
 

Parameterized Model Order Reduction with Applications to
Thermal Systems
Citation for published version (APA):
Lou, D. (2021). Parameterized Model Order Reduction with Applications to Thermal Systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 24/11/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/9177a083-b7cb-48b7-88ba-36e356c13eef


Param
eterized M

odel O
rder Reduction w

ith A
pplications to Therm

al System
s

Daming Lou

Parameterized Model Order Reduction 
with Applications to Thermal Systems

D
am

ing Lou



PARAMETERIZED MODEL ORDER
REDUCTION WITH APPLICATIONS

TO THERMAL SYSTEMS

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op
woensdag 24 november 2021 om 13:30 uur

door

Daming Lou

geboren te Hangzhou, China



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommisie is als volgt:

voorzitter: prof.dr.ir. P.H.N. de With
1e promotor: prof.dr. S. Weiland
copromotor: dr. L. Ozkan
leden: prof.dr.ir. N. van de Wouw

prof. dr. A.J. van der Schaft (Rijksuniversiteit Groningen)
prof. dr.-Ing. J. Lunze (Ruhr University Bochum)

adviseurs: dr.ir. M. van de Wal (ASML)
dr. J. M. L. Maubach

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening



Parameterized model order
reduction with applications

to thermal systems

Daming Lou

This work is part of the research programme Advanced Thermal Control Consortium,
which is financed by Thermo Fisher Scientific Inc, ASML Netherlands B.V., IBS
Precision Eingineering B.V. and Philips Innovation Services.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-5402-7

Copyright c© 2021 by Daming Lou.

All rights reserved. No part of the material protected by this copyright notice may be re-
produced or utilised in any form or by any means, electronic or mechanical, including pho-
tocopying, recording or by any information storage and retrieval system, without written
permission from the copyright owner.





Summary

Parameterized model order reduction
with applications to thermal systems

Daming Lou

Many applications in engineering and applied sciences are dedicated to the chal-
lenge of how to adjust a system, or parts of a system, so as to improve its func-
tionality. Notably, for a thermal or a thermal relevant system, it often requires a
high fidelity dynamical model which, in turn, tends to be a complex mathemat-
ical model that requires substantial computational resources for simulation, pre-
diction or model-based control. This complexity raises the question how we can
approximate or reduce a large-scale model of a thermal system, deconstruct it
in several submodels while preserving its inherent interconnection structure and
physical relevance. In this thesis, we look at how model reduction techniques can
preserve critical physical parameters for different engineering scenarios while ap-
proximating the input-output properties of thermal systems.

Part I of this research considers a moment-matching based method for LPV sys-
tems with time-independent parameters. Laplace variables and physical para-
meters are distinguished such that the real physical interpretation of parameters
is preserved in the reduced-order model. Furthermore, we introduce a local error
bound to characterize the mismatch induced by the expansion points. When an af-
fine LPV system with a large number of parameters is considered, two parameter
reduction techniques are proposed that aim to reduce the dimension of the para-
meter space. The first one considers the Hankel-norm approximation based on
the upper bound of the system Gramians for the parameter space. In the second
method, the sensitivity function of the transfer function is employed to truncate
the least essential parameters. The problem of parameter calibration using real
measurement data is explored. We give a well-defined equivalence between error
objective functions using the reduced-order model and the full-order parametric
system. Besides, an adaptive strategy is developed which selects optimal para-
meter expansion points on the basis of measured data. The moment-matching
method is extended to uncertain systems, where the nominal part of the system is
preserved in the reduced-order model for both LTI and affine LPV systems.

Part II focuses on thermal systems. The concept of equilibria for control systems
is compared to equilibria of thermodynamic systems. The stability of a heat con-
duction system is proved using irreversible entropy as a suitable Lyapunov func-
tion. The research topic is concluded by investigating the dissipation properties
of thermal systems using the entropy as the thermal energy notion.

Part III of the research presents dedicated tooling and software for applying para-
meterized model reduction of large-scale systems. The tools are applied to and
demonstrated for several large-scale systems that have been provided by indus-
trial partners in this project.
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Abbreviations

MOR model order reduction
pMOR parameterized model order reduction
ROM reduced order model
FOM full order model
POD proper orthogonal decomposition

PDE partial differential equation
ODE ordinary differential equation
FEM finite element method
LTI linear time-invariant
LPV linear parameter-varying

LMI linear matrix inequalities
SVD singular value decomposition
MIMO multi-input multi-output
SISO single-input single-output

MEMS microelectromechanical systems
TSCM transfer-sensitivity covariance matrix
LFT linear factional transformations
MVT mean value theorem
VLSI very-large-scale integration

paraMOR parameterized model order reduction
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1
Introduction

Numerical simulation of dynamical systems has become an indispens-
able tool for studying and reproducing complex physical phenomena.
This tool has thoroughly transformed and driven the development and
research in science and engineering. Still considerable computational re-
sources are often required either due to the inherent complexity and large-
scale nature or due to the ultra-precision required. One approach to over-
come this challenge is through model reduction; the principle is to con-
struct a lower dimensional model that accurately represents the dynamic
response of the original system while demanding less computation time.
For linear and non-parametric dynamical systems, the development of
model reduction techniques has reached a level of maturity. However, a
further challenge arises in the question of how to achieve model reduc-
tion of a system whose dynamical behaviour depends on a set of para-
meters. This is what motivates extension of model order reduction tech-
niques to parametric model order reduction where the purpose is to re-
tain physical parameters in the reduced model. In particular, for systems
that involve thermal phenomena and thermodynamics this is vital to the
system performance. Thus, the main thread of this research follows the
question: how can we efficiently and effectively approximate a large-scale
model of thermal systems while the physical parameters are kept in the
reduced model? Furthermore, for thermal systems which are composed
of coupled subsystems, we investigate the equilibrium, stability and dis-
sipation behaviours of these thermal systems.

1.1 Background and motivation

Especially in the high-tech sector where the development of multi-physical sys-
tems plays a key role, thermal effects have been identified as one of the dominant

1



2 Chapter 1 Introduction

factors affecting the performance [41, 151]. Systems that involve such thermal
effects are ranging from transmission electron microscopes, 3D metrology ma-
chines, to lithography systems as depicted in Figure 1.1. Among these applica-
tions, there is a persistent trend that future developments and technological in-
novations lead to systems that are more sophisticated, more interconnected, more
complex. In particular, their functioning and the understanding of their technical
properties require a deeper understanding of how multiple physical domains are
(or need to) integrate into technical or engineered designs. For the high-tech in-
dustry and depending on the specific application, this often requires a combined
and integrated understanding of electrical, mechanical, thermodynamic, chem-
ical, optical behaviour. This has already led to more optimized accuracy, pro-
ductivity, and performance, and is a persistent challenge for more technological
and scientific innovation.

(a)
<latexit sha1_base64="sLfE53yfdU3SgX/xnFR+0oFv8BA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvkpPe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/Z0jR0=</latexit><latexit sha1_base64="sLfE53yfdU3SgX/xnFR+0oFv8BA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvkpPe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/Z0jR0=</latexit><latexit sha1_base64="sLfE53yfdU3SgX/xnFR+0oFv8BA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvkpPe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/Z0jR0=</latexit>

(b)
<latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit><latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit><latexit sha1_base64="+PTdbIXoM63y7CJxaVM179UKHR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpvhqc9soVt+bOQJZJPScVyNHslb+6/ZilEUrDBNW6U3cT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI9cWXl4l3VruquXfnlcZ1nkYRjuAYqlCHC2jALTTBAwYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifP/f4jR4=</latexit>

(c)
<latexit sha1_base64="oOrowWJBRYkGz8MRrOdNaG8x2x4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvspOe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/l8jR8=</latexit><latexit sha1_base64="oOrowWJBRYkGz8MRrOdNaG8x2x4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvspOe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/l8jR8=</latexit><latexit sha1_base64="oOrowWJBRYkGz8MRrOdNaG8x2x4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahXkoqgnorevFY0dhCG8pmO2mXbjZhdyOU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bo45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1FjpvspOe+WKW3NnIMuknpMK5Gj2yl/dfszSCKVhgmrdqbuJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjaE+uLLy8Q7q13V3LvzSuM6T6MIR3AMVajDBTTgFprgAYMBPMMrvDnCeXHenY95a8HJZw7hD5zPH/l8jR8=</latexit>

Figure 1.1: High-precision systems: Transmission electron microscope with ultra
resolution up to 60 pm (a) and the latest lithography machine which the resolution
can be achieved to 13 nm (c). The 3D metrology system for measuring complex
surfaces and free form optics with resolution of 1.6 nm (b).

One typical example of thermal effects in high precision systems is their thermo-
mechanical behaviour. For systems that involve such phenomena, relatively small
temperature fluctuations will result in small deflections and deformations of ma-
terials, leading to mechanical deviations and therefore thermally induced posi-
tion errors. Conversely, mechanical deformations may lead to increased mechan-
ical stress in materials and corresponding variations in temperature. Although
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these errors are often negligible, for a high precision system that requires nano-
meter or even subnanometer scale accuracy, they may have a significant impact
on the performance. The system design, control synthesis and observer design
to compensate such errors are challenging due to its inherent complexity and its
multi-physical aspect. This is even more so when the goal is to attenuate not only
the thermally induced errors in its steady-state but also its transient error dynam-
ics. On top of the difficulties mentioned above, other challenges arise in experi-
ment design, measurement data acquisition and system simulation for such high
precision systems. For instance, the thermally induced error is seldom directly
accessible or measurable through sensors, usually have slower time scales than
the time scale at which the system operates, the influence of thermal effects in
systems is hard to isolate in experiments where actuation through heating and
cooling requires accessibility to systems, and if it is possible it commonly requires
ultra-precision sensors to observe [109]. Besides, in real applications, there are a
limited number of sensors that can be installed in the system. The challenge is
how to smartly choose the locations such that the deformations can be measured
with a limited amount of sensors.

1.1.a Advanced Thermal Control Consortium

Apart from the academic interest in this topic, the need for improved thermal con-
trol has been echoed in industry. To achieve new levels of precision in production
processes, the active control of thermal effects is required [178]. In 2013, a group
of leading industrial partners and academia (TU Eindhoven & TU Delft) from the
Dutch high tech sector initiated a cooperation project: Advanced Thermal Control
Consortium (ATC) [44]. This consortium focuses on technical strategies and solu-
tions to enable the next generation of industry capability. The ATC consortium
officially started in late 2015, and three PhD projects were funded each covering
a part of the research into high precision thermo-mechanical systems (c.f. Figure
1.2). This included

1. Thermal Design and Topology Optimization,

2. Advanced Identification & Control for Thermal Systems,

3. Next Generation Model Reduction Techniques for Complex Systems.

The first project is about the topology optimization at the design stage. Differ-
ent from the first-principle based modelling, the second research topic is using
the data-driven method to construct the model for control synthesis of thermal
systems. The last one, elucidated in this thesis, focuses on the reduction of high
precision thermal system models while preserving physical relevance.

1.1.b Motivation and Focus

The next generation tools are needed to develop high precision machines for which
experimentation of physical systems can be inaccessible or is too expensive to per-
form. To enable studying the underlying physical behaviour of these machines,
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Figure 1.2: Block diagram overview of a high precision thermo-mechanical sys-
tems, showing the three research topics of the ATC.

a new generation of tools for coupling the corresponding multi-physical models
and for the efficient numerical analysis and simulation of the resulting models are
needed.

In real life, a high precision machine consists of thousands of interconnected or
coupled subsystems. Generally only few subsystems of the machine, i.e., those
that are most critical to the system performance, need a design upgrade or a
deeper understanding of their physical properties to enhance or improve their
engineered behaviour. For these subsystems, spatial discretization methods (e.g.,
finite element method) often yield a large-scale mathematical model due to the
high precision requirement and the complex physical nature. In addition, for
performance enhancement, these models frequently need to be extended to in-
corporate physical behaviour (such as thermal properties) to broaden their scope.
Invariably, this leads to more complexity in the model. Complexity as indicated
by the number of finite elements, by the number of first order differential equa-
tions and complexity in terms of additional physical laws that are incorporated in
the model. Consequences of increased complexity consist of slower simulations,
more complicated (or impossible) model-based designs, slower monitoring, the
infeasibility of real-time and online computations, etc. One way to remedy the
increase of complexity amounts to simplify these models and substitute complex
models by simpler ones that exclusively focus on the intended use of the model.
This is particularly relevant in circumstances where the reduction of a full, com-
plete model is not desired or not possible in terms of computation time or memory
requirement. Furthermore, the correct coupling will enable a modular structure in
which individual reduced order models for elementary parts are useful in a repet-
itive structure in which the coupling of multiple reduced order model elements
constitutes the complete system. But how to correctly couple a large number of
models such as to result in a reliable and thermal relevant model is a challenge.

With the increasing need for higher fidelity, system simulations require to include
more details leading to a large-scale and complex mathematical model. Moreover,
during the design phase, this mathematical model regularly needs to be iterated,
leading to multiple realizations for all possible scenarios to find the best perform-
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ance. The large-scale model together with its parameter values, inputs, initial
conditions and boundary conditions, define the simulation and are the basis for
optimization, calibration, design decisions, controller synthesis, etc. Furthermore,
storing such large-scale model and data poses another challenge for the memory
space. Indeed, additional challenges that may be solved by deploying more com-
putational resources: by using more powerful processors, adding more memory
storages and exploiting parallelism. However, this is not always realistic or feas-
ible, since the unlimited matching of computational resources is not possible, and
discards possibilities and challenges for more intelligent solutions to meet com-
putational demands. Moreover, it can be problematic for a system that needs to
operate real-time whilst the computational resource is limited.

Model order reduction techniques have been considered as one of the few efficient
and effective means to alleviate the computational burden. The primary principle
is to construct a low dimensional and efficient model that still approximates the
original full-order model with high fidelity. In such a way, the original full-order
model is substituted by the reduced model, so as to enable fast computation for
system simulation, design optimization, calibration, prediction, etc. Many suc-
cessful applications ranging from very-large-scale integration (VLSI) [136], air-
craft design [166] to computational fluid dynamics [48] have been based on the
implementation of model reduction order techniques. However, despite the ad-
vancement of model reduction order techniques for linear time-invariant (LTI)
systems, there is still a lack of efficient model reduction order (MOR) for approx-
imating parameter dependent systems where the system structure and physical
interpretations of parameters can be preserved in the reduced order model. The
latter is critical to enable efficient design iterations.

A class of models explicitly incorporating parameter variation can be represented
by parameter-dependent systems. More precisely, a parameter-dependent system
denotes a collection of LTI descriptions where each LTI description characterizes a
specific instance of the parameter values for the parameter-dependent system. A
non-parametric reduced model can approximate the original system well around
the frozen parameters with small variations. Instead, if parameter changes are
more substantial or cover larger ranges, then the reduced model no longer suffices
and dynamics may change substantially with parametric changes of the original
model. Then, subsequently, it necessitates the re-generation of a new reduced
model. Although the reduced order model has the computational advantage over
the full order model, the repeated generation of the reduced model is still compu-
tationally costly, in particular for applications where parameters are changed for
every iteration.

A typical example is parameter calibration for a complex system Σ(θ), in the para-
meter vector θ which can be any realization of the system. In practice, the model
built by engineers has some mismatch with the actual system, e.g., the numer-
ical value of parameters are inconsistent with the true ones, say θtrue in the real
physical system. This can be due to production variation or different operating
conditions. A classical scheme of parameter calibration starts with performing a
high-quality measurement for which the data is assumed to reflect the true beha-
viour of the dynamical system. Then a parameter θi of this dynamical system is
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Figure 1.3: The classical scheme for parameter calibration (a), the improved
scheme using (non-parameterized) simplified model (b) and the proposed scheme
with parameterized simplified model (c). With a parameter-dependent simplified
model, the computational burden of the scheme at the right is reduced in compar-
ison to the classical scheme at the left and the existing one in the middle.

selected for calibration, in the i-th iteration (i = 1, 2, · · · ) and the parameter is
adjusted θi → θi+1 when the criterion assessment with the model is close enough
to the measurement data. This iteration stops when θi is close enough to θtrue.
As the number of parameters increases and higher accuracy requirements are im-
posed, the process can be tedious and time-consuming. This scheme is improved
if a simplified model Σr(θi) approximates the dynamics of the original system at
the sampling point θi. In such a way, the calibration can be carried out with the
simplified model instead of the full-order model. This improved scheme has been
implemented in many physical systems and applications [91, 88, 149]. However,
this scheme is time-consuming if there are many parameters for calibration and
each parameter requires several iterations. The proposed scheme is that if a sim-
plified model Σr(θ) which not only captures the dynamics of the original system
Σ(θ) but also preserves the parameter variation in the simplified model, such that
the calibration can be performed without repeating the criterion assessment on
the full order model for every parameter. The classical scheme, the improved one
and the proposed one for parameter calibration are illustrated in Figure 1.3. The
challenge described in this example is also observed in many other applications
where the model is of high complexity, and the assessment requires to iterate for
specific parameters with the model, for example in process engineering, the iden-
tifiability of a large-scale chemical model is crucial for system analysis and the
preservation of the identifiability remains an open question.

Another example is in uncertain systems where the computational challenge raised
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by parameter variations is observed. Besides the parametric uncertainties de-
scribed above, the mismatch between the model and the real physical system
can contain unmodelled dynamics or nonlinearities. This type of mismatch can
be represented as uncertain variables. For such a large-scale uncertain system,
the system analysis, controller synthesis and model based risk assessment which
have to iterate all possible scenarios are computationally costly. Therefore, para-
metrized model order reduction (pMOR) is needed to speed up the computation
while it has remained an open question for large-scale uncertain systems.

1.2 Research questions

To sum up, motivated by the industrial need for the further development of high
precision systems, fast and reliable computation for numerical simulation, design
optimization, parameter calibration and system analysis is needed. In this thesis,
we investigate the physically relevant model reduction techniques for large-scale
and complex systems. Specifically, we focus on the system that is composed of
several subsystems, and these subsystems are coupled with thermal phenomena.

On these premises we raise the research question:

How can we efficiently approximate large-scale models of thermal systems
composed out of several submodels while preserving its inherent intercon-
nection structure and physical relevance?

With this research question, we can split it into three subquestions and attempt to
answer each of them:

a). Can we develop efficient model approximation techniques for large-scale
systems in which distinguished physical parameters retain their physical
meanings? More precisely, for a given parameter-dependent system, we aim
to develop a pMOR method such that the parameters in the parametrized
reduced model remain the same interpretations as in the original parameter-
dependent model.

b). Can we establish both thermally relevant and correct coupling and decoup-
ling of modules of systems for composition and decomposition of models?
To do so, modules need to be relevant from a thermodynamic point of view.
The objective is to find a thermal coupling/decoupling strategy for two
thermal models such that the coupled/decoupled system is also a thermal
relevant system in the sense that the first and the second laws of thermody-
namics are satisfied.

c). Can we develop an efficient numerical tool which allows performing para-
meterized model order reduction for an industry-approved application? We
focus on the implementation of parameterized model order reduction method
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in two aspects: the complexity of the algorithm and the memory require-
ment for the data. Particularly, the pMOR tool needs to be operated in-
dependently and efficiently with a regular PC. The goal of this tool is to
enable the parameterized reduction for an industrial relevant application as
described in Figure 1.3, and the computational time of the whole procedure
is expected to be shortened by a factor of 5 or more. The configuration of the
system: state number ≈ 5 × 105, multiple-input multiple-output (MIMO)
and parameter dimension ≥ 20.

1.2.a The state of art and subquestion on pMOR

In the literature, pMOR techniques can be roughly classified into two main cat-
egories: local basis approaches and global basis approaches [29]. The scheme in
the first category uses interpolation methods, including manifold interpolation
[7, 47, 38, 6, 9, 43, 154, 179, 40], transfer function interpolation [23, 22] and matrix
interpolation [56, 112, 121, 138, 130, 8]. The local basis approaches rely on a set
of non-parametric models {G1, · · · ,G`} which is the parameter-dependent sys-
tem G(θ) for every parameter vector {θ1, · · · , θ`} of the parameter space θi ∈ Θ.
For each i = 1, · · · , ` a pair of projection matrices {Vi,Wi} of dimension n × r
is generated via any projection-based method [21]. Then, with this local informa-
tion {Vi,Wi}`i=1, a parameterized reduced order model can be constructed and the
dimension is r for the reduced model and n, n� r for the original model, respect-
ively. A collection of reduced order models {Ĝ1, · · · , Ĝ`} is determined which
are subsequently interpolated over the parameter space Θ through the points
θ1, . . . , θ`, leading to an interpolated reduced order model Ĝ(θ).

The advantage of this approach is that it imposes less requirements for the para-
meter dependency in a sense that it can be non-affine, nonlinear or even non-
analytical in the parameter space as long as the local system realization is avail-
able. However, as multiple realizations are necessary for capturing the local in-
formation, this is memory demanding for large-scale models. This is even more
so when the number of parameters increases. Additionally, the computational
complexity of the manifold interpolation methods commonly requires O(nr) for
the online operation of the reduced model, one solution which overcomes this
problem requests a conservative condition of the system matrices [40]. In applic-
ations using transfer function interpolation method, manipulated poles will be
introduced for the parametric transfer.

For the second category, the global basis approaches consider a common basis that
is constructed by a pair of projection matrices {V,W}, where {V,W} of dimen-
sion n× r are directly computed from the parameter-dependent system G(θ) and
the matrices contain parameter information regarding the parameter space. The
scheme of global basis approaches avoids most of the problems encountered in
local basis approaches, but it requires parameter affine structure for the state space
realization. In the case where the parametric dependency is non-affine, the system
matrices can be approximated into parameter affine structure using proper meth-
ods, e.g., discrete empirical interpolation method (DEIM) [52, 123, 134, 35]. The
global approaches include parametric balanced model order reduction method
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[173, 155, 156], parametric proper orthogonal decomposition (POD) [42, 132], and
reduced basis method [20, 80, 94, 99, 97, 98]. However, these methods have some
limitations regarding various aspects. For a model with high state dimension
≥ 104, the parametric balanced model order reduction method does not scale well
with the dimension of the original model and the number of parameters since
it needs to solve the Lyapunov equation for every parameter. In the case that
the system will be exited with various inputs, the parametric POD method com-
monly cannot provide a robust high fidelity reduced model or needs to generate
a large number of snapshots and leads to a high dimensional projection matrices,
since the projection matrices are dependent on inputs. The reduced basis methods
are successful in solving parametrized partial differential equations (PDEs) prob-
lems which provide more information than the parameterized ordinary differen-
tial equations (ODEs), especially boundary conditions. In this thesis, we assume
that the PDEs are not provided in the default setting where simulation software is
used for modelling and the spatial discretization is performed.

Another well known global basis approach is multivariable Padé approximations,
or also called moment-matching based methods [37, 53, 64, 69, 28, 177, 71, 87, 86,
170]. The idea is to construct a projection space where the (mixed) moments of
the original system are collected. In such a way, the reduced model generated
through this projection space can incorporate the parameter information. Here
the moment can be interpreted as the coefficient of the Taylor series of a paramet-
ric transfer function. Based on this idea, a number of methods and algorithms
are developed which differ in the way the moments are computed, the projec-
tion space is constructed and the number of moments are matched. Approaches
based on implicit moment-matching provides more numerical stability in com-
parison to explicit approach. The two-sided method can provide twice coincided
matched moments in the reduced model. Even though these moment-matching
based methods can provide numerically efficient procedures to generate paramet-
ric reduced order models that well approximate the dynamical behaviours, para-
meter interpretations in the reduced model are not consistent with the ones in
the original model. Since parts of parameters are not taken into account in the
expansion points directly, the resultant moments will mix the frequency expan-
sion points and physical parameter expansion points and the parametric reduced
model cannot be interpreted as the same physical parameter dependent system as
the original one. Such models are not preferable for subsequent operations, e.g.,
optimization or parameter calibration cannot be performed on the original para-
meter vector. Thus, for a large-scale affine LPV system, it is necessary to develop
a physical relevant pMOR method such that parameters are preserved in the re-
duced model and the physical interpretation is consistent with the ones in original
model.

Apart from the parameter-dependent systems G(θ) mentioned above, another
class of systems that demands repeated evaluation of the model over a space are
uncertain systems, where the stability analysis or control synthesis needs to evalu-
ate every point in the uncertainty set. In the literature, we observe that all existing
work on model order reduction of uncertain systems is based on balanced trunca-
tions [26, 168, 11, 25] which is not suitable for large-scale uncertain systems.
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1.2.b The state of art and subquestion on thermal coupling

As we discussed in the above, the thermal effects are critical for high-precision
system performance. Regularly, these systems consist of a large number of com-
ponents and multi-physics interactions. Although many energy-based methods
and tools, e.g., [163, 5], have been developed for modelling and control synthesis
of such multi-physics systems, a rigorous integration of the second law of ther-
modynamics is often lacking. The entropy-based methods [54, 63] are developed
using entropy-balance equation, as it permits to include the irreversible process.
However, the proposed entropy function focuses on the dynamics of a closed sys-
tem, and the stability or dissipation criterion for composite systems is not con-
sidered. In the field of control systems, conservation laws and energy functions
are often used to prove stability of equilibria of systems, to analyze their behavior,
and for purposes of control and optimization. The role of Lyapunov functions in
autonomous systems, together with their generalizations in the direction of open
dynamical systems, passive and dissipative dynamical systems, bond-graph the-
ory and port-Hamiltonian systems are fundamental in modern systems theory
[101, 171, 172]. The essence of these methodologies lies in the observation that the
efficiency of many physical processes is limited by their energy storage and the
amount of energy that has been supplied by its environment. Indeed, Carnot’s
principle claims the limited efficiency of heat engines; in Hamiltonian and Lag-
rangian mechanics, the recoverable energy is always bounded by the Hamiltonian
or Lagrangian function; in an ideal reversible thermodynamical process, all heat
can be converted into work. In the last decades, non-equilibrium thermodynam-
ics has been developed as a research field, aimed at describing physics of thermal
processes beyond and away from thermodynamic equilibrium. In particular, it
aims at incorporating the time-course of intensive variables such as temperature
and pressure and to generalize the concept of entropy to thermal states that are
not in equilibrium. Starting with Onsager’s reciprocal relations [126, 127] in 1931,
important contributions on non-equilibrium thermodynamics have been made by
Denbigh [61] on steady state principles, De Groot’s work on linear irreversible
processes [55, 54] and Prigogine’s minimum entropy production principle [139]
that has been extended to the theory of entropy generation minimization by Bejan
[27]. This theory claims that the maximum efficiency of a thermodynamic system
is achieved while the dissipated energy is minimal.

In the literature, we also observe that quadratic Lyapunov functions have been
widely used to provide insight in the qualitative behavior of systems. Although in
[59], a quadratic function of temperature is proposed to satisfy Lyapunov stability
criteria, these functions do not naturally inherit the energy attributes of thermo-
dynamic systems. Another well known Lyapunov candidate representing entropy
generation such as in [165], is the product of the thermodynamic force and flux,
which leads to a temperature dependent coefficient for Fourier’s law. This formu-
lation does not fit in with the conventional modelling framework in engineering
where the heat conduction coefficient is chosen as temperature independent con-
stant. Thus, for thermal and thermo-relevant systems, it is essential to seek for a
physical meaningful Lyapunov functions that prove useful for both composition
and decomposition properties of thermal systems that consist of interconnected
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components. This part of work is given in Chapter 6 and Chapter 7.

1.2.c The state of art and subquestion on pMOR tools

For an easy use of pMOR techniques in applications, software tools are neces-
sary. The challenges of model reduction implementation for large-scale systems
mainly are from two aspects: storage and computation complexity. For a model
with state number larger than ≥ 104, a simple operation such as importing a sys-
tem matrix to MATLAB already leads to high storage requirements. To overcome
this difficulty, we may exploit the sparsity of the system representation which is
commonly seen in very-large-scale integration (VLSI) models and thermal mod-
els. For the second challenge, some operators for a large-scale matrix such as
inverse operator and eigenvalue operator often are computational expensive or
even prohibitive. Instead of directly performing such operators one can rely on
some matrix factorization techniques.

For the purpose of model reduction, there are several toolboxes includ-
ing MESS (Matrix Equations and Sparse Solvers) [144], DPA (Dominant
Pole Algorithm)[141], Emgr (Empirical Gramian Framework) [93], MORLAB
(Model Order Reduction LABoratory) [31], MORPACK (Model Order Reduc-
tion PACKage) [105] and sssMOR(sparse state space and Model Order Reduction
toolbox)[51]. These toolboxes differ in methods, languages, operating environ-
ment and applications. Inspired by the implementation of MESS which incorpor-
ates with sparsity, a dedicated toolbox based on Chapter 2 is developed for large-
scale models with a regular PC. An overview of the toolbox is given in Chapter
8.

1.3 Thesis outline

The remainder of this thesis is structured into three parts: In Part I, we focus on
the parameterized model order reduction for different parameter-dependent dy-
namical systems that preserve their physical interpretation. Additionally, we also
investigate the scheme of integrating the proposed approximation methods with
parameter calibration applications. In Part II, we study the stability and dissip-
ation properties of thermal systems. Specifically, the Lyapunov stability and the
dissipative inequality are discussed for different dynamical systems. Numerical
tooling is developed and summarized in Part III, based on the proposed paramet-
erized model order reduction methods in Part I.

Part I: Parameterized model order reduction and application

Chapter 2 proposes a general framework for physical parameter preservation re-
duction of large-scale linear parameterized systems. An implicit algorithm is pro-
posed that establishes a perfect match of moments in the desired set of frequency
points and the desired set of parameter samples. The simplified systems pre-
serve the parameter-dependence as good as the original systems. Additionally,
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an a-prior error bound has been derived that represents the local accuracy of the
transfer function of the reduced-order model nearby interpolation points. The
materials in this chapter are based on the conference paper [113].

Chapter 3 studies a novel reduction methodology for linear parameter-varying
(LPV) systems, in which the dimension of the parameter space is truncated. A no-
tion of Hankel norm for LPV systems is introduced to characterize the system
Gramian with parametric variations. By analyzing the influence of parameter
space on the system Gramian, we evaluate the system behaviour and construct
the upper bound of the Hankel-norm for the given parametric variation. The re-
duction method is developed based on finding a reduced parameter space where
the approximation error, defined as the Hankel-norm difference between the full-
order LPV system and the reduced-order LPV system, is minimal. The materials
in this chapter are based on [150].

Chapter 4 applies parameterized model order reduction to a class of calibration
problems that involve large-scale models. The proposed scheme simultaneously
reduces the computation time for calibration problems and guarantees the equi-
valent Hermite interpolation condition between the calibration problem using the
full-order and approximated models. Based on the equivalent condition, an ad-
aptive parameterized model reduction algorithm is proposed to minimize the cal-
ibration error, in which measurement data is considered in choosing the expansion
points for the approximated model.

Chapter 5 explores a model reduction problem of uncertain systems represented
in linear fractional transformation (LFT), which is a broader class of parameter-
dependent systems. Specifically, two types of uncertain systems are studied: un-
certain LTI systems and uncertain LPV systems. The concept of the moment for
uncertain LTI systems and uncertain LPV systems is used to identify the critical
dynamics of the uncertain system with respect to the uncertainties. We extend the
moment-matching method to uncertain LTI systems and uncertain LPV systems.
The proposed methods reduce the complexity of uncertain systems and preserve
the LFT structure and the uncertainty properties of the systems.

Part II: Stability and dissipation analysis for thermal systems

Chapter 6 investigates the stability properties of a class of thermal systems, which
is governed by ordinary differential equations. A conceptual distinction is made
between thermodynamic equilibrium and equilibria of autonomous systems. An
entropy generation based Lyapunov function is proposed and proves the stability
of thermodynamic equilibria. The materials in this chapter are based on [114].

Chapter 7 further studies the dissipation properties of thermal systems, in which
the boundary condition is relaxed from time-independence to time-dependence.
We introduce the concept of entropy for irreversible systems. We show that this
concept satisfies the dissipative inequality. In addition, we extend to a thermal
complex system and an energy-based upper bound and lower bound are derived.
Moreover, this chapter provides a result of time evolution profiles for the pro-
posed storage function with different boundary conditions.

Part III: Tooling of parameterized model order reduction
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Chapter 8 presents a software solution with a toolbox called paraMOR, which
stands for parameter Model Order Reduction, for model order reduction of large-
scale LTI and LPV systems. Here large-scale refers to systems with a state dimen-
sion of 105 that are assumed linear may be either parametric or non-parametric.
The underlying programming principle is to maximize the memory storage us-
age efficiency and deliver the high-fidelity reduced-order model. An overview of
functionalities and the structure of this toolbox is given. We briefly introduce the
supported matrix decomposition methods and orthogonal methods. The chapter
includes two case studies.

Finally, this dissertation is concluded in Chapter 9. Conclusions, limitations and
some suggestions for future work are stated.
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Essentially, all models are wrong, but some are useful.

George E.P.Box (1919-2013), Page 424 of [39] 2
Parameterized model

reduction of thermal systems

In this chapter, we consider the parameterized model order reduction
(pMOR) problem for a large-scale and complex thermal system. The

main principle behind this method is that any change of the physical para-
meters in the high-fidelity model can be updated directly in the simpli-
fied model. For deriving the parametric reduced order model, a Krylov
subspace method is employed, which yields the relevant subspaces of
the projected state. The Krylov subspace is constructed via the moment-
matching method, which captures the dynamics of the system in the fre-
quency domain. Therefore, we first define the moments for parametric
systems such that the frequency variable and parameter variables are dis-
tinguishable. Within this formulation and the projection operator, the first
moments of the low order model are set to match the corresponding mo-
ments of the original model. Additionally, a prior upper bound of the
error induced by the approximation is derived.

2.1 Introduction

Numerical simulations of complex dynamical systems are an indispensable tool
in studying thermodynamic phenomena. However, for complex thermal systems
where ultra-high precision simulations are required, the finite element method
(FEM) commonly yields large-scale models. These models demand considerable
computational resources. Therefore, model order reduction techniques are em-
ployed to reduce the computational complexity by replacing the high-order dy-
namic model with a low-order one. For the class of LTI systems, many reduction
techniques have reached a relatively high level of maturity [13]. For systems with

17
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uncertain or time-varying parameters there is a persistent need of novel reduction
techniques. Since creating a new reduced model for every parameter value is in-
efficient and computationally costly, there is a strong need for pMOR techniques
as introduced by [29]. We distinguish among reduction techniques in which both
the state dimension and parameter vector dimension are reduced, and techniques
in which state dimension is reduced while the parameter vector keeps its physical
relevance. In addition, we distinguish among time-varying and time-invariant
parametric dependence of high-fidelity models. In either of these cases, the ob-
jective is to find a low-cost, but accurate, parameterized model.

In the last decades, MOR techniques based on Padé approximation [12] have been
used as powerful tools for large-scale system simulation, in particular for very-
large-scale system integration simulation [84] and microelectromechanical simu-
lation tasks [130]. The first algorithm based on Pade techniques approximation
technique was an asymptotic waveform evaluation in [136], which uses explicit
moment-matching. For a SISO system, the Arnoldi algorithm, also called the one-
sided moment-matching technique [152] was proposed to match r moments of a
transfer function by a rth-order approximation. Meanwhile, two-sided moment
matching, known as Lanczos method [67], was introduced to perform matching
of 2r moments by a rth-order approximation. Then the block Arnoldi [68] and
block Lanczos method [36] were proposed to solve the same problem for MIMO
systems.

However, for large-scale systems which are parameter dependent, the aforemen-
tioned methods are not suitable anymore for obtaining a low order model while
maintaining the physical interpretation of the parameters after the MOR proced-
ure. Therefore, there is a need to develop such MOR techniques that allows the
reduction of parameter-varying systems. Hence, a new branch of MOR is known
as parametric model order reduction (pMOR).

The work of pMOR using Krylov subspace methods was introduced in [170],
where the state evaluation matrix linearly depends on a single parameter. In con-
sideration of the physical systems that can be described with multiple parameters,
an extensive pMOR method which matches the coefficients of multivariate Taylor
series is generalized in [53]. This method replaces the product of complex inde-
pendent variables s and the parameter θ in the transfer function H(s, θ) by a set
of redefined parameters, where the moments of the reduced model are equival-
ent to the corresponding moments of the original model with respect to the new
expansion points. As a consequence, the reduced order model Ĥ matches mo-
ments, but changes the meaning of the parameter vector θ to a newly defined
parameter θ̂ unequal to θ. That is, with these techniques Ĥ(s, θ̂) is the resulting
approximate system with θ̂ 6= θ. In our opinion, this has the serious disadvantage
that subsequent operation, optimization or calibration of parameters θ cannot be
performed on the original parameter vector θ.

A second issue amounts to establishing error bounds. Contrary to singular value
decomposition based truncation, the pMOR techniques based on Krylov subspaces
have no prior error bound or global error bound.
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In this chapter, we explore MOR techniques for parametric models with the pur-
pose to match multiple moments of the transfer function. We introduce a separa-
tion between the physical parameters θ and the frequency points s such that, un-
like previous work, the physical interpretation of the parameters in the reduced
model is maintained. Also, simulation results demonstrate the benefits of this
separation. Moreover, an upper bound of the approximation error between the
ROM and the FOM is derived, which allows making an priori estimate of the mis-
fit between FOM and ROM, without calculating the exact reduced model.

The remainder of the chapter is structured as follows: In Section 2.2, a condensed
problem description for parametric model order reduction is presented. The pro-
posed method for parametric model order reduction with moment matching of
multiple frequencies and multiple parameters is introduced in Section 2.3. The
analytic expression of the upper bound of this method is given in Section 2.4.
Simulation results are shown in Section 2.5. Finally, Section 2.6 concludes this
work.

2.2 Problem description

The main goal of the reduction techniques proposed in this chapter is to preserve
parameters in the system as symbolic quantities in the reduced order model. In
fact, there are many key applications where this parametric model reduction tech-
nique is of crucial interest. These include design optimizations (where the para-
meter vector represents design parameters) in which the design-loop can sub-
stantially benefit from simplified parametric models, calibration of parameters
through simplified models or control design for parameter dependent models. In
either of these cases, a change in parameters or optimization of parameters does
not require to repeat the reduction procedure, but simply the evaluation of the
parametric model. The aim is to infer a reduced order model with smaller state
dimension, but which remains explicit in the parameter vector θ.

Consider a linear parameter-varying model with parameter θ ∈ Θ described as

Σ(θ) :=

{
E(θ)ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t)
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote, respectively, the state vector,
the input and the output. Here, n is the dimension of the state space, ` is the
dimension of the parameter space. The state-space matrices are functions A :
R` → Rn×n, E : R` → Rn×n, B : R` → Rn×m and C : R` → Rq×n. Before
explaining the model reduction, we first state several assumptions.
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Assumption 2.1 i) The state space matrices

E(θ) = E0 + Σ`i=1θiEi

A(θ) = A0 + Σ`i=1θiAi

B(θ) = B0 + Σ`i=1θiBi

C(θ) = C0 + Σ`i=1θiCi

are affine functions of θ ∈ R`. ii) For all θ ∈ Θ, all generalized eigenvalues of σI − A(θ)
have negative real parts.iii) θ ∈ Θ ⊂ R` is not varying with time.

With the time-invariant θ, the transfer function of (2.1) is meaningful and is given
as follows:

H(s, θ) = C(θ)
[
sE(θ)−A(θ)

]−1
B(θ). (2.2)

The system has McMillan degree n if, for at least one θ ∈ Θ, E(θ), A(θ), B(θ), C(θ)
is controllable and observable. We consider a projection-based method for gener-
ating the reduced order parametric model. That is, let V ∈ Rn×r and W ∈ Rn×r
be full rank matrices with r � n. Define the projection spaces

V := im(V ); W := im(W ); (2.3)

i.e. two r-dimensional subspaces of Rn. Let ΠV and ΠW denote the (canonical)
projections of Rn onto V and W , respectively. That is ΠV = V (V TV )−1V T and
ΠW = W (WTW )−1WT . Define the reduced state

xr := (V TV )−1V Tx (2.4)

It clearly satisfies
V xr = ΠVx (2.5)

for any x ∈ Rn, so that V xr is an approximation of the state variable x in (2.1)
incurring the error

‖x− V xr‖ = ‖(I −ΠV)x‖ = ‖ΠV⊥x‖ (2.6)

which is the Euclidean length of the projection of x onto V⊥. We call ΠVx the state
projection. Moreover, xr defined in (2.4) minimizes the error (2.6) in the sense that

‖x− V xr‖ ≤ ‖x− V x′r‖

for any vector x′r ∈ Rr. Thus, xr in (2.4) defines the optimal coordinates in the basis
defined by the columns of V of the projection of x onto V . Clearly, substituting
V xr for x in (2.1) incurs a residual error

ρ := E(θ)V ẋr −A(θ)V xr −B(θ)u (2.7)

The projection ΠW is meant to require that

ΠWρ(t) = 0 for all t ≥ 0. (2.8)
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We call this the residual projection. When combining state and residual projection
the state space representation of the reduced model is then given by

Σr(θ) :=

{
Er(θ)ẋr(t) = Ar(θ)xr(t) +Br(θ)u(t)

y(t) = Cr(θ)xr(t)
(2.9)

where the reduced state space matrices are

Er(θ) = WTE(θ)V, Ar(θ) = WTA(θ)V

Br(θ) = WTB(θ), Cr(θ) = C(θ)V. (2.10)

It is important to observe that, under Assumption 2.1, i) all matrices in (2.10) are
again affine functions of θ that can be computed directly in terms of the expansion
matrices in Assumption 2.1. That is,

Er(θ) = WTE(θ)V

= WTE0V +
∑̀
i=1

WTEiV θi = Er,0 +
∑̀
i=1

Er,iθi

with similar expansions for the other matrices. Thus, Er, Ar, Br, Cr are affine in θ
where the expansion coefficients can be derived directly in terms of the expansions
of E,A,B,C and are independent of θ.

The transfer function of the parametric ROM is

Hr(s, θ) = Cr(θ)
[
sEr(θ)−Ar(θ)

]−1
Br(θ) (2.11)

If W = V , this is called an (ordinary) Galerkin projection. If W 6= V , this is a
Petrov-Galerkin projection.

2.3 Parameterized model order reduction

In this section, the moment-matching method is elaborated first for an LTI system.
In the second part, we present a parametric moment-matching method which sep-
arates the frequency variable s and the parameter θ.

2.3.a Moment-matching

Suppose that an LTI system is given according to{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2.12)

with x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq . The matrix pencil A− sE is assumed to
be regular. In this way, (2.12) has the transfer function

H(s) = C(sE −A)−1B ∈ Cq×m. (2.13)
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Given a region R(s0) := {s | |s− s0| < R} around the point s0 ∈ C, on which the
complex function H(s) is analytic it admits, on the region, a Taylor series about
the point s0 given by the infinite power series

H(s) = H(s0) +
d

ds
H(s)

∣∣∣∣
s=s0

(s− s0) +
1

2

d2

ds2
H(s)

∣∣∣∣
s=s0

(s− s0)2 · · ·

=

∞∑
i=0

1

i!

di

dsi
H(s)

∣∣∣∣
s=s0︸ ︷︷ ︸

:=mi(s0)

(s− s0)i (2.14)

where this infinite series converges point-wise in s for all s ∈ R(s0). The coeffi-
cients mi(s0) defined in (2.14)

mi(s0) :=
1

i!

di

dsi
H(s)

∣∣∣∣
s=s0

(2.15)

are referred to as the (analytic) moments of (2.13) at s0. The moments mi(s0) can
be computed by Cauchy’s integral formula

mi(s0) =
1

2πj

∮
H(s)

(s− s0)i+1
ds (2.16)

where the integration is counterclockwise along a path enclosing s0 and lying in
the region R(s0) where the power series converges. With such an expansion, the
moment mi(s0) can be determined from the state space representation (2.12) as
follows

Theorem 2.1 If the matrix pencil sE − A of (2.12) is regular and the transfer function
H(s) is analytic in the region ofR(s0), then the ith (analytic) moment about point s0 is

mi(s0) = C[−(s0E −A)−1E]i(s0E −A)−1B.

For the proof we refer to [18]. �

A similar procedure can be applied to negative power expansions of the form

H(s) =

0∑
i=−∞

mi(s)(s− s0)i

where the domain of convergence lies outside a region of the form R(s0) for R
sufficiently large, i.e., {s ∈ C | |s − s0| > R}. We will not further elaborate on
these Laurent expansions.

The problem that we solve in this chapter amounts to finding the reduced order
model (2.9) with transfer function (2.11) in such a way that the moments mi(s0)
of the full order model match the moments mi,r(s0) of the reduced order model
at a user-defined frequency point s0 and for a user defined number of moments
i = 1, . . . , r. We construct the approximated model as in (2.9) and (2.11), where
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the projection matrices V,W are generated via Krylov subspace methods. For any
positive integer ω, the Krylov subspace is defined as

Kω(M,f) = colspan{f,Mf, · · · ,Mω−1f} (2.17)

where

f = (s0E −A)−1B ∈ Rn×m

M = (s0E −A)−1E ∈ Rn×n.

and where colspan is the operator that produces the linear span of the columns
of all matrices in its arguments. Then Kω(M,f) is a subspace of Cn which has
dimension ≤ ω ×m whenever s0 is non-real. If s0 is real, Kω(M,f) is a subspace
of Rn. This is sometimes called the right Krylov subspace associated with the
system (2.12).

Theorem 2.2 If the matrix V in (2.3), is a basis of Krylov subspace Kω(M,f) and W
in (2.3) is chosen W = V , then the first ω moments around s0 of the original and the
reduced model match

mi(s0) = mr,i(s0), i = 0, 1, · · · , ω − 1,

heremi(s0),mr,i(s0) denote the ith moment of the full order model and the corresponding
reduced model generated as in (2.9), respectively.

Proof: Based on Theorem 2.2, the 0th moment of the reduced model is

mr,0 = Cr(s0Er −Ar)−1Br = CV (s0W
TEV −WTAV )−1WTB.

The vector (s0E−A)−1B can be written as a linear combination of the columns of
the projection matrix V

∃r0 ∈ Cω×m, (s0E −A)−1B = V r0.

Therefore,

WTB = WT [(s0E −A)(s0E −A)−1]B = WT (s0E −A)V r0

= (s0W
TEV −WTAV )r0

With this, the mr,0 is

mr,0(s0) = CV (s0W
TEV −WTAV )−1WTB

= CV (s0W
TEV −WTAV )−1(s0W

TEV −WTAV )r0

= CV r0 = C(s0E −A)−1B

= m0(s0)

By repeating these steps in the same manner, the proof can be continued until
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mr,ω−1(s0) = mω−1(s0). 2

Loosely speaking, the Krylov subspace derived above contains the information
of the input-sided moments, defined by (E,A,B) only. In a similar way, the out-
sided moments involve the triple (E,A,C) as follows.

Kω(MT , l) = colspan{l,MT l, · · · , (MT )ω−1l} (2.18)

where

l = (s0E −A)−TCT ∈ Rn×q

MT = (s0E −A)−TET ∈ Rn×n,

andKω(MT , l) has column dimension≤ q×ω. If the reduced model is constructed
via Petrov-Galerkin projection W 6= V , we have the following theorem

Theorem 2.3 If the matrices W and V with q = m in (2.3) are the basis of the Krylov
subspace Kω(M,f) and Kω(MT , l), then the first 2ω − 1 moments around s0 of the
original and the reduced model match

mi(s0) = mr,i(s0), i = 0, . . . 2ω − 1.

Proof: According to the Proof of Theorem 2.2, the first ω moments with respect
to the Kω(M,f) coincide. The matrix (s0E − A)−TCT can be written as a linear
combination of the columns of W

∃l0 ∈ Cω×q, (s0E −A)−TCT = W l0

Following the previous proof, we have

CV (s0W
TEV −WTAV )−1WTEV = C[(s0E −A)−1(s0E −A)]WTEV

= lT0 W
TEV = C(s0E −A)−1EV

Then, from the Theorem 2.2, the mr,ω−1(s0) is

V [(s0W
TEV −WTAV )−1WTEV ]ω−1(s0W

TEV −WTAV )−1WTB

= V rω = [(s0E −A)−1E]ω−1(s0E −A)−1B

Thus, for the moment mω(s0) is

mω(s0) = C[(s0E −A)−1E][(s0E −A)−1E]ω−1(s0E −A)−1B

= Cr[(s0Er −Ar)−1Er]V [(s0Er −Ar)−1Er]
ω−1(s0Er −Ar)−1Br

= mr,ω−1(s0). (2.19)

As in the previous proof, the step can be repeated until mr,2ω−1(s0) = m2ω−1(s0).
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2

Notice that for the case the input number is not equal to the output q 6= m is not
considered here.

Remark 2.1 The construction of projection matrices V,W is for a single expan-
sion point. For the case of multiple expansion points {s1, s2, · · · sN} and multiple
orders r1, . . . , rN , we define

V = im[V1, V2, · · · , VN ]

W = im[W1,W2, · · · ,WN ].

Each Vi,Wj can be constructed via (2.17) and (2.18) with expansion points and
Krylov orders (si, ωi)and(sj , ωj), respectively.

Remark 2.2 If the complex expansion points s0 is chosen, the method above leads to
complex-valued matrices V,W . As a result, the system matrices of the ROM contain
complex numbers which are physically undesirable. One solution is to add s0’s complex
conjugate as the complex pair [s0, s

∗
0]. This will result in complex-valued matrices Vc,Wc.

The real-valued projection matrices are defined as the

V = [real(Vc), imag(Vc)],

W = [real(Wc), imag(Wc)].

2.3.b Multi-parameter and multi-frequency moment matching

The main ingredient of the multi-parameter and multi-frequency moment match-
ing method is to expand the transfer function into a Taylor series at both a desired
frequency and a desired parameter (s0, θ0). This work has been generalized in
[53]. Using the Assumption 2.1, we obtain

H(s, θ) = C(θ)[sE(θ)−A(θ)]−1B(θ) (2.20)

where the expansion of sE(θ) involves products of s with θ. One remedy for this
problem is to define virtual frequency points ŝi := s · θ. This has been proposed
in [53]. Potentially, combining the s with θi as a auxiliary variable ŝi can decrease
the complexity of the power series. In such a way, the computational burden of
the projection matrices V and W is reduced. However, with such conversion the
reduced model matches the first moments of the original model with respect to
ŝi and the physical interpretation of the parameters θ in the reduced model is no
longer preserved. Moreover, the Taylor expansion of the new parametric transfer
function includes terms such as ( ∂2H

∂ŝi∂ŝi+1
) which are partial derivatives of compos-

ite functions rather than the original one. As a consequence, also the interpretation
of the moments as Markov parameters defined in Theorem 2.1 changes under this
redefinition of the frequencies and parameters.
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We first give the Taylor series derivation of a single frequency point and a single
parameter expansion point. Assume that the transfer function (2.2) about (s0, θ0)
is analytic in a region R(s0) × Θ(θ0) where R(s0) := {s | |s − s0| < Rs} and
Θ(θ0) := {θ | |θ − θ0| < Rθ}, respectively. Then the Taylor series of H(s0, θ0), ` =
dim(θ) = 1 given by infinite power series is

H(s, θ) = H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

+
∂

∂s
H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

(s− s0) +
∂

∂θ
H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

(θ − θ0)

+
1

2

∂2

∂2s
H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

(s− s0)2 +
1

2

∂2

∂2θ
H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

(θ − θ0)2

+
1

2

[
∂2

∂s∂θ
+

∂2

∂θ∂s

]
H(s, θ)

∣∣∣∣
(s=s0,θ=θ0)

(s− s0)(θ − θ0) + · · ·

=

∞∑
I=0,J=0

m{I,J}(s0, θ0)(s− s0)I(θ − θ0)J ,

and where

m{I,J}(s0, θ0) =
1

(I + J)!

∂I+J

∂sI∂θJ
H(s0, θ0)

for all I ≥ 0 and J ≥ 0.

The above derivation presents the Taylor series for a single frequency point and
a single parameter point. By defining two sets S := {s1, . . . , sk} ⊂ C and Θ :=
{θ1, . . . , θ`} ⊂ R`, we can extend this to multiple-frequency and multiple-parameter
expansion points, as depicted in Figure 2.1.

⇥
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Figure 2.1: Multi-frequency and multi-parameter expansion

The (full rank) parametric projection matrices {V,W} that satisfy (2.3) follows

V = im[v(s1, θ1), . . . , v(sk, θ1), . . . , v(s1, θ`), . . . v(sk, θ`)] (2.21)
W = im[w(s1, θ1), . . . , w(sk, θ1), . . . , w(s1, θ`), . . . w(sk, θ`)] (2.22)
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where

v(si, θj) = Kσvi,j (M
v
i,j , Fi,j)

w(si, θj) = Kσwi,j (M
w
i,j , Li,j)

with

Fi,j = (siE(θj)−A(θj))
−1Bθj

Mv
i,j = −(siE(θj)−A(θj))

−1Eθj

Li,j = (siE(θj)−A(θj))
−TCTθj

Mw
i,j = −(siE(θj)−A(θj))

−TETθj .

Here Bθj = d
dθ (B(θj)), Eθj = d

dθ (E(θj)), Cθj = d
dθ (C(θj)). σvi,j , σ

w
i,j represent the

number of preserved moments for each pair (si, θj) in v(si, θj) and w(si, θj), re-
spectively. As in (2.11), the transfer function of the reduced model is

Hr(s, θ) = Cr(θ)[sEr(θ)−Ar(θ)]−1Br(θ). (2.23)

which coincides in as many coefficients of its moments about (si, θj) as possible
for a given order. That is, we have

Theorem 2.4 Consider the transfer function H(s, θ) in (2.20). If the matrices W,V are
the basis of Krylov subspaceW,V as defined in (2.21) and (2.22), this leads to the transfer
function Hr(s, θ) of the reduced model in (2.9). Then the Hermite interpolation condition
is satisfied as

m{Ii,Jj}(si, θj) = mr,{Ii,Jj}(si, θj)

for all frequency points si ∈ {s1, . . . , sk} and parameter points θj ∈ {theta1, . . . , θ`}

Ii = 0, . . . , σvi,j + σwi,j − 1

Jj = 0, . . . , σvi,j + σwi,j − 1.

Here m{Ii,Jj}(si, θj),mr,{Ii,Jj}(si, θj) denotes the {Ii, Jj}th moment of the original
model Σ(θ) in (2.1), the reduced model Σr(θ) in (2.9), respectively.

It can be proved using the similar proof approach of Theorem 2.3.

2.4 Error estimation

Guarantees on the fidelity of the reduced model remain an important question for
the previously described moment matching procedure. One major issue is estab-
lishing a prior estimate of the approximation error. In the following we will derive
an error estimate between H(s, θ) and Hr(s, θ) which provide a local accuracy at
points (s0, θ0) ∈ S × Θ and their neighborhoods. That is, the error estimate of
H(s, θ)−Hr(s, θ) will have local validity in (s0, θ0) and is based on the truncation
order of the Taylor series.
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2.4.a The remainder in Taylor series

Let f : R → R be continuous on the interval [a, b] and differentiable on the open
interval (a, b). Then there exists c with a < c < b such that

f ′(c) =
f(b)− f(a)

b− a . (2.24)

The above result is the Mean Value Theorem (MVT) which is a fundamental the-
orem of calculus. Taylor’s formula can be viewed as a generalization of the MVT.
In particular, let f be a function that is continuous at a, then Taylor’s theorem:

Theorem 2.5 Let f : R → R be a function that is infinitely differentiable at the point
a. Then f(x) can be written as the power series

f(x) = f(a) +
f ′(a)

1!
(x− a) + · · ·+ f (N)(a)

N !
(x− a)N + · · · (2.25)

=

∞∑
i=0

f (i)(a)

i!
(x− a)i (2.26)

and the N th-degree Taylor polynomial is obtained

fN (x) = f(a) +

N∑
i=1

f (i)(a)

i!
(x− a)i (2.27)

Thus we can write Taylor’s theorem

f(x) = fN (x) +RN (x) (2.28)

where RN (x) := f(x)−fN (x) =
∑
i>N

f(i)(a)
i! (x−a)i is the remainder term which

quantifies the difference between the function f and the N th-degree Taylor poly-
nomial in terms of the magnitude of the (N + 1)st higher order derivative of f .

Theorem 2.6 Suppose that f : R → R is defined on a closed interval I that has a in its
interior and f (N+1) exists on the same interval for N ∈ Z+. Then for each x 6= a, x ∈ I ,
there is a ξ ∈ (a, x) such that

RN (x) =
f (N+1)(ξ)

(N + 1)!
(x− a)N+1. (2.29)

Thus, there exists a ξ ∈ I , with depending on whether x < a or x > a such
that the remainder RN (x) in (2.28) satisfies (2.29). A key observation is that when
N = 1, this reduces to the ordinary MVT. The above derivation (2.28) (2.29) can be
referred to [2]. Following this strategy, the key is to observe the generalization of
Rolle’s theorem.
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Proof: Indeed, under the condition that the power series of f exists (and thus f is
infinitely differentiable), and both x, a ∈ I , then, by definition,

RN (x) :=
∑
i>N

f (i)(x)

i!
(x− a)i

for every x ∈ I . Then apply MVT to this function by first noting that RN is con-
tinuous on I (since f is) and, secondly, by noting that RN is differentiable on I

(since f is) and thirdly, by noting that R′N (x) = f(N+1)(x)
(N+1)! . The result then follows

by applying MVT to RN (x) and gives (2.29). 2

Furthermore, we can find the upper bound of the remainder term in Theorem (2.6)
using Taylor’s inequality.

Theorem 2.7 Under the conditions of Theorem (2.6), let Ia ⊆ I be any interval that has
a in its interior. We define

M := sup
ξ∈Ia

∣∣∣∣f (N+1)(ξ)

(N + 1)!

∣∣∣∣ (2.30)

Then
|f(x)− fN (x)| = |RN (x)| ≤ M|x− a|N+1 (2.31)

holds for all x ∈ Ia.

Proof: Use Theorem (2.6) and (2.29) to infer that, there exists ξ ∈ L(x, a)

|f(x)− fN (x)| = |RN (x)| = |f
(N+1)(ξ)

(N + 1)!
(x− a)N+1|

≤ sup
ξ∈Ia
|x− a|N+1 = M |x− 1|N+1

2

Hence an upper bound of the error between theN th degree Taylor approximation
fN and f is obtained and is a prior bound, only depending on f itself and the con-
sidered interval I . In the following, we generalize Theorem 2.7 to a multivariable
function f : C` → Cm×p for MIMO systems with ` expansion points, m inputs
and q outputs.

Theorem 2.8 Suppose f : C` → Cm×p is N + 1 times differentiable on a set I ⊂ C`
that contains a vector a ∈ C` in its interior. Let Ia ⊂ I be a closed and bounded subset of
I . Then the truncated N th order Taylor polynomial around a ∈ C` at order N is

fN (x) = f(a) +

N∑
|i|=0

[D|i|f ]i(a)

i!
(x− a)i

where i = (i1, . . . , i`) is a multi-index, |i| = i1+. . .+i` is its ”length”, and i! = i1! · · · i`!
is the factorial of i. (x−a)i = (x1−a1)i1 ....(x`−a`)i` is a multivariate scalar polynomial
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and the kth partial derivative of f at a point a ∈ C` is denoted by

[D|k|f ]k :=
∂k1 · · · ∂k`
∂xk11 · · · ∂xk``

f(x)

∣∣∣∣
x=a

(2.32)

where the multi-index is k = (k1, · · · , k`) and define |k| = ∑`
i ki as its cardinality.

When ranging over all multi-indices k = (k1, . . . , k`) with |k| = K, then [D|k|f ]k
can be interpreted as a order |k| tensor, i.e., the multi-linear functional

[D|k|f ] : C` × C` × · · · × C`︸ ︷︷ ︸
|k| copies

→ C (2.33)

whose k = (k1, . . . , k`)th entry is [D|k|f ] evaluated at x = a defined in (2.32).

Thus, [D0f ](a) = f(a) is the evaluation of f at the point a, [D1f ](a) = ∇f(a) is
the gradient of f at the point a, [D2f ](a) = ∇2f(a) is the Hessian matrix of f at
the point a and

[D|N |f ](v1, · · · , vN ) :=

N∑
|k|=0

[D|N |f ]k(v1 ⊗ · · · ⊗ vN ). (2.34)

Then, the N th order multivariable approximation of f is given below.

Theorem 2.9 For a function f : C` → Cm×p isN+1 times differentiable on a set I ⊂ C`
that contains a vector a ∈ C` in its interior. The N th order multivariable approximation
or multivariable Taylor polynomial of f at a ∈ C` is

fN (x) = [D0f ](a) + [D1f ]
(
[x− a]

)
+ · · ·

+
1

N !
[D|N |f ]

(
[x− a], · · · , [x− a]︸ ︷︷ ︸

N copies

)
. (2.35)

Here the tensor definition of [D0f ], [D1f ], · · · , [DNf ] is given in (2.34).

Define the error by the residual which has the similar form as the single variable
one (2.28)

RN (x) := f(x)− fN (x), (2.36)

with

RN (x) =
(x− a)N+1

2πi

∫
f(ξ)

(ξ − a)N+1(ξ − x)
dξ

Let, as (2.30)

M := sup
ξ∈Ia

∥∥∥∥D|N+1|f(ξ)

(N + 1)!

∥∥∥∥ (2.37)

where the norm is the Frobenius norm of a multi-linear operator and the supremal
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is taken over expansion points ξ ∈ Ia ⊂ I . We claim that

‖f(x)− fN (x)‖ ≤ M‖x− a‖N+1;∀x ∈ Ia (2.38)

Theorem 2.10 Suppose H : C× C` → C is N + 1 times differentiable on a set I ⊂ C`
that contains (s0, θ0) in its interior. Let HN denote the N th order Taylor polynomial of
H about (s0, θ0). Then

‖H(s, θ)−HN (s, θ)‖ ≤ M
∥∥∥∥∥
[
s− s0

θ − θ0

∥∥∥∥
∣∣∣∣∣
N+1

(2.39)

holds for all (s, θ) ∈ I(s0,θ0), where

M := sup
(ξs,ξθ)∈I(s0,θ0)

∥∥∥∥D|N+1|H(ξs, ξθ)

(N + 1)!

∥∥∥∥ (2.40)

is the supremum over the induced norm of the tensor [D|N+1|H] over I(s0,θ0).

Hence, (2.39) is the error bound for a multivariable function for a MIMO system.

The function H(s, θ) above can be interpreted as the transfer function of the FOM
in (2.2) and HN (s, θ) can be considered as N th ROM (2.11) at points (s0, θ0), re-
spectively. With the desired reduced order N and expansion points (s0, θ0), the
Theorem (2.10) gives a prior upper bound on the reduction error using the mo-
ment matching method. This means that the reduction error at each expansion
point can be evaluated before constructing the ROM. We can minimize the re-
duction error and find the optimal ROM by adjusting the reduced order N and
expansion points (s0, θ0). However, the upper bound (2.40) is, by no means, easy
to compute.

2.5 Example: A parametric thermal model

In this section, we demonstrate some numerical results of the proposed method.
To illustrate the procedure and technique, we consider the example of a linear
motor (see Figure 2.2). The coils of the linear motor generate a magnetic flux
that operate along the track. Meanwhile, the coil also creates a heat flux which
influences the temperature and, with that the stability of the thermal system. The
aim is to predict the transient thermal behavior of the linear motor. Let Ω ⊂ R3 be
the spatial configuration space of the motor. Consider the heat equation on Ω as
given by

cpρ · Ṫ = ∇ · (κ∇T ) + q̇ in Ω (2.41)
T (ϕ, 0) = T0(ϕ) T∂(ϕ, t) on ∂Ω (2.42)

where T (ϕ, t) denotes the temperature of the linear motor at position ϕ ∈ Ω and at
time t ≥ 0. The initial temperature T0(ϕ) and the boundary condition T∂(ϕ, t) for
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Input

Output

Figure 2.2: Linear motor with single-input and single-output

all t ≥ 0 are given, respectively. cp is the material specific heat capacity, ρ denotes
the material density and κ describes the thermal conductivity. The heat flux at the
coil of the linear motor is spatially distributed and is considered as the input of the
system. The surface temperature where the sensor locates is chosen as the output.

Using a finite element (FE) discretization of Ω and parameterizing the material
properties, a parameter-dependent system is generated{

E(θ)Ṫ = AT +Bu
y = CT

, (2.43)

where, with some abuse of notation, T (t) ∈ Rn denotes the vector of all temper-
atures in n = 1560 finite elements and where θ denotes the heat capacity of the
material in the coil (indicated in green color). We treat the heat capacity cp as the
uncertain parameter. It enters the matrix E in (3.35) as an affine function in the
sense that

E(θ) = E0 + θE1

where θ = cp. The state T represents spatial-temporal information and is given as

T (t) = col(T (x1, t), . . . , T (x1560, t))

with xi a representative point in the ith finite element in the configuration of Fig-
ure 2.2. Thus, the state dimension n = 1560.

The design goal for this linear motor is to find a suitable material (i.e. with suit-
able heat capacity cp) which leads to desirable thermo-dynamical properties of the
linear motor. We consider an operating range cp ∈ [200, 900] in units [J/kg.K] and
aim to reduce the complexity of the lumped and parametrized model to more
manageable proportions. The operating frequency range of the thermal beha-
vior is mainly located at low frequency (near 1 ∼ 10 Hz). Under these condi-
tions thereupon, we choose frequencies s0 ∈ S := {0, 1 + i, 1 − i} and parameter
θ0 ∈ Θ := {200, 500, 900}.
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Following the proposed method, we obtain the reduced model with r = 12 or-
ders which includes 6 expansion points [0, 200], [0, 500], [0, 900], [1 ± i, 200], [1 ±
i, 500], [1 ± i, 900]( The complex conjugate pairs are considered as one pair of ex-
pansion points). We preserve two moments for each point and obtain the reduced
model as {

Er(θ)ẋr = Arxr +Bru
y = Crxr

, with dim(xr) = 12 (2.44)

hereEr(θ) = Er,0+cpEr,1. As demonstrated in Figure 2.3, the solid lines represent
the full model with different values of cp. The dashed lines denote the reduced
order model with corresponding θ. The frequency range [0.1, 10][rad/sec] in the
Bode plot for all three models are matched, and there are some mismatches from
20 [rad/sec].
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Figure 2.3: Bode diagram of full model and reduced model with cp =
[200, 500, 900][J/kg ·K].

To show the benefits of the separation of frequencies and parameters in the con-
struction of the projection matrices V and W , we also provide a comparison of
time domain simulations of the ROM using the proposed method and the ROM
using the method proposed in [53] and the FOM, the COMSOL simulation results
which are considered as reference are also included. By applying the same input
sequences u(t), t > 0, Figure (2.4) shows the outputs of all 9 models with different
heat capacities.

In Figure (2.4), the solid lines represent the reference of all models with different
θ. The dashed lines are the results of the proposed method, the dotted lines are
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Figure 2.4: Comparison of full model and reduced model with different heat ca-
pacities cp = [200, 500, 900][J/kg ·K] in time domain simulation.

methods from previous work [170] (we choose the same expansion points and
same number of moments as the proposed method). Obviously, the proposed
method has the better performance which is very close to the reference. The pre-
vious method also can match most of the thermal behavior except for the transient
parts.

2.6 Conclusion

This chapter considers the moment matching problem for linear parameterized
systems. An explicit algorithm is proposed that establishes a perfect match of mo-
ments in a desired set of frequency points and a desired set of parameter samples.
An error bound has been derived that represents the local accuracy of the transfer
function of the reduced order model nearby the points S × Θ. Simulation results
from both time domain and frequency domain show that the proposed method
delivers good matching and outperforms the previous work. An important open
question is how to choose the optimal expansion points with or without prior
knowledge.



3
Model reduction for LPV

systems through parameter
projection

For affine linear parameter-varying (LPV) systems, this chapter devel-
ops a method that reduces the dimension of its parameter space.

The method first transforms these affine LPV systems into a parameter-
dependent form. Then, leveraging a newly defined parameter-dependent
Hankel norm, the parameter reduction can be achieved by analyzing the
importance of each parameter in this norm and computing the corres-
ponding singular values. Simulation results of an academic example and
a thermal model are discussed before drawing conclusions.

3.1 Introduction

In the past decade, the class of linear parameter-varying (LPV) systems has been
developed and established as a reliable and very efficient model class for spe-
cific classes of nonlinear systems, representing parametric uncertainty and gain
scheduling purposes. Many successful applications ranging from very-large-scale
integration (VLSI) to aircraft designs [29, 116, 62] have been based on implement-
ations of the LPV framework. The inherent complex nature of physical systems
often results in high dimensional models with large dimensional state spaces and
large dimensional parameter spaces. Typically, the dimension of the parameter
space grows as the complexity of the system increases. In practice, it is often ne-
cessary to evaluate system performance over substantial ranges of parameter val-
ues. We find this theme in problems where design parameters need to be tuned,

35
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calibration problems, geometrical optimization, optimization of material proper-
ties in circuits [53] and microelectromechanical systems (MEMS) devices [21] and
robustness analyses in control systems. To have a reasonable computational com-
plexity in terms of synthesis and simulation, model order reduction for paramet-
rised systems (pMOR) is often required.

In the aforementioned applications, a high dimensional state space model is often
derived from a high resolution spatial discretization of partial differential equa-
tions (PDEs) that define the model. Typically, if high precision is required, this
process results in many first order ordinary differential equations (ODEs) approx-
imating the solutions of the PDE. Moreover, the physical constraints and design
parameters of such high-fidelity models lead to large dimensional parameter and
state spaces. A number of relevant approximation problems can then be phrased
as follows:

1. the state reduction problem involves the reduction of the dimension of the state
space, while preserving accuracy of the input-output behavior and the physical
meaning of the parameters.

2. the state and parameter reduction problem involves the simultaneous reduction of
the dimension of the state space and the dimension of the parameter space.

3. the parameter reduction problem involves the reduction of the dimension of the
parameter space only.

In most pMOR work, the primary goal has been to solve the state reduction problem.
A number of such methods have been proposed, mainly focusing on sampling
techniques [130, 28, 42]. On this topic, two influential survey papers [28, 29]
have appeared. Methods based on moment matching of the parametrised trans-
fer function are of particular interest, but tend to become complex with the num-
ber of matched moments. For example, in [28], the dimension of the reduced
model increases exponentially as the number of parameter interpolation points
and moments increase. One solution to this problem is to interpolate both the
state space and the parameter state within the predefined variation range [113].
Even though it is not always stated, simple sampling schemes imply or assume
static dependence on the parameter. Techniques which explicitly deal with time-
varying parameters are more involved [174]. All these works are confined to state
reduction without considering the problem to reduce the number of parameters.
Approaches which consider parameter reduction either require typical trajector-
ies of the parameter to be known a priori [140], lack interpretation, are limited in
application [158] or only focus on static state reduction [110]. The development of
more general parameter reduction techniques can significantly improve the effi-
ciency of simulations, often without loss of generality, as was shown in [72]. This
leads to the second challenging problem: the state and parameter reduction prob-
lem. In [72] a two-step approach is introduced. First, parameter reduction is em-
ployed to find a low-dimensional parameter space. The second step amounts to
constructing a state reduction via moment-matching. However, the reduced rank
regression method used in the first step only quantifies the relation between the
parameters and the outputs, and is limited by the type of input excitation used.
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Besides, the system dynamics are not taken into account over ranges of paramet-
ers. Given the fact that parameter spaces are usually determined by the physics
and the design constraints, it is relevant to explore the correlation between the
parameter space and system theoretical properties such as reachability and ob-
servability of parametrised systems. In [110], a joint Gramian based method is
proposed such that the parameter and state reduction can be performed via sin-
gular value decomposition (SVD), and the results show the joint Gramian based
method can be a viable alternative for reducing the parameter complexity. Nev-
ertheless, the system structure or parameter dependency is not exploited in this
work which potentially could lead to a different formulation.

Our intention, therefore, is to focus on the parameter reduction problem. We exploit
the relationship between the parameter space and system Gramian for an affine
linear parameter-varying system. A projection-based method is proposed as the
means to reduce the dimension of the parameter space using Hankel-norm ap-
proximation. In doing so, some definitions of system norms for LPV systems are
introduced, aimed at characterizing approximation errors in a consistent manner.
The methods in this paper are developed for time-invariant parameters with an
extension of the Gramian based approach to the time-varying rate-bounded case.

This chapter is organised as follows. In Section 3.2 we provide a brief introduc-
tion to LPV systems and introduce the system norms that will be used in this
paper. After a formalisation of the problem, an argument for affine Gramian re-
duction is presented. Next, the cross-correlation among the parameter space in
frequency domain is introduced in Section 3.3 as well as the approximation error
for parameter-dependent systems. In Section 3.4, the results are illustrated in an
academic example and in a real application of a thermal model which consists of
several interconnected components. Conclusions and future work are presented
in Section 3.5.

3.2 Preliminaries and notation

Consider a system Σ(θ) defined by the following LPV state-space representation

Σ(θ) :

{
ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C(θ)x(t) +D(θ)u(t)

, (3.1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm and y(t) ∈ Rq denote the input
and output of the system, respectively. Furthermore, θ represents the parameter
that is assumed to reside in the parameter space Θ ⊆ R`. Usually, an important
distinction is made between systems where θ is time-variant and time-invariant.
The state space matrices are assumed to have affine dependence on θ, i.e., the
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system matrices A(θ), B(θ), C(θ), D(θ) are given by

A(θ) = A0 +A1θ1 + · · ·+A`θ`,

B(θ) = B0 +B1θ1 + · · ·+B`θ`,

C(θ) = C0 + C1θ1 + · · ·+ C`θ`,

D(θ) = D0 +D1θ1 + · · ·+D`θ` (3.2)

where Ai, Bi, Ci, Di are real matrices of compatible dimensions, and where θi de-
notes the ith coefficient/component of the vector θ. Without loss of generality the
system is assumed to be scaled such that θi ∈ [0, 1], i = 1, .., `. Since θ does not
vary with time both the transfer function

G(θ, s) = C(θ)(sI −A(θ))−1B(θ) +D(θ); s ∈ C

and the impulse response

H(θ, t) =


0 ; t < 0

D(θ) ; t = 0

C(θ) · eA(θ)t ·B(θ) +D(θ) ; t > 0

(3.3)

are well defined for all θ ∈ Θ. In addition, the system in (3.1) is assumed to be
stable ∀θ ∈ Θ in the sense that A(θ) is Hurwitz matrix for all θ ∈ Θ.

Let T be a subspace of R` of dimension r < `. A projector onto T is a function
ΠT : R` → R` with the property that im(ΠT ) = T and Π2

T = ΠT . In particular, if
{φ1, · · · , φr} is a basis of T and T = [φ1, · · · , φr] ∈ R`×r then ΠT = T (T−1T )−1TT

is a matrix representation of a projector onto T . We call I−ΠT the complementary
projector onto ker(ΠT ). It is easily seen that I−ΠT = ΠT ⊥ with T ⊥ the orthogonal
complement of T in R`. Thus, for any θ ∈ R` we have

θ = ΠT θ + (I −ΠT )θ = θT + θT ⊥ (3.4)

where we define

θT := ΠT θ and θT ⊥ := (I −ΠT )θ = ΠT ⊥θ. (3.5)

Note that θT ∈ R` and θT ⊥ ∈ R` and that, in the basis {φ1, · · · , φr} of T one can
represent θT as

θT = T (TTT )−1TT θ = Tθr (3.6)

where θr ∈ Rr are the coordinates of θT in the basis of {φ1, · · · , φr} of T . So, θr
has dimension r < `, θT has dimension of `. With θ decomposed as θ = θT + θT ⊥
any such projector defines a second system Σ(θT ) that we view as a parameter-
reduced system. Specifically, with r = dim(T ) set

Σr(θr) := Σ(θT ) = Σ(Tθr). (3.7)
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Then, Σr(θr) has representation

Σr(θr) :

{
ẋr(t) = Ar(θr)xr(t) +Br(θr)u(t)
yr(t) = Cr(θr)xr(t) +Dr(θr)u(t)

(3.8)

where

Ar(θr) = A(Tθr), Br(θr) = B(Tθr),

Cr(θr) = C(Tθr), Dr(θr) = D(Tθr)

and simply observe that, because {A(θ), B(θ), C(θ), D(θ)} are affine functions of θ
(3.2), also {Ar(θr), Br(θr), Cr(θr), Dr(θr)} are affine functions of θr that can there-
fore be written as explicit expansions

Ar(θr) = A(Tθr) = A0
r +A1

rθ
1
r + · · ·+Arrθ

r
r

Br(θr) = B(Tθr) = B0
r +B1

rθ
1
r + · · ·+Brrθ

r
r

Cr(θr) = C(Tθr) = C0
r + C1

r θ
1
r + · · ·+ Crr θ

r
r

Dr(θr) = D(Tθr) = D0
r +D1

rθ
1
r + · · ·+Dr

rθ
r
r (3.9)

with A0
r = A0, B

0
r = B0, C

0
r = C0, D

0
r = D0 in (3.2). Note that the number of

parameters is reduced from ` in (3.2) to r above in (3.9). More specifically, in the
basis {φ1, · · · , φr} and under the assumption that {φ1, · · · , φr, φr+1, · · · , φ`} of T
the system and θir as the ith component of θr, i.e.,

θir = 〈θr, ei〉, for ei the i-th unit in Rr (3.10)

here 〈·, ·〉 denoting the inner product in Rr. More specifically, if T =
(
φ1, · · · , φ`

)
and the collection of vectors {φ1, . . . , φ`} spans T , then

Ar(θr) = A(Tθr) = A0 +A1〈Tθr, e1〉+ . . . A`〈Tθr, e`〉
= A0 +A1〈θr, TT e1〉+ . . . A`〈θr, TT e`〉.

Now, let Tij denote the (i, j)th entry of T (i = 1, . . . `, j = 1, . . . r). Then the
above expansion reads

A0 +A1
rθ

1
r + ...+Arrθ

r
r

where
Ajr = A1T1,j + ....+A`T`,j for j = 1, 2, ..., r.

Similarly, B0
r = B0, C

0
r = C0 and D0

r = D0

Bjr = B1T1,j + ...+B`T`,j

Cjr = C1T1,j + ...+ C`T`,j

Dj
r = D1T1,j + ...+D`T`,j

In the same way, we can obtain Br(θr), Cr(θr), Dr(θr) as defined in (3.9).

Note that the reduced system matrices {Ar(θr), Br(θr), Cr(θr), Dr(θr)} have the
same dimension as the matrices {A(θ), B(θ), C(θ), D(θ)} of the original system,
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but their affine expansions as function of the parameter have been reduced from
a length (` + 1) expansion to a length (r + 1) expansion in each and every state
space matrix. To evaluate the performance of the reduced system, an error system
is defined as the LPV system with input u and output y − yr with y and yr the
outputs of (3.1) and (3.8). See Figure 3.1. This system is compactly denoted as
Σe(θ) = Σ(θ) − Σr(θr) where θr is defined in (3.6). As such, Σe(θ) is viewed as
an error system in the parameter θ only. Note that if the projection space T is
understood, the error system is affinely dependent on the parameters.

1/s

Σ(θ)

Σr(θr)

1/s

+

−

xr ẋr

ẋx

u

yr

y

e

Σe(θ)

Figure 3.1: Interconnection of the reduced parameter error system, indicated by
the blue area.

In the LTI setting, the error system can be evaluated by many well established and
computable norms. Among these, the H∞-, H2- and Hankel-norm are commonly
used in model reduction. In this work, we introduce a composite error measure
on the LPV system that consists of a norm over the parameter space and a system
norm

‖Σe‖p∞,H := max
θ∈Θ
‖Σe(θ)‖H , (3.11)

which evaluates the maximal Hankel-norm of the system Σ(θ) when ranging over
the feasible parameter space, where the definition of Hankel-norm for parameter-
dependent systems is given in the next section. Based on what we have discussed
so far, we give the problem formulation of parameter reduction for LPV systems.

Problem: Given a stable and minimal system Σ(θ) as defined in (3.1), find a T of
dimension r that is minimizing the righthand side of the (3.12)

‖Σe‖p∞,H = max
θ∈Θ
‖Σ(θ)− Σ(ΠT θ))‖H (3.12)

over all subspace T . Here Σ(ΠT θ) denotes the parameterized reduced system that
is defined in (3.7).
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3.3 Hankel-norm reduction

It is well known that the Hankel norm of a stable LTI system can be expressed in
terms of reachability and obervability Gramians [13]. We establish a similar result
for LPV systems first. The Hankel operator associated with a stable LTI system Σ
is defined by

H : L2(R−,Rm) 7−→ L2(R+,Rq), u− 7−→ y+

where (3.13)

y+(t) := H(u−)(t) =

∫ 0

−∞
H(t− τ)u(τ)dτ, with t ∈ R+

it maps the past inputs u− into future outputs y+. The Hankel norm of the system
Σ, denoted ‖Σ‖H is the L2 induced norm ofH and is defined as

‖H‖L2−ind = sup
‖u−‖2

‖y+‖2
‖u−‖2

= ‖Σ‖H . (3.14)

The quantity ||Σ||H is the Hankel norm of the system Σ and equals the spectral
norm ||Σ||H = σmax(H). The Hankel singular values of the system Σ are defined
as the singular values of the Hankel operator H associated with Σ, and are given
as follows

Lemma 3.1 Given a reachable, observable and stable LTI system Σ of dimension n, the
Hankel singular values σi(Σ) are equal to the square roots of the eigenvalues of the product
of PQ

σi(Σ) =
√
λi(PQ), i = 1, ..., n (3.15)

where P and Q are the controllability Gramian and observability Gramian of Σ.

For a time-invariant LPV system, the Hankel operator is defined as

Hθ : Θ× L2(R−,Rm) 7−→ L2(R+,Rq), (θ, u−) 7−→ y+

where (3.16)

Hθ(θ, u−)(t) =

∫ 0

−∞
H(θ, t− τ)u(τ)dτ, with t ∈ R+ and θ ∈ Θ,

it maps the past inputs and parameters into future outputs. It follows that the
L2-induced norm ofHθ is now parameter dependent. Since Σ(θ) is assumed to be
stable ∀θ ∈ Θ, the Hankel norm of Σ(θ) can be expressed as

‖Σ(θ)‖H = σmax(Hθ) =
√
λmax (P(θ)Q(θ)) with θ ∈ Θ (3.17)

where P(θ),Q(θ) are the reachability and observability Gramians, defined as the
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unique solutions of the parametrized Lyapunov equations

A(θ)P(θ) + P(θ)AT (θ) +B(θ)BT (θ) = 0 (3.18)

A(θ)TQ(θ) +Q(θ)A(θ) + C(θ)TC(θ) = 0. (3.19)

Finding an exact solution to the Lyapunov equation for the whole parameter
space is not trivial and often computationally intractable. In the literature, a static
Gramian [148] is proposed which often suffices, but leads to conservative solu-
tions. For parameter dimension reductions, the parameter dependent Gramian is
necessary as they express changes in the system due to parameter variations.

The following result shows that a relaxation of (3.18) to an inequality naturally
leads to an upper bound onP(θ) andQ(θ) for all θ. Subsequently, an upper bound
of the Hankel norm (3.17) is derived.

Theorem 3.2 Consider an LPV system (3.1) that is stable, reachable and observable for
all θ ∈ Θ. There exist unique solutions P(θ) = PT (θ) � 0,Q(θ) = QT (θ) � 0
which satisfies (3.18) and (3.19). Furthermore, there exists P (θ) = PT (θ) � 0 and
Q(θ) = QT (θ) � 0 which satisfy

A(θ)P (θ) + P (θ)AT (θ) +B(θ)BT (θ) � 0. (3.20)

A(θ)TQ(θ) +Q(θ)A(θ) + C(θ)TC(θ) � 0. (3.21)

for all θ ∈ Θ. All solutions {P (θ), Q(θ)} upper bound {P(θ),Q(θ)} in the sense that
P (θ) � P(θ) � 0 and Q(θ) � Q(θ) � 0. Moreover, the Hankel norm of Σ(θ) is upper
bounded by

‖Σ(θ)‖H =
√
λmax (P(θ)Q(θ))

≤
√
λmax (P (θ)Q(θ)). (3.22)

The proof of the Lyapunov inequality in (3.20) and (3.21) is given in Appendix 3.A
and the proof of Hankel Singular value in (3.22) is given in Appendix 3.B. Note
that solutions of (3.20) and (3.21) are not unique.

For every sample point of θ ∈ Θ, there is one solution of (3.18) and (3.19). There-
fore, it is of interest to find an upper bound of such solutions for P (θ) andQ(θ), θ ∈
Θ. Particularly, we are interested in an upper bound with affine structure.

Theorem 3.3 Consider an LPV system defined by (3.1) that is stable, reachable and
observable for all θ ∈ Θ. Suppose that the parameter space is a compact set: Θ =
Co{w1, . . . , wk}. Then, for P(θ) which satisfies (3.18) there exists an affine function
f : Θ→ Rn×n such that

f(θ) � P(θ) for all θ ∈ Θ. (3.23)

This theorem can be proved by making use of the convexity of affine functions
f(θ) with convex hull of θ ∈ Θ. The proof of the upper bound affine function for
observability Gramian is given in Appendix 3.C. In the same manner, the upper
bound affine function for controllability Gramian can be obtained.
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3.3.a Parameter reduction using Hankel-norm approximation

The main ingredients of parameter reduction for LPV systems are to construct
an upper bounded Hankel norm defined in Theorem 3.2 which satisfies the affine
form in Theorem 3.3, and then to find a reduced model with the least error for the
given reduced parameter space.

We start with constructing a proper affine upper bounding controllability Gramian

P (θ) = P0 + P1θ1 + · · ·+ P`θ`,

here each Pi is the solution of (3.20) for the Σ(θ) in (3.2) where all parameters θj
accept for θi are zero θj = 0, j 6= i. Notice that the P0 is the solution of (3.20) for
the that all parameters are equal to zero θ = 0. In such a way, the upper bounding
Gramian with affine format is obtained. In the same manner, the affine upper
bounding observability Gramian

Q(θ) = Q0 +Q1θ1 + · · ·+Q`θ`,

Q(θ) satisfies (3.21). With these affine forms, the Gramian can be rewritten as

P (θ)Q(θ) = θ̄TKθ̄

=


θ1In

...
θ`In
In


T

︸ ︷︷ ︸
θ̄T

 K11 K12

K21 K22


︸ ︷︷ ︸

K


θ1In

...
θ`In
In


︸ ︷︷ ︸

θ̄

(3.24)

where In denotes identity matrix with dimension of n×n. TheK12 ∈ R(`·n)×n,K21 ∈
Rn×(n·`) and K22 a matrix with n× n. Note that K22 is the a constant matrix. K12

and K21 are the matrices that denote the linear term of θ. And K11 ∈ R(`·n)×(n·`)

represents all quadratic terms of θ.

With the upper bounding Gramian proposed in (3.24), the system norm defined
in (3.11) for the full-order LPV system Σ(θ) (3.1) satisfies

‖Σ(θ)‖2p∞,H : = max
θ∈Θ
‖Σ(θ)‖2H

= max
θ∈Θ

λmax(P(θ)Q(θ))

≤ max
θ∈Θ

λmax(P (θ)Q(θ))

= max
θ∈Θ

λmax(θ̄TKθ̄) (3.25)

In the same manner, the system norm for reduced-order LPV system Σr(θr) also
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satisfies the following inequalities:

‖Σr(θr)‖2p∞,H = ‖Σ(θT )‖2p∞,H = ‖Σ(Tθr)‖2p∞,H
= max

θr∈ΠT Θ
λmax(P(Tθr)Q(Tθr))

≤ max
θr∈ΠT Θ

λmax(P (Tθr)Q(Tθr))

= max
θT ∈Θ

λmax(θ̄TTKθ̄T ) (3.26)

here θ̄T = col(θT , 1) and θT = ΠT θ = Tθr denotes the reduced parameter space
as defined in (3.5).

As defined in (3.12), the ‖ · ‖p∞,H system norm of the error system between the
full-order LPV system Σ(θ) and the reduced-order LPV system Σr(θr) reads

‖Σe(θ)‖2p∞,H = ‖Σ(θ)− Σr(θr)‖2p∞,H
= max

θ∈Θ
‖Σ(θ)− Σ(θT )‖2H . (3.27)

Notice that the error system is not equal to the difference between their individual
norms in (3.25) and (3.26). Instead of finding the exact solution of (3.27), we find it
of particular interest to find the upper bound of the error system. With the affine
upper bounding Gramian proposed in (3.24) and a given T , we can obtain the
following

‖Σe(θ)‖2p∞,H ≤ max
θ∈Θ

λmax (θ̄TKθ̄ − θ̄TTKθ̄T ) (3.28)

Once the upper bounded error system norm is given in (3.28), the problem stated
in (3.12) can be reformulated as finding

min
T

max
θ,θr∈Θ

λmax
(
θ̄TKθ̄ − θ̄TTKθ̄T

)
s.t θ̄TKθ̄ = P (θ)Q(θ), θ̄TTKθ̄T = P (Tθr)Q(Tθr)

P (θ) = P0 + P1θ1 + · · ·+ P`θ`, P (Tθr) = P0 + P 1
r θ

1
r + · · ·+ P `r θ

`
r

Q(θ) = Q0 +Q1θ1 + · · ·+Q`θ`, Q(Tθr) = Q0 +Q1
rθ

1
r + · · ·+Q`rθ

`
r

(3.29)

This formulation is used to express the loss in Hankel-norm in quadratic form.
Minimising the loss over all parameters gives a min-max optimisation as

min
T

max
θ,θr∈Θ

∥∥(θ̄ − θ̄T )TK(θ̄ − θ̄T )
∥∥2

2
(3.30)

for a given reduced parameter space T with dim(T ) = r. Remark that the expli-
cit expression of P (Tθr), Q(Tθr) is given and it is T dependent. For solving the
above min−max optimization problem, the first step is to find an upper bound
P (θ), Q(θ) that satisfies Theorem 3.2 and Theorem 3.3. Finding a solution to the
Lyapunov inequality in (3.20) and (3.21) is done using linear matrix inequalities
(LMIs). The second step is to construct a T which minimizes the error between
the original system and the reduced one. Specifically, with a given order r, we
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build the projection matrix T = [φ1, · · · , φr] in column-wise fashion. The above
discussion is briefly summarized in Algorithm 1.

Algorithm 1 : Parameter reduction for affine LPV systems

1: Construct parameter affine dependent upper bounds P (θ), Q(θ) that satisfy
Theorem 3.2 and Theorem 3.3.

2: Build the projection matrix vr by solving (3.29) for a given r,
3: Orthonormalize vr (e.g., Modified Gram-Schmidt method) such that vTr vr =
Ir.

4: Assign T ← vr.
5: Return T

Notice that the orthonormalization procedure in Step 3 is to obtain a better numer-
ically stable projection matrix, which is not required in the theorem developed in
(3.29).

3.3.b Approximation error and sensitivity analysis

In LTI approximation the loss function is related to the energy of the error system
since the Hankel singular values are a measure of energy in each state respect-
ively. For the proposed method, the interpretation is more nuanced as the affine
Gramian constitutes an upper bound on the actual Gramians. If this upper bound
is tight, the loss function is a good indication of the error. The tightness of this
upper bound is heavily dependent on the system, and determining the tightness
is not trivial. Inspired by Adamjan-Arov-Krein (AAK) theorem, we provide a rel-
ative p∞,∞-error which asses the approximation error

‖Σ(θ)− Σr(θr)‖p∞,∞
‖Σ(θ)‖p∞,∞

. (3.31)

Here || · ||p∞,∞ is defined as

‖Σe(θ)‖p∞,∞ := max
θ∈Θ
‖Σe(θ)‖H∞ (3.32)

which evaluates the H∞-norm of the system Σ(θ) when varying over the feasible
parameter space.

In literature, another commonly used method to evaluate the parametric import-
ance of the LPV systems is sensitivity analysis [158]: the derivative towards the
parameters is used to find parameter directions in which the output is most sens-
itive to changes. In the frequency domain it is expressed as the transfer-sensitivity
covariance matrix (TSCM) Π

Π =

 Π1,1 · · · Π1,`

...
. . .

...
Π`,1 · · · Π`,`

 , (3.33)
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of which the elements are defined as

Πij :=

∥∥∥∥ d

dθi
H(θ, s)T · d

dθj
H(θ, s)

∥∥∥∥
p∞,∞

(3.34)

where H(θ, s) is a parameter-dependent transfer function of the system. The res-
ulting TSCM is a positive definitive matrix with a dimension of `× `.
By taking the SVD of this matrix, Π = USU∗, the parameter transformation matrix

T = [u1, · · · , ur]

and T = im(T ) is found. This transformation orders the parameter directions in
terms of transfer sensitivity covariance and is orthonormal, constituting a valid
transformation as defined in (3.6).

3.4 Simulation results

To illustrate these methods of parameter reduction through sensitivity analysis
and Hankel-norm approximation, two examples systems are used. The first sys-
tem is an illustrated LPV system and the second a real thermal system.

3.4.a illustrative example

Consider an affine LPV system

ẋ = A0x+B0u+

5∑
i=1

(Aiθix+Biθiu) (3.35a)

y = C0x+D0u+

5∑
i=1

(Ciθix+Diθiu) , (3.35b)

where θi ∈ [0, 1] with i = 1, · · · , 5 and u(t) ∈ R2, y(t) ∈ R2 and x(t) ∈ R45. To en-
sure stability all Ai ≺ 0. For this system Hankel-norm and TSCM approximations
are determined. As a comparison subsystem Hankel-norm approximation is used
where reduction is based on singular values of the actual Hankel norm associated
with the remaining parameter space.

In Figure 3.2 the output evolution which consists of the transient response and
the steady-state response is shown for an input u(t) = [u1(t);u2(t)], u1(t) = 1 and
u2(t) = 2 for t = [0, 25] and u(t) = 0 otherwise. The parameter space is defined as
θ ∈ Θ,Θ = [0, 1] and a random parameter realization for θi, i = 1, · · · , 5 is chosen
for both reduction methods.

To illustrate the accuracy of the reduced models, the errors are shown in Fig-
ure 3.3. For t = [0, 25], both figures show a tendency that the more parameters are
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preserved, the smaller the error is between the reduced and the original model.
For t > 25[s], all reduced models with r = 1, ..., 4 converge to zero and therefore
show a stable system (which was to be expected).

The output of the system changes with a different parameter realization, and
therefore Figure 3.4 shows the relative p∞,∞ error defined in (3.31) of the reduc-
tions to be non-increasing with growing parameter order for both methods. It
also shows that for this example, the sensitivity analysis outperforms the Gramian
based method.
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Figure 3.2: System evolution of the illustrated LPV system defined in (3.35) with
a random parameter realization. Both plots show the outputs y1, y2 of the ori-
ginal model and the outputs of the reduced model generated from the proposed
Hankel-norm method (left side) and the sensitivity analysis method (right side)
with different reduced parameter space of a dimension of r = 1, · · · , 4.

3.4.b Thermal simulation

The second system is a thermal simulation consisting of five coupled metal blocks,
all having parameter dependent heat capacity. Using COMSOL Multiphysics the
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Figure 3.3: Output error [y1(t) − y1,r(t), y2(t) − y2,r(t)] of the randomized LPV
system with different reduced parameter space of a dimension of r = 1, · · · , 4 for
the proposed Hankel-norm approximation method and the sensitivity analysis
method.
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Figure 3.4: Relative p∞,∞ error defined in (3.31) of the randomized LPV system
for the reduced model generated via the Hankel-norm approximation method,
and the sensitivity analysis method with different reduced order r = 1, · · · , 4.



3.4 Simulation results 49

system is generated with the following structure.

ẋ =

(
A0x+

5∑
i=1

Aiθix

)
+Bu (3.36a)

y = C0x (3.36b)

Where u ∈ R2, y ∈ R2 and x ∈ R45. The inputs and outputs represent heat power
in [W ] and temperature [K] respectively. Here the parameter θi, i = 1, · · · , 5 rep-
resents the conductivity coefficient for 5 metal blocks. In Figure 3.5 an illustration
of the system is shown.
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Figure 3.5: Thermal model with five different material blocks. Orange and pink
are heat inputs. Purple and blue are outputs.

To evaluate the error of the reduced model, a simulation is performed with con-
stant power from u(t) = [u1(t);u2(t)], u1(t) = 50[W ] and u2(t) = 45[W ] for
t ∈ [0 250] and u(t) = [0; 0] afterwards. Here all parameters are normalized and
the values are [θ1, θ2, θ3, θ4, θ5] = [0.11, 0.26, 0.23, 0.21, 0.24] . For different reduced
parameter space, the error between the reduced model and full order model is
shown in Figure 3.6. Clearly the non-parametric model r = 0 performs the worst
showing that the nominal model is not a good approximation of the system. The
best performing model is the r = 4 model as the error is almost zero. This result
shows the performance with respect to a specific parameter space. Therefore, a
global error bound is used to infer conclusions on performance. In Figure 3.7 the
relative p∞,∞ error is plotted for different reduction orders. This figure illustrates
that reducing the system using sensitivity analysis is comparable to reduction in
subsystem using Hankel-norm. It is also clear that approximation in the p∞,H
norm using transformation optimization yields improved results for r < 4. For
approximation of r = 4 the Hankel-norm optimization method performs worse in
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p∞,∞ error. This is due to a combination of issues, the non-convex optimization
(3.29) and the error introduced in finding the upper bound of the affine Gramian
(3.23).
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Figure 3.6: Simulation error of the thermal system for different parameter orders
at a selected parameter in the parameter space.

For both systems computation of the Gramian takes in the order of approxim-
ately 1000 seconds (with a dual core PC and using YALMIP [111]). Because the
optimization in (3.29) has not shown to be convex, it is using different initial con-
dition to find a close approximation of the Hankel singular values. Due to this
non-convexity, the resulting transformation matrix does not guarantee the global
optimal approximation.

3.5 Conclusion

In this chapter, two methods for parameter reduction have been given for time-
invariant LPV systems. The first method approximates the system using the Hankel-
norm over the parameter space. The second method uses singular value decom-
position on the covariance matrix. A system norm analysis of the performance of
these methods has been presented in the chapter together with simulation results.
It can be concluded that both methods, though substantially different, are com-
putationally feasible and provide good approximations over the parameter space.
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Figure 3.7: Relative p∞,∞ error of the thermal system for different parameter
orders and different reduction methods.

The proposed methods are not limited to be only used for simplifying the com-
plexity of parameters, but can also be integrated with state reduction problems, as
joint state and parameter space reduction problems.

3.A Proof of upper bound of the Lyapunov function

Consider a stable LTI system with stable matrix A. Lyapunov equation theorem
shows that there is a unique solution P � 0 to

AP + PAT +Q = 0 (3.37)

where Q = BBT � 0. The same system admits a solution space P ∈ P̃ , being all
solutions that satisfy

AP + PAT +Q � 0 (3.38)

The equality can be rewritten and substituted into the inequality to give

A(P − P) + (P − P)AT � 0 (3.39)

From Lyapunov equation theorem and stable A, we have P − P � 0 as the solu-
tion of the above inequality. Extending to stable, observable and reachable time-
invariant LPV systems, it suffices to show that for every θ ∈ Θ a solution can be
found to the Lyapunov (in)equality concluding the proof. �
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3.B Proof of the upper bound of Hankel-singular val-
ues

From [34] we take two properties of eigenvalue arithmetic of symmetric matrices
A,B ∈ Rnx×nx ,

λi(A+B) ≥ 0 if λi(A) ≥ 0 and λi(B) ≥ 0,

λi(AB) ≥ 0 if λi(A) ≥ 0 and λi(B) ≥ 0,
(3.40)

for i = 1, ..., n. For clarity we drop θ, and define a function F below:

F := PQ− PQ = (P − P)(Q−Q) + P(Q−Q) + (P − P)Q. (3.41)

Given P (θ) � P(θ) � 0 and Q(θ) � Q(θ) � 0, applying properties (3.40) and
Theorem 1 to (3.41) yields λi(F ) ≥ 0, i = 1, . . . , n. With the properties of Hankel
matrix PQ = Q

1
2PQ

1
2 , for the symmetric F = (Q1/2PQ1/2 − Q1/2PQ1/2) = FT

it is proven. Therefore, PQ � PQ is concluded. Next consider the eigenvector x1

associated to the largest eigenvalue of PQ. Then the following holds

xT1 PQx1 ≤ xT1 (PQ)x1 ⇒ λ1(PQ) ≤ xT1 (PQ)x1

||x1||22
. (3.42)

By the definition of eigenvalue decomposition, we have

xT1 (PQ)x1

||x1||22
≤ sup

y1

yT1 (PQ)y1

||y1||22
= λmax(PQ), (3.43)

here y1 is the eigenvector associated to the largest eigenvalue of PQ. Thus, the
λmax(PQ) ≤ λmax(PQ) is proved. �

3.C Proof of upper bound with affine function f(θ)

Proof: Since f is assumed to be affine in the parameter θ, it takes the form

f(θ) = P0 + P1θ1 + · · ·+ P`θ`.

For suitable matrices P0, ..., P`. Given P satisfying (3.18), define

Pi := sup
θi,θ∈Θ

(P(θi)).

Then since Θ is compact there exits θi assuming the supremum in the sense that
Pi = max(P(θi)), i = 0, · · · , `. With the definition of f , we achieve that

f(θ) = P0 + P1θ1 + · · ·+ P`θ` ≥ P0 + θ1P(θ1) + · · ·+ θ`P(θ`) = P(θ)

which yields the result. Thus, Theorem 3.3 is proved. 2



4
Parameter calibration using

adaptive parameterized model
reduction

This chapter extends the parameterized model order reduction tech-
nique to the parameter calibration problem using measurement

data. We prove the equivalent Hermite interpolation condition between
the calibration problem using the full-order parameter-dependent model
and the parameterized reduced-order model. We propose an adaptive al-
gorithm that iteratively updates parameter expansion points while min-
imizing the calibration error based on this equivalent condition. Numer-
ical experiments of a real-world application show that the proposed al-
gorithm well preserves the fidelity of the full-order parameter-dependent
model for the parameter calibration problem.

4.1 Introduction

Many applications in engineering and applied sciences are fully dedicated to the
question how to make adjustments to a system so as to improve its functionality
or performance in a well defined sense. The development of efficient algorithms
for automated performance enhancement is of evident interest in areas such as
machine learning, design optimization, controller synthesis, statistical learning
and system automation, and in questions related to calibration and parameter
identification. Typically, these algorithms act on sample data and create or adjust
mathematical models to make predictions or decisions on the system by consider-
ing the mismatch between model and data. Many of these techniques amount to

53



54 Chapter 4 Parameter calibration using adaptive parameterized model reduction

adjusting dedicated physical parameters in the model and/or the physical system
on the basis of an optimization criterion that reflects this mismatch.

A few fundamental problems in this line of research can be identified. First, al-
though the rigorous or governing models are numerically accessible, the physical
parameters that are subject to adaptation may be fully or partially inaccessible.
Second, the validated operating range of the model is generally limited and does
not cover the full range of parameter values that is of potential interest. Third, the
numerical analysis that is performed on a single parameter vector may be compu-
tationally expensive, in which case the gathering of insight in parametric changes
is numerically demanding or computationally prohibitive.

Models that involve the discretization of partial differential equations are espe-
cially demanding in this context. Their complexity increases dramatically with the
number of parameters, while increasing demands on accuracy translate into large
scale computer models as a result of finer granularities of time and space. One
possible solution for this problem amounts to using model order reduction (MOR)
techniques in which the original large-scale model is substituted by a low-order
simplified model with sufficient accuracy. Model order reduction techniques have
led to many successful applications including VLSI simulation by [84], MEMS
design by [130] and thermal designs [113]. A drawback of many MOR tech-
niques for parameterized systems is the need to repeat the reduction procedure
for each choice of parameters. The need for parametrized model order reduction
(pMOR) was therefore introduced in [53]. In comparison to non-parameterised
MOR, pMOR methods ideally preserve the character and physical structure of
parameters over a given parameter range in the reduced model.

By reducing the complexity of a large-scale model via MOR/pMOR, one can al-
ternatively find the best parameters of a large-scale model by minimizing an error
between a reduced order parametric model and data. This requires the construc-
tion of fully parameterized reduced order models instead of reducing the mod-
els that are obtained by querying the parameter space. That is, the reduction of
queried parametrized models is much less attractive than the querying of reduced
order parametric models.

Various approaches have been reported in the recent past. In [120, 3], a component
mode synthesis was applied for optimal design which only captures the station-
ary properties of the system. Non-parametrzed MOR methods were introduced
by [91]. Surprisingly, we also find this theme in biological problems [124] and eco-
nomic problems suggested by [45]. The reduced order models show an efficient
alternative to solve an estimation problem for a large-scale system. However, the
proper orthogonal decomposition (POD) method used in both of these papers lim-
its the validity of the reduced model when considering larger ranges of the input
space. The authors of [176] proposed a general framework for design optimiza-
tion using a simplified model generated by MOR method or pMOR method. The
focus of this work is on maximizing the performance of the optimization step.
However, in both frameworks the construction of the reduced order model is car-
ried out independent of the optimization step. Consequently, this strategy does
not impose guarantees on performance of the optimization problem by using the
reduced order model. The existing literature to combine the model approxima-
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tion method and the parameter optimization/estimation typically does not take
the optimization criterion into account in the model reduction step.

The purpose of this chapter is to develop a model reduction strategy for paramet-
rized models in which the cost function of the model misfit is defined in such a
way that optimal parameters that minimize the difference between an observed
model and the reduced model, explicitly preserves the parameters and a relev-
ant range of frequency responses of the system. We propose a reduction method
which guarantees a well-defined equivalence between the objective function us-
ing the reduced order model and the full order model. By evaluating the first-
order derivatives of the optimization function with respect to the parameters, the
proposed method is better geared towards finding optimal parameter values. The
present chapter is an extension of our earlier work in [113].

The remainder of the chapter is structured as follows. In Section 4.2 we formal-
ize the problem. In Section 4.3, the equivalence of the original problem and the
simplified problem is derived. In Section 4.4, we present the proposed method
to solve the optimization problem. Numerical examples are shown in Section 4.5.
Conclusions are given in Section 4.6.

4.2 Problem formulation

In this chapter, we focus on models in the class of linear time-invariant systems
that are parameterized in terms of parameter vectors θ that are assumed to be
time-independent and reside in a parameter set Θ ⊂ R`. The transfer function H
of a large-scale system with m inputs and q outputs is assumed to be given and
its frequency response at parameter θ ∈ Θ is given by the mapping s 7→ H(θ, s)
where s ∈ C and H(θ, s) ∈ Cq×m. For simplicity, we start from a single-input
single-output (SISO) system q = m = 1.

Objective function. The objective function of interest is a quadratic form of the
error function, the difference between the frequency response of H and the fre-
quency measurement data Hobs(s). Note that the measurement data can be para-
meter independent Hobs or parameter dependent Hobs(θ) 1. In this chapter, we
focus on the parameter independent measurement Hobs. Then, the error function
is defined as

e(θ, s) = H(θ, s)−Hobs(s). (4.1)

For a frequency point si ∈ C belonging to a given set S of frequency points S :=
{s1, . . . , sk} ⊂ C, we define the matrices

H(θ) = vec (H(θ, si) | si ∈ S) :=

H(θ, s1)
...

H(θ, sk)

 ,
1i.e., for the system whose boundary conditions are parameterized and the measurement data captures different

boundary conditions, this leads to parameter dependentHobs(θ).
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and

Hobs = vec(Hobs(si) | si ∈ S) :=

H
obs(s1)

...
Hobs(sk)

 .
Here we vectorize the error expression (4.1) as:

E(θ) = vec(e(θ, si) | si ∈ S) = vec(H(θ, si)−Hobs(si) | si ∈ S)

= H(θ)−Hobs. (4.2)

With S a fixed and finite set of sampled frequencies, we define the objective func-
tion as

V (θ) =
1

2
E(θ)∗P E(θ) with P � 0 (4.3)

where P of dimension k × k is a weighting matrix that represents the covariance
matrix of noise sequence that is supposed to act on the measured data, or is a
matrix that allows to weight different frequency points differently. If necessary,
a-priori information can be incorporated in the objective function (4.3) by intro-
ducing non-uniform weighting in the frequency points. Here (·)∗ denotes the
conjugate transpose. This formulation of objective function in (4.3) also can be
incorporated for multi-input multi-output (MIMO) systems via vectorizing both
frequencies and entries of the MIMO transfer functions. The Jacobian of V (θ) with
respect to the parameters θ is

∇θV (θ) =
1

2

(
∇θE(θ)

)∗
P E(θ) +

1

2
E(θ)∗P

(
∇θE(θ)∗

)∗

=



(
∇θ1E(θ)

)∗
P E(θ)

...(
∇θjE(θ)

)∗
P E(θ)

...(
∇θ`E(θ)

)∗
P E(θ)

 = (∇θH(θ))∗PE(θ) (4.4)

Here, ∇θj is differentiation d
dθj

w.r.t. θj , the jth coordinate of θ ∈ Θ. Notice that
the∇θE(θ) is a vector and the Jacobian∇θV (θ) is a scalar for the single parameter
derivative ` = 1. The Hessian of V (θ) with respect to the parameters θ is

∇2
θV (θ) =

(
∇θE(θ)

)∗
P (∇θE(θ)∗)∗

=
(
∇θH(θ)

)∗
P
(
∇θH(θ)∗

)∗ (4.5)

Parameter calibration now consists in finding the parameter estimate as a minim-
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izing argument of the objective function V (θ):

minimize
θ∈Θ

V (θ)

where V (θ) :=
1

2
E(θ)∗P E(θ)

E(θ) = H(θ)−Hobs.

(4.6)

The assumption of parameter calibration using frequency data is that parameters
are fixed but unknown or different from the prior-knowledge of those parameters.
These deviations can be caused by the production process, installation error, dif-
ferent operating conditions, etc. While, with the prior-knowledge and the physical
nature of these parameters, we can infer some numerical constraints for calibra-
tion. In addition, the parameters for calibration in this chapter are assumed to be
structural identifiable in the sense that the changes of parameters in the model can
be observed in the model transfer function such that the parameter calibration is
meaningful. For more discussion on identifiability, we refer to the paper [159]. For
a high-fidelity model with the state dimension of n� 104, the optimization prob-
lem (4.6) and the numerical evaluation of V (θ) are of high computational demand
since H(θ) has to be computed for multiple frequency points S and parameter
points Θ, each requiring a large matrix inverse. Thus, replacing H(θ) by a low-
order parametrized model H̃(θ) appears to be an attractive numerical alternative
to solve the optimization problem (4.6). Specifically, in that case, the substitute
problem is

minimize
θ∈Θ

Ṽ (θ)

where Ṽ (θ) =
1

2
Ẽ(θ)∗P Ẽ(θ)

Ẽ(θ) = H̃(θ)−Hobs.

(4.7)

By defining the reduced error function ẽ(θ, s) := H̃(θ, s) − Hobs(s), and adapting
the notation above

Ẽ(θ) = vec
(
ẽ(θ, si)) | si ∈ S

)
= vec

(
H̃(θ, si)−Hobs(si) | si ∈ S

)
Here H̃(θ, s) denotes the transfer function of the reduced model of the full-order
H(θ, s). The Ẽ(θ) is a vectorized representation of the error function of ẽ(θ, s) at
the set of points S := {s1, · · · , sk} ⊂ C. There are a few methods to generate such
a reduced model H̃(θ, s) that preserve the parameter-dependence of the original
model [29]. The method for generating the reduced model in this work is given
later. The above discussion is illustrated pictorially in Figure 4.1.

In general, the optimization problem (4.6) or its simplified version (4.7) described
previously is a non-convex optimization problem, and often there is no global
optimality guaranteed for the calibrated results. With a predefined parameter
space Θ, there may be one or several combinations of sampling points θ ∈ Θ such
that the full-order model (FOM) matches or is close enough to the observation on
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Observation/
measurement

Infeasible
Physical System

Reduced order
model (ROM)

calibration calibration
feasible

Full-order
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Figure 4.1: Parameter calibration using reduced order model for high-fidelity
model. As indicated by the dashed line, the direct computation using the full-
order model (FOM) is computational cumbersome and even infeasible. By tak-
ing the proper approximation of the FOM, the ROM is computational feasible for
parameter calibration.

the cross product Θ × S of these points with the frequency set S. In other words,
the parametric variation of the FOM is important for the parameter calibration.
As indicated in Figure 4.1, the direct calibration using FOM is infeasible. The
alternative is to use a ROM whose parametric variation of the FOM is preserved.
However, there are two major difficulties that need to be addressed here:

1) The formulation of (4.7) depends on the approximation of H̃(θ, s) ofH(θ, s),
which will therefore introduce the approximation errors w.r.t. the optimiz-
ation (4.7). This induced error potentially could make the calibrated result
distinctly different from the result obtained by performing the optimization
in (4.6) on the FOM. Thus, the first question is whether we can show that the
performance of the original objective function V (θ) is close or equivalent to
the one Ṽ (θ) using a specific reduced model.

2) Among the state-of-art techniques reviewed above, the reduction procedure
is set independently of the measurement dataHobs. In other words, whether
the choice of the reduced model can be refined by means of the attributes of
Hobs such that the results of Ṽ (θ) is close to results of V (θ).

4.3 Error equivalent parameter calibration problem

In this section, we address the first difficulty mentioned above, and consider the
equivalence of objective function (4.6) using the full-order model and the objective
error function (4.7) with the reduced model is proved.

Various pMOR techniques have been proposed in the literature, among which the
methods based on moment-matching are the most suitable for large-scale systems,
in the sense that the implementation is computationally efficient and the method
is input/output independent. In this work, we consider our early work [113] on
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multi-parameter multi-frequency moment-matching method for generating the
reduced model H̃(θ, s). Before moving to the details, we briefly motivate this
pMOR method. For the reasoning that the parameter θ is separated from the vari-
able ŝ = s · θ proposed in the previous work [53] and the following work. One of
the benefits using this separation is that the physical interpretation is maintained
in the reduced model. The parameter calibration using the derived reduced para-
meterized model in such a method becomes meaningful. The details are referred
to in Chapter 2.

The dynamical system Σ(θ) with transfer function H(θ, s) in this work is repres-
ented in state space form by

Σ(θ) :=

{
E(θ)ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t)
(4.8)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote, respectively, the state vector, the
input and the output. Here n is the dimension of the state variable. The state-space
matrices are parameter-dependent functions A : R` → Rn×n, E : R` → Rn×n etc.
The {E(θ), A(θ), B(θ), C(θ)} are assumed to be affine

E(θ) = E0 + E1θ1 + · · ·+ E`θ`,

A(θ) = A0 +A1θ1 + · · ·+A`θ`,

B(θ) = B0 +B1θ1 + · · ·+B`θ`,

C(θ) = C0 + C1θ1 + · · ·+ C`θ`.

There are several assumptions made for the given system:

Assumption 4.1

(i) The matrix pair {E(θ), A(θ)} is regular for all θ ∈ Θ, i.e., the characteristic poly-
nomial P(λ) = det(λE(θ)−A(θ)) is not identically zero for all θ ∈ Θ;

(ii) ii) The system (4.8) considered in this chapter, we assume the parameter θ ∈ Θ with
physically meaningful constraints θj ≤ θj ≤ θj and −∞ < θj ≤ θj <∞.

Note that a class of nonlinear parameter dependent systems, i.e., parabolic sys-
tems represented by linear diffusion-convection-reaction equations, can be trans-
formed into the linear affine form above. This enables the system representation
Σ(θ) to cover a rather broad scope of applications

With time-invariant parameters θ, the transfer function of (4.8) is

H(θ, s) = C(θ)[sE(θ)−A(θ)]−1B(θ). (4.9)

Multi-parameter multi-frequency moment-matching pMOR: The work proposed
by [113] provides a projection-based method for parameter-preserving interpola-
tion parametric model order reduction. We start with a pair of expansion point
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(θ = p1, s = σ1), and the Taylor expansion of the transfer function is

H(θ, s) =
1

0!
H(p1, σ1) +

1

1!

∂

∂s
H(p1, σ1)(s− σ1) +

1

1!

∂

∂θ
H(p1, σ1)(θ − p1)

+
1

2!

∂2

∂s2
H(p1, σ1)(s− σ1)2 +

1

2!

∂2

∂θ2
H(p1, σ1)(θ − p1)2

+
1

2!

∂2

∂s∂θ
H(p1, σ1)(s− σ1)(θ − p1) + · · ·

=

∞,∞∑
τ=0,ω=0

1

(τ + ω)!

∂τ+ω

∂θω∂sτ
H(p1, σ1)(s− σ1)τ (θ − p1)ω

=

∞,∞∑
τ=0,ω=0

m{τ,ω}(p1, σ1)(s− σ1)τ (θ − p1)ω with τ, ω ∈ Z+

where m{τ,ω}(p1, σ1) = 1
(τ+ω)!

∂τ+ω

∂θω∂sτH(p1, σ1), the coefficient of the Taylor expan-
sion, is defined as the moment of the system at (p1, σ1). The 0th moment can be
defined as

m{0,0}(p1, σ1) := C(p1)[σ1E(p1)−A(p1)]−1B(p1) = C(p1)BM .

Here we define BM := [σ1E(p1)−A(p1)]−1B(p1). The 1st moments are

m{0,1}(p1, σ1) := C(p1)Bσ1
BM ,

m{1,0}(p1, σ1) := C(p1)Bp1BM

here Bσ1
= −[σ1E(p1)−A(p1)]−1E(p1) and Bp1 = −[σ1E(p1)−A(p1)]−1σ1E1. The

2nd moments are

m{0,2}(p1, σ1) := C(p1)B2
σ1
BM ,

m{2,0}(p1, σ1) := C(p1)B2
p1BM ,

m{1,1}(p1, σ1) := C(p1)Bσ1
Bp1BM .

Defining

V := im[BM ,Bσ1BM ,Bp1BM ,B2
σ1
BM ,B2

p1BM ,Bσ1Bp1BM ] (4.10)

and
colspan(V ) = V,

we can compute the projection matrix V in such a way that columns consist of an
orthonormal basis of the subspace spanned by (4.10). With the derived projection
matrix V,dim(V ) = n × nr with nr � n, the parametric reduced order model of
(4.8) is obtained via the Galerkin projection

Σr(θ) :=

{
Er(θ)ẋr(t) = Ar(θ)xr(t) +Br(θ)u(t)

yr(t) = Cr(θ)xr(t)
(4.11)
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where the reduced state dim(xr) = nr. The reduced system matrices remain their
affine form and can be computed by the following

Er(θ) = WTE0V +WTE1V θ1 + · · ·+WTE`V θ`,

Ar(θ) = WTA0V +WTA1V θ1 + · · ·+WTA`V θ`,

Br(θ) = WTB0 +WTB1θ1 + · · ·+WTB`θ`,

Cr(θ) = C0V + C1V θ1 + · · ·+ C`V θ`,

where, here, we set W = V . The transfer function of the reduced model (4.11) is

H̃(θ, s) := Cr(θ)[sEr(θ)−Ar(θ)]−1Br(θ).

In the case of Petro-Galerkin projection W 6= V , the subspace of W can be con-
structed in a similar way as V described above. Defining

W := im[CM , Cσ1
CM , Cp1CM , C2

σ1
CM , C2

p1CM , Cσ1
Cp1CM ] (4.12)

where CM = [σ1E(p1)−A(p1)]−TC(p1)T , Cσ1
= −[σ1E(p1)−A(p1)]−TE(p1)T and

Cp1 = −[σ1E(p1)−A(p1)]−Tσ1E1. Then, the subspace is

colspan(W ) =W with dim(W ) = n× nr.

where W is a full rank matrix whose columns are mutually orthonormal. To ob-
tain square reduced system matrices {Er, Ar} for practical considerations, the pro-
jection matrices W,V should have the same dimension for a well-defined Petro-
Galerkin projection. Often, this problem arises for MIMO systems where the
number of inputs is different from the number of outputs, or rank deficiency in
generating the projection matrices. As Theorem 2.4 states, the moment-matching
method for the system Σ(θ) determines a reduced model whose transfer function
coincides in as many coefficients of its Taylor expansions about (s = σ, θ = p) for
a given order of the expanded moments. This yields that the transfer function of
the full-order model and the transfer function of the reduced model satisfies the
Hermite interpolation conditions.

Lemma 4.1 Given a transfer functionH(θ, s) of a full-order parameter dependent system
as in (4.8) and the reduced model transfer function H̃(θ, s). Assume that H(θ, s) and
H̃(θ, s) satisfy the Theorem 2.4 for the expansion point (σ, p) with up to the second order
moment, then the following Hermite interpolation conditions satisfy

∇isH(θ, s) = ∇isH̃(θ, s), (4.13)

∇jθH(θ, s) = ∇jθH̃(θ, s), (4.14)

up to an order i = 0, 1, 2 and j = 0, 1, 2 for the frequency expansion point s = σ ∈ C not
being a pole ofH and the parameter expansion point θ = p ∈ Θ, respectively.

There are several remarks here:
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• In practice, the explicit computation of subspace {V,W}may lead to numer-
ical instability where the matrices become linearly dependent after the first
few moments. To overcome this problem, we deploy the implicit moment-
matching method for constructing {V,W}.

• In the above, we only consider a single pair of expansion points for deriving
the reduced model above. For multiple expansion ` > 1 points moment-
matching, we refer to our previous work in Chapter 2. When more than
one parameters are desired for calibration, or higher accuracy of the re-
duced model is required, multiple expansion points should be taken in the
reduction. However, the number of columns in V (equivalent to the order
of the reduced model) increases exponentially with the number of expan-
sion points, and the computation of the matrix becomes much more expens-
ive. With our experience, only a few number of parameter expansion points
and moments suffice to achieve similar accuracy in comparison to the large
number of frequency moments. As for the frequency expansion points, we
have observed in many different systems, the reduced model with multiple
expansion points {σ1, σ2, · · · } often outperforms the one with single expan-
sion point σ1 for the same reduced order and comparable accuracy. The
drawback is that it requires to solve the inverse problems [σE(p) − A(p)]−1

for every new expansion point. This is one of the most computationally de-
manding steps in the implementation.

• The choice of the number and location of the expansion points {p, σ} plays
an essential role in the efficiency and the accuracy of the multi-parameter
multi-frequency moment-matching method. In particular, for the applica-
tion of parameter calibration using the parameterized reduced model, accur-
ate and robust calibrated results only can be achieved when the expansion
points are appropriately chosen.

Equivalent conditions between two objective functions: In this part, we present
the equivalent conditions of two objective functions with respect to parameter
optimization.

A solution of the full-order objective function (4.6) can be found using the Lag-
rangian function

L(θ) := V (θ) + ι(θ)

=
1

2

(
H(θ)−Hobs

)∗
P
(
H(θ)−Hobs

)
+ ι(θ) (4.15)

where ι(θ) denotes the barrier function and it is assumed to be a smooth function
of θ. With the assumption that L(θ) is continuous and differentiable at θ, then the
first order derivative of the Lagrangian L(θ) with respect to the parameter θ is

∇θL(θ) =∇θV (θ) +∇θι(θ) (4.16)

=
(
∇θH(θ)

)∗
P
(
H(θ)−Hobs

)
+∇θι(θ).
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In the same manner, we can derive a solution for the objective function Ṽ (θ) in
(4.7) using Lagrangian

L̃(θ) := Ṽ (θ) + ι(θ)

=
1

2

(
H̃(θ)−Hobs

)∗
P
(
H̃(θ)−Hobs

)
+ ι(θ). (4.17)

Notice that the indicator ι(θ) remains the same for both objective functions since
both the parameter constraints θi ∈ [θi, θi], i = 1, · · · , ` are defined as the same
one. The first order derivative about parameter θ is

∇θL̃(θ) =∇θṼ (θ) +∇θι(θ) (4.18)

=
(
∇θH̃(θ)

)∗
P
(
H̃(θ)−Hobs

)
+∇θι(θ).

Theorem 4.2 Suppose the parameter expansion point θ = p ∈ Θ is such that the trans-
fer functionH(p) of the system (4.8) and the transfer function H̃(p) of the reduced model
(4.11) are regular. If the reduced model transfer function H̃(θ, s) and the full-order trans-
fer functionH(θ, s) satisfy the Hermite interpolation conditions∇jθH(θ, s) = ∇jθH̃(θ, s)
for j = 0, 1 at θ = p for all s ∈ S. Then

a) the Lagrangian L(θ) of the full-order objective function (4.15) and the Lagrangian
L̃(θ) of the reduced-order objective function (4.17) satisfy

L(p) = L̃(p),

b) furthermore the first-order derivative with respect to θ of the above two Lagrangians
satisfies

∇θL(p) = ∇θL̃(p)

where θ is evaluated at p.

Proof: Define the approximation error

δ(θ, s) := H(θ, s)− H̃(θ, s),

with the Hermite interpolation conditions, we have

∇jθδ(θ, s) = 0 |(θ=p,s∈S), j = 0, 1.

The error function in (4.1) can be reformulated

e(θ, s) =H(θ, s)−Hobs(s)

=H(θ, s)− H̃(θ, s) + H̃(θ, s)−Hobs(s)

=δ(θ, s) + ẽ(θ, s)
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and, (4.3) leads to the following

∇jθe(θ, s) = ∇jθ
(
H(θ, s)− H̃(θ, s) + H̃(θ, s)−Hobs(s)

)
= ∇jθδ(θ, s) +∇jθ ẽ(θ, s)
= 0 +∇jθ ẽ(θ, s) at θ = p for j = 0, 1 (4.19)

Followed by the above reformulation, the objective function with a set of fre-
quency points S := {s1, · · · , sk} ⊂ C, si ⊂ S in (4.6) reads

V (θ) =
1

2
E(θ)∗P E(θ) (4.20)

=
1

2

(
H(θ)− H̃(θ) + H̃(θ)−Hobs)∗P (H(θ)− H̃(θ) + H̃(θ)−Hobs)

=
1

2
vec
(
δ(θ, si) + ẽ(θ, si)

)∗
P vec

(
δ(θ, si) + ẽ(θ, si)

)
=

1

2
vec(δ(θ, si))

∗P vec(δ(θ, si)) +
1

2
vec(δ(θ, si))

∗P Ẽ(θ)

+
1

2
Ẽ(θ)∗P vec(δ(θ, si)) +

1

2
Ẽ(θ)∗P Ẽ(θ)︸ ︷︷ ︸

Ṽ (θ)

Indeed, the objective function V (θ) using the full-order model can be rewritten
as a combination of the reduced model objective function Ṽ (θ) and other terms.
Using (4.19), term consists of δ(θ, si) or ∇θδ(θ, si) vanishes at θ = p, and we have
the following equivalence

V (θ) = 0 + 0 + 0 + Ṽ (θ)

⇐⇒L(θ) = L̃(θ) at θ = p

Thus, the Lagrangian equivalence is proved. In a similar way, the Jacobian of the
objective function about θ is

∇θV (θ) =vec(∇θδ(θ, si))∗P vec(δ(θ, si))

+
1

2

[
vec(∇θδ(θ, si))∗P Ẽ(θ) + vec(δ(θ, si))

∗P ∇θẼ(θ)
]

+
1

2

[
∇θẼ(θ)∗P vec(δ(θ, si)) + Ẽ(θ)∗P vec(∇θδ(θ, si))

]
+∇θṼ (θ).

With (4.19), the term consists of δ(θ, si) or ∇θδ(θ, si) vanishes at θ = p, and we
have the equivalence

∇θV (θ) = ∇θṼ (θ)

⇐⇒∇θL(θ) = ∇θL̃(θ)
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where θ evaluated at p. Thus, it is proved. 2

Theorem 4.2 gives an elementary condition for finding a solution of the optimiz-
ation problems. Assume that the θopt ∈ Θ is a local minimizer of optimization
problem in (4.6), and L(θ) is continuously differentiable in an open neighbour-
hood of θopt, then the first order necessary condition of the full-order objective
function (4.6) reads

∇θL(θopt) 3 0⇐⇒
[

vec(∇θδ(θopt, si))
∗P vec(δ(θopt, si))

+
1

2

[
vec(∇θδ(θopt, si))

∗P Ẽ(θopt) + vec(δ(θopt, si)
∗P ∇θẼ(θopt)

]
+

1

2

[
∇θẼ(θopt)∗P vec(δ(θopt, si)) + Ẽ(θopt)∗P vec(∇θδ(θopt, si))

]
+∇θṼ (θopt) +

∑̀
i=1

∇θiι(θ
opt
i )︸ ︷︷ ︸

∇θL̃(θopt)

]
3 0. (4.21)

If the expansion point is chosen as the local minimizer p = θopt, we obtain the
equivalent first-order derivative condition if and only if

∇θL(θopt) 3 0 ⇐⇒ ∇θL̃(θopt) 3 0.

Conclude that the necessary conditions for optimal solutions of the two problems
(full order and reduced order) therefore match.

Theorem 4.3 Suppose two objective functions V (θ) in (4.15) and Ṽ (θ) in (4.17) that
satisfy Theorem 4.2: ∇iθL(p) = ∇iθL̃(p) at θ = p for i = 0, 1 and s ∈ S . If a local
minimizer θ = θopt for V (θ) is chosen as the parameter expansion point for H̃(θ, s)

p = θopt,

then we obtain the equivalent first-order condition for ∇θL(θopt) and ∇θL̃(θopt) if and
only if both satisfy

∇θL(θopt) 3 0 and ∇θL̃(θopt) 3 0. (4.22)

In particular, if θopt is chosen as a vector satisfies the first order derivative conditions

∇L̃(θopt) = 0

then it also satisfies the necessary optimality condition for the original problem L(θ).

Proof: By considering the Hermite condition for the reduced model and the ne-
cessary first-order derivative condition stated in Theorem 4.2, the rest of the proof
is straightforward. 2
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4.4 Moment-matching for parameter calibration

Once the observation data is obtained associated with the given sampling fre-
quency point si and parameter θ, the observed model Hobs(θ, s) can be defined.
To solve the optimization problem using the reduced order model, we also need
to choose the prior pair of expansion points (p, σ) for the reduced-order model
H̃(θ, s). The conventional method for parametric fitting of large-scale models is
summarized in Algorithm 2.

Algorithm 2 : Moment matching for parametric fitting

1: Given: the observed model Hobs(s) with a set of frequency points s ∈ S :=
{s1, · · · , sk},

2: Input: initial points {p0
j , σ

0
i }n`,nkj=i=1 and the corresponding moments m(j,i),

3: Construct the subspace V andW such that they satisfy the (4.10) and (4.12),
4: Build the reduced system matrices {Er(θ), Ar(θ), Br(θ), Cr(θ)} as in (4.11) us-

ing V and W and compute the frequency response of the reduced system
H̃(θ, s),

5: Solve the optimization problem (4.7) with a proper weighting matrix P ,
6: return θ ← θopt.

For the case of MIMO systems, we employ the tangential direction method [21],
where the input tangential direction r ∈ Rn and output tangential direction l ∈ Rq
can be pre-defined at step 2. The Algorithm 2 can be roughly illustrated as (a),
depicted in Figure 4.2. The blue-dashed block denotes the procedure of paramet-
erized model order reduction, which generates the Σ̃(θ) for parameter calibration.
Indeed, as indicated in Lemma 4.3, the equivalent parameter calibration result can
be achieved if the parameter expansion point is chosen as the optimal θ = p = θopt.
In other words, regardless of the computational difficulty, the ideal procedure to
have equivalent calibration results between the FOM Σ(θ) and the ROM Σ̃(θ) is to
obtain the θ ← θopt and choose the optimal θopt = p as the expansion point. In this
way, calibration using the reduced model Σ̃(θ) leads to the same optimal results,
depicted in (b) Figure 4.2.

Based on the discussion above, we take a closer look at (4.20)

V (θ)− Ṽ (θ) =
1

2
vec(δ(θ, si))

∗P vec(δ(θ, si))︸ ︷︷ ︸
approximation error

(4.23)

+
1

2
vec(δ(θ, si))

∗P vec(ẽ(θ, si)) +
1

2
vec(ẽ(θ, si))

∗P vec(δ(θ, si))︸ ︷︷ ︸
mixed error

.

Here the approximated error is a quadratic function of the approximation error
δ(θ, si), and the mixed error includes the model mismatch δ(θ, si) and the reduced
error ẽ(θ, si) between the reduced model and the measurement data.

Remark 4.1 The equation (4.23) has an interpretation that the error between these two
objective functions V (θ) − Ṽ (θ) is due to the summation of the model mismatch δ(θ, si)
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θ = pΣ(θ)
Full-order parametric
model

Parameter expansion
Σ̃(θ)

Reduced-order parametric
model

Parameter calibration
θ ← θopt

θ = pΣ(θ)
Full-order parametric
model

Parameter expansion
Σ̃(θ)

Reduced-order parametric
model

Parameter calibration
θ ← θopt

(a)

(b)

Figure 4.2: (a) The procedure of the conventional approach aiming at parameter
calibrations using reduced-order parametric model Σ̃(θ). The blue-dashed block
denotes the parameterized model reduction, including the selection of parameter
expansion points; (b) Ideal procedure to achieve the equivalent performance of
parameter calibration between Σ(θ) and Σ̃(θ), where the grey-dashed line indic-
ates that parameter calibration using Σ̃(θ) results in the same optimization result
θ ← θopt as the parameter calibration using Σ(θ).

induced by the model reduction procedure and the reduced error ẽ(θ) between the reduced
order model and the measurement data. Although the optimization methods/techniques
for obtaining the calibration results are not discussed in this work, we note that the error
ẽ(θ) with one optimal θ ← θopt may not be equal to zero for all frequency points s ∈ S .
Under the assumption that the full-order parameterized model with the parameter space
θ ∈ Θ matches or is close enough to the observation e(θ, si) := H(θ, si)−Hobs(si)→ 0 at
θ ← θopt for all si ∈ S. The reduced error at the optimal parameter value can be expressed
as

ẽ(θopt, si) = H̃(θopt, si)−Hobs(si)

= H̃(θopt, si)−H(θopt, si) +H(θopt, si)−Hobs(si)

= −δ(θopt, si) + e(θopt, si).

Thus, the error between V (θ) and Ṽ (θ) due to the approximation error δ(θ, si) at those
frequency points where the parameters at θopt are most sensitive with respect to the input-
output relation, is expected to dominate. Therefore, to minimize this error in (4.23), one
can try to eliminate the approximation error δ(θ, si) induced by the model reduction.

Thus, based on the above considerations and Theorem 4.3, this suggests a set
of novel frequency interpolation points as follows. Define, for any s ∈ S :=

{s1, . . . , sk} the sensitivity of the j-th parameter in H̃(θ, s) by setting:

Jj(θ, s) := ∇θj H̃(θ, s), for j = 1, . . . , ` (4.24)

where ∇θj denotes the derivative w.r.t to the j-th entry in θ. For all points s ∈ S
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we stack these sensitivities into a vector

Jj(θ,S) =


∇θj H̃(θ, s1)

∇θj H̃(θ, s2)
...

∇θj H̃(θ, sk)

 at and j = 1, . . . , ` (4.25)

Now define
σ̃j = arg max

s∈S
|Jj(θ, s)| (4.26)

as the adapted frequency interpolation point. We determine these frequency points
for j = 1, . . . , ` and with θ ∈ Θ in (4.26) chosen as the computed optimal θ =
θopt, θ ∈ Θ from the optimization (4.7)

With the proposed frequency point candidate at hand, we can discuss the corres-
ponding order/moment. Since the objective of the reduced model is for parameter
calibration, in which often gradient-type optimization methods are considered, 2
moments for the refined points are sufficient. Here is a sketch of the proposed
algorithm.

Algorithm 3 : Adaptive moment matching for parametric fitting

1: Given: the observed model Hobs(s) with a set of frequency points S :=
{s1, · · · , sk},

2: Input: initial expansion points {p0
j , σ

0
i }n`,nkj=i=1, the corresponding moments

m(j,i) , the tolerance tol > 0 and the weight matrix P � 0,
3: Construct the subspace V = colspan(V ) andW = colspan(W ) such that they

satisfy the equation (4.10) and the equation (4.12),
4: Build {Er(θ), Ar(θ), Br(θ), Cr(θ)} as in (4.11) using V andW and compute the

frequency response of the reduced system H̃(θ, s),
5: Solve the optimization problem (4.7) θ ← θopt and obtain the Jacobian matrix
∇θH̃(θopt, s),

6: While (relative change in {σ̃j} > tol)
do for j = 1, . . . , `

i) σ̃j = arg maxs∈S |Jj(θopt, s)| ,
ii) Assign {p̃j , σ̃j}, p̃j = θ

opt
j with suitable moments m̃j ,

iii) Combine {p̃j , σ̃j} ∪ {p0
j , σ

0
i }n`,nkj=i=1, and refine the S := {S, σ̃j}

enddo
iv) Update V = colspan(V ),W = colspan(W ) with the expansion points

in (iii), and construct {Er(θ), Ar(θ), Br(θ), Cr(θ)},
v) Solve the optimization problem (4.7) and obtain∇θH̃(θopt, s),

7: return θ ← θopt.

Some remarks on Algorithm 3 are in order.

Remark 4.2 a) The choice of the tolerance tol in Step 2 is dependent on the accuracy
requirement of the reduced model and the requirement for the parameter calibration.
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b) The construction of the subspace V,W in Step 3 and Step 6, item iv) usually in-
volves computing a (sparse) matrix inverse that is often ill-conditioned: (σ0

jE(p0
j )−

A(p0
j ))
−1. For every new pair of expansion points {p0

j , σ
0
j }, the algorithm requires

only one matrix inverse. The columns/subspace computed in Step 3) can be reused
in Step 6, item iv) if the number of the expansion points remains the same.

c) In Step 6, item iii), we add the updated expansion points {p̃j , σ̃j} to the initial
expansion points {p0

j , σ
0
i } due to which the reduced-order model dimension grows.

The alternative is to replace the initial expansion points with the updated ones,
and in such a way, the reduced-order model remains invariant. Both methods are
feasible, and we consider the first one in this chapter.

d) In Step 6, item iii), we add the θopt to the parameter expansion points, which leads to
an increase of the reduced-order model. One alternative is to deploy the Algorithm 4
we proposed in Chapter 5 where the parameter-dependent system transforms into a
linear fractional representation, in such a way that the number of the reduced model
is less in comparison to other pMOR methods.

4.5 Numerical example: the PSA setup

We demonstrate our algorithm for a high-accuracy thermal setup: the Precision
Stage Application (PSA), depicted in Figure 4.3. This PSA setup consists of three

Figure 4.3: Overview of the PSA setup

main parts: a carrier frame (in green), a stage frame (in purple), and two linear
motors (in red). The schematic plots of these three parts are given in Figure 4.4.
During the operation, the linear motors are identified as the main heat source: the
coils generate heat flux which diffuses to the carrier frame and the stage frame.
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Carrier frame

Stage frame

Linear motor coil

NTC Sensor 1

NTC Sensor 2

Figure 4.4: Schematic plot of the PSA setup which includes three main parts: the
carrier frame (left top), the stage frame (right top) and two linear motors (the
components in pink). The right bottom denotes the side view of the PSA.

The governing equation for describing the temporal-spatial thermal behaviour is
given by

ρcp
∂T

∂t
+∇ · J = u in G

Boundary condition: ∇T (r, t) · n̄ = γ on ∂G
Initial condition: T (r, 0) = T0(r)

here T denotes the temperature of the setup, J = −κ∇T (r, t), r ∈ G is the heat
flux. {ρ, cp, κ} ∈ R>0 represents the density, heat capacity and thermal con-
ductivity of materials in the PSA setup, respectively. It is worth mentioning that
the green part of the carrier frame is built in aluminium, and the linear motor is
covered with steel. Due to the design requirement, there are 2 points of interest
(POI) that are equipped with negative temperature coefficient (NTC) thermistors.
In this chapter, the temperatures of these POI are considered as the outputs, and
the power to the linear motor (we assume the lossless conversion of electricity to
thermal energy) which generates the heat is chosen as the input of the thermal
model, respectively. With a proper spatial discretization method, e.g., finite ele-
ment method (FEM), we obtain the approximated ordinary differential equation,
given in the state space form:

Σ(θ) :=

{
E(θ)ẋ(t) = A(θ)x(t) +Bu(t)

y(t) = Cx(t)
(4.27)

where the state x ∈ R38476 represents the temperature of different locations of the
setup, u ∈ R2 and y ∈ R2 denote, respectively, the input and the output. The
system matrices are functions E : R2 → R38476×38476, A : R2 → R38476×38476, B ∈
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R38476×2 and C : R2×38476. The parameter dependent matrices E(θ), A(θ) are
assumed to be affine and of the form:

E(θ) = E0 + θ1E1 + θ2E2

A(θ) = A0 +A1θ3 +A4θ4

where θ1, θ2 denote the heat capacity for three materials: steel and aluminum in
the PSA: Cpste

, Cpalu
, and the κste, κalu represent the thermal conductivity for the

steel and the aluminum, the variation range of each θi, i = 1, · · · , 4 is summarized
in the following table

Name Nominal Value (unit) Lower bound Upper bound
θ1: Cpste

475 (J/kg ·K) 450 500
θ2: Cpalu

900 (J/kg ·K) 825 975
θ3: κste 44.5 (W/m ·K) 39.5 49.5
θ4: κalu 27 (W/m ·K) 23 31

Table 4.1: 4 parameters θ: nominal value, upper bound and lower bound.

To facilitate this demonstration, we perform a temperature measurement of the
PSA in Figure 4.3 and construct a MIMO system. The system is excited via a
random-phase multisine limited to 0.1 [Hz] with a peak of 4 [W], which is centred
at offset 4 [W]. The data acquisition runs at at sampling frequency of Fs = 5 [Hz].
We excite the system with a period length of 1 [hour] and repeated with 36 times.

(a) Photograph of the PSA setup with isolation shield

(b) Schematic plot of the PSA setup with isolation shield

Figure 4.5: Photograph of the PSA setup with the isolation shield (a) and the
schematic plot of the PSA setup including the isolation shield (b).

As pointed in [66], the ambient air temperature has significant impact on the low
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frequency dynamics. To overcome the disturbance induced by the ambient en-
vironment, we have installed an isolation shield which is made from polystyrene,
depicted in Figure 4.5. The temperature profile over 45 hours is given in Figure 4.6.
We use the Local Polynomial Method (LPM) [135, 137] to identify the frequency

27.56

27.66

27.46

Set 1

Figure 4.6: Temperature response of the PSA setup over 45 hour period. After 36
repetitions, the system starts to cool down. Set 1 covers the first 2 hours which
contains 2 full period of multisine excitation. In this period, there is the initial
response and a strong transient.

response functionHobs(s) of the PSA setup with Set 1 indicated in Figure 4.6, since
the LPM exploits the local smoothness, otherwise it would lead to a bias.

Then, we choose the initial expansion points: 1) the nominal value of each para-
meter is chosen as the initial parameter expansion points: p0

1 = 475, p0
2 = 900, p0

3 =
44.5, p0

4 = 27 with 2 moments for each of these, 2) two initial frequency expansion
points are at {0, 1}with the order of {100, 10}. In this chapter, the tolerance sets as
tol = 0.05 which is the resolution of frequency range S, and an identity weighting
matrix is used P = I .

With the above configuration, we can calibrate the 4 parameters using the Al-
gorithm 2 and the Algorithm 3. The calibrated results are summarized in Table 4.2

Order of Σr(θ) θ
opt
1 θ

opt
2 θ

opt
3 θ

opt
4

Alg. 2 440 457.31 944.24 40.13 25.23
Alg. 3 (Step 5) 440 457.31 944.24 40.13 25.23

Alg. 3 (1st loop in Step 6) 488 459.40 944.78 45.90 23.01
Alg. 3 (2nd loop in Step 6) 536 458.07 945.60 47.57 26.74
Alg. 3 (3rd loop in Step 6) 584 458.22 946.34 46.61 27.94

Table 4.2: Optimization results of two algorithms. For Algorithm 3.

Some remarks for Table 4.2:
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• With the same expansion points and the associated moments, the calibrated
results and the order of the reduced model from Algorithm 2 are the same
as the calibration results and the reduced order after Step 5 in Algorithm 3.

• Before reaching the tolerance in Step 6, Algorithm 3, it has run three loops
in total. The new calibrated results are obtained for each loop since the ob-
jective function changes due to a refined reduced-order model.

• 2 moments for every parameter expansion are added p̃j = θ
opt
j for j =

1, . . . , 4 in each loop.

• After Step 6, item i) in each loop, the adapted frequency point σ̃j , j = 1, · · · , 4
which represents the most sensitive frequency point with respect to the cal-
ibration results from the previous loop, can be automatically determined by
solving (4.26).

• For every adapted frequency point σ̃j , j = 1, · · · , 4, we choose 5 moments
for generating the reduced order model.

The adapted frequency interpolation points are listed in Table 4.3 The frequency

σ̃1 σ̃2 σ̃3 σ̃4

Alg. 3 (1st loop in Step 6) 0.47 1.89 11.30 15.08
Alg. 3 (2nd loop in Step 6) 0.78 2.35 14.29 13.98
Alg. 3 (3rd loop in Step 6) 0.83 3.14 16.022 16.50

Table 4.3: The adapted frequency interpolation points for each loop in Al-
gorithm 3.

response of two parameterized reduced order models Σr,2(θopt, s), Σr,3(θopt, s)
which are generated from the Algorithm 2 and the Algorithm 3 are given in Fig-
ure 4.7 and Figure 4.8, as well as the frequency response of the Hobs(s). Both the
magnitude plot and the phase plot show that the Σr,3(θopt, s) using the adaptive
scheme introduces a less calibration error in comparison to the Σr,2(θopt, s) ob-
tained from Algorithm 3. Note that the order of Σr,3(θopt, s) is 584 is higher than
the order of Σr,2(θopt, s) which is 440. Additionally, the Algorithm 3 takes longer
computation time due to the adaptive scheme.

4.6 Conclusion

In this chapter, we have presented the calibration problems that involve large-
scale models. An adapted optimization scheme that minimizes the calibration
error has been combined with a parameterized model order reduction procedure.
The new approach avoids re-sampling the parameter space for the parameter cal-
ibration and guarantees the equivalent Hermite interpolation condition for calib-
ration problem between the full-order model and the reduced-order model. This
method has been applied to a real-world application with measurement data. The
calibration results show that the adaptive scheme introduced less calibration error
in comparison to the current existing one.
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Figure 4.7: Magnitude plot of 2× 2 systems: blue dot line denotes theHobs(s), the
red solid line represents the Σr,3(θopt, s) using Algorithm 3, with a dimension of
584, and the green line is Σr,2(θopt, s) using Algorithm 2, with a dimension of 440.
The black box indicates the frequency range for calibration [0.15, 22] [Hz].

10-1 100 101 102

Frequency [Hz]

-200

-100

0

100

200

Ph
as

e 
[d

eg
]

10-1 100 101 102

Frequency [Hz]

-200

-100

0

100

200

10-1 100 101 102

Frequency [Hz]

-200

-100

0

100

200

Ph
as

e 
[d

eg
]

10-1 100 101 102

Frequency [Hz]

-200

-100

0

100

200

Figure 4.8: Phase plot of 2 × 2 systems: blue dot line denotes the Hobs(s), the red
solid line represents the Σr,3(θopt, s) using Algorithm 3, with a dimension of 584,
and the green line is Σr,2(θopt, s) using Algorithm 2, with a dimension of 440. The
black box indicates the frequency range for calibration [0.15, 22] [Hz].



5
Model reduction of LFT

systems using
moment-matching method

In this chapter, model reduction methods are presented for a large-
scale system with uncertainties, and a linear fractional transformation

(LFT) represents is used to represent these model uncertainties. The
reduction method involves a generalized definition of moments, para-
meterized moments and moment-matching based model reduction for
LFT systems. The resulting methods apply to state order reduction
for both uncertain linear time-invariant (LTI) systems and affine linear
parameter-varying (LPV) systems with parametric uncertainties, repres-
ented by LFT’s. By applying the proposed methods, we show that the
reduced models preserve the moments/parameterized moments and the
LFT structure. Based on the proposed methods, we present a paramet-
erized model order reduction (pMOR) algorithm for LPV systems with
bounded parameters. This algorithm preserves the parameters in the re-
duced model with fewer expansion points, and it leads to a smaller order
reduced model. Numerical results based on a thermal system are carried
out for both LTI and LPV models.

5.1 Introduction

The process of modelling and optimization for high-precision systems often res-
ults in models that have high state order and complicated uncertainty descrip-
tions. These models are computationally expensive for controller/observer design

75
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or analysis. For large-scale models without uncertainty, there exist many well-
known state order reduction methods, examples of which include the interpola-
tion based approaches for LTI systems [24, 130, 50, 15], balanced truncation [17,
30, 14, 83, 82], Krylov based method [85, 81, 75, 18, 23, 130, 84, 33, 21] and para-
metric models [29, 53, 170, 113]; and the reduced-based methods [143, 89, 97, 97].
Some Krylov based methods use the linear fractional transformation (LFT) struc-
ture to derive an iterative-type reduced order model algorithm for LTI systems.
In [74, 131], the authors regarded the reduced order model (ROM) as the nominal
model and the full order model (FOM) as the uncertain model. In contrast, there
is little of work about reducing uncertain systems [168, 11, 10, 26]. In [26], the
authors gave a systematic approach for the reduction of LTI systems with uncer-
tainties, which is based on balancing the state variable. In addition [26] derived
an error bound on the mismatch. This idea was extended to LPV systems in [25].
However, for models with high state dimension, MOR methods based on Krylov
subspaces and moment matching are more attractive since it is simpler to imple-
ment and requires less computational effort than balanced reduction.

The idea of moment-matching for uncertain systems was first introduced in [167]
where the authors analyzed and interpolated the uncertain systems at some points
of the frequency response using the concept of moment. In such a way, the para-
metric variation of the model was approximated with the preservation of the first
two moments. Besides this implementation of a moment matched reduction of an
uncertain system, little work has been reported in the literature on the reduction
of uncertain systems. There are still some important problems remaining open
for the reduction of large-scale uncertain models. Specific problems include the
question: i) whether the LFT structure for uncertainty descriptions is adequate for
reduction purposes; ii) whether the uncertainty range of a model can be (or needs
to be) preserved in the reduction process; iii) whether and how error bounds can
be derived between an uncertain model and its simplification.

In this chapter, we will consider two types of uncertain systems: LTI systems and
LPV systems. For the first type, we consider the setting of an uncertain large-scale
LTI system that is described by LFTs on a repeated scalar uncertainty structure.
To study the impact of the uncertainty set in the reduced model, we need the
additional assumption that the uncertainty has a well defined upper and lower
bound and has a diagonal structure. For the second one, we focus on a large-scale
LPV model with parametric uncertainty that is related to the variation of physical
parameters. More specifically, we consider a model with inaccurate density, heat
capacitance, thermal conductivity coefficient due to process variation.

In Section 5.2, we give the background material on two types of uncertain sys-
tems. The model reduction for uncertain systems is considered in Section 5.3.
Afterwards, Section 5.4 presents the results of MOR and pMOR for uncertain sys-
tems. We close this chapter with some conclusions and considerations on further
work in Section 5.5.
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5.2 Preliminaries

One way to model physical systems is through first principle modelling. Since
in any modeling strategy there is always a mismatch between the model and the
physical system. Such a model mismatch (or model discrepancy) can be viewed
as a type of uncertainty in the underlying model. The field of system theory
has developed various techniques to model the discrepancy between system and
model and aim to quantify the mismatch, named uncertainty in this chapter. This
chapter focuses on a system in which the performance is dominated by uncer-
tainty, while the controller design or prediction is based on an idealized mathem-
atical model that performs non-optimal or even poorly in the real physical system.
The source of such uncertainty might be unknown nonlinearities, unmodelled dy-
namics, parameter variation, or the combination of any of these. To have a math-
ematical description of a system with uncertainty, we employ the LFT paradigm,
which is depicted in Figure 5.1.

�
<latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit><latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit><latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit>

y
<latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="ogPlV45/9/+Spt+pAwvPPEfDlls=">AAAB3HicbZDNSgMxFIXv+Ftr1erWTbAIrsqMG3UnuHHZgmML7VAy6Z02NskMSUYYhj6BGxcqPpc738b0Z6GtBwIf5yTk3hNnghvr+9/exubW9s5uZa+6Xzs4PKof1x5NmmuGIUtFqrsxNSi4wtByK7CbaaQyFtiJJ3ezvPOM2vBUPdgiw0jSkeIJZ9Q6q10M6g2/6c9F1iFYQgOWag3qX/1hynKJyjJBjekFfmajkmrLmcBptZ8bzCib0BH2HCoq0UTlfNApOXfOkCSpdkdZMnd/vyipNKaQsbspqR2b1Wxm/pf1cptcRyVXWW5RscVHSS6ITclsazLkGpkVhQPKNHezEjammjLruqm6EoLVldchvGzeNP22DxU4hTO4gACu4BbuoQUhMEB4gTd49568V+9j0daGt6ztBP7I+/wBQxaLfg==</latexit><latexit sha1_base64="ogPlV45/9/+Spt+pAwvPPEfDlls=">AAAB3HicbZDNSgMxFIXv+Ftr1erWTbAIrsqMG3UnuHHZgmML7VAy6Z02NskMSUYYhj6BGxcqPpc738b0Z6GtBwIf5yTk3hNnghvr+9/exubW9s5uZa+6Xzs4PKof1x5NmmuGIUtFqrsxNSi4wtByK7CbaaQyFtiJJ3ezvPOM2vBUPdgiw0jSkeIJZ9Q6q10M6g2/6c9F1iFYQgOWag3qX/1hynKJyjJBjekFfmajkmrLmcBptZ8bzCib0BH2HCoq0UTlfNApOXfOkCSpdkdZMnd/vyipNKaQsbspqR2b1Wxm/pf1cptcRyVXWW5RscVHSS6ITclsazLkGpkVhQPKNHezEjammjLruqm6EoLVldchvGzeNP22DxU4hTO4gACu4BbuoQUhMEB4gTd49568V+9j0daGt6ztBP7I+/wBQxaLfg==</latexit><latexit sha1_base64="Sd5VxORjiQCDzPyBIJEG0pxBaVA=">AAAB53icbVBNT8JAEJ3iF+IX6tHLRmLiibRe1BvRi0dIrJBAQ7bLFFa222Z3a9IQfoEXD2q8+pe8+W9coAcFXzLJy3szmZkXpoJr47rfTmltfWNzq7xd2dnd2z+oHh496CRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzvz2EyrNE3lv8hSDmA4ljzijxkqtvF+tuXV3DrJKvILUoECzX/3qDRKWxSgNE1TrruemJphQZTgTOK30Mo0pZWM6xK6lksaog8n80Ck5s8qARImyJQ2Zq78nJjTWOo9D2xlTM9LL3kz8z+tmJroKJlymmUHJFouiTBCTkNnXZMAVMiNySyhT3N5K2IgqyozNpmJD8JZfXiX+Rf267rbcWuOmSKMMJ3AK5+DBJTTgDprgAwOEZ3iFN+fReXHenY9Fa8kpZo7hD5zPH1SQjMw=</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit><latexit sha1_base64="0JeNA1HQva9u9/7QJWXaJ+ci78s=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa416l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gBV0IzQ</latexit>

u
<latexit sha1_base64="kF4y8yL2rgRNwd6KnxzHbkHreI8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaWa9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBPxIzM</latexit><latexit sha1_base64="kF4y8yL2rgRNwd6KnxzHbkHreI8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaWa9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBPxIzM</latexit><latexit sha1_base64="kF4y8yL2rgRNwd6KnxzHbkHreI8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaWa9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZdc5sX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBPxIzM</latexit>P

<latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit><latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit><latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit>

P�
<latexit sha1_base64="HJMxwGIpditC2fqHyQkFe1IP45A=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWznbRLN5uwuxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemAqujet+OaWl5ZXVtfJ6ZWNza3unurt3r5NMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0NfVbj6g0T+SdGacYxHQgecQZNVZ6aPby7jUKQye9as2tuzOQv8QrSA0KNHvVz24/YVmM0jBBte54bmqCnCrDmcBJpZtpTCkb0QF2LJU0Rh3ks4sn5MgqfRIlypY0ZKb+nMhprPU4Dm1nTM1QL3pT8T+vk5noPMi5TDODks0XRZkgJiHT90mfK2RGjC2hTHF7K2FDqigzNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMITvMCro51n5815n7eWnGJmH37B+fgG64uQng==</latexit><latexit sha1_base64="HJMxwGIpditC2fqHyQkFe1IP45A=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWznbRLN5uwuxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemAqujet+OaWl5ZXVtfJ6ZWNza3unurt3r5NMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0NfVbj6g0T+SdGacYxHQgecQZNVZ6aPby7jUKQye9as2tuzOQv8QrSA0KNHvVz24/YVmM0jBBte54bmqCnCrDmcBJpZtpTCkb0QF2LJU0Rh3ks4sn5MgqfRIlypY0ZKb+nMhprPU4Dm1nTM1QL3pT8T+vk5noPMi5TDODks0XRZkgJiHT90mfK2RGjC2hTHF7K2FDqigzNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMITvMCro51n5815n7eWnGJmH37B+fgG64uQng==</latexit><latexit sha1_base64="HJMxwGIpditC2fqHyQkFe1IP45A=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWznbRLN5uwuxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemAqujet+OaWl5ZXVtfJ6ZWNza3unurt3r5NMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0NfVbj6g0T+SdGacYxHQgecQZNVZ6aPby7jUKQye9as2tuzOQv8QrSA0KNHvVz24/YVmM0jBBte54bmqCnCrDmcBJpZtpTCkb0QF2LJU0Rh3ks4sn5MgqfRIlypY0ZKb+nMhprPU4Dm1nTM1QL3pT8T+vk5noPMi5TDODks0XRZkgJiHT90mfK2RGjC2hTHF7K2FDqigzNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMITvMCro51n5815n7eWnGJmH37B+fgG64uQng==</latexit>

u�
<latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit><latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit><latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit>

y�
<latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit><latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit><latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit>

Figure 5.1: Example of a uncertain system P∆ consists of the nominal plant P and
the uncertainty block ∆.

In Figure 5.1 the system with block P represents the nominal model of the sys-
tem, which is the input-output relation between input u and output y of the plant
at the nominal values. The external signals of the uncertain system are the input
u and the output y while the internal signals are denoted as y∆ and u∆. The block
indicated by ∆ denotes an uncertain system that is not fixed and is only known to
be an element of a class of systems , say ∆, which we refer to as the uncertainty
class. This class may be dynamic or static, linear or nonlinear, bounded with re-
spect to various gains, structured or non-structured in its relation between u∆ and
y∆. A specific example of a structured static uncertainty set

∆ = {∆(λ) | λ ∈ C and I −Aλ is regular} (5.1)

In particular, if the system realization matrix P is partitioned as

P =

[
P11 P12

P21 P22

]
,

the input-output mapping of the interconnection in Figure 5.1 is defined by map-
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ping col(u∆, u) to col(y∆, y) as a transfer function of an LTI system. Then let
∆ : y∆ → u∆ and assume, for the time being, that ∆ is a linear mapping belonging
to a class ∆ of linear mappings. Then the configuration of Figure 5.1 represents
an uncertain transfer function P∆ from input u to output y that is given by

y = (∆ ? P )u = (P22 + P21∆(I − P11∆)−1P12)u.

Here the Redheffer star notation ? is only used where it is understood that the
inverse of (I − P11∆) exists. Note that we require this nonsingular condition for
all ∆ ∈ ∆ to guarantee that ∆ ? P is a well defined class of uncertain models for
all ∆ ∈∆. We mention here that, throughout this chapter, we call P22 +P21∆(I −
P11∆)−1P12 the transfer operator which is associated with ∆ ∈∆.

5.2.a LFR representations of LTI systems

First, we consider an LTI system of the form

Σ :=

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.2)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote, respectively, the state vector,
the input and the output. The A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n and D ∈ Rq×m
are given system matrices. In most practical cases, we can assume that the state
dimension is much higher than the input dimension and output dimension, n� q
and n� m. The matrix pencil A− σI is assumed to be regular. Let P be the static
matrix

P =

[
A B
C D

]
. (5.3)

If we let ∆ denote the repeated copies of the shift operator, e.g., ∆ = λI,∆ ∈ ∆
in (5.1) and I with dimension of n × n in (5.1), then the input-output mapping of
this uncertain system (∆, P ) can be represented as

y = (∆ ? P )u = (D + Cλ(I −Aλ)−1B)u. (5.4)

Note that with u∆ = x, y∆ = ẋ in Figure 5.1 and λ = 1
s , the equation in (5.4) is

equal to the transfer functionH(s) = C(sI−A)−1B+D. Specifically, ∆?P = G(λ).

5.2.b LFR representations of uncertain LPV systems

Second, we consider a linear parameter-varying model with parameters θ ∈ Θ,
Θ ⊂ R` described as

Σ(θ) :=

{
ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C(θ)x(t) +D(θ)u(t)

(5.5)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote, respectively, the state vector,
the input and the output. The state-space matrices are functions A : R` → Rn×n,
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B : R` → Rn×m, C : R` → Rq×n and D : R` → Rq×m. The system matrices are
assumed to have affine dependence on the parameter vector, which means that
we can write

A(θ) = A0 +
∑̀
i=1

θiAi B(θ) = B0 +
∑̀
i=1

θiBi

C(θ) = C0 +
∑̀
i=1

θiCi D(θ) = D0 +
∑̀
i=1

θiDi. (5.6)

In this work, we assume thatA(θ) is Hurwitz for all θ ∈ Θ. Furthermore, the para-
meter θ ∈ Θ is not varying with time, i.e. d

dtθ = 0 but with physically meaningful
constraints θi ≤ θi ≤ θi and −∞ < θi ≤ θi <∞. This means that Θ = Π`

i=1[θi, θi],
i.e. Θ has Cartesian structure. With such upper and lower bounds, we can define
the nominal value of ith parameter according to

θ0
i =

θi + θi
2

with θi ≤ θi ≤ θi, θi, θi ∈ R

and introduce the scaled error δi : R→ R defined by the expression

δi(θi) =
θi − θ0

i

θi − θ0
i

This defines then ∆(δ) : Θ → Rn×n and we write this as ∆(δ) = {diag(δi(θi)I) |
i = 1, ...`}. Thus, we have θi = θ0

i + wiδi(θi) where the weighting function wi is
defined aswi = θi−θ0

i and |δi(θi)| ≤ 1. By reformulating the system (5.5) in such a
way, we shift and normalize the uncertain system to the nominal system, which is
the centre of the uncertainty set with respect to the parametric uncertainty. There-
fore, system matrices of (5.5) with θ ∈ Θ can be represented as[

A(θ) B(θ)
C(θ) D(θ)

]
=

[
A(θ0) B(θ0)
C(θ0) D(θ0)

]
+
∑̀
i=1

δi

[
wiAi wiBi
wiCi wiDi

]
. (5.7)

Now factorize [
wiAi wiBi
wiCi wiDi

]
=

[
L1
i

L2
i

] [
R1
i R2

i

]
=

[
L1
iR

1
i L1

iR
2
i

L2
iR

1
i L2

iR
2
i

]
(5.8)
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where
[
L1
i

L2
i

]
and

[
R1
i , R

2
i

]
have full column and row rank, respectively. In this

way, the system (5.5) can be described as


y1,∆

...
y`,∆
η
y

 =


0 · · · 0 R1

1 R2
1

...
. . .

...
...

...
0 · · · 0 R1

` R2
`

L1
` · · · L1

` A(θ0) B(θ0)
L2
` · · · L2

` C(θ0) D(θ0)


︸ ︷︷ ︸

P θ


u1,∆

...
u`,∆
x
u

 (5.9)

with u1,∆

...
u`,∆

 =

δ1(θ1)I · · · 0
...

...
0 · · · δ`(θ`)I


y1,∆

...
y`,∆

 = ∆(δ)

y1,∆

...
y`,∆

 .
In order to avoid confusion regarding the notation of the matrix P in (5.3), the
matrix in the equation (5.9) is denoted by P θ, which is algebraic and the parameter
variations are captured in the uncertainty ∆(δ).

Theorem 5.1 The set of matrices
[
A(θ), B(θ)
C(θ), D(θ)

]
defined in (5.6) with θ ∈ Θ, Θ :=

Π`
i=1[θi, θi] can be rewritten as[

A(θ0) +
∑`
i=1 δiL

1
iR

1
i B(θ0) +

∑`
i=1 δiL

1
iR

2
i

C(θ0) +
∑`
i=1 δiL

2
iR

1
i D(θ0) +

∑`
i=1 δiL

2
iR

2
i

]
=

[
A(δ) B(δ)
C(δ) D(δ)

]
= (∆(δ) ? P θ)

with ∆(δ) = {diag(δiI) | i = 1, . . . , `} where |δi| ≤ 1 for all i = 1, . . . , `, and P θ is
given in (5.9).

Proof: See the derivation in (5.7) and (5.8) proceeding the theorem. 2

Remark 5.1 We assume that all weighting factorsw are accurate to describe the paramet-
ric uncertainty range and real-valued functions. In the above derivation, the weighting
functions are absorbed in the nominal model. As mentioned in [147], the alternative ap-
proach is to incorporate the weighting functions in ∆(δ) = diag([w1δ1I, · · · , w`δ`I]). In
this chapter, we choose the former approach.

Remark 5.2 As mentioned in [147], the factorization in (5.8) is chosen such that the
number of columns/rows of the factors is minimal. This minimality results in minimal
blocks of the uncertainty ∆(δ). If an arbitrary factorization is applied, it could lead to a
larger factorization and inefficient system realization.
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To describe the transfer function of the uncertain parametric system (5.5), let us
take a second uncertainty function ∆(λ) = λI . Then the input-output mapping or
transfer operator of the system (5.5) can be represented by Redheffer star product,
that is

y = (∆(λ) ? (∆(δ) ? P θ))u

= (λI ?

[
A(δ) B(δ)
C(δ) D(δ)

]
)u

= [D(δ) + C(δ)λI(I −A(δ)λI)−1(B(δ))]u. (5.10)

The system model (∆(λ), (∆(δ) ? P θ)) is depicted in Figure 5.2.

y u

u∆y∆

x

∆(δ)

P θ
η

∆(λ)

Figure 5.2: System (∆(λ), (∆(δ) ? P θ)) where ∆(δ(θ)) represents the parametric
uncertainty and the general uncertainty ∆(λ) is denoted by shift operator ∆(λ) =
λI

Remark 5.3 Indeed, by combining the ∆(λ) and ∆(δ) as one uncertainty block, such as
in [167]

∆̃(λ, δ) =

[
∆(λ)

∆(δ)

]
=


λI

δ1(θ1)I · · · 0
...

...
0 δ`(θ`)I

 (5.11)

the expression of the transfer operator (λI?(∆(δ)?P θ)) can be simplified to (∆̃(λ, δ)?P θ).
Nevertheless, we intend to distinguish the shift operator λI from the parametric uncer-
tainty ∆(δ) such that the impact of the parameter variation to the plant is differentiable.

Theorem 5.2 The transfer function H(s, θ) for the uncertain system in (5.5) belongs to
the class of uncertain systems G := {G(s, θ) | θ ∈ Θ} that satisfies

G = { ˜∆)(λ, δ) ? P θ | ∆̃}

assuming the form ∆̃(λ, δ) in (5.11) with ∆ ∈∆ and λ = 1
s .
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5.2.c Projection-based MOR

Suppose (5.2) is a stable system with a high dimensional state vector typically
n ≥ 104. It is desired to have a low-order system realization r � n. We employ the
projection-based method to find the reduced order model. Define the projection
spaces

V := im(V ); W := im(W ). (5.12)

W,V ∈ Rn×r are full rank matrices with r � n. Let ΠV and ΠW denote the (ca-
nonical) projections of Rn onto V andW , respectively. That is ΠV = V (V TV )−1V T

and ΠW = W (WTW )−1WT . Then, the reduced state is defined

xr := (V TV )−1V Tx,

and satisfies V xr = ΠVx. Since V xr is the orthogonal projection of x in V we
view V xr as the best approximation of x in V and view the r dimensional vector
xr of coefficients of x in the projected space V as the reduced order state. xr is an
approximation of the state x in (5.2) and has a dimension of r. Replacing x by its
approximation V xr incurs a residual error

ρ := V ẋr −AV xr −Bu

in the state evolution equation of (5.2). The projection ΠW is meant to require that
ΠWρ = 0 for all time instants t. Equivalently,

WT ρ = WTV ẋr −WTAV xr −WTBu = 0.

Combing the state and the residual projection, we have the reduced system real-
ization

Σ :=

{
ẋr(t) = Arxr(t) +Bru(t)
y(t) = Crxr(t) +Dru(t)

(5.13)

where the system matrices are

Ar = WTAV, Br = WTB

Cr = CV Dr = D.

This method can also be extended to LPV systems. Consider the system in (5.5),
assume the system is stable for all θ ∈ Θ. Using the projection-based MOR as
described above, the reduced model is

Σr(θ) :=

{
ẋr(t) = Ar(θ)xr(t) +Br(θ)u(t)
y(t) = Cr(θ)xr(t) +Dr(θ)u(t),

(5.14)

the reduced system matrices are defined as Ar(θ) = WTA(θ)V,Br(θ) = WTB(θ),
Cr(θ) = C(θ)V and Dr(θ) = D(θ). This reads

Ar(θ) = WT (A0 +
∑̀
i=1

θiAi)V = Ar,0 +
∑̀
i=1

θiAr,i
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Br(θ) = WT (B0 +
∑̀
i=1

θiBi) = Br,0 +
∑̀
i=1

θiBr,i

Cr(θ) = (C0 +
∑̀
i=1

θiCi)V = Cr,0 +
∑̀
i=1

θiCr,i

Dr(θ) = D(θ).

Hence, if (5.5) affinely depends on the parameters θ, so does (5.14). If W = V , this
is called an (ordinary) Galerkin projection. If W 6= V , this is a Petrov-Galerkin
projection. For a high-order state model, the construction of V,W using the SVD-
based method often is computationally expensive or infeasible. In those cases,
a moment-matching method is much easier and more efficient to generate the
projection matrices.

5.3 Model reduction of LFT systems

Before considering the construction of the projection matrices V,W for uncertain
systems, we first present the moments for uncertain systems. Then, the reduced
order model for uncertain systems generated via moment-matching is given.

5.3.a Moment and model reduction for LTI systems in LFT rep-
resentation

Consider the uncertain LTI system model (∆, P ) where the uncertainty set ∆ ∈∆
is defined as in (5.1) and P has the realization in (5.3). Suppose A∆ is nonsingular
for all ∆ ∈ ∆. Using this condition for conceptual verification of the regularity
of the matrix pencil (I − A∆), we can derive an efficient and easily implemented
regularity-based condition for uncertain systems.

With the condition of the regularity of the matrix pencil (I − A∆), we proceed to
the definition of moments. The transfer operator of the model (∆, P ) with ∆ = λI
is defined as

G(λ) := ∆ ? P = D + Cλ(I −Aλ)−1B.

Consider analytic expansion of G(λ) around the point λ0 ∈ C. Thus

G(λ) =

∞∑
k=0

mk(λ− λ0)k = m0 +m1(λ− λ0) +m2(λ− λ0)0 + . . .

with moments mk = mk(λ0), k ≥ 0. Then

mk(λ0) =
1

k!

dk

dλk
G(λ) |λ=λ0=

1

k!
Gk(λ0), k ≥ 0
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and moments mk satisfy Cauchy integral expression

mk(λ0) =
1

2πi

∮
G(λ)

(λ− λ0

k+1

dλ

counterclockwise integration over any closed curve in C enclosing λ0 and belong-
ing to domain of analyticity of G.

Theorem 5.3 Let λ0 ∈ C. Then the k-th moment mk = mk(λ0) of G(λ) = (∆ ? P )(λ)

with P =

[
A B
C D

]
, ∆ = ∆(λ) := λIn ∈∆ is given by

mk(λ0) =

{
D + Cλ0(I − λ0A)−1B if k = 0

C(λ0)[A(λ0)]k−1B(λ) if k ≥ 0.
(5.15)

where C(λ) := C(I − λA)−1; B(λ) := (I − λA)−1B, and A(λ) := A(I − λA)−1.

Notice that for a special case λ0 = 0, (5.15) can be simplified to

mk(0) =

{
D if k = 0

CAk−1B if k ≥ 0.

Next suppose that λ0 ∈ C is given and we wish to match 2N momentsm0(λ0),. . . ,
m2N−1(λ0) in a reduced order r < n model. Define a full rank matrix V such that
V = imV is given by the Krylov subspace

V = colspan{f,Mf, · · · ,MN−1f} (5.16)

where

f := B(λ0) = (I −Aλ0)−1B ∈ Rn×m

M := A(λ0) = A(I −Aλ0)−1 ∈ Rn×n

Similarly,
W = colspan{l,MT , · · · , (MT )N−1l} (5.17)

where

l := C(λ0)T = (I −Aλ0)−TCT ∈ Rn×q

MT := A(λ0) = (I −Aλ0)−TAT ∈ Rn×n

and let W be any full rank matrix such thatW = im(W ), and r = N ×m.

Based on the discussion above, the reduced LTI system in LFR representation is
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defined as (∆r, Pr) with r � n, by setting:

Pr =

[
Ar Br
Cr Dr

]
with

Ar = WTAV ∈ RN×N Br = WTB ∈ RN×m

Cr = CV ∈ Rq×N Dr = D ∈ Rq×m,

and the uncertainty set is

∆r ∈∆r, ∆r = ∆

where ∆r represents a lower order uncertainty set of ∆ ∈ ∆ defined in (5.1). We
again assume that the ∆r represents the shift operator ∆r(λ) = λIr.

y
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u�<latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit><latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit><latexit sha1_base64="Pzq06/4zayDNgAW2L6xUsgwer2Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSQ9bLu9dcIp30qjW37s5A/hKvIDUo0OxVP7v9hGUxV8gkNabjuSkGOdUomOSTSjczPKVsRAe8Y6miMTdBPrt4Qo6s0idRom0pJDP150ROY2PGcWg7Y4pDs+hNxf+8TobReZALlWbIFZsvijJJMCHT90lfaM5Qji2hTAt7K2FDqilDG1LFhuAtvvyX+Cf1i7p7e1prXBZplOEADuEYPDiDBtxAE3xgoOAJXuDVMc6z8+a8z1tLTjGzD7/gfHwDJNaQww==</latexit>

y�
<latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit><latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit><latexit sha1_base64="rNQQ1crXWeyOBErbL9jtqBWxvYE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisYGyxDWWz3bRLN5uwOxFK6L/w4kHFqz/Hm//GbZuDVh8MPN6bYWZemEph0HW/nNLS8srqWnm9srG5tb1T3d27N0mmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wjq6nfeuTaiETd4TjlQUwHSkSCUbTSw7iXd6+5RDrpVWtu3Z2B/CVeQWpQoNmrfnb7CctirpBJakzHc1MMcqpRMMknlW5meErZiA54x1JFY26CfHbxhBxZpU+iRNtSSGbqz4mcxsaM49B2xhSHZtGbiv95nQyj8yAXKs2QKzZfFGWSYEKm75O+0JyhHFtCmRb2VsKGVFOGNqSKDcFbfPkv8U/qF3X39rTWuCzSKMMBHMIxeHAGDbiBJvjAQMETvMCrY5xn5815n7eWnGJmH37B+fgGKwaQxw==</latexit>

�
<latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit><latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit><latexit sha1_base64="SxAZxbNO/xvomcyCmFNHHXFOdPg=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lFUG9FPXisYNpCG8pmO2nXbrJhdyKU0P/gxYOKV3+QN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaVSqOXhcSaXbATMgRQweCpTQTjSwKJDQCkY3U7/1BNoIFT/gOAE/YoNYhIIztFKzewsSWa9ccavuDHSZ1HJSITkavfJXt694GkGMXDJjOjU3QT9jGgWXMCl1UwMJ4yM2gI6lMYvA+Nns2gk9sUqfhkrbipHO1N8TGYuMGUeB7YwYDs2iNxX/8zophpd+JuIkRYj5fFGYSoqKTl+nfaGBoxxbwrgW9lbKh0wzjjagkg2htvjyMvHOqldV9/68Ur/O0yiSI3JMTkmNXJA6uSMN4hFOHskzeSVvjnJenHfnY95acPKZQ/IHzucPzL6Ozw==</latexit>

�r
<latexit sha1_base64="XmJnv8AJxsCmWwJ73ELsNaz2zVE=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q2oB48VjC20oWy2k3bpZhN3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmGPosEYlqhVSj4BJ9w43AVqqQxqHAZji8nvjNJ1SaJ/LejFIMYtqXPOKMGiu1OjcoDO2qbqXq1twpyCLxClKFAo1u5avTS1gWozRMUK3bnpuaIKfKcCZwXO5kGlPKhrSPbUsljVEH+fTeMTm2So9EibIlDZmqvydyGms9ikPbGVMz0PPeRPzPa2cmughyLtPMoGSzRVEmiEnI5HnS4wqZESNLKFPc3krYgCrKjI2obEPw5l9eJP5p7bLm3p1V61dFGiU4hCM4AQ/OoQ630AAfGAh4hld4cx6dF+fd+Zi1LjnFzAH8gfP5A1eWj7Q=</latexit><latexit sha1_base64="XmJnv8AJxsCmWwJ73ELsNaz2zVE=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q2oB48VjC20oWy2k3bpZhN3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmGPosEYlqhVSj4BJ9w43AVqqQxqHAZji8nvjNJ1SaJ/LejFIMYtqXPOKMGiu1OjcoDO2qbqXq1twpyCLxClKFAo1u5avTS1gWozRMUK3bnpuaIKfKcCZwXO5kGlPKhrSPbUsljVEH+fTeMTm2So9EibIlDZmqvydyGms9ikPbGVMz0PPeRPzPa2cmughyLtPMoGSzRVEmiEnI5HnS4wqZESNLKFPc3krYgCrKjI2obEPw5l9eJP5p7bLm3p1V61dFGiU4hCM4AQ/OoQ630AAfGAh4hld4cx6dF+fd+Zi1LjnFzAH8gfP5A1eWj7Q=</latexit><latexit sha1_base64="XmJnv8AJxsCmWwJ73ELsNaz2zVE=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q2oB48VjC20oWy2k3bpZhN3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmGPosEYlqhVSj4BJ9w43AVqqQxqHAZji8nvjNJ1SaJ/LejFIMYtqXPOKMGiu1OjcoDO2qbqXq1twpyCLxClKFAo1u5avTS1gWozRMUK3bnpuaIKfKcCZwXO5kGlPKhrSPbUsljVEH+fTeMTm2So9EibIlDZmqvydyGms9ikPbGVMz0PPeRPzPa2cmughyLtPMoGSzRVEmiEnI5HnS4wqZESNLKFPc3krYgCrKjI2obEPw5l9eJP5p7bLm3p1V61dFGiU4hCM4AQ/OoQ630AAfGAh4hld4cx6dF+fd+Zi1LjnFzAH8gfP5A1eWj7Q=</latexit>

Pr
<latexit sha1_base64="9T5xG2WXODXQfAxrqFK6qLuirLU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnTvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/np6NjA==</latexit><latexit sha1_base64="9T5xG2WXODXQfAxrqFK6qLuirLU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnTvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/np6NjA==</latexit><latexit sha1_base64="9T5xG2WXODXQfAxrqFK6qLuirLU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnTvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/np6NjA==</latexit>

P
<latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit><latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit><latexit sha1_base64="5Lm52dp/xJtWWFPYJtsHTF+zKcI=">AAAB53icbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjy2YGyhDbLZvrRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtg4sDDPz2PcmTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T+410mmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji6mfrtJ1SaJ/LOjFMMYjqQPOKMGiu1mg/Vmlt3ZyDLxCtIDQrY/Fevn7AsRmmYoFp3PTc1QU6V4UzgpNLLNKaUjegAu5ZKGqMO8tmiE3JilT6JEmWfNGSm/p7Iaaz1OA5tMqZmqBe9qfif181MdBnkXKaZQcnmH0WZICYh06tJnytkRowtoUxxuythQ6ooM7abii3BWzx5mfhn9au62zqvNa6LNspwBMdwCh5cQANuoQk+MEB4hld4cx6dF+fd+ZhHS04xcwh/4Hz+ABfVjKc=</latexit>

yr
<latexit sha1_base64="s11OLPHXOAu6GY/jDjrUMioGfjc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdj3uqV625dXcGsky8gtSgQLNX/er2E5bFKA0TVOuO56YmyKkynAmcVLqZxpSyER1gx1JJY9RBPjt1Qk6s0idRomxJQ2bq74mcxlqP49B2xtQM9aI3Ff/zOpmJLoOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Op2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c4Tz4rw7H/PWklPMHMIfOJ8/3OuNtQ==</latexit><latexit sha1_base64="s11OLPHXOAu6GY/jDjrUMioGfjc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdj3uqV625dXcGsky8gtSgQLNX/er2E5bFKA0TVOuO56YmyKkynAmcVLqZxpSyER1gx1JJY9RBPjt1Qk6s0idRomxJQ2bq74mcxlqP49B2xtQM9aI3Ff/zOpmJLoOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Op2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c4Tz4rw7H/PWklPMHMIfOJ8/3OuNtQ==</latexit><latexit sha1_base64="s11OLPHXOAu6GY/jDjrUMioGfjc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdj3uqV625dXcGsky8gtSgQLNX/er2E5bFKA0TVOuO56YmyKkynAmcVLqZxpSyER1gx1JJY9RBPjt1Qk6s0idRomxJQ2bq74mcxlqP49B2xtQM9aI3Ff/zOpmJLoOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Op2BC8xZeXiX9Wv6q7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c4Tz4rw7H/PWklPMHMIfOJ8/3OuNtQ==</latexit> u
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Figure 5.3: Error system (∆e, Pe) between two LFTs models remains LFT.

The difference between the full order model (∆(λ), P ) and reduced order model
(∆r(λ), Pr) can be formed as the difference realization of these two models, that
is

(∆e ? Pe) = (∆(λ) ? P )− (∆r(λ) ? Pr) (5.18)

with

Pe =

A 0 B
0 Ar Br
C −Cr D −Dr

 and ∆e =

[
∆ 0
0 ∆r

]
The interconnection of the (∆e, Pe) is shown in Figure 5.3.

Remark 5.4 Notice that the realization of the difference between the reduced and the ori-
ginal uncertain systems represented by the LFT, is an LFT again with block uncertainty
∆e satisfying ∆e(λ) = λIn+r
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Different from SVD-based MOR techniques, moment-matching MOR method is
preserving the local information around the expansion point, which does not have
global error bound. In what follows, we present the lemma using the result for LTI
systems in Theorem 2.3.

Theorem 5.4 Let λ0 ∈ ∆ be chosen such that both the matrix pencil (I − Aλ0), (Ir −
Arλ) are regular, and both the transfer operators (λIn ? P ), (λIr ? Pr) are analytic in the
neighbourhood of λ0, then the Hermite interpolation condition is satisfied as

di

dλi
(λIn ? P ) |λ=λ0

=
di

dλi
(λIr ? Pr) |λ=λ0

, for i = 0, · · · , N − 1.

This yields a reduced model whose transfer operator (λIr ? Pr) coincides in as many
moments as possible for a given order.

Proof: We refer the proof to Section 2.3. 2

Based on Theorem 5.4, the error system defined in (5.18) also satisfies the Hermite
condition, that is

di

dλi
(∆e ? Pe)(λ0) = 0 for i = 0, · · · , N − 1

where ∆e =

[
λIn 0
0 λIr

]
= λIn+r.

A generic implementation of the moment-matching for uncertain LTI systems as
described in (5.16) and (5.17) can be carried out by using Arnoldi algorithm, and
the details we refer to [Section 3.3, [17]].

5.3.b Moments and model reduction for uncertain LPV systems

Similarly, we present the moment for the LPV systems with parametric uncer-
tainty. Consider the LFT paradigm shown in Figure 5.2, where P θ denotes the
nominal plant as in (5.9), ∆(δ) specifies the parametric uncertainty which is rep-
resented by variables δ, and ∆ represents the general uncertainty that can be rep-
resented as copies of the shift operator ∆ = λI .

Assume the model (∆(δ), P θ) is stable for every ∆(δ) ∈ ∆, that is, all the gener-
alized eigenvalues of the matrix pencil (I − A(δ)∆) lie in the left half open plane.
Suppose the transfer operator G(λ, δ) = (λI ? (∆(δ) ?P θ)) is analytic in the neigh-
bourhood of the expansion point (λ0, δ0). Then, the multivariable Taylor series
expansion of G(λ, δ) is given by the expression derived in (2.35) and reads

G(λ, δ) = G(λ0, δ0) + [D1G]

(
λ− λ0

δ − δ0

)
+ . . .+ [D|k|G]

((
λ− λ0

δ − δ0

)
, . . . ,

(
λ− λ0

δ − δ0

))
+ . . .
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where [D|k|G] is defined in (2.32). This can be written as

G(λ, δ) =

∞∑
I=0

∞∑
|J|=0

mI,J(λ0, δ0)(λ− λ0)I(δ − δ0)J

where I is a integer and J is a multi-index J = (j1, . . . , j` with length |J | =∑`
k=1 jk and (δ − δ0)J is to be interpreted as

(δ − δ0)J = (δ1 − δ0,1)j1 . . . (δ` − δ0,`)j` .

Here mI,J(λ0, δ0) denotes the (I, J)-th moment of the uncertain system G(λ, δ) =
(λIn, (∆(δ) ? P θ) and is given

G(λ, δ) = G(λ0, δ0) +
∂

∂λ
G(λ0, δ0)(

1

λ
− 1

λ0
) +

∂

∂δ
G(λ0, δ0)(δ − δ0) + · · ·

=
∑

I=0,J=0

m{I,J}(λ0, δ0)(
1

λ
− 1

λ0
)I(δ − δ0)J

and where

mI,J(λ0, δ0) =
1

(I + J)!

∂I+J

∂λI∂δJ
G(λ0, δ0)

for I ≥ 0 and J ≥ 0. Here mI,J(λ0, δ0) denotes the {I + J}th moment of the
uncertain system (λI, (∆(δ) ? P θ)) is defined below.

Definition 5.5 Given the system in (5.5) with parameters θ ∈ Θ,Θ = Π`
i=1[θi, θi]

and the uncertainty set ∆ = λI,∆ ∈ ∆ defined in (5.1). Assume the matrix pencil
(I −A(δ)∆) with δ = vec(δi), |δi| ≤ 1, i = 1, · · · , ` is regular and the transfer function
G(λ, δ) is analytic in the neighbourhood of (λ0, δ0), then the {I + |J |}th moment around
(λ0, δ0) is defined as

mI,J(λ0, δ0) =
1

(I + |J |)!
∂I+J

∂λI∂δJ
G(λ0, δ0), with I ≥ 0, |J | ≥ 0.

Note that if ` = 1, then J = j1 and |J | = J = j1 in which case

G(λ, δ) = G(λ0, δ0) +
∂

∂λ
G(λ0, δ0) +

∂

∂δ
G(λ0, δ0)(δ − δ0) + . . .

=

∞∑
I=0

∞∑
J=0

mI,J(λ0, δ0)(λ− λ0)I(δ − δ0)J .
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Based on the above definition, the first three moments of (5.5) are:

m0,0(λ0, δ0) = D(δ0) + C(δ0)λ0I(I −A(δ0)λ0I)−1B(δ0)

m1,0(λ0, δ0) = C(δ0)(I −A(δ0)λ0I)−1I(I −A(δ0)λ0I)−1B(δ0)

m0,1(λ0, δ0) = Cδ0λ0I(I −A(δ0)λ0I)−1B(δ0) +

C(δ0)λ0I(I −A(δ0)λ0I)−1Bδ0 +

C(δ0)λ0I(I −A(δ0)λ0I)−1Aδ0(I −A(δ0)λ0I)−1B(δ0)

hereCδ0 = d
dδC(δ), Bδ0 = d

dδB(δ) andAδ0 = d
dδA(δ) at δ = δ0. In the same manner,

the rest of moments for the uncertain LPV system can be derived.

Let us define two sets {λ1, · · · , λk} and {δ1, · · · , δ`}, we can extend the above de-
rivation to multiple shift operator and multiple parameter expansion points. Here
we abuse the notation of ` which indicates both the dimension of a parameter
space and the dimension of parameter sampling point. The projection matrices
V,W are defined as any full rank matrices that satisfy (5.12) with follows

V = im[v(λ1, δ1), · · · , v(λk, δ`)] (5.19)
W = im[v(λ1, δ1), · · · , v(λk, δ`)] (5.20)

where

v(λi, δj) = Kσvi,j (M
v
i,j , Fi,j)

w(λi, δj) = Kσwi,j (M
w
i,j , Li,j) (5.21)

with

Fi,j = (I −A(δj)λi)
−1Bδj

Mv
i,j = Aδj (I −A(δj)λi)

−1

Li,j = (I −A(δj)λi)
−TCTδj

Mw
i,j
T = (I −A(δj)λi)

−TATδj .

Here Bδj = d
dδj

(B(θ)), Aδj = d
dδj

(A(θ)), Cδj = d
dδj

(C(θ)) and σvi,j , σ
w
i,j represent

the number of preserved moments for each pair (λi, δj) in v(λi, δj) and w(λi, δj),
respectively.

As a result, the transfer operator of the reduced model coincides in as many mo-
ments of the original model as possible for a given order. That is, we have the
following theorem.

Theorem 5.6 Consider the transfer operator G(λ, δ) = (λI ? (∆(δ) ?P θ)) is analytic in
the neighbourhood of the expansion point (λ0, δ0). If the matricesW,V are the basis of the
of W,V as defined in (5.19) and (5.20), this leads to the transfer operator of the reduced
system. Then, the Hermite interpolation condition is satisfied as

m{Ii,Jj}(λi, δj) = mr,{Ii,Jj}(λi, δj) (5.22)
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where, for every (i, j)

Ii = 0, . . . , σvi,j + σwi,j − 1

Jj = 0, . . . , σvi,j + σwi,j − 1. (5.23)

Here mr,{Ii,Jj}(λi, δj) denotes the {Ii, Jj}th moment of the reduced model. With the
construction of the projection matrices as described above, the reduced system matrices of
(5.7) are[

Ar(θ) Br(θ)
Cr(θ) Dr(θ)

]
=

[
Ar(θ

0) Br(θ
0)

Cr(θ
0) Cr(θ

0)

]
+
∑̀
i=1

δi

[
wiAr,i wiBr,i
wiCr,i wiDr,i

]
(5.24)

with

Ar(θ
0) = WTA(θ0)V Ar,i = WTAiV

Br(θ
0) = WTB(θ0) Br,i = WTBi

Cr(θ
0) = C(θ0)V Cr,i = CiV

Dr(θ
0) = D(θ0) Dr,i = Di.

By constructing the moments for the reduced order model in (5.24) using the
Definition 5.5, the matching property of the Hermit interpolation condition for
the full-order model and the reduced-order model can be derived.

In particular, the factorization proposed in (5.8) also can be preserved in the re-
duced model, that is[

wiAr,i wiBr,i
wiCr,i wiDr,i

]
=

[
wiW

TAiV wiW
TBi

wiCiV wiDi

]
=

[
WTL1

iR
1
iV WTL1

iR
2
i

L2
iR

1
iV L2

iR
2
i

]
=

[
WTL1

i

L2
i

] [
R1
iV R2

i

]
(5.25)

Since W,V are constructed to be full row matrices, and it is readily seen that the[
WTL1

i

L2
i

]
and

[
R1
iV R

2
i

]
are full column rank and full row rank matrices respect-

ively, if the
[
L1
i

L2
i

]
are full column rank and the (R1

i , R
2
i ) are full row rank. There-

fore, the reduced system realization can be represented as


y1,∆

...
y`,∆
ηr
y

 =


0 · · · 0 R1

1V R2
1

...
. . .

...
...

...
0 · · · 0 R1

`V R2
`

WTL1
` · · · WTL1

` Ar(θ
0) Br(θ

0)
L2
` · · · L2

` Cr(θ
0) Dr(θ

0)


︸ ︷︷ ︸

P θr


u1,∆

...
u`,∆
xr
u

 (5.26)
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with u1,∆

...
u`,∆

 =

δ1(θ1)I · · · 0
...

...
0 · · · δ`(θ`)I


y1,∆

...
y`,∆

 = ∆(δ)

y1,∆

...
y`,∆

 .
Thus, the error system between the original system (∆(λ), (∆(δ) ? P θ)) and the
reduced system (∆r(λ), (∆(δ) ? P θr )) can be formed as

(∆e ? (∆e(δ) ? P
θ
e )) = [∆(λ) ? (∆(δ) ? P θ)−∆r(λ) ? (∆(δ) ? P θr )] (5.27)

where

P θe =

A(θ) 0 B(θ)
0 Ar(θ) Br(θ)

C(θ) −C(θ) D(θ)−Dr(θ)

 ∆e(δ) =

[
∆(δ) 0

0 ∆(δ)

]

and

∆e =

[
∆ 0
0 ∆r

]
At the expansion point of λi, θi, we can obtain an error free system, that is

(∆e ? (∆e(δ) ? Pe(θ)))(λi, δi) = 0,

and the higher order derivatives of the error system at the expansion points are
also error free:

∂i

∂λi
(∆e ? (∆e(δ) ? Pe(θ)))(λi) = 0 for i = 1, · · · , Ii − 1

∂j

∂δj
(∆e ? (∆e(δ) ? Pe(θ)))(δj) = 0 for j = 1, · · · , Ij − 1

where Ii, Ij are defined in (5.23)

The implementation of the multiple shift operators and multiple parameters mo-
ment matching described above in (5.21) is summarized in Algorithm 4.

Different from the method proposed in [29], instead of interpolating the para-
meters or the neighbour of the parameters, we choose the parametric uncertain
variables as the parameter expansion points. In this algorithm, we don’t discuss
the extension to tangential method that can be easily adapted to the proposed one.
Certainly, the performance of this procedure strongly depends on the choices of
the interpolation points. The possible refinement of this algorithm is to iteratively
select the expansion points as IRKA in [84].

5.4 Study cases

In this chapter, we will derive two systems (an LTI in LFT representation and an
uncertain LPV) from the Precision Stage Application(PSA), depicted in Figure 5.4.
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Algorithm 4 : Robust moment matching for uncertain LPV systems

1: Given:
[
A(θ) B(θ)
C(θ) D(θ)

]
with θi ∈ [θ1, · · · , θ`] and the bound of each para-

meter θi ∈ [θi, θi]

2: System realization
[
A(θ0) B(θ0)
C(θ0) D(θ0)

]
+
∑`
i=1 δi

[
wiAi wiBi
wiCi wiDi

]
3: Choose the expansion point as a pair (λi, δj) where λi ∈ [λ1, · · · , λk], δj ∈

[δ1, · · · , δ`] and the corresponding moments
[
σv1,1, σ

v
1,2, · · · , σvk,`

σw1,1, σ
w
1,2, · · · , σwk,`

]
4: Compute a basis of {v1, · · · , vk·`} for

v1 = Kσvi,j{(I −A(δj)λi)
−1, (I −A(δj)λi)

−1B(θj)}

5: Compute a basis of {w1, · · · , wk ˙̀} for

w1 = Kσvi,j{(I −A(δj)λi)
−T , (I −A(δj)λi)

−TCT (θj)}

6: Set V = im[v1, · · · , vk·`] and W = im[w1, · · · , wk·`]
7: Construct the reduced model

[
Ar(θ) Br(θ)
Cr(θ) Dr(θ)

]
as in (5.24).

Let G denote the spatial geometry on which the system is considered. For the
purpose of this chapter G is a bounded subset of R3. That is, we consider a 3-
dimensional configuration space. Let ∂G denote its boundary. The governing
equation for describing the temporal-spatial thermal behaviour is given by

ρcp
∂T

∂t
+∇ · J = u in G

Boundary condition: ∇T (r, t) · n̄ = γ on ∂G
Initial condition: T (r, 0) = T0(r) (5.28)

here T (r, t) is the temperature at location r ∈ G and at time t ≥ 0. J = J(r, t) =
−κ∇T (r, t), r ∈ G is the heat flux. {ρ, cp, κ} ∈ R>0 represents the density, heat
capacity and thermal conductivity of materials in the PSA setup. The T0(r) and
the γ denotes the initial condition and boundary condition, respectively. In this
chapter, the input u denotes the input power to the linear motor coil, and the
temperature measured from the NTC sensor is considered as the output. Notice
that we consider the single-input and single-output for the following two cases.

For two different reduction techniques, the numerical results of two types reduced
uncertain systems are given. For a detailed explanation of the PSA, we refer to
Section 4.5.
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NTC sensor

Linear motor coil
Stage frame

Carrier frame

(a) Photograph of the PSA setup

(b) Schematic plot of the PSA setup

Figure 5.4: Photograph (a) and the schematic plot (b) of the PSA setup. In (b),
the stage frame, the carrier frame, the linear motor coil and location of the NTC
sensor are indicated.
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5.4.a Case one: LFR representation of an LTI system

With a proper spatial discretization method, we derive a LTI system based on the
governing equation (5.28)

Σ :=

{
ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t)

(5.29)

with dim(x) = 38476. Here u denotes one input power to the system and the tem-
perature of the NTC sensor is chosen as the output y. The reduced order system
has been derived from the technique to match expansion points in a set λ of the
LFR representation of the system up to appropriate orders. Here, we took

λ = {λ1, λ2} = {1010, 10}

(corresponding to s1 = 10−10 ≈ 0, s2 = 0.1) with moment orders 200 and 60, re-
spectively. That would make a reduced order system with a dimension of r ≥ 260
order emphasizing matching of the low frequent behavior of the PSA system. In
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Figure 5.5: Bode plot of the reduced-order uncertain LTI system and the full-order
LTI system

Figure 5.5, the frequency response of the reduced-order model with r = 260 or-
ders is close to the full-order model with n = 38476 orders, and the error is plotted
in Figure 5.6. Up to frequency 0.8[Hz], the error induced by reduction is approx-
imately below 10−10, and the error is increasing slowly for higher frequencies.
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Figure 5.5 shows an accurate fit of the low frequent frequency behavior of the
PSA system both in gain as well as in phase. This is due to the choice of expan-
sion points chosen: λ0 = [1010, 10] which is equal to frequency expansion points
at s0 = [10−10, 0.1]. We can suppress those high-frequency errors by adding more
points at higher frequency points.
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Figure 5.6: Error between the reduced-order uncertain LTI model and the full-
order LTI model: (∆e ? Pe) = (∆ ? P −∆r ? Pr).

5.4.b Case two: an LPV system

In this case, the parametric uncertainty of the system is due to the thermal con-
ductivity coefficient of the two materials in the stage frame and the carrier frame
θ = [κ1, κ2], and the nominal values are κ0

1 = 27, κ0
2 = 44.5 with variations of

24.4 ≤ κ1 ≤ 29.7 and 40.05 ≤ κ ≤ 48.95. The parameterized state space realiza-
tion of the system reads

Σ(θ) :=

{
ẋ(t) = A(θ)x(t) + bu(t)
y(t) = cTx(t)

with A(θ) = A0 + κ1A1 + κ2A2. (5.30)

Here dim(x) = 38476 and Θ = [24.4, 29.7] × [40.05, 48.95]. Similar to the previous
LTI study case, u denotes the input power and y represents the temperature of
NTC sensor. With the parametric upper bound and the lower bound, the LFT
system realization is

Σ(δ) :=

{
ẋ(t) = A(δ)x(t) + bu(t)
y(t) = cTx(t)

(5.31)
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here A(δ) = A(θ0) + δ1A1 + δ2A2 and A(θ0) = A0 + κ0
1A1 + κ0

2A2 and δ ∈
[δ1, δ2],−1 ≤ δi ≤ 1. This transformation from (5.30) to (5.31) can be obtained
via Theorem 5.1.

For generating the reduced-order uncertain LPV systems, the expansion points
consist of

λ0 ∈ {λ1
0, λ

2
0, λ

3
0} = {1010, 1010, 10}

δ1 ∈ {δ1
1 , δ

2
1 , δ

3
1} = {0,−1, 1} (5.32)

δ2 ∈ {δ1
2 , δ

2
2 , δ

3
2} = {0,−1, 1} (5.33)

and first set is (λ1
0, δ

1
1 , δ

1
2) = (1010, 0, 0) with associated moments (200, 50, 50), the

second set at (1010, 1, 1) with order (200, 50, 50) and the third set (10,−1,−1) with
order (100, 20, 20).

In addition, since the parameter expansion points δ1 in (5.32) and δ2 in (5.33) have
the same expansion point (0, 1,−1), we can further rewrite the A(δ) = A(θ0) +

δ1A1 + δ2A2 to A(δ) = A(θ0) + δ̃Ã1 where Ã1 = A1 +A2 with −1 ≤ δ̃ ≤ 1, and the
expansion points are

{λ1
0, δ̃

1} = {1010, 0}with order of {200, 50}
{λ2

0, δ̃
2} = {1010, 1}with order of {200, 50}

{λ3
0, δ̃

3} = {10,−1}with order of {100, 20}

As we see, the A(δ) = A(θ0) + δ̃Ã1 with δ̃0 = [0; 1;−1] is equivalent to A(δ) =
A(θ0)+δ1A1 +δ2A2 with [δ1, δ2] at [0, 0; 1, 1;−1,−1]. And the order of the reduced
order model is further reduced from 740 to 620.

In Figure 5.7, Figure 5.9 and Figure 5.11, the frequency response of the full-order
uncertain LPV model and two reduced-order uncertain LPV models at the ex-
pansion points are given. Both reduced models closely match with the full-order
model, respectively. The corresponding error between the full-order and the reduced-
order model are shown in Figure 5.8, Figure 5.10 and Figure 5.12. Based on the
results, the approximation errors are all below 10−4 for both magnitude and phase
plots. Notice that we only generate one set of projection matrices {V,W} and re-
construct the two reduced-order models at 3 different uncertain values.

5.5 Conclusion

In this chapter, we have presented parametric moment-matching based techniques
for reducing the state order while preserving the uncertainty of large-scale uncer-
tain systems. Two type of systems are considered in this chapter: uncertain LTI
systems and uncertain LPV systems. Both systems are described by an LFT with a
constant nominal plant on a structured uncertainty set, and systems are assumed
to be stable for the uncertain set. The fidelity of the reduced uncertain systems is
well demonstrated by two real-world models.
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Figure 5.7: Frequency response of three models at nominal values.
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and δ̃1, respectively.
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Figure 5.9: Frequency response of three models at lower bound.
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Figure 5.10: Error between the full-order uncertain LPV model and two different
reduced-order uncertain LPV models: (∆e ? Pe) = (∆ ? P − ∆r ? Pr) at {δ3
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and δ̃3, respectively.
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Frequency response of the parameterized LPV models at upper bound
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Figure 5.11: Frequency response of three models at upper bound.
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Stability and dissipation
analysis for thermal systems
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Thermodynamics, in contrast, is concerned with the macroscopic con-
sequences of the myriads of atomic coordinates that, by virtue of the
coarseness of macroscopic observations, do not appear explicitly in a
macroscopic description of a system.

Herbert B. Callen (1919-1993)
6

Thermodynamic equilibrium
and stability analysis of

thermal systems

An entropy related function is introduced to serve as a Lyapunov func-
tion candidate. Stability of a themodynamic equilibrium is defined

as a point-to-set property and it is shown how this property is verifiable
through a suitable Lyapunov function. We show that the proposed Lya-
punov function naturally extends to assess the stability and passivity of
interconnected thermal systems. Two examples are given to demonstrate
the time evolution of the Lyapunov function.

The understanding of thermal behaviour plays an increasingly vital role to en-
hance the performance of high-precision systems. These systems often consist
of a large number of components and multi-physics interactions. To character-
ize such interactions, the coupled balance equations, encoding geometric struc-
tures, are used to describe the evolution of different physical quantities in space
and time. Although many energy-based methods and tools, e.g., [163, 5], have
been developed for modelling and control synthesis of such multi-physics sys-
tems, a rigorous integration of the second law of thermodynamics is often lacking.
The entropy-based methods [54, 63, 142] are developed using the entropy-balance
equation, as these methods permit to include the irreversible processes.

In general, from energy perspective, conservation laws and energy functions are
often used to prove stability of equilibria of systems, to analyze their behavior,
and for purposes of control and optimization. The role of Lyapunov functions in
autonomous systems, together with their generalizations in the direction of open
dynamical systems, passive and dissipative dynamical systems, bond-graph the-
ory and port-Hamiltonian systems are fundamental in modern systems theory

101
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[101, 171, 172]. The essence of these methodologies lies in the observation that the
efficiency of many physical processes is limited by their energy storage and the
amount of energy that has been supplied by its environment. Indeed, Carnot’s
principle claims the limited efficiency of heat engines; in Hamiltonian and Lag-
rangian mechanics, the recoverable energy is always bounded by the Hamiltonian
or Lagrangian function; in an ideal reversible thermodynamical process, all heat
can be converted into work.

In the last decades, non-equilibrium thermodynamics has been developed as a re-
search field, aimed at describing physics of thermal processes beyond and away
from thermodynamic equilibrium. In particular, it aims at incorporating the time-
course of intensive variables such as temperature and pressure and to generalize
the concept of entropy to thermal states that are not in equilibrium. Starting with
Onsager’s reciprocal relations [126, 127] in 1931, important contributions on non-
equilibrium thermodynamics have been made by Denbigh [61] on steady state
principles, De Groot’s work on linear irreversible processes [55, 54] and Prigo-
gine’s minimum entropy production principle [139, 104] that has been extended
to the theory of entropy generation minimization by Bejan [27]. This theory claims
that the maximum efficiency of a thermodynamic system is achieved while the
dissipated energy is minimal.

For many applications, quadratic Lyapunov functions have been widely used to
provide insight in the qualitative behavior of systems. Although in [59], a quad-
ratic function of temperature is proposed to satisfy Lyapunov stability criteria,
these functions do not naturally inherit the energy attributes of thermodynamic
systems, and only point-wise stability can be derived using such Lyapunov func-
tions. In this chapter, we propose an alternative function, directly related to en-
tropy increase, to prove stability properties of thermal systems that are away from
their thermodynamic equilibrium.

The main contributions of this work can be summarized as follows: (1) We form-
ally distinguish between the concept of an equilibrium (steady state) of a dynam-
ical system described by differential equations and a thermal equilibrium of a
thermodynamic system. We show that not every equilibrium is a thermodynamic
equilibrium. In order to avoid confusion in the sequel, we refer the steady state
in the sense of the equilibrium in dynamical system theory. (2) We propose a
physically relevant Lyapunov function, which characterizes thermal dissipation
by entropy generation. It is shown that this function characterizes the Lyapunov
stability of any thermodynamic equilibrium for the system we consider. (3) We
show the usage of this function for both distributed and lumped thermodynamic
models describing thermal conduction.

This chapter is organized as follows. Section 6.1 introduces a number of fun-
damental concepts of quasi-static and time-dependent thermodynamics. These
include entropy balance (second law of thermodynamics), and the definition of
thermal equilibria. In Section 6.2, we give the derivation of the physically relev-
ant Lyapunov function and the corresponding stability analysis for both infinite-
dimensional and finite-dimensional systems. In Section 6.3, some simulation res-
ults are given to validate the equilibrium analysis and the stability analysis based
on the proposed Lyapunov function. Conclusions are given in Section 6.4.
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We first give some notational conventions that will be used in the chapter. The col
operator stacks its arguments in a column vector as in y = col(y1, · · · , yn). ∇ is the
gradient operator with ∇f := col( ∂f∂yi | i = 1, . . . , n) for a differentiable function
f : Rn → R. Its divergence ∇ · f =

∑n
i=1

∂f
∂yi

and its Laplacian ∇2f = ∇ · (∇f) =∑n
i=1

∂2f
∂y2i

. The directional derivative ∂f
∂n̄ = ∇f · n̄.

A real-valued continuously differentiable function V : G → R is positive definite on
a neighborhood G of x∗ if V (x∗) = 0 and V (x) > 0 for any x 6= x∗ in G. If it satisfies
V (x) ≥ 0 for any x 6= x∗ in G, then V is said to be positive semidefinite. A function
α : [0, a) → R+ = [0,∞) is of class K if it is continuous, strictly increasing, and
α(0) = 0.

6.1 Thermodynamics fundamentals

To clarify the terminology used in thermodynamics, we review some essential
definitions that are subjected to analysis. The system is referred to the study sub-
ject, which includes the collection of matter, the region in space. The surroundings
is the portion of the region in space outside the system selected for analysis. The
systems and the surroundings are separated by the surface called boundary. Fol-
lowing the authoritative work of [46], a (macroscopic homogeneous) thermody-
namic system is described by extensive and intensive variables whose behavior is a
subset

T ⊂ X ext ×X int

where the extensive variables

xext = col(U, S, V,M,N1, · · · , Nr) ∈ X ext

consist of internal energy U , entropy S, volume V , massM and the mole numbers
Ni of the r constituent chemical components. The intensive variables

xint = col(T, P, µi, · · · , µr) ∈ X int

consist of temperature T , pressure P and the electro-chemical potentials µi of each
component. The extensive variables xext are related either by an energetic funda-
mental relation

U = U(S, V,N1, · · · , Nr)
or an entropic fundamental relation

S = S(U, V,N1, · · · , Nr). (6.1)
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Either of these relations define the intensive variables xint through the partial de-
rivatives

T :=

(
∂U

∂S

)
V,N1··· ,Nr

, P := −
(
∂U

∂V

)
S,N1,··· ,Nr

, µi :=

(
∂U

∂Ni

)
S,V,··· ,Nk,···

1

T
:=

(
∂S

∂U

)
V,N1··· ,Nr

,−P
T

:= −
(
∂S

∂V

)
S,N1,··· ,Nr

,
µi
T

:=

(
∂S

∂Ni

)
S,V,··· ,Nk,···

. (6.2)

See [46, 145]. The first law of thermodynamics claims the preservation of internal
energy expressed by Gibbs’ equation

dU = TdS − PdV +

r∑
i=1

µidNi. (6.3)

where TdS is the quasi-static flux of heat delivered to the system, −PdV is mech-
anical work done on the system and

∑r
i=1 µidNi represents quasi-static chemical

work done on the system. A similar expansion applies to the entropic representa-
tion and reads

dS =
1

T
dU +

P

T
dV −

r∑
i=1

µi
T

dNi. (6.4)

6.1.a Irreversible thermodynamics

We characterize the rate of the state as the flux, which is defined by

Ju ≡
dU

dt
, Jv ≡

dV

dt
, Jni ≡

dNi
dt

. (6.5)

Here Ju, Jv, Jni denote the flux of the internal energy, the volume and the mole
numbers, respectively. Under the assumption that xext and xint represent a quasi-
static process consisting of an ordered succession of equilibrium states [46, 107],
we may derive the local balance equation for the time evolution of state variables
according to [46, p. 309]

dS

dt
=
∂S

∂U

dU
dt

+
∂S

∂V

dV
dt
−

r∑
i=1

∂S

∂Ni

dNi
dt

. (6.6)

By substituting (6.2)

dS
dt

=
1

T

dU
dt

+
P

T

dV
dt
−

r∑
i=1

µi
T

dNi
dt

. (6.7)

Define the rate of mechanical work Ẇm := −P dV
dt , the rate of chemical work

Ẇc :=
∑r
i=1 µi

dNi
dt and the rate of heat flow Q̇ := T dS

dt (all in Joule per second).
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The time evolution of (6.6) then leads to the balance equation

dU
dt

= Q̇+ Ẇc + Ẇm

which may be viewed as an extension of the first law of thermodynamics to non-
equilibrium states [60]. Notice that the Ẇm, Ẇc and Q̇ are meant symbolically
here to denote the rate of quantities, respectively. A wide range of macroscopic
systems has been studied in this context. See, e.g., [54, 106, 73, 61, 139, 100].

6.1.b Entropy generation

According to the fundamental postulate of thermodynamics [54], the entropy change
of a system can be decomposed according to

dSsys
dt

=
dSe
dt

+
dSi
dt

, (6.8)

where Se is the total entropy supplied by its surrounding across the external
boundary of the system and Si denotes the total entropy production due to pro-
cesses in the interior of the system. The change in the entropy of a system is
associated with the heat flow and the mass flow but not the work flow P dV

dt [145].
Irreversibility is the difference between reversible work and actual work and leads
to a net increase in entropy. In this chapter, the Se we consider can be contributed
by two parts: the mass flow Se,m and heat flow Se,q :

Se := Se,m + Se,q (6.9)

Specifically, we have the following entropy balance equation

dSsys
dt

=

N∑
i=1

ṁiŝi +
Q̇

T
+ Sgen, (6.10)

and the here ṁi denotes the net rate of the ith mass flow mi into or out of the
system and ŝi = Se,m/mi is the entropy per unit mass. Q̇/T represents the rate of
entropy flow Se,q due to the heat flow across the boundary and Sgen characterizes
the internal entropy generation within the system (6.8). The entropy generation
rate is

Sgen =
dSi
dt

. (6.11)

It is important to remark that Sgen = 0 for reversible processes, while Sgen > 0 for
irreversible processes.

6.1.c Thermodynamic equilibria

In this chapter we distinguish between thermodynamic equilibria and the steady
state of autonomous differential equations. In order to avoid confusion in the
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sequel, (·)? denotes the thermodynamic equilibrium and we refer the (·)∗ to the
steady state. A thermodynamic equilibrium is defined as a state x = col(xext, xint)
that (1) does not vary with time; (2) is spatially uniformly distributed, e.g., without
temperature or pressure gradients; (3) causes no flow of heat, mass, or work
between the system and its surroundings; (4) causes the net rate of all chemical
reactions to be zero.

The first requirement demands a state variable at equilibrium x? in (6.6) to be
time-invariant:

x? ∈ X ext ×X int =⇒ dx?

dt
= 0. (6.12)

The second requirement imposes a consensus constraint addressed by [125] and [46]
which states that the equilibrium is uniformly established at all compartments of
a composite system. This phenomenon is known as the equipartition of energy, that
was elaborated by [32, 115, 133] and requires a uniform spatial distribution of state
variables in thermodynamic equilibrium:

x? ∈ X ext ×X int =⇒ ∇x? = 0. (6.13)

The third condition states that

x? ∈ X ext ×X int =⇒ ∇x? · n̄ = 0 on ∂G (6.14)

where ∂G denotes the boundary of the geometry of the system and n̄ is an outward
pointing unit vector at the boundary. The fourth condition establishes the chem-
ical equilibrium [153]

∑r
i=1 µ

?
i v
?
i = 0 where vi denote the stoichiometric coeffi-

cients.

Definition 6.1 For a dynamic system ẋ = f(x, t) defined on a geometric domain G, let
∇x · n̄ = γ on its boundary ∂G. A point x? is in thermodynamic equilibrium (in the
absence of chemical reactions) if

1. it is time-invariant: dx
?

dt = 0,

2. it satisfies the equipartition property∇x? = 0,

3. it is independent of interaction across the boundary∇x? · n̄ = 0 on ∂G.

Remark 6.1 For (autonomous) dynamical systems described by ordinary differential equa-
tions, the steady state is a constant solution to the differential equation. The steady state
in dynamical systems only meets the first requirement in Definition 6.1. In particular, a
dynamical system can still be at steady state while the inflow rate is equal to the outflow
rate. Hence, a dynamical system can be at steady state without being at thermodynamic
equilibrium if (2) or (3) are not satisfied. See Figure 6.1 for an illustration of the various
requirements.
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n̄ ·∇x⋆ = 0∇x⋆ = 0

Figure 6.1: A set of steady state x∗ (blue frame) and its subset of thermodynamic
equilibrium x? (red frame).

6.2 Stability of thermodynamic systems

In this section, we analyse the stability of thermodynamic equilibria. For an ex-
ample of thermal conduction in a system described by partial differential equa-
tions (PDE), we present a Lyapunov function that warrants stability of a thermo-
dynamic equilibrium. A similar example is given in the second subsection for a
system described by ordinary differential equations.

6.2.a Equilibria in distributed systems

Consider a model of 1-dimensional thermal conduction in a solid, as depicted in
Figure 6.2, whose governing equation, boundary conditions and initial condition
are given by

L0

∂G G

r

Figure 6.2: Heat conduction in a 1-dimensional solid with geometry G and bound-
ary ∂G (dashed line).

ρcp
∂T (r, t)

∂t
+∇ · J(r, t) = 0 in G, (6.15a)

∇T (r, t) · n̄ = γ on ∂G, (6.15b)
T (r, 0) = T0(r) at initial time t = 0. (6.15c)

Here, T : G × R≥0 → R>0 is an analytic function of the 1-dimensional domain
G that represents temperature. The heat flux J(r, t) := −κ∇T (r, t), r ∈ G where
κ > 0 assumed constant throughout the medium represents the heat transfer coef-
ficient. Note that the notation J(r) is also used so as to represent J(r) = −κ∇T (r)
where, in this notation, T is interpreted as a distribution of temperature with T (r)
the temperature at location r. Density and heat capacity of the solid are defined
by ρ and cp, respectively. The case where γ = 0 corresponds to an isolated system.
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We assume a time-independent non-positive constant γ. For every time instance
t ≥ 0, the temperature T (·, t) is assumed to be a mapping from G to R>0. The set
of all such mappings is denoted by D. With a given initial condition T0 ∈ D and
γ defined on ∂G , we will assume that T (r, t), with r ∈ G, t ≥ 0 is uniquely defined
by (6.15).

Let D be equipped with an inner product

〈T1, T2〉 :=

∫
G
T1(r)T2(r) dr (6.16)

where T1, T2 ∈ D. Then (D, 〈·, ·〉) becomes an inner product space with induced
norm

‖T‖ :=
√
〈T, T 〉. (6.17)

Given the general form (6.8) and the heat conduction equation mentioned above,
we can derive the entropy balance equation for (6.15) with ∂r = r̄

d
dt
Ssys(T (r, t)) = −

∫
∂G

J(r)

T (r)
· n̄ dr̄ +

∫
G
J(r) · ∇ 1

T (r)
dr. (6.18)

The detailed derivation is given in Appendix 6.A. Since γ is assumed constant
in (6.15b), the entropy flux across the boundary ∂G is constant. The sign of this
term is determined by the outward pointing direction of the normal r̄. The second
term denotes the entropy generation within the system, that we will propose as a
candidate Lyapunov function. Let Sgen : D → R be defined as

Sgen(T ) :=κ‖∇(lnT )‖2

=

∫
G
J(r) · ∇ 1

T
(r) dr. = −κ

∫
G
∇T · ∇ 1

T
(r) dr (6.19)

Thus, Sgen(T ) is a positive semidefinite function on D. The steady state solution
T ∗ of (6.15a) satisfy κ∇2T ∗ = 0 and therefore have constant gradient ∇T ∗. For
the case of the constant ∇T ∗ 6= 0, the Sgen(T ∗) does not vanish at the steady state
T ∗. For the case of the constant ∇T ∗ = 0, the Sgen is equal to zero. Overall, the
Sgen(T ) is positive semidefinite on a neighborhood of T ∗.

Theorem 6.2 Let E denote the set of all thermodynamic equilibrium points of the system
(6.15). Then any T ? ∈ E is Lyapunov stable. Moreover, the function Sgen : D → R
defined by (6.19) is a Lyapunov function in the sense that Sgen is positive definite on a
neighborhood of T ? ∈ D and Ṡgen(T ) ≤ 0 for all T ∈ D.

Proof. Let T ? ∈ E and consider Sgen defined in (6.19). Then Sgen(T ) ≥ 0 and
since T ? satisfies (6.13), it follows from (6.19) that Sgen(T ?) = 0. Sgen is therefore
positive definite on a neighborhood of T ?. For any time varying temperature
distribution T (r, t) we assume that the frozen time instant T (·, t) belongs to D.
Then the composite function t 7→ Sgen(T (r, t)) is well defined and its derivative
with respect to time is denote Ṡgen(T ) in the sequel. Then, applying the chain
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rule, we find the time derivative Ṡgen(T ) of Sgen(T (r, t)) along solutions of (6.15)
is given by

dSgen(T )

dt
:= Ṡgen(T )=− κ

∫
G

[
(
∂

∂t
∇T )·∇1

T
+∇T ·( ∂

∂t
∇ 1

T
)

]
dr

=− κ
∫
G

[
∇Ṫ · ∇ 1

T
+∇T ·∇

( ∂
∂t

1

T

)]
dr. (6.20)

where Ṫ also refers to the time derivative d
dtT (r, t). Using the Divergence theorem

(integration by parts to higher dimensions) it follows that∫
G
∇Ṫ · ∇ 1

T
dr =

∫
G
∇ · (Ṫ∇ 1

T
) dr −

∫
G
Ṫ∇2 1

T
dr,

=

∫
∂G
Ṫ∇ 1

T
· n̄ dr̄ −

∫
G
Ṫ∇2 1

T
dr (6.21)∫

G
∇T · ∇

( ∂
∂t

1

T

)
dr =

∫
G
∇ · ( ∂

∂t

1

T
∇T ) dr −

∫
G

∂

∂t

1

T
∇2T dr,

=

∫
∂G

∂

∂t

1

T
∇T · n̄dr̄ −

∫
G

∂

∂t

1

T
∇2T dr (6.22)

Substitute (6.21),(6.22) in (6.20) to infer that

Ṡgen(T ) = −κ
∫
∂G

[
(
∂

∂t

1

T
∇T ) + (Ṫ∇ 1

T
)

]
· n̄ dr̄ + κ

∫
G

[
Ṫ∇2 1

T
+
( ∂
∂t

1

T

)
∇2T

]
dr.

(6.23)

In the following, we take a closer look at the first three terms at the right-hand
side of (6.23), using the Divergence theorem, it can be derived as

− κ
∫
∂G

[
∂

∂t

1

T
∇T + Ṫ∇ 1

T

]
· n̄ dr̄ + κ

∫
G
Ṫ∇ · (∇ 1

T
) dr

=κ

∫
∂G

2

|T |2 Ṫ∇T · n̄ dr̄ − κ
∫
G
Ṫ∇ · ( 1

|T |2∇T ) dr

=κ

∫
∂G

1

|T |2 Ṫ∇T · n̄ dr̄ (6.24)

which vanish because of the boundary condition (6.15b). Moving from this, (6.23)
is therefore equal to

Ṡgen(T ) =κ

∫
G

( ∂
∂t

1

T

)
∇2T dr = −κ

∫
G

1

|T |2 Ṫ∇
2T dr.

By substituting the model equation (6.15a) this gives

Ṡgen(T ) = −ρcp
∫
G

∣∣ Ṫ
T

∣∣2 dr = −ρcp
∥∥ d

dt
(lnT )

∥∥2 (6.25)
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or, equivalently,

Ṡgen(T ) = − κ2

ρcp

∥∥∇2T

T

∥∥2
. (6.26)

It follows that Ṡgen(T ) ≤ 0 for all T ∈ D and Ṡgen(T ?) = 0. We can conclude that
Sgen(T ) is a Lyapunov function proving Lyapunov stability of T ? ∈ E. �

Theorem 6.2 proves stability of thermodynamic equilibrium points of the model
(6.15), not their asymptotic stability. Indeed, the set E generally does not consist of
isolated equilibrium points, which means that Ṡgen is not negative definite in an
open neighborhood of T ? ∈ E. The following result establishes uniform asymp-
totic stability to the set E. For this, let the distance between T ∈ D and the set E of
thermodynamic equilibria of (6.15) be defined by

dist(T,E) := inf
T?∈E

‖T − T ?‖2. (6.27)

Theorem 6.3 Let E denote the set of all thermodynamic equilibrium points of the system
(6.15). Then E is uniformly asymptotically stable in the sense that limt→∞ dist(T,E) = 0
for any solution T of (6.15). In particular, there exist functions α1, α2, α3 of class K such
that

α1(dist(T,E)) ≤ Sgen(T ) ≤ α2(dist(T,E))

Ṡgen(T ) ≤ −α3(dist(T,E))

for all T ∈ D.

Proof: The proof follows a similar reasoning as in [Theorem 4.1] [101].The differ-
ence is that the upper and lower bound on Sgen are measures of dist(T,E). We
claim that the distance from T ∈ D to the set E of thermodynamic equilibria is
dist(T,E) = ‖∇T‖2. For∞ > T ≥ 1 and κ > 0 we have

Sgen(T ) = κ
∥∥∇T
T

∥∥2 ≤ κ‖∇T‖2‖T−1‖2 ≤ κν̄2 dist(T,E) = α2(dist(T,E))

where 0 < sup∞>T≥1 ‖T−1‖ = ν̄ ≤ 1. Similarly, for the lower bound, we have

Sgen(T ) = κ‖∇T
T
‖2 ≥ κ

∥∥∇Tν∥∥2
= κν2‖∇T‖2 = α1(dist(T,E))

where 0 < inf∞>T≥1
1
T = ν ≤ 1. By construction, α1(dist(T ?,E)) = α1(0) = 0 and
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α2(dist(T ?,E)) = α2(0) = 0. Next, we claim for all real positive ρCp ∈ R>0,

Ṡgen(T ) = − κ2

ρcp
‖∇

2T

T
‖ ≤ − κ2

ρcp
‖∇2Tν‖2

= −ν
2κ2

ρcp
‖∇2T‖2 (6.28)

≤ −ν
2κ2λ

ρcp
‖∇T‖2

We prove this claim as follows. Using integration by parts, ‖∇T‖2 infers∫
G
∇T ∇T dr = −

∫
G
T ∇2T dr +

∫
G
∇ · (T ∇T )dr

= −
∫
G
T ∇2T dr +

∫
∂G
T∇T · n̄ dr

≤ −
∫
G
T ∇2T dr + γmax{T (0), T (L)}

≤
∫
G
−∇2T T dr. (6.29)

Notice that the γmax{T (0), T (L)} ≤ 0 is derived by the divergence theorem and
the max{T (0), T (L)} denotes the highest boundary temperature. Using Holder’s
inequality, (6.29) can be rewritten as∫

G
∇T ∇T dr ≤

∫
G
−∇2T T dr ≤

(∫
G
| − ∇2T |2dr

) 1
2
(∫
G
|T |2dr

) 1
2

.

We note that for the given boundary condition (6.15b), there exist such an eigen-
value

λ = min
T∈D,T 6=0

∫
G |∇T |2dr∫
G |T |2dr

≥ 0.

(The proof is given in [65] and the references therein). Consequently, we have

‖∇T‖2 ≤ λ−1‖∇2T‖2. (6.30)

By substituting the (6.30) into (6.28), we prove the claim

Ṡgen(T ) ≤ −ν
2κ2λ

ρcp
‖∇T‖2 = −α3(dist(T,E)).

Therefore, Ṡgen(T ) ≤ −α3(dist(T,E)) for a function α3 of class K is proved. 2
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6.2.b Equilibria in lumped composite systems

In this subsection we give a stability result for thermodynamic equilibria in sys-
tems described by ordinary differential equations. For this, consider a spatial par-
titioning of the geometry G depicted in Figure 6.2, leading to the composite system
shown in Figure 6.3 with two disjoint geometries G1 and G2. In this formulation,

∂G

r0 2L

G1 G2T1 T2

∆Q̇Q̇l Q̇r

Figure 6.3: Composite system of two compartments G := G1 ∪ G2. The Q̇l and Q̇r
denote the heat energy interaction at the left side and right side, respectively.

the system dynamics of the two compartments are described by the ordinary dif-
ferential equations

ρ1cp1Ṫ1(t) = Q̇l −∆Q̇ in G1, (6.31a)

ρ2cp2Ṫ2(t) = ∆Q̇− Q̇r in G2 (6.31b)

with initial conditions

T1(0) = T0,1, T2(0) = T0,2. (6.32)

Here ∆Q̇ denotes the rate of heat flow between G1 and G2, represented by Four-
ier’s law ∆Q̇ = κ(T1−T2) where κ > 0. The density and the specific heat capacity
of each subsystem are given by ρi and cpi, i = 1, 2, respectively. Notice that the
Q̇l in (6.31a) and the Q̇r in (6.31b) are considered as the heat inflow of G1 and the
heat outflow of G2.

From the governing equations, the entropy balance (6.8) can be derived by divid-
ing (6.31) by T1 and T2. This gives

ρ1cp1

Ṫ1

T1
=
Q̇l
T1
− ∆Q̇

T1
, ρ2cp2

Ṫ2

T2
=

∆Q̇

T2
− Q̇r
T2
. (6.33)

The left-hand sides in (6.33) can be rewritten as

ρicpi
Ṫi
Ti

= ρicpi
d

dt
[lnTi(t)].

This logarithmic form, also derived in [90], shares the form of Boltzmann’s en-
tropy formula. For the composite system, the first law of thermodynamics is ob-
tained by adding the equations (6.31) which gives

ρ1cp1Ṫ1 + ρ2cp2Ṫ2 = Q̇l − Q̇r. (6.34)
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Similarly, the entropy balance is inferred by adding the equations (6.33),

dSsys
dt

=
d
dt

[
ln(ρ1cp1Ṫ1) + ln(ρ2cp2Ṫ2)

]
=
Q̇l
T1
− Q̇r
T2

+ Sgen(T1, T2) (6.35)

where the entropy production is

Sgen(T1, T2) = κ
(T1 − T2)2

T1T2
. (6.36)

In this derivation, we set Q̇l = Q̇r = 0 as an input-free system. Notice that
Sgen(T1, T2) > 0 as long as T1 6= T2 and Sgen(T1, T2) = 0 if and only if T1 = T2.
Taking the time derivative of Sgen along solutions (T1, T2) of (6.31) gives

Ṡgen(T1, T2) = −κ (T 2
1 − T 2

2 )(T1Ṫ2 − T2Ṫ1)

T 2
1 T

2
2

(6.37)

Substitute (6.31) to infer that

Ṡgen(T1, T2) = −1

2

T1 + T2

T 2
1 T

2
2

(
Ṫ 2

1

(
ρ1cp1T2 +

ρ1cp1

2ρ2cp2

)
+Ṫ 2

2

(
ρ2cp2T1 +

ρ2cp2

2ρ1cp1

))
(6.38)

or, equivalently,

Ṡgen(T1, T2) =−κ2 (T1 − T2)2(T1 + T2)

T 2
1 T

2
2

( T1

ρ2cp2

+
T2

ρ1cp1

)
. (6.39)

This proves that Sgen is a Lyapunov function for the thermodynamic equilibria of
the composite system.

Theorem 6.4 The set E = {(T1, T2) | T1 = T2} consist of the thermodynamic equilib-
rium points of the system (6.31). Any (T ?1 , T

?
2 ) ∈ E is Lyapunov stable. Moreover, the

function Sgen defined in (6.36) is a Lyapunov function.

Next, we derive the equivalent of Theorem 6.3 for the composite system. Let

dist((T1, T2),E) := inf
(T?1 ,T

?
2 )∈E

ω1(T1 − T ?1 )2 + ω2(T2 − T ?2 )2. (6.40)

where ωi > 0, i = 1, 2 is positive weight. The weighting factors ωi can be made
material dependent and, for example, be chosen as ωi = ρicpi .

Theorem 6.5 Let E := {(T ?1 , T ?2 ) | T ?1 = T ?2 } be the set of all thermodynamic equi-
librium points of (6.31). Then E is uniformly asymptotically stable in the sense that
limt→∞ dist(Ti(t),E) = 0 for any solution Ti(t) of (6.31). In particular, there exist
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functions α1, α2, α3 of class K such that

α1(dist((T1, T2), E)) ≤ Sgen(T1, T2) ≤ α2(dist((T1, T2), E))

Ṡgen(T1, T2) ≤ −α3(dist((T1, T2), E))

for all T ∈ D.

Proof: The proof follows the same lines as the proof of Theorem 6.3.

First, the thermodynamic equilibria with respect to the shortest distance can be
obtained by solving the following optimization problem

min
T?1 ,T

?
2 ∈E

ω1(T1 − T ?1 )2 + ω2(T2 − T ?2 )2

s.t. E := {T ?|T ?1 = T ?2 }, T ∈ D

And the local thermodynamic equilibria with respect to the shortest distance is

dist(T,E) =
ω1ω2

ω1 + ω2
(T1 − T2)2.

Then, the upper bound of the Sgen(T1, T2) is

Sgen(T1, T2) = κ‖T1 − T2‖2(T1T2)−1 ≤ ϕ̄κω1 + ω2

ω1ω2
dist(T,E) = α2(dist(T,E))

where 0 < sup∞>T1,T2≥1(T1T2)−1 = ϕ̄ ≤ 1. Similarly, the lower bound is

Sgen(T1, T2) ≥ ϕκ
∥∥T1 − T2

∥∥2
= ϕκ

ω1 + ω2

ω1ω2
dist(T,E) = α1(dist(T,E))

where 0 < inf∞>T1,T2≥1(T1T2)−1 = ϕ ≤ 1. Under such construction, α1(dist(T ?,
E)) = α1(0) = 0 and α2(dist(T ?,E)) = α2(0) = 0. It is readily shown that there
exists such a function α3 of class K

Ṡgen ≤ −ψκ2(T1 − T2)2 = α3(dist(T,E))

where 0 < ψ = inf1≤T1,T2<∞(T−1
1 + T−2

2 )((T1ρ2cp2
)−1 + T2ρ1cp1

). Thus, the proof
is completed. �

The proposed Lyapunov function is the irreversible thermal energy associated
with the temperature gradient between any two nodes. One indication is that tem-
perature difference inside the system boundary, induced by thermal energy trans-
fer, results in increasing irreversible entropy that is considered as thermal energy
loss. Furthermore, the construction of such Lyapunov functions is independent
of the complexity of the thermal system. The extension to n-compartment system
will be covered in the further research.
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6.3 Numerical example

In this section we provide a computation of the temperature distribution in the
1D heat conduction example given in Figure 6.2. Consider the spatial geometry
G = [0, L] with L > 0 the length of a beam. Let its temperature distribution
be described by (6.15a) with Dirichlet/Neumann boundary condition and initial
conditions given by

Dirichlet & IC:


T (0, t) = T0(t)

T (L, t) = TL(t)

T (r, 0) = β sin( πLr) + T0L(r)

(6.41)

Neumann & IC:


∂T (0,t)
∂r = 0

∂T (L,t)
∂r = 0

T (r, 0) = cos(πrL ) + ξ

(6.42)

where T0L(r) = T0 + r TL−T0

L and ξ > 0. The solutions are obtained by separation
of variables and read for the Dirichlet boundary condition

T (r, t) = T0L(r) + β sin(
πr

L
) exp(−π

2

L2

κ

ρcp
t)

with β > 0, and for the Neumann boundary condition

T (r, t) = ξ + cos(
πr

L
) exp(−π

2

L2

κ

ρcp
t).

For t→∞ the two types of boundary conditions exhibit two different stable ther-
modynamic equilibria as depicted in Figure 6.4 and Figure 6.5.
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!
<latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit><latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit><latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit>

T0
<latexit sha1_base64="dDRPsEcmzinHZS+fOBohl9MyYgo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNLbQhrLZbtqlm03YnQgl9Dd48aDi1T/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju5nffuLaiES1cJLyIKZDJSLBKFrJb/Vzd9qv1ty6OwdZJV5BalCg2a9+9QYJy2KukElqTNdzUwxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fuyUnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKPrIBcqzZArtlgUZZJgQmafk4HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt+eZX4F/WbuvtwWWvcFmmU4QRO4Rw8uIIG3EMTfGAg4Ble4c1Rzovz7nwsWktOMXMMf+B8/gAETo5a</latexit><latexit sha1_base64="dDRPsEcmzinHZS+fOBohl9MyYgo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNLbQhrLZbtqlm03YnQgl9Dd48aDi1T/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju5nffuLaiES1cJLyIKZDJSLBKFrJb/Vzd9qv1ty6OwdZJV5BalCg2a9+9QYJy2KukElqTNdzUwxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fuyUnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKPrIBcqzZArtlgUZZJgQmafk4HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt+eZX4F/WbuvtwWWvcFmmU4QRO4Rw8uIIG3EMTfGAg4Ble4c1Rzovz7nwsWktOMXMMf+B8/gAETo5a</latexit><latexit sha1_base64="dDRPsEcmzinHZS+fOBohl9MyYgo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNLbQhrLZbtqlm03YnQgl9Dd48aDi1T/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju5nffuLaiES1cJLyIKZDJSLBKFrJb/Vzd9qv1ty6OwdZJV5BalCg2a9+9QYJy2KukElqTNdzUwxyqlEwyaeVXmZ4StmYDnnXUkVjboJ8fuyUnFllQKJE21JI5urviZzGxkzi0HbGFEdm2ZuJ/3ndDKPrIBcqzZArtlgUZZJgQmafk4HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt+eZX4F/WbuvtwWWvcFmmU4QRO4Rw8uIIG3EMTfGAg4Ble4c1Rzovz7nwsWktOMXMMf+B8/gAETo5a</latexit>

T0.1
<latexit sha1_base64="4LeC63baaZgUTU7ReDjisrXwAuY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhrLZbtulm03YnQgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZelEph0PO+ndLa+sbmVnm7srO7t39QPTx6NEmmGQ9YIhPdjqjhUigeoEDJ26nmNI4kb0Xju5nfeuLaiEQ1cZLyMKZDJQaCUbRSq9nLPdef9qo1z/XmIKvEL0gNCjR61a9uP2FZzBUySY3p+F6KYU41Cib5tNLNDE8pG9Mh71iqaMxNmM/PnZIzq/TJING2FJK5+nsip7ExkziynTHFkVn2ZuJ/XifDwXWYC5VmyBVbLBpkkmBCZr+TvtCcoZxYQpkW9lbCRlRThjahig3BX355lQQX7o3rPVzW6rdFGmU4gVM4Bx+uoA730IAAGIzhGV7hzUmdF+fd+Vi0lpxi5hj+wPn8AeEMjs0=</latexit><latexit sha1_base64="4LeC63baaZgUTU7ReDjisrXwAuY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhrLZbtulm03YnQgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZelEph0PO+ndLa+sbmVnm7srO7t39QPTx6NEmmGQ9YIhPdjqjhUigeoEDJ26nmNI4kb0Xju5nfeuLaiEQ1cZLyMKZDJQaCUbRSq9nLPdef9qo1z/XmIKvEL0gNCjR61a9uP2FZzBUySY3p+F6KYU41Cib5tNLNDE8pG9Mh71iqaMxNmM/PnZIzq/TJING2FJK5+nsip7ExkziynTHFkVn2ZuJ/XifDwXWYC5VmyBVbLBpkkmBCZr+TvtCcoZxYQpkW9lbCRlRThjahig3BX355lQQX7o3rPVzW6rdFGmU4gVM4Bx+uoA730IAAGIzhGV7hzUmdF+fd+Vi0lpxi5hj+wPn8AeEMjs0=</latexit><latexit sha1_base64="4LeC63baaZgUTU7ReDjisrXwAuY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhrLZbtulm03YnQgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZelEph0PO+ndLa+sbmVnm7srO7t39QPTx6NEmmGQ9YIhPdjqjhUigeoEDJ26nmNI4kb0Xju5nfeuLaiEQ1cZLyMKZDJQaCUbRSq9nLPdef9qo1z/XmIKvEL0gNCjR61a9uP2FZzBUySY3p+F6KYU41Cib5tNLNDE8pG9Mh71iqaMxNmM/PnZIzq/TJING2FJK5+nsip7ExkziynTHFkVn2ZuJ/XifDwXWYC5VmyBVbLBpkkmBCZr+TvtCcoZxYQpkW9lbCRlRThjahig3BX355lQQX7o3rPVzW6rdFGmU4gVM4Bx+uoA730IAAGIzhGV7hzUmdF+fd+Vi0lpxi5hj+wPn8AeEMjs0=</latexit>

!<latexit sha1_base64="C/D6SaT4Yg5w2m/TSyK0onGNlX4=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlJDH7uiG5cVjC00oUymk3boZCbMTJQS+htuXKi49Wvc+TdO2goqeuDC4Zx7ufeeKGVUacf5sFZW19Y3Nktb5e2d3b39ysHhrRKZxMTHggnZi5AijHLia6oZ6aWSoCRipBtNLgu/e0ekooLf6GlKwgSNOI0pRtpIQSDpaKyRlOK+PKhUHbvVrNe8OnRsx2m4NbcgtYZ37kHXKAWqYInOoPIeDAXOEsI1ZkipvuukOsyR1BQzMisHmSIpwhM0In1DOUqICvP5zTN4apQhjIU0xTWcq98ncpQoNU0i05kgPVa/vUL8y+tnOm6GOeVppgnHi0VxxqAWsAgADqkkWLOpIQhLam6FeIwkwtrEVITw9Sn8n/g1u2U71161fbFMowSOwQk4Ay5ogDa4Ah3gAwxS8ACewLOVWY/Wi/W6aF2xljNH4Aest0/FH5G2</latexit><latexit sha1_base64="C/D6SaT4Yg5w2m/TSyK0onGNlX4=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlJDH7uiG5cVjC00oUymk3boZCbMTJQS+htuXKi49Wvc+TdO2goqeuDC4Zx7ufeeKGVUacf5sFZW19Y3Nktb5e2d3b39ysHhrRKZxMTHggnZi5AijHLia6oZ6aWSoCRipBtNLgu/e0ekooLf6GlKwgSNOI0pRtpIQSDpaKyRlOK+PKhUHbvVrNe8OnRsx2m4NbcgtYZ37kHXKAWqYInOoPIeDAXOEsI1ZkipvuukOsyR1BQzMisHmSIpwhM0In1DOUqICvP5zTN4apQhjIU0xTWcq98ncpQoNU0i05kgPVa/vUL8y+tnOm6GOeVppgnHi0VxxqAWsAgADqkkWLOpIQhLam6FeIwkwtrEVITw9Sn8n/g1u2U71161fbFMowSOwQk4Ay5ogDa4Ah3gAwxS8ACewLOVWY/Wi/W6aF2xljNH4Aest0/FH5G2</latexit><latexit sha1_base64="C/D6SaT4Yg5w2m/TSyK0onGNlX4=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlJDH7uiG5cVjC00oUymk3boZCbMTJQS+htuXKi49Wvc+TdO2goqeuDC4Zx7ufeeKGVUacf5sFZW19Y3Nktb5e2d3b39ysHhrRKZxMTHggnZi5AijHLia6oZ6aWSoCRipBtNLgu/e0ekooLf6GlKwgSNOI0pRtpIQSDpaKyRlOK+PKhUHbvVrNe8OnRsx2m4NbcgtYZ37kHXKAWqYInOoPIeDAXOEsI1ZkipvuukOsyR1BQzMisHmSIpwhM0In1DOUqICvP5zTN4apQhjIU0xTWcq98ncpQoNU0i05kgPVa/vUL8y+tnOm6GOeVppgnHi0VxxqAWsAgADqkkWLOpIQhLam6FeIwkwtrEVITw9Sn8n/g1u2U71161fbFMowSOwQk4Ay5ogDa4Ah3gAwxS8ACewLOVWY/Wi/W6aF2xljNH4Aest0/FH5G2</latexit>Tss
<latexit sha1_base64="RPLK3iMuZTswFNZ0+S1DZsC10kY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNG2hDWWz3bRrN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknd3O/80SVZlK0zDShQYxHgkWMYGOldmuQaT0bVGtu3c2BVolXkBoUaA6qX/2hJGlMhSEca93z3MQEGVaGEU5nlX6qaYLJBI9oz1KBY6qDLL92hs6sMkSRVLaEQbn6eyLDsdbTOLSdMTZjvezNxf+8Xmqi6yBjIkkNFWSxKEo5MhLNX0dDpigxfGoJJorZWxEZY4WJsQFVbAje8surxL+o39Tdh8ta47ZIowwncArn4MEVNOAemuADgUd4hld4c6Tz4rw7H4vWklPMHMMfOJ8/PsGPGg==</latexit><latexit sha1_base64="RPLK3iMuZTswFNZ0+S1DZsC10kY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNG2hDWWz3bRrN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknd3O/80SVZlK0zDShQYxHgkWMYGOldmuQaT0bVGtu3c2BVolXkBoUaA6qX/2hJGlMhSEca93z3MQEGVaGEU5nlX6qaYLJBI9oz1KBY6qDLL92hs6sMkSRVLaEQbn6eyLDsdbTOLSdMTZjvezNxf+8Xmqi6yBjIkkNFWSxKEo5MhLNX0dDpigxfGoJJorZWxEZY4WJsQFVbAje8surxL+o39Tdh8ta47ZIowwncArn4MEVNOAemuADgUd4hld4c6Tz4rw7H4vWklPMHMMfOJ8/PsGPGg==</latexit><latexit sha1_base64="RPLK3iMuZTswFNZ0+S1DZsC10kY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rNG2hDWWz3bRrN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy2gknd3O/80SVZlK0zDShQYxHgkWMYGOldmuQaT0bVGtu3c2BVolXkBoUaA6qX/2hJGlMhSEca93z3MQEGVaGEU5nlX6qaYLJBI9oz1KBY6qDLL92hs6sMkSRVLaEQbn6eyLDsdbTOLSdMTZjvezNxf+8Xmqi6yBjIkkNFWSxKEo5MhLNX0dDpigxfGoJJorZWxEZY4WJsQFVbAje8surxL+o39Tdh8ta47ZIowwncArn4MEVNOAemuADgUd4hld4c6Tz4rw7H4vWklPMHMMfOJ8/PsGPGg==</latexit>

Figure 6.4: Spatial temperature profiles with Dirichlet boundary condition. The
initial distribution t = 0, distribution at t = 0.1 and the steady state solution are
indicated by T0, T0.1 and Tss, respectively. The equilibrium in this plot is not a
thermodynamic equilibrium since the equipartition condition does not hold.
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!<latexit sha1_base64="VioxRhqukx+ROz32c0BDU58fNCM=">AAAB8XicdVBNSwMxEM3Wr1q/qh69BIvgqWSL2PZW9OKxgrWF7VKyabYNzW6WZFYpS3+GFw8qXv033vw3ZtsKKvpg4PHeDDPzgkQKA4R8OIWV1bX1jeJmaWt7Z3evvH9wa1SqGe8wJZXuBdRwKWLeAQGS9xLNaRRI3g0ml7nfvePaCBXfwDThfkRHsQgFo2Alr6/FaAxUa3U/KFdIlRDiui7OiVs/J5Y0m42a28BubllU0BLtQfm9P1QsjXgMTFJjPJck4GdUg2CSz0r91PCEsgkdcc/SmEbc+Nn85Bk+scoQh0rbigHP1e8TGY2MmUaB7YwojM1vLxf/8rwUwoafiThJgcdssShMJQaF8//xUGjOQE4toUwLeytmY6opA5tSyYbw9Sn+n3Rq1WaVXJ9VWhfLNIroCB2jU+SiOmqhK9RGHcSQQg/oCT074Dw6L87rorXgLGcO0Q84b595WJGW</latexit> <latexit sha1_base64="VioxRhqukx+ROz32c0BDU58fNCM=">AAAB8XicdVBNSwMxEM3Wr1q/qh69BIvgqWSL2PZW9OKxgrWF7VKyabYNzW6WZFYpS3+GFw8qXv033vw3ZtsKKvpg4PHeDDPzgkQKA4R8OIWV1bX1jeJmaWt7Z3evvH9wa1SqGe8wJZXuBdRwKWLeAQGS9xLNaRRI3g0ml7nfvePaCBXfwDThfkRHsQgFo2Alr6/FaAxUa3U/KFdIlRDiui7OiVs/J5Y0m42a28BubllU0BLtQfm9P1QsjXgMTFJjPJck4GdUg2CSz0r91PCEsgkdcc/SmEbc+Nn85Bk+scoQh0rbigHP1e8TGY2MmUaB7YwojM1vLxf/8rwUwoafiThJgcdssShMJQaF8//xUGjOQE4toUwLeytmY6opA5tSyYbw9Sn+n3Rq1WaVXJ9VWhfLNIroCB2jU+SiOmqhK9RGHcSQQg/oCT074Dw6L87rorXgLGcO0Q84b595WJGW</latexit> <latexit sha1_base64="VioxRhqukx+ROz32c0BDU58fNCM=">AAAB8XicdVBNSwMxEM3Wr1q/qh69BIvgqWSL2PZW9OKxgrWF7VKyabYNzW6WZFYpS3+GFw8qXv033vw3ZtsKKvpg4PHeDDPzgkQKA4R8OIWV1bX1jeJmaWt7Z3evvH9wa1SqGe8wJZXuBdRwKWLeAQGS9xLNaRRI3g0ml7nfvePaCBXfwDThfkRHsQgFo2Alr6/FaAxUa3U/KFdIlRDiui7OiVs/J5Y0m42a28BubllU0BLtQfm9P1QsjXgMTFJjPJck4GdUg2CSz0r91PCEsgkdcc/SmEbc+Nn85Bk+scoQh0rbigHP1e8TGY2MmUaB7YwojM1vLxf/8rwUwoafiThJgcdssShMJQaF8//xUGjOQE4toUwLeytmY6opA5tSyYbw9Sn+n3Rq1WaVXJ9VWhfLNIroCB2jU+SiOmqhK9RGHcSQQg/oCT074Dw6L87rorXgLGcO0Q84b595WJGW</latexit>

!
<latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit><latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit><latexit sha1_base64="PK/tsUo1vMvjkGPCMjA+Mw/ffqg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQiqLeiF48VjC20oWy2m3bpZjfsTpQS+jO8eFDx6r/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h88GJVpygKqhNLtiBgmuGQBchSsnWpGkkiwVjS6mfqtR6YNV/IexykLEzKQPOaUoJU6Xc0HQyRaq6detebVvRncZeIXpAYFmr3qV7evaJYwiVQQYzq+l2KYE42cCjapdDPDUkJHZMA6lkqSMBPms5Mn7olV+m6stC2J7kz9PZGTxJhxEtnOhODQLHpT8T+vk2F8GeZcphkySeeL4ky4qNzp/26fa0ZRjC0hVHN7q0uHRBOKNqWKDcFffHmZBGf1q7p3d15rXBdplOEIjuEUfLiABtxCEwKgoOAZXuHNQefFeXc+5q0lp5g5hD9wPn8ALJiRYA==</latexit>
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Figure 6.5: Spatial temperature profiles with Neumann boundary condition. The
same conditions as in Figure 6.4. The steady state in the this figure is a thermody-
namic equilibrium.

Besides, the time evolution of the entropy generation function (the proposed Lya-
punov function), together with the time derivatives plots for these two boundary
conditions (6.41) and (6.42) are given in the following figures.
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Figure 6.6: Time evolution of the Lyapunov function with two different boundary
conditions.
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6.4 Conclusion

This chapter considers thermodynamical systems beyond their quasi-static beha-
vior. We make an important conceptual distinction between thermodynamic equi-
libria of a system and equilibria in the sense of constant (time-positive invariant)
solutions of autonomous systems described by differential equations. We proved
the stability of thermodynamic equilibria in a distributed thermodynamical model
and in a composite lumped thermodynamical model. In both cases, a suitable Lya-
punov function has been derived from the first principle properties of the entropy
balance equation of the system. It is shown that this function represents entropy
generation for irreversible thermal processes and decays along the solutions of the
system towards thermodynamic equilibria. The set of thermodynamic equilibria
is proven to be uniform asymptotically stable.

6.A Derivation of entropy balance equation

We present the detailed derivation of the entropy balance equation (6.18). Start
with partial differential equation of (6.15a)

ρcp
∂T (r, t)

∂t
= −∇ · J(r, t) in G,

The Divergence theorem yields∫
G
ρcp

∂T (r, t)

∂t
dr =

∫
G
−∇ · J(r, t)dr.

By considering the internal energy U , the above equation can be rewritten as

dU

dt
=

∫
G

∂u(r, t)

∂t
dr,

∂u(r, t)

∂t
= ρcp

∂T (r, t)

∂t
(6.43)

here u(r, t) denotes the local internal energy at location r and time t. Using the
local form [103] of the Gibbs’ relation in (6.6) and the relation in (6.43), we have

∂u(r, t)

∂t
= T (r)

∂s(r, t)

∂t
⇐⇒ ∂s(r, t)

∂t
=

1

T (r)

∂(r, t)

∂t
=

1

T (r)
ρcp

∂T (r, t)

∂t

here the s represents the local entropy of the system. By substituting ρcp ∂T∂t with
∇ · J in (6.15a), it reads

∂s(r, t)

∂t
= − 1

T (r)
∇ · J(r) in G.
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Using the Divergence theorem, the entropy of the 1-D solid system in Figure 6.2 is

dSsys(r, t)
dt

=

∫
G

∂s(r, t)

∂t
dr = −

∫
G

1

T (r)
∇ · J(r)dr

= −
∫
G
∇
(
J(r)

T (r)

)
dr +

∫
G
J(r) · ∇ 1

T (r)
dr

= −
∫
∂G

J(r)

T (r)
· n̄ dr̄ +

∫
G
J(r) · ∇ 1

T (r)
dr,

here r̄ refers the location over the ∂G. Thus, the (6.18) is derived.



7
Dissipative properties of

thermal systems

This chapter embeds thermal systems in the classical theory of dissip-
ative dynamical systems. This theory views dissipation as a gen-

eric concept in which supply functions represent power and power ex-
change among system components and it treats storage functions as the
generalized notion of energy. We introduce a storage function that shows
that a class of thermal systems is dissipative for both time-independent
and time-dependent boundary conditions. Based on the entropy genera-
tion minimization theorem, we extend the storage function formulation to
systems where thermodynamic work is considered. Using the maximum
and the minimum work efficiency, we define a minimal entropy genera-
tion and a maximal entropy generation as the upper bound and the lower
bound for this storage function. For a 2D heat conduction case study with
a time-varying boundary condition, we present the time profile of both
the storage function and supply function. In accordance with the dissip-
ation property, the results show that the rate of supply delivered to the
system always exceeds the change of internal storage.

7.1 Introduction

In the development of high-precision systems, the thermal effects are identified
as one of the dominant factors that determines the system performance [41, 151].
With the increasing accuracy requirements, high-precision systems become more
interconnected and sophisticated. This trend implies that models need to be cre-
ated where more compartments and/or subsystems need to be interconnected
to assess the dynamical properties of a complex system. Consequently, thermal
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effects are becoming even more influential. This is even more so when such in-
teractions are coupled not only in their steady-state but also in their transient dy-
namics. One way to characterize these large-scale interconnected systems, which
include interconnections with its surroundings is by using dissipativity theory.
The main idea behind the notion of a dissipative system is to establish a relation-
ship between the energy storage in the system and the supply rate via the inter-
action. With this relationship, an energy-based description of the input-output
description for physical systems can be characterized. Additionally, this theory
provides the possibility to view a system with large-scale interconnections as an
aggregation of modules, each of which is dissipative. The dissipativity theory has
witnessed remarkable progress in system analysis and control design for differ-
ent physical systems, e.g., mechanical systems [122, 162, 118], electrical systems
[117, 128], and chemical systems [108, 175, 19]. However, the increasing complex-
ity and accuracy demands of thermal systems still pose challenges to the analysis
and the management of large-scale and high-precision systems.

Dissipative systems were introduced by Willems in [171, 172]. Since their in-
troduction, different researchers have addressed the problem to cast thermody-
namical systems in the context of dissipative systems. The critical question is the
choice of supply function and the choice of the storage function for thermal systems,
which is central for dissipativity theory. In [172], Willems proposed a candidate
that is the system entropy with negative sign −S. Although it satisfies the dis-
sipation inequality, this candidate loses its physical interpretation as an energy-
based notion for thermodynamics. Additionally, as pointed in [5], entropy is not
bounded from above and therefore the choice −S may not provide a lower bound
as an energy function. An alternative proposal is to consider the irreversible en-
tropy production as the storage function. This matches the work of Onsager’s recip-
rocal relation [126, 127], the minimal entropy generation principle introduced by
Prigogine [139] and the work of irreversible thermodynamics from de Groot and
Mazur [54]. In this context, the proposed irreversible entropy rate, also named
entropy production, has been proved be a suitable candidate to prove the stability
of a closed system. In addition to the concept of irreversible entropy rate, the de-
velopments have been extended to open systems where the passivity properties
of a plasma reaction model [76] and multi-physical systems [165] are discussed. It
is worth mentioning that the use of irreversible entropy production as the storage
function is different from the conventional way for constructing the storage func-
tion: different from finding a preserved energy representation of the system, e.g.,
kinetic energy and potential energy, the irreversible entropy production describes
the energy which crosses the system’s boundary is dissipated as a loss. Another
approach is to use thermodynamic availability as the storage function [1, 4, 175]. In
this way, the irreversible entropy rate is implicitly considered in the formulation,
and the proposed availability has a lower bound using thermodynamic potential
[5].

Other work connects the dissipative systems theory with thermodynamics on top
of the methods mentioned above. An approach in [90] is studied based on con-
structing an ectropy as storage function for stability, dissipativity and passivity
analysis. Another work introduces an energy notion of meta-energy in [58, 59] that
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allows the dissipativity theory to incorporate thermodynamical systems. Fur-
thermore, port-Hamiltonian systems have also attracted much attention in the
last decades. Numerous papers have been published on reformulating thermo-
dynamic problems as port-hamiltonian [57, 160, 92, 119, 161]. Despite the out-
standing work carried out by these researchers, it appears that even for simple
high-precision thermal systems, model-based controller synthesis, observer syn-
thesis, or uncertainty descriptions using thermodynamical properties are hard to
establish and generalize [76, 95].

In this chapter, the main contributions can be summarized as follows: 1) We study
the dissipative properties of a class of thermal systems using the Lyapunov func-
tion proposed in Chapter 6 as a storage function when the system interacts with its
surroundings. Specifically, when such interactions are time-dependent and can be
considered as control actions. 2) Based on the entropy generation minimization, a
bounded storage function is proposed in such a way that the storage function has
an upper bound and a lower bound.

The remainder of the chapter is organized in the following manner. In Section 7.2
we introduce the fundamentals of dissipativity theory and non-equilibrium ther-
modynamics. An analysis is given in Section 7.3 for the dissipative properties of a
thermal system for both time-dependent and time-independent boundary condi-
tions. In Section 7.4, We aim to connect the minimal/maximal entropy generation
with an efficiency criterion that expresses minimal/maximal loss of mechanical
working rate in the system. Then, in Section 7.5, a 2-D heat conduction example
is given and the profile of the corresponding storage function and supply rate are
defined. The conclusion is given in Section 7.6.

7.2 Fundamentals

In the sequel, we first briefly introduce the dissipativity theory, which includes
the definition of storage function, supply rate and the dissipation inequality. For
the detailed exposition of the dissipation theory presented in this paper, we refer
to [171, 172]. Second, some fundamentals of non-equilibrium thermodynamics
together with the entropy balance equation, also called the second law of thermo-
dynamics for open systems, will be given.

7.2.a Dissipative systems

Consider a dynamical system Σ described in the state space form and given by
the equation

Σ : ẋ = f(x, u), y = h(x, u) (7.1)

where x(t) ∈ X = Rn, u(t) ∈ U = Rm and y(t) ∈ Y = Rq denote the state, input
and output. Furthermore, f is assumed to be a smooth function defined on x× u,
and h is the output map of the system. Then, let

w : U× Y→ R (7.2)
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be a real-valued function, called the supply rate. Throughout, we assume that the
mapping t 7→ w(u(t), y(t)) is locally integrable for any solution (u, x, y) of (7.1) in
the sense that ∫ t1

t0

|w(u(τ), y(τ))|dτ <∞

for all solutions (u, x, y) of (7.1) and all t0 ≤ t1. The dissipation property for
system (7.1) is given in the following definition

Definition 7.1 (Adapted from [171]) The system Σ is said to satisfy the dissipation in-
equality with respect to the supply rate w and the storage function S : X→ R if

S(x(t2))− S(x(t1)) ≤
∫ t2

t1

w(u(t), y(t))dt

holds for all (x, u, y) that satisfies (7.1) and for all t1, t2 ∈ R, with t2 ≥ t1.

Definition 7.2 The system Σ is dissipative w.r.t. the supply function w if there exists a
storage function S : X→ R so that Σ satisfies the dissipation inequality in Definition 7.1
w.r.t. supply rate w and storage function S.

With a differentiable storage function S(·), we obtain the following equivalent
differential dissipation inequality.

Definition 7.3 If the storage function S(·) is differentiable, then the system Σ satisfies
the dissipation inequality w.r.t. supply w and storage function S if and only if

d

dt
S(x(t)) ≤ w(u((t), y(t))

for all trajectories (u, x, y) satisfying (7.1) and for time t.

The above dissipation inequality expresses the concept of an open dynamical sys-
tem Σ, which interacts with its surroundings through u and y, the rate at which
internal storage changes cannot exceed the amount which has been supplied to
the system. The power supplied to the system is denoted by a function w(u, y)
and is a function of the input and the output, which has the meaning of the rate
at which a relevant quantity (heat flow, mass flow, power flow) flows in and out
of the system. Specifically, the w is counted as positive when power flows into
the system and negative if power flows out of the system (is delivered to its en-
vironment). The power supply S(x) is a function of the state of the system and
expresses the amount of storage when the system finds itself in state x. The dis-
sipation is defined as the difference between what is supplied and what is stored.

Remark 7.1 The dissipation inequality in Definition 7.1 does not require the storage
function to be non-negative (It is required to be non-negative S(x) ∈ R≥0 in [171, 172]).
The requirement of non-negativity imposes an extra lower bound to the storage function.
There are some arguments against adding the non-negativity in the definition [169]. In
the context of thermodynamics in this chapter, we will assume the storage function to be
any function S : X→ R, and therefore do not assume lower bounds on storage functions.
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In the following, we introduce two special storage functions the available storage
Sa(x) and the required supply Sr(x). We assume that the state space model (7.1)
has a specific ground state (or equilibrium state) x∗ ∈ X where we declare storage
to be neutral or normalized to 0. Typically, x∗ = 0.

Definition 7.4 The available storage, Sa : X → R ∪ {∞} of a dynamical system (7.1)
with supply rate w is defined by

Sa(x0) := sup

{
−
∫ t+

0

w(u(τ), y(τ))dτ | t+ ≥ 0, x(0) = x0, x(t+) = x∗
}

where the supremum is taken over all input trajectories u : [0, t+] → Rm and time
instants t+ ≥ 0 that denoted x(t;u) as defined in (7.1) with x(0) = x0 at time t = 0 to
x(t+;u) = x∗ at time t = t+.

When the system absorbs energy from surroundings or dissipates energy to the
surroundings, there are limitations in the maximal amount of energy Sa(x) that
can be extracted from the system while moving from state x some reference state
x∗. Similarly, there are limitations on the minimal amount of storage necessary to
bring the system from this reference state x∗ to x. Similarly, the required supply
Sr is defined as

Definition 7.5 The required supply, Sr : X → R ∪ {−∞} of a dynamical system (7.1)
with supply rate is defined by

Sr(x0) := inf

{∫ 0

t−

w(u(τ), y(τ))dτ | t− ≤ 0, x(t−) = x∗, x(0) = x0

}
where the infimum is taken over all input trajectories u : [0, t+]→ Rm and time instants
t− ≤ 0 that denoted x(t;u) as defined in (7.1) with x(t−) = x∗ at time t = t− to
x(0) = x0 at time t = 0.

With the theorem introduced in [148], the following inequality can be obtained

Theorem 7.6 Suppose that Σ is controllable. Then Σ is dissipative with supply w (ac-
cording to Definition 7.2) if and only if Sa(x) < ∞ for all x and if and only if Sr(x) >
−∞ for all x. Moreover, for any storage function S(x) that satisfies S(x∗) = 0 the
inequality

Sa(x) ≤ S(x) ≤ Sr(x)

holds for all x.

If there is no dissipation in a system, then the system can be defined as conservat-
ive or lossless, meaning that the inequalities in Definition 7.2 and Definition 7.5
are, in fact, equalities.
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Definition 7.7 A dynamical system (7.1) is said to be lossless with respect to supply rate
w and storage function S if

S(x(t2)) =

∫ t2

t1

w(u(τ), y(τ))dτ + S(x(t1))

for all (u, x, y) that satisfying (7.1) and for all t1 ≤ t2 ∈ R.

7.2.b Irreversible thermodynamics and balance equations

The thermodynamical system considered in this chapter is assumed to be in a
local equilibrium and it is characterized by the extensive and intensive variables.
Its behaviour is a subset

T ⊂ X ext ×X int,

where the extensive variables xext = col(U, S,M,N1, · · · , Nr) ∈ X ext consist of
internal energy U , entropy S, mass M and the mole numbers Ni. The intensive
variables xint = col(T, P, µ1, · · · , µr) ∈ X int consist of temperature T , pressure
P and chemical potential µi of each component, which is obtained as the first
differential of the fundamental equation that writes the extensive variable U as
explicit function U = U(S, V,N1, . . . , Nr) of the remaining extensive variables:
where the intensive variables are defined by the following relations

T :=

(
∂U

∂S

)
V,N1··· ,Nr

, P := −
(
∂U

∂V

)
S,N1,··· ,Nr

, µi :=

(
∂U

∂Ni

)
S,V,··· ,Nk,···

.

Similarly, one can write the extensive variable S as function S = S(U, V,N1, . . . , Nr)
of the remaining extensive variables (the so called entropic representation). Lead-
ing to the equivalent

1

T
:=

(
∂S

∂U

)
V,N1··· ,Nr

,−P
T

:= −
(
∂S

∂V

)
S,N1,··· ,Nr

,
µi
T

:=

(
∂S

∂Ni

)
S,V,··· ,Nk,···

.

Based on the fundamental postulate of thermodynamics [54], the entropy balance
equation of a system can be characterized via

dSsys
dt

=
dSe
dt

+
dSi
dt

, (7.3)

where Se is the total entropy supplied by its surrounding across the external
boundary of the system and Si denotes the total entropy production due to pro-
cesses in the interior of the system. In this chapter, we consider the system includ-
ing irreversible process, in which can be characterized by Sgen

dSi
dt

= Sgen. (7.4)

so that Sgen =
dSsys
dt − dSe

dt is the difference of entropy rates between system and
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total supplied entropy, i.e., entropy rate only due to changes in the interior of the
system. Note that Sgen = 0 for reversible process, and Sgen > 0 for irreversible
process, and the term Se can be negative, positive or zero if there is no interaction
with the system [54].

7.3 Dissipative properties of thermal systems

Consider a thermal system of 1-dimensional heat conduction in a solid, depicted
in Figure 7.1, whose governing equation and boundary condition are given by

L0

∂G G

r

Figure 7.1: 1-D Heat conduction in a solid with geometry G and boundary ∂G
(dashed line).

ρcp
∂T (r, t)

∂t
= −∇ · J(r, t), in G, (7.5a)

∇T (r, t) · n̄ = γ(t) on ∂G, (7.5b)
T (r, 0) = T0(r) at initial time t = 0. (7.5c)

Here, T : G × R≥0 → R>0 is an analytic function of the 1-dimensional domain
G = [0, L] with L > 0 that represents temperature. Density and heat capacity
of the solid are defined by ρ and the cp, respectively. The heat flux is J(r, t) :=
−κ∇T (r, t), r ∈ G where the heat transfer coefficient κ > 0 is assumed constant
and temperature independent. Note that compared to (6.15) the boundary condi-
tion is relaxed to time-dependent function γ(t). As in the previous chapter, the set
of all temperature T (·, t) is assumed to be a mapping from G to R>0 for any t ≥ 0.
The set of all such mappings is denoted by D. Finally, T0 ∈ D is a given initial
temperature profile at time t = 0.

In this chapter we write the distributed parameter thermo-dynamical system (7.5)
as a dissipative dynamical system. This requires the introduction of a suitable
supply function and a suitable storage function so as to verify the dissipation in-
equality in Definition 7.1 for the dynamics given in (7.5). For this, we propose to
consider the entropy generation function Sgen as a suitable storage function that
the thermodynamic system becomes dissipative. Under the assumption of local
thermodynamic equilibrium [46], the irreversible entropy can be written as into a
linear mapping between the thermodynamic flux J and the thermodynamic force
F .

Theorem 7.8 Assume the system (7.5) that the irreversible entropy rate can be expressed
as a linear relation between the thermodynamic flux J = −κ∇T, κ ∈ R>0 and the force
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F = ∇ 1
T . Let the irreversible entropy rate (entropy generation function) Sgen be the

storage function, then this system is dissipative with respect to the supply rate w if

Sgen(T (·, t2))− Sgen(T (·, t1)) ≤
∫ t2

t1

w(u(τ), y(τ))dτ

holds for all t2 ≥ t1, with t1, t2 ∈ R, here the supply rate w is given as

w(u, y) =

∫
∂G

(
J · ∂

∂t

1

T

)
· n̄,

here ∂G denotes the boundary of the system, (J, ∂∂t
1
T ) denote the input and the output of

the system.

Proof: The entropy generation for the system (7.5) over the domain G is

Sgen(T ) =

∫
G
J(T ) · F (T )dr =

∫
G
−κ∇T · ∇ 1

T
dr.

Take the time derivative of the composite function t 7→ Sgen(T (r, t)) and denote
this derivative as Ṡgen along the solution of (7.5a) and it reads

Ṡgen(T ) =

∫
G

∂

∂t
J(T ) · F (T ) + J(T ) · ∂

∂t
F (T ) dr

= −κ
∫
G

[
∇Ṫ · ∇ 1

T
+∇T · ∇

( ∂
∂t

1

T

)]
dr

Using the Divergence theorem and it follows that

Ṡgen(T ) = −κ
∫
G

[
∇ · ( ∂

∂t

1

T
∇T ) +∇ · (Ṫ∇ 1

T
)− Ṫ∇2 1

T
−
( ∂
∂t

1

T

)
∇2T

]
dr

= κ

∫
∂G

1

T 2
Ṫ∇T · n̄ dr̄ + κ

∫
G

( ∂
∂t

1

T

)
∇2T dr

=

∫
∂G

(
J · ∂

∂t

1

T

)
· n̄ dr̄ −

∫
G
∇J ·

(
∂

∂t

1

T

)
dr

= κ

∫
∂G

1

|T |2 Ṫ∇T · n̄ dr̄ −
∫
G
∇J ·

(
∂

∂t

1

T

)
dr (7.6)

here r̄ refers the location over the boundary ∂G.

1) For the case of time-independent boundary condition on the boundary ∂G,
the first term on the right-hand side of (7.6) vanishes which is proved in
(6.24);

2) For the case of time-dependent boundary condition in (7.5b), the first term
on the right-hand side of (7.6) denotes the irreversible entropy and results
from the interactions with surroundings.
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In this proof, we focus on the second case 2) of a time-dependent boundary con-
dition. By substituting (7.5a), the second term on the right-hand side of (7.6) is
rewritten as

−
∫
G
∇J ·

(
∂

∂t

1

T

)
dr = −ρcp

∫
G

∣∣ Ṫ
T

∣∣2 dr ≤ 0.

Moving this second term on the right-hand of the equation
∫
∂G

(·) in (7.6) to the
left-hand side of the equality, we obtain the following relation

Ṡgen(T ) +

∫
G
∇J ·

(
∂

∂t

1

T

)
dr =

∫
∂G

(
J · ∂

∂t

1

T

)
· n̄ dr̄

=⇒ Ṡgen(T ) ≤
∫
∂G

(
J · ∂

∂t

1

T

)
· n̄ dr̄.

Since by integration from t1 to t2, one has

Sgen(T (·, t2))− Sgen(T (·, t1)) ≤
∫ t2

t1

w(τ)dτ

with the supply rate

w(τ) =

∫
∂G

(
J(τ, r̄) · ∂

∂t

1

T
(τ, r̄)

)
· n̄ dr̄.

Thus, the system (7.5) is proved to be dissipative with respect to the supply rate
function w of the input and the output (J, ∂∂t

1
T ). 2

For the detailed derivation involved in (7.6) we refer to the proof of Theorem 6.2.

7.4 Dissipative properties of interconnected systems

From the discussion of the dissipation inequality using the proposed storage func-
tion Sgen for a single system in (7.5), one remaining question is if there exists a
physically interpretable upper bound and a lower bound for the storage functions
in a thermodynamical system. In [5], authors introduce the idea of a supporting
hyperplane using one arbitrary reference state for the thermodynamic availabil-
ity (as the storage function). In such a formulation the minimal available storage
function is defined within the projection of the hyperplane through a reference
state. However, this bound, presented in [5], is a local property that is reference
state-dependent. This minimal available storage is not physically interpretable in
the sense that the bridge between the system behaviours and the proposed min-
imal available storage energy is not linked. In the section, we attempt to connect
the Gouy-Stodola theorem and entropy generation minimization in [27] which
are easily interpretable with system behaviours, to the formulation of the upper
bound and the lower bound for the storage function.
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7.4.a Sgen extension to interconnected systems

In the previous part, only a single system is considered. In this section we con-
sider a system composed of multiple interconnected subsystems. As shown in
Figure 7.2, this system consists of the internal energy U̇ within the domain G, the
transfer of rate of work Ẇ , the heat flow transfer rate Q̇i with contact temper-
ature Ti through the boundary ∂G. We suppose that the entire system consists
of the interaction of ` components (or subsystems). Figure 7.2 illustrates the idea
and indicates two thermal interconnections with temperature T0, T1 and with heat
rates Q̇0 and Q̇1. Mechanical work such as thermal deformation in high-precision
machines can be denoted by the rate of work Ẇ .

We consider a complex system that consists of a number of subsystems that are
thermally interconnected, where the total interconnected system G has a boundary
∂G and where the heat flow rate and contact temperature of the ith subsystem with
its surrounding are denoted by {Q̇i, Ti}.

T0 Q̇0

∂G

G

· · · · · ·
T1 Q̇1

U̇

ẆG1

G0

Gi

Ẇ

U̇G

Figure 7.2: The system consists of multiple subsystems which are interconnected
with each other, the domain of each subsystem is denoted by Gi,Gi ⊂ G where
G represents the whole system domain, the dashed line denotes the boundary
∂G of the system. The arrow with Ẇ characterizes the work done by the system
on the surroundings, the arrow points towards subsystems G0 or G1 denotes the
heat flow rate Q̇0 or Q̇1 flow into the system. The heat flow rate is the integral
over the surface where the heat flux rate Ji crosses the surface Q̇i =

∫
Si Ji with

Ji = −κi∇Ti and Si the boundary or the surrounding of the ith subsystem.

The first law of thermodynamics for the system in Figure 7.2 reads

dU

(
dt) =

∑̀
i=0

dQi
(
dt)− dW

(
dt) (7.7)

where the heat flow rate dQi
dt =

∫
surf Ji is the integral of the heat flux Ji over the

surface. The internal energy U is a function of temperature T (r, t) with r ∈ G, t ≥
0. T (r, t) is assumed to a mapping from G to R>0. The set of all such mapping is
denoted by D. Specifically, the boundary condition is defined as ∇T (r, t) = γ(t)

which is time-dependent function. In the following, we abuse the dQ
dt = (̇Q), dUdt =

U̇ and dW
dt = Ẇ for simplicity of notation. The second law of thermodynamics of
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this system is

dSsys
dt

(t) =
∑̀
i=0

Q̇i
Ti

(t) + Sgen(T (t))

=
Q̇0

T0
(t) +

∑̀
i=1

Q̇i
Ti

(t) + Sgen(T (t)) (7.8)

here Sgen(T ) denotes the irreversible entropy generation rate (7.4) due to thermal
interaction. Notice that the T in Sgen(T (t)) represents a set of temperature [T0, T1,
· · · , T`]. Under the assumption that the irreversible entropy of the system G is
only caused by the thermal interactions {Q̇0, · · · , Q̇`} across the boundary, then
the entropy generation rate Sgen(T ) of the system, with the supply function w
defined previously, is

Sgen(T ) =

∫
G0
J0 · ∇

1

T0
dr0 + · · ·+

∫
G`
J` · ∇

1

T`
dr` (7.9)

It is notable that the Sgen is a composite function of temperature T (r, t) which is
temporal dependent, the notation Sgen(t) refers to Sgen(T (t)) if it is not specified.

7.4.b The upper bound and the lower bound of Sgen

We take a closer look at the entropy balance equation (7.8) and replace the Q̇0 in
(7.8) from (7.7) to infer that

Ẇ (t) =
d

dt
(T0Ssys(t)− U(t)) +

∑̀
i=1

(1− T0

Ti
)Q̇i(t)− T0Sgen(t). (7.10)

Note that the pair of (T0, Q0) is chosen as the reference temperature and the heat
flow for the analysis of Sgen, respectively. In the case where all work is reversible,
we replace Ẇ by Ẇrev and the (7.7) can be rewritten as:

Ẇrev(t) =
d

dt
(T0Ssys(t)− U(t)) +

∑̀
i=1

(1− T0

Ti
)Q̇i(t) (7.11)

where the entropy generation rate is Sgen(t) = 0 for all t. Subtracting (7.10) from
(7.11) we arrive at the formula

Ẇrev(t)− Ẇ (t) = T0Sgen(t) (7.12)

or
1

T0
(Ẇrev(t)− Ẇ (t)) = Sgen(t) (7.13)

which is also known as Gouy-Stodola theorem [78, 79, 157] in thermodynamics. By
defining the rate of mechanical loss, say Ẇloss, as the difference between rate of
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work of the reversible part Ẇrev and the rate of (the actual) work Ẇ , i.e, Ẇloss =

Ẇrev − Ẇ , the equation (7.12) and the equation 7.13 can be rewritten as

Ẇloss(t) = T0Sgen(t) (7.14)

or
1

T0
Ẇloss(t) = Sgen(t) (7.15)

here Ẇloss represents the rate of mechanical work loss done by the system that can
not be recovered by the system. Remark that regardless of the system described
in Figure 7.2 is a power generator Ẇ > 0 (e.g., power plant) or a power consumer
Ẇ < 0 (e.g., computer), the Ẇloss is always non-negative. In this chapter, we only
consider the case of Ẇ > 0 if it is not specified.

The idea of introducing the reversible work rate Ẇrev is inspired by the research of
chemical processes where the chemical reaction leads to reversible and irreversible
work. For the case of the system described in Figure 7.2, the work rate Ẇ (t) can
be contributed from the thermo-induced mechanical deformation in which we
may distinguish between plastic deformation and elastic deformation. The elastic
deformation is reversible, and the plastic deformation can be considered as energy
loss [129, 96] which is irreversible. Using the idea of Ẇrev , we can connect the
storage function to the work efficiency. By defining the work rate efficiency

η := 1− Ẇ

Ẇrev

=
Ẇrev − Ẇ
Ẇrev

=
Ẇloss

Ẇrev

, with
Ẇ

Ẇrev

≥ 0. (7.16)

Here the Ẇ , Ẇrev can be positive or negative but share the same sign; this leads
to the non-negative η.

Once the idea of work rate efficiency is presented, we start introducing the avail-
able entropy generation: the lower bound of the storage function Sgen which is
allowed to be extracted from a dynamical system at any time.

Definition 7.9 The minimal entropy generation S−gen of a dynamical system (as in Fig-
ure 7.2) is defined as

S−gen(t) : = min
T (t):T∈T

Sgen(T (t))

where
T := {T (t) ∈ D | t0 ≤ t ≤ t+, T (t0) = T̃ , T (t+) = T ∗}

and
D := {T : G → R>0}

where the minimum is taken over all possible state trajectories T (t) ∈ T . Let T−opt be a
function of t and satisfies

S−gen(t) = Sgen(T−opt(t)) ≤ Sgen(T (t)), for ∀t, ∀T (t) ∈ T .
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Theorem 7.10 For a dynamical system in Figure 7.2 with a storage function is given by
the entropy generation Sgen , the minimal entropy generation S−gen satisfies

0 ≤ S−gen(t) ≤ Sgen(t)

for all t− ≤ t ≤ t+.

Proof: By Definition 7.9, the S−gen is defined as the lower bound of the entropy
generation

S−gen(t) = Sgen(T−opt(t)) ≤ Sgen(t),

additionally, the Sgen(t) is defined as the non-negative and S−gen(t) ≥ 0,∀t. Thus,
the inequality is proved. 2

By considering the work loss formulation (7.14), the entropy generation can be
represented as the function of work loss rate Ẇloss(t). Using the definition of
work rate efficiency, the Sgen(t) is

Sgen(t) =
1

T0
Ẇrev(t) · η(t)

here Ẇrev(t) denotes the ideal work rate for every time instance t and can be con-
sidered as the reference for the Ẇ (t) in (7.16). Notice that the above representation
indicates that the entropy generation Sgen(t) is a function of the work efficiency
rate η(t) and this leads to the following conjecture

Conjecture 7.11 If work rate efficiency of a dynamical system in Figure 7.2 is defined as
in (7.16), then the minimal entropy generation satisfies

S−gen(t) := min
η(t)→,t0≤t≤t+

1

T0
Ẇrev(t) · η(t) (7.17)

where η(t)→ denotes the infimum over all point-wise work rate efficiency from t = t0 to
t = t+. Moreover, there exists a function η−opt(t) that satisfies (7.17)

S−gen(t) =
1

T0
Ẇrev(t) · η−opt(t) ≤ Sgen(t) =

1

T0
Ẇrev(t) · η(t),

and
S−gen(t) > 0 for all t.

In the next, the maximal entropy generation S+
gen is given: the upper bound of the

storage function Sgen for which is allowed to provide at any time from a dynam-
ical system.

Definition 7.12 The maximal entropy generation S+
gen of a dynamical system (as in Fig-

ure 7.2) is defined as
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S+
gen(t) : = max

T (t):T∈T
Sgen(T (t))

= Sgen(T+
opt(t)) ≥ Sgen(t), for ∀t, ∀T (t) ∈ T

where
T := {T (t) ∈ D | t0 ≤ t ≤ t+, T (t0) = T̃ ;T (t+) = T ∗}

and
D := {T : G → R>0}

where the maximum is taken over all possible state trajectories T (t) ∈ T from t0 to t+.

By connecting to the work rate efficiency, the maximal entropy generation also can
be formulated as

Conjecture 7.13 If work rate efficiency of a dynamical system in Figure 7.2 is defined as
in (7.16), then the required entropy generation satisfies

S+
gen(t) = max

η(t)→,t−≤t≤t0

1

T0
Ẇrev(t) · η(t)

where η(t)→ denotes the supremum over all point-wise work rate efficiency from t = t−
to t = t0. Moreover, there exists a function η+

opt(t) that satisfies the above equation

S+
gen(t) =

1

T0
Ẇrev(t) · η+

opt(t) ≥ Sgen(t) =
1

T0
Ẇrev(t) · η(t), for all t

Remark 7.2 For a dynamical system which the irreversible entropy is considered as the
storage function Sgen, with the minimal entropy generation S−gen in Theorem 7.10 and
the maximal entropy generation S+

gen(t) defined in Conjecture 7.13, we can obtain the
following inequality

0 ≤ S−gen ≤ Sgen ≤ S+
gen.

In particular, by considering the work rate, the S−gen has physically-relevant interpreta-
tions: the lower bound of the storage function represents the least loss process when Sgen is
allowed to extract from a dynamical system, and the S+

gen: the upper bound of the storage
function is the most loss process when a dynamical system can provide.

7.5 Numerical example: 2-D heat conduction

In this section, we provide a computation of the temperature distribution of a 2-D
heat conduction example with time-dependent boundary conditions, depicted in
Figure 7.3. The temperature distribution is described by (7.5a) with J = −κ∇T .
The coefficients are defined as {ρ, cp, κ} = {2.7× 103, 0.91, 209}with proper units.
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x

y

Σ
G

∂G1

∂G2

∂G3

∂G4

Figure 7.3: 2D heat conduction in solids with time-dependent boundary condi-
tions.

The boundary conditions are given by

n̄ · ∇T (x, y, t) = 0 on ∂G1, ∂G2

n̄ · ∇T (x, y, t) = 2 sin(2t) on ∂G3

n̄ · ∇T (x, y, t) = − cos(2t) on ∂G4 (7.18)

which represents an isolated boundary on ∂G1 and ∂G2 and a time varying heat
flux at the boundaries ∂G3 and ∂G4. The initial condition are defined as

T (x, y, 0) = 273.15[K] in G.

The geometry of the system is given by a rectangle with 0 ≤ x ≤ 1.5[m] and
0 ≤ y ≤ 0.2 [m]. The solutions are obtained by applying a spatial discretization
method which generates 46 cells, and reads the temperature profiles of all spatial
locations in Figure 7.4.

As defined in Theorem 7.8, the storage function rate Ṡgen(T ) is obtained by com-
puting the storage function

Sgen(T (r, t)) =

∫
G
−κ∇T (r, t) · ∇ 1

T (r, t)
dr

for t ∈ [0, 200], and taking the time derivatives with respect to the time step 0.05.
The supply rate is calculated via the equation

w(τ) =

∫
∂G

(
J(r̄, τ) · ∂

∂τ

1

T (r̄, τ)

)
· n̄ dr̄,

since the temperature profiles of cells at the boundary are known and the time
derivative of 1/T (r̄, t) is also computable. Note that ∂G denotes the boundaries
∂G1×∂G2×∂G3×∂G4 and we only consider the T (r̄) at the cells on these boundaries
for computing w(τ). As indicated in the plot, for the whole period, the storage
function rate is always less or equal to the supply rate Ṡgen(t) ≤ w(t) for all time
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Figure 7.4: Temperature profiles of the 2D heat conduction in solid with time-
dependent boundary conditions. The upper plot represents the temperature of all
46 cells over the simulation time [0, 200]. The lower plot shows the temperature at
the boundaries [∂G1, ∂G2].
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Figure 7.5: Entropy profiles of the 2D heat conduction in solids with time-
dependent boundary conditions.
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instances t ≥ 0.

7.6 Conclusion

In this chapter, we present the dissipation theory using the irreversible entropy
as the storage function. Time-independent and time-dependent boundary con-
ditions are discussed in the dissipation formulation. By considering a thermal
complex system which the thermal behaviours leads to possible energy lost, an
energy-based upper bound and a lower bound for the proposed storage func-
tion are derived. This chapter aims to embed thermal dynamical systems in the
classical approach of open dissipative dynamical systems, open in the sense of al-
lowing external influence and excitation via mechanical work on the system. It is
shown how the dissipation inequality is established with Sgen as the generated in-
ternal entropy function as storage function. A derivation of the mechanical losses
in the system is provided and an example of a 2D system driven by time-varying
boundary conditions is given to illustrate the theory.
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8
Tooling of parameterized

model order reduction for
large-scale systems

This chapter presents an overview of the tooling that has been de-
veloped on the basis of the multi-parameter and multi-frequency

moment-matching method proposed in Chapter 2. A dedicated software
toolbox named paraMOR, parameterized Model Order Reduction, has
been developed for the reduction of parametric and non-parametric large-
scale dynamic systems and their visualization. We briefly introduce the
underlying programming concept of the tooling and present the key sup-
porting functions for model order reduction and the visualization of res-
ults. A number of case studies are provided.

Model reduction techniques can be informally formulated as the problem of find-
ing a less complex mathematical model, while preserving relevant properties of
the original model in the abstracted reduced model. Typically, the relevance of the
reduction method is largely determined by the properties which are preserved
or inherited in the reduced model. For many of the SVD-based methods, sta-
bility and passivity of a model can be preserved. The Krylov subspace method
can maintain the input-output relationship in a well-defined sense for the class of
linear systems. For nonlinear systems, data-driven methods introduced in [146]
have been proven to be a useful option since the reduced model interpolates the
original system at the range where the nonlinear dynamics is dominating.

Apart from the properties which need to be preserved in the reduction proced-
ure, the computational complexity and speed of computation of the reduced or-
der model is critical for many implementations and applications of reduced or-
der models. As the dimensionality and complexity of engineered systems in-
variably increases, there is a persistent need for computationally efficient meth-
ods to meet the demands on computationally feasible models in industry. To

139



140 Chapter 8 Tooling of parameterized model order reduction for large-scale systems

the best knowledge of the author, most of the existing MATLAB-based toolboxes
for model reduction [141, 31, 105, 51] target for small-scale (state dimension <
100) and middle-scale LTI systems (state dimension 100 − 1000) or reduced-basis
method based [88] Only one tool [164] approximates LPV systems using moment-
matching based method.

Part of the research reported in this thesis involves the development of software
tooling for model order reduction of dynamical systems. This has led to the de-
velopment of the paraMOR toolbox, referring to parameterized Model Order
Reduction. Based on the work in Chapter 2, we develop tooling that is compat-
ible with MathWorks MATLAB on both Linux and Windows operating systems.
In this software, we focus on the approximation of LTI systems of the form

Σ :=

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(8.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote, respectively, the state vector,
the input and the output, and the reduction of the LPV systems of form

Σ(θ) :=

{
E(θ)ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t)
(8.2)

here states x(t) ∈ Rn, input u(t) ∈ Rm and output y(t) ∈ Rq . Here θ denotes a
vector of real parameters of dimension `. It is assumed that the system matrices
depend in an affine manner on θ. For E, for example, this means that E(θ) =
E0 +E1θ1 + ...+E`θ`, where Ei are real-valued matrices and where θi denotes the
i-th entry of θ. The matrices A(θ), B(θ), C(θ), D(θ) admit the same structure.

The remaining of the chapter is organized as follows. In Section 8.1, the function-
ality overview of paraMOR is given. Afterwards, Section 8.2 presents the struc-
ture of paraMOR together with the workflow to use paraMOR. Specifically, some
programming principles used in the tooling are described in Section 8.3. In Sec-
tion 8.4, two examples using the paraMOR toolbox are given as case studies. This
chapter is concluded in Section 8.5

8.1 Overview of paraMOR tooling

The goal of paraMOR is to provide a complete workflow. This starts from con-
structing the full-order model (8.1) or (8.2), then generate the reduced-order model
and end with presenting the results of the reduced-order model in comparison
with the full-order model. Specifically, this tooling enables the reading and con-
struction of system matrices in (8.1) and (8.2) from third party modelling software
such as COMSOL Multiphysics and ANSYS. The following Table 8.1 summarizes
the functionalities of the paraMOR tooling.

Some remarks on the functionalities in Table 8.1 are given in order:

1. With the use of Livelink provided by COMSOL Multiphysics and the APDL
marc supported by ANSYS, the two routines the ssExtraction.m and the
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Table 8.1: Supported functions of the tooling

System Class Routine Name

Modelling COMSOL model
ANSYS model

extract model Σ ssExtraction.m

Σ(θ) pssExtraction.m

Reduction Σ→ Σr krylovMOR(E,{},A,{},B,{},s0,Opt)
Σ(θ)→ Σr(θ) krylovMOR(Ep,p,Ap,p,Bp,p,s0,Opt)

Visualization Freq. resp. Σ or Σ(θ)
Freq. resp. Σr or Σr(θ) MIMOBodeplot

pssExtraction.m enable the construction of a linear time-invariant sys-
tem (8.1) or a parameterized linear time invariant system (8.2) from a FEM
model that is implemented in either COMSOL or ANSYS. The routines ex-
tract the state space matrices in (8.1) or (8.2) from the implicit model repres-
entations in these multi-physical system models. Note that this function is
applicable to different physical systems and multi-physical systems.

2. The routine pssExtraction.m supports the parameterization of physical
parameters such as density, heat capacitance or thermal conductivity for
thermal systems, but not geometric parameters that define the spatial geo-
metry of the system.

3. The reduction routine [V,W,sysr] = krylovMOR({},{},{},{},{},{},
{},{}) delivers the projection matrices V,W and the state space represent-
ation of the reduced model sysr. Besides the input matrices E,A,B or
Ep,Ap,Bp and the parameters p, the s0 includes the expansion points and
the associated moments.

4. The option Opt describes the numerical configuration of model order re-
duction methods used for paraMOR. For example, the matrix type of the
system representation Opt.mtype = ’full’,’sparse’, the orthogonal-
ization methods for generating the Krylov subspace Opt.orth = ’gs’,
’mgs’,’rmgs’, the orthogonality tolerance and the algorithm for solving
the inverse of Ax = B problem Opt.lse = ’dLU’,’sLU’,’chol’.

5. The function MIMOBodeplot allows to plot the frequency response of mul-
tiple systems within one figure.

More information can be obtained on the specific use of these functions by using
the build-in help functionality. The workflow mentioned above is illustrated in
Figure 8.1.
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Σ, or Σ(θ)

LTI system LPV system

Construct Full-Order Model:

Generate Reduced-Order Model:

Σr, or Σr(θ)

Present the results in frequency domain

Visualization

Reduction

Modelling

Figure 8.1: General paraMOR workflow in which a FOM is constructed, then re-
duced and finally the results are analyzed.

8.2 Structure of the paraMOR

Based on the functionality of paraMOR, the functions of paraMOR are organized
in the naming scheme such that it allows users to have easy access and interpret
for specific usage. The toolbox is divided into the following sub-structures

/src/Modelling Contains functions used to extract the system matrices
from third-party software and construct them into state-
space representation.

/src/MOR Contains functions used to arrange the (multiple) expan-
sion points with the associated moments and perform the
model reduction.

/src/Visua Contains functions used to compute and present the bode
plot of the ROM and the FOM, compatible with SISO and
MIMO systems.

/demo Contains example code that explains the different main
functionalities of the toolbox.

/doc Contains a manual and a presentation file that details the
theoretical background of the toolbox and programming
implementation.

8.3 Programming principles

The default data type for matrix in MATLAB is stored in dense format. However,
this format is not suitable for the large-scale sparse matrices (A ∈ Rn×n, n ≈ 5 ×
105). In the paraMOR toolbox, all matrices are stored in sparse format.
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As discussed in [49], the orthogonality of the projection matrix/matrices is crit-
ical to the fidelity of the reduced-order model. The Krylov subspaces associated
with the image of the projection matrices (V,W ) defined in (2.21) and (2.22) can be
generated by implicit and by explicit moment-matching. As has been observed in
various applications [28], the explicit computation of the moments of the transfer
function is numerically unstable, and the accuracy of the approximation method
cannot be improved after 8 iterations. To remedy this, an orthonormal basis of the
subspace spanned by the moment vectors can be obtained using an implicit cal-
culation, so that a more accurate and numerically stable reduced-order model can
be derived. In the paraMOR toolbox, we provide three options for constructing
the orthonormal basis or the Krylov subspace:

Method Routine Name
Gram-Schmidt Opt.orth = ’gs’
Modified Gram-Schmidt Opt.orth = ’mgs’
Modified Gram-Schmidt with reorthogonalization Opt.orth = ’rmgs’

Table 8.2: Supported orthogonal methods

Note that the option Opt.orth = ’rmgs’ delivers the most accurate results on
orthonormalization but at the expense of cost of extra computation time [77].

For moment-matching based model order reduction methods, the main computa-
tional burden lies in solving (s0E−A)−1 for constructing the Krylov subspace. In
the paraMOR toolbox, three types of matrix decomposition methods are provided
for determining the inverse of (s0E −A):

Method Routine Name
LU decomposition for dense matrix Opt.lse = ’dLU’
LU decomposition for sparse matrix Opt.lse = ’sLU’
Cholesky decomposition Opt.lse = ’chol’

Table 8.3: Supported matrix decomposition methods

8.4 Case studies

In this section, we present the complete workflow using paraMOR for two ex-
amples: one for an LTI system Σ of the form (8.1) and one for an LPV system
Σ(θ) of the form (8.2). The physical model is based on the PSA introduced in
Section 4.5.

First, we give the case study of the LTI system based on the PSA setup using the
paraMOR toolbox.

1. The model is built in COMSOL Multiphysics,



144 Chapter 8 Tooling of parameterized model order reduction for large-scale systems

(b)(a)

Figure 8.2: (a): the real application of PSA; (b): the digitalized model of the PSA
in COMSOL Multiphysics.

2. Extract the LTI state space representation using ssExtraction.m,

3. Obtain the system matrices Σ = {E,A,B,C} in (8.1) with E,A ∈ Rn×n, n =
38476 and B ∈ Rn×m, C ∈ Rq×n,m = 2, q = 2,

4. Define the frequency expansion point and the associated moment using
s0input = s0gen[m,q,s0] with s0 = [0;30],

5. Define the numerical configuration Opt: e.g., Opt.mtype = ’sparse’,
Opt.orth = ’mgs’ and Opt.lse = ’sLU’,

6. With the preparation above, perform the reduction and obtain the reduced
model Σr using
[∼,∼,sysr] = krylovMOR(E,{},A,{},B,{},s0input,Opt),

7. Visualize and analyze the Σ and Σr in frequency domain.

We applied these steps for the model in Figure 8.2. The two inputs are the heat
flux to the linear motor coil, and the two outputs are the temperature of NTC
sensor 1 and NTC sensor 2, which are defined in Figure 4.4. Since the dynamics
are predominately low-frequent, the frequency expansion point has been chosen
as s0 = 0 with 30 orders. With this expansion point, the ROM preserves the low
frequency of the FOM. The ROM has a state dimension of 30. The frequency re-
sponse of the ROM are given in Figure 8.3 and Figure 8.4. The computation of
the above steps are performed in a PC with 2.60GHz CPU and 8GB RAM, and the
computation time is summarized below

Orthogonality error CPU Time
1.62× 10−16 0.92[s]

Second, the case study of LPV system based on the PSA setup using paraMOR
toolbox is given:

1. The FEM model is built in COMSOL Multiphysics with 38476 nodes,
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Figure 8.3: Magnitude plot of the ROM and the FOM with 2×2 input and output.
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Figure 8.4: Phase plot of the ROM and the FOM with 2× 2 input and output.
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2. Define the heat capacitance of the PSA as the θ1 to be parameterized or lin-
earized,

3. Extract the LPV state space representation using pssExtraction.m,

4. Obtain the system matrices Σ = {E(θ), A,B,C} with E(θ) = E0 + E1θ1

E0, E1, A ∈ Rn×n.n = 38476 and B ∈ Rn×m, C ∈ Rq×n,m = 2, q = 2 and
` = 1,

5. Define the frequency expansion points, parameter expansion points p and
the associated moments using ps0input = s0gen[m,q,ps0], the fre-
quency expansion point is s0 = 0 with 100 moments, and the parameter
expansion point is p = 475 with 2 moments,

6. Define the numerical configuration Opt: e.g., Opt.mtype = ’sparse’,
Opt.orth = ’rmgs’ and Opt.lse = ’sLU’,

7. With the preparation above, perform the reduction and obtain the reduced
model Σr using
[V,∼,psysr] = krylovMOR([E0,E1],p,A,{},B,{},ps0input,Opt),

8. Construct the parameterized reduced order model using V for parameter at
different values [0.5p, 2p],

9. Visualize and analyze the {Σ(0.5p),Σr(0.5p)} and {Σ(2p),Σr(2p)} in fre-
quency domain.

The input and output configuration is the same as for the previous example: two
inputs denote the heat flux to the two linear motor coils, and the outputs represent
the temperature of two NTC sensors. The parameterized reduced model Σr(θ) has
the state number of 200, and the original full-order parameterized model Σ(θ) has
the state dimension of 38476.

The magnitude and the phase plots between the FOM Σ(θ) at the parameter θ =
0.5p and θ = 2p, the ROM Σr(θ) at θ = 0.5p and θ = 2p are given in Figure 8.5
and Figure 8.6. The computation of the above steps are performed in a PC with
2.60GHz CPU and 8GB RAM, and the computation time is summarized below

Orthogonality error CPU Time
1.62× 10−13 3.67[s]

The blue lines in Figure 8.5 and Figure 8.6 show the difference(error) between the
FOM Σ(θ) and ROM Σ(θ) at the θ = 0.5p and the red lines in those two figures
present the difference(error) between the FOM Σ(θ) and ROM Σ(θ) at θ = 2p.
These two figures show that both the magnitude and phase errors are relatively
smaller at the lower frequency range. The error at both magnitude and phase plots
is increasing at a higher frequency range. It is due to the choices of the expansion
points. By adding higher frequency expansion points, we can further improve the
ROM fidelity.
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Figure 8.5: The red line denotes the magnitude error between the FOM Σ(2p) and
the ROM Σr(2p). The blue line represents the magnitude error between the FOM
Σ(0.5p) and the ROM Σr(0.5p).
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Figure 8.6: The red line denotes the phase error between the FOM Σ(2p) and the
ROM Σr(2p). The blue line represents the phase error between the FOM Σ(0.5p)
and the ROM Σr(0.5p).
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8.5 Conclusion

We presented the paraMOR toolbox as an efficient software solution for model or-
der reduction for large-scale LTI and LPV systems. The toolbox facilitates the ex-
traction of the affine parametric model directly from the FEM models that are used
in the COMSOL or ANSYS software tools for the simulation of spatial-temporal
and multi-physics systems. An overview of the toolbox and the structure of scripts
are given, as well as the supported orthogonal methods and matrix decomposition
methods. Two examples of both parameterized and non-parameterized systems
are given to illustrate how paraMOR can be used to truncate the complexity. In
the first example, paraMOR provides an efficient solution for the LTI system to
visualize the results. In the second example, we used paraMOR to generate a
projection matrix that can construct a parameterized reduced order model with
different parameter values, and the error analysis is also attached.

The toolbox proves suitable for models of order up to n = 5× 106 and gives com-
putation times for the reduction process of the order of magnitude to minutes (e.g.,
a test model with state dimension of 4.5 × 106 and 5 frequency expansion points
and 10 parameter expansion points are chosen for the reduction, and it takes less
than 10 [mins] to construct the projection matrices), depending on the number of
expansion points, the optimization procedure and the requirements precision in
the orthogonalization process. The toolbox has been applied to industrial applic-
ations via industrial collaborators.
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Conclusions and future

research directions

9.1 Conclusions

In conclusion, this thesis has studied the analysis and the approximation of thermal
systems. This is burdened by its typical large state and parameter dimensionality,
together with the complexity of its inner interconnection structure. To solve this
problem, we have tackled three sub-problems.

In the first part of the thesis, we have focused on the first subproblem, which en-
tails the development of efficient model approximation methods for large-scale
thermal systems. In Chapter 2, we have introduced a parameterized model or-
der method that can construct physically relevant parameterized reduced-order
models. Moreover, an a-prior error bound has been quantified for this method.
This pMOR method has been successfully tested on industrial applications with
state dimensions in the order of 105. In addition, in Chapter 3, we also have ex-
plored the problem of parameter reduction. This helps to achieve higher precision
requirements for which the dimension of the parameter space is also higher. By
evaluating the system Gramian over parametric variation, we show that we can
obtain a truncated parameter space where the approximation error is minimal.
Two case studies have been carried out, and the results indicate the benefits of
this approach. Chapter 4 leverages the pMOR method of Chapter 2 to achieve
parameter calibration for large-scale thermal models. This enables parameter op-
timization for models for which this is time-consuming or even infeasible due to
their heavy computational and memory loads. We have shown that the proposed
scheme guarantees the equivalent first and second-order interpolation conditions
for the cost function between the full-order model and the reduced-order model.
In addition, this scheme is inherently adaptive to minimize the calibration error.
More precisely, this algorithm finds the most sensitive frequency points for the
parameters and automatically adapts the approximation of the full-order model
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to it. This algorithm has been tested with a Precision Stage Application (PSA),
and it has been shown to outperform the current conventional method. Building
on the results of previous chapters, Chapter 5 has developed a complete meth-
odology for LFT systems that combines the state and parameter approximation.
We focused on the LTI systems and the uncertain LPV systems in LFT represent-
ation. For these systems, the proposed methodology successfully truncates the
state dimension while preserving the LFT structure. Furthermore, we show that
the state reduction and parameter reduction influence each other. In such a way,
the parameter reduction can lead to further state reduction, while the fidelity of
the reduced-order model remains the same. Overall, we have answered the sub-
problem on the pMOR for large-scale thermal systems in Part I.

In the second part of the thesis, we targeted the system analysis for thermal sys-
tems. Chapter 6 investigated the stability analysis of these systems. We have
shown the use of a Lyapunov function based on the irreversible entropy concept
for stability analysis. On top of this, a conceptual distinction has been made
between thermodynamic equilibrium and equilibria in control theory. Sequen-
tially, Chapter 7 extended this Lyapunov function to analyze the dissipation prop-
erties of thermal systems, in which the boundary condition is relaxed from time-
independence to time-dependence. We have illustrated with simulations that the
Lyapunov function satisfies the dissipativity inequality.

The last part of this thesis presents a tool that we have developed as a MAT-
LAB based software package for non-parametrized and parameterized model or-
der reduction. Beyond the implementation of results delivered from Chapter 2 -
Chapter 5, this toolbox contains functions that enable to start with model extrac-
tion, go to model reduction and end with analysis and visualizations.

9.2 Future research directions

In this work, we have solved three problems with the goal to facilitate system
design, design optimization and calibration. Apart from these problems, several
potential questions appeared during our journey that deserve further investiga-
tion.

Firstly, we would like to emphasize once more that moment-matching, as used in
this thesis, is a local technique providing accurate models on user-defined band-
widths. More precisely, the ROM accuracy is inherently chosen for user-defined
bandwidths. This provides the advantage of flexibility, but its local error bound
lacks computability and it further misses a global error bound or other global
properties. Therefore, Chapter 2 gives for now only a posterior local error bound
in this user-defined frequency range. Recently, some preliminary work [102, 70]
on error bounds for moment-matching based methods has been published. There-
fore, future work may focus on finding a computable local a-prior error bound or
even global a-prior error bound for large-scale models.

Secondly, Chapter 4 considers the parameter calibration problem, and we pro-
posed an adaptive scheme to minimize the approximation error. In each iteration,
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the new expansion point was found by solving the Jacobian matrix. This whole
process may lead to a local minimum of the approximation error. Further invest-
igation into finding the expansion points that provide a global minimum of the
approximation can therefore improve the calibration results.

Thirdly, the definition of the moment used in this thesis is based on the transfer
function of dynamical systems. Therefore, the moments preserved in the reduced
model can reflect the essential dynamics of the original model. One possible fu-
ture research direction can be to generalize the moments towards different system
functions. For instance, one may define the moment for the impulse response
of a nonlinear system. In such a way, the nonlinear dynamical systems can be
approximated using the moment-matching method. Additionally, we also can
further extend the model-based moment to a data-based moment, e.g., the data-
drive model reduction technique Loewner framework [16] is a special case of a
two-sided moment-matching procedure.

Furthermore, from the perspective of software implementation, it would be of
particular interest to investigate the effect of industrial-approved tooling. The
most common MOR tooling developed by academia is based on MATLAB, which
imposes many limitations in exploiting the computational resources. In addition,
parallel techniques have been widely used in many research domains while not
much studied by the MOR community. One potential research direction is in the
field of parallelization of MOR techniques using high-performance programming
language. For instance, the paraMOR toolbox, which generates the projection
matrix in Chapter 8, only utilizes one core of a multiprocess CPU, and the projec-
tion matrix is constructed in sequential order. Further research is required to find
an efficient MOR algorithm such that each part of the projection matrix is com-
puted in a separated processor, and all processors are deployed simultaneously.

As a final research direction, an investigation into energy-based control for thermo-
relevant systems could be done. This would start from the results in Chapter 6 and
Chapter 7, in which the description of the entropy generation function represents
the system energy.
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