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Abstract. As an industry where performance improvements can save
lives, but resources are often scarce, emergency medical services (EMS)
providers continuously look for ways to deploy available resources more
efficiently. In this paper, we report a case study executed at a Dutch EMS
region to improve ambulance dispatching. We first capture the way in
which dispatch human agents currently make decisions on which ambu-
lance to dispatch to a request. We build a decision tree based on historical
data to learn human agents’ dispatch decisions. Then, insights from the
fitted decision tree are used to enrich the commonly assumed closest-
idle dispatch policy. Subsequently, we use the captured dispatch policy
as input to a discrete event simulation to investigate two enhancements
to current practices and evaluate their performance relative to the cur-
rent policy. Our results show that complementing the current dispatch
policy with redispatching and reevaluation policies yields an improve-
ment of the on-time performance of highly urgent ambulance requests
of 0.77 percentage points. The performance gain is significant, which is
equivalent to adding additional seven weekly ambulance shifts.

Keywords: Ambulance dispatching · Machine learning · Decision trees
· Discrete event simulation · Logistics

1 Introduction

Emergency medical services (EMS) providers continuously look for ways to de-
ploy limited available resources more efficiently. In the Netherlands, the fraction
of highly urgent ambulance requests (A1 requests) with a response time of fewer
than 15 minutes has been consistently below the national target of 95% through-
out the past years, with a performance of 92.4% in 2017. Advances in ambulance
logistics will contribute to the provision of sufficient emergency medical care,
given the available resources.

The operational problems in EMS literature include both ambulance dis-
patching and relocation in order to maximize the fraction of ambulance requests
with a response time below a certain threshold time, or the on-time performance.
Response time is defined as the time between the moment an ambulance request
arrives at a dispatch center and the moment the ambulance arrives at the request
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location. It is predominantly assumed that ambulances are dispatched accord-
ing to a ‘closest-idle’ policy (e.g. [10, 13]). Alternative dispatch policies are often
modifications of this policy (e.g. [7, 8]). However, not only does this policy ne-
glect practical considerations (e.g. the distinction between urgency levels or shift
ends), it is also known to be suboptimal when maximizing the on-time perfor-
mance [4]. Therefore, it can be expected that in practice dispatch agents tend to
deviate from this commonly assumed dispatch policy, jeopardizing the relevance
of alternative policies developed with the closest-idle policy at its foundation.

Knowledge obtained by dispatch agents in practice can be very useful in
the development of improved dispatching policies [1]. In this paper, we formally
capture this knowledge, or expertise, in the form of the current dispatch policy
for the Dutch EMS region of Brabant Zuid-Oost (BZO). Capturing the current
dispatch policy has three main benefits: (1) Creating transparency : Insights can
be deducted that can help create awareness among dispatch agents, which might
improve consistency and fairness of the process. (2) Improving process: Insights
from the captured dispatch policy also give rise to opportunities for improvement.
The captured dispatch policy provides a basis to improve upon by extending it
with a number of additional or adapted decision rules. Contrary to developing
an improved dispatch policy from scratch, our approach complements, rather
than replaces, current dispatch practices. This ensures both the incorporation of
practical considerations in the resulting policy and that it is in line with the way
in which dispatch agents currently work, which are expected to foster adoption
in practice; (3) Evaluating fairly : the captured dispatch policy can be used as
input to a simulation of an EMS region. Such a simulation can also be used to
fairly evaluate potential improvements of the dispatch process by comparing its
performance to that of the current dispatch policy. The use of a benchmark that
resembles current practices allows for more accurate conclusions regarding the
potential of the evaluated alternative policy in practice.

Decision makers are often not completely aware of the reasoning behind their
expert judgments, making it hard for them to verbally express their decision pro-
cess [6]. However, mental decision models can be formally approximated through
machine learning models. We select decision tree induction to capture the cur-
rent dispatch policy of the BZO region, since this method results in a policy
representation that is both transparent and interpretable. In the BZO region
the fraction of A1 requests has been consistently below the nationally-set target
of 95% (i.e., 91.7% in 2017), while the fraction of moderately urgent (A2) re-
quests with a response time of less than 30 minutes has consistently exceeded its
target of 95%. Therefore, the on-time performance for A1 requests is generally
regarded as the main performance measure in EMS management.

Our work contributes to the field of EMS management as well as to that of
applying machine learning to capture expert decisions:

– We are the first to formally capture current ambulance dispatch practices
using machine learning. We apply decision tree induction to obtain a trans-
parent representation of the current dispatch decision process in the BZO
region (see §4.1).
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– We apply a unique post-processing phase which combines knowledge from
both practice and literature with the learned decision tree to further improve
the quality of the learned model in terms of accuracy and conciseness. The
resulting model enriches the commonly assumed closest-idle dispatch policy
through the use of penalty values that reflect the risk associated with certain
ambulance characteristics (§4.2).

– We illustrate an application of the captured current dispatch policy by
proposing two enhancements to it and evaluating these in a simulation using
the captured policy as a practically relevant benchmark (§5).

Before making these contributions in §4 and §5, we discuss related literature in
§2 and the collection of data in §3. We conclude this paper in §6.

2 Related work

The existing studies in EMS management generally evaluate the proposed dis-
patch policies through a simulation in which many simplifying modelling choices
and assumptions are made. For example, Lee [7] simulated a hypothetical square
grid of 25 vertices with a fixed driving time for all edges. He did not distinguish
between urgency levels and assumed a general distribution for transfer times and
a static number of ambulances. Jagtenberg et al. [4] simulated the actual EMS
region of Utrecht, but assumed a static relocation policy, static request arrivals,
and static ambulance capacity, treatment and transfer times.

The existing, limited number of studies applying machine learning to model
expert decisions generally seems to have the captured expert knowledge as the
ultimate goal of their efforts, mostly to automate decision making. Maghrebi et
al. [9] conducted a feasibility study of automating the process of determining the
order of concrete deliveries. They employ machine learning to match expert de-
cisions with the objective of decreasing dependency on human resources. Lafond
et al. [5] compare three machine learning techniques in capturing human clas-
sification behavior using a simulated naval air defense task. However, capturing
expert decisions with the objective to support future decisions implicitly assumes
that the captured expert knowledge is optimal, or at least neglects the fact that
insight into current practices provides a good opportunity for the identification
and evaluation of improvement of the decision making process. In Lafond et al.
[6], a learning technique is applied to functionally mirror expert mental models.
Their objective is to improve decision quality by recognizing when a decision
maker is deviating from his usual decision patterns, since this might indicate
probable errors. It still assumes the captured policy to be the correct, or de-
sired one, which was a limitation as acknowledged by the authors. Donnot et al.
[3] first apply a deep neural network to historic decision data to mimic human
decisions in the prevention of violating power flow limits in a power plant, and
then use simple simulation to evaluate the effect of each action proposed by the
captured decision model before suggesting it to the decision maker. While this
approach does not actually improve on the captured decisions, it does distin-
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guish between bad and good decisions and only uses the good ones to support
future decision making.

To the best of our knowledge, there are no studies which have captured expert
decisions with the objective to use the resulting policy as a basis to improve
upon or as input for fair evaluation of alternative policies. Moreover, most of the
studies did not derive decisions from real data, but rather generated this data by
presenting experts with an artificial (simulated) task. In comparison, we expect
decisions derived from historic data resemble actual decisions more closely. In
addition, in capturing ambulance dispatch decisions, we apply a post-processing
phase which combines knowledge from both the domain and literature with the
learned model to further improve the quality the resulting model.

3 The data set: historic dispatch decisions

We approached the induction of the current dispatch policy as a classification
problem. We gathered data on historic dispatch decisions made by BZO’s dis-
patch agents. The data set has been compiled such that it reflects all information
available to the agent at the decision moment, which might have affected the
decision. We have structured the decision to be captured around the dispatch
proposal. In the Netherlands, upon being presented with an ambulance request,
a dispatch agent uses the national dispatch system to generate such a dispatch
proposal. A dispatch proposal is an ordered list of all ambulances available for
dispatch to the concerned request, based on an increasing driving time to the
request location. By structuring the decision to be captured around such a dis-
patch proposal, we have implicitly assumed that, for any dispatch decision to
be made, a dispatch proposal is generated and one of the ambulances in the
proposal is dispatched. The set of ambulances available for dispatch depends on
the request’s urgency. Regardless of the request’s urgency this set includes all
idle ambulances, i.e. those driving to, or waiting at, a station. Besides idle am-
bulances, this set includes ambulances which have already been dispatched to a
less urgent request, but did not arrive at that request’s location yet, and ambu-
lances that have arrived at a hospital and are busy transferring a patient. While
these ambulances are not idle (yet), they might be redispatched or requested to
accelerate the transfer process respectively. Lastly, since dispatch agents have
the possibility to request assistance from neighbouring EMS regions, these am-
bulances are also included in the dispatch proposal. Summarizing, the objective
of our formalization effort was to determine which ambulance is dispatched to
a request, given the corresponding dispatch proposal, and why a dispatch agent
might decide to deviate from dispatching the closest-idle ambulance. This implies
that the class of each instance is the rank of the ambulance that was actually
dispatched in the corresponding dispatch proposal.

3.1 Feature engineering

Upon making a dispatch decision, a dispatch agent has multiple screens at
his/her disposal which show information regarding the concerned ambulance re-
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Table 1. Features with i ∈ {1, 2, 3, 4, 5} being dispatch proposal options

No. Feature Symbol Data type
0 Rank of i in dispatch proposal (class) C Nominal: {1,2,3,4,5+}
1 Urgency U Ordinal: {A1, A2}
2 Passed time P Numeric (minutes)
3-7 Driving time of i Di Numeric (minutes)
8-12 Status of i Si Nominal: {1,2,3,6}
13-17 Idle status indicator of i SIi Binary
18-22 Status time of i STi Numeric (minutes)
23-27 Remaining shift time of i RSi Numeric (minutes)
28-32 Own ambulance indicator of i Rowni Binary
33-37 Region BZO & BNO indicator of i Rboi Binary
38 Number of idle ambulances I Numeric
39 Single coverage Cov Numeric (%)
40-44 Percentual coverage reduction of i PCRi Numeric (%)
45-49 Absolute coverage reduction of i ACRi Numeric (%)
50-53 Driving time diff. i and i+ 1 ∆Di Numeric (Min.)
54-57 Perc. coverage reduction diff. i and i+ 1 ∆PCRi Numeric (%)
58-61 Abs. coverage reduction diff. i and i+ 1 ∆ACRi Numeric (%)
62-66 Expected response time of i Ei Numeric (Min.)

quest, the ambulance options included in the generated dispatch proposal, and a
map of the region displaying all on-duty ambulance locations and statuses. Since
dispatch agents are dedicated to making dispatch decisions, which happens un-
der time pressure, we assume that all information presented to a dispatch agent
is considered to be relevant to the dispatch decision. We transformed such do-
main knowledge by the process of feature engineering. Data was obtained for
September and October 2018 from GMS. Only data on ambulance requests (dis-
patches) within the BZO region were used. This led to a total of 4506 instances
to fit BZO’s current dispatch policy on. Table 1 shows the features for which
values were obtained from the available data for each of the instances. For a more
detailed description of data collection and (pre-)processing, we refer to [12].

The first two features relate to the ambulance request which requires a dis-
patch decision. The urgency (U) of this request is relevant since it determines the
response time target. 95% of highly urgent (A1 ) requests should have a response
time less than fifteen minutes, while 95% of moderately urgent (A2 ) requests
should have a response time less than thirty minutes. Since the response time
of a request starts at the moment the corresponding call arrives at the dispatch
center, the time that has passed since call arrival (P ) is also relevant.

Features three to thirty-seven concern pieces of information listed for each of
the ambulance options in the generated dispatch proposal, with i referring to the
ith option in a dispatch proposal, i ∈ {1, 2, 3, 4, 5}. Note that for each instance
only features referring to properties of the first five options in the concerned
proposal are included. This choice was made since the class distribution in our
instance set is particularly unbalanced, with the higher ranked dispatch options
being represented more strongly. Recall that ambulances in a dispatch proposal
are ordered based on their driving time to the concerned incident and the main
performance measure depends strongly on this driving time, which leads to a
natural preference for higher ranked options. To ensure a sufficient number of
samples of each class to be available, classes five and up were combined to form
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one class. Furthermore, we were especially interested in an agent’s reasons for de-
viating from sending the closest idle ambulance, which were expected to become
apparent by distinguishing between the first few options of a dispatch proposal.
The resulting class distribution is: 67% (class 1), 20% (class 2), 7% (class 3),
3% (class 4), 3% (class 5). Since the importance of the classes is ordered, it is
more important that the higher ranked classes are predicted correctly. Hence we
do not balance the dataset but let the decision tree algorithm favour the more
important classes during learning.

The status of each dispatch option i (Si) may either be idle (driving towards
or waiting at a station) or busy but available for dispatch (on its way to a less
urgent request or transferring a patient at a hospital). The idle status indicator
of dispatch option i (SIi) indicates whether Si is idle. Furthermore, the status
time of option i (STi) is equal to the time since the status of each dispatch option
last changed, while the time until the end of each dispatch option’s eight hour
shift, which may be negative in case of overtime, is reflected by feature RSi. The
dispatch proposal shows for each option to which region it belongs, and thus by
which region it is controlled. We captured this information in binary features
Rowni and Rboi, where the first reflects whether option i belongs to the own
region (BZO), and the second indicates whether option i belongs to either the
own region or the adjacent BNO region, where dispatch agents operate from the
same dispatch center as BZO’s dispatch agent.

Features thirty-eight through forty-nine reflect the information that the dis-
patch agent might deduct from the map of the region displaying all on-duty
ambulance locations and statuses. The number of idle ambulances (I) and the
single coverage (Cov) reflect the extent to which the region is prepared for future
requests. Based on discussions with BZO’s dispatch agents, I includes both idle
ambulances and ambulances that are busy transferring a patient at a hospital,
since these are expected to become idle in the very near future and may even
be requested to accelerate the transfer process if necessary. The single coverage
feature refers to the fraction of the BZO region (in terms of 4-digit postal code
areas) that can be reached within a response time of fifteen minutes by at least
one ambulance [2]. Additionally, we introduced two features that relate to the
reduction in preparedness, i.e. single coverage, of the region that would be caused
by dispatching option i. ACRi does so in absolute terms, while PCRi relates
the coverage reduction to the current single coverage (Cov).

A dispatch agent might infer relevant information based on the relation be-
tween feature values. Features fifty through sixty-six were constructed by per-
forming logical operations on our initial list of features and selecting meaningful
ones. These additional features include the difference between subsequent dis-
patch options in driving time (∆Di), percentual and absolute coverage reduction
(∆PCRi and ∆ACRi), and the expected response time of each dispatch option
i (Ei). Here, the expected response time of option i is made up of the time that
passed since arrival of the call (P ), its driving time to the request’s location
(Di), and one minute that is expected to be required for making the dispatch
decision and for an ambulance to start driving after being dispatched.
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4 Capturing the dispatch policy with a decision tree

We use a decision tree to learn the current dispatch process, due to its transpar-
ent nature. Its interpretability allows us to gain insight into the current dispatch
routine, which can be leveraged both as a basis to improve the current dispatch
process and as a benchmark in the evaluation of potential improvements.

We split the data into a training set (70% of instances) and a test set (re-
maining 30% of instances). We use the implementation of CART (Classification
and Regression Trees) in scikit-learn [11]. We tune the parameters, i.e. feature
selection method, maximum tree depth, and the minimum number of instances
at a leaf node, by applying stratified 10-fold cross-validation on the training
set. Then the final decision tree has been trained on the complete training set.
Subsequently, the resulting decision tree has been evaluated using the test set.

Since our objective of capturing the current dispatch process is to identify
which ambulance is actually dispatched, the larger sized classes are of greater
interest than the smaller ones. By definition, this relative interest in correctly
predicting each class is reflected in the class distribution. Hence, we do not
balance the training set but let the algorithm favour the more important classes.
In addition, we choose the weighted F1-score, where the F1-score of each class
is weighted by its sample size, as the main performance measure.

4.1 Performance analysis of the learned decision tree and policy

Additionally, we define the Weighted Mean Error performance measure. For the
problem at hand, if the actual dispatch decision was to dispatch the first option,
predicting dispatch of the third option is actually more wrong than predicting
dispatch of the second option. Therefore, we defined the following additional
performance measure:

WME =

∑k−1
d=0 d

∑
i,j∈{1,2,...,k}:|i−j|=dmi,j∑
i,j∈{1,2,...,k}mi,j

,

where k equals the number of possible classes, in our case k = 5, and the mi,j

are cells in the confusion matrix, where rows and columns are indicated by i and
j respectively. Naturally, while we strive towards a dispatch prediction model
with a weighted F1-score that is as high as possible, we prefer the mean distance
to the actual class to be as low as possible.

To place the performance of the resulting decision tree into perspective, its
performance has been compared to the dispatch policy that is commonly as-
sumed in literature, the closest-idle policy. Notice that in literature this policy
generally does not include the additional dispatch options that are available to
BZO’s dispatch agents, namely ambulances that are not completely idle but
nevertheless available to (certain) incidents and external ambulances that be-
long to other regions. Therefore, we have defined two dispatch policies to which
the performance of our fitted dispatch policy have been compared: (1) The lim-
ited closest-idle policy : corresponding to the policy that is commonly assumed
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in literature, i.e. dispatching the highest ranked ambulance in the dispatch pro-
posal that is completely idle (on the road or at station) and belongs to the own
region. (2) The extended closest-idle policy : corresponding to the commonly as-
sumed policy but adapted to include the additional available dispatch options,
i.e. always dispatching option one in the dispatch proposal.

Figure 1 depicts the learned decision tree. Figures 2a, b, and c show the
confusion matrices and performance measures for the learned dispatch policy,
the limited closest-idle policy and the extended closest-idle policy respectively.
Figure 2 shows that the learned dispatch model outperforms both interpreta-
tions of the closest-idle policy, in terms of the weighted F1-score, as well as the
weighted mean error. However, while the difference in performance between the
learned model (a) and the extended closest-idle policy (c) is quite significant, the
improvement in predictive performance of the learned model (a) relative to the
basic, limited closest-idle policy (b) is less apparent. This observation leads us to
believe that BZO’s dispatch agents generally make limited use of the additional
dispatch options available to them.

This insight is confirmed by studying the learned decision tree, depicted in
Figure 1a, in more detail. There are several clear ‘decision paths’, which have
been highlighted in Figure 1b. These highlighted decision paths indicate the
dominant dispatch decision. Note that some of these paths, and the insights
derived from them, can be regarded as more important than others due to the
larger number of samples following that path. The weight of each path indicates
the number of samples following that path.

The main reasons that might lead a dispatch agent to deviate from dispatch-
ing the highest ranking dispatch option (i.e. option 1) quickly become clear from
the splits on the most dominant path (leading to [A]). These main reasons in-
clude this highest ranking ambulance:

– Not being immediately available for dispatch: due to its status. For
example, the ambulance is transferring a patient at a hospital, meaning
that it might require some time to be relieved from its current request and
redispatched to the new request.

– Not belonging to the own region: meaning that the concerned dispatch
center needs to be requested, which takes time, and the dispatch request
might be denied.

– Nearing the end of its shift: causing a risk of overtime if it is dispatched.

The first two of these reasons confirm that dispatch agents make limited use
of the additional dispatch options available to them. Possibly, this is the case
because these issues add a potential delay to the indicated driving time. Such a
potential delay adds a degree of uncertainty to the ambulance’s expected driving
time, which gives the dispatch agent good reasons to deviate from this option.
Naturally, the potential delay is only relevant if the difference between the driving
time of that option and the subsequent option is less than this expected delay.
This is reflected by the node at the top of node group [A] in Figure 1b, as well
as at several other nodes in the tree.
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Fig. 1. Visualization of learned dispatch decision model with colors indicating the class
distribution of the instances reaching each node: (a) complete model and (b) model
including highlighted decision paths indicating its dominant dispatch decision
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Fig. 2. Confusion matrices and performance measures for (a) the learned dispatch
policy, (b) the limited closest-idle policy, and (c) the extended closest-idle policy

It can be deducted that, if there are enough reasons to deviate from the
highest ranking ambulance option, the subsequent option is considered. However,
the same reasons to deviate seem to hold for this option, e.g. see the path in
Figure 1b leading to node [B], where option 3 is considered due to the status of
option 2, and that same path eventually leading to leaf node [C], where option
4 is considered due to the status of option 3.

However, subsequent options cannot be considered indefinitely, since the driv-
ing time to the request increases with each option. Naturally, despite the dispatch
agents being risk averse and preferring subsequent options if there is a potential
delay for the closest option, the selected option should still be able to arrive
on-time. Since the driving time increases with each option, the driving time, or
expected response time, of the furthest option we consider, option 5, is a good
indication of whether previous options are able to arrive on-time. This is why
multiple nodes testing for the closeness of option 5 to the incident are present
in the decision tree, see nodes [D] and [E]. It can be seen that if the closeness
of option 5 is sufficiently small, generally lower ranked options are selected for
dispatch than when this is not the case.

This is also why the learned model performs significantly better than the lim-
ited closest-idle policy in terms of its weighted mean error. In case of sufficient
available capacity, dispatch agents clearly prefer risk averse dispatch options.
However, while the learned model recognizes that in case of scarcity the dis-
patch agent is required to choose an ambulance to be dispatched among risky
options, the limited closest-idle policy keeps considering subsequent options un-
til a risk-free (completely idle and own region) option is found. In other words,
while the performance of the fitted model is similar to the limited closest-idle
policy for the majority of dispatch decisions to be made, i.e. in case of sufficient
capacity, it strongly outperforms this commonly assumed policy in case of scarce
capacity. This ability of the fitted model is especially relevant since dispatch de-
cisions made under scarce capacity are precisely where the expertise and human
judgment of the dispatch agents can make a difference.
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Fig. 3. Fitted penalty values (on train data) and performance (on test data) of PBCI

4.2 The penalty-based closest-idle policy

The fitted dispatch policy is quite complex. Combined with the fact that a simple
model such as the limited closest-idle policy is able to predict dispatch decisions
quite well in case of sufficient ambulance capacity, but performs very bad in
case of limited capacity due to its inability to consider risky options, leads us to
propose a concise, penalty-based policy to represent the dispatch decisions made
by BZO’s dispatch agents. In line with the three main reasons to deviate from
dispatching an ambulance that were deducted from the learned decision tree,
penalty terms are defined based on an ambulance’s status, region and time until
the end of its shift to reflect the potential delay or risk associated with the value
of these features. For each ambulance option, its total time penalty is determined
based on its status, region and remaining shift time, after which it is added to its
driving time. Then, the dispatch option with the lowest driving time plus total
penalty is dispatched. In other words, this policy can be called the penalty-based
closest-idle (PBCI) policy. This approach reflects dispatching agents’ preference
for a completely idle ambulance from the own region, but ensures that in case
of scarce capacity still one of the risky options is selected for dispatch.

These penalty terms are fitted on the training data, such that they result
in a maximum weighted F1-score. This is done through an exhaustive search
of integer penalty values. The performance of the resulting penalty model is
evaluated on the test data. Figure 3 shows the fitted penalty values, the confusion
matrix and performance measures. It is shown that both the weighted F1-score
and the weighted mean error have improved even further compared to the fitted
decision tree. Algorithm 1 shows the resulting PBCI dispatch policy.

The PBCI policy has been presented to and validated by BZO’s dispatch
agents. Not only did they confirm that the PBCI policy makes sense and is likely
to resemble the majority of their dispatch decisions, it also started a constructive
discussion on how to improve upon their current decisions. In conclusion, insights
from our learned dispatch decision prediction model were used to enrich the
commonly assumed closest-idle dispatch policy using penalty values reflecting the
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Algorithm 1 Algorithm of the PBCI dispatching policy
1: for each dispatch option in the dispatch proposal i do
2: penaltyi = 0
3: if ambulance is transferring a patient at a hospital then
4: penaltyi = penaltyi + 7 (min.)
5: else if ambulance is on its way to a less urgent request then
6: penaltyi = penaltyi + 4 (min.)

7: if ambulance is of BNO region then
8: penaltyi = penaltyi + 6 (min.)
9: else if ambulance is of neither BZO nor BNO region then
10: penaltyi = penaltyi + 10 (min.)

11: if shift of ambulance ends within 40 minutes then
12: penaltyi = penaltyi + 4 (min.)

13: Penalized driving time of i = driving time of ambulance i + penaltyi

14: Dispatch ambulance with smallest penalized driving time

risk associated with certain ambulance characteristics. The result of this post-
processing phase is a concise policy that has significantly greater resemblance to
the actual dispatch decisions made by BZO’s dispatch agents compared to the
policy that is generally assumed in literature.

5 Current policy as a basis for improvement

The captured dispatch policy provides insight into current practices and gives
rise to opportunity for improvement. The PBCI policy provides a basis to im-
prove upon, as well as a benchmark that is close to current practices. To illustrate
a possible application of the PBCI policy, we have defined two potential enhance-
ments to current practices and evaluated their potential using a realistic sim-
ulation. These enhancements were defined to complement, rather than replace,
the current dispatch decision process. Using the PBCI policy as a basis for im-
provements ensures that practically relevant considerations are included in the
improved decision process, fostering adoption. The two potential enhancements
to the current dispatch process we propose are (1) consistently redispatching am-
bulances that are on their way to a less urgent request to a more urgent request if
this leads to a response time improvement and (2) reevaluation of active dispatch
decisions upon service completion of an ambulance.

Consistent redispatching From the captured current dispatching process, it can
be seen that a dispatch option that is not completely free (on the road or at a
station) is considered to be risky due to a potential delay. While a potential delay
is difficult to avoid if the ambulance is busy transferring a patient at a hospital,
it might be avoided in case of redispatching an ambulance that is currently on its
way to a less urgent request. The consistent redispatching policy always dispatch
an ambulance that is currently on its way to a less or non-urgent request if this
is the best dispatch option for a highly urgent (A1) request. The enhancement
is similar to ‘reroute-enabled dispatching’ as proposed by [8], who evaluated this
policy for a hypothetical EMS region consisting of a 16x16 grid, deterministic en-
vironment. It is interesting to evaluate the potential performance improvement of
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consistently redispatching an ambulance whenever it is the best dispatch option,
since the performance improvement might outweigh the disadvantages.

Reevaluation of dispatch decision Currently dispatch decisions are only made
upon arrival of a new request. A dispatch decision is made by selecting the
best option from those ambulances that are available at that moment. However,
the system of ambulances is very dynamic and during the time the dispatched
ambulance is driving towards the request, another ambulance may complete
serving another request. This other ambulance may in fact be a better dispatch
decision than the ambulance that is already on its way. Reevaluation of the
dispatch decision might contribute towards improving performance. Contrary to
the ‘Parallelism’ dispatch policy of [7], the consideration of a busy ambulance
only after it has completed service, prevents dependency on the realization of
highly variable treatment times. Furthermore, to prevent reevaluated dispatch
decisions resulting in only a marginal difference in response time, as is the case for
the ‘free ambulance exploitation’ policy of [8], in our case a reevaluated dispatch
decision will only lead to the recently freed ambulance being dispatched instead
of the current one if this leads to a response time improvement of at least one
minute for highly urgent (A1) requests, or a direct improvement of the on-time
performance for less urgent (A2) requests.

5.1 Evaluating potential enhancements using simulation

These two potential enhancements to the current dispatch policy have been eval-
uated using a realistic simulation that accurately captures the complex dynamics
of a real-life size ambulance system within a reasonable computation time. We
developed a discrete-event simulation in which the BZO region is aggregated
into 138 subregions, corresponding to 4-digit postal codes. Locations of ambu-
lance stations, hospitals, and requests are mapped onto the centroid of its postal
code. While our focus is on the performance of urgent (i.e. A1 and A2) requests,
we also simulate non-urgent patient transports to capture all dynamics in the
utilization of the available ambulance capacity. Furthermore, driving times be-
tween each pair of postal codes are assumed to be deterministic, but dynamic, as
supplied by the driving time model of the RIVM (non-public). The simulation is
able to accurately deal with the dynamic arrival of ambulance requests of mul-
tiple urgency levels, dynamic ambulance capacity, realistic relocation decisions
and a wide range of practical considerations. Furthermore, the captured current
dispatch process allowed us to be the first to evaluate alternative dispatch poli-
cies by comparing the simulated performance to that of a practically relevant
benchmark. The interaction with neighbouring EMS regions was excluded from
the simulation due to its complexity. Its effect on the extent to which the sim-
ulation resembles reality is expected to be limited due to the fact that external
ambulances are rarely dispatched (< 2% of requests).

Table 2 shows that simulating current practices, represented by the PBCI
policy, results in a slightly better performance for highly urgent A1 requests and
similar performance for moderately urgent A2 requests compared to realized
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Table 2. Realized and simulated performance under current dispatch policy

A1 requests A2 requests
On-time Mean RT On-time Mean RT

(%) (min:sec) (%) (min:sec)

Realized 92.13 9:33 97.10 14:32
Simulated 93.63 9:02 97.07 13:38

Table 3. Resulting performance for potential dispatch enhancements

A1 requests A2 requests
On-time Mean RT On-time Mean RT
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Base 93.63 (+/-0.05) 9:02 (+/-0:00) 97.07 (+/-0.05) 13:38 (+/-0:01) 1425
x 94.06 (+/-0.05) 8:55 (+/-0:00) 96.15 (+/-0.05) 14:04 (+/-0:01) 3293

x 94.04 (+/-0.04) 8:56 (+/-0:01) 97.50 (+/-0.05) 13:34 (+/-0:01) 1413 823
x x 94.40 (+/-0.05) 8:50 (+/-0:00) 96.73 (+/-0.05) 13:58 (+/-0:02) 3269 772

values in the practice of the BZO region. The simulation slightly outperforms
reality because the simulation decisions are made consistently, while in practice
variations in dispatch decisions occur due to human judgment and differences
between dispatch agents. Because we have only a small difference between the
realized and simulated performance, we can conclude that our simulation model,
with the use of the PBCI policy, is representative for the BZO region.

5.2 Performance of the improved policy

Table 3 shows the resulting performance measures for the two potential en-
hancements. Besides the main performance measures relating to the response
time of urgent requests, the last two columns provide further insight into the
effect of both enhancements from which conclusions regarding the effect on am-
bulance crew disturbance can be deducted. From the effects on performance
caused by each dispatch enhancement individually, it can be concluded that
both consistent redispatching and reevaluation of active dispatch decisions upon
service completion of an ambulance lead to a significant improvement of the frac-
tion of A1 requests that is served on-time, namely 0.43 and 0.41 percent points
(pp) respectively. However, while consistent redispatching is quite detrimental
for the on-time performance of A2 requests, the reevaluation enhancement even
improved this measure with 0.43 pp. This detrimental effect of the consistent
redispatching enhancement on the A2 on-time performance is mostly caused by
the fact that an ambulance is redispatched regardless of whether an alternative
ambulance is available for dispatch to the original request, and whether this
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ambulance is able to arrive on-time. While under the current dispatch policy on
average 3.9 redispatches are initiated each day, this number increases to a little
over 9 redispatches per day in case of consistent redispatching. Given the number
of shifts on an average day, this implies that an ambulance crew is only redis-
patched once every four shifts, which does not seem excessive. From the number
of reevaluations leading to the recently freed ambulance being dispatched, and
thus for the currently dispatched ambulance to be redirected, it can be deducted
that such a decision is made on average 2.3 times per day. The disturbance to
the ambulance crew of this number of redirections is likely to be quite limited.

We also simulated the combination of enhancements. Adding both the consis-
tent redispatch and reevaluation enhancement yields an even larger performance
gain, improving the A1 on-time performance by 0.77 pp. The performance gain
of both of these enhancements individually is quite complementary, as combin-
ing these enhancements leads to an A1 on-time performance gain of almost the
sum of the individuals performance gains. Further, the fact that the reevaluation
enhancement is beneficial to the performance of A2 requests mitigates part of
the detrimental effect of the consistent redispatch enhancement, leading only to a
reduction of 0.33 pp. Combining these two enhancements, however, also leads to
a larger number of redirections (resulting from either being redispatched or from
a reevaluated dispatch decision), which may cause disturbance to ambulance
crews. Yet with an average of approximately eleven redirections per day, or an
ambulance being redirected once every three eight-hour shifts, this disturbance
is likely to be outweighed by the resulting performance gain.

To place the performance gain into perspective, we added additional weekly
shifts to the shift roster. The performance gain from our approach is equivalent
to adding more than seven weekly ambulance shifts, while our approach does
not require additional available resources (see [12] for more details).

6 Conclusion

We captured the way in which dispatch agents currently make decisions on
which ambulance to dispatch to a request. Insights from the fitted decision
tree were used to enrich the commonly assumed closest-idle dispatch policy,
using penalty values reflecting the risk associated with ambulance characteris-
tics. Subsequently, we illustrated an application of the captured dispatch policy
by defining two enhancements to current practices and evaluating their perfor-
mance in a simulation. The proposed approach can be applied to other EMS
regions to improve ambulance dispatching.

Dispatch agents in the EMS region Brabant-Zuidoost have indicated to be
very happy about the potential of these enhancements to the current dispatch
policy in their attempt to push the on-time performance of highly urgent A1
requests to 95%. These process adaptations are essentially free and instantaneous
measures to improve performance without increasing the available ambulance
capacity. As future research, it is interesting to conduct a field experiment to
confirm the potential of the proposed enhancements in practice.
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