size of instances also corresponds to increasing the
action space size by order O(n?), thus requiring further exploration of good actions
before improvements can be made. We note that the performance of BC decreases
with the instance size. BC can surpass the expert policy for TSP20 instances due to
sampling more actions during validation. For larger instances, BC policies cannot
reach the same performance as the expert, although they still aid PG to achieve
better performance. Note that BC also needs to be trained via supervised learning
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but requires few iterations to converge, and it is much faster to run than PG. On
average, a BC policy trained over BI trajectories converged after 0.13 x 10® samples
from the 100,000 expert state-action pairs. In terms of running time, learning via
BC on TSP100 instances took 28s per iteration, i.e., 12% of the time of the PG coun-
terpart. A similar reduction in time is seen for TSP20 and TSP50. BC convergence
is achieved between 50 and 100 iterations, thus requiring 7% of the time to run PG.

In Figure 6.5, we note that as the size of instances increases, the performance
of BC decreases considerably. This result is expected as actions become harder
to predict given the size of the instance and show that learning directly from FI
demonstrations is more challenging than from BL. We argue that this difference
comes from BI's more diverse and clear action selection, where actions are selected
based on the best improvement move, yielding diverse but consistent action indices
each time. FI, on the other hand, selects many moves that swap the first node in
the tour, resulting in many actions of the form a = (1, ), where j > 1, i.e,, at each
iteration it starts scanning a solution from the beginning of a tour returning the
first improvement encountered. While this is clear from a heuristic perspective, our
architecture cannot appropriately learn this action selection rule for large instances.
Nevertheless, learning a BC policy from FI demonstrations can still help to converge
to better policies than with vanilla PG.

6.5.3 Comparison to Exact and Previous Learning Methods

We report results on the same 10,000 instances for each TSP size as in [128] and
optimal costs obtained by Concorde [5]. We include recent state-of-the-art deep
learning methods, including supervised learning [115], construction [62, 128] and
improvement [49, 52, 231] reinforcement learning methods. We present the best-
reported results using sampling for constructive and supervised learning methods,
as these yield the lowest costs. We report results after rollouts of 1000 steps for
improvement methods, as these are similar to sampling in constructive methods.
We note that the test data used in [49, 52, 115, 128] is the same and, therefore, results
are directly comparable. In [231], the generation process and size are identical,
which decreases the variance of the results.

Since we are mainly interested in obtaining good policies quicker than using
only RL, we show the performance of trained policies at different iterations. We
refer to our tested policies as PG@k and BC+PG@k, where k is the iteration number
to return the best-observed policy on validation instances. We report BC+PG results
from BI demonstrations as these resulted in better performance. We refer to the
results [115] as GCN in [128], as AM-C, in [62] as GAT-C, in [231] as GAT-I, and
in [49, 52] as GCN-1. We point out that our PG uses a simplified version of GCN-I
that runs for fewer iterations for TSP50 and TSP100 and leverages just the current
solution for action selection. We select GCN-I as a baseline for complexity as it is
more sample efficient than [231]. Comparison results, including cost, optimality
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gaps and sample complexity® are summarised in Table 6.1.

Solution Quality We observe in the results that BC+PG generates better policies
than PG over the entire training procedure, i.e., at k = 200. For example, in TSP50,
BC+PG@200 results in a 0.21% optimality gap, whereas PG@200 results in 0.30%.
Moreover, the difference between the two policies is more significant in the early
stages of training. This is expected as after BC is over, updates to the policy follow
the same gradient updates. When we compare PG with GCN-I, we see the effect of
simplifying the neural network, reducing the number of samples, and fixating the
planning horizon. The simplification results in larger gaps than the original model.
BC+PG brings the optimality gaps much closer to GCN-I, matching it for TSP20
and TSP50. In other words, starting from a cloned policy helps to achieve similar
performance as a more expressive model trained over more samples.

Early Policies When comparing early policies, ie., k € {1,5, 20}, we note the
benefit of biasing with BC pretraining at the early stages of RL training. Those
policies can achieve much lower gaps than PG at the same k, e.g., BC+PG@1 achieves
a 1.17% gap, whereas the same iteration in PG has a 98.72% gap. Compared to
previous methods, we expect supervised learning and construction methods to have
lower sample complexity than improvement methods, e.g., GCN, GAT-C, and AM-
C. Interestingly, early policies learned at PG+BC@20 are competitive with previous
RL methods that sample a much larger number of samples. Even if we add the
number of samples to convergence during BC (~ 0.13 x 108) to 0.21 x 10%, we
observe that these policies are not far from results obtained with AM-C and GAT-
I sampling 1.28 and 4.09 x 108 data points, respectively. For example, in TSP50,
BC+PG@20 achieves a 0.86% gap requiring, whereas GAT-I achieves a 0.83% in the
same task.

6.6 Conclusions

In this chapter, we studied learning 2-opt local search heuristics for the Travel-
ing Salesman Problem (TSP) given greedy heuristics as expert demonstration data.
We use the demonstration data to provide good initialisation to a reinforcement
learning algorithm based on policy gradient. We propose to initialise policy gradi-
ent from imitating expert policies using behaviour cloning. Our results show that
demonstrations are beneficial at the beginning of RL training leading to good
policies quicker than with vanilla policy gradient. Moreover, when training is ini-
tialised with behaviour cloning, final policies at the end of learning generate TSP
tours with lower optimality gaps. We show that policies learned with few policy

The RL portion of BC+PG.
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gradient iterations are competitive with previous deep learning models proposed
and can be obtained with a much lower sample complexity than previous models.






Chapter 7

Learning Policies for the
Dynamic Travelling Maintainer
Problem with Alerts

In this chapter, we study a decision-making problem that considers
maintenance and travel decisions, in which the failure times of as-
sets are unknown and stochastic. Moreover, we assume that assets
are equipped with real-time monitoring devices and condition-based
maintenance prognostics models used to emit alerts, representing the
first signs of degradation of the assets. Our goal is to plan maintenance
considering the uncertain failure time information received via alerts,
asset locations and maintenance costs. We present a modelling frame-
work for the studied problem framework and propose learning policies
to minimise the discounted maintenance costs accrued over an infinite
time horizon.

This chapter is based on [53], currently under review.
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7.1 Introduction

Ensuring availability and reducing operational costs are crucial for industrial assets.
Assets such as wind turbines, trains, hospital scanners and aeroplanes are expected
to experience minimal downtime. In turn, this expectation can drastically increase
the operational and maintenance costs due to frequent maintenance or unexpected
downtime. Ideally, assets are maintained just before failure to ensure the highest
availability at minimum costs. To this end, two challenges arise: (i) the failure
mechanism of an asset can be unknown a priori and (ii) assets are often part of a
larger network of similar assets. In these cases, it is common that the resources
to maintain assets are shared and controlled by a central operator responsible for
assets in multiple geographical locations.

To keep assets functioning as intended, one can follow different maintenance
policies. Two popular options to choose from are: (i) assets (or components) are
maintained at scheduled times, i.e., time-based maintenance (TBM) planning or (ii)
assets are regularly inspected to evaluate their degradation, i.e., condition-based
maintenance (CBM). With the rise of intelligent monitoring devices such as sensors
and predictive models, CBM has become the norm for critical assets. For such as-
sets, predictive models can use real-time sensor readings as inputs to predict future
failure times. Finally, this prediction can be communicated to the central operation
in the form of alerts, which serve as an early indication of failures. In a network
of assets, this would result in a list of alerts and predicted failure moments to be
reacted by a repair crew. In practice, alerts often carry uncertain information about
the failure time due to misreadings, sensor malfunction and prediction errors. Thus,
devising effective policies entails considering the uncertainty of alerts in addition
to maintenance and travel costs.

An example of asset networks that regularly require maintenance is offshore
wind turbine parks. Such parks can contain more than 100 turbines and are often
built in a grid-like structure, where pairwise distances between turbines are nearly
identical [30]. To maintain wind turbines, field service engineers circulate on a
vessel containing equipment for repairs. In this case, the use of remote monitor-
ing devices and failure predictions can represent a significant improvement over
TBM policies. For example, a vibration sensor connected to the gearbox of the
turbines can be used to detect early degradation as soon as the vibrations pass a
certain threshold [120]. Similarly, manufacturers of medical scanners have to per-
form maintenance on their assets in a network of hospitals. Medical scanners are
equipped with an array of sensors that track medical procedures, but this data can
also be used to signal degradation. This information can be used to optimise the
dispatching of a repair crew in the network.

We introduce a decision-making problem named dynamic travelling maintainer
problem with alerts (DTMPA). In this problem, we consider the challenges that
arise from the previously mentioned scenarios. Namely, (i) assets are part of an
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asset network in which the repairperson has to travel; (ii) on-time maintenance and
travelling activities must be performed to ensure maximum availability of assets;
(iii) information about future degradation is observed via alerts; (iv) degradation
of the assets is stochastic (dynamic) and possibly unknown (model-agnostic). The
main objective is to overcome the aforementioned challenges whilst minimising the
maintenance costs over a long-term horizon.

To model the DTMPA, we propose a framework employing degradation pro-
cesses that generate alerts as early indicators of failures. We introduce information
levels to indicate the amount of information about failure times received by the
decision-maker. Our discrete-time model aims to optimise maintenance costs in an
asset network served by a single decision-maker responsible for maintenance and
travel decisions. Therefore, we combine three major aspects of the DTMPA that arise
from the asset network, (i) the existence of an underlying degradation process that
governs the failure distribution of the assets, (ii) the capacity limitations that arise
from a decision-maker serving a network and (iii) the different cost structures that
exist when considering early and late maintenance actions. Following, we detail
each component of the proposed framework.

Discrete Time We model the decision epochs in discrete time steps, which repres-
ent the decision moments of the application at hand. For example, it can represent
an hourly period for wind parks or a weekly decision for hospital equipment. Note
that the discrete-time setting also allows us to reduce the state space of the problem
by considering states as decision epochs.

Network Layout We consider assets located in a network. Maintenance activities
are performed by a single repairperson who can be dispatched around the network.
This is motivated by practical applications, where large networks are divided into
smaller networks, and each is assigned to one repairperson. Assets are distributed
over the network, and travelling between assets takes time. In our formulation,
travel times affect maintenance costs as high response times to failures are penal-
ised.

Asset Degradation Every asset can be in several states, denoting the actual health
of the asset. We model the transitioning between these states as a stochastic process.
In our framework, each asset degradation model may be different. The repairperson
is unable to observe the transition to some states and can only take actions based
on alerts and their contents.

Observability We assume three states are observable: a healthy state, an alert state
and a failed state. However, a machine may have more than these three observable
states, denoted as hidden states, representing different levels of degradation. When
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the degradation model passes through a predefined alert state, this triggers an alert
notification. These alerts serve as an early indication of failures for the repairperson.

Alert Information Alerts carry information about the asset’s degradation state
and may contain additional residual lifetime information. We define four informa-
tion levels capturing different levels of information available to the repairperson.

Capacity We define stylised networks based on real-world scenarios where larger
networks are subdivided into smaller networks served by a single repairperson.

Cost Structure We model three types of costs, preventive maintenance costs, cor-
rective maintenance costs and downtime costs. In our framework, downtime costs
represent the cost per time period that an asset is unavailable either due to failure or
maintenance activities. We assume that corrective maintenance is more expensive
compared to preventive maintenance due to unplanned spare parts demands. The
costs for the repairperson to travel between assets are assumed negligible.

Objective Our objective is to devise policies that minimise the expected dis-
counted maintenance costs over an infinite time horizon. Here, we assume that
a network of machines runs indefinitely. This is common in industries where
machines have to run continuously to ensure uninterrupted operations.

To solve the proposed problem, we propose an algorithm using distributional
reinforcement learning [18] trained in a simulated environment optimising the cu-
mulative discounted maintenance costs. We compare this solution with two other
methods utilising different information levels, i.e., a class of greedy/reactive heur-
istics that rank actions based on maintenance costs, travel times and estimated fail-
ure times, and a heuristic that leverages the alert information to construct a determ-
inistic approximation of the dynamic problem similar to [1].

Contributions and Organisation The main contributions in this chapter are de-
tailed as follows:

e We introduce the DTMPA on an asset network served by a single repairperson.

e We develop a flexible modeling framework for the DTMPA for maintenance
optimisation, which allows for multiple degradation processes.

¢ Different information levels model the amount and precision of information
retrieved from alerts.

e The heuristics and learned policies yield competitive policies for their respect-
ive information level compared to the optimal policy under complete inform-
ation about the degradation process.
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e Our results show that the learned policies, i.e., obtained via learning from
interaction with the environment, outperform other proposed heuristics, re-
quiring only the minimum level of information from the alerts.

The remainder of this chapter is organised as follows. Section 7.2 introduces the
current literature in maintenance optimisation, travelling maintainer problems and
reinforcement learning for maintenance decision-making. In section 7.3, we present
a detailed description of the framework that models our decision-making problem.
Section 7.4 introduces the different solutions methods for the proposed problem.
In section 7.5, we discuss and support the numerical parameters used in our eval-
uations. In section 7.6, we present the numerical results of the proposed solutions
and compare them to optimal policies with access to the underlying degradation
model. Section 7.7 summarises the managerial insights and section 7.8 concludes
and summarises this work.

7.2 Related Literature

There are three streams of literature relevant to this work: single asset maintenance
optimisation, travelling maintainer problems, and (deep) reinforcement learning for
maintenance optimisation problems. We discuss these three streams in the follow-
ing sections.

Maintenance Optimisation Maintenance optimisation solutions are most distin-
guishable between single-asset and multi-asset models [59, 171]. In the multi-
asset literature, the focus is on the joint maintenance optimisation of different as-
sets, where asset dependencies can be of four types, namely economic, structural,
stochastic, and resource dependency [171]. Previous works modeling the degrada-
tion of assets typically employ a discrete and finite number of states, mostly follow-
ing a Markovian process. Note that models considering a three-state degradation
can also be interpreted as a delay-time model. Often, in such models, the second
state represents a defect phase, which can be determined by inspection [224]. Other-
wise, one can replace scheduled inspections with information acquired via sensors.
These sensors do not need to measure the degradation of an asset specifically but
can give indirect information about its health condition [218], for instance, in the
form of alerts [58]. In a multi-asset scenario, practical problems include complex
dependencies induced by the geographical layout. Previous works considering cent-
ralised management of asset networks take into account traveling times of serving
the assets [31, 32]. These introduced maintenance problems considering the travel
times between machines and methods to optimise the overall maintenance costs,
detailed below.
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Travelling Maintainer Problems In the travelling maintainer problem (TMP), the
objective is to find a path through a set of assets, defined by the travel times between
any two of them, which minimises the sum of the response times (defined as the
realised time to reach an asset). Essentially, the TMP is obtained from the travelling
salesman problem (TSP) as a mean-flow variant (averaging the sum of response
times), assuming that the repair times are insignificant and is thus NP-complete [1].
The TMP complexity increases dramatically if each asset is assigned a deadline, that
is, an upper bound on the response time, which the maintainer must not violate.
More recently, [213] attempted to use machine learning techniques to estimate time-
dependent failure probabilities at asset locations and propose two TMP objectives;
solve the learning and the TMP sequentially or simultaneously.

The dynamic TMP (DTMP) is a variant of the TMP that considers the prob-
lem where (i.i.d.) service demands arrive uniformly in some regions according to
a Poisson process [28]. Service demands must be fulfilled by a single maintainer,
such that the average response time is minimal. Another variant [31] studied the
objective to minimise the sum of functions of response times to assets. This TMP
variant integrates real-time CBM prognostics with the TSP by scheduling mainten-
ance using predicted failure information. Extending on this work, [32] incorporates
the travel time between geographically distributed assets. [65] formulated a variant
of the DTMP as a Markov decision process (MDP). Dynamic heuristics are pro-
posed for both the dispatching and repositioning of a repair crew using real-time
condition information. In [87], the authors investigated a cyclic TMP, formulated
as an MDP, combined with condition-based preventive maintenance. Similar to
our approach, the proposed control-limit heuristic was compared with the optimal
policy and with traditional corrective maintenance policies. When large state spaces
are induced by dense asset networks, the exact methods employed to solve these
problems can be computationally intractable. Then, one can resort to heuristics or
methods that employ function approximation, such as reinforcement learning (RL).

Deep Reinforcement Learning in Maintenance Recently, RL and deep RL (DRL)
have emerged as valuable tools to practical decision-making problems [153]. In RL,
the goal is to either directly learn policies [208] or value functions [163] measuring
the performance of a policy. In general, RL requires access to trajectories sampled
from an online environment to estimate the results of decisions (actions) and, in the
long term, can converge to optimal policies found via dynamic programming (DP).
In practical problems, where large observation and action spaces are intractable for
DP and RL, one can resort to policy and value function approximation [207]. When
RL is combined with multi-layer (deep) neural networks (NN), this gives rise to
DRL.

Recent DRL approaches to maintenance problems have shown promising suc-
cesses and include learning opportunistic maintenance strategies on parallel ma-
chines, resulting in downtime and cost reduction compared to reactive and time-
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based strategies [131]. [45] employed DRL to part-replacement management sub-
ject to stochastic failures. [2] and [145] considered inspection and maintenance
policies to minimise long-term risk and costs in deteriorating engineering assets.
This problem included multiple challenges similar to our setting, such as high state
cardinality, partial-observability, long-term planning, environmental uncertainties,
and constraints. [29] considered policy rollouts and value function approximation
to learn policies for a partially observable Markov decision process (POMDP) mod-
elling a robot visiting adjacent machines. However, unlike our case, these works do
not consider maintenance activities performed in an asset network with multiple
cost structures and degradation mechanisms.

The developed framework in this chapter combines the multiple research
streams in maintenance optimisation into a novel framework for sequential
decision-making for the maintenance of asset networks under uncertainty. We con-
sider a multi-asset problem that is mainly resource-dependent, as a single repair-
man maintains the asset network. As in previous works, we assume a countable
state space per asset. Additionally, we introduce three observable degradation states
per asset, representing a censored observation of assets” actual, hidden degradation
states. We assume that alerts received from sensory equipment are directly related
to the degradation of assets and contain imperfect residual lifetime predictions
from black-box prediction models. As is common in sequential decision-making
problems, we adopt the objective to minimise the sum of discounted maintenance
costs, i.e., costs incurred due to delays or (unnecessary) maintenance actions. In-
stead of a hard deadline, we assume that the asset-dependent costs increase if the
decision-maker does not perform preventive maintenance before the random dead-
line triggered by the asset’s failure mechanism. We benchmark our method against
greedy heuristics based on traditional rankings of alerts tailored to the DTMPA,
and a heuristic [53] aimed at optimising the visitation order of a deterministic TMP
instance considering the urgency of the alerts and the near-future costs. We pro-
pose an algorithmic approach to learn policies for this problem based on the theory
of distributional RL [18], i.e., a class of methods that approximates the distribu-
tion of long-term costs. In this novel setting, we learn policies that consider both
maintenance and travelling decisions in a stochastic environment where transition
probabilities are unknown and alerts act as early indicators of failures.

7.3 Dynamic Travelling Maintainer Problem with
Alerts

The dynamic travelling maintainer problem with alerts (DMTPA) is defined as fol-
lows. There is a single repairman (decision-maker) and a set M = {1,..., M} of
M € N machines, each at a unique location in a network. Each machine m € M
is subject to a stochastic degradation process (see Section 7.3.2), as a consequence,
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these machines require maintenance to prevent and resolve failures. The decision-
maker cannot observe the degradation of machines directly but relies on alerts,
denoted as ¢, ; (i-th alert at machine m), indicating that a machine has shown signs
of degradation. Each alert may provide the decision-maker with (partial) informa-
tion (see Section 7.3.3) about a machine’s future degradation, that is, distributional
information of the residual lifetime.

The decision-maker is responsible for maintenance and travel activities in the
network. Travelling in the network takes time proportional to the distance between
machine locations. Performing maintenance requires time during which the ma-
chine is assumed to be non-functional. The decision-maker needs to decide to travel
to a machine location, start maintenance (resolve an alert) or wait. Performing main-
tenance is costly; in particular, a higher cost is paid for corrective maintenance (CM)
compared to preventive maintenance (PM). Costs are also incurred for each unit of
time a machine is non-functional (see Section 7.3.7), here the length of the mainten-
ance period is determined by the maintenance type. The DMTPA’s objective is to
serve the network of machines while minimising the total maintenance costs. In this
work, we model this problem with a discrete-time framework and consider different
information levels in the alert. Our goal is to devise online scheduling algorithms
that can adapt to this dynamic environment whilst minimising the expected future
costs (see Section 7.4). We detail each part of the proposed problem framework in
the forthcoming sections.

7.3.1 Network of Machines

In a network layout, depicted in Figure 7.1, each machine is located at a unique loc-
ation and travelling between machines requires an integer number of time periods.
We store the travel time 6;; € IN between two machines i, j € M in the (symmetric)
matrix ®@ € INMxM,

7.3.2 Degradation of Machines

Each machine m € M is assumed to degrade independently according to an un-
derlying discrete degradation model consisting of NV, = {1,...,xf,} states, where
|Nm| > 3. The observable states consist of the healthy state xY, = 1, the down/failed
state xf, an alert state x3, € {2,...,xf, —1}. We denote the set of observable states
with X, = {x0, 22, xf,} where m € M. The remaining xf, — 3 underlying states are
assumed to be hidden to the decision-maker. In other words, we assume that trans-
itions to the three observable states are perceived by the decision-maker, namely the
transitions to the healthy state (after PM or CM), the alert state and the failed state
while all other transitions are not observed. To map hidden states to observable
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decision-maker

|
@ @ v {ug,ug,u3,uy,u5,0}

Figure 7.1: Schematic overview of the layout of a network consisting of M = 5 ma-
chines and one decision-maker. Machines can be in observable states: healthy x%,
alert xj, (yellow) and failed xfn (red). In our modeling framework, the decision-
maker can select actions u, referring to travel actions to one of the locations
(uq, up, us, ug, us) or start maintenance at its current location (v). See Section 7.3.5.

states, we define for each machine m € M the mapping ¢, : Ny — Xy by

xb o ifx, € {1,..., 43 — 1},
O (xm) = < 23, if xp € {23,...,xf, =11, (7.1)

x f

a
m
f
m m:

if x, = x

We model the underlying hidden degradation process as follows. For each ma-
chine m € M, we have a degradation process {X,,(t),t € IN} where X,,(0) = 1
and X,,(t) € Ny, for all t € N*. Without intervention by the decision-maker, these
degradation processes X, (t) are assumed to be non-decreasing, i.e., X, (t+1) >
X (t). The transition time between two subsequent states i,i + 1 € N, is assumed
to be random, given by a random variable T+ defined on a positive, integer sup-
port.

When a machine m transitions to the alert state x3,, an alert is issued. The time
between starting with a healthy machine until such an alert arrives is denoted with
T2 and the time from alert arrival until failure, i.e., the residual lifetime, with T,fn.
Without intervention by the decision-maker, both random variables are defined by
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first hitting times, namely

T,igrgig{t:}(m(t)—x | X (0) =1} (7.2)
and
Tt irtr;i(r}{t L X (T + ) = xb, | T3 ). (7.3)

Additionally, we assume that when the machine m reaches the failed state xfn, it
resides in this state until the decision-maker performs a maintenance action. Re-
gardless of the machine’s state, after maintenance is done, the machine’s state X, (t)
is reset to its initial condition X,,(0) = 1.

7.3.3 Alerts and Information Levels

The decision-maker receives information through alerts. The i-th alert ¢, ; at ma-
chine m is issued after the i-th transition of ¢y, (X, (t)) from x5, to the alert state x2,.
Besides the issued alert, the decision-maker also observes when a machine m enters
the failed state xf,.

We assume that the decision-maker receives information from a black-box pre-
diction model, e.g., predictions of the residual lifetime Tf,. We denote the time until
an alert and residual lifetime of the i-th replacement, i € IN*, of a machine m with
Ty, ~ Ty and T:£1,i ~ T, respectively. The information becomes available to the
decision-maker at the moment an alert is issued. We capture the uncertainty about
the residual lifetime by distinguishing between four information levels:

(Lo) The alert e, ; contains no information about Tf The decision-maker has no
information about the underlying degradatlon model

(L1) The alert e, ; contains an approximation (e.g., an expected failure time estim-
ate or a Normal approximation) of the distribution function of the remaining
time to failure. The decision-maker has no information about the underlying
model.

(Lp) The decision-maker has full information about the underlying model, in par-
ticular, knows the distribution of Tf, i.e., Frs. The decision-maker, however,
only observes transitions between healthy, alert and failed states.

(L3) The decision-maker has full information about the underlying model and ob-
serves each state transition, in particular, meaning that the set of observable
states is \V;, for all m € M.

Given the information level, the objective is to produce a policy that minimises
the total expected discounted maintenance costs of a given asset network. The next
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section formalises the degradation of the network of assets and the decision maker’s
actions as a decision process.

The decision-maker influences the environment by selecting actions. However,
the exact dynamics and the actual state of the system may be unknown to the
decision-maker. We first introduce the relationship between the true, hidden state
of the network and the incomplete, observed network state that the decision-maker
can use to make decisions. Second, we define the state of the complete network
of machines to be a network state, and further introduce the costs and the main
objective we wish to optimise.

7.3.4 Hidden Network States and Observed Network States

Dependent on the state of the machines and the decision maker’s current location
{ € M, we represent a hidden network state as a vector

h=(x1,...,xm, 40,6, F,...,E0m) €EH, (7.4)

where H = {N] x ... x Ny x M x I x A x NM}., The first M entries of i, x; € N}
until xp; € Ny denote the state of the machines; the entry ¢ € M contains the
current location of the decision-maker; the entry 1 € I = {0,1} represents whether
the decision-maker is travelling or not, respectively; the entry § € A C IN™ contains
the remaining time units until the decision-maker becomes available again (§ =
0 indicates that the decision-maker is idle); lastly, we introduce entries {fm}%zl
where f,, is defined as the elapsed time since the last transition of X, (t) from one
of its elements in N, \ {xf,}, which is defined formally in Section 7.3.8. We exclude
the elapsed times since transitioning to the failed state as they do not carry any
information.
Let {H(t),t > 0}, H(t) € H be a stochastic process on #, which is defined by

~

H(t) = (Xq(t), ..., X (8), £(£),1(t),6(t),E1(t), ..., Em(t)) (7.5)

with initial state defined as H(0) = (x}l‘, .. .,x?/l, 1,0,0,0,...,0). The set of all pos-
sible histories of the network up to timestep f is defined as

Hi = {Ht = (ho,uo,...,ht,1,ut,1,ht)|(hj,uj) EHXUOLj<t-1,h € 7‘[},
(7.6)
where U represents the action space of the decision-marker, and it is formally in-
troduced in Section 7.3.5.

The observed network states 0 € QO = {X] x ... x Xy x M x I x A x NM} are
simply censored hidden network states, i.e., given a network history H;, the cor-
responding observed network state o = (%,..., %, 0,5,6,F, ..., Fy) at time t is
achieved through the mapping ®; : ‘H; — ) which will be defined in detail in
Section 7.3.8. The variables {f,,}M_, are now defined as the elapsed time since the
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last observable transition, i.e., the time since the last transition of ¢, (X, (t)) from
one of its elements in X\ {xf,}. Note that sets H and Q are unbounded.

7.3.5 Actions

At the start of a timestep, the decision-maker can either: (i) choose the action u,;, to
start travelling immediately to location m € M, (ii) choose the action v to immedi-
ately start a maintenance action at its current location or (iii) continue its previous
activity or idling, which is encoded by choosing the action u,, with ¢ denoting its
current location. The complete action space thus consists of M + 1 actions, spe-
cifically, U = {u,}M , U {v}. The state-dependent action set U(h) C U is given
by
Uh) = {{um}yl U{v} ifé=0,
{u[} if 6 > 0.

If 5 > 0, the decision-maker is already occupied by either performing mainten-
ance or travelling and cannot perform any other action besides u,. Note that for
any hidden state &, regardless of the information level, ¢/(h) and U(0), the state-
dependent action set corresponding to the observation o induced by #, coincide.
A representation of the hidden and observed network states and a transition (see
Section 7.3.6) after an action is depicted in Figure 7.2.

7.3.6 Transitions

A network’s state transition h — K’ is composed of immediate (deterministic) con-
sequences, i.e.,
h—h" = (xf, ... x40, 6% 8, 1)

of the decision maker’s chosen action u € U (h) followed by rolling out a unit of
time in the network, i.e.,

! / / /! ! 7 i)
W —h' = (x1,...,x0,0,0,0,1, ..., By,

explained in detail below.

Immediate Action Transitions

(%1, xm, 6,0, 6,8, ) fu=uypAm==¢
(%1, .., xpm,m,0,00,,, B, ... 1) ifu=uy, \m#/
u __ f PM
W = q (x1, .o x01, %, X4, xm, 6,1, 8,
Tu Tu Tu Tu : _ f
tl,...,tgil,O,téH,...,tM) ifu=0vAx) #x,
X1, ..., x0, 0,1, 1GM fu U ifu=0vAx,=xb
M Y 1 M ¢ ‘
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hidden network state

h O
l 0
o \
h=(1,1,3,51,...)
hidden network state
h

h=(1,2,4,5,2,...)

Network States

observed network state

time: t
— (wh b a f b
o = (z}, 3,5, Ty, T3, - . )

action: move to m = 3

U

observed network state

time: ¢t +1

— h .a n.a .f .a
o= (ab, 2§, a3, 2),22,...)

Figure 7.2: A network consisting of M = 5 machines. (Top) Hidden and observed
network states at time f. The decision-maker is at location 1, an alert is present
at location 3 (hidden machine state 3), and the machine at location 5 is in a failed
state. (Bottom) The decision-maker moves to location 3 in the network. Two other
machines that were in the healthy state (1) transition to state 2 in the hidden network
state, the machine at location 3 transitions to state 4. The decision-maker observes
two new alerts in machines 2 and 5 in the observed network states.
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The first case represents the action to move to the decision maker’s current
location ¢, which encodes the action to wait. The second case represents the travel
action to another machine m. In this case, the remaining unavailability J is set to
8¢, and subsequently, £ is updated. When starting a maintenance period, its length
is determined by the type of maintenance, that is, PM (or CM) will take a number
of time steps tPtM € IN* (or t{M € IN*). Furthermore, initiating maintenance on a
machine m advances the degradation state x,, to x!,, and its elapsed time is reset
to zero. The reason to update x,, to xf, is to model an asset as unavailable during
maintenance (regardless of PM or CM). These action transitions are described in the
third and fourth cases, respectively.

Time Rollout

xh,0) if (4,04, 8%) = (m,1,1),
xit, B else if x = xf,,
x4 4+1,0) else if w.p. l[’(]"ffﬁ”xz’Jrl =+ 1|T,)fﬁ’x#’Jrl > 1)),

x!t, Bt +1) otherwise,
2. (0,68,0) «+ (%, max (6" —1,0),1"),

where P(T&*n ™ = 1 4 1|5 > 1) denotes the conditional probability that
machine m advances to the subsequent degradation state. The first line represents
the finishing of a maintenance job for each machine, i.e., the machine transitions to
a healthy state. The second line represents a machine in a failed state, not requiring
any changes. The third line represents the transition to a subsequent degradation
state, resetting the elapsed time. Finally, if none of these happens, the elapsed time
is increased. After updating the machines, the remaining unavailability ¢’, due to
an ongoing action, is decreased by one.

For each machine, we define the counting process {Ny,(t),t > 0} which counts
the repair cycles by

Na(t) = 1 1(Xn(t)) = 8 A fu(t') = 0)
t'=0

where 1(-) is an indicator function that takes the value 1 if the predicate is true and
0 otherwise. Furthermore, let 7)), = %r>1(f){t : Ny (t) = n} be the time until the start of

the n-th repair cycle of machine m, where n > 1. The elapsed times #,,(#) and £, (t)
can now be defined as

Fn(t) = sup ' X (t—t) = Xu(t)} (7.7)
te{0,...t—hm )
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and

B (t) = sup {t/ L P (X (t — t/)) = Pm(Xm(t))}- (7.8)

v e{0,... t—hm

7.3.7 Cost Structure

Maintenance Cost Structure The PM/CM cost structure is defined at machine
level. If the decision-maker starts a repair at time ¢ at machine m which is not in a
failed state, that is, X,,(t) # xf,, the decision-maker starts preventive maintenance
and incurs a cost c’tM € RT. Otherwise, if the machine has failed prior to the
decision-maker choosing the maintenance action v, i.e., X, (f) = xfn, a corrective
maintenance cost of <M € R* is incurred. We assume that <M > ¢PM for all

me M.

Downtime Cost Structure A machine m at time f is said to be down when itis in a
failed state or under repair, i.e., X, (t) = xfn. The decision-maker incurs a downtime
cost of DT € RT each time unit the machine is down. The same downtime cost is
incurred each time unit of the downtime period, regardless if this period is initiated
by a machine failure or a maintenance action. The immediate incurred cost Cy,(h)
due to choosing action u € U(h) in state h, is thus given by

Cy(h) = céCM]l(u =0,x = xi) —l—cEM]l(u =v,x; # x?) + Z CET]l(xm = xfm)
meM
(7.9)

7.3.8 Objective

Let ®F : H; — Q be a mapping, dependent on the time and the information level,
which maps a history H; € H; to an observation o by

0t ifL e {Lo,Ll,Lz},

(7.10)
h if L = L.

O} (H;) = {

where

or = (P1(Xa (), -, dma(Xpa(£)), £(8), 1(8), 8(8), E1(8), - - Epa (£))-

The entries #1(t),...,fp(t), defined in Section 7.3.6, are straightforward to compute
from the history H;. Note that the mapping ®F is consistent in the sense that it
preserves both state-dependent action sets and action-cost pairs, that is, U (H(t)) =
U(®L(Hy)) and C,(H(t)) = Cy(PE(Hy)) for all  and information levels L.

We are interested in a policy 7% which minimises the total expected discounted
cost of a given network of assets. A policy is defined as bl = (n{“, 7'(%, cer, n}, o),
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where 7t : H; x U — [0,1] is a decision rule which gives the probability of the
action to be taken at time t, given the (censored) history of the network H;. Let
v € [0,1) be the discount factor and J(7t%) be the total expected discounted cost.
Thus, the objective is to find a policy 7L which satisfies

7t = arg min J(7t) = arg min E 1
b e

i 7' Cuy (H(1)) ] (7.11)
t=0

where u; ~ 7l (-|®L(H;)) is the action at time ¢ sampled from the policy, given the
censored observation ®F(H;).

7.4 Solution Approaches

In this section, we present three solution approaches to solve the introduced class
of problems.

7.4.1 Greedy and Reactive Heuristics

The simplest class of (L1) policies that can be used to solve this problem are con-
structed by ranking subsets of assets based on the network layout, cost structures
and alert contents. We employ rankings that prioritise proximity, urgency and
economic risk. The greedy/reactive heuristic is obtained by simply selecting the
travel /maintenance action on the asset which maximises (or minimises) a criterion
of choice at each decision epoch. We define M? = {m € M | ¢pu(Xiu(t)) = x5}
and Mf = {m € M | ¢pu(Xn(t)) = xf,} the sets of machines which at time ¢
reside in the observed alert state or the failed state, respectively. Additionally, let

4 = M2 U M! be the set of non-healthy machines at time t. Specifically, we
construct the greedy heuristic as rankings on subsets A C M} and the reactive
heuristics as rankings on subsets A C M¢.

To break ties, multiple consecutive rankings (or finally random choices) are con-
sidered. For example, if we would rank on proximity and two assets are equally
close (in terms of travel time), a secondary (e.g., urgency) ranking is needed to make
a difference for the ex-aequo. We introduce three such rankings, for which we use
a procedure SORT(4, b, ¢) to sort a collection of tuples a, based on variable b in the
tuple, where c lists the sorting direction, increasing (1) or decreasing ().

Travel Time (T) One can rank the priority of assets based on time needed to reach
that location (proximity). For distant assets, the travel times will be long, meaning
valuable time will be lost whilst no repairs are done. Hence, one could prioritise
based on the closest travel times from the current location of the decision-maker,
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i.e., nearest neighbour — a well-known heuristic for the TSP, that is,
Myanked = SORT ({m, Gf,m }meAr ef,ml T) .

Failure Time (F) Given the information of the alert (one would need at least an
(L1) information level), it is possible to rank the machines on the capped expected
failure time (urgency). Let £} ; be the hitting time of the alert state during the i-th
repair cycle of machine m and define

Tt — max (t, w48y +E [TEHD . (7.12)

To prevent asset failures, we prioritise machines with the earliest expected failure
time. Any asset in the failed state would be prioritised by setting Tf, = 0 if m € M.
Thus, the ranking is constructed as

Myanked = SORT ({m, T;;}meA/ Trfnl T) .

Cost Saving (C) One ideally accounts for assets with different cost structures (eco-
nomic risk). In essence, we must determine if assets with a high benefit of PM over
CM should be prioritised over existing failures. Therefore, we propose a ranking
constructed as follows. For assets in the alert state, we compute the immediate
benefit of PM over CM, specifically ¢, = (c5M — M) + (15§M — EMYeDT i e M2,
For assets in the failed state, we compute the total downtime cost when deciding to
directly repair the asset, given by c,; = (8, + tSM)cT, m € M! and rank as

Myanked = SORT ({m, Cm}meAl Cm, J/)

In the remainder of this chapter, we apply the Greedy[FT,C] heuristic to com-
pare with the other proposed solutions, where [ET,C] is the order of rankings. This
is due to the network design in Section 7.5, where distances are equal between all
machines and costs are equal for all machines. Note that the heuristics can be eas-
ily adapted to be in the class of (Lg) policies by ignoring the (L;) urgency ranking.
Compared to the reactive heuristic, an important fallback about the greedy heur-
istic is the haste to solve problems. As soon as a machine has issued the alert, it is
regarded as urgent, and hence an idle greedy decision-maker will take immediate
action. As such, we expect the greedy heuristic to perform poor in asset networks
where the workload is low.

7.4.2 Travelling Maintainer Heuristic

The travelling maintainer heuristic (TMH) [53] policy is inspired by the DTMP,
i.e., the TMP, which arises when all the residual lifetimes T,£1 are deterministic and
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known. These residual lifetimes serve as deadlines, after which the decision-maker
starts paying the costs associated with CM instead of PM, i.e., the costs depend on
the response times. For L € {Lj, L, }, we can construct (and solve) a TMP instance of
the stochastic, dynamic environment using the alert contents. The TMH is obtained
by selecting the first action of the solution to the constructed TMP instance if the
decision-maker is idling; otherwise, it continues the current activity. The TMH
consists of two main steps, detailed below.

First Order Approximation For all assets in the alert state, the TMH approximates
the residual lifetime T; No(t) € M3, by some value T}i No(t) € R, e.g., given by
a black-box prediction method. Examples of this approximation include the (L;)-
approximation using the expected residual lifetime, i.e., setting T N (1) be the same
as Eq. (7.12) or by means of optimal TBM policies under (L) for smgle machines
[53]. The first example is the expected moment of failure, replaced by the current
time when this expected moment is passed. The residual lifetime of a failed asset

equals 0 by convention, thus setting Tfn No(t) = ¢ for all m € M.

Optimisation and Action Selection The TMH solves the constructed TMP in-
stance by optimising the schedule for each possible order in which the assets can
be visited. Assuming that any voluntary violation of the maintenance deadline is
sub-optimal, the TMH constructs cost-effective maintenance schedules for the ma-
chines in the set M}'. For each path ¢ € X vy (the set of all permutations on M),
the heuristic constructs an initial tight schedule, meaning that travel actions and
maintenance actions are executed without any intermediate delay. Given a path ¢,
the TMH constructs a schedule with two timestamps per asset, the travel time and
the beginning of the repair time employing the first-order approximation of failure
times as deadlines.

Later, the TMH optimises this initial schedule by first delaying the last repair
as much as possible, which allows for the delay of the previous repair and so on.
Based on the set of possible schedules, the TMH uses the expected future costs of
the trajectories induced by the heuristic policy to select the one(s) with minimum
costs and maximum uptime, i.e., delaying maintenance as much as possible. At
time ¢, the policy proceeds to select the first action of this schedule. The TMH
policy aims at assessing approximating the dynamic problem with a deterministic
one considering the network layout, the cost structure and the information captured
in the alerts. Note that it is only necessary to compute a new schedule if new
alerts are present in the network. However, the number of possible permutations is
combinatorial and applying such an approach can be impractical when the number
of machines in set MY} is large. Further details of the heuristic are presented in [53].
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7.4.3 n-Step Quantile Regression Double Q-Learning

Reinforcement Learning Formulation We adopt Eq.(7.11) as a DRL objective un-
der Ly. In this formulation, a decision-maker (agent) perceives observable states
representing all possible locations, alerts, failures and elapsed times. In general,
these observable states differ from the true hidden machine states, which are not
accessible. Our asset networks allow us to model the problem as a POMDP, where
observable states summarise the available past history in the form of elapsed times
since the last transition. Lastly, we assume that the proposed environment can be
simulated for a number of episodes E € IN. Note that this access is possible when
we assume that we learn online by observing past state transitions. Another way of
observing such data is to reuse transitions from previous policies or implement a
simulation environment that mimics real-world data before deploying the learned
agents in a real environment.

We are interested in learning a policy 7710, mapping observable states to action
probabilities. Learning is possible by sampling a number of trajectories following a
behaviour policy, i.e., a policy executing actions in the environment and evaluating
its performance with respect to the main objective in Eq.(7.11). To evaluate per-
formance, we define the standard characterisation of the state-action value function
measuring the expected sum of costs starting from a given observable state o, action
u, at time t as:

L [e¢]
g (o,u) =E 1o | Y v*Cuy,p (H(E+K)) |OF (Hy) = 0,up = u. (7.13)
k=0

To avoid notation clutter, we refer to the class of DRL policies interchangeably as
70 and 7, costs at time t as ¢; := Cy, (H(t)) and observable states as o := CD:“U (Hp).
We assume no access to the environment transition probabilities (model), in which
case a policy 71 may be learned as a mapping from states to actions or extracted
from value function approximations. In this work, we propose a value function ap-
proximation method, referred to as n-step Quantile Regression Double Q-Learning
(nQR-DDQN) with each of its components detailed in the forthcoming sections.

Deep Q-Learning Similar to [12, 94], we extend deep Q-learning (DQN) [163]
by combining several modifications that improve performance, training times and
maintain comparable sampling complexity [55, 94, 216], detailed below. In DQN,
off-policy RL is combined with NN approximation to estimate values of state-action
pairs. State information is passed to a NN g, : QO X U/ — R, where w are trainable
parameters. Similar to the original DQN, we store a set of transitions (o¢, ut, ct, 0441)
in a replay memory D (hash table). Transitions are collected following an e-greedy
exploration scheme, i.e., picking a random action with probability €, otherwise
selecting the action with the lowest estimated g values. For training, we sample
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a mini-batch of Np € N transitions from D uniformly at random to decorrelate
past transitions. Based on the mean Bellman optimality operator, the parameters
of the NN are trained to minimise the one-step temporal difference (TD[0]) error
[207, p. 131], i.e., the error between the current estimate of the value of a state and
its one-step update, acting greedily with respect to the approximated g function by
means of gradient descent using the mean of the squared error (MSE) loss function

L(w) = (e + 'Yn}}nqw(()tﬂrﬂ/) — qu(ot,a1))*.

To stabilise training, DQN introduces a farget network with parameters @, i.e.,
a periodic copy of the online g, that is not directly optimised and used as a target
for the future g-value estimates. This copy is introduced to stabilise training and
represents a fixed target that does not change at each update of w [163]. In our
implementation, this copy is updated every P € IN episodes. In the remainder
of this section, we provide further details on the proposed modifications, namely,
double deep Q-Learning, multi-step RL and distributional RL.

Double Deep Q-Learning DQN can be affected by an underestimation bias (over-
estimation in maximisation) [216]. In our noisy environment, this can lead to over-
optimistic actions and prevent learning. Thus, we employ double DON (DDQN)
[216] to decouple the action selection from its evaluation. In this way, the action
selection when updating w remains dependent on the online g, (the current net-
work being optimised), effectively reducing the chance of underestimating action
values on the target network g5. This change reduces harmful estimations in the
original DQN objective leading to more stable temporal difference updates. DDQN
effectively changes the loss of DQN to

L(w) = (et + 790041, arg min o (01, 4')) = Gu (01, 1))’

Multi-Step Reinforcement Learning One-step temporal difference updates of
DON are biased when g, estimates are far from true g™ values. To obtain bet-
ter estimates, TD[0] updates can be generalised by bootstrapping over longer hori-
zons. This reduces bias, but it can lead to high variance due to the environment’s
stochasticity [112]. Nevertheless, using a larger bootstrapping horizon can empir-
ically lead to higher performance and faster learning. We include longer horizons
considering the truncated n-step future discounted costs:

T = oy by + Yo+ Y T (7.14)
Note that using the costs in Eq.(7.14) makes the updates of DQN on-policy and
results in value function updates that rely on old and inaccurate transitions in the
replay memory. This is due to the n-step transitions of the behaviour policy being



Chapter 7 165

used for the updates. In the case that the policy that generated the transitions in
the replay memory differs substantially from the current policy, the updates based
on these estimates can cause inaccurate evaluations of the g function under the
current policy. To make updates off-policy again, we need to introduce importance
sampling terms [57]. However, these terms can also lead to higher variance. In
practice, adding n-step terms even without importance sampling can aid learning,
whilst high variance can be controlled by small values of n [93]. Thus, to balance
bias (one-step updates) and variance (multi-step updates), we include an additive #-
step term weighted by a € R in the original DQN training objective. This parameter
« is introduced to control how much extra variance we allow when updating the
estimated g values.

Distributional Reinforcement Learning In stochastic environments, the trans-
itions, actions and costs can introduce multiple forms of randomness. In our frame-
work, we consider the failure of crucial assets, in which risk-adjusted costs need to
be considered when selecting actions. Thus, learning a distribution of future costs
allows us to improve policy performance by taking into account the stochasticity
of the problem explicitly. Distributional RL [18] aims to learn not a single point
estimate of values but a distribution of returns, i.e., the distribution of the random
variable

z%(o,u) = Y Yrerk (7.15)
k=0

for given 0 and u, where g™ (0, u) := Ex[z"(0,u)]. We employ quantile regression
DQON (QR-DQN) [55], in which the distribution of returns is modeled via a quantile
regression on N data points with fixed uniform weights of the CDF of z™ as 7; =
L i=1,...,N.

Thus, we estimate the quantiles by learning a model i, : Q x Y — RN, mapping
each state-action pair to a probability distribution supported on {yi,(0,u)}¥, ie.,

1N
zy(o,u) := N ;51/)%0(0/’4) (7.16)
=

where &, represents a Dirac at z € R. Moreover, each i, represents an estimation
of the quantile value corresponding to the CDF quantile weight

. T1+T

t == (7.17)

79 = 0, i.e., the data points that minimise the 1-Wasserstein metric to the true z”
[55]. Note that zy (0, u) can be used to compute the usual g, estimates as gy (0, u) =
% Zf\i 1 ¢i,(0,u). To achieve unbiased gradients in QR-DQN, we replace the usual
MSE loss of DON with an asymmetric variant of the Huber loss [107] defined as
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0% (v) = |1 —1(v < 0)|Lx(v), where
%1/2 for |v| <x,

Li(v) = 7.18
) {K(|1/|%K), otherwise, (7.18)

v corresponds to pairwise TD errors and x € R. Similar to the mean Bellman
optimality operator, the distributional Bellman optimality operator [18], i.e.,

z"(0,u) = Cy(0) + vz (o', argmin E-[z" (o', u")]), (7.19)
u/

where 0’ is the next observable state, is used to approximate quantiles based on the
n-step loss function (with DDQN correction) as:

. 1 N N . . ]
LHR" (w) = N Yo Y 05 (Yhtn — Yoo, ur)), (7.20)
P |

where _1/; = chttn 4 'y”lpié(oﬂrn,argminu/ Zfil iy (04n,1")). Finally, we add the
n-step OR loss term to a single-step term to arrive at the objective:

w" = argmin L, .orppoN (W) = arg min[Lqp (w) + aLog" (w)], (7.21)

note that Lor(w) is the same as EtQ:tI{ H(w) and corresponds to TD[0] (one-step)
updates. We refer to the above objective as the training objective for nQR-DDQN.

Neural Network Architecture We employ a NN ¢, depicted in Figure 7.3, that
maps raw observable state vectors to pairs of actions and N quantiles of the distri-
bution of z7, i.e., Py : R — RN*UI, First, an observable state is flattened into an
input vector { € R, where d = 3M + 2. Note that the length of the input vector de-
pends linearly on the network size M and the times f,, are truncated to be between
[0, T], where T is the maximum allowed simulation time, and later normalised as
fm/T. The vector { is then passed through a series of layers I € {1,...,L} of the
form

' = (W + b (7.22)

where W! € ]Rledlil, bl € Rdl, deN d =d 7°=7and ¢ is a (non-)linear
activation function in every hidden layer, i.e., I € {1,...,L — 1}. In the output layer
L, d* = |U| x N, where |U| is the size of the action space and ¢! is the identity
function. The parameters w = {Wl,bl}lL:1 are updated via the gradient descent
method, Adaptive Moment Estimation (Adam) [124], computing adaptive learning
rates for each parameter, with learning rate A > 0 aimed at minimising the loss in
Eq.(7.21). Note that A controls the magnitude of the weight updates. The complete
algorithm referred to as nQR-DDQN is presented in Algorithm 3.
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Algorithm 3: n-step Quantile Regression Double DQN (nQR-DDQN)

Input: Initialise replay memory D, n, E, Ng, T, N, a, P, A, € and functions

Yw, Pp with random weights w = @
for episode = 1,...,E do
Sample initial observable state oy;
fort=0,...,T—1do

up = argming § YLy ¢ (01, 1)
Execute u;, observe c; and 0;41;
Store transition (o, g, ¢, 0441) in D ;
if t > n then

Np
Sample { (0j,uj, c]']+”,oj+n) } . from D;
]:

T it +'y”1p§,(0j+n,u*) otherwise

where u* = argmin,, YN ¥l (0 1)
Take a gradient step acc. to Eq.(7.21) w.r.t. w;
end
end
Every P episodes, update w = w;
end

Select a random action u; with probability €, otherwise select

Y { it if n <nandoj, terminal

\
Observed Network State Neural Network O——> ? ? ?? ?

O— > | 29 99
oaPt

X
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Yy (07 ”)
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Y

Figure 7.3: A neural network ¢, : RY — RN*I“| mapping observable state vectors

to estimates of the quantile locations of the cost distributions.
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7.5 Experimental Settings

To benchmark the solutions in Section 7.4, we construct a set of asset networks
where we can explicitly compute the alert information and optimal policies under
the (L3) information level.

7.5.1 Asset Networks

Each machine m € M has a similar degradation process defined as follows. The
random transition time between two states i,i +1 € N, follows a Geometric dis-
tribution with support N*t, i.e., T ™1 ~ Geo(piit!), where pii ™ e (0,1) for all i
and m. Note that T/ ™ satisfies the Markovian property. The alert state is chosen
to be the first non-healthy state, meaning that x2, = x + 1. To ease some of the

computatlons we assume that pl A1 = pj foralli € {x3,...,xf, — 1}, consequently

Tf ~ Zkiz Geo(p3,). Moreover, we reduce the complexity by assuming both unit
travel and repair times, that is, ttM = tM = 6,,., = 1 for all m, m’ € M. We briefly
explain the setup per information level.

(Lo) The decision-maker (agent) can only interact with the environment. It ob-
serves X, elapsed times and aims to learn policies for the underlying MDP
observing transitions.

(L1) The decision-maker observes &), elapsed times and has access to distribu-
tional information about Tf, and T2. In particular, this information consists of
(exact) estimates of E[Tf,] and Var[T!].

(L) The decision-maker only observes transitions between healthy, alert and failed
states. The problem can be formulated as a POMDP observing X};. The
decision-maker has access to the distribution of Tf,.

(L3) The decision-maker observes N, and has access to the transition probabilities.
The problem can be defined and solved as an MDP. Since the transitions are
Markovian, we can drop the elapsed times.

We generate experimental settings varying the number of machines M €
{1,2,4,6} in a network. The next section introduces three different cost structures
considered in the experiments.

Cost Structure For each network size, we define three cost structures, namely C1,
M _

C2 and C3. Recall that the combined costs are defined as ¢$M = ¢SM + CDT'Yj; I !
f" _

PM | DT77’ . a1

cM/ePM of corrective and preventive maintenance costs. We aim to have each cost

and &M = (I The three cost structures represent different ratios
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structure represent a distinct, realistic cost relationship between preventive and cor-
rective costs. Moreover, each cost structure should induce different optimal policies,
i.e., policies that favour more or less frequent maintenance actions. For example,
when ¢/ ig large, i.e., when CM costs greatly surpass PM costs, we expect that
preventive maintenance policies outperform reactive policies. Note that the values
of ©M/eM and the respective costs for each cost structure are presented in Table 7.1,
we omit the machine index m as we will be reusing the same cost structure for all
machines in most experiments.

Table 7.1: Cost structures considered in the experiments.

Cost Structure ‘ M (PM (DT &M /pm

C1 9 0 1 10.09
C2 2 1 10 1.09
C3 4 1 1 251

Machine Degradation We consider four types of machine degradation (matrices),
namely Q1, Q2, Q3 and Q4 presented in Appendix 7.A. Q1 models the simplest
setup of three hidden states, which under the degradation model proposed by [61]
is equivalent to a fully-observable MDP. More specifically, due to the three states per
machine, this can be seen as a network of delay-time models. This case is specifically
introduced to compare the heuristics, and trained agents with the optimal solution
obtained using Policy Iteration (PI) under information level L. In this case, N' = X
and hence there is no information gap, viz. the optimal solution to the MDP is in
the class of Ly policies. Both machines Q2 and Q3 transition to an alert state with
probability 0.2, but degrade differently. Q2 transitions with probability 0.3 as soon
as it reaches the alert state, whereas Q3 transitions with probability 0.7, thus Q2
degrades slower than Q3. Machine Q4 is modeled with seven underlying states,
having the same transition probabilities of Q2, i.e., slow degradation.

7.5.2 Case Study

We introduce 16 asset networks, each having a different combination of network size,
cost structure and machine degradation matrices. We use a simple shorthand nota-
tion to distinguish the various cases: a network with one machine and degradation
matrix Q1 is labelled M1-Q1. Note that when we employ multiple distinct degrad-
ation matrices, we concatenate the labels in increasing order, e.g., a network with
two machines Q2 and Q3 is labelled M2-Q2Q3. For larger network sizes, we use
the same degradation matrix for multiple machines by spreading the degradation
matrices evenly across the number of machines. Thus, experiment M4-Q2Q3 rep-
resents a network with four machines where half is assigned the degradation matrix
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Q2, and the other half is assigned the degradation matrix Q3. For each network, we
consider the cost structures C1, C2 and C3. This scheme is only changed for the last
asset network with M = 6, labelled M6-Q2Q3Q4-C. This network increases the com-
plexity by assigning different cost structures to machines. A detailed description
per network is presented below.

M1-Q1 The most straightforward setup considers one machine (Q1) such that
Xy = N, vanishing the information gap. This edge case is introduced to show
that the learned policies and heuristics can match the performance or reproduce
the policy found via policy iteration (PI). Depending on the cost structure, we can
verify that the optimal policy acts greedily on an alert (under cost structure C1
and C3) or it is reactive with respect to a transition to the failed state (under cost
structure C2).

M1-Q4 This setup considers one machine (Q4) where X, C N, ie., there is
partial information about the network state space. We quantify the information
gap of having information level L3 over less information L € {Ly, L1, L} when
presented with a single machine.

M2-Q2Q3 We scale up the model complexity by increasing the network size. We
consider two machines Q2 and Q3, which implies that the decision-maker has par-
tial information about the network state space. Note that each machine in this
experiment degrades at a different rate, and ideally, a good policy accounts for this
by adapting its response time for each machine.

M4-Q2Q3 Essentially, this network is obtained by doubling the M2-Q2Q3 net-
work, i.e., now the decision-maker faces a four machines network. Note that the
network now consists of two machines, Q2 and two machines, Q3. This is the max-
imum network size for which we can still optimise the MDP (under information
level L3) via PI, using our hardware.

M6-Q20Q30Q4 The largest network increases the number of machines to six, and
it is obtained by adding two machines Q4 to the network M4-Q2Q3. The result
is a much more challenging problem in which each pair of machines will have
different lifetime distributions. Moreover, the alerts of Q4 machines are likely to
occur very early relative to the failed instance. This induces a challenging time-
based maintenance problem where the decision-maker has to consider the risk of
postponing maintenance adequately.

M6-Q2Q30Q4-C Lastly, we increase the model complexity by considering multiple
cost structures. Network M6-Q2Q3Q4-C is identical to network M6-Q2Q3Q4; how-
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ever, we now assign to different machines different cost structures. Q2 machines
are assigned cost structure C2, Q3 machines the cost structure C3 and Q4 machines
have cost structure C1. This option is more realistic as different assets may have
different maintenance cost structures based on type, age, location and utilisation.

7.5.3 Training Parameters

For all experiments, we roll out our simulation for a maximum of T = 500 steps’.
The simulation is restarted with different randomness, i.e., different alert/failure
arrivals following identical probability distributions. We train the RL agent for a
total of E = 2000 episodes and update the target network every P = 30 episodes.
Initially, we set the exploration ratio € = €; = 0.1 and decay linearly over 90%
(er = 0.9) of the training samples, after which the exploration ratio remains constant
at € = €y = 0.005. We define the discount rate vy = 0.99 and the learning rate
A = 5x10"% We sample mini-batches of size N5 = 32 and have a maximum
replay memory size |D| = 100000. We use n = 5 and weigh the n-step loss by
« =1, i.e., it has the same weight as the TD[0] loss.

The NN architecture is identical for all experiments. We employ a Feed-Forward
NN, comprised of a linear embedding layer that maps input vectors to a R
space, i.e., dl = 64. Following, two layers with the rectified linear unit (ReLU),
i.e.,, ReLU(x) = max(0,x) activation function map the previous with dimensions
d? = d® = 64. We follow the original implementation of QR-DQN [55], set ¥ = 1
and employ N = 51 quantiles mapping the inputs to a tensor of size N x |U/|, where
|U| = M+ 1. We train all models on hardware with a Ryzen 3950X CPU and a RTX
2080Ti GPU. A summary of all the training parameters is presented in 7.B.

7.6 Experimental Results

To test the performance of the proposed solutions, we generated 512 test instances
(episodes) for each experimental setting. In our experiments, if the same (determ-
inistic) policy is evaluated twice on an episode, the performance will be identical.
Hence, the only difference lies in the information level, i.e., more or less information
about the underlying degradation is given to the decision-maker.

We measure the proposed solutions’ performance and present the estimated
expected discounted cost together with a 95% confidence interval after rolling out
the policies for T = 500 steps on each episode. We also include the results obtained
finding the optimal policy under information level (L3) following (PI). We were
able to solve all cases up to |M| = 4 using Cartesius [35], the Dutch national
supercomputer. When solutions yielded identical performance, the policies were

7 Assuming a maximum error level &(1 — «)/c = 0.006 between the infinite horizon costs and trun-
cated horizon costs at time T, i.e., T > log(&(1 —)c™1)/ log(y) — 1 where ¢ = 10.
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Table 7.2: Average costs (95%CI) over 512 episodes when rolling out policies for 500
steps. Bold: Lowest cost amongst the proposed solution approaches.

Solution (Info. Level) ‘ Asset Network ‘

Cost Structure

C1[95% CI]

C2[95% CIl

C3[95% CIl

M1-Q1 16.36 123.91 32.72
PI (Ls) M1-Q4 4.730 47582 9.461
8 M2-Q2Q3 21.230 190.275 39.550
M4-Q2Q3 79.976 432.440 96.166
M6-Q2Q3Q4 - - -
M6-Q2Q3Q4-C -
M1-Q1 16.365 [16.171, 16.56] 124.96 [123.541, 126.378] 32.804 [32.443, 33.165]
M1-Q4 8.806 [8.608, 9.004] 47.408 [46.894, 47.922] 14.513 [14.343, 14.683]
#QR-DDQN (Lo) M2-Q2Q3 25.139 [24.935, 25.343] 202.311 [200.675, 203.946] 46.995 [46.609, 47.381]
0 M4-Q2Q3 92.654 [90.736, 94.571] 470.625 [467.640, 473.611]  106.525 [105.717, 107.334]
M6-Q2Q3Q4 176.642 [175.234,178.051]  711.188 [705.789, 716.586]  159.527 [158.294, 160.760]
M6-Q2Q3Q4-C 347.500 [344.986, 350.014]
M1-Q1 16.365 [16.171, 16.56] 182.233 [180.126, 184.339] 32.804 [32.443, 33.165]
M1-Q4 16.61 [16.417, 16.804] 179.75 [177.624, 181.876] 32.818 [32.474, 33.163]
H - Greedy [ET.C] (Ly) M2-Q2Q3 30.9 [30.495, 31.305] 306.366 [304.26, 308.472] 56.692 [56.279, 57.105]
YL V| M4-Q2Q3 112.304 [110.395, 114.212]  526.248 [523.62, 528.877]  112.306 [111.444, 113.168]
M6-Q2Q3Q4 231.498 [228.491, 234.505]  741.568 [735.639, 747.497]  168.064 [166.677, 169.451]
M6-Q2Q3Q4-C 379.799 [375.934, 383.665]
M1-Q1 103.361 [102.217, 104.506]  124.96 [123.541, 126.378] 51.736 [51.195, 52.278]
M1-Q4 40.018 [39.595, 40.442] 47.408 [46.894, 47.922] 20.127 [19.912, 20.342]
H - Reactive [ET.C] (Ly) M2-Q2Q3 154.074 [153.033, 155.114]  283.619 [281.469, 285.768] 82.419 [81.845, 82.993]
U Ma-Q2Q3 306.278 [304.876, 307.68]  718.158 [713.699, 722.617]  173.682 [172.799, 174.565]
M6-Q2Q3Q4 396.714 [395.106, 398.321]  1053.663 [1046.581, 1060.745]  231.742 [230.677, 232.806]
M6-Q2Q3Q4-C 473.647 [470.884, 476.41]
M1-Q1 16.365 [16.171, 16.56] 124.96 [123.541, 126.378] 32.804 [32.443, 33.166]
M1-Q4 8.806 [8.608, 9.004] 47.408 [46.894, 47.922] 14.513 [14.343, 14.683]
TMH (L) M2-Q2Q3 25.221 [25.037, 25.405] 235.746 [233.683, 237.809] 46.757 [46.404, 47.111]
2 M4-Q2Q3 111.591 [110.188, 112.993]  634.828 [630.347, 639.309]  111.865 [110.988, 112.743]
M6-Q2Q3Q4 214.435 [212.463,216.408]  989.006 [982.159, 995.853]  181.077 [179.628, 182.527]
M6-Q2Q3Q4-C 379.669 [376.796, 382.543]

also identical. The results are summarised in Table 7.2, where the best performance
results among the proposed solutions are represented in bold.

M1-Q1 In the most straightforward experiments, the proposed solutions match
the performance and behaviour of the policies found via PI when there is no in-
formation gap. Moreover, we see that the optimal policies coincide with the Greedy
heuristic (C1 and C3) and the Reactive heuristic (C2).

M1-Q4 Now, the optimal policy of the underlying MDP prescribes to either wait
until the last state before failure (C1 and C3) or to delay maintenance to when the
asset has failed (C2). Note that the latter policy is reactive, and the performance of
the proposed Reactive heuristic matches the performance of PI. The best performing
solutions are the TMH and nQR-DDQN. Since both operate under partial informa-
tion of the failure probabilities, they obtain similar results by either computing an
optimal TBM policy [53] or learning via interaction.
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M2-Q2Q3 When increasing the number of machines, we expect the performance
gap between the (L3) policy (obtained via PI) and the other policies to grow. In
this experiment, the DRL solution achieves the best performance for all cost struc-
tures. The TMH policy obtains similar performance to nQR-DDQN for both cost
structures C1 and C3. The DRL solution obtains a very close result to PI for C2,
achieving 202.311 compared to the optimal cost of 190.275. The TMH policy shows
poor performance here since it does not account for positive response times.

M4-Q2Q3 - M6-Q2Q3Q4 For these experiments, nQR-DDQN consistently outper-
forms the other heuristics. When the network size increases, the heuristics suffer to
cope adequately with the increased complexity. The best performing heuristic is the
TMH policy, showing that a higher information level yields better policies, even if
they are myopic. However, it consistently shows poor performance when machines
with the C2 cost structure are part of the asset network. For M4-Q2Q3, nQR-DDQN
achieves similar performance to the optimal policies under full information.

M6-Q2Q30Q4-C The largest network, containing 6 assets with mixed cost struc-
tures, is also the most complex network. In this case, both the Greedy heuristic
and the TMH solution yield similar performance. This result is not surprising, as
more machines simultaneously reside in the observed alert state; the TMH pushes
maintenance decisions to meet as many maintenance deadlines as possible. Thus,
the added benefit of having access to a residual lifetime metric is reduced due to
the urgency of repairs. Nevertheless, the DRL agent outperforms all heuristics in
this scenario, implying that the learned agent is able to delay maintenance decisions
more accurately than any investigated heuristic approach.

7.6.1 Comparing Policies

In this section, we focus our attention on the asset network M2-Q2Q3. In this
particular experiment, the performance of 1QR-DDQN, Greedy heuristic and TMH
are close, with nQR-DDQN obtaining slightly lower costs. We select M2-Q2Q3 with
cost structure C1 as a case to provide deeper insights as to why the policies are
different. For a case with two machines, we can represent an observable state using
the presence of alerts (H: Healthy, A: Alert, F: Failed). To reduce the size of the
state space, we collapse the decision maker’s location and the elapsed times. Under
these simplifications, we can list nine observable network states and examine the
visitation distribution of each solution. Figure 7.4 shows the visitation distribution
when rolling out each policy for 512 episodes.

We first observe how the visitation distribution of the reactive heuristic (Figure
7.4d) differs from the remaining solutions. In the reactive case, the decision-maker
visits states where one or both machines are in the failed state (F) more often.
Unsurprisingly, given that the C1 cost structure favours preventive maintenance,
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Figure 7.4: Visitation distribution of observable states (M2-Q2Q3) over all episodes
(H: Healthy, A: Alert, F: Failed).
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this leads to high incurred costs. The greedy heuristic distribution (Figure 7.4c)
mostly visits states where both machines are in a healthy state (H), implying that
unnecessary costs due to excessive maintenance of the assets are incurred. Since
the benefit of PM over CM in Cl1 is large, this policy yields much lower costs than
the Reactive heuristic. Both the TMH (Figure 7.4b) and nQR-DDQN (Figure 7.4a)
have similar visitation distributions. In both cases, the policies attempt to delay
maintenance to the “right" time. However, the heuristic is more conservative than
the learned policy, i.e., the agent visits states where the second machine is an alert
state (H-A) more often. This shows that the agent takes more “risk", allowing the
second machine to be in the alert state slightly longer than TMH.

7.7 Managerial Insights

For larger networks, characterising the behaviour of the learned policies by the DRL
agent becomes challenging as it depends on more complex states containing more
machines, alerts and elapsed times. In general, it is not possible to characterise the
learned policies via a set of heuristic rules. Nonetheless, we observe that the DRL
agent tends to take proactive actions and move to healthy assets which carry the
highest economic risk. Moreover, the learned policies tend to take more risk than
the other heuristics, learning to delay preventive maintenance as much as possible,
sometimes incurring several extra downtime penalties for this reason.

Additionally, for networks with | M| = 6, we observe that in one instance, the
DRL agent leaves assets with frequent failures (in terms of the distribution of Tf,)
unattended. This can be explained by the single decision-maker reaching its capa-
city limit. Thus, depending on the network size and degradation processes, a single
decision-maker may not be sufficient to maintain the entire network without sacri-
ficing reliability. Decision-makers can employ such insights when determining the
size of repair crews, considering the number of assets and their degradation pro-
cesses. The other considered heuristic policies do not account for such behaviour.
Such behavior may be optimal if this reduces the overall maintenance costs.

We note that each of the proposed methods in this work reflects on different
assumptions regarding the observed information from the network and relates to
different application scenarios: in case no historical information about the degrad-
ation of assets or the operational lifetimes is available, greedy or reactive policies
can be easily implemented. If methods for estimating the remaining useful lifetime
of assets exist, heuristic policies like the TMH can be employed to take into account
the trade-off of costs of resolving the alerts in the network. When online obser-
vation is possible or a simulation environment exists, policies can be learned via
the DRL approach proposed in this work. In this case, an online system can take
observations as inputs and generate instructions for a repair crew. As a result, the
learned policies can inspire further heuristic developments.
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7.8 Conclusion

This chapter introduces the dynamic travelling maintainer problem with alerts
(DTMPA) and proposes maintenance strategies for a network of modern industrial
assets with stochastic failure times. We consider a real-world scenario where assets
are part of a larger asset network, and alerts triggered by degradation monitor-
ing devices are used to make maintenance decisions. We have proposed a general
framework to this problem, where independent degradation processes model the
alert as an early and imperfect indicator of failures. Therefore, the decision-maker
only has access to partial degradation information to help make maintenance and
travel actions, leading to the lowest expected discounted cost.

To solve the problem, we have employed three methods utilising different in-
formation levels from the alerts. When alerts come with no extra information, a
class of greedy and reactive heuristics that rank alerts based on travel times, fail-
ure times, or economic value can be employed. When residual lifetime information
is available, such as the expected failure time, we can approximate the dynamic
problem with a deterministic problem instance similar to the travelling maintainer
problem. This method considers the alerts to create and optimise schedules that
minimise the expected maintenance costs over the near future. Lastly, when alerts
carry only elapsed times since their generation and a simulated environment is
present, we can learn policies via deep reinforcement learning trained to approxim-
ate the state-action value distributions of long-term costs.

Our results show that we can effectively replicate the performance of optimal
policies when no information gap exists between alerts and the real underlying
degradation. When an information gap is present, and the number of assets in the
network is small (up to four assets), our methods yield effective policies close to op-
timal under full information. When computing an optimal policy becomes compu-
tationally intractable, the learned policies result in the lowest expected discounted
cost and can learn policies that balance the failure risk and the maintenance costs
better than the competing methods. Lastly, depending on the information level of
the alerts, interested parties can select one or more of the proposed methods as vi-
able options to solve the sequential decision-making problem that arises from such
scenarios.
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Appendix

7.A Appendix A: Degradation Matrices

All the degradation matrices used in the numerical experiments are presented be-

low.
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7.B  Appendix B: Deep Reinforcement Learning Hyper-

parameters
During training of nQR-DDQN we employ a number of hyperparameters listed in
Table 7.3.
Table 7.3: nQR-DDQN Hyperparameters
Hyperparameter ‘ Description ‘ Value

T length of an episode 500
|D| size of the replay memory 100000
E number of episodes 2000
p number of episodes to update target NN 30
Np mini-batch size 32

04 discount rate 0.99
er exploration fraction 0.90
€ initial exploration probability 0.1

€f final exploration probability 0.005
A learning rate 5x 107%
n steps to bootstrap in the n-step loss 5

« n-step loss weight 1

K Huber loss weight 1

L number of NN layers 4

N number of quantiles in QR 51

M number of machines in a network {1,2,4,6}
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Conclusions

In this chapter, we provide an overview of the studied problems and the main con-
tributions of this thesis. Next, we discuss the limitations of the methods proposed
and present possible directions for future research. Lastly, we relate the contribu-
tions of this thesis to the broader application context of using machine learning
(ML) in decision-making and discrete optimisation problems. In particular, we dis-
cuss the relationships with other methods in machine prognostics and the combin-
ation of ML and combinatorial optimisation (CO) methods for industrial problems.

8.1 Thesis Overview

This thesis has studied several problems pertaining to a network of industrial assets
with unknown degradation mechanisms that require visitation and maintenance.
The overall structure of the thesis follows from breaking down the main problem
into three main components. In particular, we first studied prognostics problems,
in which the objective is to arrive at accurate asset prognostics from sequential data
gathered via remote monitoring devices. Second, we studied routing problems that
arise when assets at different locations form an asset network, and the goal is to
ensure the lowest visitation costs. Lastly, we studied the combined problem of
visiting a network of assets ensuring that maintenance is performed under minimal
costs in the presence of censored information about the degradation of assets.

The common theme across the chapters is the focus on data-driven methods
and the methodologies employed throughout the thesis. We assume we only have
access to sampled data from each problem and aim to learn accurate predictions and
decisions directly from this data. The methodologies proposed in this thesis focus
on end-to-end, deep learning and deep reinforcement learning methods that can
take advantage of the heterogeneous data sources of each problem. The methods
proposed comprise algorithmic solutions for the studied problems and can achieve
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promising results in comparison to previous works.

In more detail, Chapter 2 provided a background on the ML concepts employed
throughout this thesis. In Chapter 3, we studied the problem of predicting the re-
maining useful life (RUL) of industrial assets. Our objective is to learn to output
RUL predictions from sequential data of monitoring devices without requiring ex-
pert knowledge about the underlying degradation processes. Chapter 4 considered
the RUL prediction problem when run-to-failure labelled data is not available for
the asset of interest but exists for assets with different monitoring data distributions
and failure modes. This practical problem arises when new equipment versions do
not have enough run-to-failure information but still require failure prognostics. We
aim to use this data from pre-existing assets to make inferences for other (newer)
assets with only sensor information.

In Chapter 5, we moved away from prognostics problems and studied learn-
ing policies for routing problems. In this problem, we are mainly concerned with
learning good improvement policies to search for near-optimal solutions. We as-
sume access to instance data such as location and distances and seek to solve these
routing problems directly from this data. Chapter 6 also studied the problem of
learning improvement policies for routing problems. However, we assume that pre-
vious expert heuristics exist and can be taken advantage of to improve the speed of
learning effective policies. That is, we aim to learn good policies extracting inform-
ation from sub-optimal policies acting as experts.

Lastly, Chapter 7 combined the first two streams of this thesis in a sequential
decision-making problem considering travelling and maintenance decisions. In this
problem, named dynamic travelling repairman with alerts (DTMPA), a decision-
maker responsible for travelling and maintenance decisions receives alerts relating
to the degradation of assets in a network. The alerts represent partial observability
of the actual degradation process of assets and are an early indication of failure.
In our approach to the DTMPA, we seek to learn policies that optimise prevent-
ive (before failure) and corrective (after failure) maintenance costs while serving a
network of assets considering their uncertain failure times.

8.2 Main Results

Below we present an overview of the significant results and conclusions for each
chapter in this dissertation in relation to each proposed research question (RQ).

RQ1 How to effectively achieve accurate RUL predictions that can retain long term
information about degradation data?

In Chapter 3, we considered an asset prognostics problem learning from
condition-based sequential monitoring data of assets. In this problem, we wish to
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take advantage of sequential data to learn to output RUL estimates that can later
be employed in maintenance policies. Our model can learn from exploiting the
relationship between the multiple sensors and the observed RUL of assets. Addi-
tionally, the proposed method employs an attention mechanism that allows RUL
outputs at the current time to consider the importance of previous time steps within
a time window. Numerical experiments show that this attention-based neural
network can learn more accurate RUL predictions without requiring pretraining
or extensive parameter search of previous deep learning methods. Moreover,
analysing the learned weights of the attention mechanism allow us to visualise the
temporal relationship between sensor inputs and RUL outputs. This visualisation
can help decision-makers better understand the relationships learned by the neural
network model, providing more transparency and managerial insights.

RQ2 How to adapt RUL predictions from previous run-to-failure data to new assets with
only sensor information under different operating conditions and fault modes?

Chapter 4 studied the problem of learning RUL estimates when only sensor
information is available for the asset of interest. That is, we assume that labelled
RUL information, i.e., the time until failure, does not exist for newly installed
assets. We assume that previously labelled data for assets under different operating
conditions and fault modes exist and are related to the assets with unlabelled
data. We refer to the unlabelled data to which we seek RUL labels as the target
domain and the labelled data from previous assets as the source domain. We
propose a domain adaptation method that can learn better RUL predictions for
the target domain compared to methods without the adaptation mechanism.
In particular, the adaptation is most effective when the source contains more
operating conditions and failure modes than the target data. Nonetheless, results
show that even when adaptation is more challenging (unrelated failure modes and
operation), our method can still achieve better RUL estimates than a model that is
only trained on the source domain data. Our method can also achieve consistent
uplift in performance when compared to previous domain adaptation methods.

RQ3 How to learn better heuristics to solve routing problems directly from observed data
of previous instances?

In Chapter 5, we considered routing problems. In these problems, our goal
is to achieve the lowest visitation costs when considering a network of locations
to be visited represented as a graph. In particular, we consider classic NP-hard
routing problems such as the travelling salesman problem (TSP), the multiple
travelling salesman problem and the vehicle routing problem. In our approach,
we propose to learn improvement policies for the problems directly from sampled
data. That is, we sample instances of these problems and propose learning
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improvement policies based on local search operators employing edge swaps. We
propose a neural network architecture that can encode the graph structure and the
ordering of nodes for action selection capable of surpassing the quality of other
more specialised heuristics and previous ML methods. Starting from the TSP,
we show that our method can be generalised to more complex routing problems.
Additionally, we can learn policies that achieve competitive performance with
previous hand-designed and learned heuristics, requiring fewer samples to achieve
near-optimal solutions.

RQ4 How to take advantage of expert heuristics to learn to solve routing problems?

Chapter 6 examined a similar objective to Chapter 5 but assumes that we
have access to hand-designed (expert) heuristics. Chapter 6 aims to accelerate
learning by extracting knowledge in expert heuristics for the travelling salesman
problem. A main result shows that our simplified neural network from Chapter
5 can reach good quality policies much sooner than our previous method. In
this method, we propose warm-starting policies using previously obtained data
from heuristics used as expert demonstrations. Compared to other methods, our
proposed network learns to approximate near-optimal solutions to the problems
much quicker than previous methods, requiring much lower sample complexity.
Moreover, it maintains similar overall performance at the end of training compared
to methods that learn from scratch.

RQ5 How to automatically learn policies to solve a dynamic routing and maintenance
problem in an asset network directly from observed data?

Chapter 7 investigated a combined problem of travelling and maintaining a net-
work of assets, referred to as the dynamic travelling maintainer problem with alerts
(DTMPA). In the problem, we assume that a repairperson has access to alert inform-
ation from assets located in a network. This alert information is an early warning
of the degradation of assets coming from condition-based algorithms. Our goal is
to learn policies that reduce the overall costs of serving this network, considering
the trade-off of performing maintenance too early and incurring a high number
of maintenance activities or performing maintenance too soon and incurring less
frequent higher corrective maintenance costs. Our proposed method shows that
we can learn effective policies under simplified assumptions of travel times and
maintenance costs. In this intractable setup for classical CO methods, our solution
can surpass the quality of tailored heuristics and approach the quality of an oracle
capable of observing the actual degradation of assets.
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8.3 Limitations and Future Research

The models and algorithms developed in this thesis can be extended in many dif-
ferent ways. Here we give an overview of their limitations and several interesting
directions for future research.

In Chapter 3, we study an RUL prediction problem. Several works have focused
on improving the overall prediction performance of RUL point estimates, improv-
ing the performance of the work presented in this thesis. An important limitation
of the proposed model is that it assumes that, during training, observed temporal
sensor data is available for a number of assets. However, practitioners may need
RUL predictions without any or very little observed data from systems. Thus,
interesting future research directions include devising few-shot learning methods
that learn with limited sensor data on assets, e.g., [63]. Moreover, although the
proposed attention mechanism provides insights about the temporal relationship
between inputs and outputs, it does not provide information on which specific
sensor(s) are causing the deterioration of the asset. Future research could focus on
extracting information from temporal and individual sensor relationships (similar
to spatial-temporal attention in the vision domain [236]) between inputs and RUL
outputs. This would allow decision-makers to acquire more valuable insights into
which parts or components present faulty behaviour and potentially improve pre-
diction performance. Moreover, self-attention methods [220] can replace the need
for recurrent connections in neural networks and pose an interesting line of future
development in machine prognostics [146].

Chapter 4 extends the RUL prediction problem for assets under different oper-
ating conditions and failure modes, assuming labelled source domain data but no
label information on the target domain. This setting has attracted much attention,
and many deep learning approaches [64, 181] tackling this problem have appeared
recently. One limitation of the results presented in this thesis is the lack of inclusion
of more diverse degradation datasets. Thus, future work can explore applying the
proposed methods in chapters 3 and 4 to real-world data in different applications
of RUL prognostics. Moreover, one of our assumptions is that sensor information
exists for the entire run-to-failure time of assets in the target domain. This assump-
tion may be considered too strong, as newly installed assets may not possess access
to complete cycles of run-to-failure data. As such, novel methods can take into ac-
count the adaptation considering limited run-to-failure cycles in the target domain
and measure the adaptation performance depending on the amount of temporal
data from the target domain, e.g., [130]. Other directions can consider that in some
settings, one can take advantage of a few training examples with RUL labels in the
target domain, for instance, coming from assets that failed sooner than expected. In
such cases, a semi-supervised learning approach can take advantage of these few
labelled examples of the target domain. Another interesting approach is incorpor-
ating the physical properties of the actual degradation into neural networks. This
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research direction has the potential to yield more accurate prognostics and result in
better adaptation performance [37].

In Chapter 5, we propose a model to learn improvement policies for routing
problems. In our proposed method, we assume that we are in the canonical cases
of each routing problem. In other words, we do not consider many of the possible
constraints that may be imposed on such problems, for instance, time windows of
nodes, maximum allowed travel time, among others. Recent works, following up
on this line of research, have shown promising results in solving problems with
more constraints [34], stochastic quantities (dynamic) [242] and other variations
of routing problems not considered in this thesis [74]. Another area of further
development is in methods that can be applied to instances of larger size. As seen in
the methods presented in this thesis, end-to-end learning methods for combinatorial
optimisation can be computationally expensive to train for large instances. Thus,
methods that can cope with instances with a higher number of nodes can increase
the applicability of the machine learning methods for such problems. Other areas of
further development include methods that are more sample efficient, i.e., that take
fewer samples of training data to converge to a good policy, methods that combine
classical search heuristics with machine learning, and methods that can surpass the
quality of specialised heuristics and traditional solvers, interesting approaches in
these directions include [102, 127].

Chapter 6 builds upon one of the limitations of Chapter 5. That is, the method
proposed in Chapter 5 may take significant training time before it converges to a
good policy. This high sample complexity is undesirable as we wish to learn good
policies under few samples and a limited number of online interactions with the
problem’s environment. Further improvements to the method proposed in Chapter
6, include learning from demonstration data completely offline without requiring
interaction with an online environment. In this offline reinforcement learning setup,
the goal is to use demonstrations to achieve optimal generalisation performance for
unseen instances. This approach can be interesting when obtaining optimal tours
(using a solver) and training via supervised learning [115, 160] becomes impractical.
Moreover, under the proposed framework, the method could benefit from more di-
verse heuristics that better explore the space of possible solutions, including more
diversity in the demonstration data. An interesting research direction is thus incor-
porating randomised algorithms as experts. These algorithms visit random regions
of the search space and may allow learning methods to generalise better in the on-
line phase. Other future directions include incorporating information of the expert
policies whilst training online, for example, by allowing the online learner to query
the expert (if not prohibitively expensive) or (previously learned) rewards-to-go
estimates.

In Chapter 7, we define the DTMPA and seek policies that minimise mainten-
ance costs. Several limitations of the currently presented approach are related to
the assumptions about the asset network. For instance, in practical applications, a
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network can be much larger than those studied in the experiments. Moreover, we
only consider the presence of a single decision-maker responsible for travelling and
maintenance. In more general scenarios, multiple decision-makers may be respons-
ible for the maintenance of a network. Thus, a more general problem definition
can include a repair crew instead of a single repairperson. Other extensions can in-
clude multiple assets or multiple components of the same asset present at a single
location in the network. In the latter, the degradation of a component could de-
pend on the degradation of other components of the same asset. Another limitation
of the proposed method is that we learn policies for fixed network topologies. In
reality, we could be interested in finding policies for different network structures
under the assumption that they share the same machine types and similar degrad-
ation processes. Learning policies for the entire class of problems can be beneficial
when decision-makers devise policies for multiple sub-networks with similar assets.
Lastly, other recent approaches have also considered employing machine learning
solutions for similar dynamic logistics problems that can potentially surpass the
solutions of deterministic solvers. Noteworthy examples include [29, 131].

8.4 Discussion

The work presented in this thesis focuses on end-to-end algorithms to prediction
and control problems, considering applications to asset prognostics and the com-
bination of ML and CO. This section aims to pose the main results and contributions
of this thesis in a broader context and relate them to other research topics.

The deep learning methods for asset prognostics presented in this thesis are
related to general ML models for sequential data and prognostics and health man-
agement (PHM) applications. In general, sequential prediction problems reoccur in
multiple domains such as natural language processing, financial markets, health-
care, among others. This also applies to learning tasks in which one assumption
of supervised learning is violated, including the various types of violations such as
different feature spaces, learning tasks, and marginal distributions from which the
data is sampled. For example, the domain adaptation for sequential data can be
easily transported to applications such as healthcare, aimed at adapting prediction
models using temporal data of patients across different hospitals in which both the
data distributions and feature space may differ [180].

The prognostics methods proposed here are also related to other PHM prob-
lems, such as fault detection, fault diagnostics, and other fault prediction methods.
In particular, the methods proposed are closely related to the application of deep
learning methods to each of these PHM problems [72]. Additionally, the field of as-
sets prognostics has relationships with other disciplines. Many different modelling
techniques can be applied to these problems depending on the available informa-
tion about the systems. In general, other than ML methods, methods fall under the
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categories of physics and statistical-based methods. These assume different types
of information about the degradation of assets. In the first, the physical properties
and equations governing the functioning and degradation of assets can be explicitly
modelled. In the latter, there are assumptions about the data distributions typically
estimated in a controlled environment or based on expert knowledge. Both assump-
tions require a different treatment than the models presented in this thesis but can
be combined with ML methods to build models with stronger inductive bias [6].

With respect to ML and CO, the methods proposed for routing problems can
also be adapted to other well-known routing problems defined over graphs. For
example, the proposed methods in chapters 5 and 6 can be easily extended to tackle
the orienteering problem [219] and other variations of the travelling salesman prob-
lem, such as the prize-collecting one [14]. The methodology can also be extended
to consider problems with more constraints, with the extra care of masking infeas-
ible moves to reduce exploration to the feasible space. Note that these problems
occur in many application domains, such as drilling problems, order-picking in
warehouses, among others [159]. Other applications of the proposed architecture
include extending the edge swap operation to consider a dynamic choice of the
number of edge swaps at each step, similar to [92]. It is also possible to incorporate
other local search operators based on the nodes in the solution graph. Similarly,
the proposed model framework in Chapter 7 can be expanded to a multi-agent
and multi-component scenario with ease, whilst the proposed algorithm can be
employed in other sequential decision-making problems, for example, to the ambu-
lance dispatching problem [194, 209].

Furthermore, we point out that the methods and algorithms proposed in this
thesis are just one of the many ways these two disciplines can be combined and
benefit each other. For instance, a classical application of ML for CO problems in-
volves acquiring a dataset and using ML models to learn one or more quantities
that can later be used as inputs to mixed-integer formulations. Nonetheless, recent
interest in the field has extended the combination of CO and ML in different dir-
ections. The methods proposed in this thesis make up another way of combining
these two fields. Our proposed methods fall under the category of ML for solving
CO problems. That is, algorithmic methods that perform learning on an implicit
distribution of problem instances aiming to improve the search of solutions directly
from experience. Combining ML in this manner allows for replacing heavy compu-
tations with fast approximations and sub-optimal algorithmic design decisions by
decisions based on data [24]. Many methods fall under this category; for example,
ML can be used to learn constraints for mixed integer programming formulations
[222], objective functions describing the optimisation criteria [147] or implicit pref-
erences that human planners have when solving optimisation problems [33]. ML
methods can also be used in end-to-end learning methods, like the methods presen-
ted in this thesis, in which the learning module outputs solutions directly from the
input space without requiring a search component [128]. Learning methods can
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also be used in combination with classical CO and search algorithms. In this case, a
high-level search algorithm can use an ML module to execute parts of its low-level
decisions, such as selecting a heuristic to change a solution [39] or the next variable
to branch [122, 192] in procedures such as branch-and-bound [136].

ML and CO can also be combined the other way around. CO methods can be
used to replace usual optimisation approaches of ML methods to make sure that
they are more stable and robust to constraints of the learning task. For instance,
mixed integer programming can be employed to learn decision trees [221] and
neural networks [109, 245] that are guaranteed to find the optimal training para-
meters given enough computation time. An important characteristic of this type of
model is that it can be easily extended to respect one or several constraints of the
problem. For example, these methods can ensure robustness against adversarial
examples or minimise the occurrence of false positives. In general, this type of spe-
cific expert knowledge is much harder to include in classical ML and deep learning
methods.

In summary, the methods proposed in this thesis sit in the much broader applic-
ation domain of ML for decision-making in industrial applications.

8.5 Final Remarks

In this thesis, we have studied several problems in maintenance and logistics
optimisation. We approach the problems studied in this thesis purely from a
data-driven perspective. In particular, we focus on deep learning methods that
are able to learn directly from the diverse input data in prediction problems
in maintenance prognostics and control problems in routing and maintenance
applications. We believe that the results and methods proposed in this thesis
are attractive to those studying automatic learning methods to maintenance and
logistics planning problems. We hope that the methods proposed can represent
a small step towards utilising data-driven methods for more general industrial
problems.
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Summary

The increasingly available data provided by connected devices has created the de-
mand to efficiently store, process, and analyse this data. Due to algorithmic ad-
vances and improved computing power, data-driven methods based on deep learn-
ing have been leveraged to automatically analyse and interpret patterns enabling
improved decision-making directly from gathered data without human interven-
tion. When solving real-world decision-making and optimisation problems, these
advances can improve the accuracy, efficiency and effectiveness of previously hand-
crafted solutions. Thus, to automate the costly and time-intensive design of tailored
solutions for prediction and optimisation problems, this dissertation studies deep
learning algorithms to learn predictions and solution strategies in the context of
maintenance and logistics problems.

Within this context, we consider the availability of data sources, including
geographical locations, remote monitoring sensors and personnel availability, and
study relevant problems pertaining to a network of industrial assets. First, mo-
tivated by prognostics problems when devising maintenance plans, we study the
remaining useful lifetime (RUL) prediction of assets directly from remote monitor-
ing device readings, including scenarios in which previously labelled run-to-failure
information is not available. Second, we focus on learning strategies for solving
transportation problems that arise when locations in a network need to be visited,
ensuring minimum visitation costs. In particular, we study well-known routing
problems such as the travelling salesman problem and the vehicle routing prob-
lem. Third, we combine the first two streams of this dissertation and study a joint
transportation and maintenance problem in which a decision-maker faces uncertain
RUL predictions in the form of alerts. In this problem, the objective is to minimise
preventive and corrective maintenance costs while serving a network of assets at
multiple geographical locations.

This dissertation explores methods and problems common to machine learning
and operational research. We propose data-driven methods based on the literat-
ure on deep learning, reinforcement learning, stochastic processes, and Markov
decision processes to address the problems above. Our main contribution relates
to novel algorithmic methods that leverage only the available data to learn better
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predictions and policies that decision-makers can use in maintenance and routing
problems. In particular, we study deep neural network architectures capable of ex-
tracting information from sequential data to arrive at accurate RUL predictions. For
routing problems, we leverage both the graph structure and sequential information
to learn policies via deep reinforcement learning that automatically learn to search
for near-optimal solutions. In the combined maintenance and travelling problems,
we take as input the information of the locations and uncertain RUL predictions
to learn policies capable of surpassing high-quality heuristics and approaching op-
timal solutions that have complete information about the degradation of assets.
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