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ABSTRACT Image-based control (IBC) systems have a long sensing delay due to compute-intensive image
processing. Modern multiprocessor IBC implementations consider either parallelisation of the sensing task
or pipelining of the control loop to cope with this long delay. However, the impact of both parallelisation
and pipelining together on the quality-of-control (QoC) of IBC systems is not explored in the literature.
We present a model-based design method for multiprocessor IBC implementation, considering both paral-
lelisation and pipelining together. In particular, we address the following problem: For a given platform allo-
cation, what is the optimal degree of pipelining and degree of parallelisation required to maximise the QoC?
The proposed method takes into account image-workload variations, inter-frame dependencies and platform
constraints. The application is efficiently modelled and analysed using a scenario-aware dataflow graph,
and an implementation-aware switched controller is designed that optimises QoC and guarantees stability.
We validate the proposed method using simulations and hardware-in-the-loop experiments, considering a
lane-keeping assist system.

INDEX TERMS Image-based control, switched linear control, scenario-based design, platform-aware
design, multiprocessor implementation, hardware-in-the-loop validation.

I. INTRODUCTION
Image-Based Control (IBC) systems are feedback control
systems whose feedback is provided by camera(s) as the
sensor(s) (illustrated in Fig. 1 (a)). A camera captures image
frames at a pre-defined constant frame rate per second (fps)
from the dynamic system environment. A compute-intensive
image processing algorithm processes the image frames to
detect features in the image such as objects, traffic signs and
lanes. These features are then used to compute the states of the
system, such as relative position and distance [1]. A controller
computes the control input for actuation using the computed
states. The actuation task applies the computed control input
to the IBC system.

A typical periodic implementation of such an IBC system
is illustrated in Fig. 1 (b). The main challenge here is to
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deal with the inherent long (worst-case) sensing delay due
to compute-intensive image-processing algorithms. A long
processing delay results in dropping some camera frames
from processing. Moreover, the sensing delay is variable
due to image workload variations [2]. These variations can
be captured statistically using a probability distribution [3]
(illustrated in Fig. 1 (c)). A long worst-case sensing delay
leads to a long sensor-to-actuator delay τ (the time between
the start of a sensing task and the end of the corresponding
actuation task) and thus results in degraded control perfor-
mance [4], [5]. The question is: How to cope with the long
variable sensing delay in an IBC system?

The advent of multiprocessor platforms enables coping
with the long sensing delay by either parallelising the
sensing task [6], [7] or pipelining the control loop [8], [9].
Parallelisation refers to executing sensing subtasks in parallel
and thereby reduces the delay compared to the worst-case
(illustrated in Fig. 2 (a)). It is, however, limited by the degree
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FIGURE 1. An image-based control (IBC) system: (a) block diagram;
(b) Gantt chart for a typical IBC implementation;
(c) workload variations captured as a distribution.

of parallelism of the sensing algorithm. Pipelining refers to
the pipelined execution of the control loop over multiple
processing cores. Pipelining helps to reduce the number of
camera frames being skipped. It reduces the sampling period
h (the time between the start of two successive sensing
tasks) by processing frames on available cores (illustrated
in Fig. 2 (b)). Pipelining is, however, limited by the pres-
ence of inter-frame dependencies, i.e. the data or algorithmic
dependencies between consecutive frame processing, e.g. due
to video coding [10] or visual tracking [11]. In literature,
the controller implemented for the pipelining is for τ > h [8],
[9] and for parallelisation is for τ ≤ h [6], [7].
Why should we consider pipelining and parallelism

together? Pipelining does not reduce the delay τ compared
to the worst-case. By executing the frames in a pipeline, only
h is reduced, whereas parallelising the sensing tasks reduces
τ . However, h is still at least τ for a parallel implementation.
Considering both pipelining and parallelism together helps
to reduce both τ and h and thereby improves the quality-
of-control (QoC) of our IBC system. Further, the inherent
limitations of pipelining - due to inter-frame dependencies
- and parallelism - due to a limited degree of parallelism of
the algorithm - can be mitigated significantly by considering
them both together. The challenge then is to identify the
optimal implementation choice considering both the degrees
of pipelining and parallelism that improves the system per-
formance. The degree of pipelining is quantified by the max-
imum number of active pipes in the pipeline, and the degree of
application parallelism is quantified by the maximum amount
of parallel execution within one sensing task. Both are limited
by the available processing resources.
Challenges: The current literature does not explore the

impact of both pipelining and parallelism together on the
QoC of IBC implementation. Existing pipelined IBC imple-
mentations [8], [9] assume that the mapping is given, and
that each pipe is mapped to a unique resource without any
resource sharing between pipes. This is a restrictive imple-
mentation choice. Inter-frame dependencies, which are cru-
cial for practical implementation, are also not considered.
There are twomain challenges that are not explicitly explored
in the literature. First, how to model a multiprocessor IBC

system considering both pipelining and parallelism together?
The challenge in modelling is to explicitly consider work-
load variations, inter-frame dependencies and constant (often
periodic) control timing parameters τ and h. Second, how to
identify the optimal mapping of the sensing task on shared
processing resources that considers both pipelining and par-
allelism together and provides a tight analytical bound on
control timing parameters τ and h so as to optimise QoC.

In literature, pipelining and parallelism are captured by a
model-of-computation (MoC) such as synchronous dataflow
graphs (SDFG) [12]. Our approach needs aMoC that can cap-
ture the dynamic behaviours (scenarios) of the application,
can analyse timing and has support for platform-aware map-
ping analysis. We choose scenario-aware dataflow graphs
(SADFG) [13] as our MoC as it inherently supports mod-
elling scenarios and has tool support for timing analysis
and platform-aware mapping. Existing mapping analysis
tools [14], [15] typically assume that each node (subtask
or actor) in the graph is bound to one processing resource.
Pipelining involves (possibly) concurrent executions of sub-
tasks on multiple resources, with inter-frame dependencies
between actor instances. Moreover, control assumes careful
time-triggered execution of sensing and actuation tasks. All
these aspects can only be analysed after non-trivial graph
transformations (as e.g. exemplified in [16]).

Fig. 2 (c) illustrates an implementation of two pipes on
a shared platform allocation of two processors, with each
pipe having a parallelised sensing subtask. With parallelised
pipes but without resource sharing between pipes, we would
need four processors to achieve the same delay and period
as obtained in Fig. 2 (c). To integrally consider pipelin-
ing and parallelisation on a shared multiprocessor platform,
we need an efficient analysis to identify the optimal mapping.
The mapping should guarantee the required (often constant)
worst-case delay and period for the controller design.

The contributions of the current paper are as follows:
1) We extend the scenario- and platform-aware design

(SPADe) approach of [7] by considering pipelining
of the control loop and formalising the IBC system
modelling. The extended SPADe approach (as
explained in Sec. IV) integrally considers pipelin-
ing and parallelism for a multiprocessor IBC imple-
mentation. The state-of-the-art approaches focus on
either pipelining or parallelism. The exact problem
addressed is the following: For a given multiprocessor
platform allocation, identify the optimal design choice
for an IBC system considering both pipelining and
parallelism and explicitly considering image-workload
variations, inter-frame dependencies, resource sharing
between pipes and platform constraints. The optimal
design choice identifies the degree of pipelining and
degree of parallelism required for maximising the QoC
and is translated into system configurations that guar-
antee control timing parameters.

2) We propose model transformations for modelling,
analysing, and mapping the IBC system. The model

VOLUME 9, 2021 112333



S. Mohamed et al.: Optimising Multiprocessor IBC Through Pipelining and Parallelism

FIGURE 2. IBC implementations for worst-case image workload:
(a) Parallelisation of sensing; (b) Pipelining without resource sharing;
(c) Pipelining and parallelism together with resource sharing. Note:
1) Sensing task S is composed of image signal (pre-)processing (I),
regions-of-interest (RoI) detection D, RoI processing P, and RoI merging M
explained in Sec. IV-A1; 2) P0 and P1 are the two processing cores.

transformations for pipelined parallelism are the main
contribution. These transformations consider both
pipelining and parallelism together (as explained in
Sec. V). The model transformations allow us to relate
the dataflow timing (throughput and latency) analysis
to the key control timing parameters (h and τ ) and
to optimise the mapping while integrally considering
pipelining and parallelism along with workload vari-
ations, inter-frame dependencies and resource-sharing
between pipes. Implementation-aware model transfor-
mations for model-based design of IBC systems are not
considered in the existing literature.

3) We validate our approach using Matlab simulations
considering a predictable multiprocessor platform -
CompSOC [17] - and using hardware-in-the-loop (HiL)
experiments with an industrial heterogeneousmultipro-
cessor platform - NVIDIA AGX Xavier - considering
a lane-keeping assist system (LKAS).

The rest of the paper is organised as follows. Section II
explores the related work. Section III describes the multi-
processor IBC system implementation, the motivating case
study and the QoC metrics. Section IV details the SPADe
design flow. Section V introduces the model transformations
required for the SPADe design flow to analyse pipelined
parallelism. Section VI revisits the SPADe design flow and
precisely describes an algorithm using the model transfor-
mations and other considerations for pipelined parallelism.
Section VII explores the experimental results, the design-
space exploration (DSE), and compares SPADe with the
state-of-the-art multiprocessor IBC system implementations.
Section VIII presents the SPADe adaptation for an industrial
platform, the NVIDIA AGX Xavier, and validates the results
of our approach in a hardware-in-the-loop (HiL) setting.
Section IX concludes the work and suggests possible future
directions.

II. RELATED WORK
This work deals with an effective model-based design
flow for multiprocessor IBC implementation, considering

both pipelining and parallelism together. Relevant literature
deals with the questions: What are the relevant design
approaches for such embedded control problems? What
are the techniques for IBC system design to deal
with long delays in a feedback control loop? What
are the relevant IBC system modelling and analysis
techniques?

A. DESIGN APPROACHES
An IBC system is often designed based on the separation-
of-concerns principle between the control theory and embed-
ded systems disciplines [18], [19]. Co-design of control
and scheduling is another design paradigm explored in the
literature [20]. The emphasis is on platform-based design
methods that take into account platform resource con-
straints while designing the controller [18], [21]. Contract-
based design [22] is a platform-based design paradigm for
cyber-physical systems where the interactions between con-
trol theory and embedded design are defined based on
contracts.

From the embedded-systems discipline, a system-scenario-
based design approach [23] is proposed where different
behaviours (scenarios) of an application are explicitly con-
sidered to avoid over-dimensioning or sub-optimal perfor-
mance due to worst-case design. Identifying, characterising
and modelling these scenarios and dealing with the runtime
scenario transitions are specific for each application and
generally not trivial.

The SPADe scenario- and platform-aware design approach
for non-pipelined IBC systems is proposed in [2], [7]
where the concepts of the system-scenario-based design and
platform-based design methods for IBC are combined into a
co-design approach that jointly develops and optimises the
image-processing implementation and the controller design.
In this work, we extend the SPADe approach [7] by consider-
ing pipelining of the control loop along with parallelism and
formalising the IBC system modelling.

B. IBC SYSTEM DESIGN
The main challenge in designing an IBC system is to cope
with the long sensing delay. Control engineers tackle a
long delay using advanced state estimation [24], robust
design [25], predictive control [26], observer-based [27], and
multi-rate sampling [28] methods. These methods rely heav-
ily on the system model and are vulnerable to modelling
errors with longer delays. Embedded systems engineers aim
to reduce processing delay and period by parallel implemen-
tations of the algorithms using heterogeneous multiprocessor
platforms having specialised hardware such as GPUs [7],
[29] and FPGAs [30]. Pipelined control [8], [9] is another
approach targeting homogeneous multiprocessor implemen-
tations that reduce the effective sampling period without
changing the processing delay. However, both pipelining and
parallelism together for IBC systems implementation is not
explored in the current literature.
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C. IBC SYSTEM MODELLING
Model-based design [31], [32] approaches focus on design-
ing applications based on abstract models of application
and platform such that the implementation is guaranteed to
behave with predictable performance. Numerous models-of-
computation (MoC) are available in literature [13], [33]–[35].
Our approach does not depend on a specific MoC. It needs
a MoC that can capture the dynamic behaviours (scenarios)
of the application, can analyse timing and has support for
platform-aware mapping analysis. We choose scenario-aware
dataflow graphs (SADFG) [13] as our MoC as it inherently
supports modelling scenarios and has tool support for timing
analysis and platform-aware mapping. The graph transfor-
mations we propose in this work are, however, specific for
SADFG.

Existing literature does not model or explore the impact
of both pipelining and parallelism together on the QoC of
an IBC system. Inter-frame dependencies, e.g. due to video
coding [10] or visual tracking [11], and resource sharing
between pipes, which are crucial aspects for a practical IBC
system implementation, are also not explicitly considered in
the literature.

III. MULTIPROCESSOR IBC IMPLEMENTATION
We consider a typical setting for an IBC system as shown
in Fig. 1 (a) having the workload distribution as illustrated
in Fig. 1 (c). Themain sensor is a cameramodule that captures
the image stream. The image stream is then fed to an embed-
ded multiprocessor platform at a fixed frame rate per sec-
ond (fps), e.g. 60 fps and image arrival period fh given by
fh = 1/60 = 16.67 ms. The tasks include compute-intensive
image sensing and processing (S), control computation (C),
and actuation (A), which are then mapped to run on a
multiprocessor platform.

A. PLATFORMS UNDER CONSIDERATION
We consider a predictable and composable multiprocessor
system-on-chip (MPSoC) platform - CompSOC [17] for
illustrating the SPADe approach. CompSOC offers a tile-
based architecture [36] (see Fig. 3). Each tile has a proces-
sor Pi, memory M , communication assist CA and network
interface NI . Each processor tile has a microblaze processor,
the memory tile contains an external memory interface, e.g.,
DDRAM, and the NoC provides interconnection between
the tiles. The platform is predictable with tight bounds on
WCETs of tasks, and composable so that applications sharing
the platform do not interfere with each other. A scheduler
performs (re)configuration and time-triggered task execution.

Predictability and composability are usually not offered
in an industrial platform. We adapt our approach for the
industrial platform NVIDIA AGX Xavier [37] (illustrated
in Fig. 4) to demonstrate its applicability in an industrial
context [7]. It consists of a Xavier system-on-chip (SoC)
and other components explained in [37]. The CPU complex
consists of four heterogeneous dual-core NVIDIA Carmel

FIGURE 3. A CompSOC MPSoC platform with two processor tiles and a
memory tile connected through a NoC.

FIGURE 4. NVIDIA AGX Xavier platform block diagram. LPDDR4 and
eMMC are the memory blocks. Each CPU cluster also has internal
instruction and data memory (not shown in the graph).

CPU clusters based on ARMv8.2 with a maximum clock
frequency of 2.26GHz. The GPU with a maximum clock
frequency of 1.37GHz is accessed via the CPUs in the SoC.
The Ubuntu 18.04 LTS OS runs on the CPU platform.

B. CONTROL SYSTEM AND EMBEDDED
IMPLEMENTATION
We consider a linear time-invariant (LTI) feedback control
system model for IBC given by:

ẋ(t) = Acx(t)+ Bcu(t), y(t) = Ccx(t)+ Dcu(t), (1)

where x(t) ∈ Rn represents the state vector, y(t) ∈ R contains
the measured output and u(t) ∈ R represents the control
input of the system at any time t ∈ R≥0. Ac, Bc, Cc and Dc
represent the system, input, output and feedforward matrices
of appropriate dimensions.

A typical implementation of an IBC system involves the
execution of three sequential tasks: sensing and process-
ing (S), control computation (C) and actuation (A). These
tasks repeat; let the start and finish times of the k-th instance
of these tasks, Sk , Ck , and Ak , be given by ts(.) and tf (.),
respectively. The execution times of Sk , Ck , and Ak are then
given by ekT = tf (T k ) − ts(T k ), where T ∈ {S,C,A}. The
interval between the starts of two consecutive executions of
sensing tasks Sk and Sk+1 is the sampling period hk for the
k-th instance. In addition, the time interval between the start
time of Sk and finish time of Ak is the sensor-to-actuator
delay τ k for the k-th instance.

hk = ts(Sk+1)− ts(Sk ), τ k = tf (Ak )− ts(Sk ). (2)

A sensing operation typically takes a much longer time
than the other two operations, i.e., eS � eC + eA, where
eS , eC and eA are the worst-case execution times of tasks S,
C , and A, respectively. Due to platform constraints or image-
workload variations, hk and τ k might vary. However, for a
typical controller implementation, we need to guarantee a
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FIGURE 5. LKAS dynamics model derived from [38].

constant (worst-case) delay τ and sampling period h. As such,
we consider a time-triggered implementation of tasks S, C
and A. We assume that the start of sensor-data processing is
aligned with the camera frame arrival, i.e., h is an integer mul-
tiple of fh. Also, the control computation task and actuation
task are delayed, if needed, to guarantee a constant τ such
that ts(Ck ) = ts(Sk )+ τ −eC −eA, and ts(Ak ) = ts(Ck )+eC .
For a non-pipelined implementation (see Fig. 2 (a)), τ ≤ h,

i.e., ts(Sk+1) ≥ ts(Sk ) + τ . For a pipelined implementation
(see Fig. 2 (b), (c)), τ > h, i.e. ts(Sk+1) < ts(Sk ) + τ . With
sensor-to-actuator delay τ and a zero-order-hold mechanism
with sampling period h ∈ R, u(t) becomes piecewise constant
in the intervals t ∈ [kh+ τ, (k + 1)h+ τ ] for k ∈ Z≥0.
The main challenge here is to compute tight τ and h for a

multiprocessor IBC implementation. Identifying the optimal
mapping that guarantees a constant τ and h, considering both
pipelining and parallelism together, is non-trivial.

C. MOTIVATING CASE STUDY: LKAS
We illustrate our work using the motivating case study of a
lane keeping assist system (LKAS). We consider the bicycle
model derived from [38] (illustrated in Fig. 5) for simulating
the LKAS of a vehicle1 on a straight road and it is described
as follows,

Ac =


−
cf+cr
mvx

−mv2x+cr lr−cf lf
mvx

0 0
−lf cf+lr cr

Iψ vx
−
l2f cf+l

2
r cr

Iψ vx
0 0

−1 −L 0 vx
0 −1 0 0

 ,
Bc =

[
cf
m

lf cf
Iψ

0 0
]>
,

Cc =
[
0 0 1 0

]
,

Dc = 0,

where, referring to Fig. 5, we define the state vector x(t) =
[vy, ψ̇, yL , εL], themeasured output y(t) as yL , and the control
input u(t) as the steering angle δf , where ψ̇ is the vehicle’s
yaw rate in rad/s, where the velocity components vx and vy
are in m/s, where lf , lr (= 1.22 and 1.62 m respectively)
denote distance of the front and rear axles from the center of
gravity (CoG), where Iψ (= 2920 kg·m2) is the total inertia of
the vehicle around its CoG, where cf , cr (= 1.2× 105 N/rad)
denote cornering stiffness of the front and rear tires, and
where the total mass of the vehicle is m (= 1590 kg).

1The vehicle parameters are those specified in [38] for Honda Accord.

D. QUALITY-OF-CONTROL (QoC) METRICS FOR CONTROL
STABILITY AND PERFORMANCE
We evaluate the QoC of our IBC system design choices by
considering stability and performance. Stability margins -
gain and phase margins [39] - quantify the control stability
and give an analytical basis to compare two different IBC
system design choices and thus allow us to identify the opti-
mal degree of pipelining and application parallelism. Once
we make a choice, we can further optimise the controller with
respect to performance, consideringmean square error (MSE)
and settling time (ST).

The gain margin and phase margin quantify the additional
gain and phase lag that makes the system marginally stable.
Systems with greater stability margins can withstand greater
changes in system parameters before becoming unstable.
Gain margin and phase margin are computed analytically
from the system model. On the other hand, MSE and ST can
be analysed only through simulations.

1) GAIN MARGIN (GM)
The GM is defined as the change in open-loop gain expressed
in decibels (dB), required at 180 degrees of phase shift to
make the system unstable. The GM is the difference between
the magnitude curve and 0dB at the point corresponding to
the frequency that gives us a phase of -180 degrees (the phase
cross-over frequency).

2) PHASE MARGIN (PM)
The PM is the change in open-loop phase shift required
at unity gain to make a closed-loop system unstable. The
PM is the difference in phase between the phase curve
and -180 degrees at the point corresponding to the fre-
quency that gives us a gain of 0dB (the gain cross-over
frequency).

The control performance quantifies, in essence, how fast
the output y(t) reaches the reference rref . The control perfor-
mance can be tuned in the cost function for the control gains’
design using the state and input weights [2].

3) MEAN SQUARE ERROR (MSE)
The MSE is the mean of the cumulative sum of the squared
errors, i.e.:

MSE =
1
n

n∑
k=1

(y[k]− rref )2

where n is the number of observations, y[k] is the value of the
k th observation and rref is the reference value. A lower MSE
implies a better QoC.

4) SETTLING TIME (ST)
The settling time is defined as the time required for the output
y(t) to reach and stay within a range of a certain percentage
(usually 5% or 2%) of the final (reference) value rref forever
without external disturbances.

112336 VOLUME 9, 2021



S. Mohamed et al.: Optimising Multiprocessor IBC Through Pipelining and Parallelism

FIGURE 6. Overview of our SPADe design flow. W is the set of varying
workloads and wi , Gb

i , τi , hi ,Ki and Fi are the workload, binding-aware
graph, sensor-to-actuator delay, sampling period, feedback gain and
feedforward gain for a workload scenario si (determined by wi ∈W );
Gb

s , τs, hs,Ks and Fs are the corresponding parameters for an identified
system scenario ss (that abstract multiple workload scenarios). fh is the
camera frame arrival period, fd is the inter-frame dependence time, p is
the number of pipes for pipelining, n//c is the number of cores allocated
for parallelism per pipe, and navl

c is the total number of available cores.

IV. SPADe DESIGN FLOW
We present a scenario- and platform-aware design flow
(SPADe) for IBC systems extending the approach presented
in [7] by considering pipelining along with parallelism and
formalising the IBC system modelling. An overview of our
SPADe approach is illustrated in Fig. 6, summarised below
and explained in detail in subsequent subsections.

1) Formal modelling of the IBC system: An IBC appli-
cation is captured as an IBC SADFG considering
workload variations W and the platform as a platform
graph. Further, an implementation-aware IBC SADFG
captures the given design parameters - camera frame
arrival period fh, maximum number of allowed pipes p,
maximum allocated available cores navlc and allocated
processing cores for parallel execution per pipe n//c .
The design parameters fully determine the implemen-
tation choice - non-pipelined without parallelism, non-
pipelined with parallelism, pipelined without paral-
lelism and pipelined with parallelism. The parallelism
here refers to the parallel execution of sensing subtasks
limited by the degree of parallelism of the IBC applica-
tion. Graph transformations are proposed to obtain the
implementation-aware SADFG.

2) Analysis and design: We map the implementation-
aware IBC graph for each workload wi ∈ W to the
platform graph to obtain the binding-aware graph Gbi
for that specific workload using the SDF3 mapping
flow [36]. Gbi is an SDFG that models the map-
ping of the implementation-aware graph to the plat-
form graph. The mapping binds each actor in the
SDFG to a processing core in the platform graph.
For the ordering of execution of actors bound to
the same core, a static-order schedule is encoded in

the SDFG. A throughput and latency analysis of Gbi
yields the sensor-to-actuator delay τi, and sampling
period hi. For a pipelined implementation, the through-
put analysis of the worst-case image-workload scenario
allows to compute the inter-frame dependence time fd
(as explained later in Section VI-D1). If fd > hi,
the implementation-aware graph is updated with the
realisable period and τi and hi are recomputed. The
controllers are then designed for the resulting (τi, hi)
to obtain the controller feedback and feedforward gains
(Ki, Fi). Trying to cater to the designed workload
scenarios at runtime means that we have a switching
system. A switching system with too many switch-
ing states is challenging for controller stability and
may result in poor performance. Hence, we aggregate
multiple workload scenarios with similar control tim-
ing parameters as a system scenario. A system sce-
nario ss abstracts multiple workload scenarios and has
a constant (τs, hs) during implementation. A system
configuration is defined as the combination of map-
ping and controller configurations, i.e. Gbs , τs, hs, Ks,
and Fs (as explained later in Section IV-B4). Typi-
cally, there are a few identified system scenarios, and
the idea is that switching between the system sce-
narios at runtime guarantees stability and improved
performance. For pipelined parallelism, a design-space
exploration (DSE) using the SPADe flow needs to be
performed by varying the design parameters to iden-
tify the best implementation choice (parameters p, n//c ,
further explained in Section VII-A).

3) Runtime implementation: The system configurations
for the implementation choice are stored in a look-up
table (LUT) in platformmemory for the runtime imple-
mentation. Dynamic runtime reconfiguration may be
needed since there can be a switching behaviour
between system configurations due to image-workload
variations.

A. FORMAL MODELLING
An IBC application is captured as an IBC graph considering
workload variations and the platform as a platform graph.
Further, an implementation-aware IBC graph is created con-
sidering the design parameters (the number of pipes p, allo-
cated processing cores for parallel execution per pipe n//c and
camera frame arrival period fh).

1) IBC GRAPH AND IMPLEMENTATION-AWARE GRAPH
The IBC graph and implementation-aware graph are mod-
elled using an SADFG. Graph transformations to obtain an
implementation-aware graph from the IBC graph are different
for the different implementation choices and, as such, are
explained in later sections. We choose SADFG [13] as the
formal MoC for our application as it enables us to: i) model
dynamic behaviour and dependencies, analyse timing, and
optimally map application (sub)tasks to the platform for
maximising the effective utilisation of allocated resources;
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FIGURE 7. IBC SDFG: (a) graph structure. The rates z indicate the
workload w . (b) Implementation-aware graph for non-pipelined
implementation on two cores (given platform allocation).
(c) A (simplified) binding-aware graph for non-pipelined implementation
on two cores for a workload of 6 RoI.

ii) relate latency and throughput of the data flow graph to the
control timing parameters τ and h, and thus combine data
flow analysis and mapping with control design parameters
and QoC; iii) analyse inter-frame dependencies (captured as
inter-frame dependence time fd ) through graph transforma-
tions (as explained in Sec. V); and iv) to efficiently imple-
ment a runtime mechanism that manages necessary dynamic
reconfiguration.

Following the formalisation of [40], an SADFG (see
Fig. 7 (a)) is a tuple (6, F), where
• 6 = {si | si = (wi,Gi), wi ∈ W } is a set of
scenarios being a set of pairs of workloads wi and their
corresponding synchronous data flow graphs (SDFGs)
Gi;

• the (ω-)language F describes a set of infinite scenario
sequences represented using ω-regular expressions of
scenarios si ∈ 6.

We assume that workloads are totally ordered, i.e., for any
two workloads wi and wj, either wi ≤ wj or wj ≤ wi.
An SDFG [12] is a tuple G = (A, C, e, rp, rc, i) where
A is a finite set of actors, C ⊆ A2 the set of channels,
e : A → R≥0 returns for each actor its associated firing
delay or execution time, rp : C → N>0 is a partial function
that returns for each channel its production rate, rc : C →
N>0 is a partial function that returns for each channel its
consumption rate, i : C → N0 returns for each channel
its number of initial tokens. Actors of an SDFG may fire,
consuming and producing tokens according to the specified
consumption and production rates.

A repetition vector ρ of an SDFG G is a function ρ :
A −→ N0 such that for every channel c = (am, an) ∈ C,
rp(c) × ρ(am) = rc(c) × ρ(an). A repetition vector ρ for an
SDFG G is called non-trivial iff for all am ∈ A, ρ(am) > 0.

An SDFG is called consistent iff it has a non-trivial repetition
vector. For a consistent SDFG, the unique smallest non-trivial
repetition vector is designated as the repetition vector ρ of
the SDFG. An SDFG iteration is a minimal non-empty set of
actor firings that has no net effect on the token distribution in
the graph. For a consistent SDFG, for all am ∈ A, the set
contains ρ(am) firings of am. For the scope of this work,
we assume that the IBC graph, which is an SADFG, can only
have consistent SDFGs and the SDFGs are deadlock-free.
These assumptions can be checked efficiently and are valid
as any SDFG which is inconsistent or deadlocks is not useful
in practice.

The SADFG for our example IBC system is visualised
in Fig. 7 (a). The sensing and processing task receives
the RAW camera image frames, which are processed in a
sequence of steps to extract the state information required for
the controller. The image-signal (pre-)processing (I) subtask
converts the RAW image in the Bayer domain to pixels in
the RGB domain. (Sub-)tasks translate to actors in the data
flow graph, shown as circles in the figure. Data dependencies
between (sub-)tasks translate to channels, shown as arrows.
After the image processing, we detect the regions-of-interest
(RoI) in the RGB image frames (D). RoI are processed (P),
and, subsequently, the controller state (the lateral deviation
yL in our LKAS case study) is computed by the RoI merg-
ing (M) subtask. The control algorithm (C) then computes
the controller input u[k] (steering angle δf in our LKAS case
study) and feeds it to the actuation (A) task.

The total number of RoI detected by D determines the
workloadwi, i.e.,wi = z in Fig. 7 (a). Note that the workloads
here are totally ordered as it is related to the number of RoI.
z is the production rate of the channel from actor D to actor P,
and, correspondingly, the consumption rate of the channel
from actor P to actor M. Rates are annotated with the chan-
nels, where rates of 1 are not shown explicitly. The workloads
translate to variable token production and consumption rates
in the graphs.

Graph transformations are required to analyse the parallel
and/or pipelined implementations. This is, among others,
because the typical mapping analysis tools assume that one
actor can be bound to only one processing core. Fig. 7 (b)
shows an implementation-aware graph for a non-pipelined
parallelised implementation on two processors. It has two
actor instances of the P subtask. The workload wi = z1 + z2
in this case.

Each workload wi in an SADFG is associated with an
SDFG Gi. An SDFG instance of Fig. 7 (b) is obtained by
assigning values to parameters ej (the actor execution times)
and zk . E.g., assigning z1 = 3, z2 = 3, ei = 10, ed = 5,
ep = 10, em = 3 × (z1 + z2) = 18, ec = 1, ea = 1
gives the SDFG for a workload of 6 RoI for mapping to
two processors. There is one (labelled) initial token t1 in the
channel from actor A to I. This channel, with its single initial
token, enforces a non-pipelined execution of the control loop.
All actors in Fig. 7 (a) have repetition-vector entries of 1,
except actor P, which as a repetition-vector entry z; and all
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actors in Fig. 7 (b) have repetition-vector entries of 1, except
the two P instances that have entries z1 and z2 respectively.
Fig. 7 does not show the language of allowed sce-

nario sequences. In the LKAS case, all possible workload
sequences are allowed.

2) PLATFORM GRAPH
A platform, e.g. the CompSOC MPSoC shown in Fig. 3,
is modelled as a platform graph that captures processing
resources, and other relevant aspects such as memories and
connections, with their processing and access latencies, data
rates, etc. The details needed for the model depend on the
used mapping flow. For the sake of explaining SPADe,
we assume the platform is simply abstracted as a set of tiles.
A tile Ti abstracts a resource with the processor type pti that
determines the execution time of actors bound to the tile.
The CompSOC instance shown in Fig. 3 has three tiles. Two
of these tiles have a microblaze processor type. The third
tile is a memory tile that does not play a role in further
explanations. Also, the connections are abstracted for the sake
of simplicity. Hence, the platform is abstracted as a 2-node
platform graph without any connections. Note that the used
SDF3 mapping flow does support the modelling of memories
and connections, including their timing, and takes these into
account in the mapping optimisation.

A platform allocation determines the resources that are
allocated to a task or to an application. Resources that are
allocated may include the number of tiles or processors,
or parts of processors (e.g. slots in a time-division multiplex-
ing (TDM) frame in CompSOC), and types of processors,
e.g. GPU, ARM, and microblaze. For our running LKAS
example, an allocation consists only of the number of tiles
of a specific processor type.

B. ANALYSIS AND DESIGN
We map the implementation-aware IBC graph for each
workload wi ∈ W to the platform graph to obtain the
binding-aware graph Gbi (further explained below) using the
SDF3 mapping flow [36]. A throughput and latency analysis
of Gbi yields the control timing parameters τi and hi for
the workload scenario si. Controllers are designed for each
workload scenario si using the computed timing parameters
(τi, hi) to obtain the controller feedback and feedforward
gains (Ki, Fi). System-scenario identification is then per-
formed to identify the set of system scenarios for runtime
implementation. For a pipelined implementation, inter-frame
dependence time fd (as explained in Section VI-D1) is also
computed using the throughput analysis.

1) SYSTEM MAPPING AND MAPPING CONFIGURATIONS
Systemmapping refers to the mapping of the IBC application
(modelled as an SADFG) to the given platform (modelled as
a platform graph). Note that for each workload scenario si,
we can have multiple mapping options for the given plat-
form allocation. The throughput and latency of each of these
mapping options would be different. The concrete problem

is to find the mapping of si to the given platform allocation
that maximises throughput. Any design flow that does the
(Pareto-)optimal mapping of an application to a platform
while maximising throughput can be used.

We use the SDF3 mapping flow [14] as it optimises the
resource usage, memory load and communication load for
mappings (to the extent that these aspects are considered in
the models), and embeds state-of-the-art throughput analysis
techniques. Mapping an si (modelled as an SDFG Gi) to a
platform graph generates a binding-aware SDFG Gbi . G

b
i is an

SDFG that models the mapping of the implementation-aware
graph to the platform graph, where each actor in the SDFG
is bound to a tile in the platform graph. For the ordering
of execution of actors bound to the same tile, a static-order
schedule is encoded in Gbi .

Fig. 7 (c) shows a simplified binding-aware graph for the
6-RoI workload scenario of the running example, bound to
two tiles. It encodes two static-order schedules: IDP3MCA
for one iteration of the graph on one core and P3 for one
graph iteration on the second core. Self-loops with a single
token need to be added to the two parallelised P actors to
model the binding of the actor to a particular core and to
enforce sequential execution of the P firings on each of the
two cores. This suffices to encode the schedules. The graph is
simplified in the sense that SDF3 encodes many more aspects
in the binding-aware graph, such as memory accesses and
interprocessor communication.

A mapping configuration χmsi refers to the binding of si
to the platform and its execution schedule represented in a
binding-aware SDFG. The SPADe flow tries to minimise the
number of cores used even if a given number of cores is allo-
cated. This happens naturally when wemap our SDFGs to the
platform using the SDF3 tool, as SDF3 gives a Pareto-optimal
mapping that minimises utilisation.

2) TIMING ANALYSIS - COMPUTING fd , τi AND hi
The computation of inter-frame dependence time fd is spe-
cific for pipelined implementation and is explained later in
Section VI-D1. In this subsection, we explain how we com-
pute the throughput and latency of the SADFG and relate
it to the control timing parameters τi and hi for a workload
scenario si. Note that the state-of-the-art SADFG analysis
uses (max, +) algebra [41] and the definitions needed for
the computation of throughput have already been explained
in [7]. In this subsection, we summarise the relevant defini-
tions for our analysis. For detailed explanations, the reader is
referred to [40].

A time-stamp vector γ0 captures the availability times
the initial tokens. The production times of the final tokens
resulting from the execution of a scenario s are then γ1 =
Gsγ0, where Gs is the scenario (or state) matrix of s.
For the binding-aware scenario SDFG corresponding to
6 RoI, introduced in Fig. 7 (c), γ0 = [0 0 0]T . That is,
the three initial tokens are all available at time 0. Scenario
matrix Gs captures the dependencies and corresponding
delays between the initial and final tokens. For the running
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example, Gs equalsei+ed + 3ep + em + ec + ea em + ec + ea em + ec + ea
ei + ed + 3ep 3ep −∞

ei+ed+3ep −∞ 3ep


Entry ij in this matrix contains the time delay from con-

suming token tj to reproducing token ti in one iteration of the
graph. The top left entry thus indicates the delay to reproduce
the final token t1 on theA-I channel. The two 3ep entries show
that the three firings of the two P actors are sequentialized.
The two−∞ entries indicate that the two self-loop tokens of
the two P actors, t2 and t3, are independent. The other entries
capture the delay from t1 to the self-loop tokens t2 and t3 and
the delay from t1 to t2 and t3.
With the concrete actor execution times given earlier, this

results in the following concrete matrix:65 50 50
45 30 −∞
45 −∞ 30


The production times after execution of scenario s are

then obtained from γ1 = Gs [0 0 0]T = [ max(65, 50, 50)
max(45, 30,−∞) max(45,−∞, 30)]T = [65 45 45]T . Note
that the matrix multiplication in this analysis is the (max, +)
matrix multiplication. The analysis shows that the three
tokens in the binding-aware graph of Fig. 7 (c) are reproduced
after 65, 45, and 45 time units, respectively.
Gs is used to determine the evolution of any scenario

sequence. The final tokens of one scenario execution are the
initial tokens of the next scenario execution. E.g., if sω is the
infinite repetition of scenario s, then the production times
of the tokens after the execution of the k th scenario in the
sequence is given by:

γk = Gsγk−1 = Gks γ0

For all scenarios s ∈ 6, we can construct Gs ∈ Ri(s)×i(s)
−∞

following the procedure of [42]. Here, i(s) is the total number
of initial tokens (in all channels) for scenario s and R−∞ =
R ∪ {−∞} is the domain of (max, +) algebra.
Further, we need to analyse the production times of

outputs, i.e., the relevant information produced, during the
execution of a scenario sequence. Let the function m : 6 →
N ∪ {0}map each scenario to the number of outputs produced
in that scenario. The output production times of the scenario
sequence sω can be computed as,

pk = Hsγk = HsGks γ0 (3)

where pk are the times at which the outputs in the (k + 1)th

iteration are produced and whereHs ∈ Rm(s)×i(s)
−∞ is the output

matrix of the scenario s that captures the relation between the
state vector and the production times of them(s) outputs. Note
that the first output production times are given by p0. The
Hs matrices can be computed in a similar way as the state
matrices.

For the LKAS scenarios, the output is produced by the
actor A, meaning that the output production time is equal

to the production time of the token on the channel from A
to I. This means that Hs = [65 50 50], corresponding to the
first row of Gs, and the production time of the first output
p0 = [65 50 50] [0 0 0]T = [65].
The throughput of an SADFG for an infinite scenario

sequence s̄ is defined as follows.

ν(s̄) = lim
n→∞

sup

∑n
i=1m(s̄i)∥∥γn∥∥ (4)

where s̄i refers to the ith symbol in sequence s̄ (a scenario),
and

∥∥γn∥∥ is equal to the maximum entry in the vector γn.
Latency is the maximum (worst-case) time taken to com-

plete one iteration. Given an initial state γ0, the latency of a
scenario sequence s̄ relative to a period µ is defined as

L(s̄, γ0, µ) = max
k≥0

pk − µk (5)

For the infinite execution of the 6-RoI scenario SDFG of
Fig. 7 (c), the throughput is 1

65 and the latency, relative to the
period equalling the inverse of the throughput, is 65. We omit
the details of the computation, referring the reader to [40]. But
the results should not be surprising given the timing analysis
of the scenario execution given earlier. Note that the inverse
of throughput and latency are equal in this case due to the
model with one initial token on the A-I channel that enforces
the non-pipelined execution of the SDFG. We exploit such
modelling tricks in our model transformations for mapping
and pipelined implementation (as explained in later sections).

The sensor-to-actuator delay τi and the sampling period
hi for the workload scenario si that we need for controller
design are computed from the binding-aware graph Gbi that is
obtained frommapping the implementation-aware graph onto
the allocated resources (as explained earlier and elaborated in
Section VI). The two values are computed as follows.

τi = L(sωi , 0, 1/ν(G
b
i )), hi =

⌈
τi

fh × p

⌉
fh, (6)

where 0 is the zero vector, fh is the camera frame arrival
period, and p is the number of pipes in the pipelined par-
allelism implementation. The delay τi of scenario si is the
latency of executing that scenario repetitively after mapping
it onto the platform, with respect to the throughput obtained
from that mapping and assuming that initial tokens are avail-
able at time 0. For the computation of the effective frame
processing period hi,

⌈
τi
fh

⌉
computes the number of frame

periods within the time-interval τi. By dividing by the number
of pipes p, rounding up, and multiplying with the frame
period fh, one obtains the effective sampling period for the
particular scenario implementation. For the infinite execution
of the 6-RoI scenario SDFG of Fig. 7 (c), assume fh = 1

60 s
and p = 1. Then, τi = 65 ms, in line with the earlier latency
analysis, and hi = 66.7ms. Further details on how the SPADe
flow uses τi and hi are provided in Section VI.

3) CONTROLLER DESIGN AND CONTROL CONFIGURATIONS
The LKAS case study we consider is a single input single
output (SISO) system. We discretize the IBC system model
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in Eq. 1 using (τi, hi), computed for the binding-aware SDFG
Gbi for the workload scenario si. Let p be the number of pipes
used in the implementation (as reflected in the binding-aware
graph), where non-pipelined implementation corresponds to
p = 1. We assume that u[−1] = 0 and define new sys-
tem states z[k] =

[
x[k] u[k − (p− 1)] · · · u[k − 1]

]T with
z[0] =

[
x[0] 0 · · · 0

]T to obtain a higher-order augmented
system as follows:

z[k + 1] = Aaug,siz[k]+ Baug,siu[k],

y[k] = Caugz[k]+ Dcu[k], (7)

where Aaug,si , Baug,si , and Caug are augmented system matri-
ces. The computation of Aaug,si , Baug,si , and Caug varies for
the non-pipelined and pipelined implementation choices and
as such is explained in the later sections. A check for control-
lability [43] is done for the augmented system. If the system
is not controllable, controllability decomposition is done to
obtain a controllable subsystem.

We can then apply standard control-design techniques [43]
for the augmented system models in Eq. 7. We use a state-
feedback controller u[k] of the following form:

u[k] = Kiz[k]+ Firref (8)

where Ki is the state-feedback gain and Fi is the feedforward
gain both designed for the workload scenario si. rref is the
constant reference value for the controller.

We design the gains using the optimal linear quadratic
regulator (LQR) [43]. A detailed explanation of how we
design the gains for our setting is given in [2]. Note that
any other state-of-the-art control-design technique can also
be used for designing these gains. For each workload sce-
nario si, we then define a control configuration χcsi as a tuple
χcsi = (hi, τi,Ki,Fi).

4) SYSTEM-SCENARIO IDENTIFICATION, SYSTEM
CONFIGURATIONS AND STABILITY
System-scenario identification is done to limit the number
of switching scenarios during runtime implementation. It is
possible for multiple workload scenarios to have the same
sensor-to-actuator delay and/or sampling period due to imple-
mentation constraints like platform allocation and camera
frame rate [2].

For the non-pipelined implementation, a system scenario
ss abstracts multiple workload scenarios si such that for
hs = n × fh, for frame arrival period fh and some n > 0,
(hs− fh) < hi ≤ hs. That is, we aggregate workload scenarios
based on hs. Then, for the aggregated workload scenarios si,
we choose τs to be the maximum among the τi. Gbs , Ks and Fs
are then re-designed for the (τs, hs) identified for the system
scenarios ss. We design Gbs by assigning τ = τs and h = hs to
the corresponding implementation-aware graph and verifying
the existence of a mapping that satisfies τs and hs. A control
configuration χcss = (hs, τs,Ks,Fs) is then derived following
the approach outlined earlier for workload scenarios. Only

system scenarios are then considered for defining the sys-
tem configurations χ sss , which is a combination of control
configuration χcss and mapping configuration χmss , i.e., χ

s
ss =

(Gbs , hs, τs, Ks, Fs). The system-scenario identification for
pipelined implementation is explained in Section VI-D3.

At runtime, the system scenarios switch based on the
image-workload variations and/or platform load. This switch-
ing behaviour can lead to system instability. Therefore,
we must guarantee stability of the overall system while
improving Quality of Control (QoC).
Theorem 1 (Stability Criterion [39]): Consider Aaug,ss for

all system scenarios ss to be discrete-time LTI systems.
V (z) = zTPz is the Common Quadratic Lyapunov Func-
tion (CQLF) of the systems Aaug,ss if there exist P = PT > 0,
Q = QT > 0 and P is the simultaneous solution of the
discrete-time Lyapunov equations,

ATaug,ssPAaug,ss − P = −Q < 0. (9)

The existence of a CQLF is a sufficient condition for the
stability of a system with switching subsystems.

We transform the stability condition of Eq. 9 into Linear
Matrix Inequalities (LMIs) to verify the existence of a CQLF.
The analysis equation, Eq. 10, is obtained by performing
the following operations: i) substitute Aaug,ss in Eq. 9 with
Aaug,ss = Aaug,ss + Baug,ssKs, ii) apply Schur complement,
iii) left- and right- multiplication by diag(P−1, I ), and iv) set
Q = P−1.[

−Q QAT∗ + QK
T
s B

T
∗

A∗Q+ B∗KsQ −Q

]
< 0, Q > 0 (10)

where A∗ = Aaug,ss , B∗ = Baug,ss for each scenario ss. If a
solution exists, then the switching subsystems are stable. The
choice of system scenarios (particularly the τs and hs) needs
to be modified if a solution does not exist.

C. RUNTIME IMPLEMENTATION
At design time, the system configurations χ sss are stored in
a look-up table (LUT) in platform memory. During runtime,
for every arriving input image frame, we compute the work-
load wi (e.g. through the RoI detection task D) and choose
the correct system scenario ss associated with this workload
from the LUT. System configuration χ sss of the correspond-
ing system scenario ss is loaded from the LUT. Dynamic
runtime reconfiguration is typically needed since there can
be a switching behaviour between system configurations
due to image-workload variations. For the non-pipelined
implementation and the pipelined implementation without
resource sharing between pipes, dynamic runtime reconfig-
uration means that, if needed, a scheduler reconfigures the
mapping Gbs , the time-triggering of the actuation task (that
determines τs) and the controller gain parameters (Ks and Fs)
based on the system scenario ss associated with the image
workload from the LUT. The overhead cost for this reconfig-
uration needs to be considered in the analysis model, e.g., for
the LKAS example, as an additional execution time cost in
the actor D (see Fig. 7).
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Arbitrary switching and reconfiguration in the pipelined
implementation are challenging. Let p be the number of pipes,
and hs be the periods per system scenario. If we restrict hs
to be a multiple of fh, the number of periods possible due
to arbitrary switching considering image-workload variations
only grows linearly with fh and p. However, if we do not
restrict hs and allow it to take arbitrary values, the number
of periods possible grows exponentially. E.g. assume that we
have three periods h1 (= fh for workload w1), h2 (= 2fh for
workload w2), and h3 (= 3fh for workload w3) due to image-
workload variations. For simplicity, let us assume that τs = hs
and a given three-core platform allocation with three pipes.
Consider the case shown in Fig. 8 where the image frames
k, k+1, . . . , k+ i have workload w3, w2, w1, w3, w1, w3,

and so on. When multiple control computations complete
at the same time, e.g., just before frame k + 3 is captured,
the actuation should be coordinated among the cores. Further,
the controller for the image frame k + 4 should ideally be
designed using the discretized model considering h1 = fh
if the period is defined as the time between two consecutive
starts of the sensing task. However, it should also take into
account that there was no actuation just before this, i.e., the
previous actuation was at the time t − 2fh. So, if the period
was defined as the time between two consecutive actuations,
then the period for the controller for the frame at k + 4 is 2fh.
A similar situation exists for frame k + 5. Such behaviours
add to the complexity of the design space to be explored. The
main challenge, however, is proving the stability of the ensu-
ing switched system with these behaviours. Also, modelling
these behaviours for the control design is far from trivial.

FIGURE 8. Challenges in pipelined implementation due to switching
when hi is a multiple of fh.

For the scope of this work, we enforce a constant sampling
period heff for the overall pipelined implementation. A con-
stant sampling period helps to limit the design space to be
explored and handle the dynamic reconfiguration with less
runtime overhead. As explained, the sensor-to-actuator delay
τs is constant per identified system scenario ss. Consequently,
two system scenarios s1 and s2 have the control timing param-
eters (heff , τ1) and (heff , τ2).
A similar challenge exists for a pipelined implementation

with resource sharing between pipes, where reconfiguring
the mapping dynamically is non-trivial. Resource sharing
between pipes increases the design space to be explored
for considering the possible reconfiguration options. For the
scope of this work, dynamic reconfiguration for pipelined
implementation with resource sharing between pipes com-
prises a static mapping where actors are switched on and
off considering image workload variations, and choosing
the controller gains dynamically from the LUT by the

control-computation task based on the system scenario con-
sidering the latest state measurement available.

The SPADe flow is not restricted to the mentioned design
and implementation choices. Its key feature is that pipelining
and parallellism are integrally considered. As we will see,
this provides benefits in the achievable QoC. Other controller
design and implementation choices can be integrated as long
as appropriate timing analysis and stability guarantees can be
provided.

V. MODEL TRANSFORMATIONS
This section explains the model transformations required
for modelling, analysing, and mapping the IBC system
using SADFG. The model transformations are required
to obtain the implementation-aware IBC graph from the
IBC graph for the given design parameters, as illustrated
in Fig. 6. Our model transformations consist of maximis-
ing parallelism, creating a pipe, replicating pipes to imple-
ment pipelining, introducing camera-awareness, introducing
workload-awareness, modelling inter-frame dependencies,
and re-timing of actor execution times. For each workload
scenario, we assume that the sensing and processing task is
modelled as an SDFG GS , the control computation task is
modelled as an SDFG GC , and the actuation task is modelled
as an SDFGGA. The graphsGS , GC , andGA should have iden-
tifiable source and sink actors asrc,i and asnk,i, i ∈ {S,C,A}.
A source is an actor without any incoming edges and a sink
is an actor without any outgoing edges. We moreover enforce
that ρ(asrc,i) = ρ(asnk,i) = 1. Having identifiable source and
sink actors with repetition-vector entries equal one ensures
well-formedness for our model transformations. Note that
an SDFG with a single actor satisfies the assumptions. The
source and sink actors should be identical across all workload
SDFGs in an application IBC SADFG.

Tomaximize opportunities to speed up the computations in
the control loop, we want to maximize parallelism in graphs
GS , GC , and GA. Automatically extracting task- and data
parallelism in computations is challenging. So, in general,
it is up to the designer to maximize parallelism in the three
mentioned graphs. But given an SDFG of a workload sce-
nario, it is possible to maximize data parallelism by trans-
forming the SDFG to a homogeneous SDFG (HSDFG) [12],
[44]. Essentially, this transformation replicates actors with a
repetition-vector entry greater than one into multiple actors
(as many as the repetition-vector entry of the actor for
the SDFG) with each a repetition-vector entry one in the
HSDFG. A platform-aware mapping such as implemented in
the SDF3 tool [14] then clusters actors of the HSDFG per
processor in the given platform allocation for maximising
throughput. A disadvantage of this approach, however, is the
scalability of the mapping and performance analysis that
depends on the number of actors.

Another option is to replicate the parallelisable actors as
many times as meaningful given the platform allocation. That
is, we transform an SDFG G via a transformation RepA(G, ϕ)
that preserves the number and timing of firings in a single
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FIGURE 9. Examples of the replicate actors RepA transformation. The
Gantt charts cover one iteration of the corresponding graph and assume
actor execution times to be 1. Subscripts resulting from RepA
transformations are omitted for brevity.

iteration of the original graph G in the transformed graph,
where ϕ is the replication vector with size equal to the number
of actors in G and where each element ϕ(a) represents the
number of times an actor a needs to be replicated. A straight-
forward replication vector can then be defined using the
repetition vector ρ and the maximum number of processing
cores allocated for parallel execution of tasks per pipe n//c ,
as ϕ(a) = min(ρ(a), n//c ), a ∈ A. Often, this transformation
is relatively straightforward, but a definition that works in
general is not obvious. The challenge when replicating actors
is to accurately model the transformations of channels, pro-
duction and consumption rates, and initial tokens such that the
functional and timing behaviour of the original graph is pre-
served. Fig. 9 gives some example transformations, including
Gantt charts that illustrate that actor firings and their timing
are preserved. We leave a generic definition (and the proof
that such a transformation exists in general and preserves
functionality and timing) as future work. Note that the SDFG-
to-HSDFG transformation of [12], [44] is an instance ofRepA
when the replication vector is chosen equal to the repetition
vector.

For the remainder, assume that GS , GC , and GA are the
graphs obtained after maximizing parallelism. The Create
pipe Pipe(GS ,GC ,GA) transformation creates a model for a
single pipe by adding a delay actor and channels between the
sinks and sources of GS and GC , GC and GA, GA and delay, and
delay and GS . The execution time of the delay actor is set to
zero, and one initial token is added to the channel between
the delay actor and the source of GS to enforce sequential
implementation of the pipe (see Fig. 10). The latency of the
resulting SDFG can be configured by an appropriate choice
of the execution time of the delay actor (which can be set
using the re-timing transformation given in Definition 6). The
model transformation results in an SDFG whose latency is
equal to the inverse of throughput.

Definition 1: (Create pipe Pipe(GS ,GC ,GA)) Transfor-
mation Pipe(GS ,GC ,GA) creates a single pipe and sequen-
tialises the graph execution (by restricting pipelining).
Pipe(GS ,GC ,GA) = (A′, C′, e′, r ′p, r ′c, i′) with

A′ = AS ∪ AC ∪ AA ∪ {delay},

C′ = CS ∪ CC ∪ CA
∪ {c1 = (asnk,S , asrc,C ), c2 = (asnk,C , asrc,A),

c3 = (asnk,A, delay), c4 = (delay, asrc,S )},

e′ = eS ∪ eC ∪ eA ∪ {(delay, 0))},

r ′p = rpS ∪ rpC ∪ rpA ∪ {(c1, 1), (c2, 1), (c3, 1), (c4, 1)},

r ′c = rcS ∪ rcC ∪ rcA ∪ {(c1, 1), (c2, 1), (c3, 1), (c4, 1)},

i′ = iS ∪ iC ∪ iA ∪ {(c1, 0), (c2, 0), (c3, 0), (c4, 1)}.

The Pipe transformation is essential to compute sensor-
to-actuator delay τ for our implementations. To compute τi
for a workload scenario si: i) compute Pipe(RepA(GSi , ϕSi ),
RepA(GCi , ϕCi ),RepA(GAi , ϕAi )); ii) map the transformed
graph to the given platform allocation to obtain the
binding-aware graph Gbi ; and iii) compute the latency of Gbi .
This latency value is equal to τi.
The replicate-pipe transformation is an intermediate step in

the model transformation, where we replicate the entire pipe
to enable pipelining (see Fig. 10,Rep(g1, 2)). Since each actor
can be mapped to only one processing core, implementing
pipelining on multiple processing cores is challenging with-
out replication of a single pipe. Rep(G, d) facilitate the mod-
elling for a pipelined implementationwith d pipes. Recall that
a pipe is created from GS , GC and GA (see Definition 1). These
subgraphs in a single pipe are all replicated d times by the
replicate-pipe transformation. The Rep transformation does
not use the specifics of the graph it is applied to. It generically
replicates the entire SDFG the specified number of times.
Definition 2 (Replicate Pipe Rep(G, d)): Let G =

(A, C, e, rp, rc, i) be an SDFG. Transformation Rep(G, d)
replicates the SDFG d times resulting in Rep(G, d) =
(A′, C′, e′, r ′p, r ′c, i′) with

A′ =
⋃
a∈A
{aj | 1 ≤ j ≤ d}2,

e′ = {(aj, e(a)) | a ∈ A, 1 ≤ j ≤ d},
C′ =

⋃
c∈C
{cj | 1 ≤ j ≤ d},

i′ = {(cj, i(c)) | c ∈ C, 1 ≤ j ≤ d},
r ′p = {(cj, rp(c)) | c ∈ C, 1 ≤ j ≤ d},
r ′c = {(cj, rc(c)) | c ∈ C, 1 ≤ j ≤ d}.

The three following transformations - adding camera-
awareness, workload-awareness and inter-frame dependen-
cies - assume that the replicate-pipe transformation has
been performed with replication factor d on a single pipe

2This union replicates every actor in the original graph d times. For every
actor a inA, we create a1, . . . , ad actors in the new graph.
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FIGURE 10. Illustration of model transformations.

created with transformation Pipe, optionally preceded by
replicate-actor transformations (which do not affect these
transformations).

TheCamera-awareness transformation is an intermediate
step in our model transformations. It adds a camera actor
with execution time equal to the inverse of the given camera
frame rate (the frame arrival period fh), a self-edge with an
initial token to model the frame arrival, and channels from the
camera actor to the d replicated source actors asrc,S j with the
channel consumption rate equal to the number of replications
d (see Fig. 10, Cam(g2, 2)). The number of initial tokens in
these channels are set to enforce an ordering of the pipes in
the pipelined implementation.
Definition 3 (Camera-Awareness Cam(G, d)): Let G =

(A, C, e, rp, rc, i) be the SDFG Rep(Pipe(GS ,GC ,GA),
d). Transformation Cam(G, d) = (A′, C′, e′, r ′p, r ′c, i′)
enforces a camera frame rate, with

A′ = A ∪ {camera}, e′ = e ∪ {(camera, fh)},

C′ = C ∪ {(camera)2}

∪{cj = (camera, asrc,Sj ) | 1 ≤ j ≤ d},

r ′p = rp ∪ {((camera)2, 1)} ∪ {(cj, 1) | 1 ≤ j ≤ d},

r ′c = rc ∪ {((camera)2, 1)} ∪ {(cj, d) | 1 ≤ j ≤ d},

i′ = i ∪ {((camera)2, 1)} ∪ {(cj, d − j+ 1) | 1 ≤ j ≤ d}.

The Workload-awareness transformation is a step in the
model transformations performed on graph Cam(Rep(Pipe
(GS ,GC ,GA), d), d). Due to image-workload variations,
the sensing task’s runtime execution times are varying. Also,
for the SPADe implementation, the system scenarios may
abstract multiple workload scenarios with varying execu-
tion times for the sensing task. However, the SPADe con-
troller design requires a constant sensor-to-actuator delay
per system scenario for the implementation. The Wld trans-
formation enforces a constant sensor-to-actuator delay for

our implementation. The Wld transformation adds actors Tj
with an incoming channel from the camera actor and an
outgoing channel to the (replicated) source actor asrc,C j of
the computation SDFG GC . The consumption rate and initial
tokens for the channels from camera actor to Tj are the same
as for the channel from camera actor to source actors in
the Cam transformation, again to enforce ordering in the
pipelined execution (see Fig. 10, Wld(g3, 2)). The Tj actors
create a path in parallel to the GS graph instances. By setting
the execution time of these added Tj actors to an appropri-
ately large value, a constant sensor-to-actuator delay can be
enforced. The Wld transformation sets the execution time
to 0. The execution-time value can be updatedwhen needed in
the SPADe flow by the re-timing transformation introduced
below.
Definition 4 (Workload-Awareness Wld(G, d)): Let G =

(A, C, e, rp, rc, i) be the SDFG Cam(Rep( Pipe(GS ,GC ,
GA), d), d). TransformationWld(G) = (A′, C′, e′, r ′p, r ′c, i′),
with

A′ = A ∪ {Tj | 1 ≤ j ≤ d},
e′ = e ∪ {(Tj, 0) | 1 ≤ j ≤ d},

C′ = C ∪ {cTj = (camera,Tj) | 1 ≤ j ≤ d}

∪ {TCj = (Tj, asrc,C j) | 1 ≤ j ≤ d},

r ′p = rp ∪ {(cTj, 1) | 1 ≤ j ≤ d}

∪ {(TCj, 1) | 1 ≤ j ≤ d},

r ′c = rc ∪ {(cTj, d) | 1 ≤ j ≤ d}

∪ {(TCj, 1) | 1 ≤ j ≤ d},

i′ = i ∪ {(cTj, d − j+ 1) | 1 ≤ j ≤ d}

∪ {(TCj, 0) | 1 ≤ j ≤ d}.

The inter-frame-dependency transformation adds chan-
nels to enforce the dependencies for actor firings between
two consecutive pipes. E.g., an actor bj that executes in the
k-th pipe might depend on the completion of execution of an
actor ai that executes in the (k − 1)-th pipe. This transforma-
tion is optionally done after Cam (and has no further effect
on the definition of the earlier transformations). An example
for this transformation is illustrated in Fig. 11. Ideally, our
model transformations ensure that the inverse throughput of
the implementation-aware graph is equal to the execution
time of the camera actor. E.g. if e(camera) = fh, then
the throughput of the implementation-aware graph is equal
to (or limited by) the camera frame rate 1

fh
. Now, the ifd

transformation allows the throughput to be limited also by
the inter-frame dependencies. The inverse throughput of the
implementation-aware graph will then be equal to the max-
imum of e(camera) and the inter-frame dependence time fd
(as explained later in Section VI-D1).
Definition 5 (Inter-Frame Dependency ifd(G, a, b, d)):

Let G = (A, C, e, rp, rc, i) be the SDFG Cam(Rep
(Pipe(GS ,GC ,GA), d), d). Transformation ifd(G, a, b, d) =
(A, C′, e, r ′p, r ′c, i′) adds inter-frame dependencies between
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FIGURE 11. Illustration of inter-frame dependencies between the actors I
and M. The channels added by ifd (g5, I,M,2) are shown in red.

actors ai and bj, for ai, bj ∈ A, with

C′ = C ∪ {cd = (ad , b1)} ∪ {cj = (aj, bj+1) | 1 ≤ j < d},

r ′p = rp ∪ {(cd , ρ(b1))} ∪ {(cj, ρ(bj+1)) | 1 ≤ j < d},

r ′c = rc ∪ {(cd , ρ(ad ))} ∪ {(cj, ρ(aj)) | 1 ≤ j < d},

i′ = i ∪ {(cd , ρ(ad )))} ∪ {(cj, 0) | 1 ≤ j < d}.

During SPADe analysis, the τ and h values are updated
based on our implementation choices. The re-timing trans-
formation helps to update the execution time of the actors
(camera, delay, and T) in our models when required
(see Fig. 10, ReT (g4, a, e2)).
Definition 6 (Re-Timing ReT (G, a, t)): LetG = (A, C, e,

rp, rc, i) be an SDFG. Transformation ReT (G, a, t) =
(A, C, e′, rp, rc, i) updates the execution time of actor
a ∈ A to t ∈ R≥0, with

e′ = e \ {(a, e(a))} ∪ {(a, t)}.

VI. SPADe FLOW REVISITED
This section makes the SPADe design flow (illustrated in
Figure 6 and introduced in Section IV) precise in the form of
Algorithm 2, using the model transformations of Section V.
The model transformations are primarily used to construct
implementation-aware graphs for workload and system sce-
narios. The integrated transformation from an IBC graph to
an implementation-aware graph is captured in Algorithm 1.
Due to platform resource constraints (the number of
available cores navlc ), design choices (number of pipes p,
number of cores allocated per pipe n//c ), application charac-
teristics, inter-frame dependencies (inter-frame dependence
time fd ) and the possible camera frame-arrival period (fh),
the effective implementation can be: i) a non-pipelined imple-
mentation without parallelised sensing; ii) a non-pipelined
implementation with parallelised sensing; iii) a pipelined
implementation without parallelised sensing; and iv) a
pipelined parallelism implementation. Section VI-A explains
Algorithm 1 for constructing implementation-aware graphs.
Section VI-B elaborates SPADe in Algorithm 2. We then
explain the refinements for non-pipelined and pipelined
implementations in Sections VI-C and VI-D. The differen-
tiation between non-pipelined and pipelined implementation
is mainly needed for control design and switching. Further,
we also explain the challenge due to inter-frame dependencies
in a pipelined implementation in Section VI-D1.

Algorithm 1 impAwGrTrans(G, τ, h, eCA, p)
input : G, τ, h, eCA, p, IFD (the set of known

inter-frame dependencies)
output: Implementation-aware graph GI

1 G1 = ReT (G, delay, (p× h− τ ));
2 G3 = Cam(Rep(G1, p), p);
3 G31 = ReT (G3, camera, h)
4 if p > 1, i.e. pipelining is allowed then
5 foreach (a, b) ∈ IFD do
6 G31 = ifd(G31, a, b, p);
7 end
8 end
9 G4 = Wld(G31, p);
10 GI = ReT (G4,Tj, (τ − eCA)), 1 ≤ j ≤ p;

A. IMPLEMENTATION-AWARE GRAPH TRANSFORMATION
In this section, we explain the steps needed to obtain the
implementation-aware graph of a workload or system sce-
nario and formalise those in Algorithm 1. The input SDFG
is the SDFG of a single parallelised pipe of a single scenario,
obtained after applying the Pipe transformation (as explained
in Section V), as illustrated in Figure 10. The other inputs to
the algorithm are the delay τ , period h, the total execution
time of the control compute and actuation tasks eCA, and the
number of pipes p. Also, we assume that if there exist inter-
frame dependencies, they are known as a subset of actors
IFD, IFD ⊆ A2. An ordered pair of actors (a, b) ∈ IFDmod-
els the inter-frame dependency between the actors a and b.
The output of the algorithm is the implementation-aware
graph GI .
Step 1 ensures that we can achieve a constant sensor-to-

actuator delay during mapping by assigning the execution
time of the delay actor as p × h − τ in G to obtain G1.
The delay actor fills up the time between when the actuation
task (modelled by actor A) finishes its execution until the
completion of one pipe (see Fig. 10). This ensures that each
parallelised pipe, when mapped to the platform, can periodi-
cally execute with the period p × h and has a constant delay
of τ . If we have p pipes, we can ensure that the effective
control sampling period is h. Step 2 replicates the single
parallelised pipe model G1 p times to model the pipelined
execution and then adds camera-awareness to the graph G1
as explained in Section V. Step 3 updates the execution time
of the camera actor in line with the sampling period h. Our
model has to execute with the period h even though the
camera frame arrival period is fh. h, however, is a multiple
of fh so that we can align the arrival of camera frames with
the sampling period.

If pipelining is allowed, i.e., if p > 1, and there exist
inter-frame dependencies that are known as ordered pairs of
actors IFD, the ifd transformation, explained in SectionV and
in Fig. 11, is applied for each of the dependencies (see Step 4
and the for loop in Step 5). Step 9 adds workload-awareness
to the resulting graph G3, also explained in Section V. The
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Wld transformation adds the actors Tj whose execution times
should be equal to the sensor-to-actuator delay minus the
execution times of the control compute and actuate tasks
eCA (an input to the algorithm). We obtain the final refined
implementation-aware graph GI after updating the execution
time of actors Tj in Step 10 with e(Tj) = τ − eCA so that
we can ensure that the control compute task starts at the right
time and is not affected by the workload variations in sensing.

B. UNIFIED SPADe FLOW FOR PIPELINED PARALLELISM
The SPADe flow of Figure 6 is made precise in Algorithm 2.
Algorithm 2 captures the design-time formal modelling, anal-
ysis and design for the SPADeflow. The outputs of the design
flow are the system configurations and the LUT for run-
time implementation. Runtime implementation for SPADe
has been explained earlier in Section IV-C. The inputs to
the SPADe flow are the camera frame rate fh, the number
of pipes p, the number of cores for parallelism per pipe n//c ,
the application IBC SADFG (6,F) (satisfying the assump-
tions given in Section V), and the maximum number of
available cores navlc . ‘Map G’ denotes the mapping of the
SDFG graph G to the given platform allocation, as mentioned
in Step 1. In our implementation, the mapping is done using
the SDF3 [14] tool. But any mapping tool can be used that
ensures a mapping onto the platform that guarantees the max-
imal throughput obtainable by the SADFG being mapped.

We explain the steps in Algorithm 2 in relation to Fig. 6.
The ‘for loop’ in Step 2 derives, for each workload sce-
nario si, the initial implementation-aware IBC graph G11i
(Steps 3,4), mapping of the control compute and actua-
tion tasks to obtain GbCAi (Step 5), mapping of the initial
implementation-aware graphG11i to obtain the binding-aware
graph Gb11i (Step 6), and timing analysis for computing τi
and hi (Steps 7, 8). If pipelining is enabled, we refine the
implementation-aware graph using the timing analysis infor-
mation and the implementation choice p (Step 10) to compute
the inter-frame dependence time for the scenario f id (Step 13).
The ‘for loop’ in Step 2 is illustrated in Fig. 6 from the
implementation-aware IBC graph node to the timing analy-
sis block and back. The model transformations required to
compute the implementation-aware graphs have already been
illustrated in Fig. 10 and Fig. 11 and the transformation of
Step 10 has been made precise in Algorithm 1.

Steps 3 and 4 create a model of a single parallelised pipe
G11i , as explained in Section V. The parallelisation transfor-
mations are optional. As explained in Section V, the paralleli-
sation may also be done manually. Step 5 maps the control
compute and actuate tasks to the given platform allocation
to compute its execution time eCA. If the control compute
and actuate tasks are single actors C and A respectively, then
eCA = e(C) + e(A). However, if the control compute and
actuate tasks are parallelised (sub)graphs GC and GA, we need
to find the latency from the combined binding-aware graph
after the RepA and Pipe transformations (Step 5). In this
case, the latency is equal to the inverse throughput due to

Algorithm 2 SPADeFlow(fh, p, n
//
c , (6,F), navlc )

input : fh, p, n
//
c , (6,F ) ( SADFG), navlc (platform)

output: System configurations χ sss , LUT
1 Let ‘Map G’ denote the mapping of an SDFG G to the given navlc
cores using the SDF3 tool;

2 foreach workload scenario si ∈ 6 do
3 ϕXi = min(ρXi , n

//
c ), where Xi ∈ {Si,Ci,Ai} and ρXi is the

repetition vector of Xi;
4 G11i = Pipe(RepA(GSi , ϕSi ),RepA(GCi , ϕCi ),

RepA(GAi , ϕAi ));
5 GbCAi ←Map Pipe(RepA(GCi , ϕCi ),RepA(GAi , ϕAi ));
6 Gb11i ←Map G11i ;

7 τi = L(sωi , 0,
1

ν(Gb
11i

)
);

8 hi =
⌈

τi
fh×p

⌉
fh;

9 if p > 1, i.e. pipelining is allowed then
10 GIi = impAwGrTrans(G11i , τi, hi,

1
ν(Gb

CAi
)
, p);

11 G32i = ReT (GIi , camera, 0);
12 Gb32i ←Map G32i ;
13 f id =

1
ν(Gb

32i
)
;

14 end
15 end
16 if p > 1, i.e. pipelining is allowed then
17 τwc = max

i
τi; hwc = max

i
hi;

18 fd = max
i
f id ;

19 ns = max
(⌈ fd

fh

⌉
, 1
)
;

20 nfwc =
⌈
τwc
fh

⌉
;

21 pmax =
⌈ nfwc

ns

⌉
;

22 ncmax = n//c × pmax ;

23 hmin =

{
ns × fh, if navlc ≥ ncmax ,⌈ ncmax

navlc
ns
⌉
× fh, otherwise;

24 heff = max(hmin, hwc);
25 end
26 Controller design and system-scenario identification:

if p>1, see Sections VI-D3 and VI-D4;
else see Sections VI-C and IV-B4;

27 ss ← identified system scenarios with (τs, hs);
28 τswc = max

s
τs; hswc = max

s
hs;

29 sswc = argmax
ss
τs ;

30 ps =
⌈ τswc
hswc

⌉
; foreach identified system scenario ss with (τs, hs)

do
31 G11s ← G11i of the si in ss with max τi;
32 GbCAs ← GbCAi of the si in ss with max τi;
33 GIs = impAwGrTrans(G11s , τs, hs,

1
ν(Gb

CAs
)
, ps);

34 Gbs ←Map GIs ;
35 if hs = 1

ν(Gb
s )

then

36 χ sss = (Gbs , hs, τs,Ks,Fs);
37 else
38 // the mapping of ss is not feasible

go to Step 26 and choose a different (sub)set of system
scenarios (possibly reverting to the worst-case scenario
sswc as the single system scenario);

39 end
40 end
41 Create a LUT for runtime use (as explained in Section IV-C);
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the Pipe transformation, i.e., eCA = 1/ν(GbCAi ). Step 6 maps
initial implementation-aware graph G11i to the given platform
allocation to obtain the binding-aware graph Gb11i . Steps 7
and 8 compute the sensor-to-actuator delay τi and sampling
period hi for si from this binding-aware graph (as explained
earlier in Eq. 6).

If pipelining is allowed, i.e., p > 1, then we go through
an extra iteration of the timing-analysis loop (in Fig. 6) to
compute the inter-frame dependence time for the scenario at
hand, f id , for the pipelined implementation (Steps 9 - 13).
Step 10 refines the initial implementation-aware graph for
the scenario at hand with delay-awareness, pipe replication,
camera-awareness, and workload-awareness through Algo-
rithm 1 with the timing values computed in the previous
steps. In order to compute the inter-frame dependence time,
we then set the execution time of the camera actor to zero
(Step 11) so that the inter-frame dependency is the throughput
limiting factor in our graph. We map the refined graph G32i to
obtain Gb32i and compute f id as the inverse throughput of Gb32i
(Step 13). A point to note is that the actors camera, delayj
and Tj being added in the process are not mapped to the given
platform allocation (while mapping in SDF3, we bind each of
these actors to separate dummy processors). These actors are
required to simulate time-triggering of tasks and ordering of
pipes.

In Steps 16 - 24, we proceed with the timing analysis
in Fig. 6 to compute the inter-frame dependence time fd for
the IBC application as a whole and the constant effective sam-
pling period heff for a pipelined implementation (i.e. p > 1).
Recall from Section IV-C that we enforce a constant sampling
period for the pipelined implementation to limit the design
space to be explored, reduce runtime overhead, and facilitate
controller design. The computation of heff starts with deter-
mining the worst-case delay τwc, worst-case period hwc, and
corresponding inter-frame dependence time fd . We can then
compute the maximum number of pipes feasible pmax due to
inter-frame dependencies and the maximum number of cores
we require ncmax to realise pmax . We can then compute the
smallest realisable sampling period hmin, after which we set
heff to the maximum of hmin and hwc.
Step 17 determines the worst-case delay τwc and

worst-case period hwc. Because delay and sampling period
are determined from a single pipe, the scenario with the
largest delay also has the largest sampling period. Next,
we compute the maximum inter-frame dependence time fd
(Step 18) over all the workload scenarios si. The maximum
(and not any other) inter-frame dependence time is considered
for further analysis since the order of the workload scenario
sequence at runtime is not known apriori. Because of inter-
frame dependencies, not all frames can be used for sensing.
With ns as computed from fd and fh as indicated in Step 19,
ns − 1 is the effective number of frames skipped between
processing the arriving camera frames due to the inter-frame
dependencies. The maximum operation is required to avoid
a corner case in the subsequent analysis when fd = 0. nfwc
(Step 20) is the number of camera frames arriving within

any worst-case sensor-to-actuator delay interval for the single
pipe execution. The realisable maximal number of pipes pmax
captures the maximum number of pipes possible for our
pipelined implementation considering the frames we have to
skip due to inter-frame dependencies and the total number
of frames arriving within the worst-case delay interval nfwc
(see Step 21). We can then compute the maximum number
of cores required for realising our design choices of n//c and
pmax during runtime implementation as ncmax (Step 22). For
instance, if we allocate two cores per pipe for parallelism and
we would like to have two pipes, then we need a maximum
of four cores. hmin is then the minimum realisable sampling
period possible for the controller implementation consider-
ing the given choice of parameters; it can be computed as
shown in Step 23. If more cores are allocated than the maxi-
mum number of cores required to realise our design choices,
i.e., navlc ≥ ncmax , then hmin is limited only by the inter-frame
dependencies, as captured by ns. In this case, the SPADe
implementation utilises a maximum of ncmax cores, as having
more cores does not improve hmin and, in effect, does not
improve the control performance. However, if the resources
we require to realise a sampling period of ns × fh are not

allocated, i.e., navlc < ncmax , then hmin has to be increased
proportionally to the fraction ncmax

navlc
. E.g., let ncmax = 4,

ns = 1. If navlc ≥ 4, we can achieve the sampling period
hmin = fh. However, if navlc = 2, we cannot realise hmin = fh.
In this case, we increase hmin as many times as the fraction
4
2 , i.e., hmin becomes 4

2ns × fh = 2fh. The effective realisable
sampling period heff is finally taken as the maximum of hmin
and hwc (Step 24).

Steps 26 - 38 design controllers for the workload scenarios,
identify the system scenarios ss, derive the binding-aware
graph Gbs for ss, check feasibility of the scenario defini-
tions, and define the system configurations. These steps
are illustrated in Fig. 6 using the blocks controller design,
system-scenario identification, and system configurations.
For a non-pipelined implementation, controllers are designed
as explained in Section VI-C and the system-scenario iden-
tification is done as explained in Section IV-B4. For a
pipelined or pipelined-parallelism implementation, controller
design and system-scenario identification are explained in
Sections VI-D3 and VI-D4, respectively. Recall that if we
cannot guarantee the stability of the switched system being
defined, our controller design reverts to a periodic worst-
case-based design with a single worst-case system scenario.
Step 29 identifies this worst-case system scenario sswc as
the scenario with the largest delay τswc (and hence also the
largest period). If any of the identified system scenarios
cannot be mapped onto the allocated resources in such a way
that all timing requirements are met, then SPADe reverts to
this worst-case scenario as the only system scenario as well
(Step 38). Step 30 computes the realisable number of pipes,
i.e. the effective number of pipes in implementation, based on
the worst-case timing analysis, controller design and scenario
identification. ps is always less than or equal to p.
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For each of the identified system scenarios, Steps 31 - 34
derive its binding-aware graph. We start from the initial
implementation-aware graph of the contributing workload
scenario with the maximum delay (Step 31). Then we
identify the contributing workload scenario’s binding-aware
graph for the control compute and actuation tasks (Step 32).
Step 33 refines the initial implementation-aware graph with
the updated timing information on delay τs, period hs,
execution time for the control compute and actuate tasks
(eCAs = 1/ν(GbCAs ) and the realisable number of pipes
ps using Algorithm 1. Finally, we map the updated
implementation-aware graph to the platform (see Step 34)
and check if the control timing is realisable in the
binding-aware graph (Step 35). Control timing is realisable if
a feasible mapping exists for the binding-aware graph, and a
feasiblemapping implies that the inverse throughput of theGbs
is equal to hs. If a feasible mapping exists, we can define the
system configuration χ sss (Step 36) for the system scenario ss.
If the mapping is infeasible, we need to choose a different
subset of system scenarios and re-do the controller design as
explained earlier ( Step 38).
Once the feasible system scenarios have successfully been

identified, we create the LUT in Step 41, as explained in
Section IV-C. A design-space exploration (DSE) (illustrated
in Fig. 6) is performed if we want to explore which imple-
mentation choice gives the best control performance. In this
paper, we consider a brute-force DSE by varying the inputs to
Algorithm 2, and analysing the performance of the resulting
system configurations.

C. SPADe CONTROL DESIGN AND SWITCHING FOR
NON-PIPELINED IMPLEMENTATION
This section explains the controller design, in particular,
system augmentation and switching, for non-pipelined imple-
mentation (p = 1). Recall from Section IV-B4 that we
aggregate workload scenarios based on the camera frame rate
to limit the number of switching scenarios. Controllers are
designed for the aggregated workload scenarios and system
scenarios are identified as the switching-stable aggregated
workload scenarios as explained in Section IV-B4.
The control timing parameters τi and hi for any sce-

nario si are computed during the SPADe analysis and design
(see Steps 7 and 8 of Algorithm 2). For the non-pipelined
implementation, τi ≤ hi for all scenarios si, which means that
we need only one augmented delay state. First, Eq. 1 can be
reformulated in the discrete-time domain for a given (τi, hi)
as follows:

x[k + 1] = Asix[k]+ B0,siu[k]+ B1,siu[k − 1],

y[k] = Ccx[k]+ Dcu[k] (11)

where, Asi = eAchi , B0,si =
∫ hi−τi

0
eAcsds · Bc,

B1,si =
∫ hi

hi−τi
eAcsds · Bc. (12)

Note that the discretization of the system using τi and
hi does not affect the output and feedforward matrices
Cc and Dc [45]. We define new system states z[k] =[
x[k] u[k − 1]

]T with z[0] =
[
x[0] 0

]T to obtain a
higher-order augmented system as follows:

z[k + 1] = Aaug,siz[k]+ Baug,siu[k],

y[k] = Caugz[k]+ Dcu[k],

where Aaug,si =
[
Asi B1,si
0 0

]
, Baug,si =

[
B0,si
I

]
, (13)

Caug =
[
Cc 0

]
. 0 and I represent the zero and

identity matrices of appropriate dimensions. Controllers
are then designed for this higher-order augmented system,
as explained in Sec. IV-B3.

Switching due to workload variations and switching
stability has been explained in Section IV-B4. It was
explored in [2], [7] for non-pipelined implementation. Hav-
ing numerous switching scenarios often results in insta-
bility [39] and degrades control performance due to the
non-smooth response associated with the switching over-
head [7]. For optimising control performance and stability,
it is essential that we limit the number of switching scenar-
ios through system-scenario identification (as explained in
Section IV-B4).
For a non-pipelined implementation, switching results in

both variable delay and variable period. SPADe flow for the
non-pipelined implementation does not have any restrictions
on the value of τs we can have for a system scenario. hs can
vary, but should always be a multiple of fh to align the start
of the sensing task with the camera frame rate.

D. SPADe REFINEMENTS FOR PIPELINED
IMPLEMENTATION
For a pipelined implementation, i.e., for p > 1, we have
that τwc > heff where τwc is the worst-case sensor-to-
actuator delay, and 0 < τi ≤ τwc. For the scope of this
work, we enforce a constant sampling period heff (which
is a multiple of fh) for the overall pipelined implementa-
tion. The constant sampling period means that we ensure
a constant start of sensing and also, a constant actuation
rate. The computation of heff depends on the inter-frame
dependencies, τwc, fh, p, n

//
c , and navlc (see Algorithm 2 for

the precise details). This section explains the significance of
inter-frame dependencies, switching due to image workload
variations in pipelining, controller design, system-scenario
identification, the need for implementation-aware matrices
and how we compute control configuration for pipelined
implementation.

1) INTER-FRAME DEPENDENCIES IN A PIPELINED
IMPLEMENTATION
Pipelining is inherently limited by inter-frame dependencies,
i.e., the data or algorithmic dependencies between consec-
utive frame processing, e.g., due to video coding [10] or

112348 VOLUME 9, 2021



S. Mohamed et al.: Optimising Multiprocessor IBC Through Pipelining and Parallelism

FIGURE 12. Illustration of inter-frame dependencies with fh < fd ≤ 2fh.

visual tracking [11]. Considering inter-frame dependencies
is crucial for a practical pipelined implementation. Inter-
frame dependence time (denoted by fd ) can be quantified
for the current image frame as the maximum time required
to complete the processing of (parts of) the IBC algorithm
the subsequent image frame processing depends on. Alter-
natively, fd is the minimum time required to wait between
the start of processing consecutive image frames. Fig. 12
illustrates the impact of inter-frame dependence time on sam-
pling period h. In a pipelined implementation, considering
inter-frame dependencies means that strictly heff ≥ fd . The
number of frames that has to be skipped after processing
every frame is ns − 1 with ns computed as in Step 19 of
Algorithm 2. This is illustrated in Fig. 12 where ns = 2 and
one frame is skipped after every frame processing.

The computation of fd is explained in Algorithm 2. The
inter-frame dependencies are modelled using the ifd model
transformation explained in Section V. Computing fd helps
to determine the effective image arrival period or the mini-
mum possible sampling period hmin we can have. Inter-frame
dependencies mean that sometimes image frames have to be
skipped for processing with respect to the given image arrival
period fh and the sampling period h. Skipping a frame means
that h increases and thus degrades the control performance.
In some cases, e.g., when the sensing uses video coding, inter-
frame dependencies limit the effective camera frame rate and
the video needs to be encoded/decoded at the effective rate
(1/heff ). In case the video encoding is closed-source and the
video encoding cannot be done at a new rate, then sufficient
resources need to be allocated first for decoding at the original
camera frame rate and only the remaining resources can be
utilised for the rest of the application. In this case, the video
decoding is periodically executed at the camera frame rate
and mapped first to the given platform allocation. The IBC
application is then mapped to the remaining allocation.

For a non-pipelined implementation, the inter-frame
dependencies can be ignored since the frames are processed
in sequence.

2) SWITCHING IN PIPELINED IMPLEMENTATION
Switching in a multiprocessor pipelined IBC system imple-
mentation due to workload variations has not been explicitly
explored in literature apart from our previous work [46].
When we do not consider workload variations, a pipelined
implementation effectively results in a constant τ and h.
Considering workload variations implies that we would have
varying sensing delays, e.g. as illustrated in Figure 13. Here,

FIGURE 13. Illustration of switching due to workload variations in a
multiprocessor pipelined implementation. (a) Logical delay diagram
illustrating the cases explained in Sec VI-D2 and (b) its corresponding
Gantt chart. The sample k + 4 has a lower workload and thus the latest
output measurement y (k + 4) is available within one fh.

notice that the camera input frame at k + 4 has a sensing
delay of one frame (τ1 = h) due to lower image workload,
and all other frames have a sensing delay of three frames
(τ = 3h). This scenario results in multiple sensing and image
processing (S) tasks completing their execution at the same
time. This means that multiple output measurements y[k+2],
and y[k+4] are available for control computation taskC at the
same time instance. For the scope of this work, the sampling
period is kept constant and the switching happens due to
variable delay.

Notice that by having just one frame with a lower work-
load, we can have the following three switching cases as
illustrated in Fig. 13 (a): case 1) the new measurement is
available with the same sensing delay as in the previous
step; case 2) the sensing delay is increased compared to
the previous step as the latest measurement is not available.
Older past measurements may be available during this time
(e.g. y[k + 3] becomes available one period after y[k + 4]).
However, they are used only to update the state estimates and
not directly for control input computation; case 3) the sensing
delay is reduced by one or more steps: when multiple pipes
finish processing a corresponding sequence of frames, both
the latest measurement(s) along with the past measurements
are now available. The past measurements are used to update
the state estimates, and the latest measurement is used to
compute the control input.

Thus, the main challenge for the pipelined IBC system
design in order to maximise performance, i.e. QoC, is to
effectively use the sensor measurements as early as possi-
ble for control computation without any unnecessary idling
and to estimate the system state when there are no sensor
measurements available. Modelling this behaviour is far from
trivial. This problem was explored with respect to long net-
work delays in [47]. We leverage these results in our design.

3) CONTROL DESIGN AND SYSTEM-SCENARIO
IDENTIFICATION
We consider a pipelined implementation with workload sce-
narios si having (τi, hi) as timing parameters. It is pos-
sible to have a varying hi similar to the non-pipelined
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FIGURE 14. Illustration of the challenge with varying actuation rates ai
due to variable τ ′i .

implementation. However, proving stability guarantees then
becomes challenging and as such is not explored in this work.
For the scope of this work, we assume a constant period
heff for all scenarios in the pipelined implementation. How
we compute heff was explained earlier in Algorithm 2. For
brevity, h = heff in the rest of this section.

For a workload scenario si, we can represent τi based
on [45] as

τi = (nfi − 1)h+ τ ′i , where 0 < τ ′i ≤ h, nfi =
⌈
τi

h

⌉
. (14)

This representation divides the delay τi into nfi regions in
the time domain. This results in (nfi − 1) regions of h and the
left-over delay τ ′i for τi. nfi is the number of frames arriving
in one delay period for the scenario at hand. The above nfi
computation assumes the practical situation where τi > 0.
In case one wants to consider τi = 0, nfi = max

( ⌈
τi
h

⌉
, 1
)
.

Next, we enforce a constant actuation rate since a varying
actuation rate results in undesired behaviour as illustrated
in Fig. 14, even in the case of a pipelined implementation
with a constant sampling period. Fig. 14 executes a scenario
sequence (s3s2s1s3s1s3)ω with sampling period heff = fh. The
scenario s1 has the best-case delay τ1 = fh, s2 has a delay
τ2 = 1.2fh, and s3 has a delay τ3 = 2.5fh. If we now apply
Eq. 14, we get a varying τ ′i and the Gantt chart as illustrated
in Fig. 14. Notice that the actuation rates illustrated by the
ai are not periodic anymore and we have ordering issues as
well with respect to the actuation task. Further, guaranteeing
controller stability for this case is challenging.

We mitigate varying actuation rates by defining τ ′ =
max
i
(τ ′i ) and then designing controllers with τi = (nfi−1)h+

τ ′ and h = heff for workload scenarios si. A constant τ ′

over all scenarios is required to maintain a constant actuation
rate between switching scenarios in a pipelined implemen-
tation. Notice that by defining and fixing τ ′ we are aggre-
gating workload scenarios with the same nfi (see Eq. 14).
The controllers are designed for these aggregated work-
load scenarios. Also, the design space for system-scenario
identification is narrowed down by the workload scenario
aggregation.

To design the controllers, Eq. 1 can then be reformulated
as follows [45]:

x[k + 1] = Asix[k]+ B
′

0,siu[k − (nfi − 1)]

+B′1,siu[k − nfi ], (15)

where Asi , B
′

0,si
and B′1,si are given by replacing τi by τ

′ and
hi by h in Eq. 12. It is interesting to note that the matrices

Asi , B
′

0,si
and B′1,si are identical for all the scenarios due

to this formulation. However, Eq. 15 is still different for
different aggregated scenarios due to varying nfi . We leverage
the identical matrices during the runtime implementation as
we only have to store a few key matrices as explained in
Section VI-D4.
Next, we define new augmented system states z′[k] =[
x[k] u[k − (nfi − 1)] · · · u[k − 2] u[k − 1]

]T to obtain a
higher-order augmented system as follows:

z′[k + 1] = A′siz
′[k]+ B′siu[k], y[k] = C ′z′[k]+ Dcu[k],

A′si =


Asi B

′

1,si
B′0,si · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · 0

 , B′si =

0
0
...

0
I

 ,
C ′ =

[
Cc 0 0 · · · 0

]
. (16)

Controllers are then designed for this higher-order aug-
mented system, as explained in Sec. IV-B3. The stability
criterion for the switched pipelined implementation is similar
to the problem for long network delays [47], [48] and as such
is not explained here.

For the pipelined implementation, we identify system sce-
narios using the following steps, where the first two steps are
done as part of the controller design: i) classify the workload
scenarios si with the same nfi =

⌈
τi
h

⌉
into a maximum of⌈

τwc
fh

⌉
aggregated workload scenarios; ii) for each aggregated

workload scenario, design a controller with τi = (nfi−1)h+τ
′

and h = heff ; iii) check for control stability for the switched
system with the identified aggregated workload scenarios.
If the switched system is unstable, find an aggregation of
workload scenarios for which the switched system is sta-
ble through an exhaustive search. If multiple scenario sets
provide a stable system, we choose the set with the highest
cardinality and shortest average sensor-to-actuator delay; iv)
the identified aggregated workload scenarios that result in
a stable switched system are the system scenarios ss with
τs = (nfs − 1)h+ τ ′ and h = heff .

4) IMPLEMENTATION-AWARE CONTROL MATRICES AND
CONTROL CONFIGURATIONS
When we allow switching for pipelined implementation,
the challenge is the varying dimensions of matrices in
Eq. 16 for varying delays due to workload variations. The
varying dimensions affect the runtime computation of u[k]
(see Eq. 8), where the matrix Ki needs to be multiplied with
z[k] at every time-step. This challenge also occurs when some
of the system states are estimated and not directly obtained
from sensormeasurements. For the LKAS, only the third state
is computed from the sensor and the other states are estimated
using the system model (see Eq. 7). In this case, z[k + 1]
(see Eq. 7) needs to be computed at every time step.

We tackle the challenge of varying dimensions of matri-
ces by unifying/normalising the dimensions of matrices
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considering the worst-case delay τwc over all system scenar-
ios ss. The matrices for the worst-case delay scenario swc
annotated with (h, τwc) are the same as in Eq. 16. Let n be
the order of the square matrix Aswc and nfwc =

⌈
τwc
h

⌉
. For

each system scenario ss, with τs > h, nfs =
⌈
τs
h

⌉
, the system

matrices are given below. For brevity, let nfwc = nf and n is
the order of matrix Ass . It is interesting to note that Ass = Aswc
when the period h is constant for the system scenarios ss. The
order of the square matrix A′ss is (n+ nf ).

A′ss =


Ass 0(nf−1)×n 01×n
0n×(nf−nfs )
B′1,ss 0(nf−1)×1 01×1
B′0,ss
0n×(nfs−2) I(nf−1)×(nf−1) 01×(nf−1)


T

,

B′ss =
[
0(n+nf−1)×1 I1×1

]T
, C ′ =

[
Cc 01×nf

]
.

Further, in a pipelined implementation due to workload
variations we could have a scenario ss with τs ≤ h (see for
instance iteration [k + 4] in Fig. 13). We derive the matrices
for such scenarios as follows. Also, since τs ≤ h, nfs = 1.

A′ss =

Ass 0n×(nf−nfs ) B
′

1,ss
0(nf−1)×n 0(nf−1)×1 I(nf−1)×(nf−1)
01×n 01×1 01×(nf−1)

 ,
B′ss =

[
B′0,ss 0(nf−1)×1 I1×1

]T
,

C ′ =
[
Cc 01×nf

]
.

The matrices Ass , B
′

0,ss
and B′1,ss are obtained for sce-

nario ss as explained in Eq. 16. We can apply standard
control design techniques for these implementation-aware
system models. State-feedback and feed-forward controllers
can be designed as shown in Eq. 8 for the system scenarios
to obtain Ks and Fs. The control configurations are then
χcss = (heff , τs,Ks,Fs).

Note that when storing matrices for a pipelined implemen-
tation, we only need to store Ks and Fs for each scenario ss,
Aswc , B

′

0,ss
, B′1,ss , and Cc for the constant period h and τ ′.

We only need to store one Aswc , B
′

0,ss
, B′1,ss , and Cc matrix

as the period and actuation rate are constant.

VII. EXPERIMENTAL RESULTS AND DISCUSSION
This section explores the SPADe experimental results with a
focus on design-space exploration (DSE). The DSE is used
for identifying the degrees of parallelism and pipelining for
the pipelined parallelism implementation. A DSE is required
since the parallelisation is limited by the degree of application
parallelism quantified using n//c and navlc , and the maximum
number of active pipes we can have is limited by fd , fh, n

//
c

and navlc . After exploring the DSE results for the running
example, we discuss a few observations for the SPADe flow
and compare the state-of-the-art methods with our proposed
SPADe flow for pipelined parallelism. The simulations in
this section consider the LKAS case study introduced in
Section III-C. The LKAS is modelled using the IBC graph

given in Fig. 7 (a) with the worst-case workload scenario hav-
ing z = 6 and the execution times of the actors as explained
in Section IV-A1. The platformwe consider is the predictable
CompSOC platform (as explained in Section III-A) with navlc
as an input to the SPADe flow.

A. DESIGN-SPACE EXPLORATION (DSE)
The SPADe flow has been explored till nowwith a fixed num-
ber of pipes p and a fixed number of cores per pipe for paral-
lelism n//c . A DSE with design parameters fh, p, n

//
c , navlc is

needed to identify the Pareto-optimal implementation choice,
i.e., the degree of pipelining and the degree of parallelism.
Note that p quantifies the degree of pipelining, and n//c quan-
tifies the degree of application parallelism for an implementa-
tion choice. Typically, fh and navlc are given or fixed. We only
vary these two parameters if the goal is to identify the optimal
frame rate or minimise resource usage.

We use a brute force method to identify the possible
implementation choices < navlc , n//c , p > over the design
space. For each implementation choice, i.e., with fixed design
parameters, we compute its GM and PM (see Section III-D)
for the worst-case system scenario sswc (see Step 29 in
Algorithm 2). GM and PM are analytical metrics and can be
computed easily from the discretized control system model
in Eq. 7 for sswc . We suggest using GM and PM to prune
the design space to be explored for multiple implementation
choices, as the MSE and ST QoC metrics that we ultimately
want to optimise are simulation-based and obtaining them
is compute-intensive. A performance comparison for differ-
ent implementation choices using MSE and ST is moreover
unfair unless we can do exhaustive simulation considering
different initial conditions and environments (e.g., weather
conditions, as illustrated in our previous work [58]).

Thus, the Pareto-optimal implementation choice for a
given platform allocation navlc is chosen as the one with the
highest GM and PM. If GM and PM are incomparable for
multiple implementation choices for a platform allocation,
in the sense that one implementation choice has a higher
GM and the other one a higher PM, then we consider both
these choices as part of the Pareto front. The Pareto-optimal
implementation choices are further analysed using MSE and
ST. To do so, controllers are designed for the Pareto-optimal
implementation choices, and optimal system scenarios con-
sidering workload variations are identified based on control
performance metrics MSE and ST.

As a proof-of-concept, we performed DSE with fh = 1
60

and given (maximum) platform allocation of six processing
cores, i.e., navlc = 6, considering the IBC graph in Fig. 7 (a).
The QoC over various design points is illustrated in Fig. 15.
For the purpose of validation, we explored more implementa-
tion choices through simulation than only the Pareto-optimal
ones as described above. The results show that the imple-
mentation choices with higher gain and phase margins indeed
have better control performance (MSE and ST) in the simu-
lations, confirming that GM and PM can be used to prune
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FIGURE 15. Pareto-plot for simulation - QoC vs given platform allocation, i.e., navl
c . Here, we consider the SADFG in Fig. 7 (a) with z = 6 (worst-case

workload). The MSE and ST are normalised with respect to the maximum (worst-case) value. The legend denotes < navl
c , n//c , p >. Higher GM and PM,

and lower MSE and ST are better.

the design space. The only anomaly is the normalised settling
time (ST) for the case < 2, 2, 1 > for two cores which is
better than the ST for the configurations with a higher number
of cores. We observe that this is due to our simulations pro-
ceeding at the rate of the sampling period. E.g., the sampling
period for both the cases < 2, 2, 1 > and < 3, 3, 1 > is
the same (0.0667 ms), but their sensor-to-actuator delays are
0.065 ms and 0.055 ms, respectively. When we proceed with
the simulations at the rate of the sampling period, the slight
differences in the settling time are due to approximations in
the model fitting.

In terms of optimising QoC for the running LKAS exam-
ple, an important first observation from the DSE results is
that all configurations that exploit parallelism and/or pipelin-
ing improve QoC over the fully sequential implementation
< 1, 1, 1 >. Our simulations moreover show that, typically,
for the optimal QoC, we should parallelise as much as pos-
sible (increasing n//c ) and then pipeline (increasing p). For
example, in Fig. 15, let us consider the cases of navlc = 3 and
navlc = 6. Among the configurations with navlc = 3, we notice
that the configuration < 3, 3, 1 > has the highest GM
and PM and the best control performance. The normalised
MSE is similar for both < 3, 3, 1 > and < 3, 1, 3 >.
There is a visible improvement in the normalised ST for the
first of these two configurations that maximises parallelism
compared to the second that maximises pipelining. Similarly,
when navlc = 6, we notice that configuration < 6, 6, 1 > has
the highest GM and PM and best normalised settling time.
The normalised MSE is similar to the cases < 6, 3, 2 >

and < 6, 2, 3 >. We observe that this is due to having

the same sampling period for all these cases. The trend that
parallelisation should be prioritised over pipelining is true for
other platform allocations.

Let us now consider the cases of navlc = 4 and navlc = 5.
It is interesting to notice that the control performance for
both these cases is identical, and the performance does not
improve by allocating one more core when navlc = 4. This is
due to identical control timing parameters, delay and period,
when navlc = 4 and navlc = 5. It is also interesting to note
that the fully parallelisable implementations < 4, 4, 1 > and
< 5, 5, 1 > do not have the best performance for both these
cases. This is because of identical delay (=55 ms) and period
(=66.7 ms) when n//c = navlc and p = 1, for the cases with
navlc = 3, 4, 5. This happens because when we distribute six
RoIs over 3, 4 or 5 cores, there are always two sequential RoI
executions needed on (at least) one core, meaning that the
effective delay does not change. This means that we already
have a fully parallelisable implementation with navlc = 3.
When we have a fully parallelisable implementation and still
have more cores available, we can pipeline. E.g., the cases
with the best performance for navlc = 4, 5 are < 4, 2, 2 >
and < 5, 2, 2 >. These cases have delay and period equal to
65 ms and 33.3 ms, respectively. We observe that considering
parallelism and pipelining integrally has better performance
than considering only one of the two options.

The main conclusion of the DSE is that we should par-
allelise as much as possible and then pipeline while taking
into account the delay and period. It is important to note that
increasing the number of available cores does not necessar-
ily improve the control performance. This is due to several
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factors. The most prominent factors, the camera frame rate
and the inter-frame dependencies, have been discussed ear-
lier. Our results also show the significance of GM and PM in
pruning the design space for exploration. A higher GM and
PM typically imply a better control performance (MSE and
ST). The GM and PM are computed analytically, whereas the
MSE and ST can only be computed through simulations. For
SPADe, we use this knowledge to prune the design space.

B. IS HIGHER FRAME RATE ALWAYS BETTER?
Our observation with respect to the frame rate is that having a
higher frame rate is not always better. Having a higher frame
rate means processing the arriving frames at a higher rate,
which is compute-intensive, and may not always improve the
control performance (as shown in Fig. 16). We observe that
the control performance is similar for 60 fps and 120 fps for
all the cases. The control performance is the worst for 30 fps
when we have only one available processing core. A slight
degradation in control performance is noticed for 30 fps when
considering 2-5 available processing cores. If we have six
available processing cores, all the frame rates have similar
performance. The control performance is dependent mainly
on the τs and hs of the system scenarios. If improving the
frame rate does not effectively decrease the average delay
and/or period, it becomes an overhead to do so and wastes
compute resources in the given platform.

FIGURE 16. navl
c vs settling time (in s) considering different frame rates

for the SADFG in Fig. 7 (a) with z = 6 (workload) and p = 1.

C. IMPACT OF INTER-FRAME DEPENDENCIES
In a pipelined implementation, the inter-frame dependencies
have a significant impact on the maximum number of pipes
we can realise ps (see Step 30 of Algorithm 2). The impact
of the inter-frame dependence time fd on ps is illustrated
in Fig. 17 using an example. In this example, we allocate suf-
ficiently many cores navlc = 12 since ncmax = 12 (see Step 22
in Algorithm 2) for a camera frame rate of 120 fps, consider-
ing a worst-case delay of τwc = 95 ms, and n//c = 1.
If fd = 0, the maximum number of realisable pipes we

can have when the camera frame rates are 30, 60 or 120 fps
are 3, 6 or 12, respectively. E.g., if the camera frame rate
is 120 fps, then we can have a maximum of dτwc/fhe =
d0.095× 120e = 12 pipes. Note that, as fd increases,
the number of realisable pipes reduces exponentially.

FIGURE 17. Impact of fd on maximum number of realisable pipes ps.
In this example, we consider τwc = 95 ms, n//c = 1 and navl

c = 12.

FIGURE 18. Impact of system scenarios switching due to workload
variations on yL with navl

c = 1. Note that the legends mention
representative scenario sequences; the plot contains more scenario
sequences than the ones mentioned in the legends. The markers denote
the frame rate and colours denote the scenario sequences.

E.g., if fh < fd ≤ 2fh, then the number of frames to skip
after processing each camera frame is one. Now for the cam-
era frame of 120 fps, skipping one frame after every frame
processing means that the realisable number of pipes will
become 6 (see the interval fd = (0.0083, 0.01667] in Fig. 17).
A higher fd implies a smaller number of realisable pipes.
Also, as fd increases beyond a certain point, pipelining is no
longer feasible (when ps = 1). E.g., in Fig. 17, ps = 1 in the
intervals fd = (0.067, 0.100] for 30 fps, fd = (0.083, 0.100]
for 60 fps, and fd = (0.092, 0.100] for 120 fps.

D. IMPACT OF SYSTEM-SCENARIO SWITCHING ON
CONTROL PERFORMANCE
It is possible for switching to degrade the control performance
compared to the periodic worst-case-based design (presented
in Fig. 15). However, we choose system scenarios such that
the control performance improves even if we have switching
at runtime. Further, we discard the combinations of aggre-
gated workload scenarios that degrade control performance
compared to the single worst-case workload scenario swc
during system-scenario identification (see Section IV-B4).
We illustrate this observation using Fig. 18where we consider
the SADFG in Fig. 7 having three system scenarios s1, s2
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and swc with 1, 3 and 6 RoI respectively. s1 is the best-case
workload scenario with the smallest delay and swc is the
worst-case scenario with the worst-case delay. Notice that,
in all switching cases, the control performance settles faster
than the periodic worst-case based design (denoted by (swc)ω

in Fig. 18). The trend is similar for different camera frame
rates as well. We observe that the control performance is
better if the frequently occurring workload scenario is closer
to the best case than the worst case. E.g., in Fig. 18, the sce-
nario sequence (s101 swc)

ω has s1 as the frequently occurring
scenario, which leads to a better performance than (s102 swc)

ω

with s2 as the most frequently occurring scenario. Further,
we observe that the control performance of the scenario
sequences cluster towards the performance of its most fre-
quently occurring scenario, as is observed in Fig. 18 with
distinct colour regions (where the blue and green scenarios
form one cluster).

E. COMPARISON WITH THE STATE-OF-THE-ART
The DSE, as explained in Section VII-A and illustrated
in Fig. 15, already shows quantitatively that integrally con-
sidering the combination of parallelism and pipelining in
multiprocessor IBC design outperforms the state-of-the-art
approaches in which only one of the two options is consid-
ered. The integral consideration of parallelism and pipelining
differentiates SPADe from any earlier work, as explained
in Section II. In this subsection, we compare the proposed
SPADe method qualitatively on several other relevant criteria
with state-of-the-art multiprocessor IBC design techniques
in Table 1. For brevity, we only compare with multipro-
cessor IBC system implementations and not with traditional
sequential control design techniques based on the worst-case
sensing delay, as it has already been shown in [2], [50] that
multiprocessor implementations are beneficial for optimising
control performance. The multiprocessor implementations
can be classified into pipelined [8], [9] with constant delay,
pipelined with variable delay [49] and sequential implemen-
tation with parallelisable sensing [2], [7]. The camera frame
rate, however, is not explicitly considered in [8]. A brief
comparison between [2] and [9] is already reported in [7].

The proposed approach is advantageous to other multipro-
cessor IBC system implementations with respect to: 1) cov-
erage of the design space considering both pipelining and
parallelisation; 2) considering inter-frame dependencies and
resource sharing among pipes; and 3) not imposing any
restrictions on τ , thereby enabling shorter τ and h compared
to other approaches.

VIII. SPADe ADAPTATION FOR AN INDUSTRIAL
PLATFORM
We have explained the SPADe flow until now assuming that
the timing of the implementation is predictable. However,
for an industrial platform, it is difficult to predict the timing
analytically (as users have restricted freedom in scheduling
due to caching, resource sharing, etc.), and any computed tim-
ing is pessimistic. This section shows how we can apply the

FIGURE 19. HiL setting overview with NVIDIA AGX Xavier.

SPADe flow even when it is difficult to give tight predictable
timing guarantees. The idea is that we use the frequently
occurring task execution times instead of the pessimistic
worst-case execution time (WCET) estimates to obtain tem-
poral bounds.

Our previous work [7] explored this idea for a
non-pipelined parallelisable implementation. In this work,
we show that the SPADe adaptation for an industrial platform
is relevant for pipelined parallelism as well.

The assumption for implementation is that it is possible
to time-trigger tasks either through polling or through inter-
rupt timers in the industrial platform. We provide validation
through a HiL simulation, showing that we can guarantee
control stability for the SPADe design outcomes, despite the
fact that the execution-time estimates for tasks used in the
SPADe flow are not conservative.

A. HiL SETTING FOR OUR CASE STUDY
Fig. 19 illustrates our HiL validation setup for LKAS adapted
from [51]. It simulates a vehicle with a top look-ahead camera
using the Webots [52] physics simulator engine and interacts
with an NVIDIA AGX Xavier platform using the TCP/IP
protocol. The simulator works in a server-client configura-
tion. Webots acts as the server while the NVIDIA platform
acts as the client. The server (Webots) progresses simula-
tion in full synchronisation with the client (NVIDIA AGX
Xavier) [37]. At each simulation step, the camera sensor
simulated in Webots generates a raw image containing state
information x[k], that is fed to the NVIDIA platform. It exe-
cutes the sensing (S) and control (C) tasks to generate control
input u[k], which is communicated back to Webots for actu-
ation. After actuation, the simulation progresses to the next
step.

For our evaluation, the camera sensor in Webots is mod-
elled based on the AR1335 CMOS digital image sensor [53]
and is set to a resolution of 720p.3 The camera frame rate is
varied between 30 fps, 60 fps, and 120 fps, depending on the
sampling period of the controller. The actuation dynamics are
modelled based on [55]. A lane width of 3.25m is considered,
as per standard road-safety guidelines. The vehicle is initially
positioned with a fixed bias of 15 cm from the lane centre to
test the control performance. The Webots simulation step is
set to 1 ms, while the vehicle speed is set to 50 km/hr.

3State-of-the-art lane detection algorithms [54] operate on low-resolution
images. So, we perform our evaluation using downscaled (512×256) sensor
images. Our approach is also effective for high-res images.
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TABLE 1. Comparing the proposed SPADe approach with the state-of-the-art multiprocessor IBC system implementations.

B. PLATFORM GRAPH
We proceed to explain the abstraction we make for the plat-
form graph in Fig. 6. The NVIDIA AGX Xavier platform
has a Carmel CPU complex with eight cores and a Volta
GPU with 512 CUDA cores and 64 Tensor cores, as shown
in Fig. 4. Modelling all the GPU cores separately may lead
to state-space explosion and is inefficient for the dataflow
timing and mapping analysis. Also, the proprietary GPU
scheduler is closed-source and needs to be accessed through
the CPU. The execution times are difficult to predict for
the tasks mapped to the GPU when there are other shared
tasks on the GPU. Therefore, we abstract and combine the
execution times of the tasks mapped to the GPU along with
the execution time of the CPU task that accesses it. Thus,
the platform allocation navlc is defined based on the number of
CPU cores allocated. For the NVIDIA AGXXavier platform,
we have a maximum of eight CPU cores, i.e., navlc = 8.

C. IBC GRAPH
Next, we explain the IBC graph of Fig. 6 used in this experi-
ment and how we populate it with the profiling information.
We model the IBC sensing algorithm using the IBC graph
illustrated in Fig. 20. This graph structure is for the approx-
imate setting ‘S3’ of the IBC system implemented in [56],
[57]. The execution time numbers for the actors in the graph
and the rates in the channels are obtained by mapping and
profiling the IBC application on the NVIDIA AGX Xavier
platform. We perform a model-fitting using the profiled

timing information to update the execution time of the actors
for each workload scenario. The resulting IBC SADFG is
then one of the inputs to the SPADe flow explained in
Algorithm 2.

For profiling, around 100 images are identified with vary-
ing image workloads. We execute each stage in the LKAS
100 times for every image in the dataset to reduce sensitivity
to access locality. This helps to characterise the profiling
information as a PERT distribution [3] for the latency of an
iteration of the graph.Workload scenarios are classified based
on the resulting PERT distribution by identifying regions in
the distribution based on occurrence frequency. This results
in scenario graphs with the same graph structure and channel
rates, but different actor execution times. The workload sce-
narios for this setup are not based on RoI, as in our running
example. For the worst-case scenario, we use the worst-case
profiling numbers for the execution times of the actors. Other
workload scenarios use the best-case, first quartile, median
and third quartile profiling data. As an example, the model
parameters for the workload scenario using third quartile
profiling data are edm = 10.3 ms, edn = 4 ms, e1 = 0.3 ms,
e2 = 4.65 ms, ed = 5 ms, ep = 1.4 ms, em = 0.16 ms
(see Fig. 20), eC = 0.016 ms, and eA = 0.5 ms (assuming
single actors C and A for the control compute and actuation
tasks). Workload scenarios may also be classified based on
other parameters, like RoI in the running example. Our pre-
vious work [7] details the case where the workload scenar-
ios are classified based on different operating modes of an
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FIGURE 20. LKAS IBC graph of the sensing algorithm implementation
derived from [57]. The actors are: dem - demosaicing; den - denoising;
i1,2,3 - abstract colour mapping and white balancing, tone mapping, and
compression; and D-P-M model the lane detection, processing and
merging tasks. The output is the lateral deviation yL.

application due to environmental conditions. Here, we use the
observed overall latency of the sensing, because it is difficult
to predict execution times on the considered platform based
on other parameters.

D. SPADe FLOW, DSE AND HiL VALIDATION
Once we model the IBC SADFG with the profiling infor-
mation for every workload scenario, the rest of the steps in
the SPADe flow follows Algorithm 2. A DSE is performed
for different implementation choices n//c and p (as explained
in Section VII-A). A DSE involves analytical computation
of GM and PM (in Matlab) for the different implementation
choices (results are shown in Fig. 21). We consider three
given platform allocations - single-core, four cores and eight
cores, i.e., navlc = 1, 4, 8. The implementation choices with
the highest GM and PM are Pareto-optimal.

The results in Fig. 21 show that parallelising as much
as possible gives the best result, i.e. the configurations <
4, 4, 1 > and < 8, 8, 1 > have the best GM and PM. The
configurations < 4, 4, 2 > and < 8, 4, 2 > have similar
GM and PM and can be considered for further analysis. The
results confirm the earlier conclusion of Section VII-A that
parallelisation should be prioritised over pipelining. In this
case, pipelining does not have any added value (p = 1
in both Pareto-optimal configurations), because the LKAS
implementation is highly parallelisable. For applications with
a lower degree of parallelism, e.g., when maximum paral-
lelism is achieved with 4 cores and navlc = 8, this would
likely not be the case. In such a case, we can use the additional
four cores for an additional pipe, implying that configuration
< 8, 4, 2 > would have been ideal.

Next, we validate the Pareto-optimal implementation
choices in the HiL setting of Section VIII-A for control sta-
bility, considering both parallelism and pipelining together.
Recall that the SPADe flow has a built-in stability check
for the system configurations considering the initial system
model. However, the actual LKAS implementation has to
cater to different environment conditions, noise levels, and
model uncertainties. HiL validation is often used to simulate
the designed system configurations under real-life environ-
ment conditions. Therefore, we also perform a HiL validation
experiment. From the experiment, we observe that stability
of the implementation choices of the closed-loop system is
confirmed. We can moreover verify that the order of the
control system performance obtained in HiL conforms to the
GM and PM predictions. As explained, we rely on analytical
metrics GM and PM to select our design points. The MSE

FIGURE 21. Pareto-plot for GM and PM vs navl
c . The legend denotes

< navl
c , n//c ,p >.

and ST comparisons are omitted as performing an exhaustive,
fair simulation for even a single design point is too compute
intensive. But the DSE performed with the SPADe flow and
the HiL validation of the results show that SPADe can be
adopted for industrial platforms.

IX. CONCLUSION
We have presented a scenario- and platform-aware design
flow (SPADe) for IBC system implementation that consid-
ers both pipelining and parallelism in an integral fashion
to improve QoC of multiprocessor IBC implementations.
We propose model transformations for modelling, analyzing
and mapping the IBC system. We explain how the SPADe
approach can explicitly take into account inter-frame depen-
dencies in pipelining, image workload variations, application
parallelism, resource sharing, camera frame rate and a given
platform allocation. We validate the SPADe approach using
Matlab simulations considering the predictable CompSOC
platform and using hardware-in-the-loop experiments with
an NVIDIA AGX Xavier platform. We observe that con-
sidering pipelined parallelism has inherent advantages over
considering pipelining and parallelism separately. Exploit-
ing parallelism should be prioritized over pipelining. But
pipelined parallelism is better when an application has a lim-
ited degree of parallelism or when the inter-frame dependen-
cies are significant. Future work may involve exploring the
optimal degree of pipelining and parallelism when multiple
IBC systems are sharing a platform.
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