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Modeling a Spiking Optical Neuron using 
Normalized Yamada Rate Equations 

L. Puts,1 W. Yao,1 D. Lenstra1 
1 Photonic Integration Group, department of Electrical Engineering, Eindhoven University of Technology, 

P.O. Box 513, Eindhoven 5600MB, The Netherlands 

The sharp increase in artificial intelligence research and the limitations in conventional 
hardware led to the active research field of neuromorphic computing. An all-optical 
spiking neural network in photonics is a promising type of neural network closely related 
to information processing the human brain. A spiking optical neuron and weighting 
element are at the heart of such a network and can operate at the  nanoseconds timescale, 
orders of magnitude faster than current electronic neural networks. We propose to 
achieve the integrated all-optical neuron by implementing a saturable absorber next to 
the gain section in an optical cavity, creating an excitable laser. To better understand the 
rich dynamics of this device, a simulation study based on the optically-perturbed 
normalized Yamada rate equations is conducted. The single neuron model shows a non-
linear response, stimulus dependent response delay, and temporal integration. This 
model was then combined with a model for synaptic weighting based on photonic ring 
resonators to simulate small scale neural network capabilities. 
 
Introduction  
Developments in AI research and neural networks and the predictions of the end of 
Moore’s Law have led to developments in the field of neuromorphic computing. The 
architecture of spiking neural networks (SNN) is inspired by the human brain, which 
consists of billions of neurons and synapses and processes information using spikes. A 
two section semiconductor laser shows very similar dynamics compared to these 
biological neurons, although at a much smaller timescale, and is therefore a suitable 
candidate to use in a photonic SNN. Recently, different strategies were proposed to 
achieve a photonic spiking neuron in a fiber laser [1] and in VCSELs [2]. Despite the 
possibilities to create complex photonic integrated circuits, no complete integration of an 
all-optical photonic spiking neuron has been realized. In this paper, we focus on the 
modeling and dynamics of an all-optical neuron by combining the normalized Yamada 
rate equations with a model for a photonic ring resonator for synaptic weighting to 
demonstrate an SNN. 
 
Yamada Rate Equations with Optical Injection  
An optical neuron should have five properties in order to be used for neuromorphic 
computations [3], i.e. thresholding, pulse regeneration, a reset state, temporal integration 
and weighted addition. An important aspect of the first two points is excitability, which 
refers to the non-linear response of a system to an external perturbation. In the case of an 
all-optical neuron this means that depending on the strength of an optical input stimulus, 
the neuron produces either a pulse with a fixed amplitude, or it remains at rest. This 
dynamical property can be introduced in an optical cavity by implementing a saturable 
absorber next to a gain element. Combined with an element for synaptic weighting and 
summation, as shown in Fig. 1, all five properties can constructed.  
 

 



 
 

Assuming the optical intensity is constant across the cavity shown in Fig. 1, a lumped-
cavity model applies and the dynamics of the two section laser can be described by the 
Yamada rate equations. This model consists of three coupled differential equations for 
the gain G, loss Q and intensity I and in non-dimensional form is it as follows [4]:  

�̇�𝐺 = 𝛾𝛾𝐺𝐺  [𝐴𝐴 − 𝐺𝐺(𝑡𝑡) − 𝐺𝐺(𝑡𝑡)𝐼𝐼(𝑡𝑡)] (1) 

�̇�𝑄 = 𝛾𝛾𝑄𝑄[𝐵𝐵 − 𝑄𝑄(𝑡𝑡) − 𝑎𝑎𝑄𝑄(𝑡𝑡)𝐼𝐼(𝑡𝑡)] (2) 

𝐼𝐼̇ = 𝛾𝛾𝐼𝐼[𝐺𝐺(𝑡𝑡) −𝑄𝑄(𝑡𝑡) − 1]𝐼𝐼(𝑡𝑡) + 𝜖𝜖𝜖𝜖(𝐺𝐺) + 𝜃𝜃(𝑡𝑡) (3) 
where γG and γQ are the gain and absorber relaxation rates, respectively, γI  is the inverse 
photon lifetime,  A the gain bias level, B the absorption bias level, a the saturation 
parameter, and εf(G) the spontaneous emission. In most studies, a stimulus is added as an 
electrical stimulus to the gain or absorber equation. In our case, an external optical 
stimulus is applied to the intensity equation via θ(t).  

An example of the numerical solution of Eqs. (1) – (3) over a period of 200 τp 
under a short optical stimulus is shown in Fig. 2 (a) and (b). Initially the intensity is very 
small, and Eq. (1) and (2) are dynamically decoupled. The applied stimulus is above the 
excitability threshold, and as a results the intensity inside the cavity increases and the 
differential equations become coupled. The stimulus saturates the absorber, the optical 
intensity in the cavity increases exponentially until it reaches its maximum and at the 
same time the gain depletes, followed by the reset state where the loss and gain recover 
to their steady state values. 

 
Figure 2: (a) short optical stimulus θ(t) of intensity 0.06 at t=50 τp, (b) response of intensity, gain, and 
loss to the stimulus. For these simulations, γG=0.05, γQ=0.1, γI=1, A=4.3, B=3.52, a=5. 

Simulation Results 
To investigate the behavior of the model under different conditions, the influence of the 
gain and loss control parameters A and B on the laser excitability threshold was 
considered. The results of this analysis are shown in Fig. 3 (a) and (b), where the 
amplitude of a pulse in the intensity after a stimulus was recorded for different values of 
A and B. For all values of A and B, the stimulus was swept from 0 (no injection) to 0.10. 
From in Fig. 3 (a) it is observed that at A=4.5 and zero stimulus the laser produces a pulse, 
which means the systems is self-pulsating (region i). When A=4.4 and a small stimulus 
is applied, no spike was recorded (region ii). For a slight increase in the stimulus 
amplitude, a step function type threshold in the optical intensity is observed (region iii). 
This threshold shifts to the right if A is further decreased. Similar behavior is shown in 
Fig. 3 (b) for values of B. To sum up, these simulations show the thresholding and pulse 
regeneration properties mentioned in the previous section and thus make it an interesting 
candidate for an all-optical optical neuron. 

(a) (b) 

Gain Absorber  
Weight  …

 

 Weight 
 
 

 
 

Figure 1: Block diagram of an optical neuron in an SNN, consisting of weighed input pulses injected into the laser 
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Figure 3: Pulse intensity versus stimulus intensity for various values of the control parameters A and B. 
In (a), B was fixed to its nominal value of 3.52, in (b), A was fixed to its nominal value of 4.3. 

The previous simulations do not provide information on the temporal properties. In the 
following two simulations, the timing between the stimulus and the response were 
investigated. Fig. 4 (a) shows the time delay Δt between the stimulus and response as 
function of the stimulus intensity. The threshold lies around a stimulus intensity of 0.02, 
which is in accordance with Fig. 2 for A=4.3 and B=3.52. At this stimulus intensity, the 
time delay is relatively high. This is due to is the difference in time constants between the 
gain (slow) and absorber and intensity (both fast). For a pulse just at the threshold, the 
gain is able to increase the intensity just enough to saturate the absorber and generate a 
pulse. If the stimulus is higher, the intensity is higher, which in turn results in a faster 
onset of the fast absorber and intensity dynamics, and the time delay decreases. 
 Next, the time delay between a two consecutive stimuli and the amplitude of the 
responses is considered. The results of these simulations are depicted in Fig. 4 (b), where 
the solid line shows the output spike amplitude as a function of the time delay between 
the first and second stimulus, and the dotted line shows the response of a second stimulus. 
The solid line is constant over almost the entire simulation, which means there is hardly 
a difference in timing between the first stimulus and the response. However, both the 
amplitude as well as the time at which the second spike appears is significantly different 
compared to the first spike. The second spike appears only after approximately Δt=59 τp, 
at a much lower amplitude. As the time difference increases further, the amplitude 
approaches the steady state value of the first spike. The reason for this behavior, the 
relative refractory period, is because the gain and loss need a certain amount of time to 
recover. In this period it is possible to generate a spike, although with a smaller amplitude.  

 
Figure 4: (a) shows the delay between the stimulus and the response. (b) shows the delay between the 
stimuli and the intensity of the responses. The insets shows the response (black) of a stimuli (red) and Δt. 

Small Network Simulation Results 
To demonstrate the Yamada model in an SNN, it is combined with a model of a photonic 
ring resonator. Often used as a spectral filter, this resonator effectively lowers  the 
transmission of a signal [5]. It can thus be used as a synaptic weighting element to control 
the strength of the connections between neurons. The model for synaptic weighting in the 
simulation is as follows [5]: 

𝑇𝑇(𝜙𝜙) =
𝑎𝑎2 − 2𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 + 𝑎𝑎2

1 − 2𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 + (𝑎𝑎𝑎𝑎)2 (4) 
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With detuning ϕ, and r and a the self-coupling and amplitude transmission, respectively. 
The network simulation is very similar to the situation in Fig. (1), where eight individual 
pulses are generated using the Yamada model at different times between 0 and 600 τp, 
before each pulse is individually weighted using Eq. (4). The weights are chosen such 
that the signals contains (i) a spike above threshold, (ii) a sub-threshold train, (iii) a spike 
below threshold, (iv) a spike slightly above threshold, and (v) two spikes above threshold, 
closely spaced together in time. The spikes are then summed together to form the input 
signal of the output neuron in a next layer, which results in the output signal shown in 
Fig. 5 (b). From these simulations, it is observed that (i) leads to a spike, and due to 
temporal integration (ii) also leads to a spike at the output, (iii) does not, (iv) does lead to 
a spike, but because of the lower amplitude the timing between the stimulus and the spike 
is slightly larger compared to (i), and finally (v) demonstrates the relative refractory 
period, due to the short time between the two stimuli.  

 
Figure 5: (a) Demonstration of eight different weighted signals after summation, used as the input of a 
neuron and (b) the corresponding output. 

Conclusion 
In this work, the dynamics and properties of an optical neuron based on a two section 
laser were investigated using the normalized Yamada rate equations and a model for a 
photonic ring resonator. The model shows thresholding, pulse generation, a reset state, 
temporal integration and weighted addition, all of which are core properties of an optical 
neuron for neuromorphic computations in a spiking neural network. 
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