

Spot Market versus Full Charter Fleet

Citation for published version (APA):
Ghilas, V., Hedtke, I., Weise, J., & van Woensel, T. (2021). Spot Market versus Full Charter Fleet: Decisions
Support for Full Truck Load Tenders. arXiv, 2021, Article 2110.15388. https://doi.org/10.48550/arXiv.2110.15388

DOI:
10.48550/arXiv.2110.15388

Document status and date:
Published: 26/10/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.48550/arXiv.2110.15388
https://doi.org/10.48550/arXiv.2110.15388
https://research.tue.nl/en/publications/957a4f0c-8c0e-4082-a470-8c0e8cb8c8b8

Spot Market versus Full Charter Fleet:
Decisions Support for Full Truck Load Tenders

Veaceslav Ghilasa, Ivo Hedtkeb,∗, Joachim Weiseb, Tom Van Woenselc

aPerfect Art Ltd., London, England
bGlobal Data Strategy & Analytics, Schenker AG, Kruppstr. 4, Essen, 45128, Germany
cSchool of Industrial Engineering, Eindhoven University of Technology, the Netherlands

Abstract

This paper presents an approach to help business decision-makers gain market
share by providing competitive tender offers for full truck load (FTL) services.
In particular, we compare operating a fleet of full charter trucks (FCT), using
spot-market (SM) capacity and a mixture of both options against each other. A
Pickup and Delivery Problem is modeled, and solved using an Adaptive Large
Neighborhood Search heuristic. Computational results indicate strong service
benefits combining FCT and SM usage. Numerical experiments are presented
in detail to support the findings. Additionally, a real-life case study originating
from DB Schenker is presented.

Keywords: full truck load, fleet sizing, dynamic routing, tender support, pickup
and delivery problem with time windows
2020 MSC: 90-05, 90B90, 90B06, 90B35

1. Introduction

Full truck load (FTL) transportation gained limited attention from the scientific
community, compared to less-then-truck load (LTL) or express deliveries [1].
However, there is a multitude of aspects related to FTL transportation, which
have a significant financial impact and are worth researching, e.g., fleet sizing,
dynamic routing, or FTL solution design.

Freight forwarders regularly compete at tenders organized by large shippers
who need tailored full-load logistics solutions. To gain more market share, the
forwarders need to provide cost-efficient full-load solutions, which are relatively
complex to analyze. The core trade-off when designing such solutions is the
following: on the one hand, the solution needs to be economical and avoid
overexposure to prohibitively high fixed costs; on the other hand, the shipper

∗Corresponding author
Email addresses: veaceslav.ghilas@perfectart.com (Veaceslav Ghilas),

ivo.hedtke@dbschenker.com (Ivo Hedtke), joachim.weise@dbschenker.com (Joachim Weise),
t.v.woensel@tue.nl (Tom Van Woensel)

Preprint submitted to Journal of LATEX Templates November 1, 2021

ar
X

iv
:2

11
0.

15
38

8v
1

 [
m

at
h.

O
C

]
 2

6
O

ct
 2

02
1

needs to be provided with sufficient capacity at nearly any moment, despite
volume development.

Consequently, a freight forwarder has two extreme options to organize capacity.
One would be to cover all shipping demand exclusively through flexible capacity
sourced from spot-market (SM). Usually, SM can provide service at short notice.
This flexibility, however, comes at a relatively high market price and can not
be taken for granted in special market situations, e.g., during peak seasons or
around public holidays.

Alternatively, the forwarder could invest into a fleet of full charter trucks
(FCT) dimensioned according to the (assumed) peak demand. The main idea is
the following: rather than providing a customer an offer based on SM prices per
trip or trade lane, the forwarder would instead calculate the costs of chartering
and managing a fleet of trucks on a long-term basis, e.g., several months or years.
When sizing this fleet properly and dispatching it efficiently, the offer involving
FCT may eventually be more competitive than an SM solution.

Finally, an effective mix of both solutions mentioned above may, at least in
theory, provide an even more cost-efficient solution than both individual options
introduced above.

The problem has similarities with a multitude of problems extensively studied
by researchers over the years. On the one hand, it boils down to the pickup and
delivery problem with time windows (PDPTW) [2], in particular to the FTL
variant of the PDPTW.

A recent study on FTL-PDPTW can be found in [3]. The authors propose
a meta-heuristic to tackle the problem with synchronization constraints. The
approach is validated in a case study on the biomass logistics industry. In a
related study, [4] develop a column generation heuristic algorithm to solve large
problem instances for FTL routing problem with multiple shifts. The described
approach outperforms the previous attempts in terms of computational time
and solution quality. Due to the lengthy planning horizons considered, driving
regulation constraints become crucial in achieving realistic solutions. [5, 6, 7]
study the driving regulations and modeling approaches in the vehicle routing
context. [8] describe a heuristic algorithm designed to solve the vehicle scheduling
problem and analyze different driving regulations around the world. In a related
study, [9] propose an exact approach to tackle the problem to optimality. In
addition, considering the assumption that the trucks do not have pre-defined
start and end depots leads us to a particular case of the well-known open vehicle
routing problem (OVRP) [10], where vehicles do not have to return to a depot.
A recent study on OVRP can be found in [11]. The authors propose a hybrid
adaptive large neighborhood search approach to solve large-scale problems for
OVRP and manage to find new best-known solutions for specific instances.
Furthermore, various routing problems with practical side constraints, such as
FTL property and driving regulations, have been studied by scientists in the
last decades. The interested reader is referred to [12, 13, 14] for recent surveys
on different types of routing problems.

The orienteering problem [15] is another related well-known problem. In this
context, each resource (i.e., truck) aims at finding a minimum cost (or the most

2

profitable) path, starting at a pickup location and ending at a delivery location.
Expensive requests, in terms of FCT cost, would then be serviced by SM. In
this sense, the aim is to find the right trade-off between FCT and SM costs. [16]
propose a general variable neighborhood search algorithm to solve large-size
orienteering problems and show the efficiency of the developed approach. In
addition, [17] investigate a time-dependent orienteering problem and propose a
tailored adaptive large neighborhood search. The authors show the benefits of
considering time-dependency during the planning process to obtain efficient and
reliable solutions.

The contributions of the paper at hand are as follows:

1. We analyse the needed decision support for FTL transportation and the
related tendering process.

2. We model the described problem as a Pickup and Delivery Problem and
propose a tailored adaptive large neighborhood search (ALNS) to solve
the underlying routing problem.

3. Numerical results show that the mix of SM and FCT may lead to cheaper
FTL solutions compared to traditional pure SM strategy, having the
transformed VRP Gehring & Homberger instances as benchmarks.

4. We also present a practical case application to the tender support for
FTL business based on a real-life setting originating from DB Schenker.
DB Schenker is a freight forwarder that supports industry and trade in
the global exchange of goods by land transport, worldwide air and ocean
freight, contract logistics and supply chain management.

This paper is organized as follows. In Section 2 we formally define the
considered mathematical problem, we present the related literature, and discuss
the transformation of the business scenario into the formal problem. In Section 3
we present a single-solution meta-heuristic tailored to solve the problem at
hand. Finally, we discuss the experiments on transformed literature instances
and real-world data sets involving two customers and the obtained solutions in
Section 4.

2. Problem Description and Mathematical Model

We consider a set R of transportation requests between a finite set of locations L.
Each request r ∈ R has an origin ro ∈ L, a destination rd ∈ L, as well as a
time window rotw at the origin and a set of time windows rdtws at the destination.
A time window is defined by two absolute points in time. Every request must
be picked up at its origin within its origin time window, transported directly
to its destination and be delivered within one of its destination time windows.
The travel-time and travel-distance between two locations `, `′ are given by t`,`′

and d`,`′ .
Each transportation request r can be outsourced at a cost of sr. The

remaining requests must be served by a set of vehicles at a cost of κ per unit of
driven distance.

3

Variable Meaning
xa vehicle is traveling along arc a (=1) or not (=0)
yn→m distance from origin to m when a vehicle travels along n→ m
ln = (ln,1, ln,2) state of the driver at node n (arrival time, nonstop driving time)

Parameter Meaning
da distance of arc a
κ cost of driving per unit distance
µ minimum driving distance of a vehicle
M sufficiently large constant
sr cost of out-sourcing request r to the spot-market

Table 1: Parameters and variables in the model.

The task at hand is to find a cost-optimal assignment of all requests to the
options of outsourcing it or serving it by a vehicle. Note that the set of vehicles
is determined as part of the task.

Serving the non-outsourced requests by vehicles is subject to the following
constraints:

• Each vehicle can serve at most one request at any given point in time.

• Each vehicle starts at the origin of its first request, ends at the destination
of its last request, and has to drive a distance of at least µ.

• Each (un-)loading operation requires a time of σ. The complete (un-)loading
operation has to be executed within one of the respective time windows.
Hence, if a vehicle arrives outside the time windows, it has to wait for the
next one.

• Each vehicle has to fulfill the following driving time regulations: A shift-
break is a break of duration of at least τb and a Sunday-break is a break
of duration of at least τs ≥ τb. After a duration of τn cumulative driving
without shift-breaks, a shift-break is required. (Un-)Loading does not count
as break time, whereas waiting time does. Every Sunday, a Sunday-break
is required.

A mathematical model combining classical arc-based vehicle routing, the
minimum driving distance constraint from [18, Section III], and the labeling
technique from [19] for the driving time regulations is constructed in three phases:
First, we define a graph as basis for an arc-based vehicle routing model. Then, a
model respecting everything except for the timing constraints is built. Finally,
the timing constraints (time windows, simplified driving regulation) are added.

Variables are denoted by bold lower-case letters. Instance independent
parameters are denoted by greek letters. We write B := {0, 1} and N :=
{0, 1, 2, . . .}. By M we denote a sufficiently large constant. An overview of the
variables and parameters can be found in Table 1.

Let G := (N,A) denote the directed graph constructed as follows: The set N
of nodes consists of

N := {(ro, r) : r ∈ R} ∪ {(rd, r) : r ∈ R} ∪ {n0, n∞}

4

all origin- and destination locations together with two artificial nodes n0 and n∞
denoting the start and end of all tours. We write NR := N \ {n0, n∞}. For a
request r we define rs as the start of the time window rotw and re as its end.
The set A of arcs represents the vehicles realizing the non-outsourced request,
traveling empty between locations or waiting at a location. It consists of the
arcs serving requests r ∈ R, the tour start, the tour end, and waiting/empty
travel:

A := {(ro, r)→ (rd, r) : r ∈ R}
∪ {n0 → (ro, r) : r ∈ R}
∪ {(rd, r)→ n∞ : r ∈ R}

∪
{

(rd1 , r1)→ (ro2, r2) : r1 6= r2 ∈ R, rs + tro1 ,rd1 + trd1 ,ro2 + 3σ ≤ re2
}
.

For an arc a = n→ m we define target(a) := m and source(a) := n as the target
and source of a. We extend the distances d`,k and travel times t`,k between
locations to da and ta on arcs a ∈ A by

da :=

0 source(a) = n0,

0 target(a) = n∞,

d`,k a = (`, r)→ (k, r′)

and ta :=

0 source(a) = n0,

0 target(a) = n∞,

t`,k a = (`, r)→ (k, r′).

Let xa ∈ B denote whether a vehicle is traveling along arc a ∈ A (xa = 1) or
not (xa = 0). Note that for an arc a = (ro, r)→ (rd, r) this denotes whether the
request r is served by vehicles (xa = 1) or out-sourced (xa = 0). As introduced
in [18, Section III] we define yn→m ∈ N as the total distance from the origin n0
to node m ∈ N traveled by a vehicle when it goes along n→ m ∈ A. We focus
purely on the routing and the minimum distance per vehicle constraint:

min
∑
a∈A

κdaxa +
∑
r∈R

sr(1− x(ro,r)→(rd,r)) (1a)

s. t.
∑
a∈A

target(a)=(ro,r)

xa = x(ro,r)→(rd,r) ∀r ∈ R (1b)

∑
a∈A

source(a)=(rd,r)

xa = x(ro,r)→(rd,r) ∀r ∈ R (1c)

∑
a∈A

source(a)=n

ya =
∑
a∈A

source(a)=n

daxa +
∑
a∈A

target(a)=n

ya ∀n ∈ NR (1d)

yn0→(ro,r) = 0 ∀r ∈ R (1e)

ya ≤ Mxa ∀a ∈ A (1f)

ya ≥ µxa ∀a ∈ A: target(a) = n∞ (1g)

xa ∈ B , ya ∈ R+ ∀a ∈ A (1h)

5

Finally, we consider the simplified driving time regulations. Inspired by [19],
we define for all nodes n ∈ NR a label:

ln =

(
ln,1
ln,2

)
=

(
arrival time

nonstop driving time

)
to represent the state of the driver at the node. The vehicle can start the service
at node n ∈ NR at time ln,1 and can depart from n at time ln,1 + σ. It may
drive τn − ln,2 before the next break.

As shown in [19, Section V], it is possible to pre-compute the set Lm(ln) of
potential labels for a vehicle that is supposed to travel from node n ∈ NR with
label ln to a node m ∈ NR. This takes

• the simplified driving regulation,

• the time window(s) of the requests r ∈ R at origin and destination, and

• the Sunday-break τs

into account. Let lr := (rs, 0)> denote the label of a vehicle when the request r
is the first request within the tour.

The extended model taking time windows and driving time regulation into
account is then

min (1a)

s. t. (1b), (1c), (1d), (1e), (1f), (1g), (1h)

xn0→(ro,r) = 1 =⇒ l(ro,r) = lr ∀r ∈ R (2a)

xn→m = 1 =⇒ lm ∈ Lm(ln) ∀n→ m ∈ A: n,m ∈ NR (2b)

3. Solution Approach

The algorithm presented in this section is a single-solution meta-heuristic based
on large neighborhood search (LNS). The general idea originates in [20], and
has been gaining significant popularity in the recent past. In particular, it has
proven to be highly effective in tackling vehicle routing problems and provides a
good trade-off between solution quality and computational time. Note that we
will use shipment as a synonym for request in the following section.

The main workflow of the algorithm is as follows: given an initial solution,
iteratively modify it until a stopping criterion is reached. Two basic operators
in the LNS framework are removal and insertion procedures. In the current
context, i.e., the pickup and delivery problem, the removal method un-plans a
percentage ξ of already planned requests (pickup and delivery vertices associated
with a request) from the solution, and the insertion method would re-plan these
requests, by using, e.g., an insertion heuristic. Note that for large instances,
removing, e.g., 20 % of the shipments might still lead to a large optimization
sub-problem, hence we limit it by an absolute upper bound ψ on the number
of requests to remove. At every iteration, the modified solution is compared

6

Algorithm 1 ALNS
s ← generateInitialSolution()

sbest ← s
while !stoppingCriterion do

r∗ ← chooseRemovalOperator()

i∗ ← chooseInsertionOperator()

s′ ← partiallyDestroySolution(r∗, s)
snew ← repairSolution(i∗, s′)
if accept(snew) then

s← snew
if snew < sbest then

sbest ← snew
updateOperatorProbabilities()

return sbest

to the best solution found, and promoted to the new best solution if proved to
be better. It is worth noting that a solution might contain unplanned requests,
which are assumed to be serviced by SM, and thus incur additional costs. The
original framework is extended to consider an adaptive mechanism [21], i.e.,
adaptive LNS (ALNS), where user-defined removal and insertion methods are
selected based on their performance during the search.

The high-level pseudo-code of ALNS is presented in Algorithm 1. The
interested reader is referred to [21, 22, 23, 24] for more details about applying
ALNS to a broad range of VRPs.

The starting solution s is constructed using a greedy algorithm. Its basic
idea is to insert an unplanned request in the feasible position which increases the
objective function value the least. Note that the initial solution out-sources all
shipments, nothing is planned on vehicles. A request is given to a vehicle only if
the insertion cost is smaller than the corresponding out-sourcing cost. While
the stopping criterion is not reached, e.g., the maximum number of iterations m,
the algorithm randomly selects one removal and one insertion operator, and
applies them to the current solution s, thus generating a new solution snew. The
method accept verifies whether the newly-built solution is accepted. Simulated
annealing acceptance criteria are used in the current implementation, similarly
to [21, 22], so that worse solutions may also get accepted. If the newly-built
solution is accepted, the current solution s is overwritten. Finally, the best
solution found is returned.

Note that the probability of an operator being chosen is dynamically updated
every nth iteration. The better the performance of the operator, the higher its
chance of being chosen. Eventually, the algorithm will converge to using only
good-performing operators, see [21, 22].

It is important to note that the number of vehicles is unlimited, however
at the end of each ALNS iteration, certain number of requests may remain
unplanned. This is mainly due to the fact that out-sourcing may be cheaper if a
significant empty travel would be induced by servicing a specific request using a
vehicle, or if simply the SM rate is cheaper than the FCT rate.

7

3.1. Removal Operators

Several removal operators are used in the current implementation, as described
below.

RRR: Random Route Removal randomly selects a route and removes it from
the solution. All routes have the same probability of being selected;

TRR: Time-based Route Removal is similar to RRR, however, the probability of
a route being chosen depends on the total travel time of the corresponding
route in the current solution. In other words, longer total travel time leads
to a higher probability of being selected;

SRR: Stop-based Route Removal is similar to TRR, however, smaller number
of shipments planned within a route leads to a higher probability of being
selected. The intuition behind this is that the fewer requests are planned
in a route, the easier it is to re-plan them into other routes, thus avoiding
this route in the solution.

RSR: Random Shipment Removal randomly selects a set of requests to be
removed from the current solution. This operator helps in terms of search
diversification.

TSR: Time-based Shipment Removal is similar to RSR, however, the probabili-
ties of being selected depend on the incurred driving times. In particular,
the probability of selecting a shipment is higher if, in a given solution,
total driving time to its pickup location, and from its delivery location, is
longer.

SR: Shaw Removal removes a set of shipments similar to each other ([20]). The
similarity is defined by the distance between pickup locations and delivery
locations of each pair of shipments. In addition, the time windows of the
shipments are part of the similarity function. Two variants of SR are used:
(i) with distance and time windows as similarity criteria, and (ii) only
time windows as similarity criterion.

3.2. Insertion Operators

We provide more details about the insertion operators used as follows.

Classical greedy: identifies in each iteration the request (of the set of un-
planned requests and the set of (partial) routes) which incurs the lowest
insertion cost and inserts it in its best feasible position. It repeats this
operation until no unplanned request exists or no insertion cost (i.e., FCT
cost) is lower then the corresponding SM cost.

Regret insertion: finds the shipment which incurs the maximum regret if not
inserted in its cheapest feasible position at every iteration. Let c1 represent
the cost of inserting the shipments in the route with the cheapest feasible
position within the FCT routes, c2 – in another route with the second

8

Algorithm 2 Insertion procedure
Input: Sin = unplannedShipments, P = partialRoutes, sr (out-sourcing costs)
Sout ← ∅
while Sin 6= ∅ do

for r ∈ Sin, p ∈ P do
crp ← computeCostOfInsertingRequestInRoute(r, p)

(r∗, p∗) ← shipmentToInsertNext(c)
if cr∗p∗ < sr∗ then

insertRequestInRoute(r∗, p∗)
else

pnew ← ∅
insertRequestInRoute(r∗, pnew)
if allRoutesAreWellUtilized(P) and cost(pnew) ≤ sr∗ then

P = P ∪ {pnew}
else

Sout ← Sout ∪ {r∗}
Sin ← Sin \ r∗

return Sout

cheapest position, c3 – third, etc. Then, the regret function can be defined
as c2 − c1, known as 2-regret. For more details on regret insertion, please
refer to [25]. In order to take into account more information when deciding
which request to insert next, the regret function is generalized, known as
k-regret, considering multiple routes. For example, it is possible to look
at the three cheapest insertion positions. i.e.,

∑k
i=2(ck − c1), where k = 3

is the number of look-ahead insertion positions to take into account (i.e.,
3-regret). Note that several regret operators (with different k values) can
be used within the ALNS.

The general framework of an insertion operator is shown in Algorithm 2:
Given a set Sin of unplanned shipments and a set P of partial routes, iteratively
find the cost of inserting a shipment into a route that incurs the most beneficial
change of the given cost function. If the insertion cost is cheaper than the
corresponding out-sourcing cost, the insertion is performed.

Otherwise, a new trip is created only if no feasible insertion is found in the
existing vehicle trips, and the corresponding out-sourcing cost is higher or equal
than using a new vehicle trip. In addition, a new trip is created only if all
vehicles used are utilized w.r.t. distance traveled at least µ per planning horizon.

Otherwise, the request is placed into the out-sourcing bank Sout, i.e., the set
of the requests which are out-sourced.

The algorithm is assumed to start with one vehicle available. As soon as
the vehicles used are well-utilized as aforementioned, the algorithm makes an
additional vehicle available.

We compute an insertion cost matrix crp for each unplanned shipment and
each existing route. The method shipmentToInsertNext returns the shipment
with the least incurred insertion cost, along with the route and the corresponding
position within the route. Here, either classical greedy or a k-regret insertion
is used. The selected shipment is then evaluated, i.e., if the incurred insertion

9

Parameter Description Value Unit
τn duration of cumulative driving without shift-breaks 450 min
τb minimum duration of a break 990 min
τs minimum duration of a Sunday-break 1,320 min
σ duration of an (un-)loading operation 120 min
ν average speed of vehicles 70 km/h

Table 2: Business-specific parameters.

cost is cheaper compared to out-sourcing, it is inserted in the chosen route (in
its cheapest position). The request is then removed from Sin. Note that in the
event that no feasible insertion is found, the shipment r with the least cost per
distance unit is selected (i.e., sr/dso,sd). Finally, the insertion procedure returns
the out-sourcing bank Sout.

3.3. Constraints

The feasibility of (intermediate) solutions is enforced at any time during the run
of the algorithm. To recap, the following constraints need to be satisfied during
cost matrix computation: (i) every request is out-sourced or must be served by
a vehicle, (ii) time window(s) at origin and destination of the requests must be
respected, and (iii) breaks between working shifts as well as (iv) Sunday-breaks
must be taken into account. Constraints (ii), (iii), and (iv) are enforced only if
the requests are served by a vehicle. As aforementioned, out-sourced requests
are assumed to satisfy all the considered constraints.

Constraints (i) and (ii) are straightforward to implement. Many researchers
have investigated ways to consider these constraints in an efficient manner, i.e.,
by using auxiliary data structures, e.g., [26, 27]. However, when combined with
constraints (iii) and (iv), it is not trivial to efficiently implement them within
ALNS.

4. Computational Experiments

First, we describe the assumptions made during the transformation of Gehring
& Homberger VRP instances, along with their corresponding results. The
second part presents a case study at DB Schenker and describes the instance
characteristics of the input data sets and costs. In both sections, the costs for out-
sourcing no request and out-sourcing all requests are computed for comparison.
Finally, the solutions that assign all requests to outsourcing it or serving it by a
vehicle are discussed.

The ALNS is implemented in C++11 and all experiments are run on an
Intel Core i7-8750H machine @2.2GHz, with 16 GB DDR4-RAM @2.4GHz.

Algorithm Parameters. The algorithm contains various parameters that need
to be set. Some of them are business-related, others are heuristics technical in
nature. The business-related parameters, along with corresponding explanation
and values, are shown in Table 2.

10

Parameter Description Value
m maximum number of ALNS iterations 25,000
ψ maximum absolute number of shipments to remove 100
ξ maximum relative number of shipments to remove 35 %
n every n iterations update operators weights 200

Table 3: Technical parameters.

After performing extensive computational experiments, we found that the
best performance can be achieved by applying the removal operators RRR, SRR,
SR, TSR, and RSR and the insertion operators greedy, 4-regret, 5-regret, and
6-regret, as well as the technical parameter settings of Table 3.

Furthermore, we apply simulated annealing (SA) acceptance criteria in our
ALNS framework, as inspired by [22]. We considered a similar parameter setup
as in [23], as it proved to be beneficial for solution quality.

Note that this presented parameter setup is used throughout this section.

4.1. Transformed Gehring & Homberger Instances

In this section, we present the computational results obtained by solving the
transformed well-known Gehring & Homberger VRP instances [28]. To convert
the literature instances, we made the following assumptions:

• Node 0 is ignored, as it corresponds to the depot;

• Demand, capacity and service time data is ignored;

• For an instance with N nodes, node n and N/2 + n correspond to pickup
and delivery nodes of a request;

• To assure that the planning horizon consists of multiple days, we multiplied
the Euclidean distances and pickup start time windows by a factor f = 6.
The resulting distances are then rounded to the closest integer;

• For simplicity, all locations (i.e., pickup and delivery locations) are assumed
to be open between 06:00 and 18:00;

• The transformed pickup time is used to determine the ready day within
the planning horizon. Then, the corresponding time window from 06:00 to
18:00 of that day is used as pickup time window;

• SM rates per km are assumed as shown in Table 4;

• FCT rate is assumed 1.06 EUR/km;

• µ is computed for each instance separately: 250 km per day with pickups
in the planning horizon.

Table 5 presents the results obtained after solving the transformed Gehring
& Homberger instances. In particular, the numbers show the averages over all
corresponding instances for each instance class (e.g., C100). Three scenarios are

11

distance δ δ < 150 km 150 km ≤ δ <350 km 350 km ≤ δ
cost in EUR/km 1.75 1.40 1.15

Table 4: Assumptions on spot-market rates.

out-sourcing out-sourcing mixed scenario
Class nothing everything own vehicles out-sourced Σ
& % km km
Nodes km cost km cost req. loaded empty cost km cost cost
C 100 58.0 64.5 45.0 54.6 2.2 1.14 0.04 1.3 44.0 53.2 54.5
C 200 145.0 154.5 115.0 136.4 5.2 6.00 0.18 6.5 109.0 129.0 135.6
C 300 324.0 343.3 267.0 310.1 5.2 17.29 0.41 18.8 250.0 290.0 308.8
C 400 527.0 558.3 449.0 518.6 5.6 29.70 0.74 32.3 419.0 484.2 516.5
C 500 869.0 921.2 764.0 881.0 7.2 67.31 1.15 72.6 697.0 803.4 876.0
R 100 58.0 63.3 44.0 53.0 2.0 0.90 0.02 1.0 43.0 51.9 52.9
R 200 154.0 163.6 120.0 142.2 2.0 2.35 0.08 2.6 118.0 139.4 141.9
R 300 342.0 362.7 272.0 314.9 1.7 6.06 0.11 6.5 266.0 308.0 314.5
R 400 607.0 643.0 497.0 573.8 2.3 15.26 0.32 16.5 482.0 556.2 572.7
R 500 960.0 1017.9 791.0 910.9 3.2 34.09 0.49 36.7 757.0 871.7 908.4
RC 100 59.0 63.1 44.0 53.4 2.1 1.20 0.03 1.3 43.0 52.0 53.3
RC 200 155.0 164.5 126.0 147.7 2.4 3.55 0.08 3.8 122.0 143.5 147.4
RC 300 338.0 357.8 262.0 305.2 2.0 6.35 0.19 6.9 256.0 297.8 304.7
RC 400 622.0 659.2 500.0 577.8 2.5 17.82 0.43 19.3 482.0 557.3 576.6
RC 500 980.0 1039.2 806.0 929.5 2.8 30.08 0.69 32.6 776.0 894.8 927.5

Table 5: Costs (average: grouped by class and number of nodes) for the mixed scenarios.
Distances are given in 1,000 km. %req. denotes the percentage of requests. Costs are given in
1,000 EUR. The highlighted cost is better.

computed: all requests served by an own fleet, all requests out-sourced, and a
mix between those as mentioned above.

Not surprisingly, the results indicate that considering the mix of FCT and
SM leads to best results w.r.t. operating costs. In particular, on average 0.5 %
savings can be achieved for the clustered (C) instances by serving approx. 5 %
of the requests using own vehicles compared to out-sourcing everything. On
the other hand, an average of 0.2 % cost savings can be achieved in the mixed
scenario for random (R) and randomly-clustered (RC) instances by serving
approx. 2 % of the requests using own vehicles.

For the C instances, more savings can be achieved compared to R and RC
instances. The main reason is that requests that are compatible from a temporal
point of view are more compatible from a geographical point of view. In other
words, the chances that a pickup location of a request is close to a delivery
location of another request are higher in C instances. Hence less empty driving
can be achieved.

Note that serving all requests by own vehicles is the most costly out of all
scenarios considered. A minimum-driving-distance constraint is enforced, and
the requests are not perfectly compatible in terms of timing and spatial aspects.

4.2. DB Schenker Case Study

DB Schenker is one of the key players in the global logistics sector. Founded in
1872 by Gottfried Schenker in Vienna, Austria, Schenker & Co. began its business

12

by consolidating rail consignments from Paris, France, to Vienna, Austria. DB
Schenker is a freight forwarder that supports industry and trade in the global
exchange of goods by land transport, worldwide air and ocean freight, contract
logistics, and supply chain management. With more than 76,000 employees
working in approx. 2,000 locations around the world, DB Schenker is a leader in
its industry.

DB Schenker’s land transport in Europe covers 36 countries and offers a
variety of products and services. One of them is direct product for large loads,
e.g., FTLs that are transported directly from consignor to consignee.

Large shippers frequently conduct tenders that require logistics providers to
tailor dedicated full-load solutions. DB Schenker participates in such tenders
via sales department representatives, who need to prepare the business offers.
To come up with competitive solutions, different scenarios need to be analyzed,
such as: operating a fleet of FCT, using SM capacity, as well as a mix of both
options mentioned above.

The approach presented in this paper aims at helping sales departments
get more insights about various scenarios, given e.g., historical/forecasted FTL
transportation demands. As a result, sales teams can become more competitive
during tenders.

Two of DB Schenker’s customers conducted a tender, and the sales department
was given the following problem (per customer):

A set of plants is operating on a weekly schedule with working hours per day.
For an entire month, all full-load shipments that have to be transported between
the plants are given. Every shipment has a pickup date and must be transported
directly (no consolidation, no pickup on a later date, etc.) to its destination.

For small instances, an offer can be created by assuming that everything is
given to the spot market or that the volume can be included in DB Schenker’s
internal transportation network. However, for large instances as given by the
two customers (with up to 12,427 full-load shipments per month), none of
the approaches has enough capacity, and none of them would enable the sales
department to present a competitive offer. An option with enough capacity that
can be operated at a competitive cost is the combination of its own dedicated
fleet of trucks and outsourcing to the spot market.

To determine the size of such a fleet and the cost of operating it, the above
model can be applied: The full-load shipments correspond to requests R that
have to be transported between the locations L given by the plants. The origin
time window rotw of a request r is given by the operating hours of the pickup
plant. The destination time windows rdtws is given by the operating hours of the
destination plant. Note that up to two such time windows are required, as a
truck can arrive late and wait for the next day. The two options of using the
spot market and operating an own fleet correspond to outsourcing requests and
serving them by a set of vehicles, respectively.

As a result should be an offer within the tender process, it is not required to
create detailed schedules for the trucks of the own fleet. A simplified driving
regulations model based on shifts and including the Sunday-driving ban is
sufficient.

13

High Volume Month Average Volume Month Low Volume Month
Customer #requests kilometer #requests kilometer #requests kilometer

1 12,427 10,215,308 — — 11,432 9,197,733
2 2,316 1,094,550 2,257 1,145,214 1,162 678,370

Table 6: Instances

0 5 10 15 20 25 30 35 40 45
0

1,000
2,000 High In

Out

0 5 10 15 20 25 30 35 40 45
0

1,000
2,000 Low In

Out

2 4 6
0

500
1,000
1,500

High In

Out

2 4 6
0

500
1,000
1,500

Avg In

Out

2 4 6
0

500
1,000
1,500

Low In

Out

1

Figure 1: In- and out-going requests per physical location. The plots show the number of in-
(gray) and out-going (black) requests per location. The top and middle plot refer to Customer 1
and the remaining ones for Customer 2.

4.2.1. Data Description

In this section, we describe the request- and cost-related data we used in the
analysis.

Request Data. Two data sets obtained from DB Schenker customers are used.
We consider two instances for Customer 1 and three instances for Customer 2,
each consisting of monthly request data, representing low-, average- and high-
demand months. In contrast to Customer 2, the demand for Customer 1 is
relatively stable over time. Hence the difference between high- and low-volume
months is rather insignificant. Table 6 provides the total number of requests,
along with the corresponding sum of the direct origin-destination distances over
all requests for all instances. Figure 1 visualizes the number of in- and out-going
requests per location. Note that most locations have a significant imbalance
between in- and out-going requests. Additionally, the maps in Figures 2 and 3
visualize the number of requests as well as the in- and out-degree.

Figure 3 indicates that for Customer 1, quite some locations are imbalanced,
i.e., has either (almost) only incoming, or (almost) only outgoing requests. In
contrast, the demand from Customer 2 looks more balanced, except for the
western location.

Distances between physical locations were computed using the Open Source
Routing Machine [29].

14

Figure 2: Number of Requests per Location for Customer 1 (left) and 2 (right).

Figure 3: In- and Out-Degree per Location for Customer 1 (left) and 2 (right). The pie-chart
per location shows the relative in-degree in blue and the out-degree in orange.

Overall, it can be observed that the problem instances are large, with up to
12,427 shipments.

As aligned with the FTL operations team, the minimum amount to travel by
an own vehicle was set to µ = 8,000 km and µ = 5,000 km, for Customer 1 and
2, respectively.

Note that the ultimate goal is to generate insights regarding the FCT fleet
size for each customer, as operational plans are out of scope in this paper. Hence,
solving multiple scenarios depending on different monthly volumes helps the
sales department develop cost-efficient and reliable business offers.

Cost Data. DB Schenker’s FTL operations team provided us with SM rates to
be used for outsourced requests corresponding to the given datasets. Since it was
impossible to obtain all rates (for all points in time and all origin-destination
pairs), we had to make assumptions regarding missing rates. In close collaboration
with our business partners, we managed to develop realistic assumptions for
static SM rates per kilometer.

In particular, we distinguish three different specific rate levels, depending on
the distance between origin and destination, as shown in Table 4. Regarding the

15

0 500 1,000 1,500 2,000 2,500 3,000

0.5

1

1.5

2

2.5

3

distance [km]

ra
te

[E
U
R
/
k
m
]

SM: default

SM: rate

FCT

0 500 1,000 1,500

1

2

3

4

5

distance [km]

SM: default

SM: rate

FCT

1

Figure 4: Real SM rates for out-sourcing vs. approximated rates for out-sourcing vs. costs
per km for vehicles for Customer 1 (left) and 2 (right). The individual points show the
approximated SM default rates (red crosses) as well as the real SM rates for outsourcing (blue
dots). The static cost of 1.06 EUR/km for vehicles is shown as a black reference line.

cost per driven kilometer of the FCT vehicles, our business partners provided a
cost benchmark of 1.06 EUR/km (both empty or loaded). Figure 4 displays the
relation between specific rates in EUR/km and the distance from the origin to
the destination. In particular, SM: default rates indicate the distance-specific
approximation described above, whereas SM: rate indicates the real rates for
out-sourcing to the SM obtained from the operations team.

For Customer 1, approximately 35 % of the SM rates could not be obtained by
the operations team and were, thus, approximated using the approach described
above. In contrast to that, all SM rates could be retrieved for Customer 2. No
clear trend can be observed in Figure 4. This is mainly because specific rate
levels differ strongly between trade lanes, and that they are not symmetric per
trade lane: a transport from Eastern Europe to Western Europe, with a distance
of, e.g., 750 km would cost less than the corresponding trip in the opposite
direction. Also, rate levels are dynamic in time. Certain months of the year
experience high demand for transportation services, hence the costs get higher.
Similarly, for low-volume months the transportation costs are expected to be
cheaper.

Note that these costs reflect the market at the time of writing this article.

4.2.2. Out-Sourcing Everything vs. Nothing

Here, we present the computational results of enforcing all requests to be
outsourced and all requests to be served by vehicles. Computing the cost of
outsourcing is easy. We have to sum up all outsourcing costs of all requests. For
computing the cost of serving all requests by vehicles, we consider the cost of
unplanned requests within the ALNS as a huge number.

Tables 7 and 8 indicate the results considering complete sets of requests for
each customer and month. In particular, Table 7 shows the number of vehicles

16

Cus- Additional Dist. p. Vehicle CPU
tomer Month #requests #vehicles Empty Dist. Max Avg Min [sec]

1 High 12,427 1,172 +31.3 % 18.8 11.7 8.0 4,386
1 Low 11,432 1,095 +35.1 % 18.8 11.9 8.0 3,917
2 High 2,316 153 +35.6 % 13.2 9.7 5.4 525
2 Avg 2,257 153 +41.1 % 13.8 10.6 5.4 727
2 Low 1,162 95 +33.8 % 12.5 9.6 5.4 345

Table 7: Computational results for a solution out-sourcing nothing. Distances per vehicle are
given in 1,000 km. The additional empty distances are given relatively to the loaded distances
in Table 6.

out-sourcing everything nothing

requests grouped per orig.-dest. dist. δ
Cus- δ<150 150≤δ<350 350≤δ
tomer Month #req.q Σkm #req. Σkm #req. Σkm cost km cost

1 High 458q 46.9 2,651 726.3 9,318 9,442.1 12.43 13,417 14.22
1 Low 435q 44.3 2,650 747.4 8,347 8,406.0 11.40 12,431 13.18
2 High 1,099q 52.7 16 4.9 1,201 1,036.9 1.50 1,485 1.57
2 Avg 958q 45.9 24 7.4 1,275 1,091.9 1.50 1,616 1.71
2 Low 439q 21.0 17 5.3 706 652.1 0.85 908 0.96

Table 8: Costs for solutions out-sourcing everything and out-sourcing nothing. Distances are
given in 1,000 km. Costs are given in 1 million EUR. The highlighted cost is better. #req.
denotes the number of requests.

needed to perform the service. Additional columns present the empty travel
distance between loads relative to the loaded travel distance, i.e., between the
previous delivery and the next pickup, KPIs related to the distance traveled per
vehicle, and, finally, the computational time needed.

It can easily be seen that significant additional empty travel would be required
in a scenario where nothing is outsourced. One of the main reasons for this is,
of course, the imbalanced demand structure that was displayed in Figure 3. In
particular, several locations in both data sets serve either as origins (sources) or
destinations (sinks). This naturally leads to empty runs, e.g., when a vehicle
delivers at a pure sink location and then is forced to travel empty to its following
source location.

To assess the merits of a scenario without outsourcing, we compare its overall
cost to that of a scenario where everything is outsourced, as summarized in
Table 8. In all five instances, outsourcing nothing is less competitive than
outsourcing everything, with an overall cost disadvantage of up to 16 %. Again,
this result does not come as a real surprise since an outsourcing approach is, at
least in theory, fully flexible and of unlimited capacity and, thus, more efficient
in serving the rather imbalanced and erratic demand patterns inherent to our
customer instances.

4.2.3. Cost-Optimal Mix

After computing the costs for outsourcing no request and outsourcing all
requests for comparison, we compute the cost-optimal assignment of requests to
outsourcing options or an own fleet of vehicles. We call a scenario where both

17

Cus- out-sourcing out-sourcing mixed scenario
tomer nothing everything own vehicles out-sourced Σ
& % km km
Month km cost km cost req. loaded empty cost km cost cost
1 High 13,417 14.22 10,215 12.43 6.9 294.4 39.3 0.35 9,921 11.83 12.18
1 Low 12,431 13.18 9,198 11.40 6.2 264.8 24.2 0.31 8,933 10.87 11.18
2 High 1,485 1.57 1,095 1.50 41.1 56.2 35.7 0.10 1,038 1.26 1.36
2 Avg 1,616 1.71 1,145 1.50 35.4 50.2 26.0 0.08 1,095 1.30 1.38
2 Low 908 0.96 678 0.85 34.5 26.3 15.0 0.04 652 0.74 0.79

Table 9: Costs for the mixed scenarios. Distances are given in 1,000 km. %req. denotes the
percentage of requests. Costs are given in 1 million EUR. The highlighted cost is better.

options are allowed a mixed scenario.
Table 9 indicates results for the most cost-efficient mixed scenarios found and

compares them to outsourcing nothing and outsourcing everything. In all five
instances, the mixed scenario is more competitive than any other two options,
although the relative gain is more marked for Customer 2 than Customer 1.

The demand structure of Customer 1 (as discussed in Section 4.2.1) shows
an extreme imbalance of in- and out-going requests for many locations. The
geographic distribution of the locations induces many long-distance connections,
which lead to a high amount of empty travel. To be financially beneficial, a
spot-market rate has to be twice as high as the rate for operating an own vehicle.
This is rarely the case, as shown before. As a result of this effect, we see that only
a minimal amount (up to 7 %) of the requests is served by own vehicles, whereas
the vast majority is outsourced. For a high-volume month, the mixed scenario
is 2 % cheaper (12.18 million instead of 12.43 million EUR) than outsourcing
everything to the SM. In a low-volume month, savings are even less.

As the demand structure for Customer 2 is more balanced, significantly less
empty travel is induced. This results in serving up to 41 % of the requests
using own vehicles. For a high/average/low-volume month, the mixed sce-
nario is 9 %/7 %/6 % cheaper than out-sourcing everything to the spot-market,
respectively.

5. Conclusions

In this paper, we have presented a meta-heuristic to effectively support business
development units at DB Schenker in designing competitive offers for complex
full-load solutions. In particular, in order to calculate the total number of
vehicles needed, the distance traveled, and the full-load requests that are served
by an own fleet of vehicles instead of out sourcing them to SM. We modeled the
problem as a variant of the PDPTW with driving regulations, and tackled it
using a tailored ALNS.

We compared three scenarios, namely out-sourcing nothing, out-sourcing
everything to the spot-market, and a mix of both, and quantified the corre-
sponding costs. For evaluation purposes, we used transformed VRP instances
widely used in the scientific literature (i.e., Gehring & Homberger) and real-life

18

instances from two potential customers of DB Schenker, containing monthly
demand data with up to 12,427 requests. For these instances, out-sourcing noth-
ing is outperformed by out-sourcing everything due to the underlying demand
structure. However, a mixed setup may yield benefits of up to 9 % compared to
out-sourcing everything.

To actually realize the potential benefits presented in this paper, the de-
veloped approach would need to be complemented by an operational decision
support system, which can help control towers continuously plan, execute, and
re-plan scenarios in case of demand fluctuations, driving time deviations or other
unexpected events. The operational system needs access to real-time traffic data
and own vehicles should be equipped with tracking devices that allow timely
detection of potential deviations or disruptions.

Also from an algorithmic point of view, our approach could be extended in
a number of ways. As aforementioned, when using the presented algorithm as
operational decision support, additional aspects/parameters need to be added
to allow for considering dynamic aspects of the problem as well as problem
heterogeneity, e.g., different cost assumptions per lane or geography when
operating own vehicles. We have also indicated above that we took a rather
pragmatic approach towards driving time constraints which currently doesn’t
reflect the full complexity of various national regulatory regimes.

In addition, when using the approach for tender calculations, demand un-
certainty should be incorporated in the optimization procedure. This implies
that routing solutions would need to be more conservative, hence more costly to
some extent. However, incorporating the uncertainty explicitly into the model
would increase the robustness of the solutions, and thus lead to less probability
of unexpected costs due to demand fluctuations.

References

[1] N. Wieberneit, Service network design for freight transportation: A review,
OR Spectrum 30 (2008) 77–112. doi:10.1007/s00291-007-0079-2.

[2] M. Sol, M. W. P. Savelsbergh, The general pickup and delivery problem,
Transportation Science 29 (1995) 17–29.

[3] R. Soares, A. F. Marques, P. Amorim, J. Rasinmäki, Multiple vehicle syn-
chronisation in a full truck-load pickup and delivery problem: A case-study
in the biomass supply chain, European Journal of Operational Research
277 (1) (2019) 174–194. doi:10.1016/j.ejor.2019.02.025.

[4] N. Xue, R. Bai, R. Qu, U. Aickelin, A hybrid pricing and cutting approach
for the multi-shift full truckload vehicle routing problem, European Journal
of Operational Research 292 (2) (2021) 500–514. doi:10.1016/j.ejor.

2020.10.037.

[5] A. Goel, Vehicle Scheduling and Routing with Drivers’ Working Hours,
Transportation Science 43 (1) (2009) 17–26. doi:10.1287/trsc.1070.

0226.

19

https://doi.org/10.1007/s00291-007-0079-2
https://doi.org/10.1016/j.ejor.2019.02.025
https://doi.org/10.1016/j.ejor.2020.10.037
https://doi.org/10.1016/j.ejor.2020.10.037
https://doi.org/10.1287/trsc.1070.0226
https://doi.org/10.1287/trsc.1070.0226

[6] A. Goel, Truck Driver Scheduling in the European Union, Transportation
Science 44 (4) (2010) 429–441. doi:10.1287/trsc.1100.0330.

[7] A. Goel, Legal aspects in road transport optimization in Europe, Trans-
portation Research Part E: Logistics and Transportation Review 114 (2018)
144–162. doi:10.1016/j.tre.2018.02.011.

[8] A. Goel, T. Vidal, Hours of service regulations in road freight transport:
An optimization-based international assessment, Transportation Science 48
(2013) 313–463. doi:10.1287/trsc.2013.0477.

[9] A. Goel, S. Irnich, An exact method for vehicle routing and truck driver
scheduling problems, Transportation Science 51 (2016) 395–789. doi:10.

1287/trsc.2016.0678.

[10] P. P. Repoussis, C. D. Tarantilis, G. Ioannou, The open vehicle routing
problem with time windows, Journal of the Operational Research Society
58 (3) (2007) 355–367. doi:10.1057/palgrave.jors.2602143.

[11] R. Lahyani, A.-L. Gouguenheim, L. C. Coelho, A hybrid adaptive large
neighbourhood search for multi-depot open vehicle routing problems, In-
ternational Journal of Production Research 57 (22) (2019) 6963–6976.
doi:10.1080/00207543.2019.1572929.

[12] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, Heuristics for multi-attribute
vehicle routing problems: a survey and synthesis, European Journal of
Operational Research 231 (1) (2013) 1–21. doi:10.1016/j.ejor.2013.02.
053.

[13] K. Braekers, K. Ramaekers, I. V. Nieuwenhuyse, The vehicle routing prob-
lem: State of the art classification and review, Computers & Industrial
Engineering 99 (2016) 300–313. doi:10.1016/j.cie.2015.12.007.

[14] A. Annouch, K. Bouyahyaoui, A. Bellabdaoui, A literature review on the
full trackload vehicle routing problems, in: A. E. H. Alaoui, Y. Benadada,
J. Boukachour (Eds.), 3rd International Conference on Logistics Operations
Management, GOL 2016, Fez, Morocco, May 23-25, 2016, IEEE, 2016, pp.
1–6. doi:10.1109/GOL.2016.7731723.

[15] C. Archetti, D. Feillet, A. Hertz, M. G. Speranza, The capacitated team ori-
enteering and profitable tour problems, Journal of the Operational Research
Society 60 (6) (2009) 831–842. doi:10.1057/palgrave.jors.2602603.

[16] M. Gansterer, M. Küçüktepe, R. Hartl, The multi-vehicle profitable
pickup and delivery problem, OR Spectrum 39 (06 2016). doi:10.1007/

s00291-016-0454-y.

[17] P. Sun, L. Veelenturf, M. Hewitt, T. Van Woensel, Adaptive large neighbor-
hood search for the time-dependent profitable pickup and delivery problem
with time windows, Transportation Research Part E: Logistics and Trans-
portation Review 138 (2020) 101942. doi:10.1016/j.tre.2020.101942.

20

https://doi.org/10.1287/trsc.1100.0330
https://doi.org/10.1016/j.tre.2018.02.011
https://doi.org/10.1287/trsc.2013.0477
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1057/palgrave.jors.2602143
https://doi.org/10.1080/00207543.2019.1572929
https://doi.org/10.1016/j.ejor.2013.02.053
https://doi.org/10.1016/j.ejor.2013.02.053
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1109/GOL.2016.7731723
https://doi.org/10.1057/palgrave.jors.2602603
https://doi.org/10.1007/s00291-016-0454-y
https://doi.org/10.1007/s00291-016-0454-y
https://doi.org/10.1016/j.tre.2020.101942

[18] I. Kara, Arc based integer programming formulations for the distance
constrained vehicle routing problem, in: 3rd IEEE International Symposium
on Logistics and Industrial Informatics, 2011, pp. 33–38. doi:10.1109/

LINDI.2011.6031159.

[19] A. Goel, V. Gruhn, Drivers’ working hours in vehicle routing and schedul-
ing, in: IEEE Intelligent Transportation Systems Conference, ITSC 2006,
Toronto, Ontario, Canada, 17-20 September 2006, IEEE, 2006, pp. 1280–
1285. doi:10.1109/ITSC.2006.1707399.

[20] P. Shaw, Using constraint programming and local search methods to
solve vehicle routing problems, in: M. J. Maher, J. Puget (Eds.), Prin-
ciples and Practice of Constraint Programming – CP98, 4th Interna-
tional Conference, Pisa, Italy, October 26-30, 1998, Proceedings, Vol.
1520 of Lecture Notes in Computer Science, Springer, 1998, pp. 417–431.
doi:10.1007/3-540-49481-2_30.

[21] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems,
Computers & Operations Research 34 (8) (2007) 2403–2435. doi:10.1016/
j.cor.2005.09.012.

[22] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows, Transportation Science
40 (2006) 455–472. doi:10.1287/trsc.1050.0135.

[23] V. Ghilas, E. Demir, T. Van Woensel, An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time windows
and scheduled lines, Computers & Operations Research 72 (2016) 12–30.
doi:10.1016/j.cor.2016.01.018.

[24] A. Grimault, N. Bostel, F. Lehuédé, An adaptive large neighborhood
search for the full truckload pickup and delivery problem with resource
synchronization, Computers & Operations Research 88 (2017) 1–14. doi:

10.1016/j.cor.2017.06.012.

[25] J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the
vehicle routing and scheduling problem with time windows, European
Journal of Operational Research 66 (3) (1993) 331–340. doi:10.1016/

0377-2217(93)90221-8.

[26] M. W. P. Savelsbergh, An efficient implementation of local search algorithms
for constrained routing problems, European Journal of Operational Research
47 (1) (1990) 75–85. doi:10.1016/0377-2217(90)90091-O.

[27] A. M. Campbell, M. W. P. Savelsbergh, Efficient insertion heuristics for
vehicle routing and scheduling problems, Transportation Science 38 (2004)
369–378. doi:10.1287/trsc.1030.0046.

21

https://doi.org/10.1109/LINDI.2011.6031159
https://doi.org/10.1109/LINDI.2011.6031159
https://doi.org/10.1109/ITSC.2006.1707399
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1016/j.cor.2005.09.012
https://doi.org/10.1016/j.cor.2005.09.012
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1016/j.cor.2016.01.018
https://doi.org/10.1016/j.cor.2017.06.012
https://doi.org/10.1016/j.cor.2017.06.012
https://doi.org/10.1016/0377-2217(93)90221-8
https://doi.org/10.1016/0377-2217(93)90221-8
https://doi.org/10.1016/0377-2217(90)90091-O
https://doi.org/10.1287/trsc.1030.0046

[28] H. Gehring, J. Homberger, A parallel hybrid evolutionary metaheuristic
for the vehicle routing problem with time windows, in: Proceedings of the
EUROGEN99: Short Course on Evolutionary Algorithms in Engineering
and Computer Science, University of Jyväskylä, Finland, 1999.
URL http://www.mit.jyu.fi/eurogen99/papers/homberg.ps

[29] D. Luxen, C. Vetter, Real-time routing with openstreetmap data, in: Pro-
ceedings of the 19th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, GIS ’11, ACM, New York, NY,
USA, 2011, pp. 513–516. doi:10.1145/2093973.2094062.

22

http://www.mit.jyu.fi/eurogen99/papers/homberg.ps
http://www.mit.jyu.fi/eurogen99/papers/homberg.ps
http://www.mit.jyu.fi/eurogen99/papers/homberg.ps
https://doi.org/10.1145/2093973.2094062

	1 Introduction
	2 Problem Description and Mathematical Model
	3 Solution Approach
	3.1 Removal Operators
	3.2 Insertion Operators
	3.3 Constraints

	4 Computational Experiments
	4.1 Transformed Gehring & Homberger Instances
	4.2 DB Schenker Case Study
	4.2.1 Data Description
	4.2.2 Out-Sourcing Everything vs. Nothing
	4.2.3 Cost-Optimal Mix

	5 Conclusions

