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Mueller polarimetry measurements are increasingly being used to image highly dynamic and short-lived phe-
nomena such as plasma discharges. For phenomena such as these, exposure times below 1 µs must be used.
Unfortunately, these low exposure times significantly reduce the signal-to-noise ratio, making accurate and con-
sistent measurements difficult. To overcome this limitation, we investigated increasing the number of Stokes
vectors produced from a polarization state analyzer and polarization state generator, a process known as over-
determination. To conduct our analysis, we used results from physical experiments using Stokes vectors generated
by liquid crystal variable retarders. These results were then verified using data from simulations. First, we conclude
that increasing the degree of over-determination is a simple and effective way of dealing with this noise; however,
we also convey that choosing the best scheme is not an entirely trivial process. Second, we demonstrate that over-
determination gives rise to hitherto inaccessible information that allows for the quantification of statistical noise
and, crucially, the pinpointing of the origin of systematic error, a highly beneficial process that has been lacking
until now. ©2021Optical Society of America

https://doi.org/10.1364/AO.435085

1. INTRODUCTION

Mueller polarimetry is an experimental technique used to deter-
mine the Mueller matrix of a sample [1,2]. This is achieved
by sequentially illuminating the sample with polarized light
emerging from a polarization state generator (PSG) and then
analyzing the light reflected or transmitted through the sample
with a polarization state analyzer (PSA) [3,4]. When used in
concert, these two components make it possible to deduce the
full description of how the sample alters the polarization prop-
erties of light; this information is then stored in a 4× 4 matrix
known as a Mueller matrix [5]. Alongside Mueller polarimetry,
there is Stokes polarimetry [6], which is often referred to simply
as polarimetry. Stokes polarimetry is limited to the calculation of
Stokes vectors of light rather than Mueller matrices of samples.
One of the advantages of polarimetry is that measurements can
be made remotely and quickly, and as a consequence of this,
it has found applications in several wide ranging areas such as
astronomy and geoscience [7–9]. Mueller polarimetry on the
other hand is predominantly employed on static targets, and as
such, it has found uses in biomedicine and crystallography [10–
13], where the full Mueller matrix can reveal valuable insights
about the samples. Nevertheless, Mueller polarimetry can also
be used in dynamic settings. This is due to a set of materials

whose Mueller matrix is dependent on external factors such
as temperature and electric fields, known as photo-elastic and
electro-optic crystals, respectively [14,15]. When these mod-
ulators are placed in a Mueller polarimeter, the changes in the
Mueller matrix can be determined and linked back to the active
effect. A prime example of this is shown in a plasma diagnostic
technique that exploits the Pockels effect to calculate the electric
field of plasma impinging upon an electro-optic crystal [16,17].
Dynamic imaging such as this has a crucial drawback though.
As the exposure time is decreased, the signal-to-noise ratio also
decreases, raising the difficulty of producing accurate results in
short-lived phenomena such as plasma. However, noise plagues
measurements regardless of exposure time, so there already
exists a large area of research dedicated to reducing the effects of
noise in both Stokes and Mueller polarimetry [18–23]. Much
of this research draws on the rich mathematical foundation
that underpins the Stokes framework, so much so that one can
easily become lost in the abstract world of group theory and
Minkowski metrics [24–26] to the point where it is easy to
forget that Mueller polarimetry is principally an experimental
technique, not a mathematical architecture. However, this
preponderance of theoretical research has certainly proved
useful; in particular, the concept of well-determined and
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over-determined measurement schemes forms the starting point
of the investigation outlined in this paper. Well-determined and
over-determined denote the same concept in both Mueller and
Stokes polarimetry, but the specifics are different. Within Stokes
polarimetry, the object of calculation is a four-dimensional
vector, and therefore four measurements are required to produce
a well-determined result; but if more measurements are used,
the result is deemed as over-determined. To contrast this with
Mueller polarimetry, where there are 16 distinct parameters,
a well-determined result requires 16 measurements, and an
over-determined result needs more than 16. Currently the bulk
of research exploring over-determination is applied to Stokes
polarimetry [19,21]. In this paper, we set out to rectify this
paucity of information and investigate over-determination in
the context of Mueller polarimetry. Our work is split into two
areas: first we show the positive effect of over-determination on
the stability and accuracy of results, then we explore how the
metadata arising through over-determination can allow for the
quantification of noise within the measurements. The ramifica-
tions of our findings lead us to conclude that over-determining
a Mueller matrix to any degree is a worthwhile endeavor even
in systems relatively devoid of noise; however, there is still more
research needed into the degree of over-determination required
and also the relationship between noise and metadata terms
needs to be studied further.

2. EXPERIMENTAL SETUP

The experiments were performed on the setup shown in
Fig. 1. As the figure shows, the light source was an LED pro-
ducing incoherent collimated monochromatic red light
(625 nm), which passes through the PSG, which comprises
a linear polarizer (LP) mounted at 180◦, followed by a pair
Meadowlark liquid crystal variable retarders (LCVRs) [3] that
were mounted at 45◦ and 0◦. Each pair of LCVRs was managed
by a Meadowlark control unit that applies a voltage between 0 V
and 10 V and a minimum switching time of roughly 500 µs to

the liquid crystal, thus altering the retardance of the liquid crys-
tal over a range of 15◦ to 350◦. Once the light passes through the
PSG, it travels through the sample and into a collection of two
lenses before it passes through the PSA. In an ideal system, these
two lenses would not be necessary, as the light would be perfectly
collimated throughout the whole setup. However, the light
source used was capable of producing collimated light only over
distances shorter than this setup, and therefore this sequence of
lenses was added to ensure that the light entering the PSA was
collimated and that the sample was in focus at the camera. The
PSA is made up of the same components as the PSG, except now
the order of the components (from left to right) is as follows:
two LCVRs mounted at 0◦ and 45◦, then a LP mounted at 180◦.
Immediately in front of the Andor Istar ICCD camera, there
is a lens that magnifies the image before entering the camera’s
array of detectors, which measures the intensity of the light, pro-
ducing a 1024× 1024 pixel image. The camera used for these
measurements had possible gate widths ranging from seconds
to picoseconds, and also had an adjustable gain ranging from
1 to 4095 that when applied, increased the intensity of images
taken. So that our measurement closely aligns with the operating
paradigms used for imaging short-lived phenomena, the mea-
surements shown in this paper were achieved using a gate width
of 1 µs and a gain of 4095. There has been much research into
optimizing many different types of polarimeters [3,27–30]. Our
decision to mount LCVRs at 0◦ and 45◦ for both the PSA and
PSG was due to the ease of use and flexibility afforded by this
setup. Using this equipment, mounted in this particular man-
ner, meant that the PSG and PSA were capable of producing
every Stokes vector on the surface of the Poincaré sphere [31],
therefore producing an incredibly flexible system with nearly
complete functionality. Furthermore, this alignment allowed
for very robust control over the Stokes vectors, as the relation
between each element of the Stokes vector and the retardances
of the two LCVRs is very simple. An equation detailing this
relationship is shown below. However, it should be clarified that
at a working wavelength of 625 nm, our particular LCVRs were

Fig. 1. Experimental setup consisting of a polychromatic red light LED, ICCD camera, and a sequence of linear polarizers, liquid crystal variable
retarders, and lenses.



9596 Vol. 60, No. 31 / 1 November 2021 / Applied Optics Research Article

limited to a range of retardances of roughly 15◦–350◦, so the full
Poincaré sphere was not quite accessible:

S =
[

1, cos (δ1) , sin (δ1) cos (δ2) , sin (δ1) sin (δ2)
]
, (1)

where δ1 and δ2 are the retardances of LCVR1 and LCVR2,
respectively. It should be pointed out that this relation is the
exact description of the x , y , and z coordinates in a spherical
polar system, which greatly helps in understanding what effect
each LCVR has on the ensuing Stokes vector. Two samples were
used in this experiment, all of which are non-depolarizing: a
quarter-wave plate (QWP) mounted at 20◦ and a compound
sample of two plates of 0.5 mm thick bismuth silicon oxide
(BSO) crystals [32]. The majority of the following results origi-
nate from the QWP measurements; the reason for this is that
the Mueller matrix of a QWP is very well defined, and thus
makes an excellent choice of sample for investigating the accu-
racy of results. Despite being a less than ideal system, BSO was
also investigated because of its usefulness in the dynamic, low-
exposure imaging settings that we were trying to recreate, and
as such, it produces a system closer to those used in real-world
dynamic polarimetry measurements. Eight Stokes vectors were
chosen to be generated by both the PSG and PSA, generating 64
measurements in an 8× 8 intensity matrix. To fully calculate a
Mueller matrix, a 4× 4 system using only 16 measurements are
necessary, so with our 8× 8 collection of 64 measurements, we
can generate a large number of unique subsets with more than
16 measurements in them. In fact, using 64 measurements in
the way, we have in this paper produced over 20,000 unique and
valid intensity matrices of smaller dimensions, e.g., 5× 6 or
7× 7 (see Table 1), each producing a different Mueller matrix of
its own, which we feel is a large enough collection of calculated
Mueller matrices to draw conclusions upon. As we were using
eight Stokes vectors, a good set to choose for this experiment
is from the cubic set, a member of the vector sets known as
Platonic solids [27,28]. The cubic set is so called because the
vectors form the vertices of a cube within the Poincaré sphere
[6,19]. The appeal of the cubic set is because it achieves the
minimum condition number for the A and W matrices [33]:

A=



1 −a a −a
1 −a −a a
1 −a −a −a
1 −a a a
1 a a −a
1 a −a a
1 a −a −a
1 a a a


, W = AT , (2)

where A and W are the collection of Stokes vectors from the
PSG and PSA, respectively, a = 1

√
3
, and T denotes the matrix

transpose. The Stokes vectors in the PSG and PSA were created
by applying synchronized square waves of 1, 2, 4, and 8 Hz to
the LCVRs. However, the 1 Hz square wave was placed 180◦

out phase with the others, and most crucially, the minimum and
maximum voltages were the same, in effect creating a constant
voltage. The reason for this choice is because it was used to
trigger the camera, as the trigger would otherwise occur during
the transition between one voltage to another. It was deemed
best to keep the voltage constant to ensure stable retardance

during image acquisition. Using this procedure meant that
the PSA alternated between two states, and for each of these
states, the PSG cycled through four, creating a sequence of eight
measurements, and so producing the full 64 measurements in
an additive manner. Square waves were chosen as they provide
a greater degree of stability and consistency over continuously
varying waveforms. Alongside this, the fact that the trigger was
180◦ out of phase with the varying retarders meant that they will
have had enough time to stabilize after their transition. Because
of inevitable small misalignments in the fast axes of LCVRs and
the manner in which the Stokes vectors were created, it meant
that it was not feasible to perfectly reproduce the values in the
ideal A and W matrices. However, it was possible to reproduce
the switching nature of the polarity of each element of the Stokes
vectors, i.e., switching s 2 from −a to a . In this way, each cre-
ated Stokes vector occupied a different octant of the Poincaré
sphere all to itself. To calculate the A and W matrices, first we
calculated what the values of A were by measuring each vector
against a known analyzer made of a QWP and a LP. Each vector
was measured six times, each time against a different member of
the diamond set of Stokes vectors. Once A was known, we then
replaced the known analyzer with the remaining LCVRs, and
then used these to measure A again. With this set of measure-
ments, W could be calculated. Finally, we validated the matrices
by comparing ideal and calculated values of the Mueller matrix
of a QWP placed between the PSG and PSA, and with its fast
axis mounted at 20◦. The values calculated are shown in Eq. (3):

A=



0.992 −0.849 −0.062 0.395
0.981 −0.855 −0.338 −0.059
0.998 −0.878 0.095 −0.220
0.995 −0.866 0.212 0.206
0.981 0.437 0.462 −0.729

1 0.544 0.663 0.536
0.966 0.587 −0.532 0.542
0.961 0.516 −0.569 −0.596



W =



0.978 −0.810 −0.438 0.260
0.973 −0.753 −0.320 −0.510
0.986 −0.816 0.402 −0.386

1 −0.858 0.316 0.308
0.978 0.323 0.575 −0.711
0.972 0.193 0.669 0.662
0.958 0.282 −0.612 0.672
0.956 0.373 −0.644 −0.584


T. (3)

3. ASSESSMENT OF ACCURACY

The analyses involved in this paper are primarily concerned with
the accuracy and stability of the results produced by different
measurement schemes. To investigate these characteristics,
several terms were introduced to act as proxies. The first of these
terms is D, which we use as a surrogate measurement of accu-
racy; it is defined as the root mean square difference between the
ideal Mueller matrix and the measured Mueller matrix:

D=

√√√√ 1

16

4∑
i, j=1

(Mca
i, j −Mid

i, j )
2
, (4)
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where Mca
i, j and Mid

i, j are the Mueller matrix elements of the
calculated and ideal matrices, respectively. To understand how
the stability of results changes, an indirect yet relevant measure-
ment that evaluates the standard deviation of the Mueller matrix
across each pixel was developed, and we call this value ρ (for
examples of this, see Figs. 4 and 5):

ρ =
1

16

4∑
i, j

√√√√ 1

10242

10242∑
n=1

(Mn
i, j −Mi, j )

2
, (5)

where n indexes the pixel, i and j index the particular element in
the Mueller matrix, and Mi, j is the average value of the Mueller
matrix element across the whole image. To simplify the fig-
ures in the Results section and aid in readability, we define the
dimension of the A and W matrices as NA and NW , respectively.
Essentially, what these numbers denote are the numbers of
Stokes vectors produced in the PSG and PSA. For example,
the scheme NA = 6 and NW = 5 means that six Stokes vectors
are produced in the PSA and five Stokes vectors are produced
in the PSG, i.e., the dimensions of the A and W matrices are
(6× 4) and (4× 5), respectively. To probe how systematic error
manifests in our results, we also introduce a new term that we
call the1matrix. Its definition and derivation are outlined as

1= Ic − Im, (6)

where Ic is the matrix containing the intensity measurements
derived from the calculated Mueller matrix, Mc , and Im is the
matrix containing the intensity measurements from the camera:

Im = Aac MWac, (7)

Mc = A−1
as Im W−1

as Mc = A−1
as Aac MWacW−1

as , (8)

where the lower scripts ac and as denote the actual and assumed
versions, respectively. What is meant by actual and assumed
is that the actual Stokes vectors are those used directly in the
measurement procedure and the assumed vectors are those used
in the calculation of the Mueller matrix, such that in a perfectly
calibrated system, we would have Aac = Aas and Wac =Was. It
should also be pointed out that by definition, we cannot know
Aac and Wac, and therefore we cannot know M itself. We do
of course know Im , and that is why the 1 matrix is defined
using Im . This way, the delta matrix can be calculated even
if the Mueller matrix is not known. This is in contrast to our
parameter D, which works only when using a reference sample:

Ic = Aas Mc Was, Ic = Aas Im − Ic = Aac MWac − Aas Mc Was.
(9)

From this definition of 1, we can see that it originates from
the statistical noise in Im and the difference between the actual
Stokes vectors and their assumed counterparts used for calcu-
lation, i.e., systematic error. Of course, one can calibrate away
a large degree of systematic error so that Aas and Was are very
close to their actual counterparts. However, it is impossible to
eliminate it entirely, and in an over-determined system, many
Stokes vectors are used, so it is important that we have a method
for identifying systematic error. This divergence between the
intensities is an incredibly curious and seemingly redundant
result, and indeed in a perfect system devoid of error, it does not

exist. It is a consequence of both over-determination and the
existence of measurement errors. It is important to note that
it is not a sole result of over-determination, and that an over-
determined system free of error will have an empty 1 matrix.
The reason for its existence is that the statistical errors in the
measured intensities and the systematic error in the A and W
matrices create a set of logically inconsistent linear equations,
i.e., there is no Mueller matrix that can perfectly satisfy the
relation I = AMW . To illustrate this point, see the following
example: 1 0 0

0 1 0
0 0 1
1 1 1


 x

y
z

=
 1

2
3

6.2

 . (10)

As you can see, this equation contains a mathematical incon-
sistency. It is impossible to have a vector whose elements are one,
two, and three, but the sum of those elements is equal to 6.2,
and yet this equation is still solvable (see Appendix A) Invertinga
Rectangular Matrix. It is this possibility of solving logically con-
tradictory equations that gives rise to the1matrix. We believe
that the magnitudes in the 1 matrix can be thought of as the
degree of contradiction between the linear relations collected in
the equation I = AMW . It is important to reiterate that when
one over-determines a Mueller matrix, an unnecessarily large set
of measurements is taken, and with this overly large set, smaller
subsets can be assembled by omitting rows and columns. In
turn, some of these subsets can be used to produce their own
Mueller matrices (which is what we mean when we refer to a
“result”). We hasten to add that over-determination does not
automatically produce multiple results; it simply means that it
is now possible to produce multiple results. So this means that
we have gone from dealing with a single result to sets of results
collected together by their shared values of NA and NW (i.e., the
Mueller matrices produced by all possible NA = 4 and NW = 4
combinations is a collected set of results). The size of each set
of results (which we denote as N) is dependent upon NA, NW ,
and the maximum of NA and NW , which for this paper is eight.
The size of each set is defined in Eq. (11), which is the product of
combinations for a given NA and NW :

N(NA, NW)=

(
8!

NA!(8− NA)!

)(
8!

NW !(8− NW)!

)
.

(11)
The associated values of N for all values of NA and NW used

in this paper can be seen in Table 1. As one can see, the size of
the sets can grow extremely rapidly. Due to the inherent multi-
plicity of this methodology, the following results will involve
the averages and minimums across these sets. In this paper, we

Table 1. N, Total Number of Possible Combinations
for a Chosen NA and NW

N 4 5 6 7 8

4 4900 3920 1960 560 70
5 3920 3136 1568 448 56
6 1960 1568 784 224 28
7 560 448 224 64 8
8 70 56 28 8 1
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develop two simple terms to characterize accuracy and stability,
namely, D and ρ, respectively. Although useful, these two terms
do not provide the full picture. Their limitation arises from
their reduced scope; they relate only to the results, not to the
matrices that produced them. To gain a better understanding of
the dynamics between the A and W matrices, and the quality of
results they produce, we calculate two features of these matrices:
the condition number (C ) and the equally weighted variance

Aac =

1 cos(φ0 + δ) sin(φ0 + δ) cos(θ0 + δ) sin(φ0 + δ) sin(θ0 + δ)
...

...
...

...
1 cos(φn + δ) sin(φn + δ) cos(θn + δ) sin(φn + δ) sin(θn + δ)

 , (15)

(E WV ). It has been shown previously [3,6,19,21,33] that min-
imizing these two terms for both A and W matrices will result
in optimal measurements (a relationship we probe in Fig. 3).
The calculation of these terms is not too difficult [see Eqs. (12)
and (13)]; one issue though is that they can both very easily go
to infinity. As such, we have shown the Log10 of each of these
values, so that the full range of values can be compared:

κA = ‖A‖‖A−1
‖, (12)

where ‖··‖ denotes the Frobenius norm. It should be pointed
out that the calculation of the condition number is a general
procedure and can be performed for any matrix (provided it is
non-singular); we have simply chosen to show the condition
number of the A matrix (κA) for this example:

E WV = tr [(AT A)−1
], (13)

where tr denotes the trace of the matrix.

A. Simulating Noise

Simulations were conducted in parallel with the physical exper-
iments, allowing for the verification of our findings. Simulating
these experiments was no great task, as a piece of simple code can
easily run the matrix algebra necessary to perform the calcula-
tions required. However, the difficulty arises in the modeling of
the noise. For our simulations, the noise was split into statistical
noise and systematic error. The statistical noise was intended
to represent the fluctuations in the light source and the camera,
resulting in fluctuations in the number of counts the cam-
era detects. The systematic error acts as a substitute to the error
caused by differences in the Stokes vectors used for measurement
and those used in calculation, i.e., one believes the PSG was gen-
erating the vector [1,1,0,0] when making measurements, so
this is what is used when calculating the Mueller matrix, but in
reality, the PSG was actually generating [1,0.979,0.199,0.044].
To model the statistical noise, we used additive Gaussian noise
with a distribution centered at zero and variance ranging from
0% to 25% of the value of m00, the transmittivity of the Mueller
matrix, where the magnitude of the standard deviation of this
distribution, relative to the maximum possible intensity, rep-
resents the statistical noise. Modeling the systematic error was
a little more involved. In the previous section, we introduced
the notion of actual and assumed versions of A and W , i.e., the
real matrices used to create measurements and the assumed

matrices used to calculate the Mueller matrix. To simulate this
framework, the matrices were split as outlined, where the actual
versions contain the assumed Stokes vectors plus the systematic
error:

Aas =

1 cos(φ0) sin(φ0) cos(θ0) sin(φ0) sin(θ0)
...

...
...

...
1 cos(φn) sin(φn) cos(θn) sin(φn) sin(θn)

 , (14)

where δ represents the systematic error and is measured in
degrees.

4. RESULTS

A. Accuracy and Stability

In this section, we show that over-determination has a pos-
itive effect on both the accuracy and stability of the Mueller
matrix produced; we also explain some of the more complex
relationships between NA and NW and the most accurate results
produced. We begin by showing an analysis of D, the difference
between the actual and calculated Mueller matrix. In Fig. 2, the
average of D taken across the sets created by different values of
NA and NW is displayed, and it clearly shows that on average,
increasing NA or NW results in a calculated Mueller matrix that
is closer to the actual matrix. The largest gains can be made by
increasing either NA or NW from four, but there are diminishing
returns as NA or NW is increased, so much so that increasing
NA or NW beyond a certain point will not likely provide any
noticeable improvement. Furthermore, the consistency and
symmetry of the change in D should also be noted; what this
means is that increasing NA has the same effect as increasing
NW . Two very clear reasons for the behavior illustrated in Fig. 2
are shown in Fig. 3. Here we see that increasing the size of both
the A and W matrices results in simultaneously decreasing
their EWV and condition number. Reductions in both of these
matrix characteristics have been linked to enhanced perform-
ance in Stokes polarimetry [6]. Figure 3 easily demonstrates
that this relationship still holds in Mueller polarimetry. Figure 4
shows the results from the investigation into the impact NA

and NW have on ρ, the spatial standard deviation of the cal-
culated Mueller matrix. The most noteworthy aspect of this
figure is that an experimental scheme using either NA = 4 or
NW = 4 can produce extremely unstable results. The cause of
the divergence between experimental and simulated results for
NA = 4 is not clear, but one possible reason is that the sample
sizes are not large enough relative to the standard deviation, so
the averages have not stabilized. Another possibility is that the
collection of NA = 4 results contains many results from poorly
conditioned and highly redundant A matrices, which are highly
susceptible to systematic error. This susceptibility, alongside
larger numbers of results (see Table 1), increases the likelihood
of several extremely high values of ρ, which could potentially
skew the averages shown in Fig. 4. It is also interesting to observe
that once NA and NW exceed four, the relationship between
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Fig. 2. Experimental and simulated QWP results showing the average difference between calculated and ideal matrix (D), taken across the sets cre-
ated by different values of NA and NW .

Fig. 3. Experimental QWP results showing the Log10 average equally weighted variance and condition number for A and W matrices, denoted by
PSG and PSA, respectively. Each average was taken across the sets created by different values of NA and NW .

Fig. 4. Experimental and simulated QWP results showing the average ρ against different values of NA and NW .

ρ and NA and NW appears to be linear, which is in contrast to

Fig. 2, which shows that increasing NA or NW has a nonlinear
effect on D. An accompaniment to Fig. 4 is provided in Fig. 5,

where a much more tangible interpretation of ρ is illustrated.

Both figures show the matrix logarithm of the [34–36] Mueller

matrix of a compound sample of air and two separate, partially
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(a) Logarithm of Mueller matrix 
using a 4x4 measurement system

(b) Logarithm of Mueller matrix 
using an 8x8 measurement system

Fig. 5. Stability comparison between a 4× 4 and 8× 8 system on a compound sample of two partially overlapping BSO crystals. The color bar
applies to both plots.

overlapping 0.5 mm thick crystals of BSO, where the matrix
logarithm is simply L = Ln(M) [37]. If we look at the L21

sub-image on the right-hand side of Fig. 5, we can clearly see
that the image is split into four distinct areas, each correspond-
ing to a different element of the compound sample. Starting
from the top right corner of the image and moving clockwise,
the sample element is air, a non-overlapped 0.5 mm thick BSO
crystal, an overlapped compound of 1.0 mm thick BSO, and
a non-overlapped 0.5 mm thick BSO crystal. The difference
between the two figures is that the left image was produced
using a 4× 4 measurement scheme (the chosen indices of the A
and W matrices were [0, 1, 6, 3] and [0, 1, 2, 6], respectively),
whereas the right used an 8× 8 scheme. It is immediately
apparent how consistent the results are between the pixels in
the 8× 8 system compared to the 4× 4. This highlights just
how incredibly susceptible a 4× 4 system is to statistical noise;
just a small, inevitable change in the value measured between
pixels in the intensity matrix can result in a large change in the
ensuing Mueller matrix, leading to the blurriness in Fig. 5(a).

Nevertheless, the results produced by the 8× 8 system are not
perfect. As stated previously, the sample consists of two par-
tially overlapping pieces of BSO, which is a non-depolarizing
medium [38–40]. What non-depolarizing means in terms
of the Mueller matrix, and the matrix logarithm, is that the
values in the first row and column should be identical, and the
off-diagonal elements should be anti-symmetric with each
other, i.e., M12 =−M21. As Fig. 5(b) demonstrates, the values
in the first row and column are small but certainly non-zero.
However, it is not expected that the samples become perfectly
non-depolarizing, as there are bound to be imperfections intro-
duced in production, shipping, handling, etc. It should also
be highlighted that the logarithm of the Mueller matrix was
shown specifically to highlight the additive nature of the Mueller
matrices where they overlap. As both crystals have the same cut
(0,0,1), thickness, and orientation, they should have identical
Mueller matrices; therefore, the Mueller matrix of the section
where they overlap should be M2, and thus L in this section
should be exactly double the value shown in the single layer

Fig. 6. The Log10 minimum of experimental results of a double layer of BSO compared with simulated results (see Dataset 1, Ref. [44]).

https://doi.org/10.6084/m9.figshare.16592744
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Fig. 7. Opposing effects of increased accuracy versus decreased set size, which are crucial for understanding the dynamics of over-determining a
Mueller matrix (see Dataset 2, Ref. [45]).

sections. This can be clearly seen in L12, where the single layer
sections have roughly equal values of −0.2, but the double
layer section has a value of −0.4. As stated previously, over-
determining a Mueller matrix produces sets of results rather
than a single result. Therefore, when performing an analysis of
these results, one can look at the average values across these sets,
or at the minimum and maximum values appearing in these
sets. In Fig. 6, we can see the results of such an analysis, where
we show the log of the minimum value of D calculated in each
set of results produced by different values of NA and NW . When
compared to Fig. 2, this figure seems to contradict the result
that increasing NA and NW gives a lower D, however Fig. 2
was showing the average across each set, whereas this analysis is
investigating the minimum. The figure shows that for each NW ,
increasing the NA value from four will produce a set of results
that contains a Mueller matrix that has a lower D value than that
in the preceding set. Nevertheless, once a certain value of NA

has been exceeded, this effect will reverse, and increasing NA

will produce a set of results that has a larger minimum value of
D in it. It should also be noted that the experimental results in
Fig. 6 overlap each other far more than the simulated results.
We believe one potential cause is due to two reasons: first, there
is a potential for overlap in the condition number and EWV
of similar result sets, for example, some of the combinations
in the NA = 5 and NW = 6 sets will have condition numbers
very similar to combinations in the NA = 6 and NW = 6 sets.
Second, the higher levels of statistical noise in the experimental
results will increase the variance of the results, and thus make
overlaps more likely. Overall, Fig. 6 shows that calculating a
Mueller matrix using more measurements does not necessarily
produce a better result; in fact, it can produce a worse result.
To explain this unexpected conclusion, it must be understood
that there are two effects at work in Fig. 6. First, there is the
beneficial effect (shown in Fig. 2) of increasing NA and NW , pro-
ducing sets that, on average, are increasingly accurate; however,
there is a second retarding effect working against this positive
relationship. This effect is the negative relation between the
size of the set and the magnitude of NA and NW . This point
can be seen in Table 1. The size of the set produced by the 4× 4
system is 4900, but the size of the 8× 8 system is only one. The
interaction of these two opposing effects can be seen in Figs. 7(a)

and 7(b). Figure 7(a) shows a continuation of the simulations
conducted to make Figs. 2 and 4. Here we see the distributions
of calculated values of a single element of the Mueller matrix
for different values of NA and NW , where the red line denotes
the true value, the x axis is the binned values, and the y axis is
the number of results in each bin. This figure was developed
using simulations so that larger values of NA and NW could be
used, and thus produce larger sets to aid visualization. To do
this, we extended our previous choice of eight Stokes vectors
from the cubic set of vectors, by including the six vectors from
the diamond set of vectors, i.e., [1, a , a , a ], [1,−a , a , a ], etc.,
for the cube, and [1, 1, 0, 0], [1, 0, 1, 0], etc., for the diamond
[28]. As the figure shows, reducing NA or NW increases the size
of the set, producing a Gaussian distribution centered close to
the true value. As the set size increases, the number of results far
from the true value also increases, so that if we now imagine a
situation where we want to pick a single result from each set that
is as close to the true value as possible, larger sets would have a
lower probability. This situation is shown in Fig. 7(b), where
the probability of the calculated value of each set being within
2.5% of the true value is shown. As it shows, increasing NA from
four has a positive effect on the probability, as the average value
of each set gets closer to the true value. However, we see that this
effect stops at NA = 11 and goes into reverse, until finally the
probability goes to zero at NA = 14. This is because at this point,
there is only one result to choose from in this set, and it is outside
the 2.5% range. This chart clearly explains the two effects of
increased accuracy versus reduced set size occurring in Fig. 6.

B. Quantifying Noise

In this section, we will show how the various metadata terms
that arise through the over-determination process can be used
to quantitatively approximate the statistical noise and system-
atic error within the measurements. First, we begin with the
1 matrix, which we introduced in the assessment of accuracy
section and defined as an artifact of logical fallacies within the
relation I = AMW . In this section, we will show the dynamics
of this term and how it can be used to benefit the experimen-
talist. To create Fig. 8, simulations were conducted where the
statistical noise and systematic error were varied, then the root

https://doi.org/10.6084/m9.figshare.16592753
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Fig. 8. Average magnitude of elements of 1 taken across multiple
noisy systems versus NA and NW .

Fig. 9. Row average and standard deviation of1 versus systematic
noise associated with each row.

mean square of the elements of 1 were calculated for all mea-
surement schemes. The systematic error was varied as shown in
Eq. (15), with values of δ ranging from 0◦–60◦. Statistical noise
was modeled using an additive Gaussian distribution centered
on zero, with a variance ranging from 0%–25% of m00. The
values from the root mean square of the elements of 1 were
collected together in their respective measurement schemes and

averaged, creating an average taken across many different levels
of noise. In this figure, we can see that the magnitude of the ele-
ments of (1) increases with respect to both NA and NW , which
is interesting given that the average value is displayed, rather
than the sum, which would of course increase with NA and
NW , as the dimensions of1 are (NA, NW ). So what this means
is that despite having equal levels of statistical and systematic
error, increasing either NA or NW will still increase the average
magnitude of terms within1, i.e., in a noisy system, increasing
NA or NW makes it increasingly difficult for a Mueller matrix
to perfectly satisfy I = AMW . Perhaps the most interesting
artifact of this figure is that it shows that regardless of the level of
noise, a 4× 4 system will create a Mueller matrix that perfectly
satisfies I = AMW , and thus produces an empty1. The reason
for this is because the relations between measurements collected
in matrix equations can become mathematically inconsistent
only once there are more than enough measurements to prove
that it is so. For example, in the case where only 15 measure-
ments have been taken of an unknown Mueller matrix, we
cannot say if the results are inconsistent with each other, as there
are in fact an infinite number of Mueller matrices that could per-
fectly satisfy I = AMW . In the case of a 4× 4 system, we have
reached the information threshold and can start proving if new
measurements are mathematically consistent with the existing
ones; however, if there are inconsistencies in this system, there
will be no solution at all. Therefore, until the Mueller matrix is
over-determined, there can be no mathematical inconsistencies
like those shown in Eq. (10), even if un-physical values are used
in the calculation. One of the difficulties of 1 is that the noise
of each measurement becomes entangled and distributed across
all terms. For example, a 5× 5 system with 24 noiseless and one
noisy measurement will produce a 1 with non-zero elements
that correspond to the noiseless measurements. Nevertheless,
it is still possible to disentangle some of the information rep-
resented in 1 to provide a quantitative approximation of the
systematic error associated with each Stokes vector. As1 follows
the same structure as I , rows correspond to a single vector from
A, and columns correspond to a single vector from W . We can
exploit this by examining the sum of each row and column
within 1 to ascertain the level of noise associated with each

Fig. 10. Comparison between the effects that statistical and systematic errors have on the distributions of calculated values of the Mueller matrix.
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vector. To perform this investigation, simulations were once
again conducted, where this time the statistical noise was kept
constant and the systematic error for the PSA was zero, but the
error in retardance was varied for each vector from the PSG, so
that each of the 14 vectors had a different error associated with it.
Then the1matrix was determined, and the sum of the absolute
values of each row was calculated and plotted against the associ-
ated vector’s error in retardance. The results of this can be seen
in Fig. 9. This figure clearly demonstrates that raising the error
in retardance for a given PSG vector, increases the magnitude of
elements within1 associated with that vector. This result paves
the way for a very simple identification and quantification of
systematic error associated with each vector used in the measure-
ments (for PSA vectors, the column sum is taken instead of the
row sum). As stated previously though, the information con-
tained within1 is heavily entangled and also contains statistical
noise as well as systematic. Therefore, this technique can be used
only as a relative indication of the systematic error associated
with each vector, rather than an unequivocal direct calculation.
It is best used in a relative sense; for example, if eight of the
vectors used have values around 0.02, yet one has a value of 0.06,
then it can be safely assumed that this particular vector has a
large amount of systematic error associated with it. Now that we
have outlined a system for identifying systematic error, we will
continue looking at distributions of results of a single element
of the Mueller matrix, except now we will focus on what effects
systematic and statistical noise has on the shape of distributions
shown in Fig. 7(a). For this investigation, we will look at the
average and the standard deviation of these distributions under
different levels of systematic and statistical noise. To perform
this analysis, we conducted another simulation where systematic
and statistical noise was eliminated but the other noise was kept,
i.e., no statistical noise with systematic error and vice versa. The
results of this investigation can be seen in Fig. 10. To simplify
the results, we have narrowed down the list of elements Each
chart in Fig. 10 demonstrates a simple relationship between
each type of noise. Starting with the systematic error, we can see
that increasing this type of noise primarily results in a shift in
the average of the distribution; it is also accompanied by a small
increase in the standard deviation. If we turn our attention to
the statistical noise on the other hand, we see that the average is
unchanged; instead, there is a very large increase in the standard
deviation, an increase that is far larger than that of the systematic
error. Although these two contrasting relationships are clear, we
hasten to point out that these two types of noise are not easily
equatable, so it is difficult to say with utmost confidence that
statistical noise has a much larger effect on standard deviation,
when compared to systematic error. It is rather fascinating to see
that the shift in average due to systematic error is positive in this
particular example. It would be interesting to see if this shift is
always positive, or if it varies depending on the Mueller matrix
being measured, the choice of Stokes vectors, or a bias in the
noise itself; sadly, these questions are beyond the scope of this
paper.

5. DISCUSSION

Two of the largest benefits of over-determining a Mueller matrix
are that multiple results are produced, and that these results
are, on average, increasingly accurate and stable. However,

there is still the question of what degree of over-determination
is necessary. The answer to this will depend upon the mea-
surement equipment, the Mueller matrix to be measured, and
the desired accuracy. For example, a complex depolarizing
Mueller matrix is to be measured with equipment with relatively
small statistical noise, so what measurement scheme should
be used? To answer this question, it is important to note that
when one uses an 8× 8 measurement scheme, the reason to
do so is not necessarily to gain access to the single result using
all 64 measurements, because as we have shown, this one result
will likely be worse than many of the results from a lesser over-
determined system. Instead, the purpose is to generate large sets
of 6× 6, 6× 5, 5× 5, etc., results, and from these sets, one is
much more likely to find an accurate and stable result. So even
if a 4× 4 scheme is deemed satisfactory, it is still advantageous
to increase the measurement scheme so that there is a larger
set of 4× 4 results to choose from. However, according to our
results, heavy over-determination such as an 8× 8 measure-
ment scheme is only slightly more beneficial than a moderately
over-determined, such as a 6× 6 scheme, so despite believing
that any over-determination will always be superior to a simple,
well-determined system, we believe that there is not much ben-
efit in using a heavily over-determined scheme. The expected
behavior of the1matrix would be that the average magnitude
of the terms within 1 would be dependent only on the degree
of noise in the system and completely independent of the mea-
surement scheme. However, we have shown that increasing
the degree of over-determination in a noisy system will make
finding a Mueller matrix that closely satisfies I = AMW less
likely. One possible factor behind this behavior is the way that
the errors are entangled and distributed among the terms. If
each element within 1 contains information related to every
measurement, then as the number of measurements increases,
each term will contain more information, and thus on average,
have a larger magnitude. However, this clearly does not explain
the full behavior. If this were the only factor at work, then the
average magnitude would be directly correlated to NA and NW ,
and would go to infinity alongside either parameter, but as Fig. 8
shows, this does not happen. Instead, the increase in average
magnitude becomes successively smaller. Clearly there must
be another factor working against this. One potential clue is
shown in Fig. 2. As stated previously, increasing NA or NW pro-
duces a more accurate result on average, but for each successive
increase in NA or NW , the increase in accuracy is reduced. One
way of interpreting this behavior is that with each progressive
measurement taken, the effect this new information has on the
resulting Mueller matrix is reduced, i.e., the difference between
Mueller matrices calculated in a 4× 4 and 4× 5 system is much
larger than that between a 10× 10 and a 10× 11. Applying this
principle back to 1, we can see how the decreasing difference
between calculated Mueller matrices when NA and NW increase
can lead to a consequent diminution of delta as a function of NA

and NW . Overall, we state that the total error is entangled and
distributed among the elements of 1, causing the magnitude
of these terms to increase with NA and NW . Then we have the
retarding factor of increasingly static calculated Mueller matri-
ces that reduces the dependence of 1 with NA and NW . Now
that we have a rationale of the behavior of1, we can move onto
the second strange phenomena: why do only 4× 4 measure-
ment schemes have an empty 1 matrix? To understand this,
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we must first understand how each set of four vectors from the
PSG and PSA impacts the calculated Mueller matrix, beginning
with the PSA. We start by stating that each measurement in I
is the dot product of S ′, with a Stokes vector from the PSA. To
simplify this explanation, we will switch from working with 4D
to 3D Cartesian vectors. We begin with an unknown vector Vu

that we would like to determine. To do this, we measure the dot
product of this vector with three known vectors V1, V2, V3. The
first dot product, Vu .V1 =C1, is not very useful, as there is an
infinite flat plane of possibilities in x , y , and z that satisfies this
condition. A second dot product, Vu .V2 =C2, provides another
infinite flat plane of solutions that intersects the first, creating a
line where both dot products are satisfied. Finally, we perform
the last dot product, Vu .V3 =C3, resulting in a new plane that
will pass through this line, turning it into a single point, and it is
this point that satisfies all three dot product equations, and thus
Vu is now determined. Returning to the world of 4D Stokes vec-
tors, we can now see that with each successive measurement of S ′

versus different vectors from the PSA, the range of possibilities is
reduced from a 4D surface to a 3D plane then to a line and finally
a point. So when four vectors are used to calculate S ′, they either
intersect at a single point and produce one result, or they do
not intersect enough, and thus S ′ cannot be determined. Now
let us imagine that we measure S ′ against five vectors from the
PSA. In a noiseless system, all five planes will intersect at a single
point, removing the need to take a fifth measurement. However,
if noise is introduced, there will no longer be a point where all
planes intersect; instead, there will be five separate points where
at least four of the planes intersect, and thus S ′ can be calculated,
but 1 is now non-null. Applying this principle to the interac-
tion between the Mueller matrix and the PSG, where it is best
to think of the Mueller matrix as a collection of four column
vectors, where each column has a separate effect, e.g., the first
column can be thought of a vector that relates to S0, the second
to S1, the third to S2, etc. We can retain generality, and simplify
this explanation by reducing the scope of the full Mueller matrix
calculation to just the first column and assume that all four S ′

have been calculated using four PSA vectors. We repeat the proc-
ess we applied to the PSA, except this time the unknown vector
is the first column vector of the Mueller matrix. The first vector
from the PSG and the associated S0 value from S ′ describe a 4D
surface; the second vector and calculated S0 produce another
4D surface that intersects the first one, creating a 3D plane of
solutions that satisfies both dot products. The following two
vectors from the PSG reduce this 3D plane to a line and then
finally a point, in the exact same manner as the PSA. This proc-
ess can be repeated for every column, until the whole Mueller
matrix is populated with column vectors that perfectly satisfy
their respective dot products. It is this twofold process within
the PSG and PSG of reducing the possible solutions to exactly
one point that gives rise to the unerringly perfect satisfaction of
I = AMW within the 4× 4 measurement scheme. If there are
any mathematical inconsistencies within a 4× 4 system, then
this process of reducing the possibilities to a single point cannot
happen, and thus the Mueller matrix cannot be calculated.
Perhaps more interesting, it is likely this absence of a 1 matrix
that leads to the poor performance of 4× 4 schemes (especially
when considering ρ). Because in a 4× 4 scheme I = AMW
has to be perfectly satisfied, all the noise is directly present in the
calculation, whereas in an over-determined system, the noise

clearly does not always manifest itself; otherwise, there would be
no1matrix at all. This leads us to believe that it is plausible that
Ic in Eq. (6) is a less noisy equivalent of the measured intensities.
One point that must be considered in this analysis is that both
sets of Stokes vectors utilized (cubic and diamond sets) have the
same absolute values of all their coefficients, i.e., a in the cubic
and one in the diamond set. This is not the case for numerous
other sets, and so it begs the question of what would happen to
our results if different sets of vectors were used. A full investiga-
tion of this is out of the scope of this paper; however, we believe
that the relationship shown in Fig. 3 is fairly general, insofar as
the simplest way of reducing condition number and EWV is to
add more vectors to the A and W matrices, even if the additional
vectors are sub-optimal. It has also been shown many times that
both EWV and condition number are directly linked to the
accuracy of results [3,6,19,21,33]. By extrapolating from this
fact, we believe that the relationships shown in Figs. 2 and 4 are
also general and not a product of the Stokes vectors chosen. We
are further validated in this belief by the results of a similar work
[41] that uses Stokes vectors different from our experiments,
and that details very similar relationships between performance
and number of Stokes vectors used. Another potential area that
requires further investigation is in understanding how the delta
matrix behaves when different sets of Stokes vectors are used,
particularly in the context of less-symmetric sets than those used
in this study. Specifically, we currently have no evidence that
either confirms or denies the claim that different Stokes vectors
could produce different behavior in the delta matrix, especially
when asymmetrical sets of Stokes vectors are used (e.g., the
N= 7 set from the platonic solids). So we cannot say that the
relationship shown in Fig. 9 is a general relationship that holds
true for all Stoke vector sets.

6. CONCLUSION

In this paper, we have expanded upon previous research
[3,20,21,33,41,42] into optimizing Stokes polarimetry by
investigating the effect that over-determination has in the
Mueller polarimetry regime. To perform this analysis, we
conducted physical experiments alongside simulations, the
combination of which not only highlighted relationships, but
also allowed for logical explanations that provide a fuller under-
standing of the factors at work within the over-determination
process. By investigating relationships between our terms D
and ρ, and the degree of over-determination, we have found
that over-determination is a worthwhile route to improving the
accuracy and consistency of results derived from noisy images. It
is hoped that this insight will allow Mueller polarimetry to enter
into a wider range of disciplines, where previously high levels
of noise presented a barrier to entry. Moreover, experimental-
ists already using Mueller polarimetry will be pleased to know
that they can improve their results with this relatively simple
technique. Alongside our inquiry into over-determination, we
also conducted novel research into the particular effects that
systematic and statistical noise has on Mueller polarimetry.
There already exists much work focused on understanding
and managing statistical noise; however, there is little work
in the existing literature that scrutinizes systematic error—a
point our paper addresses. In the Quantifying Noise section, we
provide clear relationships between both types of noise and the
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different effects they have on distributions of results, namely,
that statistical noise simply increases the standard deviation
without affecting the average, and that systematic error shifts
the average and slightly increases the standard deviation. After
demonstrating these effects, we go on to provide a method for
their quantification, which in the case of systematic error is a
breakthrough, as previously there was no means to determine
the magnitude or the origin of this type of noise. To do this, we
introduce a new term that we call the 1 matrix. We show that
this term is directly linked to the systematic error within each
Stokes vector used in the measurement process. This 1 matrix
is therefore a very powerful tool, insofar as it allows the experi-
mentalist to identify specific Stokes vectors that are responsible
for the systematic error. Although we are pleased with the results
of this paper, there is certainly scope for improvement. In par-
ticular, it would be interesting to see this investigation repeated
for different measurement schemes involving all the platonic
and non-platonic solids, rather than the cubic system chosen for
this investigation [43]. It could also be worthwhile to replicate
some of these investigations, especially Fig. 2, except measure-
ments with large condition numbers and EWV are filtered out
so that only the best of each measurement scheme is compared.
Additionally, a more thorough theoretical investigation into the
effects of systematic error should be conducted; it is highly likely
that a more realistic method for simulating systematic error
can, and should, be devised. Finally, we would like to see more
work being done understanding the1matrix. It would be very
interesting to see if the errors associated with each measurement
could be thoroughly disentangled. The benefit of this is that it
could potentially provide a route for the reduction of noise from
measurements—a prospect that would be greatly beneficial for
those within and outside the Mueller polarimetry community.

APPENDIX A

1. CALCULATING AN OVER-DETERMINED MUELLER
MATRIX

In this section, we detail how to use the Moore–Penrose gener-
alized inverse to calculate an over-determined Mueller matrix.
The process begins with the usual equation I = AMW , where
I is the intensity matrix, A is the set of Stokes vectors from the
PSG, W is the set of Stokes vectors from the PSA, and a = 1

√
3
:

A=



1 −a a −a
1 −a −a a
1 −a −a −a
1 −a a a
1 a a −a
1 a −a a
1 a −a −a
1 a a a


, W = AT , (A1)

HA = AT A, HW =WWT , (A2)

AT I WT
= HA MHW , (A3)

H−1
A AT I WT H−1

W =M. (A4)

2. INVERTING A RECTANGULAR MATRIX

Here we will calculate the solution to Eq. (10):1 0 0 1
0 1 0 1
0 0 1 1


1 0 0

0 1 0
0 0 1
1 1 1

=
2 1 1

1 2 1
1 1 2

 , (A5)

2 1 1
1 2 1
1 1 2
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4

1 0 0 1
0 1 0 1
0 0 1 1


 1

2
3

6.2

=
 x

y
z

, (A7)


21
20
41
20
61
20

=
 x

y
z

 . (A8)

3. 1MATRIX EXAMPLE

In this section, we will give a simple example of how the 1
matrix is calculated. To simplify the process, we will work only
with a slightly over-determined 5× 5 set of intensity measure-
ments as recorded by the camera. We also have our assumed
versions of A and W outlined as follows:

Aas =


1 −a a −a
1 −a −a a
1 −a −a −a
1 −a a a
1 a a −a

 ,Was = AT
as. (A9)

The intensity matrix Im has the following values:

Im =


1.619 0.398 0.414 1.375 1.595
0.890 1.264 1.472 0.523 0.299
1.458 0.750 1.527 0.455 0.755
0.847 0.928 0.309 1.543 1.074
1.034 0.521 0.703 0.793 1.844

 . (A10)

From this, we can calculate Mc using Mc = A−1
as Im W−1

as and
the Moore–Penrose inverse outlined in the previous section.
This then yields the normalized Mueller matrix

Mc =

 1 0.131 −0.165 −0.203
0.184 0.597 −0.604 −0.099
0.220 0.557 0.972 0.660
0.036 0.104 −0.385 0.538

 . (A11)

If we then multiply this calculated Mueller matrix by Aas

and Was, we will get Ic , i.e., Ic = Aas Mc Was. The Ic matrix is
outlined as

Ic =


1.574 0.370 0.457 1.487 1.630
0.841 1.283 1.533 0.591 0.292
1.484 0.696 1.663 0.517 0.796
0.931 0.958 0.328 1.561 1.125
1.052 0.522 0.741 0.833 1.903

 . (A12)
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If one compares Ic to Im , it immediately becomes obvious
that the values diverge from each other very slightly, and it is this
divergence that is captured in the1matrix.
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