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Managing Distributed Flexibility under Uncertainty
by Combining Deep Learning with Duality

Georgios Tsaousoglou, Katerina Mitropoulou, Konstantinos Steriotis, Nikolaos G. Paterakis, Member, IEEE,
Pierre Pinson, Fellow, IEEE, Emmanouel Varvarigos

Abstract—In modern power systems, small distributed energy
resources (DERs) are considered a valuable source of flexibility
towards accommodating high penetration of Renewable Energy
Sources (RES). In this paper we consider an economic dispatch
problem for a community of DERs, where energy management
decisions are made online and under uncertainty. We model
multiple sources of uncertainty such as RES, wholesale electricity
prices as well as the arrival times and energy needs of a set of
Electric Vehicles. The economic dispatch problem is formulated
as a multi-agent Markov Decision Process. The difficulties lie in
the curse of dimensionality and in guaranteeing the satisfaction
of constraints under uncertainty. A novel method, that combines
duality theory and deep learning, is proposed to tackle these
challenges. In particular, a Neural Network (NN) is trained
to return the optimal dual variables of the economic dispatch
problem. By training the NN on the dual problem instead
of the primal, the number of output neurons is dramatically
reduced, which enhances the performance and reliability of the
NN. Finally, by treating the resulting dual variables as prices,
each distributed agent can self-schedule, which guarantees the
satisfaction of its constraints. As a result, our simulations show
that the proposed scheme performs reliably and efficiently.

Index Terms—Distributed Energy Resources, Economic Dis-
patch, Energy Community, Electric Vehicles, Deep Learning

I. INTRODUCTION

IN modern power systems, there is an increasingly high
penetration of small Distributed Energy Resources (DERs),

such as rooftop solar panels, micro-generators and flexible
controllable loads, predominantly Electric Vehicles (EVs).
Moreover, many of these DERs exhibit high levels of uncer-
tainty, in the sense that their constraints, costs and parameters
are not deterministic. The integration of DERs into electricity
systems has motivated hierarchical market structures where
groups of DERs interact with the system as a single (ag-
gregated) entity. These aggregation schemes can take various
forms, e.g. demand response aggregators [1], virtual power
plants [2], energy collectives [3], while the group-forming
DERs may or may not reside at the same geographical
location, depending on the use case and regulations. Such
groups of DERs are often called Energy Communities (ECs)
[4], where the EC exchanges power with the system and an
EC manager entity performs the energy management within
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the EC, i.e., coordinates the energy profiles of the commu-
nity’s DERs and decides on the power exchange with the
main system.

Towards making dispatch decisions within an EC, intra-
community economic dispatch problems have been the topic of
several studies. EVs appear to be the focus of a significant por-
tion of this literature, partly because they are considered to be
the predominant source of end-use flexibility to be integrated,
since by 2030 the number of EV chargers is expected to lie
in the order of hundreds of millions [5]. The dispatch of the
EVs (or, more generally, the DERs) of an EC can be realised
via direct control, or via an intra-community market. Such
markets have been proposed for various use cases, including
prioritizing EV charging in a charging station [6], flexibility
markets of distribution networks [7], [8], and allocation of load
curtailments by a demand response aggregator [9].

Towards designing the mechanisms of such intra-
community markets, mechanism design (e.g., [10], [11]) and
algorithmic game-theoretic [12] approaches have been pro-
posed, while many studies (e.g., [3], [13]) exploit duality
to construct a price-based control scheme. However, in set-
tings with high penetration of DERs, the local economic
dispatch problem involves the energy management of numer-
ous small entities, and also needs to be solved online and
under uncertainty.

Regarding these new challenges, a certain part of the liter-
ature has focused on designing schemes for making efficient
dispatch decisions under uncertainty. There is certain differen-
tiation among studies, regarding the way they treat uncertainty.
The case of cost-efficient EV charging under the absence
of forecasting tools using online optimization, is surveyed
in [14]. Some studies, e.g. [15], [16], [17], propose energy
management schemes that solve a deterministic problem based
on forecasts and then reassess the scheduling using a rolling
horizon technique. Some studies configure the energy manage-
ment decisions with forecasting methods based on Machine
Learning (ML). In [18], random forests are utilized to predict
the uncertain parameters of flexible loads (EVs) before solving
the economic dispatch problem, while [19] uses LSTM deep
learning for a similar cause. However, in these approaches,
the uncertainty over forecasted parameters is not taken into
account when making decisions.

Another group of studies uses stochastic programming to
sample realization scenarios for the uncertain system parame-
ters. In [20], the authors propose a stochastic-robust approach
for the decisions of a system with EVs. The applicability
of the alternate direction method of multipliers in stochastic
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intra-community markets is investigated in [21], while in [22]
stochastic programming is applied to an extended system that
also includes resources across different energy carriers. In [23]
a stochastic MILP formulation is proposed to assess the impact
of RES and EV uncertainty on the energy management of a
smart building, while in [24] and [25] the authors used stochas-
tic dual dynamic programming to address RES uncertainty in
dispatch problems. The authors in [26], configure the scenario-
based method with information-gap theory to account for
robustness. However, with multiple DERs, system parameters
span over an exponentially large space, which means that
the relatively very small number of scenarios sampled by a
stochastic programming method can fail to generalize reliably.

A third family of studies leverages techniques from Artifi-
cial Intelligence to account for decision-making under uncer-
tainty. The decision problem is modeled as a Markov Decision
Process (MDP). In [27], a policy-rollout method is proposed to
tackle the problem of home energy management under uncer-
tain electricity prices. In [28], a policy-improvement method is
proposed, which is warm-started by assuming a “good” policy
learned by experience. In [29], a battery is controlled using
Approximate dynamic programming. Dynamic programming
is a standard approach for tackling MDPs; however, the
curse of dimensionality prevents this family of methods from
generalizing to problems with multiple agents (e.g., EVs),
unless simplifying assumptions are made.

Towards managing these issues, hybrid ideas have been
proposed in the literature. The authors in [30] use dynamic
programming to decide on the aggregated energy of an EV
fleet, while an auction is used to allocate this energy among
the EVs. A similar approach is taken in [31] for a system that
also features RES generation. This technique is case-specific
since it builds on the assumption that the energy needs of EVs
can be modeled simply by departure constraints and therefore
aggregated to form a single-agent MDP. Another approach is
to apply a standard Lagrangian decomposition to the economic
dispatch problem of the EC, where each DER solves a MDP
to decide on its own dispatch, using the iteratively updated
Lagrange multipliers calculated by the community manager.
In such studies (e.g. [32]), the community manager treats
the DER responses as if they were deterministic, and all
uncertainty is virtually delegated to the DERs. It should be
noted that such a procedure is not provably convergent.

A third approach is for the community manager to use a
ML algorithm in order to learn to optimize actions (dispatch
decisions) directly, in line with the so-called learning to
optimize framework [33], which has also been applied to power
systems recently (e.g. [34]). This is in contrast to the studies
that use ML only for forecasting system parameters, and then
solve a deterministic optimization problem. In [35] a deep re-
inforcement learning algorithm is proposed for making online
dispatch decisions for EV charging stations. In [36], price-
based control is realized via reinforcement learning, while a
Neural Network (NN) is used as a function that maps prices to
the agents’ response. In [37], ML algorithms are trained (using
the system’s history) to make real time decisions on EV energy
management. An important drawback of these methods is that
they cannot handle constraints explicitly, i.e., constraints are

satisfied only in expectation [38]. In [39], a penalty term is
designed to teach a NN to also respect the local constraints
of the agents. As analyzed in [40], the design of such a
penalty term comes with various trade-offs (e.g., efficiency
is sacrificed in order to guarantee constraint satisfaction).
The authors in [40], applied constrained policy optimization
[41], which guarantees constraint satisfaction, in a setting
involving an EV that is charging under dynamic electricity
prices. However, the method introduces high complexity and
constraint satisfaction is relaxed in order to make the method
faster. Moreover, the authors consider only one EV, i.e., the
curse of dimensionality that occurs in multi-agent MDPs is
not addressed.

In this paper, we formulate an economic dispatch problem
as a multi-agent MDP, which cannot be tackled by standard
dynamic programming algorithms. Assuming a coordinating
entity (the Community Manager), we apply a machine learning
algorithm in the dual problem space and take advantage of
the fact that its dimension (number of variables) is drastically
smaller than the one of the primal problem. Moreover, the
proposed method is able to guarantee constraint satisfaction.
Our contributions can be summarized as follows:
• We consider multiple agents and multiple sources of

uncertainty, i.e., a number of EVs with deadlines, RES
and inflexible demand, as well as uncertain real-time elec-
tricity prices for drawing energy from the main system.
Conventional generation cost is also modeled and a power
balance constraint couples the decisions of all agents.

• A NN is trained to perform energy management decisions
in real-time, upon receiving the information about the
current system state. Instead of the primal problem, the
dual problem is used to train the NN. With this technique,
we reduce the NN’s mean absolute error and enhance the
NN’s reliability.

• We propose an algorithm for energy management,
through which the satisfaction of all the constraints is
guaranteed. In particular, the distributed flexible loads
(EVs) are allowed to self-schedule based on the dual
variables provided by the NN.

• We perform energy management in a rolling horizon
fashion so that the NN can adapt its decisions based on
new information about the system’s state.

• The algorithm’s performance is experimentally evaluated
using a generic but realistic setup with convex generator
models and EVs.

• Our results indicate that the proposed method achieves a
near-optimal performance and significantly outperforms
the conservative, constraint-satisfying benchmark.

The rest of the paper is organized as follows. Section II
presents a model for an EC. The economic dispatch problem
is formulated in Section III and the proposed solution is
presented in Section IV. The evaluation framework is described
in Section V while the simulation results are presented in
Section V-D. Finally, Section VI, concludes the paper.

II. SYSTEM MODEL

We consider an economic dispatch problem in a setting with
conventional generators, RES generation, inflexible demand
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and a set of EVs that ask for charging services upon arrival.
In what follows we model the operational characteristics of
an EC for a certain time horizon T , where continuous time is
divided into discrete timeslots of equal duration.

The EC features a set G of power generators. The power
output of a generator j ∈ G in timeslot t ∈ T is denoted by
decision variable gj,t. Each generator is characterized by its
lower and upper operational limits

gmin
j ≤ gj,t ≤ gmax

j , ∀j ∈ G, t ∈ T (1)

and also bears a cost function Cj(gj,t) that maps its output to
a certain monetary cost. Cj(·) is taken in this work to be a
quadratic function

Cj(gj,t) = cj(gj,t)2, ∀j ∈ G, t ∈ T. (2)

The EC draws energy from the main electricity system at
a time-varying per-unit price lt. The vector of prices for all
timeslots is denoted as l = {l1, l2, ..., l|T |}. The aggregated
energy drawn by the EC at t is denoted as g0,t, and it is
constrained by an upper bound K, i.e.,

g0,t ≤ K, ∀t ∈ T (3)

The inflexible demand of the EC at t is denoted as pinfl,t

and the EC’s RES generation as gRES,t. The respective vectors
containing the parameter values for all timeslots are denoted
with a bold symbol, i.e., pinfl = {pinfl,1,pinfl,2, ...,pinfl,|T|}
and gRES = {gRES,1, gRES,2, ..., gRES,|T|}.

The EC also features a set of chargers for electric vehicles
(EVs). The EC operator is responsible for satisfying a set
of charging tasks A, where a charging task i ∈ A refers to
allocating a certain amount of energy to an EV. Throughout the
paper, we refer to “EVs” and “tasks” interchangeably. Control
variable pi,t denotes the amount of power allocated to task i
in timeslot t. A power balance constraint, makes sure that the
power generated equals the power consumed in every timeslot

g0,t + gRES,t +
∑
j∈G

gj,t = pinfl,t +
∑
i∈A

pi,t, ∀t ∈ T (4)

A task i ∈ A is characterized by a tuple Ωi =
{ai, bi, di, pmin

i , pmax
i , Ei, δi}, where ai is the task’s arrival

time, bi is the task’s desired completion time, di is a com-
pletion deadline, pmin

i and pmax
i are the lower and upper

bounds on the EV’s power consumption, Ei is the total
energy required for the task to be considered satisfied, and
δi is a flexibility parameter that relates to the disutility that
comes from delayed task satisfaction. Note that a task bears
a departure time (deadline) di, upon which it must have
received its required charging, but it is preferable to i to receive
charging in earlier timeslots (preferably before bi). Naturally,
it is bi ≤ di. A bold symbol ΩA = {Ωi}i∈A denotes an
instance of all task tuples. No energy can be allocated to a task,
before the task’s arrival time or after its completion deadline
(i.e. after the EV departs)

pi,t = 0, ∀t /∈ [ai, di], i ∈ A (5)

while a task i ∈ A can only be charged between the minimum
and maximum charging rates of the respective EV

pmin
i ≤ pi,t ≤ pmax

i , ∀i ∈ A, t ∈ [ai, di]. (6)

The energy requirement of the task, has to be satisfied before
the task’s deadline,∑

t∈[ai,di]

pi,t = Ei, ∀i ∈ A (7)

Finally, when the task charges at timeslots later than its desired
completion time bi, it suffers a cost (disutility)

U(pi,t) =
δt−bii pi,t
Ei

(8)

where δi is a constant parameter. Intuitively, the term δt−bii

penalizes charging in timeslots later than the desired departure
time bi and favors earlier timeslots. Function U(pi,t) can also
be interpreted as the compensation that i requires from the EC
operator, in order to shape its consumption profile.

Further constraints (e.g. power flows and voltage limits)
could also be incorporated at this point. However, for simplic-
ity of exposition we assume that the necessary flow analysis
has been conducted beforehand and that the limits posed by
constraints (1), (3), and (6) already ensure that the physical
grid operates within safe operational margins.

III. PROBLEM FORMULATION

If all the information of the system (i.e., RES generation
gRES, inflexible demand pinfl, electricity prices l and tuples
ΩA for the charging tasks of set A) was known before hand,
the cost minimization problem of the EC operator would be a
deterministic, convex optimization problem, which reads as

min
g0,t,gj,t,pi,t

∑
t∈T

g0,tlt +
∑
j∈G

Cj(gj,t)

+
∑
i∈A

∑
t∈T

U(pi,t)


s.t. (1)–(8)

(9)
However, the system parameters gRES, pinfl, l and tuples

Ωi are not known beforehand (e.g. the EVs with their charging
tasks arrive stochastically within the horizon without prior no-
tice). Therefore, the optimal EC operation becomes a problem
of decision making under uncertainty. We assume that the EC
operator has access to historical data or statistical information
about the uncertain parameters, except for parameter δi which
is intrinsic to each user and the EC is only able to infer a
relevant interval of δi1. Then, the problem structure is modeled
as a Markov Decision Process (MDP) M, defined as follows.

1In this paper we treat the environment as stationary, but in Section V-D
we also perform a sensitivity test for the proposed method. It should be noted
though, that in cases of strongly non-stationary environments, it might be more
suitable to adopt a reinforcement learning or a robust optimization approach
depending on how critical the system is considered to be.



4

Formulation of MDP M
• State:{

τ,ΩA(τ),
{∑

t∈[ai,τ−1] pi,t

}
i∈A

, gRES,τ ,pinfl,τ , lτ

}
The setting’s State consists of all relevant information
available at a given system instance. State variable τ
denotes the current operation timeslot. Variable ΩA(τ) =
{Ωi}i∈A/{ι}aι>τ , denotes the tuples of tasks i that have
arrived up to τ (i.e. ai ≤ τ ). Tasks that have not arrived
yet are not included in the State information since their
tuples are unknown at τ . Variable

∑
t∈[ai,τ−1] pi,t is the

power that has been allocated to task i up until timeslot
τ − 1. Parameters gRES,τ ,pinfl,τ , lτ refer to the current
operational timeslot τ .

• Actions:
{
g0,τ , {gj,τ}j∈G, {pi,τ}i∈A

}
The action space is spanned over the possible values of
decision variables g0,τ , gj,τ and pi,τ .

• Transition Functions:
– τ −→ τ + 1

After a decision on the power allocation for a certain
timeslot τ is made, the system transitions to the next
timeslot τ + 1.

– gRES,τ ,pinfl,τ , lτ ,ΩA(τ) −→
gRES,τ+1,pinfl,τ+1, lτ+1,ΩA(τ + 1)
At the next timeslot τ + 1, uncertain parameters
gRES,τ ,pinfl,τ , lτ ,ΩA(τ) evolve stochastically2.

–
{∑

t∈[ai,τ−1] pi,t

}
i∈A
−→
{∑

t∈[ai,τ ] pi,t

}
i∈A

At the next timeslot τ + 1, the new allocated energy
for each task is calculated by adding the allocation
decision pi,τ of the last timeslot, to the the previously
allocated energy

∑
t∈[ai,τ−1] pi,t.

• Cost : lτg0,τ +
∑
j∈G Cj(gj,τ ) +

∑
i∈A U(pi,τ )

The cost of a certain Action at a certain State is defined
as the sum of the energy procurement cost and the
aggregated disutility. �

The goal is to find a policy π, i.e., a mapping from each
State to an Action, which minimizes the expected cost J(π)

J(π) =

Eψ∼π

∑
t∈T

g0,tlt +
∑
j∈G

Cj(gj,t)

+
∑
i∈A

∑
t∈T

U(pi,t)


(10)

of the EC in the horizon T , where ψ ∼ π is the set of State-
Action trajectories conditioned over policy π. Moreover, the
policy must belong to the set Fπ , which contains the policies
that respect the constraints (1)–(8)

π∗ = argminπ∈FπJ(π) (11)

2The transition function of the uncertain parameters is not necessarily
known to the EC or even well-defined. It is assumed, though, that the EC
has access to historical data of the uncertain parameters or, alternatively, is
able to generate such data from estimated (possibly independent) transition
functions of uncertain parameters.

The number of possible States and Actions in MDP M
grows exponentially in the number of charging tasks, gen-
erators, and horizon timeslots while M also features contin-
uous State and Action variables. Thus, problem (11) cannot
be tackled by traditional dynamic programming algorithms.
Moreover, constraints (7) depend on the whole State-Action
trajectory and not only on the current Action. This makes it
very difficult to guarantee their satisfaction.

In particular, in standard MDP-solving frameworks, these
kinds of constraints are incorporated in the Cost function of
the MDP, multiplied by a penalty term ν, i.e. the MDP’s Cost
is extended with a term ν

∑
i∈A

∣∣∣∑t∈[ai,di]
pi,t − Ei

∣∣∣. The
issue is that if the value of ν is not large enough, constraint
satisfaction is not guaranteed. On the other hand, choosing a
very large value for ν forces the algorithm to pursue an overly
conservative policy in order to make sure that constraints will
be satisfied. Intuitively, in our context, an overly conservative
policy would be to charge all EVs as fast as possible. This
could lead to important efficiency loss as will be also shown
in the simulations of Section V-D. In what follows we present
a method that handles the intractability of the MDPM, while
constraint satisfaction is explicitly guaranteed.

IV. SOLUTION APPROACH

In this section we present a novel method to tackle the
MDP M. We first present the high-level description of the
algorithm. A very useful observation for MDP M, is that
its state variables can be conveniently separated in two spe-
cial categories: the first category includes exogenous state
variables ΩA(τ), gRES,τ ,pinfl,τ , lτ , which have probabilistic
transition functions but do not depend on the Action taken.
The second category, includes τ and endogenous variables{∑

t∈[ai,τ−1] pi,t

}
i∈A

(that depend on the Action), that both
have deterministic transition functions. By exploiting these
properties, the EC operator can run experiments for the setting,
by sampling instances of gRES, pinfl, l, ΩA from historical
data or from known transition functions and, for each experi-
ment, solve problem (9) as a deterministic problem to obtain
an optimal solution (i.e. the optimal Actions in hindsight).

In a given experiment k, the system transitions through
a certain trajectory ψk, of |T | States and respective optimal
Actions. Therefore, after simulating an experiment k, we can
derive a set of |T | mappings, where a mapping D(k)

S expresses
an association between State S(k)

t (in which the system found
itself) and the optimal Action (that the deterministic optimiza-
tion method took in that State).

By running multiple offline experiments, the EC operator
can generate multiple instances of D(k)

S (i.e. for a number of
different States). These instances can be used to train a Neural
Network (NN), towards learning to optimize the system. Thus,
given an amount of Data DS = {D(k)

S }∀k, the NN can
be trained so as to provide a function that maps a State to
an optimal Action. Therefore, in real-time operation, the EC
operator can observe the system’s current State and feed it
into the NN to obtain the NN’s prediction of what would be
the optimal Action in that State. The high-level procedure is
illustrated in Fig. 1.
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Fig. 1. High-level procedures of data creation and online Action selection

There are two challenges with the proposed approach. First,
there are |T |(1 + |G|+ |A|) Action variables, which requires
an equal number of output neurons. As a result, for only
moderately large numbers of EVs in set A, efficiently training
the NN becomes quite challenging. Second, the NN does not
guarantee constraint satisfaction, which means that if an EV’s
power allocation is determined by the NN output, it is not
guaranteed that the EV will fulfill its charging requirements.
In order to tackle these challenges, it is useful to consider the
Lagrangian relaxation of problem (9). By relaxing constraint
(4), the Lagrangian is written as

L(g0,t,gj,t, pi,t, λt) =∑
t∈T

g0,tlt +
∑
j∈G

Cj(gj,t)

+
∑
i∈A

∑
t∈T

U(pi,t)

−
∑
t∈T

g0,t + gRES,t +
∑
j∈G

gj,t − pinfl,t −
∑
i∈A

pi,t

λt

where λt is the dual variable corresponding to constraint (4),
for timeslot t. An EV’s optimal response to a set of mutipliers
λ = {λ1, λ2, ..., λ|T |} is defined as

Qi = minpi,t

{∑
t∈T

(U(pi,t) + λtpi,t)

}
s.t. (5)–(8)

(12)

while the response of the generation side is defined as

R = mingj,t,g0,t

{∑
t∈T

g0,tlt +
∑
j∈G

Cj(gj,t)


−
∑
t∈T

λt(g0,t +
∑
j∈G

gj,t)


s.t. (1)–(3)

(13)

The dual problem is defined as

maxλt

{
R+

∑
i∈A

Qi

}
s.t. λt ≥ 0,∀t ∈ T

(14)

and since the primal problem (9) is a convex optimization
problem, strong duality holds and the solution λ∗ to problem
(14) achieves optimality for problem (9).

Based on these observations, we can define the EC Oper-
ator’s Action in terms of dual variables λt instead of primal
variables pi,t, gj,t, g0,t, which dramatically reduces the Action
variables from |T |(1 + |G| + |A|) to only |T |. In turn, this
greatly facilitates the NN training. According to this formu-
lation, a piece of data D(k)

S derived from experiment k, is
defined as a mapping from a system State S

(k)
t to a set of

dual variables λ(k)

D(k)
S ≡ S(k)

t → λ(k) (15)

The exact procedure of the data generation step is described
in Algorithm 1.

Algorithm 1 Data Generation for training the Neural Network
1: Initialize k = 1
2: While k < number of experiments
3: Sample g

(k)
RES, p

(k)
infl, l(k), Ω

(k)
A

4: Solve problem (9)
5: Store optimal primal variables

{g(k)
0,t , g

(k)
j,t , p

(k)
i,t , ∀t ∈ T, i ∈ A}

6: Store optimal dual variables λ(k)

7: for each τ ∈ T
8: Create State

S
(k)
τ =

{
τ,Ω

(k)
A (τ),

{∑
t∈[ai,τ ] p

(k)
i,t

}
i∈A

,

g
(k)
RES,τ ,p

(k)
infl,τ , l

(k)
τ

}
9: Create one piece of Data D(k)

S ≡ S(k)
τ → λ(k)

10: end for
11: k = k + 1

In real-time operation, the EC Operator only decides the
dual variables λt (by observing the NN output) and com-
municates them to the EV-task agents. Thus, instead of a
fixed power allocation, each agent is given a set of multipliers
(prices) which it can use to solve its local problem and make
sure that its local constraints are satisfied. At timeslot τ of
online operation, agent i has already received power p̃i,t for
timeslots t < τ . Thus, i’s local problem at τ , is defined as
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minpi,t

{∑
t∈T

(U(pi,t) + λtpi,t)

}
s.t. (5)–(8)

pi,t = p̃i,t, ∀t < τ

(16)

After the agents decide their charging power, they communi-
cate it to the EC operator, and the latter can make sure that the
power balance constraint is satisfied in the most cost-efficient
way, by solving

mingj,t,g0,t

∑
t∈T

g0,tlt +
∑
j∈G

Cj(gj,t)


s.t. (1)–(3), (4)

gj,t = g̃j,t, ∀t < τ

g0,t = g̃0,t, ∀t < τ

(17)

where, again, g̃j,t and g̃0,t denote the decisions made in
previous timeslots. The decisions for the current timeslot are
implemented, and the procedure repeats for the next timeslot
in a rolling horizon fashion. The exact procedure is described
in Algorithm 2.

Although the space of possible states is exponentially large
and the NN’s training dataset cannot possibly explore it, we
expect that the NN can learn the underlying structure of the
optimal set of multipliers and provide a near-optimal output
at any State. Moreover, by requesting that the NN provides
the dual variables as output (instead of the primal variables
g0,t, gj,t and pi,t) we reduce the number of output neurons
from |T |(1+ |G|+ |A|) to only |T |, which enhances the NN’s
performance. At the same time, the agents’ decisions are made
locally and, thus, constraint satisfaction is enforced.

Algorithm 2 Rolling Horizon Energy Management Algorithm
1: Initialize τ = 1
2: While τ ∈ T
3: Observe system State S(k)

τ

4: Feed State S(k)
τ to the NN

5: Obtain the NN output λ
6: Solve problem (16) using λ
7: Solve problem (17), where for constraints (4), pi,t is

given by the solution of problem (16)
8: Implement solutions pi,τ , gj,τ , g0,τ for the current

timeslot
9: τ = τ + 1

A. Neural Network

The NN of Algorithm 2 is implemented as a Multi-Layer
Perceptron (MLP), a class of feed-forward artificial neural
networks. MLP is essentially a supervised learning algorithm
that learns a non-linear function approximator (most com-
mon is stochastic gradient descent) for either classification
or regression. An MLP trains on a dataset and learns a
function f(·) : Rm −→ Rn, where m represents the number
of dimensions for input, which is equal to the number of

State variables in our case, and n represents the number of
dimensions for output, which in our case is equal to |T |, since
we have one dual variable for each timeslot.

The model of each neuron in each layer of the network
includes a set of weighted inputs that are summed and passed
through a nonlinear differentiable activation function. The
purpose of our network is to receive as input all the (known)
State variables at a given operational timeslot τ and return the
output prices λ, one for each timeslot of the horizon T .

For our purposes, the standard MLP needs to be remodeled
so as to allow dynamic input size. Given an operational
timeslot τ of Algorithm 2, the tuples Ωi of EVs that have not
arrived yet (i.e., the state variables Ωi for the EVs with ai > τ )
are not observable. Therefore the input size is dependent on τ .
However, neural networks are, by design, restricted to accept
fixed length input. In order to tackle this issue, a masking
layer was added before the input layer. The alternative would
be to train |T | different networks, one for every timeslot of
the horizon. In the final NN, all State variables were included
in the input layer and when at a given τ a number of State
variables is unobservable, their input is fixed to a specific
value. The above-mentioned masking layer is essentially an
additional array that records whether a value is actually present
for a given input, or whether it is missing and thus should be
skipped during the processing of the data. This technique is
called data masking.

V. PERFORMANCE EVALUATION

A. Testbed description

A total of 50 EVs (charging tasks) were considered A =
{1, 2, ..., 50}. Unless stated otherwise, the data were generated
from 1000 offline simulations, and, for each simulation, we
considered a horizon T of 24 timeslots, where the horizon
represents a two-hour interval, divided into 24 timeslots of 5-
minute duration each. A two hour interval with continuously
increasing inflexible demand and electricity prices was chosen
for the main experiments, in order to represent a rush hour /
peak demand time where the need for demand response is
more probable to arise.

For each task i ∈ A,
• The lower bound pmin

i on the EV’s charging rate was set
to zero.

• The upper bound pmax
i was picked randomly in the set

{2, 3, 4, ..., 12}(kW).
• The arrival time ai was picked randomly from set
{3, 4, ..., 9} for the first 17 tasks, and from set
{14, 15, ..., 20} for the rest of the tasks.

• The desired departure time bi was set to ai + 3.
• The required energy Ei was set as Ei = bip

max
i (kWh 5

60 ).
• The deadline di was set to di = bi + ξ, where ξ was

picked randomly from set {1, 2, 3, 4}.
• Parameter δi was picked randomly from interval [1, 1.25].
Two local generators were modeled, G = {1, 2}, with

technical minimum points gmin
1 = gmin

2 = 0(kW) and ca-
pacity limits gmax

1 = 0.5|A|maxi∈A{pmax
i }(kW) and gmax

2 =
1000(kW). The respective cost parameters cj were set as
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c1 = 0.003 and c2 = 0.01, so as to simulate a base generator
and a more expensive generator for demand peaks.

The system’s electricity price lt at timeslot t was generated
by a random normal distribution with average value µ(lt)
and standard deviation σ(lt) = 0.03. The value of µ(l1) (for
timeslot 1) was set as µ(l1) = 0.4 $

kW 5
60

. For later timeslots,
the average value of µ(lt) was assumed to follow a Markov
chain, where µ(lt) = lt−1 + 0.02.

Similarly, for the inflexible demand pinfl,t, the standard
deviation was set to σ(pinfl,t) = 4 and the average value was
modeled as a Markov chain, where µ(pinfl,t) = pinfl,t−1 +
4(kW). For the first timeslot, it was set µ(pinfl,1) = 100.
Finally, RES generation gRES,t was set as µ(gRES,t) =
gRES,t−1 + 2.5, σ(gRES,t) = 2.5, and µ(gRES,1) = 30(kW).

B. Neural Network Design

The implemented architecture consists of a 5-layer structure
in which the input layer and the output layer are interconnected
with two intermediate non-linear hidden layers, while the
masking layer precedes the input layer. Each layer is dense
and fully connected; the first hidden layer contains 150 hidden
units, and the second contains 100 hidden units. The activation
function chosen is ReLu, for computational simplicity.

The Adam algorithm was used as optimizer; a stochastic
gradient descent method that is based on adaptive estimation
of first-order and second-order moments. Mean squared error
was used as loss function, and mean absolute error as our
evaluation metric. The network was trained for 100 epochs.
A dataset of 24000 samples was generated, since, based on
Algorithm 1, a number of |T | pieces of data are created at
each one of the 1000 experiments. The 92% of the data were
used for training, while the rest 8% was reserved for testing.
Finally, it should also be noted that the data were scaled before
being processed.

C. Benchmarks

We considered two benchmarks with which we compared
the proposed method. The first is the optimal-in-hindsight
solution, where we assume that the EC operator has perfect
knowledge over all uncertain parameters for the horizon T
and solves problem (9) deterministically in order to acquire
the optimal solution. Naturally, this benchmark serves as a
theoretical upper bound on the performance of the proposed
method and its solution cannot be obtained in practice.

The second benchmark is the conservative solution, where
each arriving EV is charged at its maximum possible rate
pmax
i until its demand is fulfilled. This would be the solution

provided by a traditional MDP-solving algorithm, when ac-
commodated with a large penalty term ν|

∑
t∈[ai,di]

pi,t−Ei|
in order to guarantee that constraints (7) will be respected. For
this case study, this solution can also be obtained by setting

p
(conservative)
i,t =

{
pmax
i , for t ∈ [ai, bi]

0, otherwise
(18)

and solving problem (17), where in constraint (4), it is set
pi,t = p

(conservative)
i,t .
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Fig. 2. Electric Vehicles load on top of Energy Community’s net demand for
the proposed and the conservative case

D. Results

In this subsection we present the simulation results. For a
particular instance of the setting, Fig. 2 depicts the aggregated
consumption of EVs

∑
i∈A pi,t as resulted by Algorithm 2 and

the conservative benchmark, on top of the net demand which is
the inflexible demand pinfl,t minus the RES generation gRES,t

for each timeslot. From Fig. 2, we can observe that Algorithm
2, in contrast to the conservative solution, opts for a peak
shaving in timeslots 6-7, 18-21 and a valley-filling in the
respective consequent timeslots.

Algorithm 2 and the two benchmarks were tested in a
number M of different instances, where in each instance
the testbed’s parameters were sampled from the probability
distributions described in Section V-A. The Social Cost SCm,t
for an instance m and timeslot t was calculated as

SCm,t = g0,tlt +
∑
j∈G

Cj(gj,t) +
∑
i∈A

U(pi,t)

The Social Cost for each timeslot was averaged out over all
instances and the Cumulative Average Social Cost SC

CuAv

t is
defined as

SC
CuAv

t =∑
τ∈[0,t]

∑
g0,τ lτ +

∑
j∈G Cj(gj,τ ) +

∑
i∈A U(pi,τ )

M
(19)

The Cumulative Average Social Costs achieved by the pro-
posed algorithm and the two benchmarks are presented in
Fig. 3. The proposed approach on average achieves a 14.1%
decrease in the EC cost compared to the conservative bench-
mark, while it suffers a 11.4% higher cost than the optimal-
in-hindsight solution.

The proposed approach is able to achieve this performance,
mainly for two reasons. First, thanks to the small number of
output neurons, the Neural Network achieves a very good
performance towards tracking the optimal dual variables of
problem (9). This is shown in Fig. 4, where the Probability
Density Function (PDF) of the Mean Absolute Error (MAE)
is depicted for both the train and the test dataset. Both PDFs
follow a positively skewed normal distribution, the mode of
which is around 0.02.

Second, the rolling horizon approach of Algorithm 2, allows
the NN to update the dual variables in an online fashion upon
receiving new information on the system’s State. Indeed, for
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Fig. 3. Average Social Cost achieved by the proposed algorithm compared
to the two benchmarks
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Fig. 4. Probability Density Function of the Mean Absolute Error for the train
and test dataset

later timeslots τ (i.e., as time passes in the actual system
operation), the NN’s performance is improved since it has
accumulated more information about the problem’s instance.
This is quantified and presented in Fig. 5, where the MAE
is depicted separately for each timeslot, i.e., the samples
are grouped by the last known timeslot for which system
parameters are observable.

Moreover, as stated in line 8 of Algorithm 2, only the
decisions for the current timeslot τ are implemented in the
system, and when the system transitions to the next timeslot,
the decisions are updated. In Fig. 6 the MAE for both timeslot
τ and the whole horizon T is depicted as a function of the
training epochs. As can be observed, the MAE for the current
timeslot τ is even smaller compared to the MAE of the whole
horizon. In practice, since the procedure is repeated in a rolling
horizon fashion and only the decision for τ is implemented, it
is more important that the NN achieves a good prediction of
the optimal dual variable λτ for the current timeslot τ rather
than for the whole horizon.

Next, we relax the assumption of a stationary environment
(where historical data are representative of future realizations)
with respect to the inflexible demand and electricity price.
Specifically, we train the NN using σ(pinfl,t) and σ(lt) as
before, but we evaluate it using scenarios produced under
(the different) standard deviations f · σ(pinfl,t) and f · σ(lt)
respectively, where f is a factor by which the standard devi-
ations are being altered. We evaluate the Competitive Ratio

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Last known Interval
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M
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Fig. 5. MAE box-plots (Q1, Q3) for the train and test dataset
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Fig. 6. MAE obtained during 100-epoch period training, taking into account
the predictions of the whole horizon T (blue), versus considering only the
predictions of the first timeslot of each simulation (orange)

of Algorithm 2, defined as the ratio of the average optimal-
in-hindsight objective value of problem (9) to the average
social cost achieved by Algorithm 2, where the average is
taken over the test scenarios. Fig. 7 presents the results. The
case of f = 1 represents accurate knowledge of the standard
deviations. The algorithm’s performance is not particularly
sensitive to non-stationarity of electricity prices, but it is to the
one of inflexible demand. More specifically, the algorithm’s
performance deteriorates as the error on the expected standard
deviation of inflexible demand increases. When the actual
σ(pinfl,t) is as high as four times the value used for training,
the algorithm’s performance shows a significant deterioration.
Nevertheless, for small errors, the algorithm’s performance is
not significantly affected.

E. Tests in different settings

In this subsection, we perform a number of tests to evaluate
the performance of the proposed method under different cases,
beyond the rush-hour case described in V-A. Specifically, the
average values of electricity prices, RES output and inflexible
demand are no longer assumed to increase along T . Instead,
the average value of µ(lt) was assumed to follow a Markov
chain, where µ(lt) = lt−1. An indicative set of 100 price
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Fig. 7. Sensitivity of Algorithm 2 to non-stationarity of the inflexible demand
and electricity price

5 10 15 20
timeslot

0.0

0.2

0.4

0.6

0.8

1.0

W
ho

le
sa

le
 p
ric

e 
($
/k
W
h)
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pattern

trajectories, produced via random walks, is depicted in Fig. 8.
For the inflexible demand pinfl,t and RES output gRES,t, the
average values were again modeled as Markov chains, but
taken to increase for the first |T |/2 of timeslots, and decrease
for the rest |T |/2, as in

µ(pinfl,t) = pinfl,t−1 + sgn · 4 (20)
µ(gRES,t) = gRES,t−1 + sgn · 2.5 (21)

sgn =

{
1 , t < |T |

2

−1 , t ≥ |T |2

(22)

First, we evaluate the Cumulative Average Social Cost, as
defined in (19) under this new setting. The results depicted
in Fig. 9 validate the algorithm’s performance in this setting
as well. Next, we test the MAE of the NN under different
horizon sizes |T |. The results, presented in Fig. 10, verify
the expectation that the MAE increases with longer horizons.
Finally, in order to check if performance could be further
improved by including more samples, we test the MAE
achieved under different dataset sizes. As can be observed in
Fig. 11, the MAE is not significantly affected by performing
more offline experiments on the setting.

VI. CONCLUSIONS AND FUTURE WORK

We considered an economic dispatch problem in a setting
with multiple sources of uncertainty. The problem of mini-
mizing the expected social cost was formulated as a Markov
Decision Process (MDP). The MDP is intractable due to the
curse of dimensionality, introduced by the presence of multiple
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Fig. 9. Average Social Cost comparison in the non rush-hour setting
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Fig. 10. MAE under different time horizon sizes |T |

agents (EVs). We trained a Neural Network (NN) on data that
relates a system’s state to the optimal set of dual variables.
By having the NN learn the dual variables instead of the
primal, we drastically reduce the number of neurons in the
NN’s output layer. Moreover, by treating the NN’s output duals
as prices, we allow each EV agent to self-schedule, which
guarantees the satisfaction of local constraints. This allows
the algorithm to escape from the standard approach, which
either satisfies constraints only in expectation or opts for an
overly conservative policy that results in loss of efficiency. A
rolling horizon algorithm, containing the NN, was constructed
and applied to a case study. Simulation results demonstrate
the superiority of the proposed algorithm in comparison to
the conservative solution.

The proposed method of this paper was tested in a realistic
but generic simulation setting. The reported positive results
can be perceived as a motivation for future studies, towards
assessing the applicability of this (or a similar) methodology
in different settings and use cases. More specifically, the
suitability of the method towards accommodating power flow
constraints remains to be tested, while the method’s efficiency
in settings with more energy resources, using accurate models
and real data, also needs to be assessed by future work.
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