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Summary

Autonomous cars are anticipated to gain significant attention
in the market over the following decades. Despite the con-
siderable progress in autonomous cars, foreseeable challenges
persist, including pedestrian awareness systems. Based on the
world health organization (WHO), more than one-fifth of road
traffic deaths worldwide are pedestrians. Therefore, one of the
core requirements underlying many of the possible tasks that
autonomous cars could perform is a description of the environ-
ment in terms of pedestrians. Thus, this research focuses on
improving pedestrian-aware systems for autonomous cars in an
urban environment.

The tracking of multiple pedestrians is one of the vital tasks of
autonomous vehicles. This includes estimating the positions and
velocities of pedestrians surrounding a vehicle. This thesis pro-
poses a tracker that receives the ankle, knee, and hip positions
as measurements to track pedestrians based on human motion
patterns. Then, based on the legs’ reflection and extension an-
gles, the tracker estimates pedestrians’ position and velocity. To
overcome this critical issue of existing pedestrian detection, we
can take advantage of Internet-of-Things (IoT) technologies. We
use both IoT technology and a camera to track pedestrians in
this work.

Even the most accurate pedestrian trackers are affected by mea-
surement noise, background clutter, and occlusion. Such uncer-
tainties can cause deviations in sensors’ data association, thereby
leading to challenging situations from a tracking perspective
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and potentially even the failure of a tracker. To improve data
association’s accuracy and reduce the number of false tracks,
we propose steps to find a trade-off between the parameters of
a probabilistic data association model. The results show that
the tracking precision and accuracy increase up to 3.6% with
the proposed initialization compared to the state-of-the-art al-
gorithms in tracking multiple pedestrians. After detecting and
localizing pedestrians related to the vehicle, intention prediction
and action recognition are two critical tasks to drive safely and
smoothly. In particular, knowing the intention of a pedestrian to
cross on a piece of road that is used by the vehicle in the near
future, before the pedestrian has entered the road, would al-
low the vehicle to perform smoother maneuvers. Intention can
be predicted using previous actions of pedestrians. Examples
of such actions are walking, starting, standing, and stopping .
As a result of pedestrians’ impending motion uncertainties, the
pedestrians’ intention prediction and action recognition are not
trivial tasks. To recognize the current action of pedestrians, we
utilize a unique set of body features that are distinctive among
pedestrian actions. To predict intention, we tackle intention
prediction by observing pedestrians’ distance to the vehicle, ac-
tion, and spatio-temporal context information. Spatio-temporal
context information includes traffic signs, environmental fac-
tors, zebra-crossings, pedestrians’ occlusions with elements in
the scene, and pedestrians’ gaze information.
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Chapter 1

Introduction

1.1 Introduction

Road transportation plays an essential role in daily human life.
Using transportation, people can access services and activities,
such as education, employment, shopping, and social events.
Therefore, the quality of road transportation affects people’s
ability to participate in social and economic activities. One of
the most critical issues in road transportation is the safety of
driving. Safe transport solutions allow achieving reliable tech-
nologies in logistics services and smart cities.

Automation technologies such as autonomous vehicles can im-
prove the safety of transportation systems and bring a wide
range of global environmental and economic impacts. More-
over, autonomous vehicles are anticipated to be a key tech-
nology for addressing societal problems caused by the prolif-
eration of automobiles worldwide [Abuelsamid et al. 2017].
These problems include traffic congestion, injuries, and fatal-
ities caused by collisions. Based on the world health organi-
zation (WHO), road traffic crashes lead to the fatality of 1.3
million people each year [Organization et al. 2018]. Figure.1.1
shows the distribution of the road traffic fatalities by road user
types. Based on a report by the European commission in 2017
[Commission 2017], replacing human drivers with autonomous
vehicles can eliminate 90% of traffic fatalities. This is due to the
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fact that these vehicles use multiple sensors to observe their sur-
rounding environment. Therefore, they can have a more com-
plete perception than human drivers. Besides, these vehicles can
communicate with each other and with infrastructure. Hence,
they are anticipated to be safer than human drivers.

Figure 1.1: Distribution of Deaths by Road User Type by WHO Region
in 2018 [Organization et al. 2018].

The transition from manual driving (by humans) to fully au-
tonomous driving is expected to involve several semi-automated
features such as awareness systems. One of the core aspects un-
derlying the many possible tasks that the autonomous vehicle
may perform is the awareness of the surrounding environment.
An awareness system can be a combination of sensors, devices,
software, and infrastructure. Its tasks are defined as identifying
the road users, analyzing their behavior, communicating with
them, predicting their future actions, and choosing an appropri-
ate vehicle response. The vehicle response can include changing
a route, increasing or decreasing acceleration, and braking.

In Europe, amongst all road users, pedestrians are known to be
the most vulnerable [Commission 2017]. This thesis aims to
evaluate, explore and, contribute various directions to describe
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the surrounding environment in terms of pedestrians. The pro-
posed a pedestrian-aware system contains positions, velocities,
and properties of pedestrians that are relevant to an approach-
ing vehicle. Various algorithms are proposed to create and main-
tain the pedestrian-aware system.

1.2 Contributions

Developing an environment perception system is a broad topic
in autonomous vehicles. The research presented in this the-
sis contributes to developing a methodology for creating and
maintaining a pedestrian-aware system. Based on embedded
sensor data, models, and information from external sources, a
pedestrian-aware system estimates the actual state of pedestri-
ans as well as its short-term prediction. Reflecting on the com-
plicating factors while constructing a pedestrians awareness sys-
tem, the core question is formulated to be answered in this the-
sis as follows:

How can a pedestrian-aware system estimate the state and de-
scribe the behavior of multiple pedestrians?

To answer the core question, the following key questions are to
be addressed individually.

1. How can a motion model improve the accuracy and preci-
sion of a pedestrian tracker during occlusions?

2. How can a hypothesis tree be initialized faster compared
to the ones existing in the current state-of-the-art?

3. How can additional information be combined to add track-
ing robustness?

4. How can a pedestrian-aware system predict the relevant
behavior of pedestrians?

The following section explains challenges in constructing and
maintaining pedestrian-aware systems for autonomous vehicles.
Moreover, the state-of-the-art are explained by this chapter.
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1.3 State-of-the-art

The awareness system is one of the most critical components in
autonomous vehicles. Through the awareness system, vehicles
discover their environment and can adapt their decisions to the
current state of the world. The awareness systems’ output can
be used by various parts of a vehicle, such as navigation systems
and vehicle control [Song et al. 2016]. The awareness system
and road information are utilized in navigation systems to plan
the path and find a route to reach a destination. Vehicle con-
trol systems utilize information from the awareness system and
navigation system to perform kinematic commands. The kine-
matic commands can be defined as changing velocity, braking,
parking the vehicle, and steering. Therefore, constructing an
awareness system capable of describing the surrounding envi-
ronment is critical for developing autonomous vehicles [Ojala
et al. 2002].

The awareness system generally combines a motion model, a
data association method, and an environment description. The
environment description can be built from prior knowledge, on-
board sensors measurements, and information obtained through
communication with other vehicles or infrastructures. A motion
model is defined as an algorithm to estimate and predict object
states. The state can contain variables such as position, veloc-
ity, and orientation of an object. Objects are what the vehicle
is surrounded by, including pedestrians, cyclists, other vehicles,
obstacles, and buildings. Data association is the process of relat-
ing sensor data to the vehicle’s model of the world. The aware-
ness system is faced with various challenges. In the following
subsections, these challenges are explained.

1.3.1 State estimation

Autonomous vehicles can be equipped with a suite of sensors to
collect comprehensive input for an awareness system. However,
such data are not helpful without data association and a motion
model [Wongthongtham et al. 2017]. The awareness system
uses available measurements to estimate and predict the states
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(such as position and velocity) of the objects that are relevant
to an approaching vehicle. The prediction of pedestrian motion
has been addressed from various perspectives.

• Physics-based methods : In these models, motion is pre-
dicted by simulating a set of dynamics equations that fol-
low a physics-based model [Baxter et al. 2014; Corbetta
et al. 2018; Ess et al. 2010; Kooij et al. 2019]. In these
methods, different filtering algorithms are proposed, such
as Kalman filtering [Spincemaille et al. 2008], extended
Kalman filtering [Hsu et al. 2017] and complementary fil-
tering [Abbasi-Kesbi and Nikfarjam 2018].

• Pattern-based methods : These approaches can learn sta-
tistical behavioral patterns in the observed motion trajec-
tories [Bruneliere et al. 2019; Jeung et al. 2007; Laursen
et al. 2012; Mathew et al. 2012; Nielsen et al. 2013]. Hid-
den Markov Models (HMM)[Vasquez et al. 2009], support
vector machines (SVM)[Bilal 2017], deep learning meth-
ods [Chen, Zhao, et al. 2020] such as convolutional neural
networks (CNN) [Pfeiffer et al. 2018] are some of the ap-
proaches that are widely used in pattern-based methods.

In this work tracking defines as the process of fusing input data,
estimating states, and making associations between them. De-
spite the availability of many models and trackers, the follow-
ing issues complicate state estimation and multiple pedestrians
tracking:

• Pedestrians can change their position, posture, and direc-
tion instantly and at any time. Besides, the time between
two consecutive measurements of the same pedestrian can
vary. Therefore, there is a probability that a motion model
could not estimate and update the state sufficiently well.

• Pedestrians are often associated with self-occlusion. They
may have pets or accessories such as backpacks, hats, suit-
cases, and walking assistance devices. Moreover, other
objects such as cars, cyclists, infrastructures, and other
pedestrians can partially or entirely occlude pedestrians.
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During the occlusion, the sensory information is typically
incomplete and the model used may be unable to keep
track of the pedestrians.

• The input information may contain false positive and false
negative. It means sensors detect an object which is simi-
lar to pedestrians in shape, position, and structure or sen-
sors do not detect present pedestrians.

• Changing environmental conditions can disturb sensing
such as moving backgrounds, changing weather condi-
tions, and lighting variations. As a result, drifts and poor
detections may cause a failure in estimating the pedestrian
states.

• A tracker considers a state vector for each pedestrian. There-
fore, the size of the state-space will increase with the num-
ber of pedestrians.

• Most of the time, the input information is unlabeled, which
means that it is not clear which information belongs to
which pedestrian. Using unlabeled data without or with
incorrect data association can lead to failure of a tracker.

• The number of pedestrians to track is unknown, and based
on the situation, the number can vary.

These issues indicate that a motion model of a pedestrian-aware
system should deal with different challenges. Furthermore, a
motion model system should link measured properties to pedes-
trians and estimate their state over time. As a result of the men-
tioned issues, inputs are not always valid [Wasik et al. 2020]. To
deal with these challenges, various directions available for mul-
tiple pedestrian tracking and human motion patterns are ana-
lyzed. From stick figures and single point trackers to more com-
plicated models, a wide variety of models are presented in the
literature [Führ and Jung 2014; Iqbal et al. 2017; Sidenbladh et
al. 2000; Sundaresan et al. 2004; Waddell and Amazeen 2017].
One of the structures to track multiple pedestrians is using mul-
tiple joints of the body. As a result of occlusions or false joint
detections, tracking joints of multiple pedestrians is not a trivial



1.3 State-of-the-art 7

task. To make a relation between multiple joints, researchers
usually use linear models. There is a high probability that linear
models are unable to estimate and predict the position of joints
during occlusions.

In Chapter 2, this thesis proposes non-linear models based on
human anatomy to find a relation between each joint of pedes-
trians and track them related to an approaching vehicle. To
achieve this goal, the proposed tracker takes advantage of hu-
man kinematic constraints and Fourier series approximations.
In the proposed motion model, different sources of informa-
tion and multiple joints of the human body are used to cover
the mentioned issues and improve the accuracy of a pedestrian-
aware system compared to the state-of-the-art.

1.3.2 Data association

Another challenge of an awareness system is that it must accom-
modate the uncertainty inherent to sensor data, vehicle state,
and motion models. A data association algorithm should con-
firm or refuse a track within a short time frame (in the order of
milliseconds). Therefore, different data association algorithms
are applied to reduce this challenge and maintain them over
time [He, Luo, et al. 2019]. The algorithms include the Mul-
tiple Hypothesis Tracker (MHT) [Bhuvaneswari and Subashini
2014], the Joint Probabilistic Data Association Filter (JPDAF)
[Bar-Shalom, Willett, et al. 2011], the probabilistic multiple hy-
pothesis tracker (PMHT)[Streit and Luginbuhl 1995], and prob-
ability hypothesis density (PHD) [Mahler 2007]. One approach
to solve the data association problem is using the multiple data
association hypotheses [Bar-Shalom, Daum, et al. 2009; Black-
man 2004; Rasmussen and Hager 1998]. In a hypotheses-based
approach, data association decisions can be deferred until un-
certainties on data association are resolved. Therefore, to solve
the data association problem, a hypotheses-based approach is
used in this thesis.

The first step in a hypotheses-based data association is initializa-
tion and its primary aim is to provide a guess to decide whether
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a new filter must be created. Quick data association can allow
any tracker to dive into tracking with a lower error, fewer false
positives, and a minimal time delay between the first detection
and the first track. Besides, the initialization of a data associa-
tion method can improve the performance of a pedestrian-aware
system. A typical approach to initialize a hypothesis-based data
association algorithm is waiting to collect a fixed number of
measurements. The fixed number of measurements are usually
obtained by an approximate algorithm such as the Lagrangian
relaxation approach [Deb et al. 1997], the m-best assignment
[Blackman and Popoli 1999], linear programming [Areta et al.
2006], and Murty’s ranking algorithm [Murthy 1968]. Postpon-
ing initialization too long may lead to late or worse response.
Simultaneously, initializing a data association algorithm after a
single measurement increases the risk of introducing false posi-
tives, which could lead to an uncomfortable driving experience.
In Chapter 3, this thesis offers a step to find a trade-off between
the parameters in a probabilistic model and initialize a hypoth-
esis tree.

1.3.3 Environment description

The awareness system must be adapted to the environment, in-
cluding objects such as highways, urban areas, the parking lots.
To do this, automated vehicles widely rely on on-board sensors
to perceive the environment in an urban area. On-board sensors
can include light detection and ranging (LIDAR), different types
of cameras, and radio detection and ranging (RADAR) [Asvadi
et al. 2018; Banerjee et al. 2018; Zhao, Sun, et al. 2020]. The
utilization of the these sensors have become more and more
popular in intelligent transportation systems (ITS). However, as
a result of low-illumination conditions and being positioned in
blind spots of a vehicle, on-board sensors are unable to provide
the required information all the time [Rawashdeh and Wang
2018a]. Based on a research in 2019 regarding traffic safety
[Reed et al. 2019], more than 70% of pedestrian car crashes are
due to the low-visibility of pedestrians.

A typical approach to increasing the performance of an aware-



1.3 State-of-the-art 9

ness system during low-visible situations is using multiple sen-
sors simultaneously. Therefore, several sensor fusion methods
were published with the aim of better pedestrian-aware sys-
tems. Camera has been combined with LIDAR [Schlosser et al.
2016]. A fused system of camera and RADAR is introduced in
[Streubel and Yang 2016]. LIDAR, camera, and RADAR were
fused in [Chavez-Garcia and Aycard 2015] to detect moving
objects. In [Kwon, Hyun, et al. 2017], a fusion of LIDAR and
RADAR was used to detect pedestrians in occlusion. However,
multiple sensors cannot always solve occlusion, partial detec-
tion, false detection, and environmental variation. This means
that even by applying several sensors, there is a high probability
that a pedestrian-aware system would be unaware of the pedes-
trians in the blind spots. Therefore, the recognition is not a
trivial task.

Another challenge in environment description is an understand-
ing of pedestrians’ behaviors. Pedestrians strongly influence
each other’s behavior [Yi et al. 2015], which means that unpre-
dictable behaviors increase when a tracker faces multiple pedes-
trians. Therefore, non-verbal communication with pedestrians
can improve environment description’ performance. Predicting
intention of crossing the road can be used to predict human
behavior and may help to have safe and comfortable driving
[Fang and López 2018]. Most of the existing approaches tackle
pedestrian intention prediction using trajectories or poses [Bai
et al. 2015; Muscholl et al. 2020; Quan et al. 2021; Saleh et al.
2019b]. They do not offer a deeper interpretation of a pedes-
trian’s action or how intention influences a pedestrian’s action
to cross in the near future.

In Chapter 4 and 5, external information are used to overcome
these critical issues of existing pedestrian awareness and envi-
ronment definition. External information include status of traf-
fic lights, definition of traffic signs, and collecting data using
the Internet-of-Things (IoT) [Privat 2012; Soldatos et al. 2015;
Vermesan, Friess, et al. 2014]. The advantage is that all of the
information from different sources detect details from the same
scene. By fusing the strengths of all available inputs, an accu-
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rate and robust awareness system can be achieved. Therefore,
the external information and on-board sensors potentially add
detection robustness and lead to new ways of designing auto-
mated vehicles [Kwon, Park, et al. 2018]. Moreover, Chapter 5
proposes a framework to recognize the action and predict inten-
tion. This work shows that combining action, distance, external
information, and interaction with elements in the scene can im-
prove prediction results.

1.4 Structure of the thesis

The present thesis is divided into four contributions, where each
chapter elaborates on one of the contributions of this research.
Each of the chapters can be read without reading the prior chap-
ters. The chapters follow from published manuscripts.

• Chapter 2 is based on

Dolatabadi, M., Elfring, J., van de Molengraft, R. (2020).
Multiple-joint pedestrian tracking using periodic models.
Sensors, 20(23), 6917

• Chapter 3 is based on

Dolatabadi, M., Elfring, J., van de Molengraft, R. (2021).
Improved Data Association of Hypothesis-Based Trackers
Using Fast and Robust Object Initialization. Sensors, 21(9),
3146.

• Chapter 4 is based on

This chapter is based on:
Dolatabadi, M., Elfring, J., van de Molengraft, R. Multi-
ple pedestrian tracking using vision-based sensors and IoT
technology. Internet of Things. Submitted

• Chapter 5 is based on

Dolatabadi, M., Elfring, J., Aboutalebian.B, van de Molen-
graft, R. (2021). Intention Prediction and Action Recog-
nition of Pedestrians Using Body Features and Contextual
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Information In Automotive Applications . Robotics and
Autonomous Systems, Submitted.

Chapter 6 restates the most important conclusions and the an-
swer of the core research question of the thesis. Recommenda-
tion for the future work are outlined in Chapter 6. The following
subsections summarise the key contribution per chapter.

1.4.1 Chapter 2: Multiple joints pedestrian tracker

Contribution 1. Propose a motion model to track multiple joints
of pedestrians. This model considers human kinematic constraints,
gait models, and hypothesis-based data association to track multi-
ple pedestrians during partial occlusions.

The scenes involved in autonomous driving scenarios in an ur-
ban area rarely feature a single individual pedestrian. Most
commonly, multiple pedestrians must be tracked concurrently,
some of which may be in motion relative to the vehicle and
each other. Therefore, it can be complicated to perform robust
tracking of multiple pedestrians without using a accurate mo-
tion model. This research aims to answer this research question:
How can a motion model improve the accuracy and precision of a
pedestrian tracker during occlusions?

1.4.2 Chapter 3: Data association improvement

Contribution 2. Finding a trade-off between the parameters to
initialize a probabilistic data association model.

This research aims to answer the following research question
: How can a hypothesis tree be initialized faster compared to
the ones existing in the current state-of-the-art? In order to an-
swer this question, this thesis proposes a framework to initial-
ize a hypothesis-based data association. This framework finds a
trade-off between the parameters in a probabilistic model. Us-
ing the trade-off, the probability of choosing the correct hypoth-
esis increases. Therefore, after entering a new place without
prior knowledge, the data association can increase the accuracy
of a pedestrian-aware system.
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1.4.3 Chapter 4: Vision-IOT based tracker

Contribution 3. Fuse vision and IoT data to track pedestrians
during occlusion and before a camera detection.

Occlusions frequently occur when pedestrians walk past each
other or are not in the sensors’ field on view. In these situations,
a detector cannot detect pedestrians continuously. To deal with
occlusion, this thesis uses internal and external sources of in-
formation. This research aims to answer the research question:
How can internal and external sources of information be combined
to add tracking robustness?

To answer this question, a hypothesis-based pedestrian tracker
is developed to fuse both internal and external sources. Each
source provides different types of measurements. Therefore, to
deal with data fusion, this tracker considers different attributes.
Besides, this tracker uses external data to improve data associa-
tion.

1.4.4 Chapter 5: Pedestrian behavior predictor

Contribution 4. Propose an approach to predict the intention and
recognize the action of pedestrians.

Accurate prediction of pedestrians crossing a road that is shared
with cars can significantly improve traffic safety. This research
aims to answer the research question : How can a pedestrian-
aware system predict the relevant behavior of pedestrians?

This thesis uses a body feature and a learning approach to recog-
nize the probabilities of the current action of a pedestrian. Then,
it shows that pedestrians’ current and previous actions can af-
fect their final decision to cross the street. Moreover, this thesis
shows that using a combination of multi-class actions (walking,
starting, standing, stopping) and context information (such as
traffic signs, gazing) can improve intention prediction.



Chapter 2

Multiple-Joint Pedestrian Tracking Using
Periodic Models

Abstract: Estimating accurate positions of multiple pedestrians
is a critical task in robotics and autonomous cars. This chap-
ter proposes a tracker based on typical human motion patterns
to track multiple pedestrians. This work assumes that the legs’
reflection and extension angles are approximately changing pe-
riodically during human motion. A Fourier series is fitted in
order to describe the moving, such as describing the position
and velocity of the hip, knee, and ankle. The tracker receives
the position of the ankle, knee, and hip as measurements. As a
proof of concept, this chapter compares the tracker with state-
of-the-art methods. The proposed models have been validated
by experimental data, the Human Gait Database (HuGaDB), and
the Karlsruhe Institute of Technology and Toyota Technologi-
cal Institute (KITTI) tracking benchmark. The results indicate
that the tracker is able to estimate the reflection and extension
angles with a precision of 90.97%. Moreover, the comparison
shows that the tracking precision increases up to 1.3% with the
proposed tracker when compared to a constant velocity based
tracker.

This chapter is based on:
Dolatabadi, M., Elfring, J., van de Molengraft, R. (2020). Multiple-joint
pedestrian tracking using periodic models. Sensors, 20(23), 6917
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2.1 Introduction

Pedestrian deaths account for more than one-fifth of road traffic
deaths around the world [Organization et al. 2018]. Therefore,
transportation systems, including vehicles and infrastructures,
use various approaches to track pedestrians, due to the high
number of fatalities. The tracking here is defined as estimat-
ing a pedestrian’s position and velocity. A tracker helps cars to
plan their driving path and navigate safely. For example, sup-
pose that a pedestrian is walking and does not notice a car near
him/her. A tracker estimates the position and the velocity of the
pedestrian. Subsequently, based on the tracker’s output, the car
can alert the pedestrian or change its speed or path.

Therefore, tracking pedestrians is one of the critical tasks in
robotics, non-autonomous, and autonomous cars. A tracker
faces challenges, such as occlusion, noisy measurements, and a
limited field of view. Moreover, tracking is not a trivial task
when a tracker faces multiple pedestrians. Although some re-
search has focused on this topic [Bao et al. 2017; Dimitrievski
et al. 2019], tracking multiple pedestrians is still a challenge in
urban areas [Nguyen et al. 2019].

A tracker must estimate the position and velocity of a pedes-
trian. To do this, trackers utilize a measurement model and a
process model. A measurement model describes the relation be-
tween the pedestrian position and velocity that are estimated by
the tracker and joint position measurements that are received
from sensors. A process model describes how the pedestrian
position and velocity are assumed to change over time. Earlier
trackers [Fang, Vázquez, et al. 2017; Ho et al. 2016; Liu and
Wu 2017; Yang, Lu, et al. 2013] use the linear process or mea-
surement models. The measurement model and process model
are usually nonlinear in nonideal situations due to the occlu-
sion, noisy measurements, and human moving patterns. There-
fore, linear models should make assumptions, such as the routes
are linear, pedestrians have linear movements, or pedestrians
have movements with simple variations of direction [Chau et
al. 2013]. These assumptions have negative consequences on
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tracking, and there is a probability that trackers with linear mea-
surement models or process models are prone to fail during the
tracking. Therefore, they are not always sufficient for tracking
multiple pedestrians in an urban area [Zhuang et al. 2014].

The current state-of-the-art algorithms that track multiple pedes-
trians can be roughly divided into combined detection-tracking
algorithms and tracking-by-detection paradigms. In the com-
bined detection-tracking algorithm, the typical approach in the
literature is to use deep learning algorithms in order to track
pedestrians while detecting [Feichtenhofer et al. 2017; Ren et
al. 2015; Zhou et al. 2020]. Although these kinds of trackers can
match pedestrians anywhere in their sensors’ field of view, they
likely produce more false positives [Bao et al. 2017]. Moreover,
as a result of pedestrians’ nonlinear kinematic, this approach re-
quires large datasets in practice. Because training on smaller
datasets might lead to inaccurate tracks [Ghori et al. 2018].

In the tracking-by-detection paradigm, there is an assumption
that the detections are provided independently of a tracker. It
means that the tracking-by-detection paradigm can draw a sharp
distinction between the detection and tracking of pedestrians.
Therefore, trackers of this paradigm can work with any detector.
In this paradigm, after receiving detections, most of the trackers
first define a bounding box (BB) around the pedestrian and lo-
calize the BB in a frame. The tracker associates the center of BB
to pedestrians who were previously tracked [Zhou et al. 2020].
As a result of the association, they can identify new pedestri-
ans [Feng et al. 2019]. It means that detections that cannot be
associated with tracked pedestrians can represent false detec-
tions or newly appeared pedestrians.

However, tracking a single point in a pedestrian’s body may pro-
duce more false-positives than a multiple point tracker due to
noisy measurement and occlusion [Xie et al. 2012]. Tracking
multiple joints of a body can offer a more attractive alterna-
tive than tracking a single position of each pedestrian. Sup-
pose that a tracker receives several joints in a BB that overlap
with each other. Subsequently, one pedestrian is tracked and
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the other joints are considered as a new pedestrian or false pos-
itives. The pre-requisite for these approaches is the ability to
detect multiple joints from the sensor data.

A goal of this chapter is to track multiple pedestrians surround-
ing a car, even when there are occlusions. Therefore, this chap-
ter proposes a pedestrian tracker that tracks pedestrians while
using multiple joints instead of a single point. The tracker be-
longs to the tracking-by-detection paradigm and the main goal
is improving the measurement model and process model of a
pedestrian tracker. In this tracker, a camera will be used for de-
tecting pedestrians since cameras are typically available in au-
tomated vehicles. The tracker should satisfy the following re-
quirements:

• Require an algorithm to associate noisy measurements with
the position and velocity of pedestrians.

• Contain models to predict and describe the movements of
each pedestrian.

• The tracker should use images that it receives from a cam-
era.

• The tracker should estimate the position of a pedestrian at
a joint level.

The tracker comprises a process model and a measurement model.
The process model defines how the state vector is expected to
change over time. The measurement model describes how to
make a connection between the state vector and detected joints.
For each pedestrian, the measurement vector is the positions of
joints in pixel coordinates. The contributions of this work are as
follows:

• This chapter proposes a pedestrian tracker that can track
multiple joints of pedestrians. This work considers human
kinematic constraints and a physical model to make a re-
lation between joints. In the process model, time-varying
Fourier series approximations and constant velocity as-
sumptions are utilized.
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• the state vector includes the position, the hip velocity of
pedestrians, reflection, and extension angles between hip-
knee and knee-ankle of each leg, and a pedestrian’s step
frequency.

• This chapter validates the tracker’s performance by eval-
uating it on experimental data, one gait dataset, and one
tracking benchmark.

The rest of this Chapter is arranged, as follows: 3.2 discusses
related work. Section 3.3 describes the general framework of
the proposed tracker. Section 3.4 introduces the proposed mod-
els. Section 3.5 describes how the issue of data association is
handled. Section 3.6 contains the evaluation procedure, and,
Section 2.7 validates the tracker. Section 2.8 presents conclu-
sions and outlines future directions in this research.

2.2 Related work

The first group of related works represents pedestrians by a sin-
gle point. In order to track pedestrians, [Nguyen et al. 2019]
tracks a single point in the center of the body. In [Bajracharya
et al. 2009], based on the detection, the authors define the BB
around each pedestrian in each image. Subsequently, they track
the center of the BBs and estimate the position and velocity of
the pedestrian. In [He, Zhang, et al. 2016], the researchers track
each pedestrian as a point. In [Linder and Arras 2014], the au-
thors address the problem of detecting and tracking groups of
people in RGB-D data. They consider each group to be a point.
Therefore, they do not track each person individually.

Pedestrians can continuously change their position and direc-
tion. Therefore, the position of the BB varies with time. In a
crowded area, there is a probability that a single point is oc-
cluding another point during tracking. Therefore, a tracker can-
not receive any measurement regarding the occluded point [Ma-
soud and Papanikolopoulos 2001]. Having more details about
the detected pedestrian can decrease the false tracks. Pedestri-
ans can be represented by more complicated models, including
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multiple joints, as an alternative to single-point trackers.

In [Moon et al. 2016], they develop a human skeleton tracking
system. They use a constant velocity KF in order to track the
positions of body joints. [Troje 2002] computes the displace-
ments of 15 joints in the body relative to each other. They de-
fine the position of people based on the displacements of their
joints. [Steinbring et al. 2016] proposes a real-time method for
tracking a pedestrian’s entire body and motion using unlabeled
marker measurements. They track each joint based on the sen-
sor attached to the body. To track, they use their measurement
in a Kalman filter (KF). All of these trackers use a linear pro-
cess model and motion model to track a human skeleton. A
linear tracker can be used in a static camera [Swalaganata, Af-
friyenni, et al. 2018]. Moreover, the linear models may produce
more errors in their estimations when compared to the nonlin-
ear model [Wieser et al. 2004].

Among the various studies that track the pedestrian’s entire body,
researchers have tracked them based on specific parts of the
body. [Kong et al. 2013] develops an eight joint skeleton model
in order to track a person in a given video. They track each
joint individually while using a KF. They assume that all joints
move independently. Therefore, they define no relation between
joints. One side effect of this assumption is that there is a prob-
ability that they use the joints of other pedestrians during occlu-
sion. In [Zhao and Shibasaki 2005], the authors propose a sys-
tem for tracking both feet of pedestrians as they walked, based
on multiple single-row laser scanners. In a crowded area, it is
challenging for a detector to detect the feet. Therefore, a tracker
requires more information regarding a pedestrian.

Several researchers have assessed the kinematic coupling be-
tween the hip and knee and ankle of a person walking in re-
cent years [Baghdadi et al. 2018; Bennett et al. 2013; Nwaizu
et al. 2016]. [Fod et al. 2002] models the pedestrian leg as a
pendulum with an EKF in order to estimate the displacement
of a pedestrian. They attach two sensors on the right leg of
a pedestrian to extract accelerations. [Baghdadi et al. 2018]
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considers the periodic nature of walking, and they modify a
bio-mechanical model with a first-order Taylor series expansion.
Their state vector contains the angular position of the trunk rel-
ative to the vertical axis in a 2D plane, the angular position of
the ankle relative to the hip joint, linear acceleration of the hip
and the ankle. Using an IMU that was attached to the ankle
joint, they measure the acceleration of the ankle and the an-
gular position. Based on the measurements that were received
from sensors, they calculate the coefficients of the Taylor series.
Their process model has constant coefficients, whereas the coef-
ficients should be varied based on age, weight, height, and gen-
der. In [Nwaizu et al. 2016], they use an accelerometer to mea-
sure movement angle, velocity, acceleration ,and displacement
of knees.

This chapter proposes a tracker that can be used for each age,
weight, and gender. This tracker uses pedestrians’ legs because
of the simplicity of the shape instead of the whole body. Legs
are detectable, even from a low-resolution camera [Fod et al.
2002]. Moreover, this chapter focuses on tracking the position
of six joints of pedestrians as they walk. The joints that will
be used throughout this work are at the ankle, knee, and hip.
Figure 2.1 shows those body joints.

This tracker uses the Fourier series and EKF in the process model.
With the Fourier series approximation, this chapter computes
the angles between each of the detected joints. On the measure-
ment model, a two-link pendulum is utilized to make a relation
between the joints. Moreover,in this work, a state vector are
used that facilitates using this process model and measurement
model. At the same time, the state vector can be updated while
using the measurements that are just explained. More details
will be given in the following sections.

2.3 Pedestrian tracker

This section introduces the proposed pedestrian tracker. Fig-
ure 2.2 shows its conceptual composition. The joint measure-
ments is input to the pedestrian tracker. There are libraries to
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extract joints [Cao et al. 2017a; Fang, Xie, et al. 2017; Geiger,
Lenz, and Urtasun 2012; Goodfellow 2016]; one of the most
popular ones is OpenPose [Cao et al. 2017a]. In this work,
OpenPose is utilized in order to detect the joints. OpenPose
provides a position vector for each joint in pixel coordinates.

In this work, after receiving the data about the joints, a pixel-
to-Cartesian coordinate frame transformation is implemented.
To perform this transformation, the tracker requires knowledge
of the camera’s orientation with respect to a pedestrian’s joints.
Each joint has a frame with an x parallel to the ground and y
pointing upwards. Moreover,information such as the camera’s
focal length and each joint position in the pixel coordinates are
required. Based on the Dutch population, this works assumes
an average height of 177 cm for pedestrians. Having no depth
information regarding a pedestrian was the only reason to make
this assumption. Afterwards, this chapter solve a backward per-
spective projection model equation [Riley 2006]. The length of
a pedestrian leg is computed when the tracker receives the po-
sitions of a pedestrian’s joints in the Cartesian coordinate frame

Figure 2.1: The joints of interest to detect and use in this tracker are
at the ankles, knees, and hips.
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for the first time. Subsequently, there is an assumption that this
length is constant and equal for the two legs of a pedestrian.

In the data association block, a multiple-hypothesis tree is used,
as implemented in [Elfring et al. 2013], to match each leg of a
detected pedestrian with pedestrians that the tracker is already
tracking. This chapter used an EKF in order to track and predict
the position of the joints of pedestrians based on detections of
individual joints and nonlinear models. The EKF comprises a
measurement and a process model.

As mentioned, this tracker should track a pedestrian, even if
a detector does not detect a joint. For example, it should es-
timate the ankle’s position based on the hip where a detector
cannot detect the ankle, but it detects the hip. To meet the re-
quirement, this chapter uses a two-link pendulum to define each
joint’s position with respect to the other joints. To do this, this
tracker requires angles between joints. θH1 and θK1 , represent
the hip and knee flexion and extension angles in the right leg.

Joint Extraction   (OpenPose)

Transformation model   (pixel-to-Cartesian 
coordinate frame transformation)

Data association  (multiple-hypothesis tree)

Process model  (based on Fourier 
series approximations)

Measurement model  (based on 
two-link pendulum)

Kalman filter based pedestrian 
tracker

Output

Figure 2.2: General framework of a tracker.
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Figure 2.3 shows these angles. The angles θH2 and θK2 have
the same definition in the left leg. Based on the output of the
blocks, the tracker delivers each pedestrian’s hip, knee, and an-
kle position, the velocity of the hip with respect to the camera,
the angles of joints, and the step frequency of the pedestrian.

2.4 Proposed models

In the process model, the periodic nature of walking and the
constant velocity model are used to describe how the state changes
over time. This chapter assumes that, during walking, the hip,
knee, and ankle lie on a 2D plane. In the measurement model,
this chapter exploits the relations shown in Figure 2.3.

2.4.1 Process model

To define the process model, the assumptions are as follows:

1. In gait analysis, walking is assumed to be periodic [Elfring
et al. 2013].

2. In between two frames, we assume that the frequency of
the angles is constant.

3. There is a linear relation between walking velocity and

Y

XHip 1

Ankle 1

ahk

aka

h1

k1

Figure 2.3: The right leg from the side view in a schematic way. ahk

corresponds to a length between the hip and the knee. aka

is a length between the knee and ankle. Both of the angles
are defined as positive in counterclockwise direction.
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frequency.

4. Both of the legs move with the same frequency during one
continuous walking.

5. The hip velocity of a pedestrian in the Y direction is zero.

6. The two joints of the hip have the same linear velocity in
the X direction.

7. In each leg, the frequency of the angles is equal. It means
that the rate of completing a stride is equal in the joints of
a leg.

Based on the assumptions, each angle could be modeled as a
periodic signal. The Fourier series can approximate such a pe-
riodic function as a function of time. Hence, it is possible to
use a Fourier series to propagate each angle [Kurz and Stergiou
2007]. Additionally, based on the assumptions, a frequency-
velocity model is used to estimate the motion of pedestrians.
The process model has been structured to be represented while
using the following equation:

x(t ) = f (x(t −1))+w(t ), w(t ) ∼ N (0,Q) (2.1)

where x is a state vector, f is a non-linear state transition func-
tion that computes the predicted state from the previous esti-
mate, and w is process noise. This chapter assumes that it is
zero-mean white noise with a known covariance matrix. Q is the
covariance matrix and it is constant, because the upper value of
Q can obtain an acceptable estimating precision [Wang, Deng,
et al. 2017].The state vector for each pedestrian is defined as:

x(t ) = [Xh1 (t ),Yh1 (t ),Vxh (t ),SF (t ),θH1 (t ),ωH1 (t ),θK1 (t ),

ωK1 (t ), Xh2 (t ),Yh2 (t ),θH2 (t ),ωH2 (t ),θK2 (t ),ωK2 (t )]T

where:

• Xh1 and Yh1 are the hip position of the right leg in two di-
rections at time t with respect to the measurement sensor.

• Vxh (t ) is the linear velocity of the hip at time t .
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• SF (t ) is the frequency of the joints at time t .

• ωH1 (t ) is a time derivative of θH1 (t ) and ωK1 (t ) is a time
derivative of θK1 (t ) in the right leg.

• Xh2 and Yh2 are the hip position of the left leg in two di-
rections at time t with respect to the measurement sensor.

• ωH2 (t ) is a time derivative of θH2 (t ) and ωK2 (t ) is a time
derivative of θK2 (t ) in the left leg.

Based on the third assumption, the tracker can use a linear
model in order to propagate the velocity of the hip joints. Based
on [Tsang et al. 2019], a first-order Fourier series can cover hip,
knee, and ankle position with an accuracy of 96% ,93%, and 89%.
Therefore, this chapter utilizes the first order of the Fourier se-
ries. It means that the maximum amplitude of angles and the
initial phase angles are constant. The non-linear state transition
function for each state can be defined, as follows:

Xh1 (t +1) =Vxh (t )d t +Xh1 (t )

Yh1 (t +1) = Yh1 (t )

Vxh (t +1) =Vxh (t )

SF (t +1) = SF (t )

θH1 (t +1) = AH1 sin(SF (t +1)(t +1)+φH1 )

ωH1 (t +1) = AH1 SF (t +1)cos(SF (t +1)(t +1)+φH1 )

θK1 (t +1) = AK1 sin(SF (t +1)(t +1)+φK1 )

ωK1 (t +1) = AK1 SF (t +1)cos(SF (t +1)(t +1)+φK1 )

(2.2)

Xh2 (t +1) =Vxh (t )d t +Xh2 (t )

Yh2 (t +1) = Yh2 (t )

θH2 (t +1) = AH2 sin(SF (t +1)(t +1)+φH2 )

ωH2 (t +1) = AH2 SF (t +1)cos(SF (t +1)(t +1)+φH2 )

θK2 (t +1) = AK2 sin(SF (t +1)+φK2 )

ωK2 (t +1) = AK2 SF (t +1)cos(SF (t +1)(t +1)+φK2 )

where d t is a time difference between discrete time steps t and
(t +1). φH1 ,φK1 ,φH2 , and φK2 are the initial phase angles of hip
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and knee in both legs . AH1 ,AK1 ,AH2 , and AK2 are the maxi-
mum amplitude of angles in both legs. The maximum ampli-
tudes and the initial phase angles are different in males and
females [Bertram and Ruina 2001]. Therefore, this tracker es-
timates the angles and their rate independence of them. To do
it, first, the cosine and sine expansion are used. According to
the constant frequency assumption and the expansions, the ωH1

and θH1 from (Equation (2.2)) are written, as follows:

θH1 (t +1) = AH1 [sin(SF (t )t +φH1 )cos(SF (t ))

+cos(SF (t )t +φH1 )sin(SF (t ))]

= AH1 (C 1.C 2)+ AH1 (C 3.C 4)

(2.3)

C 1 = sin(SF (t )t +φH1 )

C 2 = cos(SF (t ))

C 3 = cos(SF (t )t +φH1 )

C 4 = sin(SF (t ))

As can been seen, this chapter can make a relation between C 1
and θH1 (t ) and between C 3 and ωH1 (t ). Therefore, we have:

θH1 (t +1) = θH1 (t )C 2+ ωH1 (t )

SF (t )
C 4 (2.4)

Similar to (2.4), the ωH1 (t +1) is rewritten, as:

ωH1 (t +1) = dθH1

d t
=ωH1 (t )tC 2−θH1 (t )SF (t )C 4 (2.5)

(Equation (2.4)) is repeated and (Equation (2.5)) for the right
knee and for the left leg.

2.4.2 Measurement model

The measurement model has been structured to be represented
using the following equation:

z(t ) = h(x(t ))+ v(t ), v(t ) ∼ N (0,R) (2.6)
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h is used to compute the predicted measurement position from
the predicted state. v is measurement noise. This chapter as-
sumes that it is zero-mean white noise with a known covariance
matrix. R is the covariance matrix of measurements.

The structure of the human lower limb acts as a kinetic chain
during walking. Therefore, the position of the hip joint inter-
acts with the knee and ankle position. This work uses homoge-
neous transformation matrices to transform the position of knee
and ankle joints to the hip joint. The matrices are computed,
as follows:

T H
K =

cos(θH1 (t )) −sin(θH1 (t )) ahk sin(θH1 (t ))
sin(θH1 (t )) cos(θH1 (t )) −ahk cos(θH1 (t ))

0 0 1

 (2.7)

T K
A =

cos(θK1 (t )) −sin(θK1 (t )) aka sin(θK1 (t ))
sin(θK1 (t )) cos(θK1 (t )) −aka cos(θK1 (t ))

0 0 1



where T H
K is a transformation matrix of the knee position to the

hip joint, and T K
A transforms the ankle joint to the knee joint.

ahk corresponds to a length between the hip and the knee. aka

is a length between the knee and ankle. This chapter assumes
these two lengths are equal for two legs. T H

A is a transformation
of the ankle joint to the hip joint. T H

A is computed by multiplying
T H

K and T K
A .

Figure 2.3 illustrates the right leg from the side view in a schematic
way. This part repeats the same matrices for the left leg and,
then, based on the transformation matrices, the following equa-
tions are extracted, which are the joints’ positions with respect



2.5 Data association 27

to the camera frame.

Xh1 (t ) = Xh1 (t )+ahk sin(θH1 (t ))

Yh1 (t ) = Yh1 (t )−ahk cos(θH1 (t ))

Xa1 (t ) = Xh1 (t )+ahk sin(θH1 (t ))

+aka sin(θH1 (t )+θK1 (t ))

Ya1 (t ) = Yh1 (t )−ahk cos(θH1 (t ))

−aka cos(θH1 (t )+θK1 (t ))

Xk2 (t ) = Xh2 (t )+ahk sin(θH2 (t ))

Yk2 (t ) = Yh2 (t )−ahk cos(θH2 (t ))

Xa2 (t ) = Yh2 (t )+ahk sin(θH2 (t ))

+aka sin(θL1 (t )+θL2 (t ))

Ya2 (t ) = Yh2 (t )−ahk cos(θH2 (t ))

−aka cos(θH1 (t )+θK2 (t ))

h(x(t )) = [Xh1 ,Yh1 , Xk1 ,Yk1 , Xa1 ,Ya1 ,

Xh2 ,Yh2 , Xh2 ,Yh2 , Xh2 ,Yh1 ]T

(2.8)

where Xk1 and Yk1 are the knee positions and Xa1 and Ya1 are the
ankle position of the right leg, which are computed using the hip
positions and a double pendulum model. Xh2 ,Yh2 ,Xh2 , and Yh2

have the same definition for the left leg. z is the measurement
vector. This chapter can use a linear model to track the hip be-
cause the hip’s angular displacement is insignificant. In contrast,
the knee and ankle have angular displacement; therefore, this
work utilizes angles to compute other joints’ positions. For other
joints, this chapter considers the effect of nonlinear motion.

2.5 Data association

This section describes how the tracker solves the association
problem while using a multiple-hypothesis tree (MHT) [Murthy
1968]. Data association is the process of matching newly de-
tected pedestrians with pedestrians that were already being track-
ed. Moreover, data association determines which of the detected
legs is the right leg and which one is the left leg. To associate
data, MHT generates a hypothesis tree with several branches.
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Each measurement can be associated with an existing pedes-
trian, clutter, or a pedestrian that was not tracked before. There-
fore, each branch is a collection with hypotheses. For each
measurement, each branch can be formed with different possi-
ble associations. Every hypothesis contains a list of pedestrians
and the estimation of their state vector. Hypotheses are con-
sidered in parallel. Therefore, data association decisions can
be deferred until uncertainties on data association are resolved.
The tree expands by receiving a new measurement at a time of
t +1. The probability of each hypothesis is computed in order to
pick the most probable hypothesis and keep the tree size bound.

2.6 Performance

In this work, Multiple Object Tracking Precision (MOTP) are
utilized to have a clear and understandable evaluation [Geiger,
Lenz, and Urtasun 2012]. MOTP quantifies the tracker’s ability
to determine a pedestrian’s exact position.

MOT P =
∑

i ,t d i
t∑

t ct
(2.9)

where

• ct is the total number of pedestrians; and,

• dt is the total position error for matched pedestrians.

To evaluate, the human gait dataset (HuGaDB) [Chereshnev
and Kertész-Farkas 2017] and the Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute (KITTI) tracking bench-
mark are used [Geiger, Lenz, and Urtasun 2012]. HuGaDB
collects data from a body sensor network of six wearable ac-
celerometers that were located on the right and left legs. The
KITTI benchmark consists of 21 training sequences and 29 test
sequences. They collect data at 10 Hz with a camera mounted
on a moving car in a city, residential area, campus, and road.
Figure 2.4 shows one of the individual benchmarks of KITTI.
An output of OpenPose in the KITTI benchmark is presented in
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Figure 2.5. OpenPose links all joints that belong to the person
and assigns them different colors. Figure 2.5 shows these links.

Figure 2.4: A campus pedestrians tracking.The training sequences
number 17 of the Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) tracking bench-
mark.

Figure 2.5: Result of OpenPose joints detection.The training se-
quences number 16 of the KITTI tracking benchmark.

2.7 Experimental evaluation

This section evaluates the tracker with the HuGaDB dataset, ex-
perimental data, and the KITTI tracking benchmark. The first
part shows that the tracker can determine an acceptable MOTP.
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The tracker is compared with another tracker that is used in [Moon
et al. 2016]. For both trackers, the same data association and
measurements are implemented. The last part compares the re-
sults with the state-of-the-art [Geiger, Lenz, and Urtasun 2012;
He, Zhang, et al. 2016; Nguyen et al. 2019; Zhou et al. 2020].

2.7.1 HuGaDB dataset

Objective of this part is validating the models that are imple-
mented in EKF. This chapter compare the result of θH1 , θK1 , ωH1 ,
ωK1 in the tracker and the HuGaDB dataset for validation.

In HuGaDB, they placed six inertial sensors and electromyo-
graphy (EMG) sensors on the right and the left pedestrians’
thigh, shin, and foot. This dataset provides detailed gait data of
the legs during walking and running [Chereshnev and Kertész-
Farkas 2017]. The dataset contains the measurements that this
work needs. Therefore, the ground truth (GT) data is avail-
able for all the joints while using the HuGaDB dataset. GT is
calculated from the acceleration of the sensors attached to the
leg [Chereshnev and Kertész-Farkas 2017]. The sensors send
their output to this tracker. Therefore, Openpose is not uses to
detect the joints of a pedestrian. Hence, this part can prove that
the output of the state vector has a high MOTP.

Figure 2.6 draws comparisons for the right leg between the GT
and the tracker. The ground truth angles come from two gyro-
scope sensors. The GT values of θH1 and θK1 were calculated
as [Nwaizu et al. 2016]. The results in the part (a) and (b)
of Figure 2.6 show that this participant completes thirteen cy-
cles during his walking in 20 (s). Each maximum peak shows a
swing phase of his right leg, and the minimum peaks indicate
the stance phases. Based on Figure 2.6, the tracker estimates a
consistent angle pattern. This consistent pattern means that the
first order of the Fourier series can cover the walking pattern.
Figure 2.7 provides a visual representation of ωH1 and ωK1 in
this tracker and the dataset.

In Figure 2.7a,b , the zero values indicate no angular move-
ment at that time, and the peaks occur during stance and swing
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Table 2.1: Evaluation metrics for tracking all 40 participates in
HuGaDB dataset.

Measurement MOTP

Angle 90.97%
Angular velocity 84.53%

phases.There are clear errors in Figure 2.7b. These errors may
arise from facts, such as the sensor having a vibration, the at-
tached sensors being mounted in slightly different positions,
or the knee’s process model should be different. The probabil-
ity of the third fact is low, since, Figure 2.6b estimates the knee
angle close to the GT.Unlike deep learning trackers, the tracker
is explainable and can explain the variation of the state vector
and the measurement.

Table 2.1 gives the MOTP of the tracker for both legs of all par-
ticipants. The result of MOTP indicates that the tracker can
compute the angles and their rate close to the ground truth data.
Based on (4.1), MOTP is a function of the estimation total error.
Therefore, for all of the participants, the mean error in angle is
3.6◦.

2.7.2 Comparison

In order to compare the advantages of the process model and
measurement model with another tracker, this chapter replaced
them with models that are used in [Moon et al. 2016]. It means
that the data association part of the two trackers is the same.
In this scenario, a person was crossing a line at a constant speed
for a given time. Then proceeded a curve to turn back to the
starting point. The camera was fixed during this test, and the
camera’s distance to the joints and the crossing distance was
known. Figure 3.12 shows an illustrative camera image with
the detections that were used by both trackers.
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Figure 2.8: A pedestrian is crossing in front of a camera with con-
stant velocity.

In [Moon et al. 2016], they use a constant velocity KF; their
measurement vector contains the positions of each joint. Fig-
ure 2.9 compares GT with the two trackers. Figure 2.9 shows
that the joints move roughly with a constant velocity during
the swing phase, they are constant during the stance phase,
and then they move again. Although [Moon et al. 2016] and
the tracker used the same data association and measurements,
there is a difference between GT and [Moon et al. 2016] during
turning. This difference is due to the use of a linear measure-
ment model and a process model in [Moon et al. 2016]. Similar
to [Moon et al. 2016], this tracker also use a constant velocity
model to compute the hip position. For other joints, we consider
the effect of nonlinear motion.

For a quantitative comparison, Table 2.2 gives MOTP. Table 2.2
shows that the tracker estimates the positions of the hip with
more precision since it has a higher MOTP than the tracker
used in [Moon et al. 2016]. This work achieves a relatively
high MOTP, because the pedestrian walks with both linear and
nonlinear patterns. It indicates that the process model and mea-
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surement model help to improve pedestrian tracking.

Table 2.2: Evaluation metrics for a person tracking based on the se-
quence of images.

Method MOTP

This tracker 98.60%
KF [Moon et al. 2016] 97.37%

2.7.3 KITTI dataset

As GT data, this dataset provides the center of a BB around the
pedestrian in an urban environment. This chapter assumes that
the center of a BB is equal to the center of the body. In order
to compare the tracker with state-of-the-art, this part calculates
the center of the pedestrian in relation to the hip joints. There-
fore, this chapter only compares the center with the GT data.
Table 2.3 compares the results of the tracker to the state-of-the-
art algorithms for pedestrian tracking of the KITTI benchmark.
The results of the algorithms presented in Table 2.3 are pub-
lished on the KITTI website.

Table 2.3: Multiple Target tracking evaluation metrics for KITTI
Pedestrian tracking benchmark.

Method MOTP

This tracker 74.03±2.95%
SRK-ODESA [Geiger, Lenz, and Urtasun 2012] 75.07%

HWFD [Geiger, Lenz, and Urtasun 2012] 74%
Quasi-Dense [Geiger, Lenz, and Urtasun 2012] 73.99%
CenterTrack+MTFF [Geiger, Lenz, and Urtasun

2012]
75.02%

TuSimple [He, Zhang, et al. 2016] 71.93%
VVteam [Zhou et al. 2020] 72.29%

MDP [Geiger, Lenz, and Urtasun 2012] 70.36%

There are multiple reasons for having a MOTP with a margin of
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2.95%. The reasons are as follows:

• Lack of GT for the joints.

• OpenPose.

As mentioned before, this work assumed that all of the pedes-
trians have the same height. This assumption can produce an
error. For example, when the sensors detect a pedestrian with
160 (cm) height and the tracker assumes an average height of
177 (cm), MOTP would be different from reality.

Moreover, it was assumed that the center of a BB is in the center
of the body. This assumption affects all properties, such as size,
location, orientation, and even pose of a pedestrian. For exam-
ple, when a pedestrian has no symmetry pose from a detector
point of view, this assumption can produce an error. This part
revalidated the tracker with new heights in order to explore the
effects of these assumptions on the tracker. Once, it is assumed
that the average height is 150 cm. Subsequently, the average
height is 190 cm. the benchmark was repeated with these two
new values and computed MOTP. The results proved that the
MOTP of KITTI is different based on the height value. These two
assumptions can change the MOTP of KITTI for 2.95%. The vari-
ation of 2.95% in Table 2.3 shows that the comparison is not
entirely fair. Other methods did not require the depth informa-
tion at a joint level. Therefore, they only used the center of BBs
and did not require estimating the height. Figure 2.10a,b show
a situation that as result of occlusion OpenPose cannot detect
the legs of pedestrians. After one frame, OpenPose detects all
of them, as shown in Figure 2.10c. In these kinds of situations,
that OpenPose does not perform well, this tracker can be nega-
tively affected.

The pedestrian’s height assumption is strong. It can be mitigated
while using the information from the stereo cameras or point
cloud data. Therefore, Velodyne point data were used to de-
crease the height assumption’s effect. For one experiment in the
testing part of KITTI, this chapter matched the Velodyne point
cloud data’s timestamps with the camera data. Therefore, the
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pedestrian’s distance to the car was available. Subsequently, this
work estimated the MOTP for that specific experiment. The re-
sult shows that this chapter can increase the MOTP up to 0.72%
for that experiment. Other methods in Table 2.3 compute MOTP
without stereo cameras or point cloud data. Therefore, it is not
fair to compute MOTP while using these data.

However, KITTI does not provide the position at multiple joints
levels. The benchmark was recorded in crowded areas, and pedes-
trians often occlude each other. Therefore, this work uses the
dataset in order to show the performance of the tracker in chal-
lenging situations that are representative for the application do-
main. Figure 2.11 shows the tracking results of two pedestrians,
pedestrian 1 and pedestrian 25, in Figure 2.10c. The vertical
axis in Figure 2.11 is the distance of the two pedestrians’ left
knees relative to the car, and the horizontal axis indicates time.
The two pedestrians crossed the road in seven seconds. It should
be noted that, as mentioned before, the goal of Figure 2.11 is
indicating that the tracker can estimate a distance of a pedes-
trian continuously, even during occlusion. Therefore, the peaks
in the figure do not mean swing or stance phases.

In Figure 2.11, there is a period that the tracker receives partial
detection (PD) for the pedestrian with ID 1 and no detection
(N D) for the pedestrian with ID 25. The tracker estimates the
distance of the knee to the standing car during PD and N D.
Figure 2.11 shows that the tracker is able to track a pedestrian,
even during an occlusion. The left knees are chosen, because,
based on Figure 2.10, the left sides of these two pedestrians are
not always visible. Therefore, estimating the position of the left
knee was more difficult.

2.8 Conclusions

This chapter introduced a pedestrian tracker in order to track
pedestrians’ position as a two-link pendulum with an Extended
Kalman Filter. The tracker is an explainable tracker, it receives
skeleton data of each pedestrian. Subsequently, based on the
human anatomy, this research models the relation between skele-
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ton data. The tracker can track six different joints of each pedes-
trian. Tracking with multiple joints helps the tracker to achieve
more information regarding a pedestrian. The evaluations show
that this tracker can track pedestrians in urban areas during oc-
clusion and turning.

In future work, the proposed method will be extended to sup-
port joints along the entire body, such that partial occlusions are
expected to be handled even better.
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(a)

(b)

Figure 2.6: Measured and estimated results of this tracker for the right
leg of one participant in HuGaDB dataset who was a 24-
year old male with 177 cm stature and 75 kg body mass.
(a) shows the angle between thigh and hip (θH1). (b)
shows (θK1) measured using the accelerometers and esti-
mated using this tracker.
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(a)

(b)

Figure 2.7: Measured and estimated results of the tracker for the right
leg of one participant in HuGaDB dataset who was a 24-
year old male with 177 cm stature and 75 kg body mass.
(a) indicates ωH1 and (b) compares the ωK1 between the
tracker and the dataset.
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(a)

(b)

(c)

Figure 2.9: Measured and estimated results of the trackers for a per-
son who was crossing in front of the camera. (a) shows
the position of the hip joint in the left leg. (b) indicates the
position of the knee joint in the left leg, and (c) compares
the two trackers with each other based on the position of
the ankle of the left leg.
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(a) (b)

(c)

Figure 2.10: In (a), one pedestrian occludes another one, and the legs
of two pedestrians are occluded by a car. In (b), one of
the occluded pedestrians is in the field of view of the
camera. In (c), OpenPose detects their joints. In situa-
tions such as (a) and (b), OpenPose can not detect pedes-
trians, affecting the results of Multiple Object Tracking
Precision (MOTP).
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Figure 2.11: The result of the tracking two pedestrians in the se-
quences number 15 of the KITTI tracking benchmark.
The vertical axes of the figure is the displacement of the
pedestrians to a standing car. In the figure, N D means
no detection and PD indicates partial detection.





Chapter 3

Improved Data Association of
Hypothesis-Based Trackers Using Object

Initialization

Abstract: The tracking of Vulnerable Road Users (VRU) is one
of the vital tasks of autonomous cars. This includes estimating
the positions and velocities of VRUs surrounding a car. To do
this, VRU trackers must utilize measurements that are received
from sensors. However, even the most accurate VRU trackers are
affected by measurement noise, background clutter, and VRUs’
interaction and occlusion. Such uncertainties can cause devi-
ations in sensors’ data association, thereby leading to danger-
ous situations and potentially even the failure of a tracker. The
initialization of a data association depends on various parame-
ters. This paper proposes steps to reveal the trade-offs between
stochastic model parameters to improve data association’s ac-
curacy in autonomous cars. The proposed steps can reduce the
number of false tracks; besides, it is independent of variations in
measurement noise and the number of VRUs. Our initialization
can reduce the lag between the first detection and initialization
of the VRU trackers. As a proof of concept, the procedure is
validated using experiments, simulation data, and the publicly
available KITTI dataset. Moreover, we compared our initializa-
tion method with the most popular approaches that were found
in the literature. The results showed that the tracking precision
and accuracy increase to 3.6% with the proposed initialization



44
Improved Data Association of Hypothesis-Based Trackers Using

Object Initialization

as compared to the state-of-the-art algorithms in tracking VRU.

This chapter is based on:
Dolatabadi, M., Elfring, J., van de Molengraft, R. (2021). Improved Data
Association of Hypothesis-Based Trackers Using Fast and Robust Object Ini-
tialization. Sensors, 21(9), 3146.
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3.1 Introduction

The possibility of driving autonomously through an urban en-
vironment has been a vision for many years. One of the many
challenges of an autonomous vehicle is its safe operation through
urban traffic. Therefore, the vehicle needs an accurate descrip-
tion of the environment. Although environment description is a
broad topic in autonomous cars, this chapter focuses on one part
of an environment descriptor. This work proposes a probabilis-
tic step to initialize the data association of a hypothesis-based
Vulnerable Road User (VRU) tracker.

This chapter considers a situation where multiple pedestrians
are crossing the road to illustrate the effect of initialization of
the data association. When pedestrians appear in front of a car
for the first time, the following steps will happen:

• Records data from its surroundings.

• The detection algorithm detects the positions of pedestri-
ans within data.

• The car estimates the pedestrians’ position and velocity.
Then it decides to decrease its speed or brake. At the same
time, this detection could be a false positive, leading to
unnecessary braking.

Several VRU trackers have been developed in recent years to
track VRUs. Some recent studies on this topic are discussed
in detail in [Althoff and Magdici 2016; Chou et al. 2020; Gin-
dele et al. 2015; Mozaffari et al. 2020; Rudenko et al. 2020;
Wu, Ruenz, et al. 2018; Yoon et al. 2021]. These studies track
VRUs based on different learning methods and motion predic-
tion models. Although they are useful for tracking VRUs, they
have difficulties with the precision or accuracy of their tracks.
The precision of their tracks indicates how well the 2D position
and speed of a VRU are estimated. The accuracy of the tracks
expresses how many mistakes the tracker made in terms of false
positives, the number of tracked VRUs, or the number of VRUs
with wrong IDs. The following facts can affect the precision and
accuracy of a track:
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• Noisy position measurements

• Occlusions

Noisy position measurement includes specification of detectors,
environmental situations, such as weather and lighting condi-
tions, and cluttered backgrounds, like trees, traffic signs, and build-
ings. Image analysis algorithms do not have the same result due
to different illumination conditions during the daytime and at
night. Occlusions mean objects occlude VRUs entirely or par-
tially, which limits the process of monitoring VRUs. Tracking
a VRU in the presence of noisy position measurements and oc-
clusions is a non-trivial task. Therefore, a VRU tracker should
satisfy the following requirements:

• Require an algorithm to associate noisy measurements with
tracks.

• Contain a state estimation model to predict and describe
the movements of each VRU.

The data association is a process of matching the measurements
of VRUs with a tracker. The measurements can be about the
position and the velocity of each VRU. Data association in an
urban environment usually suffers from having multiple false
alarms and clutters, such as measurement origin uncertainties,
besides VRUs generated observations. Therefore, in this situ-
ation, data association is faced with many challenges. When
data association confirms a track, a tracker’s state estimator will
continue to estimate its state vector. After confirming a track,
a tracker can predict VRUs trajectories and maintain their iden-
tities, regardless of data association errors. It means that in-
correct data association leads to potentially catastrophic results.
The data association’s initialization primary aim is to provide a
guess to decide whether a new filter must be created. The data
association should be initialized, confirm or refute a track in a
short time in order of a millisecond. All of these facts make
the data association complicated. Figure 3.1 shows the place of
the initialization in a hypothesis-based tracker. Our VRU tracker
receives detections as input (sensory data), as shown in Fig-
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ure 3.1. It also shows a connection between data association
and state estimator. It means that, based on a state estimator,
the hypotheses are created or updated. The following sections
describe that how this chapter estimates and validates the state
vector.

Sensory data

Initialization

Data 
association

State 
estimator

Tracker

Figure 3.1: A framework to represent the place of the data associa-
tion’s initialization.

The association of the measurements and process models can
underlie the hypothesis tree [Cox and Leonard 1994]. This
paper incorporates multiple-hypothesis tracking (MHT) with a
process model to fulfill the requirements. Solving data associa-
tion is a pre-requisite for reliable state estimation. Based on how
the data association is initialized, most of the existing trackers
can be grouped into two categories: model-free-tracking and
tracking-by-detection [Sun, Chen, et al. 2020]. To initialize
a data association, the model-free tracking algorithms require
a fixed number of VRUs and tracking-by-detection algorithms
need variations in measurements [Sun, Chen, et al. 2020]. For in-
stance, Blackman [Blackman 2004] takes five scans of data to
initialize its data association. Postponing initialization too long
may lead to a late or worse response. Simultaneously, initial-
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izing a data association algorithm after a single measurement
increases the risk of introducing false positives, which leads to
an uncomfortable driving experience.

To initialize a data association for a VRU tracker, this work de-
termines a step to initialize a VRU tracker with a probabilistic
model. The step helps to choose the correct hypotheses by de-
termining values for parameters within the probabilistic model.
In this work, contributions are as follows:

• This chapter proposes a step to find a trade-off between
the parameters in a probabilistic model. This step helps
data association to reduce the lag between the first detec-
tion and track.

• This chapter validates the step’s performance by evaluat-
ing it on simulation data, custom-build data, and KITTI
raw data.

The remainder of this chapter organized, as follows: Section 3.2
discusses literature related to the initialization problem. Sec-
tion 3.3 describes MHT to fuse and associate data, and Section
3.4 presents the VRU tracker. In Section 3.5, the procedure is
validated using different data sets. The conclusion and outline
future research directions are available in Section 3.6.

3.2 Related work

Among the various studies regarding the initialization of data
association of trackers, some of the researchers decide to skip
some frames to achieve information regarding the detection [Gu-
nawan et al. 2017; Köpf et al. 2020; Liao and Zhang 2017;
Radac and Precup 2019; Zhang and van der Maaten 2013; Zhang
and Van Der Maaten 2013]. The skipped frames mean that they
remember the detections and start to ‘trust’ a measurement if
it appears multiple times. The numbers of skipped frames are
varied based on test situations, such as the numbers of VRUs.

Ding et al. [Ding et al. 2016] use prior knowledge of past de-
tections to initialize the track. They define the probability of
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the existence of the object based on the past measurements for
each object. However, in [Zou et al. 2019], the authors show
that [Ding et al. 2016] faces more clutters and false tracks when
new detections and tracked detections overlap. Leibe et al. [Leibe
et al. 2007] utilize several previous frames to initialize a new
track. Azim et al. [Azim and Aycard 2010] compute the Eu-
clidean distance between the predicted position and new mea-
surements for this purpose. When the distance is less than a
certain threshold, they assume that the tracker is initialized.
Morimitsu et al. [Morimitsu et al. 2017] use a fixed number
of objects in the first frame. Subsequently, they localize those
objects in the subsequent frames. Singh et al. [Singh et al.
2008] use the global statistics of tracks, linear motion models,
and color models to initialize a hypothesis. Schulter et al. [Schul-
ter et al. 2017] localize objects in each frame. Next, they con-
nect those objects to the existing trajectories. Postponing initial-
ization can have a negative impact not only on the quality of a
data association, but also on the overall VRU tracker.

As mentioned, a delay in data association makes tracking hard.
Different approaches can be used to deal with the data asso-
ciation. For example, nearest neighbor standard filter [Li and
Bar-Shalom 1996], global nearest neighbor approach [Black-
man and Popoli 1999], joint probabilistic data association [Fort-
mann et al. 1983], MHT, and finite set statistics [Vo et al. 2005].
Among them, MHT is one of the popular approaches, since it
considers data association across multiple input data and mul-
tiple hypotheses. MHT grows a tree of hypotheses, based on
deterministic branching decisions [Kim, Li, et al. 2015]. To in-
crease the performance of MHT in a VRU tracker, researchers in-
vestigate the effects of several parameters, such as tuning VRUs
detection, optimizing hypotheses, motion modeling, and initial-
ing tracks. Although initialization is the first step of data as-
sociations, it has received less attention than other parameters.
In most VRU trackers, the authors utilize similar Poisson-based
approaches to achieve prior knowledge and initialize tracks.

In probability theory and statistics, researchers utilize the Pois-
son distribution of variables to initialize a hypothesis tree. Pan et al.
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and Moraffah et al generate the first track by using the aver-
age spatial density of new and false-positive object detections
in order to address the initialization with Poisson distribution
[Moraffah and Papandreou-Suppappola 2019; Pan et al. 2017].
They use the Poisson distribution for modeling the number of
objects in a fixed interval of space or time. Pollard et al. [Pol-
lard et al. 2011] use the Napierian natural logarithm to calculate
a score of a track. This score is defined as a probability of the
corresponding track. They calculate the first score of each track
by utilizing ln of the associated false-positive and correct detec-
tion. In another work, Pollard et al. propose a global weight
to initialize a track [Pollard et al. 2009]. To do this, they use
the track score and a statistical distance between the peak and
predict track. The quick initialization of a data association can
allow any trackers to dive into tracking with a lower error, fewer
false positives, and the minimal time delay between the first de-
tection and initialization of the VRU tracker.

To achieve a quick initialization, this chapter proposes steps to
reveal the trade-offs between stochastic model parameters. Us-
ing the steps, this chapter can minimize the lag between first de-
tection and appearance in a hypothesis-based tracker. This work
proposes an initialization procedure for a hypothesis-based ap-
proach. This work evaluates the tracking of the VRU tracker
with the results of RNN, GNN, and RNN-GNN.

Recurrent neural network (RNN) is one of the popular meth-
ods in multi-target tracking with learned data association meth-
ods [Fruhwirth-Reisinger et al. 2020]. Gradient-based neural
network (GNN) is also an online time-varying learning-based
model for object trajectory [Zhang, Chen, et al. 2009]. The au-
thors in [Zhang, Chen, et al. 2009] combine the RNN and GNN
(RNN-GNN) to improve traditional online multi-target tracking.
In their work, data association depends on the intersection be-
tween tracks and detections.
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3.3 Multiple hypothesis tracker

This part describes the idea underlying MHT, and then presents
the reason to select MHT.

3.3.1 Basic idea

A successful VRU tracker must handle the data association. Data
association assigns the correct measurement with the correct
track, initializing new tracks and detecting and rejecting mea-
surements. There are different methods for implementing the
data association; MHT is a method for solving the data associa-
tion problem. The reader refers to [Cox and Leonard 1994] for a
more elaborate explanation of the data association problem and
ways to handle it.

MHT generates a tree with several branches. Each branch is a
hypothesis, and it forms with different possible associations for
each measurement. The principle idea of the MHT is to con-
sider all possible hypotheses in parallel, which means that data
association decisions can be deferred until uncertainties on data
association are resolved [Kim, Li, et al. 2015].

In this work, each hypothesis H k
n contains a list of VRUs, the es-

timation of their 2D position, and their velocity. Where n is
hypothesis index n = 1, . . . , N and N is the number of hypotheses
at time k. Furthermore, by applying MHT, it is possible to up-
date a state of VRUs in a probabilistic way with data from the
current time.

If no measurement is compatible with one of the existing hy-
potheses, a new hypothesis or a clutter (a false detection) should
be formed. For each hypothesis, the measurement can be ex-
plained differently. The VRU tracker fixes the following proba-
bilities for each hypothesis.

• The probability Pnew of a new VRU. Pnew indicates the
probability that the measurement originates from VRUs
not present in the scenes. It means that the data asso-
ciation finds no match between a detected VRU and one
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specific hypothesis.

• The probability Pe of an existing VRU. Different hypothe-
ses have different numbers of VRUs at different locations.
Therefore, the number of existing VRUs will vary among
hypotheses. Pe represents the probability that the mea-
surement originates from the VRUs that are already present
in the hypothesis tree.

• The probability Pc of a clutter.

The probabilities of the hypotheses being correct is calculated
using Bayes theorem.

P (H k
n |Z k ) = P (Z k |H k

n , Z k−1)P (H k
n )P (H k−1

n |Z k−1)

P (Z (k)|Z k−1)
(3.1)

where Z k means all of the measurements received up to time
k and Z (k) means all the measurements received at time k.
P (H k

n |Z k ) is the posterior probability of the hypothesis with in-
dex n given all input measurements up to at time k, P (Z k |H k

n , Z k−1)
is the likelihood, which is a conditional probability for a given
measurement at time step k. P (H k

n ) is a prior probability at time
k. P (H k−1

n |Z k−1) is the posterior probability of the parent hy-
pothesis. Besides, P (Z (k)|Z k−1) shows the normalization term.
In this work, the prior probability is a function of the Pnew ,Pe ,
and Pc .Each hypothesis is a parent of multiple hypotheses with
the constant (Pnew ,Pe ,Pc) at time k+1. When VRUs are tracked,
the probabilities of each hypothesis will be computed, and then
the VRU tracker continuously updates the state of VRUs with
the next measurements at k +1.

Because the VRU tracker has no prior knowledge regarding the
number of VRUs, it needs to consider all different hypotheses.
Enumerating all of the hypotheses would lead to memory over-
load fast. Therefore, the growth of the hypothesis tree should be
managed by merging or pruning the least probable hypotheses
and keeping the most probable one [Kim, Li, et al. 2015]. That
way, the tree does not grow exponentially with its depth. Fig-
ure 3.2 gives a schematic of the tree. Each black dot represents
a hypothesis and a red dot represents a pruned hypothesis.
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Figure 3.2: Tree representation of the formed multiple hypotheses.
Black dot represents a hypothesis, and a red dot repre-
sents a hypothesis that pruned.

As mentioned, each VRU in a hypothesis has three probabilities.
These fixed probabilities have a significant role in the manage-
ment of the tree. Therefore, correct initialization helps to select
and keep the most probable hypotheses. For instance, in a case
Pnew is high when compared to the other probabilities, detec-
tions quickly lead to new VRUs (according to the most proba-
ble hypothesis). As a result, the delay between the first detec-
tion and appearance in the VRU tracker’s most likely hypothesis
is low.

On the other hand, this also means that more clutters will enter
the VRU tracker. Setting Pnew very low leads to more consider-
able delays but, at the same time, minimizes the appearance of
false positives in the VRU tracker. This paper is about finding a
trade-off between these three probabilities for a hypothesis tree.

3.3.2 Reason

Maintaining multiple hypotheses and the ability to correct pre-
vious conclusions that are based on new detections are the rea-
sons for choosing the MHT.
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3.4 VRU tracker

To track VRUs, this work uses an approach introduced [Elfring
et al. 2013]. They present a probabilistic environmental descrip-
tion for indoor applications. By changing their state estimator
and initialization, this chapter adapts their work to utilize as a
VRU tracker for outdoor purposes. This chapter uses Chapter 2
to change their state estimator.

3.4.1 State estimator

This chapter assumes that the relative velocity of the VRU with
respect to the car is constant over the prediction in order to es-
timate the 2D position and the velocity of VRUs in a hypothesis.
Thus, a Kalman filter with a constant velocity process model is
used in the process model. A state estimator provides the posi-
tion (m) and velocity (m/s) of pedestrians’ multiple joints related
to a detector.

Figure 3.3 shows the car frame coordinate system. This work
denotes components of the relative distance of each VRU to the
car frame as x and y . Vx and Vy also define the velocity of VRU
with respect to the car.

• To track VRUs, the VRU tracker collects data from a cam-
era that was mounted on the top of the car. In this work,
measurement contains the 2D position of VRUs. In the
next step, the VRU tracker with the MHT framework gen-
erates a hypothesis tree in which each branch of the tree is
one possible set of data associations. For each hypothesis,
the process model estimates the 2D position and the veloc-
ity of VRUs. The VRU tracker, based on the output of the
data association and the process model, decides to update
the tree or add new branches by receiving a new measure-
ment. Subsequently, it chooses the most probable hypoth-
esis. The probability of person A is a new/existing/clutter
VRU, and person B is a new/existing/clutter VRU.
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Figure 3.3: The car frame coordinate system. xc denotes the direction
of driving, and yc indicates the side direction of the car.

3.4.2 Performance

In this chapter, multiple Object Tracking Precision (MOTP) and a
Multiple Object Tracking Accuracy (MOTA) are selected as per-
formance metrics to evaluate the effects of the initialization on a
data association of a VRU tracker [Bernardin et al. 2006]. These
two types of metrics quantify different relevant aspects. MOTA
and MOTP can compare the effect of the initialization on the
VRU tracker with other state-of-the-art algorithms.

The difference between the result of our VRU tracker and the
ground truth state vector for the most probable hypothesis is
(SE). MOTP is an average of SE and the total number of VRUs
in the hypothesis c(k). MOTA consists of the number of false de-
tections f p(k), the number of ID switches I Ds, and the number
of missed VRUs in the most probable hypothesis m(k).

MOT A = 1−
∑

k (m(k)+ f p(k)+ I Ds)∑
k g (k)

(3.2)

where g (k) is the number of objects present at time k.

MOT P =
∑

j ,k

√
(x j (k)−xc j (k))2 + (y j (k)− yc j (k))2∑

k ck

= SE∑
k c(k)

(3.3)

where xc j (k) and yc j (k) are the ground truth position of each
VRU with respect to the car. We briefly discuss an example to
obtain a better understanding of MOTA.
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• This work assumes that a detector recognizes true positive
VRUs. Although a VRU tracker correctly receives measure-
ments, it defines one of the VRU as a f p(k). Besides, it
tracks more VRUs m(k) that are not available in the in-
put. Therefore, m(k) indicates a mismatch between the
number of VRU of a hypothesis and ground truth. More-
over, a VRU tracker may switch the ID of each VRU during
tracking that it calls I Ds.

This chapter is about finding the balance that optimizes the data
association performance in terms of MOTA and MOTP. There-
fore, it proposes sets of values for Pnew , Pe , and Pc , which leads
to maximizing the metrics in various circumstances. In order to
do so, this chapter analyzes simulated and real-world data with
different numbers of VRUs entering the scene. They are recor-
ded with different vehicles, sensor sets, detection algorithms,
and different countries. The results show that there is a possi-
bility to identify sets of values (Pnew , Pe , Pc). These sets can
be used to initialize hypothesis-based data association and max-
imize the two performance metrics. In general, these sets for
each VRU are constant, and in the following situation they can
be updated :

• Whenever a tracker starts tracking a new VRU.

• When a tracker faces a partial and complete occlusions or
the number of VRUs of the current measurement is differ-
ent from previous ones.

3.5 Results

This chapter defines a test case to check the data association’s
performance in terms of the metrics. In this test case, the car re-
ceives the 2D position of the VRUs while the VRUs are crossing
a road. In all of the simulations, although one test case is re-
peated, the following parameters are varied. It means that these
parameters are constant during each test, and before starting
each test they are fixed manually. By changing each of them,
the metrics are analyzed. Moreover,there is an expectation that
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these values are varied in real-world applications.

• R represents the measurement noise covariance matrix of
zero-mean additive Gaussian measurement noise. Based
on sensors’ specifications and calibration, this work de-
fined a valid range for variation of R. Kalman filters use
R for estimating the state of VRUs. To estimate R in the
simulations, this work uses [Bavdekar et al. 2011]. R is
changed in the simulation to investigate whether sensors
with different amounts of noise require different values
(Pnew ,Pe ,Pc).

• The number of moving and standing VRUs. This work de-
fines a state estimator for each VRU. In each time, the hy-
pothesis tree changes based on the measurements. More-
over, the car may encounter many scenarios in which the
number of VRUs and the way they move varies. There-
fore, this parameter is changed in the simulations to have
an optimal data association.

• The probability of new VRUs Pnew , probability of clutter
Pc , and probability of existing VRUs Pe . As discussed
earlier, these probabilities are used to compute the pos-
terior probabilities of all hypotheses given the measure-
ments. The values of three probabilities have to sum up
to one, so, by having two of them, the third one can be
computed. The probabilities can be set in different ways,
depending on the preferences of the user.

Real-world experiments on the university campus are performed
to validate the sets of values. This chapter validates the proce-
dure using KITTI data to benchmark performance on a broader
range of scenarios and compare with existing work [Geiger,
Lenz, Stiller, et al. 2013]. KITTI contains the following infor-
mation at 10 Hz in a city, residential area, campus, and road:

• 3D Velodyne point clouds that we use as ground-truth
measurements.

• 3D GPS/IMU data.
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• Calibration of sensors working at different rates to obtain
ground truth data.

• 3D object track-list labels. Classify objects as a class of
pedestrians, cyclists, cars, and trucks.

• Raw and processed color stereo sequences. Figure 3.4
shows one of the individual benchmarks of KITTI. To col-
lect the data, they equipped a standard station wagon
with two high-resolution color and grayscale video cam-
eras [Geiger, Lenz, Stiller, et al. 2013].

Figure 3.4: Sequence ‘5’ from the KITTI raw dataset.

Subsequently, all of the results are used to find an experimental
and analytical relation between MOTP, MOTA, and different sets
of probabilities. In the last step of the validation, the data asso-
ciation error due to Poisson’s initialization and the proposed sets
of probabilities are compared. Robot Operating System (ROS)
is used on Linux OS (Ubuntu 16.04) to achieve all the results.
It should note that the calculations were on an Intel Core i7-
6700HQ, CPU 2.6 GHz. To log or playback the data, ROSBAG
are used. The average size of each ROSBAG file in the simu-
lation was 200 (kB), in the experiment was 50 (MB). For the
KITTI benchmark, the average size of each test was 1 (GB).

3.5.1 Simulation

False-negative detections can have a significant effect on the
data association and the hypothesis tree to keep or prune a hy-
pothesis. Therefore, in order to find a relation between relevant
parameters and the hypothesis tree, in the simulation part, this
work assumes that there is no false-negative detection. Gaus-
sian noise is utilized as an example of the measurement noise.
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To optimize the probabilistic models have used within the hy-
pothesis tree,the following assumptions have been taken:

• The sensors deliver the 2D position of VRUs.

• The average VRU walking speed at crosswalks varies be-
tween 0 to 1.4 m per second.

• Based on the sensors’ field of view, a maximum of 20 VRUs
can be detected.

This chapter contains different simulations to investigate whether
or not the assumptions influence the values Pnew ,Pe , and Pc and
the hypothesis tree. Firstly, the simulation are run in an ideal
situation without considering the effect of measurement noise.
The settings of the simulations vary, as follows:

• Simulate the effect of the number of standing VRUs per
area on the VRU tracker. This simulation has been done in
an ideal situation.

• Simulate the effect of the walking or/and standing VRUs
on the VRU tracker in an ideal situation.

• Repeat the first simulation in a non-ideal situation.

• Repeat the second simulation in a non-ideal situation.

The horizontal axes are Pnew and the vertical axes are Pe in or-
der to read the figures. The summation of the probabilities is
one, as mentioned earlier. For example, when the point in the
lower left has Pe = 0.2, Pnew = 0, and, hence, Pc = 0.8. More-
over, MOTP is the average overall VRUs/times. In all figures,
dark blue means the minimum MOTP, and yellow indicates the
maximum MOTP.

Figures 3.5 and 3.6 show varying the probabilities sets to change
MOTP. In these two figures, the MOTP of five standing and
walking VRUs into an ideal situation are computed. As a re-
sult, by changing these probabilities sets, different hypotheses
are selected; then, the hypothesis tree delivers different state
estimates. Therefore, the hypotheses tree gets the most proba-
ble hypothesis faster than the other sets of probabilities by in-
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creasing Pnew . Moreover, having the most probable hypothesis
shortly after the detection reduces the difference between the
ground truth data and process model estimations, especially for
walking VRUs.

Figure 3.5: Simulate the effect of different sets of probabilities on
MOT P with static VRUs and without covariance noises.

Figure 3.6: Simulate the effect of different sets of probabilities on
MOT P with dynamic VRUs and without covariance noises.
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Figures 3.7 and 3.8 illustrate the effect of the covariance metric
in MOTP. In fact, in these two figures, the previous simulations
were repeated using different measurement covariance matri-
ces. Although MOTP increases in Figures 3.7 and 3.8, different
sets of (Pnew ,Pe ,Pc) can be achieved with lower MOTP than the
other sets. These sets are almost similar to the first simulation.
For instance, a common region in terms of values for Pnew , Pe ,
and Pc can be achieved by comparing the Figure 3.8 with Fig-
ure 3.6. MOTP of this region is lower than other parts. Based on
the simulations, a common range of values for Pnew , Pe , and Pc

is identified. The range of values leads to the best trade-off in
terms of MOTP.

Figure 3.7: Simulate the effect of different sets of probabilities on
MOT P with static VRUs and with one meter measure-
ment noise.

These simulations are repeated 6400 times in different situa-
tions with various speeds, numbers of VRUs, and probabilities
for obtaining this region. It means that, in 16 variations of the
number of VRUs, walking situation, and measurement noise,
this work considered a fix Pnew and varied the Pe in a range of 0
to 1 and a step of 0.05. Subsequently, this work fixed Pe and re-
peated the same simulation for variation of Pnew in a range of 0
to 1 by a step of 0.05. Based on the results of all the simulations,
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Figure 3.8: Simulate the effect of different sets of probabilities on
MOT P with dynamic VRUs and with one meter measure-
ment noise.

Table 3.1 summarizes the minimum MOTP and its probabilities.
Where W , S, and W −S are walking, standing, and both walking
and standing VRUs. It is observed that MOTP has the mini-
mum error when the probability of new VRUs bigger than the
probability of existing (Pnew > Pe) and the probability of clutter
(Pnew > Pc), as shown in the table. Therefore, a region based on
the sets of probabilities is obtained.

The minimum value of MOTP means that the data association
works with a lower time delay and skips less measurement than
other sets of (Pnew ,Pe ,Pc). It means that the initialization of
the data association can help to have a correct guess. There-
fore, a correct set of probabilities can decrease the number of
false tracks.

3.5.2 Experimental setup

To experimentally evaluate the range of (Pnew ,Pe ,Pc) proce-
dure, a custom-built autonomous car prototype is used (Toyota
Prius, in which sensors and other hardware added). The tests
are executed with a vehicle speed of 15 km.h−1 on a university
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Table 3.1: Probabilities sets that cause the minimum MOTP for each
scenario.

N/VRU W/S noise(m) Min MOT P(m) Pnew Pe Pc

1 W 0 0.00 0.65 0.2 0.15
2 W 0 0.03 0.45 0.35 0.2
5 W-S 0 0.00 0.4 0.35 0.25

10 W-S 0 0.00 0.45 0.4 0.15
20 W-S 0 0.08 0.45 0.3 0.25
1 S 0 0.00 0.7 0.2 0.1
5 W-S 0 0.00 0.5 0.3 0.2

10 W-S 0 0.80 0.5 0.3 0.2
1 W 1 0.04 0.5 0.3 0.2
2 W 1 0.06 0.4 0.35 0.25
5 W-S 1 0.80 0.45 0.3 0.25

10 W-S 1 0.18 0.45 0.25 0.35
20 W-S 1 0.25 0.5 0.3 0.2
5 S 1 0.40 0.5 0.3 0.2
5 W-S 1 0.80 0.45 0.3 0.25

10 S 1 0.18 0.45 0.25 0.3

campus. Figure 3.9 shows the real test situation; the car detects
the pedestrians for the first time. The experiments are repeated

Figure 3.9: Illustration of our experimental test. The car receives the
center of each rectangle as the position of pedestrians.

one scenario in 11 different periods of one day in Spring. Inves-
tigating the effects of measurement noises and external distur-
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bances, such as weather, light condition, and camera movement
on our initialization was our reason for repeating the tests.

The car is equipped with a streaming camera for VRUs detection
and a GPS to provide data on its position. In these experiments,
Fast Region-based Convolutional Neural Network (F astR−C N N)
are used to detect VRUs [Ren et al. 2015]. During the experi-
ments, the pedestrians cross the road, regardless of the pres-
ence of the car. After passing an intersection, the car’s cam-
era detected the pedestrians. At the same time, F astR −C N N
extracts the pedestrians, and it makes a boundary box around
each of them. After that, the VRU tracker receives the center of
bounding boxes in the Cartesian coordinate frame as positions
of pedestrians at 10 Hz.

Figure 3.10 illustrates MOTP for different probabilities in an ex-
perimental test. Table 3.2 shows the minimum and maximum
values of MOTP when setting the optimal and non-optimal val-
ues for Pnew , Pe , P f in all of the experimental tests. Our reason
to compute the maximum value of MOTP is to show the effect
of different sets of probabilities on our data association. For in-
stance, in test 1, the VRU tracker estimates the states with 1.8
m error if the set is defined from out of the region.

Referring to Figure 3.10 and Table 3.2, the region that is men-
tioned in the previous part is in place. To investigate the effect
of the region on MOTA, both MOTA and MOTP are computed in
all of the experiments. Based on Table 3.3, MOTP and MOTA
have more reliable results if the probabilities are selected from
the region. The MOTA values indicate that, although there are
false positive detections, the data association does not consider
false-positive detections. For example, Figure 3.11 indicates a
real situation that the tracker receives a false-positive detection
as a VRU. Based on the initialisation, the data association selects
a hypothesis that assumes that the object is a false-positive de-
tection.

In the next step, the possibility of defining a set of fixed values
for Pnew , Pe , and Pc are investigated, which leads to good per-
formance in all circumstances. Therefore, the following steps
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Figure 3.10: Different sets of probabilities affect MOTP of an experi-
ment test.

Table 3.2: Minimum and maximum of MOTP for each experiment

No. Min
SE(m)

Pn Pe Pc Max
SE(m)

Pn Pe Pc

1 0.05 0.6 0.25 0.15 1.80 0.3 0.2 0.5
2 0.16 0.4 0.35 0.25 3.12 0.25 0.3 0.25
3 0.13 0.5 0.3 0.2 2.74 0.1 0.5 0.4
4 0.01 0.6 0.25 0.15 1.55 0.05 0.2 0.75
5 0.14 0.4 0.35 0.25 2.75 0.25 0.25 0.5
6 0.12 0.4 0.3 0.3 2.71 0.1 0.25 0.65
7 0.11 0.65 0.3 0.05 1.42 0.05 0.2 0.75
8 0.09 0.6 0.15 0.25 1.60 0.05 0.2 0.75
9 0.77 0.5 0.35 0.15 3.03 0.05 0.55 0.4
10 0.138 0.6 0.3 0.1 2.10 0.1 0.75 0.15
11 0.01 0.45 0.3 0.25 1.57 0.05 0.2 0.75

have been done:

• Calculate an average of the probabilities in all experiments
when we have the minimum errors.
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Figure 3.11: This detection contains a false positive since our detec-
tion method detected a bicycle as a VRU. Therefore, our
tracker should select a hypothesis that assumes those bi-
cycles are false-positives.

Table 3.3: Average of the minimum and maximum MOTP and MOTA
for all the experiments

MOTP Max SE MOTA Max SE MOTP Min SE MOTA Min SE

60% 66% 91% 89%

• Compute both metrics based on the average set of proba-
bilities.

Table 3.4 represents the values of MOTA and MOTP for this set.
Although these metrics are lower than Table 3.3 in the minimum
SE , a constant set of probabilities can be obtained for the initial-
ization. Therefore, there is no need to change the probabilities
for different parts of our experiments, since it is inconvenient to
dynamically change the probabilities.

The results indicate a significant relationship between the per-
formance of the VRU tracker and the probabilities. Besides, this
chapter can find a constant set of probabilities experimentally
that can be used in different scenarios. During our experiments,
the VRU tracker is associated and tracked up to 0.5 (s) faster
when constant probabilities are used.
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Table 3.4: Average MOTP and MOTA in a set of probabilities

Pn Pe Pc MOTP MOTA

0.5 0.3 0.2 84% 78%

3.5.3 KITTI raw data

As mentioned before, this work verifies the VRU tracker on raw
data recordings of KITTI. Sequences of the raw data containing
pedestrian and cyclist categories are used for assessments on
the raw KITTI data set. Table 3.5 reveals, for each sequence, the
minimum values of SE .

Table 3.5: Minimum SE for each sequences

No. Minimum error(m) Pnew Pe P f

5 0.023 0.75 0.2 0.05
9 0.27 0.5 0.3 0.2

11 0.06 0.6 0.25 0.15
60 0.10 0.5 0.3 0.2
59 0.06 0.6 0.25 0.15

Table 3.6 shows the effect of the initialization on [Fruhwirth-
Reisinger et al. 2020]. In the same dataset, this work uses
their state estimator and replace their data association algo-
rithm. Subsequently, their tracker is initialized with the pro-
posed initialization. The first line of the table is the MOTA
of [Fruhwirth-Reisinger et al. 2020] that was published in the
KITTI website. In the second line, a hypothesis-based data as-
sociation is used and initialized based on the best MOTA. The
third line represents the hypothesis-based data association us-
ing a set of probabilities that achieved in the experimental part
(Pnew = 0.5 ,Pe = 0.3 , Pc = 0.2). It calls the set "define set” (DS).
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Table 3.6: Compare our work with a state-of-the-art algorithm on
KITTI raw dataset

Name MOT A Our smi n Our sDS

[Fruhwirth-Reisinger et al. 2020] 72.1% 73.2% 72.6%
[Choi 2015] 57.61% 57.93% 57.67%

[Zhou et al. 2020] 53.84% 54% 53.86%

Based on Table 3.6, the initialization produces the highest num-
ber of MOT A. It means that, during the initialization, our data
association outperforms the benchmark method in terms of MOTA.
Additionally, the table shows that. Even by setting constant
probabilities for all KITTI sequences, this work can perform bet-
ter than a state-of-the-art algorithm. It means that Pnew = 0.5,
Pe = 0.3, Pc = 0.2 have an acceptable performance to track VRUs.
Moreover, a comparison between our result and state-of-the-art
in Table 3.6 reveals that our initialization procedure can mini-
mize the number of false-positive and miss VRUs. The reasons
for having less false-positive and miss VRUs are as follows:

• The VRU tracker can keep multiple hypotheses to rematch
measurement with VRUs. It means that, if our VRU tracker
receives a false positive detection, it can correct itself after
receiving the measurements in the next timestamps.

• Besides, selecting the probabilities based on the region
helps the data association to match data without skipping
measurements. Therefore, the probability of missing VRUs
is low.

The initialization affects the results of the full track. Therefore,
there is a possibility to improve the performance metrics in the
initialization phase. Based on the outputs of simulations, KITTI,
and experiments, for the range of the measurement noise, our
data association can be initialized by selecting the probabilities
from the region.
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3.5.4 Comparison

This chapter compares two different types of data association’s
initialization, the Poisson distribution and the proposed initial-
ization. Poisson is one of the most popular distributions in the
literature. To compare the two methods, the Poisson distribu-
tion is utilized to initialize the VRU tracker. The same proce-
dure is taken, as in [Pan et al. 2017]. This reference gives de-
tail regarding setting the Poisson in a hypothesis tree. Besides,
this work uses data from the experimental test on the campus.
Although two methods have the same MOT P after initializa-
tion, the MOT P of the proposed procedure is less than Poisson.
The reason for this difference is that Poisson should skip some
frames to achieve information regarding the average of false and
new detection. Meanwhile, our initialization generates the tree
and estimates the state of VRUs by choosing the probabilities
from the region.

SE is a difference between the ground-truth data and the re-
sults of a state estimator, as shown in Equation (4.1). To have
a fair comparison between the initialization procedures’ effects,
the same tracker and test data are used. The test data were the
11 experiments, and Chapter 2 was used for tracking pedestri-
ans. It should be noted that the same tracker means the same
data association and the same state estimator. To initialize data
association, the Poisson method should wait for few frames to
collect data and build up confidence. Based on Figure 3.12,
Poisson waits for three frames to collect data, which, here, the
waiting time is 0.3 s. As a result of the 0.3 (s) delay in initial-
izing the hypotheses-based data association, the hypothesis tree
assumes a part of the measurements in the first 0.3 s is clutter.
Therefore, the state estimator could not estimate the states close
to the ground-truth data.

In the meantime, based on Figure 3.12, this trade-off skips only
one frame, which means 0.1 s. Therefore, this initialization
helps the data association to gain more measurement. Hence,
the state estimator can estimate the state vector close to the
ground-truth data. As a result of saving 0.2 s, this initialization
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performs faster than Poisson. Therefore, in Figure 3.12, initial-
ization with the Poisson approach can lead to 2% less MOTP
compared to this initialization. In Table 3.7, we applied Pois-
son and the procedure to initialize the data association. Subse-
quently, we computed the SE of all 11 experiments. Similar to
Figure 3.12, Table 3.7 shows that the initialization has less error
when compared to Poisson.

Figure 3.12: SE of the data association based on the procedure and
the Poisson.

Table 3.7: SE of two different initialization procedures.

No. Minimum SE our method(m) Minimum SE Poisson(m)

1 0.05 0.14
2 0.16 0.25
3 0.13 0.14
4 0.01 0.08
5 0.14 0.16
6 0.12 0.13
7 0.11 0.19
8 0.09 0.20
9 0.77 0.81

10 0.14 0.20
11 0.01 0.03
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3.6 Conclusions

This paper presents a collection of probabilistic elements to ini-
tialize the data association of VRUs trackers in an urban envi-
ronment. The initialization of data association can affect the
results of the entire track. It means that late initialization could
lead to undesired, or even dangerous, situations. Therefore,
there is a possibility to improve the performance of trackers by
improving their data association. The primary purposes of our
initialization are as follows:

• Minimize the delay between first detection and selecting
the correct hypothesis.

• Discard false positives from a VRU detection.

This chapter finds a trade-off between the parameters in a prob-
abilistic model. Various simulations, experimental tests, and the
KITTI benchmark in different lighting and weather conditions
are used to find the trade-off. This work demonstrated that
the collection of probabilistic elements are valid for different
numbers of VRUs and measurement noise. Moreover, it work
shows that the probabilistic sets help to initialize hypothesis-
based data association and maximize the performance metrics.

Using the collection of probabilistic elements, a hypothesis-based
tracker can match data without skipping measurements, and a
tracker can reduce the probability of missing VRUs. The MHT
can compute better probabilities for hypotheses and it is more
likely to select the correct one. Therefore, the collection of prob-
abilistic elements have a significant role in the management of
a hypothesis tree. Besides, our evaluations show that our ap-
proach has a superior performance in the simulation, real-time,
and KITTI datasets. The results showed that the tracking preci-
sion and accuracy increase up to 3.6% with the proposed initial-
ization as compared to the state-of-the-art algorithms in track-
ing VRUs. Multiple group tracking is also challenging in the
field of autonomous cars. In future work, this work plans to
investigate the effect of the initialization procedure on a data
association of multiple group tracking.





Chapter 4

Multiple pedestrian tracking using
vision-based sensors and IoT technology

Abstract: Pedestrian tracking has an essential role in aware-
ness systems, having applications in autonomous driving and
smart cities. One of the significant challenges during tracking
is unseen or partially occluded pedestrians in urban scenes. In
recent years, multiple sensors have been used to deal with oc-
clusion. However, the tracking of unseen or occluded pedestri-
ans is still an unsolved challenge. Accordingly, this paper pro-
poses a collaborative pedestrian tracker based on the Internet-
of-Things (IoT) and on-board vision-based sensors. In this work,
IoT and vision-based sensors have different responsibilities. IoT
technologies are used as an external source of information to
update variables in a hypothesis-based data association algo-
rithm and be aware of existing pedestrians, during times that
cameras are unable to detect pedestrians. Besides, vision-based
on-board sensors are used to estimate and predict the positions
of pedestrians regarding a vehicle. As a proof of concept, the
proposed tracker is validated using experiments and simulation
data. The experiments showed that the tracking accuracy in-
creased to 11% with the proposed tracker compared to a vision-
based pedestrian tracker.

This chapter is based on:
Dolatabadi, M., Elfring, J., van de Molengraft, R. Multiple pedestrian tracking
using vision-based sensors and IoT technology. Internet of Things. Submitted
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4.1 Introduction

The transportation system is facing an increasing logistical de-
mand due to high numbers of commuters [Sun and Boukerche
2020b]. One of the essential concerns in improving the trans-
portation system is estimating the position of pedestrians [Combs
et al. 2019]. In an urban environment, different objects can limit
a camera-based tracker field of view such as pedestrians, vehi-
cles, cyclists, or infrastructures. According to [Ning et al. 2021],
camera-based trackers’ accuracy varies due to limited viewing
angles of the cameras, illuminating conditions, co- existing ob-
stacles, and the relative position between pedestrians and vehi-
cles. Therefore, camera-based tracking of multiple pedestrians’
positions and velocities related to a moving vehicle is challeng-
ing [Dollar et al. 2011].

According to a survey by the U.S. Department of Transporta-
tion, pedestrians’ low visibility is a major cause for pedestrian
injuries in more than 75% of cases [Ning et al. 2021]. Hence,
detecting and tracking multiple pedestrians who are being oc-
cluded is a critical challenge. During occlusion, objects such
as vehicles or other pedestrians occlude pedestrians. To deal
with occlusion, [Ning et al. 2021] provides a complete survey
of current approaches. Based on their results during long-term
occlusion problem, the current vision-based tracking algorithms
are unable to track all the pedestrians. Based on [Merdrignac
et al. 2016], external information can be used to improve a
tracker’s accuracy and decrease the side effects of low-visibility.
Therefore, this work proposes an integrated approach to sup-
port vision-based pedestrian trackers and track pedestrians dur-
ing occlusion. To do this, Internet-of-Thing (IoT) and vision-
based data technologies are used.

IoT has led to an increase in the number of networked de-
vices and has influenced vehicle-to-vehicle (V2V), vehicle-to-
pedestrian (V2P), and vehicle-to-everything (V2X) connections
to computing, storing, or sharing measurements [Gaurav et al.
2021]. IoT devices can provide a wide variety and diverse set
of measurements, such as positions, velocities and, IDs. These
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measurements can be blended with localization and detection
systems to enhance tracking accuracy [Shit and Sharma 2018].
This work proposes a tracker that combines vision-based sensors
and IoT devices.

The proposed tracker uses various measurements with different
accuracy. Therefore, the tracker should deal with data associa-
tions with different update rates and accuracy. To make an as-
sociation between data, the idea of multiple hypothesis tracking
(MHT) [Blackman 2004] is used. Therefore, different hypothe-
ses are created to make an association between pedestrians and
available IoT devices during tracking pedestrians. This work de-
fines different responsibilities for IoT devices and camera detec-
tions. IoT technologies are used as prior knowledge to update
probabilistic models in MHT and detect existing pedestrians, at
times that as a result of occlusion cameras are unable to detect
pedestrians. Contributions of this work are as follows:

• Proposed a tracker based on vision-based on-board sen-
sors and IoT technology to track pedestrians during low-
visible and fully occlusion situations.

• Validate the accuracy of the proposed tracker using simu-
lation and experimental data.

The remainder of this paper is organized as follows: In Section
II, we give an overview of the state-of-the-art. Then, in Sec-
tion III, the proposed system architecture is presented. Section
IV demonstrates the corresponding simulation and experimen-
tal test results for evaluating the proposed work. Finally, Section
V concludes the paper.

4.2 Related work

Despite several years of research and development, different
factors such as environmental conditions, occlusion, and illu-
mination can affect the quality and robustness of vision-based
trackers. Based on research carried out by [Su et al. 2015], dur-
ing occlusion, the accuracy of trackers decrease if measurements
are received from a single sensor. Single vision-based trackers
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are therefore unable to formulate collision avoidance in all pos-
sible circumstances [Sun and Boukerche 2020a].

One approach to improve performance of a tracker and deal
with occlusion is the use of multiple on-board sensors such as
LIDAR and cameras [Kim and Kim 2016; Redmon et al. 2016;
Simonyan and Zisserman 2014]. For example, [Anuj and Kr-
ishna 2017; Boukerche and Hou 2021; Guo et al. 2015; Liang
et al. 2020] have used multiple sensors to determine various fea-
tures and states. The features have been defined as boundaries,
edges, colors, and textures in image sequences, while the states
have been defined as positions, velocities, and orientations of
pedestrians. They use the features and states to track pedes-
trian before, during, and after occlusion. In spite of many works
on pedestrian detection and tracking, multiple on-board sensors
have limitations. Some situations are impossible to handle with
on-board sensing [Rawashdeh and Wang 2018b]. Suppose a
vehicle using multiple on-board sensors wants to turn into an
intersection, and a group of pedestrians occupies the road. In
these situations, the on-board sensors cannot detect pedestrian
that are outside the field of view. Therefore, turning into the
intersection would cause a dangerous situation.

Studies have suggested that using data from external sources
can improve performance of existing trackers [Fiore et al. 2019;
Gelbal et al. 2020; Van et al. 2021; Wang, Wang, et al. 2019].
Internet-of-Thing (IoT) technologies can be one external source.
The IoT can recognize pedestrians that are in the blind spots of
on-board sensors; IoT can communicate with cars to transfer
data on the positions and velocity vectors of pedestrians. Vehi-
cles can use this information to adjust their route or speed and
may track pedestrians. Although a tracker’s performance can be
improved by using IoT and on-board sensors, a tracker that uses
communicated data faces more challenges. The challenges can
be defined as follows:

• Robust communication.

• Stable and robust data association.
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In wireless communications, data loss is inevitable due to net-
work congestion, sampling frequencies, environmental noise,
and time synchronization. Therefore, there is a probability that
some data may be corrupted, missed, or contain inaccurate mea-
surements. In theses situations, it is hard to associate all the
data from different sources.

Data association is the process of relating sensor to pedestrians.
A data association algorithm should confirm or refuse a track in
a short time frame. Otherwise, a tracker fails to track multiple
pedestrians. The quick data association can allow any trackers
to dive into tracking with a lower error, fewer false positives,
and a minimal time delay between the first detection and the
first track. Association data from multiple sources is needed to
ensure the accuracy of the detection [Chen 2021]. As a result
of non-robust communication, solving data associations is even
more challenging when a tracker uses IoT data.

To associate camera detections and IoT devices, [Van et al. 2021]
uses humans’ acceleration, orientation, and rotation features.
Based on the features, they pair IoT devices and camera detec-
tions. In complex environments with multiple pedestrians, there
is a high probability that pedestrians walk in a group. There-
fore, this association may pair devices and pedestrians wrongly.
[Solmaz et al. 2019] shows that combining IoT and machine
learning can improve the performance of autonomous driving to
identify the crowded area and enhance safety in urban environ-
ments. Data association is out of scope of [Solmaz et al. 2019].
Therefore, they assume during crossing the road, they know
which IoT device belongs to which pedestrians. Therefore, they
only match IDs to make an association. In [Sun and Boukerche
2020a], they use Internet-of-Vehicle (IoV) to develop a practical
pedestrian detection technology. In a simulation environment,
they receive the position, speed, and acceleration of a pedestrian
from other vehicles. Then, based on these measurements, their
vehicle has information regarding the occluded pedestrian. The
vehicle would need continuous measurements of pedestrians to
calculate the corresponding motion status of pedestrians and
make an association between pedestrians. Therefore, a pedes-
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trian tracker is needed. [Sun and Boukerche 2020a] uses root
mean square distance to make an association. In the real world
with multiple pedestrians, this association may cause errors.

This work uses a hypothesis-based approach to make an associa-
tion between detected pedestrian and available IoT devices. The
hypotheses contain different associations, which define that a
pedestrian is a new, existing, or even a false detection. Besides,
the hypotheses describe which IoT device belongs to which pedes-
trian. The subsequent measurements will modify the probability
of all the hypotheses. Based on [Renaudin et al. 2013], suppose
a pedestrian carries a smartphone; then displacement of the de-
vices can represent the displacement of the pedestrian. There-
fore, this work uses this idea and estimates the displacement
of IoT devices. The displacements, ID of IoT devices, and cam-
era measurements are used to make associations between IoT
devices and pedestrians.

Without managing data, the MHT algorithm suffers from the
exponential growth of tracking hypotheses. Based on research
in the Chapter 3, updating parameters in probabilistic models
can improve hypothesis-based tracker performance. Thus, this
study proposes the use of a vision-based tracker with IoT data
to obtain prior knowledge and update a probabilistic model. In
this work, accuracy is improved with respect to decreasing num-
bers of missed pedestrians, false positives, and identity switches
between multiple pedestrians. This research does not examine
whether a tracker can use only IoT data to track pedestrians or
improve IoT data precision. Rather, it aims to associate low ac-
curacy and low frequency IoT data and camera images to track
pedestrians.

4.3 Input data

This work consists of a camera measurement, IoT measurement,
coordinate transformation, synchronization, state estimation, and
MHT for data association. Based on Input data and their update
rate, sensors can have different responsibilities. Therefore, this
work extracts different variables from the input data. As an ex-
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ample, IoT devices suffer from inaccuracy in position data and
low update rates. Therefore, this work uses position data of IoT
devices indirectly. In this work to use the IoT data, first, the
following errors are removed from data.

• IoT data are received through different servers. Therefore,
there is a probability that servers are unable to get new
measurements and send communicated data that were saved
in a cloud. Based on update rate of IoT devices, the tracker
should remove incorrect timestamps. The data which do
not correspond to the moment that a vehicle may receive
data.

• Considering the Netherlands topology, all points with an
altitude value of less than -7 and more than 322 meters
above sea level should be removed.

This work assumes that each pedestrian has a maximum of one
IoT device. Therefore, by counting the number of valid incom-
ing IoT measurements, the tracker is aware of the minimum
number of pedestrians. This number can be used to associate
between pedestrians and hypotheses. The camera and IoT parts
can offer the following measurement:

• Camera : Image sequences with timestamp and position
of multiple joints of pedestrians.

• IoT : In this work, IoT data are received from smart de-
vices of pedestrians. Each device provides the total ac-
celeration from the 3-axis accelerometer after removing
the component of gravity, geographical coordinates, and
a unique ID. In this work, IoT devices have lower update
rates than cameras.

4.4 Pedestrian tracker

In this work, the approach described in Chapter 2 is adopted to
track pedestrians and estimate the position of multiple joints re-
lated to a vehicle. Chapter 2 provides the position (m) and the
velocity (m/s) of pedestrians’ multiple body key points with re-
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spect to a vehicle’s camera. In this work, the tracker in Chapter
2 changes as follows:

• In this work, IoT and vision data with different update
rates and accuracy are used. Therefore, the measurement
model in Chapter 2 is modified to formulate an appropri-
ate measurement model and identify measurement char-
acteristics. Although adding more measurements can im-
prove the performance of the proposed tracker, the tracker
faces more challenges in data association compared to Chap-
ter 2.

• The proposed tracker uses more features and measure-
ments characteristics to make associations between pedes-
trians and measurements. Therefore, the state space is in-
creased compared to Chapter 2. In the following section
the new state space will be explained.

• In Chapter 2, constant variables are used in all situations.
Although, this work uses the same probabilistic model as
Chapter 2, based on situations, IoT data are used to up-
date the probabilistic model.

4.4.1 IoT state estimation

The acceleration and geographical coordinates of each device
can give information about the speed and displacement. In this
work, these information are used to analyze the displacement
(change of position) of pedestrians. This work uses a Kalman
filter to estimate the displacement.

This Kalman filter receives the accelerations in combination with
geographical coordinates as observed states and estimates dis-
placement of each devices. In this Kalman filter, the measure-
ment noise is considered to be white and Gaussian. The state
vector (x) at time (t ) for each device in this Kalman filter is as
follows:

x(t ) = [px (t ), py (t ),d(t ), v(t ), q(t )] (4.1)
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where px ,py d , v , and q represent position of a device in x direc-
tion, position of a device in y direction, displacement, velocity
and orientation of each device. This work assumes that the posi-
tion of each device can be modeled with a constant acceleration
model. Therefore, the speed of the device at time (t ) can be es-
timated by integrating the acceleration over time. In this work,
the distance is computed as a summation of velocities at discrete
time instants.

4.4.2 Data association

In this work, data association is defined as matching newly de-
tected pedestrians with pedestrians being tracked. Data asso-
ciation can also determine which IoT device belongs to which
pedestrian. One of the existing challenges is that the number
of detected pedestrians by the camera and IoT are not same
over time. Therefore, the data association is more complicated
than using only camera measurements. To deal with this chal-
lenge, MHT generates a hypothesis tree with branches. Camera
detections and IoT devices can be associated with an existing
pedestrian, clutter, or pedestrian that was not tracked before.

Each branch is a collection of hypotheses and can be formed
with different possible associations. Hypotheses are considered
in parallel. It means that data association decisions can be de-
ferred until uncertainties on data association are resolved. The
tree expands by receiving a new measurement at a time of (t+1).
Each hypothesis’s probability is computed to pick the most prob-
able hypothesis. [Elfring et al. 2013] explains how these prob-
abilities are estimated. The probability for each pedestrian can
be defined as follows:

• The probability of a new pedestrian. Pnew indicates the
probability that the measurement originates from pedes-
trians not present in the tree. It means that the data asso-
ciation finds no match between a detected device, pedes-
trian, and one specific hypothesis.

• The probability of an existing pedestrian Pexi st . Differ-
ent hypotheses have different numbers of pedestrians at
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different locations with different IoT devices and displace-
ments. Therefore, the number of existing pedestrians will
vary among hypotheses. Pexi st represents the probability
of an association. This probability shows the measurement
originates from a pedestrian and a device that is already
present in the hypothesis tree.

• The probability Pclut ter of a clutter.

In this work, IoT data, camera measurements, the Manhattan
distance, and the Poisson distribution are used to update the
probabilities. Based on the ID of IoT devices in previous seconds
and the number of pedestrians in each hypothesis, the MHT can
realize whether the IoT devices in each hypothesis are existing
or new. In the next step, Manhattan distance is estimated be-
tween available IoT devices and pedestrians. If no updates from
a device are received for one second, the MHT should prune that
hypothesis. The defined seconds based on update rate of sen-
sors and their uncertainty would be variable. In this work, the
following situations are considered to update the probabilities
during driving while both IoT and vision sensors detect pedes-
trians.

• The number of pedestrians detected by a camera (ncamer a)
is equal to the number of devices detected by IoT (nI oT ).
In this case, if the Manhattan distance is less than a thresh-
old, then probabilities remain constant. The threshold is
function of various parameters such IoT device noise, sta-
tus of the car, and kinematic of pedestrian.

• ncamer a = nI oT and the Manhattan distance is more than
a threshold. In this situation, the Poisson distribution is
used. The value of the Poisson is added to Pnew .

• ncamer a < nI oT and MHT recognizes there are new de-
vices. In this situation, the Poisson distribution is used.
The value of the Poisson is added to Pnew .

• ncamer a < nI oT and MHT recognizes there are existing de-
vices. In this situation, the Poisson distribution is used.
The value of the Poisson is added to Pexi st .
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In the Poisson distribution, if the mean number of detected
pedestrians with vision-based sensors per interval is (λ), the
probability of observing undetected pedestrians (k) in a given
interval is given by

P = e−λ
λk

k !
(4.2)

4.5 Performance evaluation

IoT devices can improve the performance of the vision-based
tracker. It means that the tracker would be aware of all pedes-
trians surrounding a vehicle without knowing their accurate po-
sition. Therefore, in this work, multiple object tracking accuracy
(MOT A) is selected as a performance metric to evaluate the ef-
fects of the proposed tracker. In timestamp t , MOTA consists of
the number of false detections fp (t ), the number times an ID of a
pedestrian switches I Ds, and the number of missed pedestrians
in the most probable hypothesis m(t ). g (t ) is the total number
of detections in each time.

MOT A = 1− Σk (m(t )+ fp (t )+ I Ds)

Σk (g (t ))
(4.3)

To evaluate the performance, this work adopts C++ to conduct
the simulation and experiment tests. Moreover, a custom-built
autonomous vehicle prototype is used (Toyota Prius, in which
sensors and other hardware were added) to collect a series of
experimental data. The tests were executed with a vehicle speed
of 15 (km/h) on a university campus. All the experimental tests
are open source.

4.5.1 Simulation

Occlusion can significantly affect the performance of tracking
and the data association to keep or prune a track. Aim of this
part is finding answer for the following questions:

• Is it possible to generate MHT and track pedestrians before
camera detection?



84
Multiple pedestrian tracking using vision-based sensors and

IoT technology

• Can an external source of information change the perfor-
mance of the hypothesis tree?

• How can fusion of IoT and on-board sensors decrease the
side effects of occlusion and improve the performance of
a pedestrian tracker?

In order to find answers, the following scenarios are considered:

• Scenario 1: To answer the first question, this scenario is
simulated. Before a vehicle enters a road that could not
be observed before, its camera could not detect anything.
It means the camera has no information about the new
area. Fig.4.1 illustrates this situation. In this situation,
the tracker can receive data through IoT connections.

• Scenario 2: To answer the two other questions, this sce-
nario is simulated. During a turn or moving on a straight
line with a constant velocity, the vehicle’s camera detects
pedestrians partially. It means that pedestrians are not en-
tirely in the camera’s field of view, or other objects in the
scene such as other vehicles, cyclists, pedestrians occlude
pedestrians partially. Fig.4.1 illustrates an example of this
situation. In this situation, the tracker can receive data
through IoT connections and measurements from a cam-
era.

Figure 4.1: In the situation number 1,the vehicle has no vision data
only IoT data. In the situation number 2, the vehicle re-
ceives IoT data and a partial measurement from its cam-
era. The arrow shows vehicle’s moving direction.
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The assumptions for these simulations are as follows:

• Vehicle speed is constant and it is 15 (km/h).

• The right amount of displacement and rotation of the ve-
hicle are available.

• Pedestrian speed is varied in the range of 0-1.2 (m/s).

• The number of pedestrians was varied between 1-30.

• The threshold for the Manhattan distance is 2 (m).

• The camera measurement’s noise is 0.5 (m) in all the sce-
narios.

• To find a relation between IoT, on-board sensors and the
proposed tracker’s performance, in the simulations, it is
assumed that there is no false detections.

4.5.2 Scenario 1

This scenario shows that a hypothesis tree can be generated or
initialized using IoT devices where it is impossible for on-board
sensors to detect pedestrians. Therefore, IoT measurements are
used to initialize objects. As mentioned before, the measure-
ments are IDs, accelerations, and geographical coordinates.

In this scenario, a vehicle receives data from nearby IoT devices;
then, an MHT with several branches is created. Each branch
could contain multiple hypotheses, and it forms with different
probabilities of possible associations for IoT devices. As a result
of assuming no false detections, these probabilities show that
a device is new or exists. Based on the probabilities, each hy-
pothesis can explain the displacements and IDs of IoT devices
differently. In this scenario, the probability of new pedestrians
is equal to one (Pnew = 1), if the pedestrian was not and could
not have been observed before. Basically, if an ID was detected
in a previous time, the P(exi st ) of that device is equal to one.

In the simulation environment, the number and displacement
of pedestrians are given as ground truth data. Therefore, the
tracker’s accuracy is estimated using the ground truth and the



86
Multiple pedestrian tracking using vision-based sensors and

IoT technology

Table 4.1: A fixed range of noise for each test case

Case a standard deviation(m) Case a standard deviation(m)

1 [0,0.5] 3 [1,1.5]
2 [0.5,1] 4 [1.5,2]

best hypothesis. The best hypothesis mean selecting the hypoth-
esis with the most probable explanation about IoT devices. In
this scenario, the following steps are considered:

• After an intersection, a rectangle (length 25 (m) and width
7 (m)) is defined. The size of rectangle is selected based
on the safety reasons.

• Through wireless connection, the vehicle receives data of
IoT devices that are inside of the rectangle.

• IoT measurements are received 1 H z.

• Duration of each simulation is 7 sec. Based on the pedes-
trians speed range, it assumes that during 7 sec they have
enough time to leave the rectangle.

• This scenario is simulated in five cases and each case is
repeated for 25 times. In each case, IoT devices have a
fixed range of measurement noise, Table 4.1 defines the
range of the noise.

Based on the average MOTA in each case, Fig.4.2 indicates that
there is a possibility that a tracker becomes aware of pedestrians
before on-board sensors detection. In the first three cases, the
accuracy is close to 100%, which means false hypotheses have
less chance to be selected as correct hypotheses. Thus, the tree
can grow and manage similar to the ground truth data. There-
fore, there is a possibility to update the tree after receiving the
first on-broad sensors detection without initializing the tree. In
the last case, the accuracy is around 60%, which means the hy-
potheses can be wrongly selected. Therefore, the MHT should
be initialized as soon as the on-broad sensors detect pedestri-
ans. Although the accuracy of 60% may be sufficient in the real
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world, in simulations with ideal situations and no false detec-
tions is insufficient.

As mentioned in this work, a linear model is used to estimate
the displacement of IoT devices. Suppose the tracker receives
data from multiple IoT devices with the maximum amount of
noise. In that case, there is a probability that the MHT makes a
wrong association between IDs and displacements. Moreover, in
each hypothesis, only pedestrians inside of the rectangle should
be considered. Therefore, as a result of the noise and linear
model, there is a probability that a pedestrian left a rectangle.
Although, the position of the IoT device is still inside the rect-
angle. To conclude this scenario, the results indicate that gener-
ating MHT and tracking pedestrians without on-board sensors
are a function of the accuracy of IoT devices. The following sce-
nario shows the effect of generating the MHT before on-board
sensors detection on the performance of entire tracks.

4.5.3 Scenario 2

This scenario aims to answer the two other questions and show
the added value of IoT in vision-based trackers. Therefore, tracker
in Chapter 2 and the proposed tracker are used. This scenario

Figure 4.2: Average MOTA for each test case
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occurs when a vehicle turns at an intersection or moves in a
straight route. Then, both trackers face complete and partial
detections. Partial detections mean that on-board sensors de-
tect pedestrians but as a result of occlusion, sensors are unable
to detect the whole body. In this situation, although Chapter 2
needs leg measurement to estimate and predict the position of
pedestrians related to the vehicle, the proposed tracker can use
IoT and image sequences to increase the accuracy of detection
and data association. Similar to scenario one, a rectangle in a
vehicle frame is defined. It means the center of the rectangle is
in the center of the bumper in front of the vehicle.

• Each case repeats 100 times. Each case contains a differ-
ent number of pedestrians and variable IoT noises. For
50 times in each case, the vehicle moves with a constant
speed, and 50 times, the vehicle turns an intersection.

• Pedestrians walk differently, such as walk laterally or lon-
gitudinally related to the vehicle or in diagonal lines.

• The duration of each test is 6 seconds.

• The IoT updates its measurements 1 (H z) while the cam-
era update rate is 10 (H z).

As mentioned before, MHT uses different probabilities to com-
pute the posterior probabilities of all hypotheses given the mea-
surements. In Chapter 2, these probabilities are constant. How-
ever, different parameters such as weather conditions and the
number of pedestrians can change the probabilities. Besides, to
initialize MHT, Chapter 2 should skip frames; this work uses IoT
data to update the probabilities. In this scenario, similar to the
previous one, the MHT is created based on IoT devices; then,
after the first camera detections, the tree is updated. It means
that if no camera measurement is compatible with one of the
existing hypotheses, a new hypothesis or a clutter (a false de-
tection) should be formed. Table.4.2 shows the results of this
scenario.

In Table.4.2, one reason that the accuracy of the proposed tracker
is better than Chapter 2 is skipping fewer measurements to ini-
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Table 4.2: Average MOTA(%) in the proposed tracker with both cam-
era images and IoT devices in the simulation environment.

A standard deviation (m) MOTA(IoT+Camera) MOTA(Camera)

0-1 80 65
1-1.5 73 65
1.5-2 57(IoT 1 (H z)) 65
1.5-2 70.81(IoT 10 (H z)) 65

tialize the tree. In Chapter 2, they should skip frames to collect
sufficient prior knowledge about the surrounding environment.
In the same situation, the proposed tracker does not require
collecting prior knowledge after on-broad sensors detections. It
means that initializing the data association with camera mea-
surements and IoT data can help to select the correct hypothe-
ses. Moreover, the results show that IoT can help robustness.
Therefore, a tracker can decrease the number of false tracks.

The update rate of IoT is slower than the camera. This different
update rate can cause an error. Therefore, in one case, the ac-
curacy of the proposed tracker is smaller than Chapter 2. As an
example, a pedestrian is walking in a non-straight line. There-
fore the movement of a pedestrian may not be linear. In this
situation, if the tracker estimates the displacement with a linear
model, more measurements in a shorter time are required. Dif-
ferent update rates and nonlinear movement of pedestrians are
the reasons to have the lowest MOTA for pedestrians with IoT
noise in a range of 1.5-2 meters. To be confident that having a
different and lower update rate of IoT compared to the camera
is one of the reasons; the update rate of IoT devices is changed.
The same update rate of 10 H z for both the camera and IoT is
utilized in the simulation environment. The last row of the table
shows the result. This result shows that the performance of the
tracker can be improved by increasing the update rate of IoT
devices. In fact, data association will be improved if IoT data
are received with a higher update rate.
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4.5.4 Experiment

This section evaluates the accuracy of the proposed tracker in an
experimental situations. The experimental situations are same
as the last simulation scenario. In these experiments, pedes-
trians were asked to carry a smart device. The smart devices
send their acceleration and position to the vehicle through 4G
connections. Fig.4.3 illustrates the test scenario.

In this part, on-board sensor is an RGB camera. During the
test day, on-board sensors were able to detect multiple joints of
pedestrians at 10 (H z) with a maximum distance of 25 meters
from the on-board sensors. Fig.4.4 shows the output of sensors.
The testing process is as follow:

• A pedestrian (blue icon) sends a taxi request. At that time,
an autonomous vehicle is in the “Start” location.

• When the vehicle starts to drive, two pedestrians that one
of them occludes another one,cross the road in front of the
vehicle (green icon). Each of these two pedestrians has a
IoT device.

• After they cross the road, the vehicle continues to drive.

Figure 4.3: A schematic of experimental tests, a vehicle should start
driving autonomously from start point to the blue flag.
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The vehicle’s vision sensors detects two other pedestrians
perfectly (red icon) while they are crossing the road. Two
pedestrians have a different IoT device.

• After they cross the road, the vehicle continues to drive to
meet a pedestrian in the blue icon.

During the test, the tracker faces various environmental noises
that were not considered in the simulation. These environmen-
tal noises include weather conditions, the amount of charge in
the IoT devices, and road structure. These noises can affect the
connection between the IoT device, its server, and the vehicle.
Fig.4.5 illustrates the quality of an image during weather condi-
tions.

Based on the IoT, the hypothesis tree generates a tree with two
new pedestrians. After sensors detection, if the sensors detect
fewer pedestrians than IoT, the tree keeps the hypothesis of ex-
isting a pedestrian. It means that there is a high probability
that on-board sensors miss a pedestrian. Therefore, the tracker
knows there is a pedestrian that the on-board sensors could not
detect. As soon as the sensors detect another pedestrian, the
tracker can provide the position and displacement. These ex-

Figure 4.4: One pedestrian occludes another pedestrian. Therefore
camera is not able to detect one of them, while both of
them have IoT devices.
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Table 4.3: Difference between average MOTA in the two different
cases.

Testing scenario Average MOTA (%)

Track pedestrians using image sequences without
IoT (Chapter 2) 64

Track pedestrians using image sequences and IoT 75

periments were recorded 25 times. The accuracy of the tracker
are evaluated in the following situations:

• Only the on-board sensors are used to estimate the accu-
racy.

• The data of IoT and on-board sensors are used. The prob-
abilities of MHT updates based on IoT data.

Table.4.3 shows that among two cases, the accuracy of the tracker
can be improved if a tracker uses both sources of data and up-
dates the probabilities. The reason for this improvement is that
the tracker can generate multiple hypotheses before detection.
It means that if the tracker receives a false detection, it can gen-
erate a hypothesis and correct itself after receiving the measure-
ments in the next timestamps. Moreover, updating the probabil-
ities helps the data association match the vision sensors’ data

Figure 4.5: One of the environmental noises that our vehicle faced
during tests.
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without skipping measurements. Therefore, the probability of
missing pedestrians is low.

4.6 Conclusion

In recent years, several pedestrian trackers have been developed
to help awareness systems and improve pedestrian safety. The
current existing trackers usually rely on multiple on-board sen-
sors. In reality, the large number of objects such as cyclists,
pedestrians, other vehicles can block sensors’ field of view. As a
result, on-board sensors are unable to track pedestrians in their
blind detection area. To overcome this problem, this work pro-
poses a pedestrian tracker. This tracker uses on-board sensors
and IoT techniques and generates a hypothesis-based data as-
sociation algorithm before detecting pedestrians with on-board
sensors. Therefore, this tracker is aware of unseen or semi-
occluded pedestrians. Moreover, in this work, constant param-
eters in a hypothesis-based data association algorithm are up-
dated. This work shows that updating parameters can minimize
the delay between the first detection and selecting the correct
hypothesis.





Chapter 5

Intention Prediction and Action Recognition
of Pedestrians

Abstract: Intention prediction and action recognition are two
critical tasks to drive safely and smoothly. Pedestrian safety
could be significantly improved if cars could predict and rec-
ognize each pedestrian’s intentions and actions. This work pro-
poses a framework that recognizes the current action and pre-
dicts intention. To recognize action, this work proposes a set of
body features that are distinctive among pedestrian actions. The
action recognizer of the proposed framework has been trained
with the Human Gait Database (HuGaDB) and the MAREA gait
database. With respect to intention prediction, this work fo-
cuses on the intention of crossing/not crossing in front of the
car. We tackle the intention prediction by observing pedestrians’
distance to the car, action, and using available spatio-temporal
context information such as traffic signs, environmental fac-
tors, zebra-crossings, pedestrians’ occlusions with elements in
the scene, their gaze information,their hand gesture, and weather
conditions. As a proof of concept, this work compares this frame-
work with state-of-the-art methods. The Joint Attention for Au-
tonomous Driving (JAAD) dataset is used to validate this frame-
work. The results indicate that this framework can recognize the
action with an accuracy of 75%. The action could be walking,
standing, staring, and stopping. We predict the final intention
of pedestrians in the JAAD dataset and report an average 91%
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accuracy.

Dolatabadi, M., Elfring, J., Aboutalebian, B. , Van de Molengraft, R.
(2021). Intention Prediction and Action Recognition of Pedestrians Us-
ing Body Features and Contextual Information In Automotive Applications.
Robotics and Autonomous Systems, Submitted.
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5.1 Introduction

According to an article published by European mobility and trans-
port, pedestrians are much more vulnerable to accidents than
other road users [Commission 2017]. Based on the world health
organization (WHO), more than one-fifth of road traffic deaths
worldwide are pedestrians [Organization et al. 2018]. Due to
the high number of fatalities, several studies have been done
on creating a system that can offer more safety for pedestrians
[Kwak et al. 2016; Völz et al. 2015].

One of the main challenges in transportation systems is an un-
derstanding of pedestrians’ behaviors [Rasouli and Tsotsos 2019].
As shown in [Quintero et al. 2017; Schulz and Stiefelhagen
2015], non-verbal communication with pedestrians can improve
braking systems’ performance. Mainly because of the high vari-
ability of movement, pedestrians can change their actions quickly.
For instance, they can suddenly start or stop walking. Action
recognition and intention prediction can be used to predict hu-
man motion and may help to have safe and comfortable driving
[Fang and López 2018; Ferguson et al. 2015; Gu, Hashimoto,
et al. 2016; Rudenko et al. 2020].

Intention predictors can predict the intentions based on the most
recent estimated action [Li, Zhang, et al. 2018]. For example,
suppose a car receives the position of a pedestrian near a curb of
a sidewalk. In that case, using the most recent action of a pedes-
trian such as walking, running, or standing, the car can predict
intention. For instance, the car will predict that the pedestrian
is stepping onto the road and will cross. Therefore, the ve-
hicle can start to slow down to reduce the risk of a collision
[Fang and López 2018]. As a result of uncertainties regarding
pedestrians’ impending motion, the pedestrians’ intention pre-
diction and action recognition are not trivial tasks [Ferguson et
al. 2015]. In this work, the actions are considered as walking,
starting to walk, standing, and stopping. Using the motion of
pedestrians, [Rasouli, Kotseruba, et al. 2017a] predicts inten-
tion at the first moment pedestrians are assessing the environ-
ment and expressing their crossing or not crossing intention. In
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contrast with [Rasouli, Kotseruba, et al. 2017a], this research
believes that intention is not a moment in time. Moreover, this
work would not expect that pedestrians actively inform an ap-
proaching car about their intention. As an example, suppose
pedestrians intend to cross a street where there is no priority
sign. Only in an ideal case may pedestrians use body posture
or establish eye contact with an approaching car to ensure that
the car is aware of them. Therefore, in this work, intention is
defined as crossing or not-crossing of pedestrians on a piece of
road that is used by the car.

Most of the works on this topic [Chaabane et al. 2020; Fang and
López 2019; Saleh et al. 2019a; Schneemann and Heinemann
2016; Wang and Papanikolopoulos 2020] have tackled the ac-
tion or the intention problem by observing features such as posi-
tion and velocity in a single point on the body of the pedestrian.
Based on [Sztyler et al. 2017], a different part of the body pro-
vides information regarding the action or intention of pedestri-
ans. Therefore, only considering the variation of the features,
in a single point, can significantly degrade the performance of
an action recognizer or an intention predictor or lead to their
failure. Thus, this chapter decides to use multiple points in the
body and extract distinctive features among pedestrian actions
and intentions.

The focus in this work is proposing a framework that will rec-
ognize the action and will predict intention. The framework
performs based on a series of features using available measure-
ments. The measurements are information on spatio-temporal
contexts such as traffic signs, traffic flow, and other environ-
mental features, pedestrian gaze status, hand gesture, occlu-
sion information, and weather conditions. As a result of this
contexts information and environmental conditions, pedestrians
may change their behavior at the curb before crossing. There-
fore, using the current action of pedestrians, their intentions
are not always predictable. This framework shows that a com-
bination of actions and contextual information improves inten-
tion prediction compared to prediction based on the pedestrians’
current actions or only contextual information. Contributions of
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this work are as follows:

• Predict the current action of pedestrians, variation in legs’
frequency and variation in distance of pedestrians from an
approaching car are used.

• Combine the recognized actions, hand gestures, weather
conditions, and context information to predict crossing in-
tention.

• Show effects of a sudden change of behavior in intention
prediction.

• Similar to [Afolabi et al. 2018; Bouhsain et al. 2020; Guj-
jar and Vaughan 2019; Liu, Adeli, et al. 2020; Marginean
et al. 2019; Pop et al. 2019; Rasouli, Kotseruba, et al.
2018; Styles et al. 2019; Yang, Zhang, et al. 2021], this
chapter reports results for the Autonomous Driving dataset
(JAAD) dataset [Rasouli, Kotseruba, et al. 2017b]. This
dataset allows us to address the intention and action clas-
sifications in realistic driving conditions. This work com-
pares the accuracy of the intention prediction and action
recognition with methods that used the same dataset.

The rest of this paper is arranged as follows: Section II gives
an overview of the state-of-the-art in the area of pedestrian ac-
tion recognition and intention prediction. Section III introduces
the framework’s architecture. Sections IV and V describe how
this work recognize actions and predict intentions. Section VI
explains the classifier. Section VII contains the evaluation pro-
cedure and validation. Section VIII presents conclusions and
outlines future directions in this research.

5.2 Related work

This section discusses the state-of-the-art to recognize the action
and predict pedestrian intention. It should be noted that nu-
merous works address this problem; in [Chen, Ma, et al. 2020;
Hou et al. 2021; Rasouli 2020], the authors provide a complete
survey regarding human intention prediction, mainly for indoor
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robots. In automotive applications, due to factors such as illu-
mination conditions, clutter backgrounds, and occlusions, the
recognition of actions and predicting intention are challenging
[Marginean et al. 2019].

Based on a theory of mind research, there is a hypothesis that
others people’s intentions are known by observing their actions
[Blakemore and Decety 2001]. According to this hypothesis, in-
tention prediction can be improved by using the current action.
For example, a pedestrian near a street with the action of walk-
ing is more likely to cross than one with the action standing still.
In this work, this hypothesis is validated.

A group of researchers in this field use pedestrians’ silhouettes
and a feature-based approach in monocular videos [Angelini et
al. 2018; Jalal et al. 2019; Klinger and Arens 2009; Marzoli
et al. 2019]. They usually extract their measurements and use
them in a ragdoll model to recognize the action or intention.
The major drawback of ragdoll models is that they cannot pre-
dict stop and start actions based on images of a camera on a
moving car.

Several recent works [Afolabi et al. 2018; Bouhsain et al. 2020;
Chaabane et al. 2020; Fang and López 2019; Gujjar and Vaughan
2019; Styles et al. 2019] tackled the action or intention problem
by observing a variation in the position, velocity, head orienta-
tion,or gesture. All these works use different state estimators to
estimate their feature. Then, to predict intention or action, they
use a feature. As cited in [Schulz and Stiefelhagen 2015], a fea-
ture alone is not particularly useful for pedestrians who intend
to stop or cross the road. Therefore, in order to be conclusive
in more scenarios, adding different types of features is recom-
mended. Besides, as [Bassett et al. 2017] has demonstrated, the
velocity variation of pedestrians are accurate at speeds of 1.34
(m/s) and above, but at 0.44 (m/s) is hard to detect the variation
of velocity for a camera-based setup on a moving car. In [Dan-
ion et al. 2003], they confirm that only focusing on the effect
of walking speed may not enough to predict action of a pedes-
trian.Thus, another group of researchers add features from im-
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ages or uses prior knowledge.

To learn intention of pedestrians from images, recent works
[Goldhammer et al. 2019; Kotseruba et al. 2020; Kwak et al.
2016; Pop et al. 2019; Wakim et al. 2004] extract features from
sequence of images, then they utilize different neural networks
and video-based motion classifiers to predict the future move-
ment of vulnerable road users (VRUs). They have a bounding
box around each VRU. Usually, they predict intention or action
based on the center of bounding boxes. Although these algo-
rithms perform well, there is a possibility that they could not
predict the intention of a pedestrian as a result of occlusion. The
main problem is that estimating a position using a single point
may lead to inaccurate position and velocity estimates due to
the fact the center of a bounding box does not always represent
the same body part. It can even be that the center is not part
of the pedestrian but part of the background. As shown in [Yan
et al. 2004], during occlusions, the center of the bounding box
is not always enough.

To increase the accuracy of action recognition and intention pre-
diction, a group of works uses measurement such as body-pose
key-points in multiple image sequences [Cadena et al. 2019; Pic-
coli et al. 2020; Wang and Papanikolopoulos 2020]. They ex-
tract features from body key-points to predict the crossing/not-
crossing intention. To extract the features, they use different
motion estimation models or neural networks. Then, features
from body key-points are used as input to a classifier, such as
support vector machine (SVM), Hidden Markov model (HMM),
or Random Forest. Next, the classifier provides a probability
of crossing/not-crossing intention. Although they extract mul-
tiple key-points, they only use the most stable ones. Based on
[Fang and López 2018], the key-points belong to shoulders, and
legs are the most stable compared to other key-points. However,
[Fukuda et al. 2021] shows during walking, arm movements are
more flexible than leg movements. Therefore, arm movements
cannot be repeatedly acquired action or intention similar to leg
movements. [Zhang, Abdel-Aty, et al. 2021] shows that an im-
portant variable for predicting intention is the movement of the
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angle between knee and ankle. Hence, compared to other body
joints, the leg movements can provide more information regard-
ing pedestrian action or intention.

The legs execute continue/start walking or stopping/standing
actions. Moreover, [Yan et al. 2004] shows that when pedestri-
ans are preparing themself to walk, their legs have flexion and
extension. However, the center of their body has no movement.
It means that the velocity of the center of the body is tending to
zero. However, the frequencies of the legs are not equal to each
other. The legs are the first moving parts that start/stop moving
when a pedestrian walks/stops. For that reason, it makes sense
to look at the positions of legs. Besides, ankle/knee are well-
defined parts of the body. As an example, suppose a pedestrian
wants to cross the road similar to Fig.5.1. In Fig.5.1, based on
the frequencies of the legs, there is a probability that she pre-
pares herself to walk.

Figure 5.1: Pedestrian is walking in place and is preparing herself
to walk. The number below each image indicates its se-
quence order [Rasouli, Kotseruba, et al. 2017b].

Although using body keypoints we can predict the intention,
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adding even more information may help improve performance
even further. To use more information regarding pedestrians,
in [Liu, Adeli, et al. 2020], they investigate the effects of cross-
walks and sign information on the intention of pedestrians. Sim-
ilar to us, they believe that the intention prediction problem
from image sequences can be improved by using environmental
information. Therefore, they consider crosswalk and sign in-
formation and the variation of the 2D position of the center of
the pedestrians’ bounding boxes in pixel. Although the current
action of pedestrians can be vital to predicting their intention,
[Liu, Adeli, et al. 2020] does not consider the effect of actions
explicitly. [Marginean et al. 2019] uses a set of features based
on pose estimations and context information from sequences of
images to predict intention. They define different weights for
all relevant and irrelevant features and train their model based
on the defined weights. Based on their conclusion, using the
weights can cause an imbalance effect. In [Yang, Zhan, et al.
2021], they use a 3D convolutional neural network (CNN) and
context information such as zebra and stop signs to recognize
intention of pedestrians. Based on their conclusion, their frame-
work cannot be used for real-time applications since the intro-
duction of their high computational load neural network.

From this discussion, it is clear that it is possible to use more
information to improve the performance of intention prediction.
Therefore, this work utilizes features in sequences of images.
Then, the features are used as input for a classifier. To extract
features, legs are tracked, since ankle, knee, hip are well defined
parts of the human body. Moreover, context information, and
weather conditions are used.

To recognize action, [Lei et al. 2016] combines the CNN net-
work’s feature learning ability and the HMM model’s sequence
dynamic modeling ability. Based on [Lei et al. 2016], for weakly
labeled action, HMM model can be used as label information to
train the CNN network. [Wu, Song, et al. 2020] also shows that
HMM has good performance in action recognition using arm
movements. [Gu, Liu, et al. 2021] shows that in the decision-
level fusion method, the computational cost and training times
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of HMMs are less than deep learning methods. Besides, [Wissel
et al. 2013] shows that the HMM does not need to await fur-
ther samples for a decision. It means that HMM has an implicit
adaptation in real-time applications. Therefore, this research
uses HMM to classify action and intention.

One of the contributions of this work is showing that the combi-
nation of the action, weather condition, hand gesture, the con-
text information, and gaze status can improve the performance
of the intention predictor. Therefore, we recognize actions as
an explicit step in the intention prediction framework. To rec-
ognize action, we use the body-key points. Then, we extract fre-
quencies of two legs as features to recognize the action. Then,
based on the features, we train our classifier to recognize the
actions of pedestrians. To classify intention as crossing or not-
crossing in front of our car, we used five types of measurements:
the actions, context information, gaze status, hand gesture, and
weather conditions. It should be noted that extracting the con-
text information, gaze status from images are not trivial tasks.
Extracting such information is out of the scope of this work.
Getting this information from camera images can be done using
existing algorithms. Therefore, we use the context information,
gaze status, hand gesture, and weather conditions that the JAAD
dataset provides.

5.3 Framework architecture

This work is focused on pedestrians in urban traffic environ-
ments. Fig.5.2 illustrates a block diagram of this framework.
Although in the following sections blocks are described, here
the most important components in the framework and their re-
lations are defined:

• After detecting a pedestrian in a bounding box, Open-
pose library [Cao et al. 2017b] is used to extract body key
points. The body keypoints belong to left hip, left knee,
left ankle, right hip, right knee, and right ankle.

• Having access to tracked pedestrian positions is a prereq-
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Figure 5.2: Block diagram of this framework.

uisite for this work, however, it is outside the scope of this
paper. For that reason, the approach described in Chapter
2 is adopted.

• Based on body keypoints, Chapter 2 estimates the posi-
tion, the velocity, and legs’ frequency of pedestrians.

• If the library fails to extract all key-points, the center of
bounding box around each pedestrian is used to estimate
the distance between pedestrians and an approaching car.

• In this work, the position of pedestrian is estimated based
on the right and left hip.

• Based on a variation of the leg frequencies and position of
pedestrian, a probability for each action is estimated.

• Knee is the first joint that moves at the beginning of a
gait cycle. Therefore, to compute the variation of stride
frequency, the knee (left and right) frequencies are used.



106 Intention Prediction and Action Recognition of Pedestrians

• The frequency needs frames to converge as soon as a de-
tector detects a pedestrian. Moreover, different parame-
ters such clothes or leg occlusion can affect the frequency
estimation. Therefore, position of pedestrian is also used
to recognize action. More details about the effects of the
convergence speed and its impact on estimation results
will be given later.

• Action recognition computes the probabilities for each ac-
tion.

• To predict the intention, a combination of action, the dis-
tance of pedestrians to the car, gaze status, hand gesture,
weather condition, contextual information, and status of
the car in each frame are used.

• Intention are predicted as crossing or not crossing in front
of a car.

• The reasons that this work uses actions instead of the vari-
ation of the velocity are as follows:

– Estimating the accurate velocity variation is very chal-
lenging, especially if pedestrian velocities are low.

– This work assumes that for estimating intentions, a
precise velocity is not needed. Moreover, it assumes
that knowing how a pedestrian moves on a coarse
scale is sufficient to predict the intention.

5.4 Action

[Goldhammer et al. 2019] shows that the following four actions
are helpful to prevent collision with car and estimate the tra-
jectory of VRUs. Therefore, this work uses the same action as
[Goldhammer et al. 2019].

1. Standing. It indicates that a pedestrian stands at a fixed
position while he/she might move the upper body.

2. Starting. The first step after standing when the knee starts
to bend until a pedestrian reaches his/her constant walk-
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ing velocity. It means starting can be occur in multiple
frames.

3. Stopping. It shows that based on previous sequences, the
pedestrian is tending to a standstill. The last frames before
standing that the frequency of the leg is not constant but
decreasing is stopping.

4. Walking. It is defined as pedestrian movements between
the last starting action and the first stopping action.

To recognize action, this work focuses on body features that are
distinctive among pedestrian actions. The measurement is as
follows:

• Derivative of stride frequency: This work defines the stride
frequency as the number of steps that a pedestrian takes in
a second. This work uses derivative of the stride frequency
in each frame compared to the previous frame.

• Variation of distance : The tracker estimates the position
of multiple joints related to an approaching car. Variation
of the position in each frame is used to recognize action.
In this work, the distance of a pedestrian is defined based
on the middle of hip joints. As shown in Fig.5.3, this
pedestrian carries a shopping trolley, and the trolley oc-
cludes her legs. In this kind of situation, the frequency es-
timation has inaccurate results. Therefore, without know-
ing the pedestrian’s distance variation, the algorithm can-
not recognize the actions correctly.

After estimating the frequencies and distance, they are used to
recognize the action.

5.4.1 Action recognition

Fig.5.4 depicts the state transitions. As Fig.5.4 shows, the tran-
sitions between standing and walking are always separated by
starting or stopping. These states are not directly observable by
a detector.
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Figure 5.3: Due to occlusion, there is wrong information regarding
the frequency [Rasouli, Kotseruba, et al. 2017b].

Figure 5.4: State diagram for modeling pedestrian actions.

5.5 Intention

Traffic information and the environmental information of pedes-
trians are helpful for an improved intention prediction perfor-
mance. As shown in Fig.5.2, to predict intention and actions,
available information from the traffic scenes where pedestrians
locate is used. This work uses JAAD dataset [Rasouli, Kotseruba,
et al. 2017b] to get access to the traffic scene information. [Ra-
souli, Kotseruba, et al. 2017b] contains a large number of pedes-
trian samples with temporal correspondence, a subset of which
are annotated with behavior information by algorithms. This
part describes the last two blocks and starts with the context
information, gaze situation, and occlusion. The following input
features are used mainly because they contain global context
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Figure 5.5: Information regarding traffic scene [Rasouli, Kotseruba, et
al. 2017b].

Figure 5.6: Information regarding pedestrians annotation in the JAAD
dataset [Rasouli, Kotseruba, et al. 2017b].

information. The global context indicates the semantic segmen-
tation of road and pedestrians and vehicles [Yang, Zhang, et al.
2021]. This block contains the following measurements that are
input to the proposed model:

• A tag for a car actions, such as moving fast, speeding up,
moving slow, decelerating, stop in each frame.

• Information regarding status of traffic signs includes avail-
ability of car stop sign, pedestrian stop sign, pedestrian
crossing area for each frame. These annotations are one
per image frame. Fig.5.5 shows a sample of this input.

• The measurement also includes looking and occlusion in-
formation. Looking shows that is a pedestrian looking to-
wards the host vehicle or not. Occlusion indicates that a
pedestrian is occluded or not. The occlusion values are
either 0 (no occlusion), 1 (partial occlusion >25%) or 2
(full occlusion >75%). This information is one per frame
per pedestrian. Fig.5.6 shows a sample of pedestrians an-
notation in the dataset.

• To associate looking, occlusion information, and hand ges-
tures with pedestrians, ground truth bounding boxes are
used as an input to OpenPose.



110 Intention Prediction and Action Recognition of Pedestrians

• Moreover, the measurement includes hand gestures and
weather conditions.

5.6 HMM

To estimate the action and predict intention, an HMM is used.
Based on Markov assumptions, the hidden states are only de-
pendent upon previous states, and all observations are indepen-
dent given the state. Therefore, HMM is one of the suitable
classifiers to classify hidden states based on a time sequence
[Razin et al. 2017]. Recognizing action is one of the contribu-
tions. This work shows that using the current action, intention
can be predicted more accurately than only using context infor-
mation. To make sure that the action part is accurate, first, this
work recognizes action separately and evaluate the performance
of this intermediate step. Then, actions and the intention esti-
mation are validated. HMM includes hidden states, features, a
state transition probability matrix, and an emission probability
matrix.

5.6.1 Measurement and state

Before using HMM, the hidden states and measurements are
defined. During recognizing action separately the hidden states
are walking, starting, stopping, and standing. For intention pre-
diction the state vector contains

• Intention: Crossing, not-crossing in front of our car.

To estimate the hidden states, the following measurements are
utilized:

• Action: The rate of change in frequency.

• Intention: The current action, pedestrians’ distance to the
car, context information, looking and occlusion informa-
tion.

There are transition probabilities between the hidden states.
These probabilities are shown as a transition matrix with (i , j )th
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element. Based on the definitions in [Rabiner 1989], each tran-
sition probability from state si to state s j is defined by:

asi j =
number o f t i mes st ate s j f ol l ow s st ate si

number o f t i mes st ate s j occur s
(5.1)

Where s means hidden state and k indicates a time instant. The
probability of correctly classifying s is maximized by choosing
a sequence of measurement (x ) that has a maximum posterior
probability. A sequence of measurement likelihoods or emission
probabilities expresses the probability of a measurement (x )
generated from a hidden state s. The emission probability in
state s j is formulated as [Rabiner 1989]:

bs j (k) = number o f t i mes i n st ate s j and obser vi ng x

expected number o f t i mes i n st ate s j
(5.2)

The initial probability is assumed to be uniformly distributed
because this work does not know the hidden states in k = 1. The
initial state distributions is defined as:

π j = P (q1 = S j ),1 ≤ j ≤ N . (5.3)

N is the number of states. A HMM can be characterized by a
triplet λ= (asi j ,bs j (k),π j ).

5.6.2 Prediction

To predict, the maximum likelihood probability of the hidden
state is computed. To have the maximum likelihood, the Viterbi
algorithm is used. The Viterbi algorithm finds the most likely
state sequence in the maximum a posterior probability [John-
son et al. 2010]. The goal of the Viterbi algorithm is to make
an inference based on a trained model and measurements. To
compute the maximum likelihood and all HMM training, the
standard approach available in [Johnson et al. 2010; Rabiner
1989] is used.



112 Intention Prediction and Action Recognition of Pedestrians

5.6.3 Training HMM

To confidently use the HMM for action recognition or intention
prediction, the HMM is trained to represent measurements accu-
rately. Training determines optimal estimates for λ. This work
uses the Baum-Welch algorithm to estimate the transition and
emission probabilities [Sammut and Webb 2010]. Baum-Welch
algorithm starts with an initial estimate of λ and a set of train-
ing sequences L. It then updates the estimates of transition and
emission by calculating forward and backward probabilities at
each iteration.

To train HMM in the action part, three datasets are used [Cheresh-
nev and Kertész-Farkas 2017; Khandelwal and Wickström 2017;
Luo et al. 2020]. These datasets provide detailed gait data of the
legs in indoor and outdoor environments for healthy people. Us-
ing the gait data, the features are estimated. In these datasets,
they use wearable sensors on the right and the left thigh, shin,
and foot. It means that the matrices can be trained without
any occlusion or incorrect data association. The datasets pro-
vide the height, gender, and age of all participates. As ground
truth (GT) data, these datasets provide action labels. There-
fore, based on the sensory data and GT that are provided by the
datasets, the action recognizer is trained. The state vector in the
action part contains walking, standing, starting, and stopping.
These datasets provide gait information of people; therefore,
the frequency is computed. Then, each time by receiving new
measurements from the tracker, the state transition matrix and
the emission matrix are updated.

To train the HMM in the intention part, this work uses the first
70% of the JAAD dataset. The JAAD dataset contains vari-
ous complex interactions and situations that may impact the
traffic participants’ behavior. The JAAD dataset recorded over
240 hours of driving footage. The dataset was recorded in six
months in North America and Eastern Europe [Rasouli, Kot-
seruba, et al. 2017b]. They use Convolutional Neural Networks
(CNNs) to detect and analyze the context of the scenes and
pedestrians’ behavioral cues. The JAAD dataset has temporal
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correspondences between the frames, and each pedestrian has
a unique id throughout the sequence. These IDs are used dur-
ing the training part and validation part. As mentioned before,
crossing means moving on a piece of road used by the car in the
near future before the car has passed that piece of road. The
JAAD contains information regarding crossing and not-crossing,
which are the states in the intention part. Moreover, this dataset
contains our required measurements such as annotation for the
location, glancing, looking duration, a gesture of a pedestrian,
and environmental context[Rasouli, Kotseruba, et al. 2017b].
JAAD dataset was recorded at 30 fps. If the average distance
between pedestrians and their recording car is between 6 to 20
meters, they provide behavioral data. Otherwise, they report
the bounding box coordinates, Id, and occlusion information
[Rasouli, Kotseruba, et al. 2017b]. The tracker detects pedestri-
ans. Therefore, only the bounding box coordinates in the JAAD
dataset are used to validate this work.

5.7 Evaluation

To have a clear and understandable evaluation, this work uti-
lizes accuracy, precision, recall, and F1score [Goldhammer et
al. 2019]. True positive (T P), false positive (F P), true nega-
tive (T N), and false negative (F N) are used to compute these
metrics. These metrics are illustrated as follows:

• Accuracy: the proportion of correctly classified pedestri-
ans among all the pedestrians.

Accur ac y = T P +T N

T P +T N +F N +F P
(5.4)

• Precision: the proportion of correctly classified pedestri-
ans among classified positive pedestrians.

Pr eci si on = T P

T P +F P
(5.5)

• Recall: The proportion of correctly classified pedestrians
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among actual positive pedestrians.

Recal l = T P

T P +F N
(5.6)

• F1score : a weighted average of precision and recall.

F 1scor e = 2∗Recal l ∗Pr eci si on

Recal l +Pr eci si on
(5.7)

It should be noted that in the action recognition part, T P ,F P ,T N ,and
F N are computed based on their average for each action.

5.7.1 Action Experimental Evaluation

The JAAD dataset does not directly provide ground truth actions
for pedestrians. Therefore, behavioral labels and vehicle labels
are used. Based on the previous definition, the last frame before
standing is stopping. Using the definition for action recognition,
the ground truth (GT) on the JAAD dataset are created as fol-
lows:

1. If the behavior label of a pedestrian (available in the dataset)
is standing, the GT action is standing.

2. If the behavior label of a pedestrian (available in the dataset)
is walking, and the pedestrian is standing in the next frame.
Then, GT action for the frames before standing are stop-
ping.

3. If the behavior label of a pedestrian is standing, and the
pedestrian is walking in the next frame. Then, GT action
for the frames before walking are starting.

4. If the above items are not applicable, the GT action is
walking.

Fig.5.7 illustrates probabilities of actions that this work has es-
timated for one pedestrian in JAAD dataset. This figure shows
the sequences between states. In this specific experiment in the
JAAD dataset, a pedestrian is crossing a two-lane road. There-
fore, after passing the first lane, he stops. Then, he starts to
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walk and passes the second lane. Fig.5.7 also indicates the GT
actions. As Fig.5.7 shows for the part around 3 to 5.5 seconds
p(w alki ng ) = 0.9 and p(st ar t i ng ) = 0.1, which the ground truth
indicates the pedestrian is walking. Although we also have a
high probability for walking, the pedestrian does not completely
follow a constant velocity motion. Therefore, there is a low
probability for starting to walk. This means that walking has
been defined by moving at constant but non-zero speed. Around
6 seconds, the pedestrian stops then stands for a while. Based
on the ground truth at this point, the pedestrian was near the
first line of the road and he stops, checks the road and starts to
walk again.

Fig.5.8 shows another pedestrian in one of the test cases in the
JAAD dataset. This pedestrian was walking with a group. As
Fig.5.8 shows, sometimes in the figure, the probability of start-
ing is more than walking, and the probability of stopping is more
than standing, such as between 0.1 and 0.3 seconds. The rea-
son for this behavior is that this person was walking in a group.
Thus it would be possible that the tracker tracks body key-points
wrongly. Moreover, the behavior of a pedestrian in a group is
different, which might affect the action sequences.

As can be seen in these two figures, the features that this work
chooses can recognize actions correctly. The word "correctly"
means that the action with the highest probability is the same
as the ground truth. As mentioned before, to have GT for start-
ing and stopping, only one frame ahead is used. Based on these
two figures and also other results, we believe that one frame is
not enough for two phases of starting and stopping. Moreover,
when a pedestrian continuously changes his/her walking fre-
quency, the proposed framework face different challenges. For
instance, in each walking step, a pedestrian can decide to stop.
Training with more a dataset that also covers starting and stop-
ping can be a solution and it is recommended for future work.

Table 5.1 compares our action recognition results to an algo-
rithm that used the same dataset. The algorithm uses the same
dataset to train and test their action.
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Figure 5.7: Results of our action recognizer for one of the videos in
the JAAD dataset. GT means ground truth actions.

Figure 5.8: Results of our action recognizer for one of the videos in
the JAAD dataset. GT means ground truth actions.

Table 5.1: Action recognizing accuracy for the JAAD dataset

Method Accuracy

Ours (all the dataset) 78%
Ours (the last 30% of the dataset) 83%

[Gujjar and Vaughan 2019] 75 %
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Table 5.1 shows the result in two situations. In the first line, all
the videos of the dataset are used to test the proposed model.
As mentioned before, other datasets are used to train the ac-
tion recognizer. In [Gujjar and Vaughan 2019] their actions are
walking and standing. In [Gujjar and Vaughan 2019], they use
the bounding boxes position that they detect to categorize ac-
tion as walking or standing. They feed the position data into a
binary classification network. Therefore to have a fair compari-
son in the second line of the table, the testing and training plan
are changed as follows:

• Similar to [Gujjar and Vaughan 2019], this work used the
last 30% of the JAAD dataset for testing the recognizer.
The first 70% of the JAAD dataset are used to train. It
means that in this part did not use other datasets to train
the model.

• If actions were walking, starting, and stopping, they are
considered as walking. Otherwise, the action is classified
as standing. Therefore, this work has the same classifica-
tion as [Gujjar and Vaughan 2019].

• In the this comparison similar to [Gujjar and Vaughan
2019], the action of pedestrians with crossing intention
is recognized. It means that, in contrast with the first row,
the second row shows action of a group of detected pedes-
trians.

Although this work has higher accuracy compared to [Gujjar
and Vaughan 2019], the algorithm also has limitations. Having
no measurement regarding the gait data of pedestrians can be a
reason to have inaccurate action recognition such as Fig.5.3. A
shopping trolley occludes legs of a pedestrian. In this situation
the action recognizer has no information about leg frequency
and is expected to fail.

5.7.2 Intention Experimental Evaluation

Next step after recognizing the action is predicting intention.
This part uses action and other measurements to predict inten-
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tion. As mentioned before, the intention is predicted with three
different measurements. This work used the first 70% of the
JAAD dataset to train and the last 30% to test the model. The
measurements are as follows:

• I : The recognized actions are used.

• II : The context and gaze information, weather condition,
hand gesture, occlusion status, and the pedestrian’s dis-
tance to the car are used.

• III : This measurement provided the recognized actions,
the context and gaze information, weather condition, hand
gesture, occlusion status, and the pedestrian’s distance to
an approaching car.

Table 5.2 compares this work with state-of-the-art intention pre-
diction models on the same dataset. Similar to this work, [Fang
and López 2018] and [Wang and Papanikolopoulos 2020] take
advantage of body key points in sequences of images. Using li-
braries to extract key points in some situations, such as crowded
areas, may contain errors. The errors in key points can cause in-
accuracy for intention prediction. Because of this in [Fang and
López 2018], they predict intention only if there is no occlusion.
In Table 5.2, the average precision of testing result of [Yang,
Zhan, et al. 2021] is higher compared to this work. [Yang, Zhan,
et al. 2021], they use the first 70% of the JAAD dataset for train-
ing, the middle 20% for validation, and the remaining 10% for
testing. As mentioned, this work uses the 30% of the JAAD
dataset for testing. It should be noted that this dataset contains
many situations, such as Fig.5.9. Situations that a pedestrian
crosses in front of our car without eye contact or following traf-
fic rules.

Fig.5.9 illustrates that using the context information is not enough.
We have to utilize other measurements parallel to the context
information. Comparing the results measurement III and [Yang,
Zhang, et al. 2021] indicates the benefits of using action instead
of a variation of speed and position. [Yang, Zhang, et al. 2021]
uses the same context information but without considering ac-
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Figure 5.9: A sequence of the JAAD dataset that a pedestrian crosses
the main road at a random location and breaks the traffic
rules [Rasouli, Kotseruba, et al. 2017b].

tion, weather condition, and hand gesture. [Liu, Adeli, et al.
2020] concludes that the movement of vehicles in a sense can
affect the pedestrian’s crossing behavior. Therefore, they pre-
dict intention based on the movement of vehicles and traffic
light conditions. In contrast with [Liu, Adeli, et al. 2020], Ta-
ble 5.2 indicates that the combination of action and the context
information can affect the intention the most, rather than the
movement of other vehicles. To predict intention, [Kotseruba et
al. 2020] uses the current action and trajectory of pedestrians.
Therefore, it would be fair to compare it with measurement I.
This comparison also shows that the action recognition based
on the leg frequency can outperform the intention prediction.

As demonstrated in Table 5.2, using action and context informa-
tion can improve intention prediction. The aim of Table 5.2 is to
show that using all the features, we can predict intention better
than using one measurement. Therefore, Table 5.2 contains dif-
ferent columns. The second column is T frames, which means
that after tracking a pedestrian, we predict intention T frames
before a decision point. The decision point is when a pedestrian
decides to cross or not cross in front of our car. If in the dataset
T = 0, we have to predict intention as not crossing in front of our
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car as far as a pedestrian is in the field of view of our camera.

The JAAD dataset contains a decision point for each pedestrian,
which means this pedestrian will cross in front of our car at
frame T . We predict final intention in T=18, T=15, and T=1
frames before decision points in JAAD. It means that we predict
a chain of states using our HMM. In this dataset, T = 18 is 0.6
seconds, T = 15 that it 0.5 seconds, and T = 1 which is 0.033
seconds before the ground truth decision point.

Based on the table for short prediction (1 frame before decision
point), measurement (I) has the lowest accuracy. Reasons for
this low accuracy are as follows:

• The frequency needs some frames to converge as soon as
a person starts to walk.

• One frame is not enough to decrease the effects of wrong
frequencies if (a) a pedestrian stands still but moves his/her
legs a bit or (b) the car moves.

• Different parameters such as weather conditions, status
of an approaching car, traffic signs, and laws can cause a
sudden change of direction and can change pedestrians’
intention.

To show the effect of weather conditions on the action of pedes-
trians, Fig.5.10 shows the average frequency of walking during
rainy days and clear days in the JAAD dataset. Based on this
figure, pedestrians can have a different stride frequency during
various weather conditions and they may walk faster on rainy
days. Therefore, they may change their decision to cross the
road due to weather conditions. This work added weather con-
dition to measurement I. Then, it compared the result with mea-
surement I. The results show the precision can improved up to
2% by adding weather conditions. It means that various param-
eters can influence pedestrians’ behaviour. Similar to weather
conditions, other parameters can affect the final intention of
pedestrians. Hence, adding more information can help to in-
crease the performance of the intention predictors.
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Table 5.2: Intention recognizing accuracy for the JAAD dataset. (N.A
means not available)

Method T Accuracy Precision Recall F1score
1 0.88 0.78 0.87 0.82

I 15 0.81 0.74 0.82 0.77
18 0.83 0.67 0.83 0.74
1 0.91 0.82 0.92 0.86

II 15 0.67 0.79 0.62 0.70
18 0.65 0.79 0.56 0.65
1 0.92 0.86 0.93 0.89

III 15 0.90 0.78 0.92 0.84
18 0.89 0.7 0.87 0.77
1 0.81 N.A N.A N.A

[Fang and
López 2018]

14 0.88 N.A N.A N.A

[Wang
and Pa-
panikolopou-
los 2020]

1 0.81 N.A N.A N.A

[Yang, Zhan,
et al. 2021]

1 N.A 0.89 N.A N.A

[Yang,
Zhang, et
al. 2021]

1 0.83 0.51 0.81 0.63

[Liu, Adeli, et
al. 2020]

1 0.79 N.A N.A N.A

[Kotseruba et
al. 2020]

1 0.83 0.79 0.85 0.81

Table 5.2 shows that the context information is helpful for one
frame prediction. Moreover, the results show that:

• As a result of measurement bias, weather conditions, mea-
surement noise, and having no accurate velocity of the
car the accuracy of the state estimator was not accurate
enough to compute the distance. Therefore, predicting 15
frames and 18 frames before the decision point causes the



122 Intention Prediction and Action Recognition of Pedestrians

Figure 5.10: Average stride frequency of walking pedestrians in JAAD
dataset during rainy days and clear days.

Figure 5.11: There is no measurements regarding the context infor-
mation [Rasouli, Kotseruba, et al. 2017b].

worse intention prediction than the measurement I.

• In a situation such as Fig.5.11 that there is no traffic sign
or light, and the pedestrian does not look at the car, the
proposed model does not have enough measurements. There-
fore, the prediction contains errors.
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Measurements I and II indicate that the intention prediction can
not perform well when using each measurement separately. By
fusing all the available data, the intention predictor can become
much more capable of performing at its best. Therefore, in mea-
surement III, we have different sources of information. Results
of measurement III illustrate that if we use the context infor-
mation, the distance, the weather condition, and the action, we
can improve our intention predictor’s accuracy. The results of
the third measurement validate the hypothesis in the theory of
mind that adding information on the current action improves
the results compared to only using the data in measurement
set II. Moreover, Table 5.2 indicates that inaccurate state esti-
mations can cause incorrect intention prediction. Besides, the
environmental factor can affect the intentions. Therefore, using
the temporal information and features independent of a state
estimator’s accuracy, we can increase an intention prediction ac-
curacy.

5.8 Conclusion

The paper proposes a framework to recognize the action and
predict intention. This framework is vision-based, and it in-
cludes a detector, tracker, action recognizer, and intention pre-
dictor. In this work, we only focus on the action recognition and
intention prediction parts. To recognize action, we use stride
frequency and position variation for each pedestrian. We predict
intention with three different sets of measurements. We show
that we can improve intention prediction and action recogni-
tion results using measurements that indirectly depend on state
estimators’ or detectors’ accuracy.

Our work shows that combining action, distance, weather, con-
text, and interaction with elements in the scene can improve
prediction results. We evaluate our framework in natural driv-
ing conditions (JAAD dataset). Our framework has achieved
remarkable results compared to the literature’s approaches that
used the same testing data.

In future work, we will extend the proposed framework to sup-
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port a group intention prediction. It means predicting the in-
tention of each pedestrian in a group. Moreover, we have to
improve the interaction between the car’s speed and pedestri-
ans’ crossing intentions. Besides, HMM may not be suitable if
the prediction is employed in complex traffic scenes. Therefore,
in future work, a different classifier will be used.



Chapter 6

Conclusions and Future Work

6.1 Conclusions and Recommendation

One of the essential steps in increasing the safety of driving is
developing an awareness system. With an awareness system, it
is possible to identify road users, analyze their behavior, com-
municate with them, predict their future actions, and choose an
appropriate vehicle response. Based on the types of road users,
an awareness system acts differently. In this thesis, there is a fo-
cus on pedestrian awareness systems. In the research shown in
Chapters 2 to 5, it is suggested that the proposed methods and
trackers can improve the accuracy and precision of a pedestrian
awareness system in urban areas. In this research, the position
and velocity of pedestrians related to an approaching vehicle
can be estimated using pedestrian trackers.

The research was validated using various experimental and sim-
ulation tests. Moreover, to make a fair comparison with the
state-of-the-art, the available datasets were utilized. This chap-
ter summarises and discusses the lessons learned. Furthermore,
this chapter presents recommendations for future work.

Conclusions 1:

In Chapter 2, a multiple joints pedestrian tracker based on hu-
man kinematic constraints and a physical model was proposed.
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This tracker estimates and predicts the position and velocity of
legs’ joints of each pedestrian.

An important conclusion is the importance of a proper state
estimation model and data association algorithm during semi-
occlusion situation or poor detection conditions. In these situ-
ations, non-linear models based on human kinematics can im-
prove the prediction and estimation of states compared with lin-
ear models.

Conclusions 2:

A pedestrian tracker faces ambiguous situations in which differ-
ent associations about the appearance of pedestrians are reason-
able. Therefore, multiple hypotheses are considered, and each
hypothesis is associated with a probability of being correct. In
Chapter 3, it is described that the results of the entire track may
be affected by the initialization of data association. Based on
Chapter 3, a tracker can re-initialize its data association when
it faces partial and complete occlusions, or when the number of
pedestrians of the current measurement differs from previous
ones.

A lesson that is learned from this chapter is that the success rate
of a data association can be improved by initializing multiple
hypotheses. It means that data can be matched by a hypothesis-
based tracker without skipping measurements, and the proba-
bility of a tracker misses the pedestrians can be reduced using
such initialization of multiple hypotheses. One of the limitations
of this contribution is that sets of values were achieved based on
a series of simulation tests. Therefore, based on environmental
conditions it is unclear how the set can be updated. This lim-
itation is addressed in the third contribution of this thesis. In
Chapter 4, an external source of information is used to estimate
and update the probabilities.

Conclusions 3:

In Chapter 4, a pedestrian tracker is proposed based on the
measurements of vision systems and Internet-of-things (IoT) de-
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vices. The contributions in Chapters 2 and 3 are used in this
tracker. An external source of information and the displace-
ment and ID of IoT devices were added to the tracker proposed
in Chapter 2. In this tracker, the advantage of IoT was con-
sidered. The importance of using prior knowledge during the
data-association process is shown in Chapter 4. Furthermore,
this chapter shows that detection robustness of an awareness
system can be improved by fusing IoT data and on-board vision
sensors. A valuable lesson learned in Chapter 4 is that pedestri-
ans in blind spots of on-board sensors can be tracked by using
IoT technology. Based on this chapter, IoT data could maintain,
update, and generate a data association algorithm.

Conclusions 4:

In Chapter 5, it was shown that the action of pedestrians and
their intentions could be recognized and predicted, respectively,
by an awareness system. In this chapter, one of the important
lessons learned is that the current action has an impact on pre-
dicting the intention of crossing the road. Besides, in this chap-
ter, it is illustrated that the actions of pedestrians can be rec-
ognized without using their accurate positions related to an ap-
proaching vehicle. It means that actions can be recognized by
the pedestrian awareness system using discrete features. More-
over, this chapter shows that spatio-temporal context informa-
tion such as traffic signs, environmental factors, zebra-crossings
can help to improve pedestrian intention prediction.

Another important lesson learned is related to the way inten-
tions and actions are represented. In Chapter 5, action and in-
tention were represented in a probabilistic approach. It means
that the probabilities of other actions and intentions are consid-
ered by the pedestrian awareness system. Then each time, the
ones with the highest probabilities are selected by it. Consid-
ering probabilities for actions and intentions can increase the
accuracy of pedestrian awareness systems.
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6.2 Future work

There are various ways to build further on the results of this
research project to move toward a pedestrian awareness system.
In this section, directions for future research are suggested.

• Improve pedestrian motion model

To track pedestrian, this work used pedestrians’ legs. Sup-
pose other objects, such as other pedestrians, cars, or cy-
clists, occlude a pedestrians’ legs. Although a camera de-
tected the upper body of the pedestrians, the tracker is
unable to track them based on the leg joints. Therefore,
adding key-points of the upper body is recommended to
improve the accuracy and precision of the tracker.

• Analyse group behavior

In practice, pedestrians often walk in groups. Therefore, it
is necessary to understand local interactions to develop a
reliable pedestrian awareness system for urban infrastruc-
tures, traffic management, and pedestrian safety during
mass events. However, the characteristics of the motion
of pedestrian groups have not yet been empirically stud-
ied. It is unknown how moving group members interact
with other pedestrians and with other groups. How such
groups organize in space and how these spatial patterns
affect pedestrian flow dynamics also need further study.

• Improve noise covariance matrices

The accuracy of the pedestrian awareness system is highly
dependent on the accuracy of its process and measure-
ment noise covariance matrices. Pedestrians may be lost,
and their identities are mixed and overall accuracy and
precision of awareness systems may be reduced in the
presence of improper noise covariance matrices. In this
thesis, an ad-hoc procedure is used to tune these two ma-
trices, in which the matrices are assumed to be constant
and fix during the estimation and are manually adjusted
by trial and error approaches. Based on applications and
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various conditions these two can be varied. In future work,
real-time adaptations to Kalman filter is suggested.

• Multiple pedestrians and multiple IoT devices

This work assumes that each pedestrian carries one IoT
device, which, in reality, is not always a valid assumption.
Suppose that a pedestrian takes more than one device. In
that case, data association between IoT devices and on-
board sensors measurements is more challenging. There-
fore, it is suggested to improve the data association algo-
rithm to remove this assumption.

• Validate the proposed approach in nonideal situations

In this thesis, different datasets were used to validate the
proposed models. Besides, various experimental and sim-
ulation tests are used to validate the proposed models.
The experimental trials were held during weekends at the
Tu/e campus. During experiments, pedestrians were asked
to walk a given route, where the route was carefully de-
fined. It is highly recommended to collect more experi-
mental results on a more realistic scenario by testing on a
real-world situation with more environmental noises and
various speeds of a vehicle.
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