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QUADROTOR CONTROL ON SU(2)× R3 WITH SLAM
INTEGRATION

A PREPRINT

Marcus Greiff, Patrik Persson, Zhiyong Sun, Karl Åström, and Anders Robertsson

October 5, 2021

ABSTRACT

We present a trajectory tracking controller for a quadrotor unmanned aerial vehicle (UAV) config-
ured on SU(2)×R3, and relate this result to a family of geometric tracking controllers on SO(3)×R3.
The theoretical results are complemented by simulation examples, and the controller is subsequently
implemented in practice and integrated with a simultaneous localization and mapping (SLAM) sys-
tem through an extended Kalman filter (EKF). This facilitates the operation of the UAV without
external motion capture systems, and we demonstrate that the proposed control system can be used
for inventorying tasks in a supermarket environment without external positioning systems.

1 INTRODUCTION

The UAV is quickly becoming a ubiquitous tool in modern society. There already exist commercially available prod-
ucts that are capable of autonomous flight through narrow forest paths while filming downhill mountain-bikers [1].
These robots have the potential to completely disrupt and revolutionize transportation and logistics [2]. Due to the
high margin pressure associated with these sectors, initial applications are likely to be found in inventorying and data
collection using small UAVs, where the cost can be kept low and the solutions can be implemented under contempo-
rary legislation. This motivates the development of control systems similar to [1] that can operate without external
motion capture systems and perform simple inventorying tasks.

For this purpose, we present a nonlinear tracking controller for the UAV dynamics, which yields uniform local expo-
nential stability (ULES) properties on a smaller domain of attraction, and asymptotic attractiveness on a much larger
domain. Similar methods have been developed in the quaternion formalism [3, 4, 5], but the approach taken in this
paper extends the results in [6] using a special distance on SU(2). This permits a stability proof analogous to that of
the geometric tracking controller on SO(3) in [7, 8], which allows further generalization to the robust and globally
stabilizing controllers in [9, 10]. When compared to controllers based on the model predictive control (MPC) method,
such as the learning-based MPC in [11] or the perception-aware MPC in [12], the geometric controllers are capable of
similar feats of agility while requiring significantly less computational resources. This becomes particularly relevant
in the context of small UAVs, which operate under computational constraints, where a large part of the processing
power needs to be allocated to the on-board sensor fusion.

As the proposed controller relies on full-state information, a specialized system for simultaneous localization and
mapping (SLAM) is implemented to generate real-time pose (position and attitude) estimates of the UAV based on
video feed streamed from a camera mounted on the UAV. For this purpose, a solution is implemented with ORB
features [13] and the pre-integration proposed in [14], permitting real-time estimation of the UAV state conditioned on
the inertial measurement unit (IMU) measurements and pose estimates from the SLAM system. We emphasize that
this solution enables safe autonomous flights without external motion capture systems, and demonstrate the theory
with experiments using the Crazyflie 2.0 UAV [15] (see Fig. 1).
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Figure 1: The Crazyflie 2.0 used in the experiments with a camera attached. Left: Initial configuration at t = t◦. Right:
Terminal configuration at t = tf .

1.1 Contributions

The contributions of this paper are threefold, and can be summarized as follows:

• A tracking geometric controller for UAV dynamics configured on SU(2)×R3 is proposed, using the approach
in [16] based on the attitude control result in [6]. The controller differs to that in [16] in several ways that
have meaningful consequences, and its stability proof further motivates the use of the results presented in [5].

• A real-time compatible stack for SLAM is presented. The system tracks and matches ORB features [13] from
a continuous video feed, utilizing the pre-integration proposed in [14] to leverage the sampled IMU-data.

• A demonstration of the controller in real-time is given, fusing estimates from the SLAM system and with other
sensory data in an on-board extended Kalman filter (EKF), rendering the resulting control system capable of
safely executing complex maneuvers that are relevant to supermarket inventorying.

1.2 Notation

Matrices and vectors are written in bold font, with entries of a vector u as ui, and the entries of a matrixA are denoted
by [A]ij . The smallest eigenvalue of a real symmetric matrix A ∈ Rn×n is denoted by λm(A), and its largest by
λM (A). The two-norm of u ∈ Rn is denoted by ‖u‖ =

√
u>u, and ‖u‖M =

√
u>Mu with a positive definite real

matrix M ∈ Rn×n. The trace of A ∈ Cn×n is written Tr(A) =
∑n
i=1Aii, and U(Ω) denotes a uniform distribution

over Ω, and implies sampling every element of Ω with equal probability. Let S : R3 7→ R3×3 such that for any
a, b ∈ R3, S(a)b = a× b, where

S(a) =

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
. (1)

1.3 Structure

The mathematical preliminaries are given in Section 2, introducing a result on attitude control and identities pertaining
to SU(2). This is followed by a presentation of the problem formulation and the main result in Section 3, where attitude
controller is used to derive a nonlinear tracking feedback law for a UAV configured on SU(2)×R3. The SLAM system
and its integration are discussed in Section 4, followed by simulation and experimental results in Section 5. Finally,
the conclusion and outlook in Section 6 close the paper.
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2 PRELIMINARIES

In the mathematical preliminaries, we start by defining the configuration manifolds, and relate elements of SO(3) to
elements SU(2) through a carefully constructed embedding.

Definition 1. Let SO(3) = {R ∈ R3×3 | R>R = I, det(R) = 1}, with an associated Lie algebra so(3) =
{L1ω1 +L2ω2 +L3ω3 ∈ R3×3 | ω ∈ R3} spanned by

L1=

[
0 0 0
0 0 −1
0 1 0

]
, L2=

[
0 0 1
0 0 0
−1 0 0

]
, L3=

[
0 −1 0
1 0 0
0 0 0

]
.

Definition 2. Let SU(2) = {X ∈ C2×2 | X∗X = I, det(X) = 1}, with an associated Lie algebra su(2) =
{L1ω1 +L2ω2 +L3ω3 ∈ C2×2 | ω ∈ R3} spanned by

L1 =

[
0 i
i 0

]
, L2 =

[
0 −1
1 0

]
, L3 =

[
i 0
0 −i

]
.

Here, we note that for any X ∈ SU(2), both X and −X map to the same element on SO(3). To see this, parametrize
SU(2) by a unit vector q = (q1, q2, q3, q4)>, as

X =

(
q1 + iq4 −q3 + iq2
q3 + iq2 q1 − iq4

)
∈ SU(2), (2)

which encompasses all of SU(2) by Definition 2. Furthermore, we embed elementsX ∈ SU(2) intoR ∈ SO(3) by

R =

q21+q22−q23−q24 2(q2q3−q1q4) 2(q2q4+q1q3)
2(q2q3+q1q4) q21−q22+q23−q24 2(q3q4−q1q2)
2(q2q4−q1q3) 2(q3q4+q1q2) q21−q22−q23+q24

 ∈ SO(3). (3)

Definition 3 (Lie Maps). Let G be any of the above defined Lie groups, with algebra g. The hat map is denoted
[·]∧G : R3 7→ g, the vee map is denoted [·]∨G : g 7→ R3, and the associated exponential and logarithmic maps are
denoted by ExpG : g 7→ G and LogG : G 7→ g respectively [17, 6].

To simplify any implementation of the controllers, the
Definition 4 (Hat and vee maps of SO(3)). From Definitions 1 and 3, it follows that ifK = [ω]∧SO(3) ∈ so(3), then

[ω]∧SO(3) = S(ω), [K]∨SO(3) =

[
[K]3,2
[K]1,3
[K]2,1

]
.

Definition 5 (Hat and vee maps of SU(2)). From Definitions 1 and 3, it follows that ifK = [ω]∧SU(2) ∈ su(2), then

[ω]∧SU(2) =

[
iω3 −ω2 + iω1

ω2 + iω1 −iω3

]
, [K]∨SU(2) =

1

2

[=([K]1,2 + [K]2,1)
<([K]2,1 − [K]1,2)
=([K]1,1 − [K]2,2)

]
.

Remark 1. Here, we note that if X ∈ SU(2) and R ∈ SO(3) represent the same attitude on SO(3), using the
embedding in (2) and (3), then, for any ω = θu ∈ R3,

ExpSO(3)([ω]∧SO(3)) ∈ SO(3), ExpSU(2)([ω/2]∧SU(2)) ∈ SU(2),

both represent the same attitude on SO(3), corresponding to a rotation of θ about a unit vector u ∈ R3. For any
a, b ∈ R3 with ‖a‖ = ‖b‖, we have the rotational composition

a = Rb, a = [X[b]∧SU(2)X
∗]∨SU(2). (4)

Definition 6. In the following, we define a global frame {G} spanned by three unit vectors ei with the ith element set
to 1, and a body-fixed frame {B} spanned by three unit vectors bi, which are related to the global frame by

I = [e1 e2 e3] = R> [b1 b2 b3] , (5)

whereR rotates a vector from {B} to {G} (see Fig. 2).
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Figure 2: Left: Depiction of the considered UAV geometry. Right: The laboratory environment with {G}.

In the following, we will at times refer to a reference rotation, with Rr ∈ SO(3) or Xr ∈ SU(2), with an associated
set of body basis vectors bri, and a desired rotation Rd ∈ SO(3) or Xd ∈ SU(2) with an associated set of body basis
vectors bdi (for i = 1, 2, 3). We also make frequent use of two closely related distances, here defined as follows.

Definition 7. Let Ψ : SO(3)× SO(3) 7→ [0, 2], where

Ψ(R1,R2) =
1

2
Tr(I −R>1 R2). (6)

Definition 8. Let Γ : SU(2)× SU(2) 7→ [0, 2], where

Γ(X1,X2) =
1

2
Tr(I −X∗1X2). (7)

These distances facilitate elegant and powerful controller developments. The UAV dynamics are taken to be config-
ured on SU(2) × R3, with a state (p,v,X,ω) ∈ R3 × R3 × SU(2) × R3, and are to be driven along a reference
(pr,vr,Xr,ωr) ∈ R3 × R3 × SU(2)× R3, evolving in time by

ṗr = vr ṗ = v (8a)
mv̇r = frRre3 −mge3 mv̇ = fRe3 −mge3 (8b)

Ẋr = Xr[ωr/2]∧SU(2) Ẋ = X[ω/2]∧SU(2) (8c)

Jω̇r = S(Jωr)ωr + τ r Jω̇ = S(Jω)ω + τ (8d)

whereR andRr are computed by (4) fromX andXr, respectively. In this notation, p ∈ R3 [m] defines the position
of the UAV in {G}; v ∈ R3 [m/s] defines the velocity of the UAV in {B};X ∈ SU(2) defines the attitude of the UAV;
ω ∈ R3 [rad/s] denotes the usual attitude rates defined in {B}; f > 0 [N] defines the thrust generated by the rotors;
τ [N·m] denotes the torques defined in {B} (see Fig. 2). The model is parameterized by a positive definite symmetric
inertia matrix J ∈ R3×3, a positive mass m > 0 [kg], and a constant positive gravitation acceleration g > 0 [m/s2].

For the purposes of this paper, we recall the attitude controller in [6, Proposition 1], developed for the attitude subsys-
tem characterized by (8c) and (8d), used to control (X,ω) along the reference trajectory (Xr,ωr).

Proposition 1. LetXe = X∗rX ∈ SU(2), and define

eX =
1

2
[Xe − Tr(Xe)I/2]∨SU(2) ∈ R3, eω = ω − [(Xe)

∗[ωr]
∧
SU(2)(Xe)]

∨
SU(2) ∈ R3, (10)

and let z = (‖eX‖, ‖eω‖)> ∈ R2
≥0. Take a set of gains kX , kω, kc > 0 such that the matrices

W aa =

[
kckX
λM (J) − kckw

2λm(J)

− kckw
2λm(J) kω − kc

4

]
� 0, Maa

1 =
1

2

[
4kX −kc
−kc λm(J)

]
� 0, Maa

2 =
1

2

[
8kX
2−φ kc
kc λM (J)

]
� 0. (11)

4



Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

Then, for any initial error on the domain

Da=

{[
eX
eω

]
∈ R6

∣∣∣∣∣Γ(Xr(t◦),X(t◦)) ≤ φ < 2,
z(t◦)

>Maa
2 z(t◦) ≤ kXφ

}
, (12)

driving the system (8d) with a full-state feedback

τ = −kXeX−kωeω−S(Jω)ω + J [−[eω/2]∧SU(2)X
∗
e[ωr]

∧
SU(2)Xe +X∗e[ω̇r]

∧
SU(2)Xe +X∗e[ωr]

∧
SU(2)Xe[eω/2]∧SU(2)]

∨
SU(2)

(13a)

yields an equilibrium point z = 0⇒ (eX , eω) = (0,0)⇒ (X,ω) = (Xr,ωr), which is UES on Da.

Proof. The proof is given in [6, Proposition 1], and follows by the definition of a Lyapunov function candidate

Va = kXΓ(Xr,X) + caeω · eX +
1

2
eω · Jeω, (14)

where all solutions remain onDa as Va|ca=0 is non-increasing onDa, also ensuring that Γ(Xr,X) < φ for all t ≥ t◦.
As ‖z‖2Maa

1
≤ Va ≤ ‖z‖2Maa

2
and V̇a ≤ −‖z‖2W aa , a proof of UES on Da follows by [18, Theorem 4.10].

With these preliminaries, we proceed by posing and solving the control problem for the full UAV dynamics.

3 THE UAV CONTROL PROBLEM

We start by defining the control problem in Section 3.1. To solve this problem, intuition regarding the problem
geometry and the controller design is given in Section 3.2 and 3.3, respectively. Based on these ideas, and using the
geometric controller in [6] as a starting point, an analogous continuous feedback to that in [7] is derived for the system
in (8) configured on SU(2)× R3. This main theoretical result is given in Section 3.4.

3.1 Control Problem

Problem 1. Consider a system with a state x = (p,v,X,ω) ∈ R3×R3× SU(2)×R3, with an associated reference
trajectory xr = (pr,vr,Xr,ωr) ∈ R3×R3× SU(2)×R3, driven by (f, τ ) ∈ R≥0×R3 and (fr, τ r) ∈ R≥0×R3,
respectively, evolving by the UAV dynamics in (8). Assume that the state x is known and design a full state feedback
law such that x→ xr as t→∞, and characterize the stability properties of the closed-loop system.

3.2 Geometric Intuition

To provide some intuition regarding the distance in (7) and aid the developments, consider two elements X1,X2 ∈
SU(2). Take the conjugate productXe = X∗1X2 to be a rotation of θ about a unit vector u = (u1, u2, u3)>, as

Xe ,

(
cos( θ2 ) + iu3 sin( θ2 ) −u2 sin( θ2 ) + iu1 sin( θ2 )
u2 sin( θ2 ) + iu1 sin( θ2 ) cos( θ2 )− iu3 sin( θ2 )

)
,

then Γ(X1,X2) = 1− cos( θ2 ), and ∀Γ(X1,X2) ≤ φ < 2,

1

2
sin2( θ2 ) ≤ Γ(X1,X2) ≤ 1

2− φ sin2( θ2 ). (15)

for any φ upper bounding Γ(X1,X2) (see Figure 3). This will be used in the stability analysis of the controllers
on SU(2). Specifically, if eX = 1

2 [Xe − Tr(Xe)I/2]∨SU(2) = 1
2 sin( θ2 )u with Xe = X∗1X2, ‖eX‖2 = 1

4 sin2( θ2 ),
then (15) becomes

2‖eX‖2 ≤ Γ(X1,X2) ≤ 4

2− φ‖eX‖
2. (16)

This observation leads to several insightful geometric relationships with respect to the sine and cosine of the angle
of the eigen-axis rotation between two vectors. For future reference, we first make some preliminary geometric
observations with respect to the vectors bd3 = Rde3 and b3 = Re3, and their cosine angle bd3 · b3 = cos(θ).

• Firstly, we note that

Γ(Xd,X) ≤ φ < 1− 1/
√

2⇒ cos(θ) > 0. (17)

5



Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

Figure 3: Illustration of the distance Γ with the element X1,X2 representing a rotation of θ about an arbitrary unit
axis, with θ′ = θ/2. Illustrates the upper and lower bounds in (15) for three different values of φ ∈ {0.9, 1.2, 1.5}.
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Figure 4: Illustration of the geometric relationships that facilitate the stability proof. Left: Expressions relating to the
cosine of the rotation angle θ. Right: Expressions relating to the squared sine of the rotation angle θ.

• Secondly, as sin2(θ) ≤ 4 sin2(θ/2) for all cos(θ) > 0,

sin2(θ) ≤ 24‖eX‖2 ≤ 23Γ(Xd,X) ≤ 23φ , α2. (18)

These geometric relationships are illustrated in Figure 4, and from these observations, it is clear that for any

Γ(Xd,X) ≤ φ < 2−3 ⇒ cos(θ) > 0⇒ α < 1 (19)

Remark 2. The condition on φ may seem overly restrictive, but it is worth noting that ifXe ∈ SU(2) is parameterized
in the more common ZYX Tait-Bryan rotation angles (pitch, roll, and yaw), as η ∈ R3, then ‖η‖2 ≈ 4Ψ(Rd,R) ≈
8Γ(Xd,X). As such, this condition in (18) is more restrictive than Ψ(Rd,R) ≤ 1 in [16] (by approximately a factor
of four). But (18) still permits significant attitude errors when considered in the Tait-Bryan rotation angles.

6
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3.3 Controller Intuition

A solution to Problem 1 when considered on SO(3) × R3 is given in [7], with more detail in [16]. The developments
here follow a similar idea, according to the observations in Section 3.2. Consider a set of translation control errors,
defined as ep = p− pr ∈ R3 and ev = v − vr ∈ R3. Combined with the reference acceleration, these errors can be
used to compute a desired force in the frame {G}, as

fd = −kpep − kvev +mge3 +mp̈r. (20)

As the controlled system in (8) is only capable of generating forces along the b3-direction, its attitude needs to be
controlled to a desired attitude, Rd(t) ∈ SO(3), which transiently may differ from Rr(t) ∈ SO(3) when correcting
for the errors in ep and ev . Consider expressing this attitude in terms of a set of desired body basis vectors bd,i ∈ R3,
forming a desired body frame {Bd}. It is clear that bd,3 = fd/‖fd‖, but the final degree of freedom can be fixed in
many ways. Three such examples are given below, where:

(i) the vector bd,1 is provided explicitly;
(ii) the vector bd,1 is computed fromRr;

(iii) the vector bd,1 is defined with respect to bd,3.

In the case (ii), the desired body direction can be computed through a sequence of projections as outlined in [7], where

bd,1 = − 1

‖bd,3 × br,1‖
(bd,3 × (bd,3 × br,1)). (21)

This permits a construction of the desired rotation, attitude rate and attitude rate time-derivative for case (i) and (ii), as

Rd = [bd,1 (bd,3 × bd,1) bd,3] ∈ SO(3), (22a)

ωd = [R>d Ṙd]
∨
SO(3) ∈ R3, (22b)

ω̇d = [Ṙ
>
d Ṙd +R>d R̈d]

∨
SO(3) ∈ R3. (22c)

In the case (iii), the desired attitude can be formed by computing an angle β , atan2(
√
f2d1 + f2d2, fd3), and defining

n = (f2d1 + f2d2)−1/2(−fd2, fd1, 0)> (23a)

XA = ExpSU(2)([βn/2]∧SU(2)) (23b)

XB = ExpSU(2)([ψre3/2]∧SU(2)) (23c)

where ψr parameterizes a desired rotation about the body bd,3 vector. With these definitions, the desired attitude
can be defined as the composition Xd = XAXB , computing the desired rates and accelerations through the inverse
kinematics, similar to (22b) and (22c), or by numerical differentiation. If considering the continuous attitude controller
in Proposition 1, this desired attitude needs to be chosen with care such that Xd is continuous in time to avoid
dynamical unwinding [19]. This can be done using the ideas in [20], or directly using the distance in Definition 8.
Remark 3. In a controller implementation running at a time-step of h [s], enforcing continuity inXd(t) can be done
at a time t by computing one of the two elements X̄d(t) ∈ SU(2) associated withRd(t) ∈ SO(3), taking

Xd(t) =

{
+X̄d(t), if Γ(X̄d(t),Xd(t− h)) < 1

−X̄d(t), otherwise
.

The computation of X̄d fromRd can be done though (4).

3.4 Continuous feedback on SU(2)× R3

With this intuition, the main result is stated as follows.
Proposition 2 (Geometric Control on SU(2)× R3). Consider the dynamics (8) controlled by a feedback where:

• the torques, τ , are computed by the controller Proposition 1 implemented to track a trajectory (Xd,ωd, ω̇d);

• the desired attitude reference trajectory is formed by (22), expanding Rd or qd into Xd ∈ SU(2), and
enforcing continuity of the desired reference on SU(2);

7
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• the actuating force is computed as f = fd ·Re3, with the desired force computed as described in (20).

Assume that, for all t ≥ t◦:

(A1) the desired reference (Xd,ωd, ω̇d) is well defined;

(A2) there exists a bound ‖mge3 +mp̈r‖ ≤ Bf ;

(A3) and ‖ep(t◦)‖ < Bp for a fixed Bp > 0;

(A4) the initial errors satisfy Γ(Xd(t◦),X(t◦)) ≤ φ < 2−3;

(A5) the controller parameters (kp, kv, kX , kω, ca, cp)∈R6
>0 are chosen such that for α = 2

√
2φ, the matrices

Mpp
1 ,

1

2

[
kp −cp
? m

]
, Mpp

2 ,
1

2

[
kp cp
? m

]
, W pp ,

[
cpkp
m (1− α) − cpkv2m (1 + α)

? kv(1− α)− cp

]
, (24)

are all positive definite, and there exist a matrix

W pa , 4

[
Bf cp
m 0

Bf + kpBp 0

]
, (25)

such that Bz = 4λm(W aa)λm(W pp)− ‖W pa‖2 > 0.

Consider a domain

D =


ep(t◦)
ev(t◦)
eX(t◦)
eω(t◦)

 ∈ R12

Γ(Xd(t◦),X(t◦)) = φ◦ ≤ φ < 2−3,
‖eω(t◦)‖2 ≤ 2

λM (J)kX(φ− φ◦),
λM (Maa

2 )‖za(t◦)‖2 +
λM (Mpp

2 )‖zp(t◦)‖2 ≤ 1
2kpB

2
p

 , (26)

where zp = (‖ep‖; ‖ev‖) ∈ R2
≥0, za = (‖eX‖; ‖eω‖) ∈ R2

≥0. Given the assumptions (A1)-(A5), the equilibrium
point (ep, ev, eX , eω) = (0,0,0,0) is UES on D.

Proof. The proof is given in the Appendix, with a sketch provided here. Similar to [7, Proposition 2], it follows by
defining a Lyapunov function candidate

V̄ =
1

2
kp‖ep‖2 +

1

2
m‖ev‖2 + cpep · ev + kXΓ(Xd,X) + caeX · eω +

1

2
eω · Jeω. (27a)

Given the assumptions (A1)-(A5), it is shown all solutions initialized on D remain on this domain for all t ≥ t◦.
Furthermore, it is shown V̄ is continuously differentiable, and there exist constants c1, c2, c3 > 0 expressed in the
matrices in (24) and (25), such that

c1‖z̄‖2 ≤ V̄ ≤ c2‖z̄‖2, (d/dt)V̄ ≤ −c3‖z̄‖2, (28)

where z̄ = (‖ep‖; ‖ev‖; ‖eX‖; ‖eω‖). This holds for all solutions of the error dynamics on D. Applying [18,
Theorem 10] shows UES of z̄ = 0 on D.

3.5 Comments on the Assumptions

3.5.1 Assumption (A1)

The assumption is generally difficult to guarantee, as the denominators in (21) and (23a) depend on the control errors,
and are defined with respect to the reference trajectory and not the desired reference trajectory. There may exist
solutions both initially and transiently where these are ill defined. However, as the full-state information of the UAV
is available, such cases can easily be detected and handled in the controller implementation (see, e.g., [21]).

3.5.2 Assumption (A4)

It may seem as though Assumption (A4) is restrictive, as it only permits small attitude errors. It can be relaxed slightly;
given the characterization of the domain of exponential convergence in Proposition 1, the following holds.
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Proposition 3. Consider the system in (8) in closed-loop feedback with Proposition 2, but instead of Assumption (A4),
assume that the initial errors satisfy

Γ(Xd(t◦),X(t◦)) ≤ φ < 2, (29a)

‖eω(t◦)‖2 ≤
2

λM (J)
kX(φ− Γ(Xd(t◦),X(t◦))). (29b)

Under these conditions, the origin (ep, ev, eX , eω) = (0,0,0,0) is asymptotically attractive.

Proof. This becomes completely analogous to the proof in [7, Appendix E], therefore omitted for brevity. It follows
by showing boundedness of solutions on t ∈ [t◦, t

∗], before the errors approach D as defined in (26) at a finite time
t∗, after which the errors decay exponentially to the origin.

It is worth noting that the UAV system with the attitude controller in Proposition 1 can be shown to be almost globally
asymptotically stable (AGAS), in the sense that all initial conditions converge to a set Γ(Xd(t◦),X(t◦)) ∈ {0, 2}
with eω = 0, corresponding to a stable point interior of (29), or an unstable point on the boundary of the domain
of exponential attraction in (29). As such, the solutions associated with almost all initial conditions asymptotically
converge to (29), with subsequent convergence of the errors to D in (26).

3.5.3 Assumption (A5)

As pointed out in [6], for small ca, the matrices Maa
1 ,Maa

2 ,W aa are positive definite. Similarly, for sufficiently
small cp, the matricesMpp

1 ,M
pp
2 ,W

pp are positive definite. Specifically, sufficient conditions are

ca < min

{
4kω,

4kωkXλm(J)2

λM (J)k2w + λm(J)2kX
, 2
√
kXλm(J)

}
cp < min

{
kv(1− α),

4mkpkv(1− α)2

k2v(1 + α)2 + 4mkp(1− α)
,
√
kxm

}
Similarly, it is clear that the last condition in Assumption (A5) can be satisfied by decreasing φ and α and/or increasing
the tuning parameters kX and kω in relation to the Bf and Bp. It should also be noted that it can be replaced by a less
restrictive conditionW pp −W pa(W aa)−1(W pa)> � 0.

4 THE ESTIMATION PROBLEM

In this section, we present a system for simultaneously localization and mapping (SLAM), which is used to generate
real-time pose estimates of the UAV from a monocular video feed. The system is feature based, relying on extracted
ORB features [13] for tracking and matching. Additionally it utilizes accelerometer data and gyroscopic data from an
inertial measurement unit (IMU) to constrain the scale and two rotational components, the pitch and the roll. These are
otherwise ambiguous if only images are used. This is important since the controller assumes positions in meters and
rotations relative to the gravity direction. The system uses the method proposed in [14] to accumulate IMU data into
so-called deltas, containing information about the metric relative transformation between consecutive frames. These
deltas are then used together with feature matches between images in a large non-linear optimization problem called
bundle adjustment [22], to solve for the camera poses and three-dimensional structure up to a metric solution in {G}.
The SLAM system is divided into modules, each performing a specific task concurrently with the others and commu-
nicates with the other modules using message passing. The main modules in the system are described in order:

1 The initialization module (see Section 4.1);

2 The tracking module (see Section 4.2);

3 The re-localization module (see Section 4.3);

4 The triangulation module (see Section 4.4);

5 The mapping module (see Section 4.5).

Furthermore, the integration of the SLAM system with the EKF on the Crazyflie is described in Section 4.6.

9
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3. Re-localization
(i) Perceptual hashing [23]
(ii) Brute-force matching

2. Tracking
(i) ORB feature matching [13]
(ii) Form IMU-deltas [14]
(iii) Pose estimation

4. Triangulation
(i) Depth filters [24]

5. Mapping
(i) Key-frame insertion/pruning
(ii) Validation of 3D points
(iii) Local bundle adjustment [22]
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Figure 5: Holistic view of the control system modules with the main information flow. The SLAM system (left) is run
on an external computer, and the modules implemented in the Crazyflie firmware (right) are run on its ARM processor.
The communication between the dashed boxes is facilitated by two independent radios.

4.1 Initialization

The system has three phases: the initialization phase, the non-metric phase, and the metric phase (the metric phase
being the operational phase). In the first phase an initial two-frame solution is found by selecting a reference frame
and then as new frames arrive, estimating an essential matrix between the frames using the five point solver in [25]
and the RANSAC framework in [26]. From the essential matrix the pose and 3D structure is extracted, and if the set of
3D points that satisfy a re-projection threshold is sufficiently large and the median depth is sufficiently low (indicating
adequate parallax), the solution is accepted and is then sent to the mapping module. This module in turn bundles the
solution and sends it to the tracking module. If the initialization fails at any step the solution is rejected and the next
frame is tried. If it fails too many times a new reference frame is selected.

This moves the system to the non-metric phase where the solution is defined up to similarity transformation, and no
IMU data is used to constrain the scale and rotation of the system. Once the system has collected five keyframes (to
be defined in Section 4.5), the solution is upgraded to a metric solution using the method in [27], by solving for the
gravity direction and scale. Now the system enters the operational phase, where the UAV can use the estimated pose.

4.2 Tracking

The tracking module tracks the pose of consecutive frames relative to the current map. It uses the previous frame
(and the IMU data when in the metric phase), to generate a proposition of the pose of the current frame. By using
the 3D points seen in the previous frame, a new set of potentially visible 3D points are selected from the map that are
co-visible with the previous points. These are projected into the current frame to facilitate a guided search for feature
matches. The pose is then optimized using the matched features and in the case of metric phase, together with the past
3 poses and their corresponding IMU deltas. This process is repeated with the optimized pose and a smaller search
window in the guided search. Next, matches with large re-projection error are discarded, and if the number of matches
are sufficiently large and the pose is consistent with the IMU data, the pose is sent to the other modules. If the tracking
fails, a re-localization request is sent to the re-localization module, which then returns with the pose of the current
frame if possible.

4.3 Re-localization

The re-localization module uses perceptual hashing in [23] to turn images into hashes, where similar images have
similar hashes. When performing re-localization of a query frame, the frame is converted to a hash. The hash can then

10
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efficiently be compared to the hashes of the keyframes in the map to find frames that have observed the same view.
The most similar frames are then selected as candidates. For each such frame, the observed 3D points are matched
to the query frame features using brute-force matching together with a three point pose solver in [28] and RANSAC
in [26]. Any camera pose with a sufficient amount of inlier matches is then sent back to the tracking module as a
candidate pose.

4.4 Triangulation

To triangulate new 3D points and extend the current map, a two-step approach is used. Firstly, for each keyframe,
the inverse depth filters in [24] are used to features that have not already been associated with 3D points. The filter
maintains a Gaussian distribution over inverse depth of the 3D point from the keyframe’s point of view, as well as a
beta distribution over measurement update inlier ratio. For each new pose frame sent from the tracker, the co-visible
filters are updated. If the inlier ratio of a filter becomes lower than a threshold, it is restarted. If the uncertainty of
the inverse depth becomes sufficiently low, the inverse depth is considered to have converged and is sent from the
triangulation module to the mapping module. In the next step, the inverse depth is converted to a 3D point distribution
using the inverse depth uncertainty from the filter and an assumed pixel noise of one pixel. This distribution is then
projected into co-visible keyframes and features close to the projection, with a sufficiently low descriptor error, are
considered to be potential matches. In the next step, a two-point DLT based triangulation RANSAC procedure in [29]
is used to find the 3D point with the largest inlier set. If this 3D point has been seen by four keyframes, then it is
accepted and is given a life of 5. Each time the 3D point is seen by the tracker, the life is increased. Each time it is
predicted but not seen, its life is decreased. If the life reaches zero, the 3D point is removed.

4.5 Mapping

The mapping module is responsible of updating, optimizing and pruning the map, as well as sending the changes to the
rest of the modules. Using all of the frames in the video would quickly make the optimization problem prohibitively
large and additionally many of the frames would be near identical and unable to provide much information. Therefore,
a small subset is selected, here called keyframes, that accurately represent the solution. The map object contains the
3D points, the IMU-deltas, and the keyframes.

Keyframes are added in real-time as the map expands, and must satisfy certain conditions to be added: (i) compared
to the closest keyframe, the camera must have moved at least 2.5% of the current mean depth; (ii) the mutual overlap
with the most overlapping keyframe must be less than 90 %, or the average uncertainty of the projection of the 3D
points must be higher than four pixels; and (iii) the number of tracked points must be larger than ten. This leads to a
generous keyframe insertion policy, quickly expanding the 3D point set, but introducing redundancy in the keyframes.

A redundant keyframe can be characterized as observing the same 3D points as many of the other keyframes. To detect
and remove redundant keyframes, we keep track of the amount of 3D points each keyframe observes that have also
been observed by at least seven other keyframes. If the fraction of these 3D points is higher than 90%, the keyframe
is marked as redundant. From the set of redundant keyframes, the frame that is the closest to another keyframe is
removed.

Every time a new keyframe is added, a local bundle adjustment is performed where keyframes and 3D points that are
co-visible with the new frame are adjusted and the remaining are kept fixed. This is done to prevent the map from
diverging, and only a local portion of the map is optimized to keep the computational time bounded. Whenever the
map has been updated, either by adding a new keyframe, by adding a new 3D point, or by performing a pruning, the
difference between the previous map and the updated map is extracted and is then sent to the rest of the modules.

4.6 Integration

To fuse SLAM estimates with the IMU-data and generate a full state estimate of the UAV given the dynamics in (8), we
consider the IMU-driven multiplicative extended Kalman filter (EKF) proposed in [30], with a first order attitude reset
in [31]. The filter assumes a non-linear UAV model corresponding to the dynamics in (8), but with the velocities v
expressed in {B}, and the attitude parameterized as a first-order attitude error, δ ∈ R3. This attitude error relates to the
estimate R̂(t) ∈ SO(3) as R̂(t) = R̂(tk)(I+S(δ(t))), and is reset to zero when it exceeds a predefined threshold with
tk denoting the most recent reset. As such, the state of the EKF is given by z = (p; v; δ) ∈ R9, and the dynamics
in (8) are expressed in z. This estimate is subsequently externalized into the full state of the UAV, x = (p,v,X,ω),
where the attitude rates are computed by averaging the gyroscopic measurements between each EKF prediction. In the
experiments, a scalar update version of the filter is used (see, e.g., [32, Chapter 6]), incorporating the measurements
consecutively as they arrive. For additional details on the filter implementation, refer to [30, 31, 33].
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The IMU-data from the Crazyflie are transferred to a PC using a version of the robot operating system (ROS) driver
in [34], and the video is streamed over a different radio and processed directly by the SLAM system. This stack sub-
sequently outputs an estimate of the UAV pose at 50 [Hz], which is communicated back to the UAV via radio through
the ROS driver. The positional part of the estimate is queued into the EKF, which fuses the positional information with
the IMU measurements at a rate of 100 [Hz]. The reference trajectory is also communicated to the UAV via ROS as
a set of splines in the flat output space of the UAV, and the expansion of this trajectory into the states of the reference
dynamics in (8) and the controller in Proposition 2, both run at a rate of 500 [Hz] (see Figure 5).

5 NUMERICAL EXAMPLES AND EXPERIMENTS

In this section, we start by giving a simulation example in Section 5.1 demonstrating the tracking properties of the con-
troller in Proposition 2 for a circular maneuver with large initial errors. We then present an experiment in Section 5.2
where the controller is integrated with the SLAM system, while also removing the desired attitude accelerations (by
letting ω̇d , 0) to avoid differentiating the control errors.

5.1 Simulation Example

As the proposed controller is asymptotically attractive and ULES for all parameters m > 0,J = J> � 0 and all
initial errors, we takem = 0.1 with g = 10, and sample a random inertia matrix (here chosen such that λm(J) = 0.05
and λM (J) = 0.1). The initial conditions of the system are sampled from v(t◦),ω(t◦) ∼ N (0, 5I), with p(t◦) ∼
N ((0, 0,−2)>, I), andR(t◦) ∼ U(SO(3)). From this random initial state, the system is controlled along

pr(t) = (3 sin(t), 3 cos(t), 0)>, b1r(t) = vr(t)/‖vr(t)‖.
This trajectory can be expanded into the full state trajectory of the UAV in (8) using the property of differential flatness
(see, e.g., [32, Chapter 3]). In one particular realization,

R(t◦) =

[
0.51 −0.05 −0.86
−0.78 0.41 −0.48
0.37 0.91 0.17

]
, J =

[
0.08 0.01 0.02
0.01 0.07 0.01
0.02 0.01 0.07

]
, (30)

p(t◦) =

[
0.08
−0.16
−1.63

]
, v(t◦) =

[−0.59
0.76
−0.95

]
, ω(t◦) =

[−1.81
1.80
2.81

]
. (31)

For this realization of the UAV parameters and the initial errors, the control signals, reference trajectory and system
response are depicted in Fig. 6. Here, we note that the Lyapunov function in (27a) quickly decays to a small value
(here shown in the 10-logarithm), and that it satisfies the associated quadratic bounds at all times. This holds despite
the system being initialized outside of D. As such, we here rely on the (almost global) asymptotic attractiveness
properties in Proposition (3) before reaching the domain of exponential attraction. The system configurations are
depicted in time in Fig. 7, with color coding of {B} corresponding to Fig. 2. Given that a new set of initial conditions
and system parameters can be sampled, similar convergence properties were verified in a total of 103 realizations of
the parameters and initial errors in (31).

5.2 Real-Time Example

In the second example, an inventorying experiment is conducted in real-time with a Crazyflie 2.0 [15] with respect to a
set of shelves in the coroner of a room (see Fig. 2). The SLAM system is integrated with the stock multiplicative EKF
of the Crazyflie [33] as described in Section 4, using the positional estimates from the SLAM system in combination
with the IMU-measurements to generate a full-state estimate. These estimates are subsequently used by the controller
in Proposition 2 to actuate the UAV, but employing the discontinuous version of the attitude controller in [6].

The shelf geometry is assumed to be known, and a reference trajectory is planned consisting of linear splines such
that the UAV traverses each segment at a velocity of ‖vr(t)‖ = 1 [m/s] approximately 0.4 [m] from the shelves.
In order to keep the shelves within camera view, this implies performing a turn at t ∈ [24.6, 26.3], also defined
by linear splines. As such, the reference trajectory cannot be followed perfectly at the spline end-points, where the
velocities are discontinuous, resulting in slight transients in the errors. The tracking errors are shown in Fig. 8, with the
expanded reference trajectory and positional estimates logged from the UAV, and the attitude error computed between
the estimated rotation in the EKF and the rotation in the SLAM system (which is not incorporated in the EKF). To
highlight that the attitude error does not correspond to the distance between the estimate of the EKF and the desired
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Figure 6: System response and control signals in time with references in gray and signals of the controlled system
in blue. Top, left: Reference- and controlled force. Top, right: Reference- and controlled torque. Top center, left:
Reference- and controlled position. Top center, right: Reference- and controlled velocity. Bottom center, left: Distance
to the reference attitude (black) and desired attitude (blue). Bottom center, right: Reference- and controlled attitude
rate. Bottom: The Lyapunov function depicted with the associated quadratic bounds in blue, depicted over t ∈ [0, 15]
to the left, with a zoom indicated in red on t ∈ [6.5, 7] to the right.
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Figure 7: Configurations of the UAV (p(t),X(t)) ∈ R3 × SU(2) when controlled using Proposition 2.

attitude (i.e., the control error X∗dX in the UAV), the attitude error is depicted in the Ψ-distance, with Rr sampled
from the UAV reference trajectory andR estimated from the SLAM system.

13



Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

0

2

0.5

1

1

1.5

1.5

0
1

0.5-1

0

-2

0

2

0.5

1

1

1.5

1.5

0
1

0.5-1

0

-2

0 10 20 30 40 50 60

-2

-1

0

1

2

18 19 20 21 22 23 24

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

24.5 25 25.5 26 26.5

0

0.02

0.04

0.06

0.08

0.1

Figure 8: Top, left: The positional reference pr (black) and the response p (blue), along with the time-derivative of
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The UAV successfully scans the shelves in rapid succession, following the reference trajectory down to the expected
tracking errors induced by a lack of continuity when switching between splines. We also note that the attitude error is
relatively small throughout the experiment, with slight increases when switching between splines, and a larger error
during the start of the turning maneuver. Again, we emphasize that this is the attitude error between the reference
trajectory and the rotation estimated in the SLAM system, which is not explicitly used in the controller. Finally, to get
a sense of the accuracy of the slam system, the initial and terminal configuration of the UAV is depicted in Fig. 1. This
demonstrates that without any external motion capture, the controlled system navigates back to a point that differs
from the initial position by a few centimeters, despite facing a different wall while landing. Supporting videos of the
simulation as well as the experiment are published in [35].

6 CONCLUSIONS

In this paper, we have presented a geometric tracking controller for quadrotor UAVs configured on SU(2) × R3,
that is analogous to the geometric tracking controller on SO(3)× R3 in [7] – yet distinctly different in ways that have
meaningful consequences. In addition, a SLAM system was implemented based on ORB features to process monocular
video to a sequence of a pose estimates that were subsequently fused with IMU-data in an on-board EKF. The controller
in Proposition 2 was demonstrated in simulation, before being applied in practice to a real-time inventorying scenario.
We emphasize that the proposed control system is capable of actuating the UAV along the desired reference trajectory
without any external motion capture system. As such, a UAV equipped with this control system is easily deployed and
is a low-cost alternative for supermarket inventorying.

14



Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

References

[1] Skydio, “Skydio product homepage,” last accessed at 2021-09-01. [Online]. Available: https://www.skydio.com/
[2] T. M. Fernández-Caramés, O. Blanco-Novoa, I. Froiz-Mı́guez, and P. Fraga-Lamas, “Towards an autonomous

industry 4.0 warehouse: A UAV and blockchain-based system for inventory and traceability applications in big
data-driven supply chain management,” Sensors, vol. 19, no. 10, p. 2394, 2019.

[3] E. Fresk and G. Nikolakopoulos, “Full quaternion based attitude control for a quadrotor,” in 2013 European
Control Conference (ECC). IEEE, 2013, pp. 3864–3869.

[4] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter attitude control: Technical report,” ETH
Zurich, Tech. Rep., 2013.

[5] D. Brescianini and R. D’Andrea, “Tilt-prioritized quadrocopter attitude control,” IEEE Transactions on Control
Systems Technology, vol. 28, no. 2, pp. 376–387, 2018.

[6] M. Greiff, Z. Sun, and A. Robertsson, “Attitude Control on SU(2): Stability, Robustness, and Similarities,” IEEE
Control Systems Letters, vol. 6, pp. 73–78, 2021.

[7] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor UAV on SE(3),” in 49th
IEEE Conference on Decision and Control (CDC). IEEE, 2010, pp. 5420–5425.

[8] F. Goodarzi, D. Lee, and T. Lee, “Geometric nonlinear PID control of a quadrotor UAV on SE(3),” 2013 European
control conference (ECC), pp. 3845–3850, 2013.

[9] T. Lee, M. Leok, and N. H. McClamroch, “Nonlinear robust tracking control of a quadrotor UAV on SE(3),”
Asian Journal of Control, vol. 15, no. 2, pp. 391–408, 2013.

[10] T. Lee, “Global Exponential Attitude Tracking Controls on SO(3),” IEEE Transactions on Automatic Control,
vol. 60, no. 10, pp. 2837–2842, 2015.

[11] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza, “Deep Drone Acrobatics,”
2020. [Online]. Available: arxiv.org/abs/2006.05768

[12] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-aware model predictive control for quadro-
tors,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
1–8.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in 2011
International Conference on Computer Vision, 2011, pp. 2564–2571.

[14] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time visual–inertial
odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[15] Bitcraze, “Crazyflie 2.0,” 2021, last accessed: 10-4-2021. [Online]. Available: www.bitcraze.io/products/
old-products/crazyflie-2-0

[16] T. Lee, M. Leok, and N. H. McClamroch, “Control of complex maneuvers for a quadrotor UAV using geometric
methods on SE(3),” 2011. [Online]. Available: arxiv.org/abs/1003.2005

[17] B. Hall, Lie groups, Lie algebras, and representations: an elementary introduction. Springer International
Publishing, Switzerland, 2015, vol. 222.

[18] H. Khalil, Nonlinear systems, 3rd ed. Prentice hall Upper Saddle River, New Jersey, USA, 2002.
[19] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “On quaternion-based attitude control and the unwinding phe-

nomenon,” in Proceedings of the 2011 American Control Conference. IEEE, 2011, pp. 299–304.
[20] ——, “On path-lifting mechanisms and unwinding in quaternion-based attitude control,” IEEE Transactions on

Automatic Control, vol. 58, no. 5, pp. 1179–1191, 2012.
[21] M. Greiff and A. Robertsson, “Incremental Reference Generation for Nonsingular Control on SE(3),” in 2018

IEEE Conference on Control Technology and Applications (CCTA), 2018, pp. 132–137.
[22] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: Incremental smoothing and

mapping with fluid relinearization and incremental variable reordering,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 3281–3288.

[23] C. Zauner, “Implementation and benchmarking of perceptual image hash functions,” Ph.D. dissertation, 2010,
ISBN: 1446144429.

[24] G. Vogiatzis and C. Hernández, “Video-based, real-time multi-view stereo,” Image and Vision Computing,
vol. 29, no. 7, pp. 434–441, 2011.

15

https://www.skydio.com/
arxiv.org/abs/2006.05768
www.bitcraze.io/products/old-products/crazyflie-2-0
www.bitcraze.io/products/old-products/crazyflie-2-0
arxiv.org/abs/1003.2005


Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

[25] D. Nister, “An efficient solution to the five-point relative pose problem,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 6, pp. 756–770, 2004.

[26] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image
analysis and automated cartography,” Communications of the Association for Computing Machinery (ACM),
vol. 24, pp. 381–395, 1981.

[27] R. Mur-Artal and J. D. Tardós, “Visual-Inertial Monocular SLAM With Map Reuse,” IEEE Robotics and Au-
tomation Letters, vol. 2, no. 2, pp. 796–803, 2017.

[28] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification for the perspective-three-point
problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 930–943, 2003.

[29] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding, vol. 68, no. 2, pp.
146–157, 1997.

[30] M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband range measurements with accelerometers
and rate gyroscopes for quadrocopter state estimation,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 1730–1736.

[31] M. W. Mueller, M. Hehn, and R. D’Andrea, “Covariance Correction Step for Kalman Filtering with an Attitude,”
Journal of Guidance, Control, and Dynamics, vol. 40, no. 9, pp. 2301–2306, 2017.

[32] M. Greiff, “Modelling and control of the Crazyflie quadrotor for aggressive and autonomous flight by optical
flow driven state estimation,” Master’s thesis, Lund University, 2017.

[33] Bitcraze, “MEKF in the Crazyflie,” 2021, last accessed: 10-4-2021. [Online]. Available: github.com/bitcraze/
crazyflie-firmware/blob/master/src/modules/src/kalman core/kalman core.c

[34] W. Hönig and N. Ayanian, Flying Multiple UAVs Using ROS. Springer International Publishing, 2017, pp.
83–118.

[35] M. Greiff, “Inventorying with the crazyflie 2.0,” last accessed at 2021-10-03. [Online]. Available:
https://youtu.be/JIZ2KM-rYjk

16

github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/kalman_core/kalman_core.c
github.com/bitcraze/crazyflie-firmware/blob/master/src/modules/src/kalman_core/kalman_core.c
https://youtu.be/JIZ2KM-rYjk


Quadrotor Control on SU(2)× R3 with SLAM Integration A PREPRINT

Appendix

Proof of Proposition 2. This proof is strikingly similar to the proof for the controller on SO(3)× R3 in [7, Appendix
D], and a sketch is given here with some key intermediary expressions. Define a Lyapunov function comprised of two
parts, one relating the attitude subsystem, Va, and one relating to the translation subsystem, Vp. The former is defined
as in (14), and the latter is defined analogously, as

Va =
def
kXΓ(Xd,X) + caeω · eX +

1

2
eω · Jeω, (32a)

Vp =
def

1

2
kp‖ep‖2 +

1

2
m‖ev‖2 + cpep · ev, (32b)

respectively. As the attitude dynamics are actuated along this trajectory by Proposition 1, consider initial attitude
errors on

(Xe(t◦), eω(t◦)) ∈ {(Xe, eω) ∈ Lφ × R3 | Va|ca=0 ≤ kXφ}, (33)

where

Lφ = {X∗dX ∈ SU(2) | Γ(Xd,X) ≤ φ < 2}. (34)

From the result in Proposition 1, it follows that Xe(t) ∈ Lφ for all t ≥ t◦ if Va(t◦)|ca=0 ≤ kXφ, and that the errors
converge exponentially to (Xe, eω) = (I,0). As such, the main idea of the proof is to conduct the stability analysis
on a domain D = {(ep, ev,Xe, eω) ∈ R3 × R3 × Lφ × R3 | ‖ep‖ ≤ Bp}, restricting the domain by making φ and
Bp sufficiently small such that all solutions remain on D.

In the following, we consider consider performing the stability analysis on the domain characterized by D with φ =
2−3 with a Lyapunov function candidate V = Va + Vp.

Translation error dynamics

by plugging in the proposed feedback law, the translation error dynamics can be written

mėv = mp̈−mp̈r = −mge3 + fRe3 −mp̈r. (35)

Note that e3R>dRe3 = bd3 · b3 > 0 if we can ensure that (17) holds. If so, the term f
e3R>

d Re3
Rde3 is well defined,

and as such, (35) can be expressed

mėv = −mge3 −mp̈r +
f

e3R
>
dRe3

Rde3 + f̄ , (36)

where

f̄ =
f

e3R
>
dRe3

Rde3

(
(e3R

>
dRe3)Re3 −Rde3

)
. (37)

In addition, recall that the actuating force is computed by

fd = −kpep − kvev +mge3 +mp̈r. (38)

As bd3 = fd‖fd‖−1, fd = ‖fd‖bd3 = ‖fd‖Rde3, and

f

e3R
>
dRe3

Rde3 =
fd ·Re3
e3R

>
dRe3

Rde3 = fd. (39)

Insertion of this expression in (36) yields

mėv = −kpep − kvev + f̄ . (40)

To proceed, we start by bounding f̄ in the control errors using the assumptions of the theorem, but first, we derive the
expression for the time-derivative of the part of the Lyapunov function associated with the translation errors.
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Translation Lyapunov function candidate

Differentiation of the Lyapunov function associated with the translation dynamics along the solutions of the controlled
system yields

V̇p =− (kv − cp)‖ev‖2 −
cpkp
m
‖ep‖2 −

cpkv
m

(ep · ev)+

f̄ ·
(
cpm

−1ep + ev

)
. (41)

Furthermore, by (39), we have that
‖f̄‖ ≤ ‖fd‖‖(e3R>dRe3)Re3 −Rde3‖, (42)

where the second term is recognized as the sine angle of the eigenaxis rotation angle between bd3 and b3, as pointed
out in [7]. As such, we can utilize the fact that this rotation angle is bounded in the control errors on D, as per (17).
By this simple observation, we obtain

‖f̄‖ ≤ ‖fd‖‖(e3R>dRe3)Re3 −Rde3‖
≤ (kp‖ep‖+ kv‖ev‖+B)‖(e3R>dRe3)Re3 −Rde3‖
≤ (kp‖ep‖+ kv‖ev‖+B)4‖eX‖
≤ (kp‖ep‖+ kv‖ev‖+B)α,

where the second inequality follows from assumption (A3), and the third and fourth hold for all trajectories on D from
the observation regarding the sine angle in (18). Insertion of this bound in (43) yields

V̇p =− (kv − cp)‖ev‖2 −
cpkp
m
‖ep‖2 −

cpkv
m

(ep · ev) + f̄ ·
(cp
m
ep + ev

)
=− (kv(1− α)− cp)‖ev‖2 −

cpkp
m

(1− α)‖ep‖2

+
cpkv
m

(1 + α)‖ep‖‖ev‖

+ 4‖eX‖
(
B
(cp
m
‖ep‖+ ‖ev‖

)
+ kp‖ep‖‖ev‖

)
≤ −z>pW ppzp + z>pW

paza, (43)
withW pp andW pa defined as in the proposition statement, in (24) and (25), respectively. In addition, we note that

z>pM
pp
1 zp ≤ Vp ≤ z>pMpp

2 zp, (44)
forMpp

1 andMpp
2 defined as in (24) of the proposition.

Complete Lyapunov function candidate

In addition to these definitions, take Maa
1 ,Maa

2 ,W aa, to be the matrices in (12) associated with the controller in
Theorem 1, also given in (24). In addition, define the matrices

M̄1 = diag(Mpp
1 ,M

aa
1 ), M̄2 = diag(Mpp

2 ,M
aa
2 ), W̄ =

[
W pp − 1

2W
pa

? W aa

]
. (45)

where M̄ i � 0 ifM jj
i � 0. For the combined Lyapunov function candidate V = Vp + Va, we find that

z̄>M̄1z̄ ≤ V ≤ z̄>M̄2z̄. (46)
Differentiating V along the closed-loop solutions on D yields

V̇ = V̇p + V̇a ≤ −z̄>W̄ z̄. (47)
By assumption (A5), we have that

V̇ ≤ −z̄>W̄ z̄

≤ −λm(W pp)‖zp‖2 + ‖W pa‖‖zp‖‖za‖ − λm(W aa)‖za‖2

≤ −
[
‖zp‖
‖za‖

] [
λm(W pp) − 1

2‖W
pa‖

? λm(W aa)

] [
‖zp‖
‖za‖

]
≤ −Bz(‖zp‖2 + ‖za‖2). (48)

Consequently, the Lyapunov function time-derivative is negative definite in z̄ along the solutions of the error dynamics
onD. By (48), it also follows that V is continuously differentiable onD as all of the signals constituting V̈ are bounded
in the initial errors. As such, [18, Theorem 4.10] yields that the origin z̄ = 0 is UES on the domain D.
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