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Sábete, Sancho, que no es un hombre más que otro si no hace más que otro:
todas estas borrascas que nos suceden son señales de que

presto ha de serenar el tiempo, y han de sucedernos bien las cosas,
porque no es posible que el mal ni el bien sean durables,
y de aquí se sigue que, habiendo durado mucho el mal,

el bien está ya cerca.

Don Quijote de la Mancha —Miguel de Cervantes Saavedra

¿Qué es la vida? Una ficción,
una sombra, una ilusión,

y el mayor bien es pequeño;
que toda la vida es sueño,
y los sueños, sueños son.

La vida es sueño — Pedro Calderón de la Barca
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1
Introduction

This chapter introduces the topics of process mining and machine learning and their influence
in healthcare. We next present our research question and provide an overview of the work
discussed in this dissertation.



1

2 Motivation

1.1Motivation

N owadays, processes and process data are everywhere. Frompurchasing a product froma
webshop to receiving a treatment at a hospital, many daily life activities can bemodeled

as processes. Formalization of processes is useful to support analysis, performance assess-
ment and improvement, among others. Many of these benefits are possible due to advance-
ments in two areas: process mining and machine learning. Process mining is a relatively
young field that can be positioned between machine learning and data mining on one side,
and process modeling and analysis on another [170]. Through knowledge extraction from
event logs, processmining aims to discover, monitor and improve processes (i.e., workflows).
The performance of processes can also be improved by focusing on a specific task in a work-
flow. For instance, a manual task could be replaced by an automated one. Machine learning
is defined as the study of computer algorithms that improve automatically through expe-
rience [108]. Experience is gained through an iterative process in which properties of the
input data are exploited, thereby enabling automating tasks in workflows.

Medical workflows are of special interest because they are ubiquitous, often complex, and,
above all, errors can have a huge impact on the welfare of persons. Typical examples of med-
ical workflows are guidelines to treat diseases, performing laboratory tests and admission or
discharge procedures. Ensuring the correct execution of such workflows in a timely man-
ner is crucial to deliver proper healthcare. The analysis of workflows can provide valuable
insights into how current behavior compares to ideal behavior within a hospital and can
help to find design flaws of workflows. Furthermore, the automation of certain parts of the
workflow can speed up the whole process considerably.

Process mining has proven to be effective in healthcare environments for different purposes
[137]: process discovery [17, 102, 103], conformance checking [82, 201], and social network
analysis [17, 89, 102]. Conformance checking is useful to provide healthcare experts with
knowledge on how to adjust to internal and external guidelines; performance analysis can
help to identify and resolve possible bottlenecks to reduce waiting times.

Many advancements in the history of healthcare have improved the quality and prospect of
life. Fromdevelopments in vaccines to progress in technology, they have led tomore preven-
tive, analytical healthcare that focuses on patient-centered care. From the technology per-
spective, data analysis, and in particular machine learning, is attracting much interest and
represents a promise for the future of healthcare. Examples that currently apply machine
learning in healthcare can be found in academia [22, 69] and industry [11, 42, 94, 132]. In
general, machine learning can be used to help doctors providing more personalized diag-
nostics and treatments, and reduce the costs for such care treatment [14].

Progress in machine learning promises the incorporation of automated techniques in med-
ical workflows. Areas ranging from image analysis to multivariate data analysis can benefit.
Also, clinicians often have to deal with temporal data. For example, in sleep analysis, the
sleep of a patient is recorded during the night, scored by a technician and then analyzed by
a somnologist to diagnose possible sleep disorders. Much progress has been made in au-
tomatizing the scoring step where automated techniques would be used to score the sleep of
the patient. Most techniques employ the same data that has been traditionally used in the
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manual approach: electroencephalography (EEG). Moreover, in recent years, new sources
of data such as surrogate devices (e.g., wrist-worn trackers) have changed the way sleep is
measured and so the models utilized. These new data sources entail the ability to capture
different physiological aspects. However, the precision of such methods is usually not com-
parable to the gold standard. This variety of data sources andmodels has resulted in a strong
need to evaluate and improve the performance of such models to ensure their reliability for
real-world usage.

1.2Objective

The research question presented in this dissertation is twofold: it concerns both global work-
flow analysis and particular task improvement. The main question can be formulated as
follows:

How can we use interactive visualization and automated techniques to understand and
optimize medical workflows?

To tackle this research question, we focus on global workflow analysis (process mining) and
local task improvement (machine learning). Because these fields are too broad, we focus
on four topics, namely soundness verification, conformance checking, machine learning to
support time series analysis and for different groups of patients. Within the process mining
perspective, soundness verification and conformance checking are very important. First,
soundness verification ensures that the modeled or discovered process is sound. Once the
process fulfills this criterion, it can be implemented in, for instance, a hospital setting. Once
the process is being executed, certain deviations can occur. To this end, conformance check-
ing can help to analyze these deviations and provide a better understanding of how the pro-
cess is executed in reality in a hospital setting. Regarding the machine learning perspective,
we focus on the sleep disorder diagnosis. In particular, machine learning can be useful to
automatize certain parts of the diagnosis process. For example, sleep staging can be done
automatically with machine learning models. In this context, gaining more knowledge on
themodel utilized is crucial. This can be done in two different ways. One way is by analyzing
the inner workings of the model to understand what features are utilized to make a predic-
tion. Another way is by evaluating the predictive performance of such a model. In order to
address these topics, we aim to answer the following questions throughout this dissertation.

1. How can we understand the circumstances under which soundness breaks down in a
Petri net? Soundness is a desirable property in process models. It depicts a notion of
correctness. During the designing of a process model, soundness has to be ensured
such that certain unwanted situations are avoided. For example, a typical soundness
check is to verify that the process model contains no dead transitions (i.e., transitions
that cannot be executed). Traditionally, soundness verification has always been done
automatically. This produces a single answer stating whether or not a process model
was sound or not, which is too limited to act upon. The challenge, therefore, lies in
understanding under what circumstances soundness is violated. Models can get very
complex not only in their graphical, static representation but also in their behavior
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(i.e., semantics). Combining automated techniques from process mining with visual-
ization techniques can help to tackle these challenges.

2. How can we gain insights into the modeled and real processes of hospitals with confor-
mance checking? Generally, hospitals use guidelines to treat certain diseases. These
guidelines include drug administration, monitoring, test running, etc. Process min-
ing provides automated techniques that can be used to discover process models and
assess the conformance with real behavior. The latter can indicate whether the per-
sonnel in the hospital matches the guides suggested in the guideline. Therefore, con-
formance assessment is crucial to understand if certain diseases are treated according
to the guidelines. The problem with this sort of automated analysis is that it produces
a large amount of data that is rather difficult to analyze. Moreover, patient data (e.g.,
other conditions, laboratory results) is not taken into account. Nevertheless, patient
data can provide more insights into the decisions taken by doctors to provide certain
drugs or diagnoses, which can justify deviations from the guidelines. A visual explo-
ration of this process data in combination with patient data can alleviate these limita-
tions and provide the users with more detailed insights into the processes running at
hospitals, and how they relate to patient data.

3. How can we support the usage of machine learning in a real-world, clinical setting?
When a machine learning model has been fully developed and is ready to be used
in a real-world setting, the users of these models are left to simply trust the output of
the model to a certain degree. Such trust is based on two factors: previous knowl-
edge of the model (e.g., performance evaluation) and the probabilities produced by
the model. However, often models are not perfect and can struggle to classify diffi-
cult cases and yet output relatively high confidence values. In medical settings, it is
utterly necessary to ensure the correctness of the outputs of themodel, especially if di-
agnoses are influenced by these outputs. Therefore, the challenge resides in enabling
an efficient exploratory process through a sheer amount of data to find potential mis-
classifications such that experts can ensure the correctness of the outputs produced by
machine learning models without losing the benefits of automation.

4. How can we evaluate the performance of a machine learning model for different groups
of patients? The performances of machine learning models vary greatly depending on
the problem addressed, the data used during training and the architecture of themodel
itself. In the medical domain, these models can be applied to patients with underlying
physiological differences such as age, sex, medical conditions, etc. This makes the
analysis of the performance muchmore complex, as the variation in patients has to be
taken into account to make proper assessments. Visual analytics can be the means to
address this problem.

1.3Outline & Contributions

This thesis addresses the needs for analyzing and improving workflows in the medical do-
main. This is done by looking at the research question from twoperspectives, namely process-
centric andmachine learning approaches (see Figure 1.1). In the process-centric approaches,
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the aim is to analyze medical workflows to gain insights. That can be used to refine work-
flows to guarantee certain desirable properties. In addition, process-centric approaches can
be used to verify whether daily work in a hospital conforms to or deviates from a guideline.
Machine learning approaches are used to automate certain tasks in themedical domain. This
thesis focuses on sleep staging, where classifiers are used to score the sleep of persons. Sleep
staging is chosen because of the industrial partners involved in this project. Nevertheless,
our research can be generalized to other domains that share features with sleep staging (e.g.,
sequential data, health-related and physiological signals).
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Figure1.1: Overviewof the structureof this dissertation. It is divided into twomain categories: process-centric
andmachine learning approaches.

Research areas that are relevant to our research question include visualization, process min-
ing, machine learning, healthcare and sleep staging. Chapter 2 presents an overview of these
fields and related work.

In the first part of this dissertation, we present process-centric techniques. Soundness is a
desirable property in process models. Determining whether a process model is sound can be
done automatically with computation. However, understanding why a model is not sound is
a challenging task that involves complex exploration. In chapter 3 we present a novelmethod
to explore the soundness of process models in the form of Petri nets.

Deviations from guidelines occurring in hospitals are important to verify flaws in the design
of workflows. Conformance checking is an automatic method to compute such deviations.
Although this automated technique is informative, it remains difficult to explore the deviat-
ing cases. To this end, chapter 4 presents amethod that combines processmining techniques
and visualization. It enables the exploration of the outputs of conformance checking algo-
rithms to verify whether guidelines and daily work match.

The second part of this dissertation focuses onmachine learning techniques to improve spe-
cific tasks of workflows. In particular, we focus on sleep staging, which is the process of
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scoring the sleep stages of patients during their sleep. This task can be automated utilizing
machine learning models. However, this automation also brings new challenges. In chap-
ter 5 we present the first visual analytics system to help to findmisclassifications in a ground-
truth free scenario in sleep staging. We also discuss the generalization of our approach to
other domains.

The approach presented in chapter 5 utilizes saliency maps. These are used to visualize the
parts of the input data that are important for the model to make a prediction. We study
the effect of different perturbations in the input data for the generation of saliency maps in
chapter 6.

When a classifier is used in a real-life scenario, especially in the medical domain, it is impor-
tant to ensure that its users understand how the model behaves. This is especially important
in sleep staging, where the temporal nature of the data poses new challenges that are difficult
to address with traditional approaches. To this end, we present a visual analytics system in
chapter 7 to assess the performance of sleep staging classifiers.

In chapter 8 we summarize the major findings from chapters 3 to 7 and answer the research
question based on these findings. In addition, we provide directions for future work.

1.4 Publications

Publications in scientific conference proceedings and journals:

• Garcia Caballero, H. S., Westenberg, M. A., Verbeek, H. M. W., and van der Aalst, W. M. P.
Visual analytics for soundness verification of process models. In Business Process Management
Workshops (Cham, 2018), E. Teniente andM.Weidlich, Eds., Springer International Publishing,
pp. 744–756 [53].
This publication serves as core material for chapter 3.

• Garcia Caballero, H. S., Corvò, A., Dixit, P. M., and Westenberg, M. A. Visual analytics for
evaluating clinical pathways. In 2017 IEEEWorkshop on Visual Analytics in Healthcare (VAHC)
(2017), pp. 39–46 [50].
This publication serves as core material for chapter 4.

• Garcia Caballero, H. S., Westenberg, M. A., Gebre, B., and vanWijk, J. J. V-awake: A visual
analytics approach for correcting sleep predictions from deep learningmodels. vol. 38, pp. 1–12
[52]. (Honorable Mention Award).
This publication serves as core material for chapter 5.

• Garcia Caballero, H. S.,Westenberg,M. A., andGebre, B. Explainability for one dimensional
temporal inputs of deep learning models. Demo at the 1st Workshop on Visualization for AI
explainability (VISxAI) (2018). Online publication [51].
This publication serves as core material for chapter 6.

• Garcia Caballero, H. S., Corvo, A., van Meulen, F., Fonseca, P., Overeem, S., van Wijk, J. J.,
and Westenberg, M. A. Persleep: A visual analytics approach for performance assessment of
sleep staging models. In Eurographics Workshop on Visual Computing for Biology andMedicine,
VCBM 2021 (2021), The Eurographics Association [49]. (Honorable Mention Award).
This publication serves as core material for chapter 7.
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Publications to which I contributed during my PhD but that are not included in the disser-
tation:

• Dixit, P. M., Garcia Caballero, H. S., A., C., Hompes, B. F. A., Buijs, J. C. A. M., and van der
Aalst, W. Enabling interactive process analysis with process mining and visual analytics. In
Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and
Technologies - Volume 5: ACP, (BIOSTEC 2017) (2017), INSTICC, SciTePress, pp. 573–584 [39].

• Corvò, A., Garcia Caballero, H. S., and Westenberg, M. A. Survivis: Visual analytics for in-
teractive survival analysis. In 10th International EuroVis Workshop on Visual Analytics, Eu-
roVA@EuroVis 2019, June 3, 2019, Porto, Portugal (2019), Eurographics Association, pp. 73–77
[30].

• Corvò, A., Garcia Caballero, H. S.,Westenberg, M. A., vanDriel, M. A., and vanWijk, J. Vi-
sual analytics for hypothesis-driven exploration in computational pathology. IEEE Transactions
on Visualization and Computer Graphics (2020), 1–1. Early access [31].
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Background

In this chapter, background information is provided on the concepts discussed in this disserta-
tion. We start by describing medical workflows and the main users, tasks and problems that we
consider in this dissertation. We then elaborate on the topic of optimizing medical workflows
and describe process mining, machine learning and sleep staging. We next introduce the fields
of visualization and visual analytics. Finally, we discuss the role of visualization in process
mining and sleep staging.
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2.1 Introduction

T his dissertation addresses the analysis of medical workflows from two different perspec-
tives: process-centric and machine learning. To provide the reader the necessary back-

ground information, we first introduce the topic of optimizing medical workflows where
process-centric and machine learning perspectives are discussed. Next, we introduce data
visualization and visual analytics and present the role of visual analytics in these disciplines.
Further details, as well as related work about specific background concepts, are provided in
the corresponding background sections in the following chapters of this dissertation.

2.2Medical Workflows

Workflows are made of several tasks that are usually executed by people and involve re-
sources. The ultimate aim of a workflow is to produce an output or to achieve a goal within
an organization, for instance, a company, hospital or department. Medical workflows, in
particular, focus on delivering a certain benefit to patients: treatments, diagnoses, labora-
tory tests, etc. They target the welfare of patients and pursue their recovery. For this reason,
workflows and the tasks they involve play a fundamental role in healthcare.

2.2.1 Users, Tasks and Problems

The analysis of workflows enables experts to investigate design flaws and optimize certain
tasks that are performed within workflows. In this section, we provide some examples of
experts that can benefit from interactive visualizations in those domains.

Process mining expert
Processes must be reliable and predictable. Although the definition of a process is static,
the behavior it can generate is certainly not. When process mining experts design or mine
process models, they want to ensure certain properties. Due to the dynamics in the behavior
of the model, it is challenging to explore and assess these properties in a traditional manner.

Healthcare workflow analyst
Workflows running in a healthcare setting are dynamic, complex andmultidisciplinary. Im-
proving workflows in healthcare may impact the quality of life of patients [137]. One possi-
bility of improvement is conformance checking. Assessing how process models match real
behavior can provide valuable insights to analysts. This can be useful, for instance, to verify
how hospitals adhere to internal and external guidelines and protocols, find deviating behav-
iors and contextualize them. Visualization can facilitate the exploration of the conformance
checking to be more effective and efficient.

Sleep staging technician
Sleep staging can benefit from automated techniques to speed up the whole process. This
automation requires supervision from technicians to ensure the correctness of the results of
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sleep staging. If the entire output space needs to be verified, the benefit introduced by au-
tomation vanishes. However, enabling an efficient exploration of the data in a ground-truth
free context is a challenging problem. Visualization can alleviate this exploration through
coordinated views and user interaction.

Machine Learning Expert in Sleep Staging
Machine learning experts need to validate the models they create for sleep staging. They
usually rely on traditional metrics like predictive accuracy or kappa value to assess how the
model performs overall. Sleep staging, however, poses certain challenges that cannot be cap-
tured with individual metrics. For instance, sleep fragmentation can happen at any time of
the night. Thus, calculating a global metric depicting the sleep fragmentation would not be
sufficient to determine whether a model is recognizing this characteristic correctly at differ-
ent moments of the night. Moreover, models in sleep staging are applied to a wide variety of
patients with different characteristics. Visualization can mediate in the assessment process
to get insights into the ML model, for instance, to check if the model responds equally well
for different types of patients.

2.3Workflow Analytics: Optimizing Medical Workflows

The analysis of workflows can become difficult due to the sheer size of tasks, and a large
number of connections between these. For this reason, interactive visualizations may not
suffice to provide insights. Supporting the analysis with automated techniques can help users
to make sense out of their workflow models.

Optimizing medical workflows can be achieved in two different ways: improving the work-
flow as a whole, and optimizing some key tasks. In this section, we will address these two
different paths by explaining process-centric techniques that can be used to improve the
workflow as a whole, and machine learning approaches to optimize specific tasks.

2.3.1 Process-Centric Perspective

In the last decades, there has been a significant shift from data-centered to process-centered
systems [173]. In this context, process mining has gained interest regarding information
systems. In these systems, information is extracted from event logs to perform process mon-
itoring and improvement [174]. Such event logs are usually generated by information sys-
tems such as Enterprise Resource Planning (ERP) and Customer Relationship Management
(CRM) systems in particular, and any transactional database that stores events in general.
The collection of methods and algorithms that can mine and analyze workflows out of event
logs is known as process mining.

Workflows can be defined in different formats, being token-based semantics one of the most
common notations [174]. In this regard, Petri nets [125] have gained much traction because
of their formal definition, which enables formal proof of desirable properties; the ability to
model concurrency, which is a fundamental part of processes; and the availability of many
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analysis techniques, which allow experts to, for instance, align modeled and observed be-
havior. In general, a Petri net can be defined as a bipartite graph composed of places and
transitions. Although its structure (syntax) is static, behavior (semantics) can be dynamic.
The semantics of a Petri net can be described with tokens and the way they flow through the
model. In general, places contain zero or more tokens, and transitions consume one or more
tokens. These represent the building blocks of Petri nets.

Certain properties are desirable in Petri nets. For an organization, it is vital to ensure the
correctness, effectiveness, and efficiency of a business process. In particular, soundness [2],
which is a notion of correctness, is a desirable property when designing a workflow using
Petri nets. When a Petri net is sound, the following criteria are met:

• Starting from the initial place, it is always possible to reach a final state with only one
token in the places that represent final states;

• when a final state is reached, the other places are empty; and

• the Petri net contains no dead transitions, i.e., transitions that cannot be executed at a
certain state.

The first requirement indicates that a final state is always reachable, which prevents livelocks.
Sadiq andOrlowska [140]were among the first in stating thatmodelingworkflows could lead
to deadlocks and livelocks. Essentially, livelocks can occur when the semantics of a model
allow for behavior that can end up in an infinite loop. The second requirement refers to the
so-called proper termination [57], which is considered a desirable property for models to
properly operate. Finally, the last criterion avoids cases in which a certain transition cannot
be executed.

In a healthcare setting, process models are used to model the desired flow of work and the
medical protocols [98]. Figure 2.1 shows a simple example of a process model as a Petri net.
The guidelines and protocols from a hospital can be modeled using such process models. It
should be noted that alongside sequences, most of the process modeling notations allow for
rich behavioral aspects, such as choice in between multiple activities, concurrent execution
of activities, repetition of a particular fragment in a model, etc.

When a workflow is deployed for usage in a certain institution, it is desirable to assess how
well it fits the actual work done in such an institution. Conformance analysis [172] essentially
projects an event log onto a process model to help find deviating behaviors, that is, workflow
paths that do not align with the processmodel. More specifically, conformance analysis finds
a path from start to end in the process model that best describes a case from the event log
by using a cost function. It also provides insights into how well an event log fits a particular
process model, and how and where the process deviates from the protocols/guidelines in
place. Next to this, alignments can also be used to investigate the possible bottlenecks in
the process. For each event in the event log, the following three possibilities can arise (see
possible alignments in Figure 2.1):

Synchronous move Occurrence of an event in a trace that is allowed by the current state of
the model. The state of the process is given by the execution of previous events in a
trace.
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Figure 2.1: A simple process model in a hospital setting and a set of possible alignments. The first step in the
process is Admission, followed by either Diagnosis 1, or Diagnosis 2. Diagnosis is followed by both Treatment
1 and Treatment 2, which can occur in any order.

Log move Occurrence of an event in the trace that is not allowed by the current state of
the process. The second trace in Figure 2.1 contains a log move because diagnosis
2 happens in the trace although it is not allowed by the model (only diagnosis 1 or
diagnosis 2 can happen, but not both.

Model move The current state of the process cannot continue with the event that is being
treated in the trace. The second trace in Figure 2.1 starts with a model move since
the model requires to begin with admission activity. However, this activity is missing
in that trace. Similarly, the third trace contains two model moves at the end, because
both treatment 1 and treatment 2 are mandatory (notice that they can happen in any
order).

2.3.2Machine Learning Perspective

Machine Learning (ML) has gained much traction in the last decade due to huge advance-
ments in the field. Essentially, ML is about defining algorithms that can learn new concepts,
models or abstractions. Through a training process, the algorithm builds a model based on
patterns discovered within the data. When the training process is finished, the built model
can be used to predict or classify new data instances.

One technique that has remarkably progressed in the last years are neural networks, and es-
pecially Deep Learning [143] (DL).This technique tries to mimic the behavior of the human
brain where interconnected neurons react to input signals to produce an output. Similarly,
neural networks use layers of neurons that interact with the input data to generate an out-
put. Research by Rumelhart et al. [138] revealed how large numbers of layers can be trained,
which led to the success of DL nowadays. The output of thesemodels is usually in the form of
a vector of probabilities, where each probability indicates the likelihood of the input data of
being of a certain class. In most cases, the maximum probability is taken as the final output
of the model. Figure 2.2 shows a depiction of a neural network.
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Layer 1 Layer 2 Layer 3 OutputInput Layer 4

Figure 2.2: Depiction of a neural network. Each layer contains a set of nodes that are connected to nodes in
the previous and next layers. The first layer represents the input data, while the last layer produces the output,
which is usually a class.

ML techniques can speed up certain tasks, improving medical workflows. For instance, it
may be used to help clinicians in detecting certain objects in radiology scans, tomography
images or colonoscopy videos [5, 33, 68, 150, 169].

2.3.3 Sleep Staging

Sleep is a natural process common to a broad variety of species [20] such as mammals, birds,
reptiles, insects, etc. Although it is an ancient process linked to our daily behavior, it was not
until the 18th century when scientists started to wonder about sleep and its effects on health.
One of the first scientists who studied the periodicity of sleep in plants was Jean-Jacques
d’Ortous de Mairan. In his study from 1729, he demonstrated the existence of circadian
rhythms in plants by looking into the folding and spreading of the leaves [202]. This raised
interest in sleep behavior in humans. In 1912 Henri Piéron [129] published one of the first
books that treated the health-related issues of sleep. Twelve years later, Hans Berger invented
electroencephalography (EEG), which was presented in 1929 [13]. The EEGwas invented to
measure cerebral physiology, especially focusing on mental diseases [157]. Figure 2.3 shows
examples of different types of brain waves and patterns that can be found in EEGs.

Polysomnograms, which derives fromGreek and Latin (poly, many; somnus, sleep; gramma,
drawing or diagram), are used to monitor several functions of the human body during sleep
[70]. Among others, in a polysomnogram we can find the following elements:

• Electroencephalographymeasures brain activity.

• Electrooculogram records eye movements.

• Electromyogram registers muscle activity.

• Electrocardiogram records heart rate.

• A respiratory monitormeasures the respiratory effort.
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Figure 2.3: Examples of EEG waves. Time and amplitude scales are different in each example.

When a patient is believed to be suffering from a sleep disorder, polysomnography (PSG) is
often done. PSGs represent an objective method to deliver diagnosis regarding sleep disor-
ders [120]. The PSG is, therefore, usually combined with the clinical history of the patient to
make an informed prognosis. The result of a PSG is a polysomnogram. The measurements
done in a PSG are used to assess the sleep structure of the patient. Afterward, the PSG is
evaluated and annotated on an epoch-by-epoch basis. Epochs represent a time-fixed period
of the night (typically 30 seconds duration), which can then be analyzed by technicians to
assign a sleep stage. The process of assigning sleep stages to epochs is called sleep staging.
The first approach to standardizing the scoring of sleep was proposed by Allan Rechtschaf-
fen and Anthony Kales in 1968 [134], where sleep was scored epoch-by-epoch as one of
seven discrete categories (awake, stage 1, stage 2, stage 3, stage 4, stage REM, and movement
time). This standard proved to be useful in many cases. However, it was criticized for being
too subjective, resulting in high variability in the evaluation of sleep stages, and for being
designed mainly for healthy adults [113].

In 2007, the American Academy of Sleep Medicine (AASM) introduced a new standard.
The AASMmanual included more detailed information for the scoring of sleep, leaving less
room for interpretation and thus addressing the main drawback of the previous standard.
The AASM manual defined five disjoint sleep stages [119]: Wakefulness, N1, N2, N3 and
REM. These sleep stages are characterized by specific physiological properties, which are
based on consensus criteria. Figure 2.3 depicts some characteristics that can be observed in
the EEG signals of a PSG.Wakefulness with the eyes closed is usually characterized by alpha
waves (8-13Hz) in the EEG produced by the occipital lobe of the brain, while sleep stage N1
often presents theta waves (4-7Hz). Other stages are characterized by interactions of mul-
tiple physiological stimuli that result in the presence of EEG phenomena like k-complexes,
spindles, or sawtooth-like waves.

The sequence of annotated sleep stages during sleep is visually represented by a hypnogram.
Hypnograms are analyzed by somnologists to understand the sleep pattern of a patient.
Therefore, they are considered the de facto visual representation of sleep stages. An example
of a normal hypnogram (i.e., common behavior among healthy subjects) is shown in Fig-
ure 2.4a. As we can see, the sleep progresses over the night transitioning between different
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(a) Hypnogram of a normal sleep where non-REM stages aremore frequent in the first half of the night, whereas in the second
half of the night REM sleep is more frequent [62].
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(b) Abnormal hypnogram. We can see the sleep fragmentation in the transitions happening between REM and N1.

Figure 2.4: Two examples of hypnograms, where (a) represents a normal sleep behavior and (b) depicts ab-
normal behavior.

stages. From this visual depiction, new insights can be extracted. For instance, we can ob-
serve that the subject follows a normal sleeping cycle (Awake, non-REM, REM).We can also
observe some patterns interrupting this cycle. Three hours after the beginning of the sleep,
the subject woke up a few times. Figure 2.4b depicts an abnormal hypnogram where the
presented sleep pattern is fragmented (i.e., many transitions in a short span).

2.3.4Machine Learning in Sleep Staging

The study of sleep is an important area in medical research. It can reveal disorders, such
as apnea, narcolepsy, parasomnia or hypersomnia, which can also relate to other types of
medical conditions, such as psychiatric disorders, neurodegenerative diseases [193] or car-
diovascular disorders [153]. Therefore, having a good understanding of sleep is crucial to
provide better diagnoses of some diseases.

The current procedure to study sleep patterns in clinical settings consists of several steps.
First, a PSG is performed to record brain signals, eye, chin and legmovements, blood oxygen
level, heart rate and breathing of the patient. After the recordings have been obtained, a PSG
technologist determines sleep stages.

Sleep staging is still a time-consuming and subjective process [91]. Scoring an overnight
PSG can take from 2 to 4 hours with a scoring agreement of 82% on average between experts
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[72]. In the late ’60s, some automated techniques were proposed to score the sleep of hu-
mans from EEG signals [151, 186]. Since then, many other techniques have been proposed
[88, 127, 158, 167, 184]. Other approaches tried to address sleep staging from a different
perspective. Instead of providing a fully automated technique, they involve user interaction
[4, 28]. Despite good predictive accuracy from these models (e.g., 99% [26]), their usage
in medical domains is not yet adopted [27]. This may be due to the lack of trust in models
and their somewhat limited ability to generalize to other populations of patients. The latter
may be overcome with more heterogeneous datasets. The former, however, requires more
sophisticated solutions.

2.4 Visualization

Analyzing raw data is an arduous task on its own due to the lack of explicit relationships
within the data. Increasing the amount of data, therefore, makes such analysis even harder.
Often, in these contexts, statistics are used to gain insights into the raw data. However,
statistics do not tell the whole picture and often lack context.

Visualization conveys insights through visual representations that are used to support spe-
cific tasks for specific users. Sketches, pictures or graphics can be considered forms of visual
representations. In this sense, computers can be used to automatically generate those rep-
resentations from data to gain insights. Tamara Munzner [114] defines this as “Computer-
based visualization systems provide visual representations of datasets designed to help people
carry out tasks more effectively”. A great example of the strength of visualization was pro-
vided by Frank Anscombe [9]. In his work, four simple examples were provided showing
that statistically equivalent datasets can still have completely different properties. In Fig-
ure 2.5 we can see Anscombe’s example. Once they are visualized, it becomes immediately
clear that these datasets have different characteristics, and shows that combining statistical
analysis with visualization can provide valuable insights into the data.

Visualization exploits the ability of the humanbrain to quickly recognize objects and patterns
in visual inputs. The process of visually recognizing objects or patterns is donemainly in two
phases. In the first phase, pre-attentive processing [165] is donewhere objects are perceived in
parallel. This processing does not require much effort and the whole image can be observed
in one go. In contrast, the second phase requires more focus since objects detected in the
first phase have to be viewed sequentially.

Data visualization can be used to interpret data. In this sense, two goals can be defined: ex-
ploration and presentation. In the former, the user of the visualization does not know where
to look for answers where the latter aims to communicate the answers. Therefore, data pre-
sentation is used to help people to communicate results. In this dissertation we focus on data
exploration.

Iliinsky et al. [71] indicate data exploration is suitable “when you have a whole bunch of data
and you’re not sure what’s in it”. Therefore, exploratory analysis is needed where answers to
some questions may trigger new questions, resulting in discovering nontrivial insights [78].
This type of analysis usually involves interaction as defined in the model of Card et al. [21].
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Figure 2.5: Anscombe’s illustration [9] of four different datasets which share the same statistical character-
istics. In contrast, their visualizations are different, revealing insights that would remain hidden with plain
statistics.

Figure 2.6 shows a depiction of their model. As can be seen, interaction can be applied at
different stages of the model modifying the transformations or mappings that are involved.
Themodel beginswith a data transformation step that filters and aggregates the rawdata such
that only the information needed for the analysis is kept. After this transformation, visual
encodings to visually represent the data are determined. Lastly, the visual representations
are presented in the display by applying certain transformations like zoom, distortions, etc.

Raw
Data

Data
Tables

Visual
Structures Views

Data
Transformations

Visual
Mappings

View
Transformations

Human Interaction

Data Visual Form

Figure 2.6: Visualization model proposed by Card et al [21]. The process involves two high-level steps: data
transformation and visual transformations, which can be altered by human interaction.

Interaction can be divided into subcategories in a data exploration process. According to Yi
et al. [195], interaction can be classified based on the intent of the user as:

• Select: mark something as interesting. This interaction is usually coupled with other
interaction techniques and it seems to work as a preceding action to subsequent ac-
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tions.

• Explore: show me something else (e.g., panning). Explore interaction is important
due to the limitations of available space in the display or perceptual and cognitive
capacities of the human brain to process information. Through explore interaction,
new data items can be shown.

• Reconfigure: show me a different arrangement (e.g., jitter). Revealing hidden charac-
teristics of the data is crucial in data exploration. This can be achieved by changing
the spatial arrangement of the items visualized. Moreover, this interaction can also be
used to reduce occlusion.

• Encode: show me a different representation. Changing the mapping of data to visual
appearance, using features such as color, size, etc. serves an important role as it can
affect the pre-attentive perception. Interactivity is key to find a proper visual encoding
for the data.

• Abstract/Elaborate: show me more or less detail (e.g., zooming). Adjusting the level
of abstraction plays an important role in how the data is perceived. This interaction
aligns with the visualization mantra of Shneiderman [146]: overview first, zoom and
filter, then details-on-demand.

• Filter: show me something conditionally (e.g., dynamic query). Filter interaction is
used for the user to specify certain criteria that changes the set of data items being
presented. Usually, the actual data remains unchanged and can be recovered when
the filter is reset.

• Connect: show me related items (e.g., brushing). This interaction concerns highlight-
ing relationships and showing hidden data items that are connected to certain data of
interest.

2.5 Visual Analytics

The previous section introduced data visualization and its main characteristics. Data visu-
alization can be subdivided into the following categories [188]: information visualization
[155] and scientific visualization [63]. Information visualization is used to analyze abstract
data with no direct geometric meaning, scientific visualization focuses on visualization tech-
niques for data that describe physical phenomena.

Both types of data visualization work with an amount of data that is manageable by tradi-
tional visual and interaction techniques. Sometimes, these techniques are not enough due to
the large size and complexity of datasets. Visual analytics combines analysis techniques such
as statistical models, machine learning, etc. with interactive visualization to assist analysts
in understanding large and complex datasets [79].

Visual analytics can be defined as the science of analytical reasoning facilitated by interactive
visual interfaces [29]. Keim et al. [76] defined the goal of visual analytics as to “gain insight
in the problem at hand which is described by vast amounts of scientific, forensic or business
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Figure 2.7: Visual Analytics approach depiction by Keim et al. [76, 77]. Data flows into both ML model and vi-
sualization system. Interactions occur between both, aswell as themselves individually, to provide knowledge
that can ultimately give feedback to the initial process.

data from heterogeneous sources. To reach this goal, visual analytics combines the strengths of
machines with those of humans”. Figure 2.7 shows the data flow of a typical visual analytics
system. Data flows into both the model and the visualization system. Synergies can occur
triggered by human interaction, which results in knowledge that is used to feedback the
process, iterating while necessary.

2.6 Visualization in Process Mining

Most work done in process mining does not involve visualization at all. However, in certain
situations visualization canplay an important role to communicate results. ProM[177] is one
of the best-known frameworks in process mining. It includes a wide variety of techniques
to mine and analyze process models. A suitable example of how visualization is utilized
in ProM to analyze events is the Dotted Chart [154]. Figure 2.8 shows a screenshot of the
Dotted Chart applied to an event log for a road traffic fine management process [101]. We
can notice, for example, the green vertical stripes, which happen in batches. These events
correspond with credit collection, which usually is done in batches. As can be seen, this
visual representation can be used to explore the event sequences and gain insights.

A common characteristic among process mining solutions is the ability to visualize node-
link graphs. Generally, these graphs depict the process model being analyzed. For instance,
Disco [59] presents the process model as a set of nodes and paths connecting these nodes.
The model is mined using a fuzzy miner [60], which is meant to avoid spaghetti-likemodels.
Furthermore, Disco provides more visual interactions to help the user make sense of the
data contained in an event log. Figure 2.9 shows the statistics view where information about
events is presented in different views.



Background

2

21

Figure 2.8: Example of the dotted chart [154] generated by the author using ProM [177]. The horizontal axis
depicts time, the vertical axis indicates cases and each dot represents an event. Dots are colored accordingly
to depict event names. A fewoptions are provided on the left panel tomodify the visual encodings of the chart.

Finally, other business software uses more advanced concepts of data visualization where
multiple dashboards are presented to the user to better understand their processes. UiPath
Process Mining [168] combines multiple views to gain insights into the events contained
in an event log. It also enables the user to make changes directly on the process model,
providing real-time statistics on performance gain. Figure 2.10 shows a screenshot of their
system. We can see that the model depicts the main view. This view can be manipulated to
show or hide detailed information. Colors are used to highlight the most often occurring
events, while spatial location is used to depict the most common path in the process model.

2.7 Visualization in Sleep Staging

Sleep staging is a task in which technicians score the sleep of a patient by visually inspecting
different EEG signals. The vast majority of systems present the EEG signals as line charts.
Alternatively, other systems also include video recordings of sleep. Both EEG and video are
visualized together. This can help the technician to detect certain situations like movements,
snores, etc.

Recently, more work has been done in semi-automating sleep scoring. Semi-automated
methods complement traditional approaches by detecting certain features in the input data
and showing them to the technician. For instance, the work of Combrisson et al. [28] pro-
vides a visual system where EEG features (see Figure 2.3) are automatically detected. Such
features are color-codedwithin the line charts. Figure 2.11 shows a screenshot showing some
detected features.
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Figure 2.9: Screenshot of the statistics view of Disco [59] generated by the author. The top view features an
area chart where the number of events is shown over time. The bottom view shows a table where informa-
tion per case is displayed. The table uses vertical bar charts to ease comparisons between cases for certain
attributes like number of events and duration.

Figure 2.10: Screenshot of UiPath ProcessMining [168] taken from [168]. The processmodel is displayed front
and center. Below the model, some controls are provided to alter the detail of the displayed model. On the
right several views feature bar charts and line charts to display information regarding cases, activities, etc.

2.8 Conclusions

Workflows can be very complex and their tasks can be time-consuming. Analyzing and
understanding medical workflows can benefit both patients and practitioners in improv-
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Figure 2.11: Example of semi-automated sleep staging (taken from [28]). EEG features such as spindles, k-
complexes, etc. are highlighted in the EGG being visualized to support the user.

ing medical guidelines or reducing the time that certain tasks require. Regarding workflow
analysis, current techniques do not enable users to explore the dynamics of models (e.g.,
soundness property), or combine process-centric approaches with clinical data. This limits
the analysis that can be performed. Within a workflow, certain tasks can be optimized by
the usage of machine learning. However, this poses new challenges, such as validation of the
output data or the performance of the models employed. Visualization can address these
problems providing users with new ways to analyze and cope with their workflows and ma-
chine learning models. How to effectively apply visualization in these domains remains an
open question that will be addressed in the following chapters of this dissertation.





333

3
Soundness Analysis in Petri nets

Soundness validation of process models is a complex task for process modelers due to all the
factors that must be taken into account. Although there are tools to verify this property, they do
not provide users with easy information on where soundness starts breaking and under which
conditions. Providing insights such as states in which problems occur, involved activities, or
paths leading to those states, is crucial for process modelers to better understand why the model
is not sound. In this chapter, we address the problem of validating the soundness property of a
processmodel by using a novel visual approach and a new tool called PSVis (Petri net Soundness
Visualization) supporting this approach. The PSVis tool aims to guide expert users through the
process models in order to get insights into the problems that cause the process to be unsound.

The contents of this chapter have previously appeared in Garcia Caballero, H. S., Westen-
berg, M. A., Verbeek, H. M.W., and van der Aalst, W.M. P. Visual analytics for soundness
verification of process models. In Business Process Management Workshops (Cham, 2018),
E. Teniente and M. Weidlich, Eds., Springer International Publishing, pp. 744–756 [53].
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3.1 Introduction

T he use of processmodels forworkflows has been studied for some decades now. It started
back in 1979 with the work of Skip Ellis on office automation [41]. Still, it took two

decades until notions such as workflow nets and soundness were defined [1] thus linking
workflows to Petri nets. As a result of this link, a lot of existing Petri net theory (like [37, 115,
124, 135]) became instantly applicable to the workflow processmodel domain. Nevertheless,
some other approaches to the verification of these models also still emerged, in which was
used [139] another graph-like notation for processes in combination with dedicated graph
reduction rules.

The application of Petri nets to the workflow domain [2, 3, 106] triggered a new line of re-
search focussing on the soundness verification tool Woflan [182], different variations on
soundness [34, 180], and extensions to the Petri net formalism (like EPCs [105, 178, 179],
BPEL [121], and YAWL [183, 194]). Verbeek et al. [182] also introduced the concepts of the
problematic runs (called sequences in that paper), which are used in this chapter.

None of these approaches offered a comprehensive visualization of the problems using the
process model of choice (YAWL, EPC, Petri net, etc.). For instance, the Woflan tool did not
visualize the Petri net it was checking soundness on, but just showed a series ofmessages that
included the labels of the nodes in the net. Nevertheless, the Woflan tool was later included
in the process mining framework ProM [175, 179], which did allow this net to be visualized.
As a result of this inclusion, selected markings (like deadlock markings) could be visualized
by projecting themonto the net, and other Petri-net-related properties (like invariants) could
also be visualized. However, such visualization means are still limited and users struggle to
diagnose real problems.

This Chapter takes this initial and rudimentary visualization of soundness problems in ProM
some steps further by focusing on the visualization. Also, whereasWoflan requires a unique
final marking (which should be reached to achieve success in the workflow), the approach in
this chapter allows for any collection of such final markings. By visualizing any problem that
prevents the workflow from reaching any of these final markings, the user is guided towards
correcting the root cause of these problems.

The concept of runs as shown by the visualization is known in the Petri net field and origi-
nates fromDesel [36]. An example tool that supports these runs is VipTool [12, 38]. VipTool
can provide the user with information on whether a given scenario (say, a partial trace) fits
the Petri net at hand. In this chapter, we assume that such a partial trace fits the net. If not,
we can use alignments to find the closest path in the model [172]. This is not supported by
the VipTool, but is supported by ProM. We are more interested in visualizing the execution
of the fitting partial trace in the net. Apart from this, VipTool can also synthesize a Petri net
from a collection of scenarios. This connects VipTool to the field of process mining [175],
which is the natural habitat of ProM. However, we do not use that feature of the tool.

PSVis (Petri net Soundness Visualization) is a tool to spot problems in Petri nets through
visualization. The tool aims at guiding expert users through the processmodels to get insight
into the problems that cause the process model to be unsound.
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3.2 Problem Definition

In this section, we give definitions of the core concepts that our visualization tool needs to
handle. We define the problem that we address and present a set of tasks. We designed our
visualization tool accordingly.

3.2.1 Problem Analysis

Process modelers tend to ensure the soundness property of the process models. However,
it is fairly easy to break this property with only a small number of changes on the model.
In addition, models which are derived by discovery algorithms do not always ensure this
property. Well-known miners like the Alpha-miner and the Heuristic-miner often produce
models that are not sound (e.g., have deadlocks).

Because of the dynamic nature of the behavior of the Petri nets, understanding where the
problems occur and the context in which they happen plays a key role for process modelers.

In order to address this problem, we define the following tasks, which form the design basis
of our tool:

T1 Obtain an overview of all or a subset of final states of a Petri net.

T2 Compare disjoint sets of transitions and/or places belonging to a specific area.

T3 Find problematic states.

T4 Explore paths that lead to a problematic state.

T5 Determine when the problem occurs for a specific problematic state.

T6 Analyze the runs for a selection of states.

T7 Examine concurrency, loops and causal order in runs.

This set of tasks has been composed in collaboration with experts in the area of process
mining and Petri nets to address the problem of soundness validation. To support these
tasks, we chose appropriate visual encodings and made an interaction design.

3.2.2 Soundness Validation

Weuse an algorithm originally proposed byVerbeek [181] to compute the problematic states
of a given Petri net. The output of the algorithm is used as input in our tool. The algorithm
computes three sets of states, referred to as Orange, Green and Red areas. An abstraction of
the resulting output of this algorithm is shown in Figure 3.1.

In our tool, we focus on the border states, that is, the states which depict a transition from
the Orange area to the either Green or Red area. In Figure 3.1, the border states are linked
by black-dotted arrows. Notice that there may be cases in which the same transition leads to
different areas depending on the source state (e.g., t1 leads to Green and Red areas). These
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states correspond to parts of the Petri net in which everything becomes right (henceforth,
all reachable states areGreen) or everything becomes wrong (henceforth, all reachable states
are Red).

Figure 3.1: Abstract representation of the concept of areas outlined by Verbeek et al. [181]. The state space
is divided into three areas: Orange, Green and Red. Circles and arrows depict states of the state space and
transitions, respectively. Two possible situations can occur in the Red area: deadlocks and livelocks, which are
represented by circles without outgoing arrows and cycles.

The Red area contains all those states from which is not possible to reach any final state.
All reachable states from a Red state are Red states too. Thus, states within this area are
considered as wrong states. On the other hand, the Green area represents those states from
which a final state can always be reached. Similar to the Red states, from a Green state only
Green states can be reached. Lastly, the Orange area comprises states from which some Red,
Green and Orange states can be reached.

Within the Red area, two major problems can be present: deadlocks and livelocks. In Fig-
ure 3.1, two problems are indicated with circles. Deadlocks occur when a state from which
no transition can be fired is reached, and it is not a final state. This can be seen in Figure 3.1
as the state has no outgoing edges, that is, no transition can be fired at that state. Livelocks
happen when a cycle is found, which means that it is possible to iterate between a subset of
states forever.

3.3 PSVis

In this section, we introduce PSVis, its components, and how they interact to execute the
tasks depicted in Section 3.2.1. An overview of all components is given in Figure 3.3. Every
component enables to perform a specific task or a set of tasks.

Our tool assumes that the state space is computable in a reasonable amount of time. If the
state space contains unbounded places, it is infinite in size and cannot be computed. But
even if all places are bounded, the state space may still be too big to be constructed within
a reasonable time [182]. To avoid having to spend unreasonable time in constructing the
state space, our tool uses a threshold that operates on the number of tokens in a state. If
the threshold is set to 𝑏, then only states where every place contains less than 𝑏 tokens are
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expanded. This is related to the notion of 𝑏-boundedness introduced earlier. Thus, if all
places are 𝑏-bounded in a net, then setting the threshold to 𝑏 or higher does not change the
state space. If the threshold is reached at some state, we assume that state is a problematic
one.

3.3.1 Glyphs on the Petri net

In order to support T1 (Obtain an overview of all or a subset of final states of a Petri net),
process modelers need to visualize the number of tokens of a specific place, and the states
that place belongs to. As a result, we introduce glyphs, which decorate places in a Petri net.
Glyphs are visual representations of a piece of the data where visual attributes are dictated
by data attributes [187].

The number of tokens in a place is represented as dot shapes contained in the place, numbers,
or a combination of both. The main problem of this representation arises when we want to
visualize more than one final state at the same time. A final state according to the definition
is a multiset of places. This implies that a specific place can belong to more than one final
state. With the current way of presenting this information, expert users are not able to know
the number of tokens contained inside each place for each state and whether a place belongs
tomore than one state. Therefore, we propose a newway to visually encode this information.
This new encoding is shown in Figure 3.4(b).

In our approach, the state with the highest number of unique places determines the color of
the places. Glyphs are then colored with the remaining states. The initial state constitutes an
exception and the places that belong to it are always colored accordingly. Figure 3.2 shows an
example of howour approachworks. When the user selects State 1, the twoplaces that belong
to it are colored red. Next, the user selects State 2 which has three unique places. Therefore,
all the places are colored blue and two glyphs are created to present State 1. Lastly, when the
user selects the initial state, two places are colored green and glyphs are created to show the
remaining states.

If there ismore than one token in a place, a label is attached to the glyph (or to the place) indi-
cating the number of tokens. This label is colored dynamically depending on the brightness
of the background color. Thus, labels can be colored black or white to make them readable.

3.3.2 Petri Net View

This is the main view of our tool. It presents the Petri net (see Figure 3.3(1)) where circles
and rectangles depict places and transitions. We implement a version of Sugiyama’s approach
[162] to layout the Petri net since it gives a good understanding of the flow of the process.
Some parameters of the layout algorithm can be modified through the toolbar at the top of
the view. In addition, users can perform zooming, panning and dragging of elements directly
on the view. Last but not least, nodes can be hovered to show the label of such elements by
using a tooltip.
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To the right of the Petri net view, there is a panel that shows the initial and final states of the
model. Each state is presented in the tool by two components: a button and a colored rectan-
gle, which are interactive. This component can be seen in Figure 3.4(a). The example shows
one single initial and five final states. Users can (de)select states with this component and
change the assigned colors. When a state is selected, the Petri net view reacts by showing the
current selection of states. Given the fact that a single place can be present in multiple states,
we use a new approach to represent that a place belongs to several states (see Figure 3.2).
This feature directly relates to task T1 (Obtain an overview of all or a subset of final states of
a Petri net).

The top part of this view (Figure 3.3(1.a)) shows two sets of buttons that are dedicated to
performing a quick exploration of the problems that have been detected. These buttons en-
able users to explore places or transitions that belong to just one area. This is useful because
it gives a quick overview of the parts of the Petri net that belong to the Green/Red/Orange
area. In order to do this, users can select what they want to visualize (places/transitions)
and which area they want to explore (Green/Red/Orange). Once the user selects one of these
options, the Petri net view highlights those elements which belong to the selected area. This
feature relates to task T2 (Compare disjoint sets of transitions and/or places belonging to a
specific area).

3.3.3 States View

This component can be seen in more detail in Figure 3.4(c) and it enables the exploration
of the most important problematic states within the state space of the Petri net (T3 (Find
problematic states)). Those states correspond to scenarios in which the process can lead
from an Orange state to either a Green or Red state. This component only shows the border
cases, which are derived from the relevant transitions of the state space (see Figure 3.1).

Our approach uses a two-level tree to visualize the different states in which the net experi-
ences a problem. The first indicates the states in which anOrange-to-Red orOrange-to-Green

Figure3.2: Assignmentof colors toplaceswhenselecting states. Fromleft to right, theevolutionof thecoloring
of the places when a user selects states is shown. Glyphs decorating the places of the Petri net are created on
demand.
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Figure 3.4: Examples of the components of our tool: a) component showing the initial and final states and
their colors; b) four different final states that involve the same place; d) component showing a problematic
state fromwhich we can reach four different types of problems depending on the transition we fire.

scenario was found, and the second level indicates the transition that is involved in the de-
tected scenarios. For each state, the user can find a variable number of transitions that could
trigger a step in the state space leading from an Orange state to a Green state, or a Red state
in which two situations can ultimately happen: deadlock or livelock. This part relates to T5
(Determine when the problem occurs for a specific problematic state) since they showwhere
(state and transition) problems occur.

In some cases, the algorithm that our tool uses detects a problem only because of the thresh-
old that it uses. In those cases, this component indicates that by marking the problematic
state with an asterisk. In this way, users can easily differentiate those states that are always
problematic from those that are problematic because the algorithm did not continue explor-
ing.

We use icons to give a quick overview of the scenarios found by the algorithm. They indicate
the scenario for a specific state (aggregated view) and a specific transition (specific view).
Therefore, the first level of the tree might display multiple icons indicating all the possible
scenarios that can be reached through that state. Seven scenarios are possible: 1) reaching a
Green state; 2) a Red state that eventually leads to a deadlock is reached; 3) a Red state that
eventually leads to a livelock is reached; 4) aRed state fromwhich a deadlock and livelock can
be reached; 5) either aGreen state or aRed deadlocking state can be reached; 6) either aGreen
or a Red livelocking state can be reached; and 7) either aGreen or Red dead/live-locking state
can be reached.

The nodes of the tree can be sorted by three different criteria. By clicking on the corre-
sponding radio buttons, the view sorts the states by the criterion chosen by the user. Thus,
users can sort states by the type of scenario that they represent (eitherGreen or Red) and the
cardinality of the states.

Next to the sorting functions, there is a spinner, which is used to set the threshold used by the
algorithm that computes the state space. By default, this parameter is set to 1. When the user
interacts with the spinner, the tool recomputes the state space, partitions the recomputed
state space into Green, Red and Orange, and recomputes all the relevant information related
to them, such as runs or disjoint sets of states and transitions.

Users can interact with the nodes of the tree to explore the different scenarios. This way, the
nodes can be selected to be displayed in the Petri net view. When a node from the first level
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of the tree is selected, themain view shows all the available scenarios for that specific state by
coloring the nodes of the Petri net that are involved in that specific state. In Figure 3.3 state
{p_ocancel, p4} is selected. The places that define the selected state are colored blue, while
the transitions that can be triggered leading the process to a Green or Red state are colored
green and red.

Once users select a (set of) state(s), it is possible to interact with the main view to explore
the behavior of the net. This is done by enabling users to click on the transitions that have
been colored to show the paths that lead to the selected state, and the final marking reached
by triggering that transition. This feature connects this view and the runs view, which is
described below.

3.3.4 Runs View

This view helps users perform tasks T4 (Explore paths that lead to a problematic state) and
T6 (Analyze the runs for a selection of states). An example is shown in Figure 3.3(3). Runs
are displayed as disconnected graphs, which can be projected as paths in the Petri net view.
When users select a state from the states view, this component shows the runs that lead to
the chosen states. Then, two major interactions are provided: nodes hovering, and path
selection. On the one hand, the first interaction aids users in linking nodes of the runs to
nodes of the Petri net view. On the other hand, the second interaction assists in visualizing
the path that goes from the initial state to the selected state directly on the Petri net.

Through these two interactions, users can detect states that share similar segments of the
path, helping users get insights into the problematic scenarios of the model.

There is a third interaction that links directly with the Petri net view. When the user clicks on
a transition that is involved in the problematic scenario that the user is exploring, the Petri
net view takes the run that leads to the ultimate state reachable from the current state, that
is, a deadlock or livelock, and shows the path. Providing the context in which the process
ends up in a Red state helps the user to understand how the process led to that problem.

3.3.5 Design Decisions

The design decisions made in this work support some basic notions on human perception
[111]. The usage of glyphs to represent the belonging of a place to different states is a natural
way to show that type of information. They are located next to the elements for which they
provide information, and they use a basic color code to show the state that they represent.
We use this notation since it is known that the color is a cognitively effective visual variable
[111]. Also, we use colors to display useful information on top of the Petri net. We consider
this approach to be acceptable since the usage of other ones (e.g., shapes) would probably
interfere with the Petri net notation itself. Even though color representations are a limitation
for our tool, we consider them satisfactory for this work.
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3.3.6 Implementation Details

Our tool is implemented as a plug-inwithin the ProM[177] frameworkusing Java v6. Prefuse
[64] is used to manage the graph structures and the visual properties of the visualization of
the Petri net. The jBPT library [130] for Petri nets is used to compute the runs.

3.4 Use Cases

In this section, we demonstrate how our tool can be used to assess Petri nets. We focus on
two nets, which were designed by students who participated in the study developed in [182].
These nets include information on initial and final states.

The first case exposes an example in which no final state can be reached. Figure 3.5 summa-
rizes this use case. It shows an overview of the Petri net and an area of interest inmore detail.
As can be seen, there are no problematic states in the states view. However, we observe that
some of the places are colored red, which means that this place can contain tokens but that
no final state can be reached from any state in which this place contains tokens, and some
are not colored at all. The latter places do not appear in the state space, which means they
are not reachable since if they were reachable, they would be either colored or present in
the problematic states view. The final state is also not colored, and therefore the process can
never reach the final state. Observe that all three input places of the book_hotel_... transi-
tion can contain tokens, but the single output place cannot. Apparently, not all input places
of this transition can contain tokens at the same time. The source of this problem can be
found in the second place from the left in the overall net, which corresponds to a three-way
choice. If the highlighted path is chosen, then only one of the input places can contain a
token. Otherwise, only the other two can contain tokens.

No
problematic

states!

Uncolored

Three-way choice

Figure 3.5: Screenshots of the usage of the tool for a dataset.

The second use case (Figure 3.6) depicts a Petri net in which several problematic scenarios
have been found. Initially, we proceed by exploring the disjoint sets of places and transitions.
We can easily spot some straightforward paths that lead to the final state as well as some paths
that eventually finish in the Red area (Figure 3.6(a)). Furthermore, we see some places and
transitions that have not been colored. We now focus on those elements to explore what
occurs there. By hovering on some of the places that have not been colored, we can see their
labels. One interesting place is the one labeled as Status7 since it is present in three of the
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problematic states shown in the states view. We pick one of those states to explore the runs
that lead to that problematic state. The tool shows two different runs (see Figure 3.6(a)). By
looking at these, we can see that they share some of the initial steps in the process, but that
they divert at some point. Clicking a run visualizes the paths that those runs represent in
the Petri net. If we compare the two runs in this way, we immediately see that they finish in
the same problematic state, although they followed different paths. We can also see where
the deadlock occurs by clicking on the transition colored red. Figure 3.6(b) shows the two
paths (edges colored blue) for the two runs, as well as the deadlock that is reached (place
colored red). The place colored blue indicates that the tokenmust be consumed by firing the
red transition.

a)

b.1)

Status 7

Status 7

Runs for the net

Status 7

b.2)

Figure 3.6: Screenshots of the usage of the tool for a dataset.

3.5 Conclusion

We have presented PSVis, a tool to visually assess the soundness of a Petri net. We have
formulated the most important analysis tasks, and have demonstrated the usage of our tool
through the exploration of two Petri nets. The first use case showed a simple scenario in
which we discovered why the final state was not reachable. The second use case represented
a more complex example in which more actions were performed. Through different actions,
we observed different aspects of the Petri net such as deadlocks and common paths that lead
to them.
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One of the main limitations of our tool is that it relies on the state space, which cannot
always be computed in a reasonable time. Even though we have some workarounds (setting
a threshold to limit the computation of branches), it may take a considerable amount of time
to finish. We plan to study alternatives to compute the parts of the state space that are used
in the analysis. One option might be to explore the state space incrementally by computing
just portions of it.
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4
Performance and Conformance
Checking for Process Models

Digital platforms in healthcare institutions enable tracking and recording of patient care path-
ways. Besides the Electronic Health Records (EHRs), the event logs from Hospital Information
Systems (HIS) are a very efficient source of information, from a both operational and clinical
point of view. Process mining allows comparison of a patient care pathway with the event log(s)
from HIS, to understand how well the reality as depicted in the event log fits the expectation as
modeled using a care pathway. In this chapter, we present SepVis, a visual analytics tool that
aims to fill the gap in current process-centric applications by looking at patients’ pathways from
a clinical point of view. We demonstrate the utility of SepVis in selected use cases derived by
the guidelines in the management of sepsis patients.

The contents of this chapter have previously appeared in Garcia Caballero, H. S., Corvò,
A., Dixit, P. M., and Westenberg, M. A. Visual analytics for evaluating clinical pathways.
In 2017 IEEE Workshop on Visual Analytics in Healthcare (VAHC) (2017), pp. 39–46 [50].
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Figure 4.1: Overview of SepVis. A visual analytics tool that takes performance and conformance information
from alignments. It provides different views to explore clinical pathways as well as patient-related data. The
data attributes are extracted from an event log. A process model describing a guideline in a hospital setting
and the event log are used to compute the alignments by an algorithm.

4.1 Introduction

A visit of a patient to a hospital results in a certain sequence of activities that are per-
formed by specific resources. Some activities, such as administrative tasks, could be

valid for most of the incoming patients. However, some other activities are specific to a co-
hort of patients, depending on factors such as the type of disease, diagnosis treatment plan,
etc. Generally, a hospital has a well-defined care pathway in place depending on the type of
incoming patient. These patients are the primary actors (cases) of the care pathways, which
inherently consider the essential protocols and/or guidelines.

With the advent of digitization, most of the steps performed, such as registration of ward
activities by clinical personnel, treatment plans and results, logistics and medical decisions,
are well documented in the Hospital Information Systems (HIS) [164]. For a limited num-
ber of patients in a hospital, the data from the information systems can be retrospectively
explored to analyze clinical decisions, deviations from the care pathways, etc. However, the
task of analyzing the data from the HIS in a care pathway setting can be extremely challeng-
ing if the number of patients is large. This is especially the case for a single type of ward
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and/or disease because patients may have different profiles and undergo different versions of
the care pathway. This adds new dimensions, and hence complexity, to the data and makes
the orchestration and integration of data challenging. However, this additional information
also enriches the value of tracked activities in the patients’ flows, by providing additional
attribute information.

One key enabler to the analysis of huge, care pathway-specific data is Process Mining [171].
Traditionally process mining is divided into process discovery and conformance analysis.
Process discovery, as the name suggests, discovers a process (care pathway) model from any
event log, which is typically derived fromHIS or EHRs in a healthcare setting. Conformance
analysis uses a process model and projects an event log on the process model [172]. Con-
formance analysis provides insights into which part of the process fits the data, and which
part does not, thereby giving insights into deviations that occur compared to the expected
behavior. Furthermore, process mining output can also shed light on performance-related
information, such as throughput time of a patient in a care pathway setting, bottlenecks in
the process, slow paths in the process, etc. This information could be used to assess the per-
formances in hospital [145] settings and/or to cut down costs and delays. Root cause analysis
could be performed on the computed process information to investigate the reasons for de-
viations and reasons behind different decisions.

In the analysis of event logs from HIS, most of the current approaches do not consider the
care pathway dimension. Instead, the focus is usually on aligning sequences of variants
guided by sequence mining algorithms. However, such techniques often bypass the impor-
tance of care processes and the clinical protocols and guidelines that are modeled in such
pathways. On the other hand, process mining centered approaches take into account these
models, but the visualization focus is entirely addressed from a process perspective. That is,
the outcome is consolidated and projected on a process model. This makes it difficult to un-
derstand and visualize patterns or cohorts of patients that may exist. By focusing entirely on
the process dimension, other relevant patient attributes that may be important are also not
visualized.

In this chapter, we present our work in progress on SepVis, a visualization tool that aims to
extend the standard visual analytics tools in the healthcare domain with the support of pro-
cess mining techniques. Instead of using traditional sequence alignment techniques, which
do not consider the important care pathway dimension, we use the results from processmin-
ing techniques to layout and visualize the activities of patient flows in accordance with the
clinical model. Furthermore, instead of using a process model, by visualizing the activities
directly, a transparent and direct view on data is provided for the user to interactively explore
and gain valuable insights into the data.

4.2 Related work

In recent years, many applications have been introduced within the visual analytics commu-
nity for the exploration of temporal event sequences and healthcare data. We distinguish
two categories in this domain: sequence alignment-based techniques and process analytic
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based techniques. In this section, we highlight the relevant contributions from the literature
belonging to each category.

4.2.1 Sequence alignment-based techniques

Many techniques in the literature focus on visualizing the alignment of sequences to rep-
resent temporal event data. The initial work in this category provided tools showcasing a
representative description of a single patient record [32, 128]. However, the increasing size
of HIS records has boosted the development of tools with a focus on exploring, querying and
visualizing large population data. Recent advances in this category are applications such as
LifeFlow[191] and OutFlow [190], dedicated to the exploration of event sequences in EHRs.
EventFlow [110] primarily focuses on medical data, but it has been applied across many
domains, e.g. log-analysis, cyber-security, sports analytics, learning analytics and incident
management [109]. In recent work, other visualization approaches for representing path-
ways within a hospital have been investigated. For instance, a tracking graph construction
[189] has been used to describe patient progression over time in an IC unit. Another enabler
in finding patterns in longitudinal clinical data is given by interaction which is effectively
demonstrated in Borland et al. [16].

However, all of these applications rely entirely on the data fromEHRs. These techniques give
a powerful view of the reality, used to visualize sequences using algorithms such as sequence
clustering. However, contrary to our approach, these techniques do not take process-centric
(care-pathway) information into account. Hence, deviations from care-pathwaymodels and
clinical protocols cannot be analyzed.

4.2.2 Process analytic based techniques

Synchronous Move Model Move Only

Variant 1

Variant 2

Figure 4.2: Visualization of alignments in ProM. Patients are grouped by variants. The outputs from confor-
mance checking are visible on the variants as colored arrowheads. However, this view does not include infor-
mation regarding the duration of individual traces, the time between activities and it does not allow the user
to explore the process by activities’ attributes filtering.

Conformance analysis is a well-researched field in the area of process mining, which extracts
valuable information from event logs based on certain processmodels. Among the commer-
cial tools, Celonis [23] provides visual interaction with process-centric data and enables the
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user to define filters according to the available data in the dataset. The processmining frame-
work ProM [177] contains various plug-ins that provide various interesting visualizations of
the results from conformance analysis. Figure 4.2 provides a snapshot of one such visualiza-
tion fromProM. From a visualization perspective, many of the current process analytic tech-
niques project the conformance and performance results directly on a process model. There
are a couple of issues in such a visualization practice. First, the modeling notation used for
representing the processmodel could be non-trivial. Hence, for a user, e.g. a doctor, the pro-
jected information on the process model might be difficult to comprehend. Second, visual
analytics features to investigate and make use of other attributes are often missing. In our
previous work [39], which is implemented as a plugin in ProM, we combined conformance
and performance analysis with interactive visualization of the process model by explicitly
making use of data attributes. However, in SepVis, we aim to make a step forward in the
support of visual analytics techniques, by extending the current visualization from ProM for
conformance and analysis. Instead of interacting with the process models, which could be
difficult to understand to the end-user, the focus in SepVis is on providing a better user ex-
perience for the exploration of variants, traces, and deviations using information from the
conformance analysis techniques, thereby taking into account protocols and guidelines that
form a part of the care pathway. In essence, SepVis combines the visualization of sequence
variants with the capabilities of process mining.

4.3 Dataset and Tasks

For the purposes of this work, we use a dataset obtained by an Enterprise Resource Planning
(ERP) system in the emergency department of a hospital inThe Netherlands [100]. Patients
suspected of sepsis were tracked from the emergency room, where the doctors diagnose the
condition. According to the severity of the disease, indicated by symptoms such as infections,
body temperature, respiratory rate, heart rate and diffuse psyco-physic pain, patients are
administered antibiotics and directed to normal care (NC) units or intensive care (IC) units
[99].

Protocol procedures for sepsis treatment are defined [35], but depending on resources and
availability of staff and wards, the care pathways can still vary in terms of scheduling and
resources.

The dataset comprises 1050 cases described by 15000 events that were recorded for 16 differ-
ent activities. In addition, 39 data attributes were included to enrich the pathways of patients.
These attributes are divided into two groups: lab tests and information from checklists filled
out by nurses. Among the lab tests, we have C-Reactive Protein (CRP), White Blood Cells
(Leukocytes) and Lactic Acid tests. These tests are used by doctors to monitor the status of
sepsis patients. An interesting fact regarding these tests is that they can occur many times
in a single case, and hence our tool has to cope with it. Besides these attributes, we also
have attributes indicating the age of the patient, and boolean attributes signaling conditions
of the patient. These clinical attributes denote whether the patient matches the Systemic In-
flammatory Response Syndrome (SIRS) criteria [10] and organmalfunction, emo-dynamics
and inflammatory parameters, which are used in the sepsis screening triage. Most of these
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attributes were recorded at the emergency room entrance. Next, they are used by doctors to
plan the specific care pathway.

The activities contained in the dataset belong to different categories. Some activities are
related to blood tests, others concern admission to NC or IC units within the hospital and
others relate to administrative tasks etc. Interesting records regarding the administration of
intravenous liquids and intravenous antibiotics are also available.

A set of questions was obtained by interviewing clinicians responsible for the emergency
department [100]. These questions arise when the kind of data described above is available
on the system. Next, we defined a set of requirements that we used for the implementation
and generalization of our tool. Each task is related to specific variables from the process-
point of view:

T1 Patients’ activities are strongly related to patients’ clinical conditions (attributes). Users
want to be able to see processes from a clinical point of view.

T2 Time between activities hints at the observance of protocols or not. Delays in relation
to guidelines indicate the performance of the clinical department.

T3 Evidence for changes in care pathways leads to understanding reasons for mistakes, dif-
ferent clinical decisions or inattentive activity recording. Deviations need to be visible
and clear.

InT1, the clinical staff intends to get an overview of recorded cases from the activity perspec-
tive. These can be the admissions to a specific ward, a sequence of activities, medications,
or laboratory tests. The link between clinical conditions and activities is highly important to
understand decisions within the single care-pathway as, for instance, critical patients who
are expected to be treated promptly according to clinical protocols.

Task T2 is performed to look at performances on wards and execution time between ac-
tivities. In clinical settings, time represents a key aspect and the insight into delays due to
unavailability of resources is decisive in management analysis of life-threatening diseases.

Lastly, T3 is important because clinical procedures in the hospital are susceptible to doctors’
decisions. Groups of patients can deviate from the expected behavior because of doctor
decisions based on demographic information or clinical conditions (e.g., age, blood tests)
that differ from themodel but guaranteed success or seemed reasonable at that point in time.

4.4 Design Decisions

Our system SepVis was developed according to the tasks presented in Section 4.3. In this
section, we discuss our design decisions.
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4.4.1 Icon design

We identified five main categories of activities within our dataset, which we represent by
icons. The categories are administration, tests, ward admissions, treatments, and release/return
actions. The shapes of the icons match the meaning of these categories. For instance, the
icon used to display tests is a test tube, the icon showing treatments is a jar, and so on. This
way, users can easily identify groups of activities, and have an idea what is happening to the
patient.

Color palette. To assign a color to each activity, we offer two different approaches in our
tool. The color palette can be switched easily and the mechanism to do so is explained
in Section 4.5.1. We consider that colors can play an important role in two different
situations. On the one hand, they can help to identify groups of activities without
focusing on the activity itself. On the other, they can be used to spot specific activities
more easily. In the first case, the color palette is divided by categories of activities,
assigning a color to each category and a specific tone of that color to each activity
within the category. In the second case, we use a qualitative scheme of colors. In this
way we allow users to quickly find activities of interest since they all have different
colors. Both color palettes can be seen in Figure 4.3.

Shifting & opaqueness. Because several events can happen at the same point in time caus-
ing overlap of icons, we shift andmake icons opaque. Shifting helps to avoid two icons
from being placed at the same position. In our tool, we apply a small constant shifting
to all icons. In this way, we ensure that no full overlap occurs between two consecutive
icons. On the other hand, opaqueness ensures that the icon placed on top of another
one is always visible. This helps to disambiguate overlapping icons resulting in a better
appreciation of them and their distribution over time.

Border. In some cases, the border of the icons is used to present a special situation such as a
model move. Recall that a model move is a situation in which something should have
happened in reality, but it did not. This is important since it can reflect a missing step
in a process, e.g., the administration of a medicine or the request of a laboratory test.
We use this codification since it does not clutter the view excessively and the model
moves can still be seen.

Administration
Laboratory

Test
Admission

Unit Treatment Release

Figure 4.3: Icons and color palettes that can be found in SepVis. The first palette is intended to facilitate users
to spot individual activities. On the other hand, the second one aims to enable users to identify groups of
activities.
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4.4.2 Activity links design

The activities within a trace are considered to occur sequentially in time. In order to reflect
this explicitly, our tool uses links between activities. Besides this, those links can be used to
encode some extra information. In our approach, links can represent three different states
(see Figure 4.4):

Synchronous moves. This is the normal and most common case. It reflects the link be-
tween two activities that happened both in reality and according to the process model.
This type of link is presented in our tool by a straight line with a grey color connecting
two activities.

Log moves. These moves reflect an abnormal behavior that was recorded in the event log
and does not match the process model. We use a red, thicker line to display this type
of move. Since the line links two activities, it is colored depending on the type of the
latter activity. If that activity is marked as a log move, then the line will be colored as
red.

Model moves. The last type of move depicts a case in which something should have hap-
pened according to the process model, but it did not. A dotted line is used in this case.
The reason behind this choice is that we try to highlight the fact that we do not know
if this activity happened in reality and it was not recorded, or that it did not occur.

Synchronous move

Log move

Model move

Figure 4.4: Three types of lines encoding three different types of moves: synchronous moves, log moves and
model moves, respectively from top to bottom.

4.5 SepVis

In this section, we describe SepVis by explaining its components and how they interact.
Our approach consists of clinical pathways exploration, filtering and attribute selection. An
overview of our approach can be seen in Figure 4.5. Each view interacts with the others to
provide an intuitive perception of patients’ pathways to support the tasks T1-T3.

From the task analysis, we derived the core components of SepVis. An overview of pathways
of the patients, as well as the most and the least frequent patterns (T1) over time, are given
in our main view, the Pathways view. For a life-threatening condition such as sepsis, diagno-
sis time and treatment occurrence play a crucial role in patients’ survival. Hence, time and
filtering options by activity/pathways duration need to be provided for a proper comprehen-
sion of patient management and resource efficiency (T2). Time information is encoded in
the Pathways view and data can be filtered from the Performance search. Clinical data (T3),
such as recorded conditions when the patients enter the hospital, the age and the exams they
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underwent before entering a normal care unit, is integrated with the application. The user
can use the distributions panel to create a cohort of patients and immediately recognize pat-
terns in the Pathways view. In the following subsection, we illustrate these visualizations and
their interaction in more detail.

4.5.1 Pathways View

This is the core view of SepVis and it consists of icons representing activities of the entire
event log. Those activities are linked by lines to explicitly encode the temporal relation be-
tween two consecutive activities. The sequence of icons and lines within a row shapes a trace.
Contrary to the current process-centric visualizations (see Figure 4.2), we distribute activ-
ities over time. The icons that belong to a particular trace are placed along the horizontal
axis according to their accumulated duration since the starting activity of the trace, which
is always considered to have an accumulated length of zero. Because we cope with data re-
garding a life-threatening condition where actions need to be taken in a few hours from the
entrance of the patient in the hospital, the horizontal axis of this view represents time inter-
vals with different scales. Following the guidelines [116], we opt for the following intervals:
zero to 1 hour, 1 to 3 hours, 3 to 12 hours, 12 to 24 and then to 48 hours, 1 to 2 weeks and
then onwards. Thus, this view comprises seven scales along the axis (one for each interval).
All intervals are given a different horizontal space. The first intervals are wider to enable to
focus on the events occurring in the first moments of patients hospitalization and the first
taken actions.

The lines in this view also encode deviation information, which is provided by the process
mining alignment algorithm. Typically, we can find two different types of deviations: log
and model deviations (see also Section 2.3.1 and Section 4.4). The first deviation is encoded
by coloring the line between two activities with a red color and increasing the thickness of
the line. Because a line links two activities, we color lines red when the last activity occurs as
a log move. The second deviation is depicted by using a dotted line(s) between the activity
that makes a model move and the surrounding activities. This approach is susceptible to
be cluttered because of icon overlaps. We solve this problem by shifting the icons when
necessary, that is, when the link between two activities encodesmeaningful information (i.e.,
deviations).

Figure 4.6: Example of an expanded variant that originally contains 11 traces in total and 4 of themmatch the
current filter setting. A selected trace is indicated by the blue dot at the left of the trace.
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The traces are grouped in variants, which represent the same sequence of activities for all the
traces that they group. This grouping just happens when there is more than one trace of a
given variant. The visualization of the variants is slightly different from the visualization of
the individual traces. It collapses all the traces which belong to that variant and just shows
the variant itself together with two numbers: one indicating the total number of traces for
the variant, and another one showing the number of traces that match the current filter-
ing setting. Moreover, the placement of the icons within a variant is based on the average
accumulated duration, which is computed over all the traces that form a variant.

The variants can be sorted by different criteria by clicking on one of the fields on the header
of the view. These criteria consist of several traces per variant, total (average) duration of the
traces (variants) and delay between two selected activities.

The right side of this view displays a summary of how many deviations and normal moves a
specific variant or trace contains. These figures are shown by using different colors as follows:
synchronousmoves are given in green, logmoves in red andmodelmoves in grey. This piece
of information gives a quick summary of how well the trace fits the process model.

For each row in the visualization, four main interactions are available:

Clicking a variant. This interaction displays all the traces that belong to that group with a
drop-down effect. The user can then explore each case. Figure 4.6 shows an example
of an expanded variant. The traces that belong to the variant are placed beneath it and
the variant is highlighted with a bluish color. A vertical thick line at the left of all the
traces is used to highlight that they belong to the same variant and differentiate from
the rest. When clicking on a variant, the data attributes of all the traces that it contains
are reflected in the charts. This feature is explained in more detail in Section 4.5.4.

Hovering activities. Mousing over either icons or lines opens a tooltip, which shows in-
formation about the hovered element. When the hovered element is a line, it simply
shows the elapsed time between the two linked activities. When it is an icon, it shows
some basic information such as activity name, the time elapsed since the beginning of
the trace and the time elapsed since the previous activity. Moreover, when the icon
represents a moremeaningful activity such as a lab test, the tooltip also includes infor-
mation about the value of the hovered activity, or the minimum andmaximum values
for that test when hovering a variant. Finally, in case the hovered activity represents a
log or model move, the tooltip also shows this information.

Hovering traces. Users can also mouse over traces that represent particular care flows, in
which case the views depicted in Section 4.5.4 are updated showing the interesting
values for the specific case. A more complete description of this interaction is given
later.

Selecting activities. We enable the user to select singular activities. This interaction is
described in Section 4.5.2.

Furthermore, the user can directly manipulate the view by the top slider (Figure 4.5(a.3)).
The behavior of this slider is explained in Section 4.5.3.

On the header of this view, we can find different components. The upper right corner of the
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screen displays the number of patients thatmatch the current filter setting and the percentage
of the number of patients. This information gives an idea of how representative the current
population is. Also, on top of the view (Figure 4.5(a.2)) we can see the widget used to switch
between the different color schemes that were depicted in Section 4.4.1. This component is
presented as a switch. At both sides of the switch, we can find an example of icons that are
colored with different color schemes. This indicates which color scheme we selected. Once
the user selects one color scheme, the view updates to present the icons with the new color
scheme.

4.5.2 Activity filters and conformance checking

In this section, we describe the behavior of the tool regarding filtering traces by activity or
sequence of activities, and conformance information, that is, deviations in the process. This
component can be seen in Figure 4.5(b).

Traces can be filtered out by the types of deviations they contain. Our tool provides four
different options: all cases, only log moves, only model moves and only synchronous moves.
This is useful to retrieve traces that entirely fit the process model or those that have specific
deviations. This directly relates to task T3.

Also, traces can be filtered by activities by interacting with the buttons (see Figure 4.5(b.2)).
This feature is provided to accomplish task T2. Clicking on a button in the activity box filters
out the traces that do not contain such activity. Once this happens, the main view automati-
cally reacts by decreasing the opacity of the other activities to highlight the selected activity.
Furthermore, the information displayed at the right side of the main view automatically up-
dates and shows the time elapsed until that activity occurs for each trace. In the case of
variants, it shows the average elapsed time. Users can then sort traces by this new value.

This feature is extended by enabling users to select a second activity. In this case, the main
view filters out the traces that do not contain both activities in the specified order, highlights
both selected activities, creates lines between the two selected activities, and eliminates the
other ones to present a viewmore focused on the selected activities. Also, similar to the case
of selecting one activity, the main view shows the time elapsed between the first occurrence
of the first selected activity and the first occurrence of the second selected activity. Traces
can then be sorted by this new value.

The new information displayed in both situations can be used by the other components of
the application to filter out traces and is explained in Section 4.5.3. This component also
plays the role of legend in our application since it shows all the activities with their colors
and their names.

An extra filtering mechanism is provided concerning activity filtering. This filter enables
users to explore care pathways in which patients were admitted to NC, IC, NC and then IC,
and IC and then NC units. In addition, the option to explore patients that went to neither
NC nor IC is provided. These options address task T1.
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4.5.3 Temporal filters: Performances

The slider located above the main view is aimed to filter out traces according to some time
criterion. The criterion depends on the current context of the tool. Initially, this component
just considers the total duration of the traces. Thus, users can shift both ends of the slider
to set minimum and maximum thresholds for the duration of the traces in which they are
interested. The slider follows the same time scales as the main view.

If an activity is selected as described in Section 4.5.2, the lower and higher values of the
slider apply only to the first and last occurrence of the selected activities. Therefore, if users
select only one activity, the slider will consider those traces in which the first occurrence of
such activity happens after the lower value. If users select two activities, then both lower and
higher thresholds will be considered to filter out those traces in which the first occurrence
of the first activity happens after the lower value and before the higher value of the slider.

4.5.4 Attribute filters: Cohort distributions

The attributes panel is provided to look in more detail at patient’s pathways from the clinical
perspective. Among the available attributes, we can find the age of the patients and other
clinical attributes of their conditions at the ER registration. A more complete description of
the dataset is given in Section 4.3.
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Figure 4.7: a) Bar chart showing three different pieces of data: the values for all the traces that match the
current filters displayed as blue bars, the values for all the traces of the selected variants displayed as gold
bars and the value for infection suspected attribute of the hovered trace displayed as a black border. b) Chart
that aggregates patients with similar values for the CRP tests.

Clinical attributes are shown as individual, interactive bar charts. Interacting with one of the
bar charts triggers an update from the rest of the charts and views of the tool. Also, these
charts are linked with the main view when a variant is selected and a trace is hovered. When
this happens, two outcomes are possible (see Figure 4.7(a)):

• If a variant was selected, the data from all the traces that belong to it is displayed by
showing overlapping bars for each bar chart. These bars are horizontally shrunken
and positioned on top of the corresponding bars. Moreover, the color of these bars is
different to easily spot the difference between the whole data and the selected traces.
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• If a trace was hovered, then the bars with the values of the data of that specific trace
are highlighted by adding a black stroke. This way we can explore the attributes for
particular traces.

The data view also includes charts to present the values for different laboratory tests that
are available in the dataset. Because there is more than one value per test, we opt for using
two charts per type of test: one chart that shows a summary of the values for all the traces
currently in themain view and another one which displays all the values of that test for traces
selected by the user.

The first type of chart (see Figure 4.7(b)) provides a representative picture of the range of
values for a specific laboratory test. In our approach, we use a histogram in which we group
patients by the difference between the global maximum andminimum values for the labora-
tory test. The horizontal axis is divided into slots of the same size (10 units in the example),
and each data item (patient) is horizontally assigned to the closest slot based on the differ-
ence of the extreme values. Each patient is depicted by a bar. The height of a bar encodes
the variation of the value for the laboratory test. Moreover, each bar is assigned a semitrans-
parent filling color. This representation enables to detect where the trend of the distribution
of values is and the existence of outliers at the same time while keeping the whole picture of
the data. Specific parts of the data can be selected by brushing over the chart, making the
rest of the tool reacts to show just the selected patients.

In the bottom part of SepVis (see Figure 4.5), we can find the charts which display all the
values of a particular test for the selected traces. This type of chart is aimed to give a better
understanding of the evolution of the patient over time. Therefore, the horizontal axis of this
type of chart encodes time and the vertical axis encodes the values of the test. This type of
chart only offers the interaction to see the value of specific points by mouse hovering them.

These charts, and the attributes that they depict, are interesting for domain experts that are
aware of guidelines since normal/abnormal values might indicate some decisions that may
need to be taken. With the interactions described in this section, we enable users to explore
the distribution of these attributes in a proper way.

4.5.5 Implementation

SepVis is implemented as a web application and it is entirely programmed in D3.js v4 [18].
We use Bootstrap v3 for a base layout, in combination with Icon Moon icons. Finally, we
make use of several JavaScript libraries: jQuery v1.12, underscore v1.8 andCrossfilter.js v1.3.
Finally, we use color palettes from D3.js that were taken from ColorBrewer.

Regarding process mining technologies, we use the alignment technique described in [172]
which is available as a plugin in ProM [177].
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4.6 Use Cases and Results

We demonstrate the usefulness of SepVis by some use cases with questions extracted from
conversations with doctors involved in the project [99] and the guidelines provided by the
Surviving Sepsis Campaign [67] released in 2012.

4.6.1 Clinical pathways in NC and IC units

In an emergency department for suspected sepsis patients, one of the first questions that the
clinical personnel tries to answer concerns clinical pathways across the treatment units.

For instance, it is interesting to know the flow of patients that are only admitted to the NC
ward, only to the IC unit, or first to the normal care unit and, only then, to the intensive
care unit. The last category is considered of great interest by clinical personnel because it
hints to patients whose conditions have worsened after being admitted. In these situations,
fast decisions need to be taken. Given the high interest in these particular activities, we
provide a dedicated button bar for selecting these particular groups: patients that entered
respectively only in the Normal Care unit, Intensive Care unit, Normal Care and then after
Intensive Care unit, or the other way around. A special group is also included for patients
who entered neither Normal Care nor Intensive Care. This group of patients might reflect
those who went to the emergency room and did not need to be monitored.

Our dataset has 67% of patients that went only to the NC unit; 23% of them did not enter
in any of the two units during their stay at the ER. Selecting the latter option, the users can
notice that, although these should be the cases with the shortest duration, some patients ac-
tivities have been recorded even after one day. In total, the number of patients that present
deviations (model moves and log moves) was around 48% of the total cases. Of this group,
eleven patients are likely to match the diagnostic criteria for a sepsis condition. The diag-
nosis of an inflammatory state is typically performed by assessing the manifestations of the
Systemic Inflammatory Response Syndrome (SIRS), such as alterations of body temperature
or increase of heart rate and white blood cells. Therefore, we can look for patients with a
clear need of specific care by filtering with SIRS-2 criteria (patients matching two or more
SIRS criteria), suspected infection and positive organ dysfunction, the major indicator of a
sepsis condition [35]. The user gets a list of patients (1% of the total patients). For some rea-
son, perhaps mistakes in recording patients activities or other decisions, these patients have
not been treated in the specific care units. Switching back to all patients, we get around the
7% of the cases whose treatments are lastingmore days because of follow-up andmonitoring
tests.

4.6.2 Performances and delays

Guidelines for life-threatening conditions provide clear recommendations regarding treat-
ment administration time. Early identification of septic patients is crucial to prevent delays
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in management and treatment. Many studies focus on the impact of time on antibiotics ad-
ministration in respect to triage screening tools and protocols [48, 122, 166]. Current guide-
lines in the management of sepsis patients [35, 67] state that the distribution of antibiotics
to patients in sepsis conditions needs to take place within the first hour of a sepsis triage.
Due to lack of resources or delays, this might not happen, leading to a serious risk to the pa-
tients, which has to be avoided. In SepVis, the users can get insight into these circumstances.
Firstly, they select the ‘suspected’ sepsis patients according to the clinical attributes at dis-
posal. Next, the user chooses the ER-Sepsis Triage event as the first option and antibiotics as
the second from the activity list. Thus, we get the resulting patients in the pathways view and
the elapsed time between two activities. The user can observe that many patients received
antibiotics between 1 and 3 hours and after 3 hours. Most likely these patients were not
considered to be in a critical condition, therefore the administration was delayed or simply
recorded after some time. In this view, we can also see some deviations in the clinical path-
way. This is because of the proposed protocol used in SepVis, which states that intravenous
antibiotics is a treatment followed or proceeded by also intravenous liquids administration.
In some cases, it seems that this administration of liquids was not performed or recorded.

Another interesting case is visible by considering the 3-hours bundle of [67]. In order to
simplify and improve the care of patients with severe sepsis, the Surviving Sepsis Campaign
released bundles, which are a selected set of elements to be considered and executed to aim at
the best outcome. In the 3-hours bundle, patients with hypo-tension or lactate values below
4 mmol/L need to be treated with intravenous fluids to expand their circulating volume. The
user can check the patients matching the hypo-tension attribute and lactate values above the
threshold. In our scenario, the dataset comprises four patients that got IV fluids after 3 hours.
In combination with EHRs, this kind of result can be explored inmore depth. Unfortunately,
the accuracy of the clinical attributes at our disposal is not sufficient to conclude the outcome
of these suspected delayed interventions.

4.6.3 Deviations and clinical attributes

As we described in the Background section, in process events, two different kinds of devia-
tions can be detected by conformance checking: log-moves and model-moves.

With SepVis, we enable the users to see when and where these deviations occur. From the
clinical perspective, a log move can be described as a decision that does not match the ex-
pected behavior. A model-move instead, might indicate forgotten actions, missed decisions,
lack of resources and such.

Thus, we enable the user to filter out patients that matched entirely the proposed model. At
this point, deviating cases can be analyzed over time and by clinical attribute distributions.
Once the deviating cases are available, the user might be interested to see single patients’
trends in test values over their stay in the hospital. The user can select a few patients from
the deviating case list. Then a click on a test activity such as CRP, leukocytes or lactic-acid
levels, triggers the update of the respective charts showing the fluctuations over time.
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4.7 Conclusion

In this work, we have proposed a visualization approach that enables the analysis of process-
centric information of an event-log in combination with clinical longitudinal data.

We have shown the usage of the current implementation in accordance with standard clin-
ical tasks and relevant insights in respect to current sepsis management guidelines. Our
design comprises a single interface, which is compact and more intuitive in comparison to
current solutions in the process-mining domain. It provides the necessary components to
interact with cases and at the same time analyze their clinical pathways filtering by time,
performances and clinical data.

The core components of SepVis allow the exploration of an event log by interacting with its
main elements: cases, activities, and attributes over time. While we demonstrated SepVis
on an example dataset for sepsis, our approach is generic and can be used with other event
logs. The current limitation is given by the fact that our visual interface has been built for an
event-log with a low number of activities (16) whereas processes may comprise hundreds of
different activities. At present, SepVis exclusively supports a single-cohort investigation per
time.
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5
Interactive Correction of Deep
Learning Predictions in Sleep

Staging

The usage of deep learning models for tagging input data has increased over the past years
because of their accuracy and high performance. A successful application is to score sleep stages.
In this scenario, models are trained to predict the sleep stages of individuals. Although their
predictive accuracy is high, there are still misclassifications that prevent doctors from properly
diagnosing sleep-related disorders. This chapter presents a system that allows users to explore
the output of deep learning models in a real-life scenario to spot and analyze faulty predictions.
These can be corrected by users to generate a sequence of sleep stages to be examined by doctors.
Our approach addresses a real-life scenario with an absence of ground truth. It differs from
others in that our goal is not to improve themodel itself but to correct the predictions it provides.
We demonstrate that our approach is effective in identifying faulty predictions and helping users
to fix them in the proposed use case.

The contents of this chapter have previously appeared in Garcia Caballero, H. S., West-
enberg, M. A., Gebre, B., and van Wijk, J. J. V-awake: A visual analytics approach for
correcting sleep predictions from deep learning models. vol. 38, pp. 1–12 [52].
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Figure 5.1: Depiction of the main components of V-Awake. First, a patient is selected (1) and the predictions
from the deep learningmodel are displayed in 2, 3 and 4. Next, some of the predictions are selected (2) and the
data in the dimensionality reduction plot is highlighted (3). Some regions in the scatter plot are selected and
the corresponding predictions are marked in the blocks view (4). Finally, selecting a prediction block makes
the input view display the corresponding input (5), which can be analyzed to determine if the prediction is
correct.

5.1 Introduction

T he usage of deep learning (DL) has notably increased in the past years due to its effective-
ness to solve problems of different nature. The applications of DL models are many and

can be found in a wide range of contexts. For example, they have proved to be effective for
many image-analysis tasks: object recognition [196], image captioning [24, 44, 185], image
segmentation [118] or image classification [83], to name a few. Another successful domain
is themedical field, wherein DLmodels were developed to help practitioners with their daily
tasks: lung nodules detection and classification [68], or nuclei detection and classification
[5, 33, 150].

One important field within the medical domain is the study of sleep. In this context, indi-
viduals are subject to polysomnography (PSG) tests when they are believed to be suffering
from sleep disorders. The PSG involves measuring brain signals, which are recorded by elec-
troencephalography (EEG) and analyzed afterward by an expert. This expert is in charge of
scoring the PSG by tagging pieces of the whole recording as sleep stages. This manual ap-
proach is time-consuming and labor-intensive [15], making it hard to apply at a large scale.
To overcome this limitation, a lot of research has been performed to automate sleep scoring
tasks, for example, by usingDLmodels [15, 90, 163, 167, 199]. The automation of the scoring
process has obvious benefits regarding time and effort. However, it also brings drawbacks
in terms of reliability and accuracy of results.
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In the medical field, it is even more important than in other fields that models produce cor-
rect outputs to solve other complex, human-dependent tasks (e.g., diagnosis). Although
models provide certainty for the predictions, it does not depict actual validity that can be
used to ensure any correctness. In addition, in real-life scenarios there is a lack of ground
truth, making it nearly impossible to ascertain whether a prediction is correct or not. As a
result, a reviewing process is necessary to ensure a certain degree of correctness. This re-
viewing process eliminates all the benefits of automation because it requires an inspection
of the whole output space.

In state-of-the-art work, many tools support the development of DL models [74, 75, 92, 93,
107, 126, 161, 192]. Generally, they enable users to see whether a model performs correctly
in terms of predictive accuracy, for example, by finding superfluous layers or deficiencies in
the training data. Nevertheless, all these tools are applied in a development stage to improve
a model. In contrast, our work focuses on a real-life scenario in which we have an imperfect
model and no ground truth any longer. Therefore, we aid users in an exploratory process
to find the potentially misclassified predictions. Our approach does not aim to discover the
cause of the misclassification.

To tackle the difficult task of finding misclassifications in a real-life scenario, we present V-
Awake, a visual analytics approach that aids users to find, store, analyze and correct faulty
predictions from DL models. Our contributions are: 1)We present the first visual analytics
system for deep-learning based sleep staging, and 2)We apply visualization in the absence of
ground truth, i.e., real-life data, to accelerate detection of misclassification in deep-learning
based sleep staging.

We conducted our research with a sleep scoring model trained on raw, single EEG channel
data [163]. We demonstrate the usability of our approach in a concrete, real-life use case
together with two somnologists. We discuss the limitations of our approach, how it can be
generalized to other domains that use DLmodels, and we give directions for future research.

5.2Medical Background

The study of sleep is an important area in medical research. It can reveal disorders, such
as apnea, narcolepsy, parasomnia or hypersomnia, which can also relate to other types of
medical conditions such as psychiatric disorders, neurodegenerative diseases [193] or car-
diovascular disorders [153]. Therefore, having a good understanding of sleep is crucial to
provide better diagnoses of some diseases.

The current procedure to study sleep patterns in clinical settings consists of several steps.
First, a PSG is performed to record brain signals, eye, chin and legmovements, blood oxygen
level, heart rate and breathing of the patient. After the recordings have been obtained, a
PSG technologist determines sleep stages by applying rules defined in one of the major sleep
scoring guidelines such as the Rechtschaffen and Kales [134] or the American Academy of
Sleep Medicine (AASM) [119]. The stages are usually tagged in 30 seconds segments of the
PSG, which are called epochs. Subsequently, a sleep doctor uses this information to make a
diagnosis.
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Themain drawback of such an approach is the amount of time needed to score sleep stages.
For instance, a technologist may spend over one hour to score an 8-hour PSG [15] due to the
labor-intensive nature of the scoring process that involves the analysis of several indicators.
In Figure 5.2 five examples of EEG signals are shown depicting the five sleep stages described
in the AASM manual [119]. Stages N1, N2 and N3 represent the non-rem stages, and REM
indicates the rapid-eye-movement phase of the sleep. Each stage is characterized for having
different morphological characteristics going from lighter to deeper sleep respectively. As
can be seen, the distinction between different sleep stage patterns can already be hard when
analyzing the signals in isolation. In addition, technologists have many other parameters
to be considered (e.g., movement sensors, oxygen level in blood, breathing rhythm, etc.),
increasing the complexity even further.

Our approach aims to aid experts that score PSGs (i.e., technologists) at correcting the output
of DL models for sleep stage scoring.

Awake

N1

N2

N3

REM

0 s 30 s

Figure 5.2: Five 30-second epochs depicting the five different sleep stages described by the AASM. Stages from
top tobottomrepresent respectively lighter anddeeper sleep. StagesN1 toN3depict thenon-rem stages,while
REM stage depicts the rapid-eye-movement phase of sleep. Signals are recordings from Fpz-Cz derivation [81].

5.3 Related Work

Most of the visualization approaches available in the literature focus on the development of
a DL model. Generally, the goal is to find issues in training/validation data, or architectural
deficiencies like superfluous layers, non-suitable activation functions, etc., that can be used
to modify the initial model to create an improved version of it. In this section, we provide
an overview of techniques that deal with understanding models, paying special attention to
DLmodels. Our proposed approach distinguishes itself from previous work in that we work
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with a real context that lacks ground truth. This scenario has not yet been considered in the
literature [65].

5.3.1 Performance Analysis

Work has been done on performance analysis of predictive models from a general perspec-
tive, focusing on the visual exploration of several performance indicators. ModelTracker [7]
and Squares [136] are two systems that intend to provide insights into the performance of
classifiers. Although they share a common goal, their approaches differ. The former system
presents both training and test data, enabling users to label data as positive or negative, tag
groups and link them through iterations of themodel. Squares, for its part, strives to analyze
the performance of multiclass classifiers. To this end, it visually presents the results of the
validation data in a parallel coordinate plot fashion in which each column represents a class.
This enables a comparison of the performance per class. The two systems differ from ours
in that they address scenarios with ground truth available, and their goal is to analyze the
performance of models.

5.3.2 Neural Network Analysis

Much work has been done on understanding convolutional neural networks (CNN) [74, 93,
126] and recurrent neural networks (RNN) [75, 107, 160, 161].

Their main goal is to provide insight into what networks learn. To this end, some techniques
make use of 2D projections in combination with labeled data to find what Liu et al. [93]
call pure and impure clusters. These cluster types indicate good or bad splitting of the data
respectively. Therefore, they can be used to investigate how the model performs. ActiVis
[74] uses 2D projections of the activations of several layers to determine whether the model
learned how to properly split the input data into classes or not. Similarly, DeepEyes [126]
utilizes projections to identify stable layers. This system aims at helping during the training
process, whereas ActiVis focuses its analysis in a post-training step. Interestingly, Rauber et
al. [133] conducted several experiments on different datasets to demonstrate the usability of
projections to evaluate howwell themodels learned to split the data. All these systems utilize
2D projections in conjunction with ground truth, that is, labeled data, whereas our approach
is meant to use those projections solely due to the absence of ground truth. Therefore, we
assume the network can produce good splittings which can be used for further analysis.

5.3.3Model Interpretation

In some cases, experts usemodels to perform complex tasks like segmentation of anatomical
structures or riskmonitoring. In this context, models provide predictions or alarms based on
given data. Inspection of model output is needed to ensure quality and be aware of possible
misbehaviors. The work of Raidou et al. [131] presents a system that aims to help clinicians
to understand segmentationmodels. It enables the exploration of errors in the segmentation
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to find patterns that can help evaluate the reliability of the model. The previous work uses
labeled data to guide the exploration. In other scenarios, the only available data is the steps
performed by the model. The work of Scheepens et al. [142] aims at visualizing the ratio-
nale of a reasoning engine that is fed with possibly unreliable sources. Due to the nature of
unreliability, experts require a support system to discard possible false alarms.

Both examples reflect an actual necessity to support users when using a model in a real-life
scenario. Nevertheless, the concepts introduced in these works cannot be translated directly
to the sleep staging problem nor DL models.

5.3.4 Explanation Techniques

Explanation techniques are used in complex systems to provide a better understanding of
DLmodels. This area has recently drawn attention due to the necessity for experts to explain
how models work. For providing explanations on CNNs, a great amount of work has been
done [97, 148, 156, 197]. We focus on the techniques that are most closely related to our
approach.

Fong et al. [45] compute a perturbation mask that indicates ranges of the input space that
were salient for the model when making a prediction. Other studies address the same prob-
lem with different approaches. For example, Grad-CAM [144] tries to find salient regions in
the input space using gradients applied to the last convolutional layer of a CNN. It generalizes
an earlier work that introduced a method to compute the so-called Class Activation Maps
(CAM) [200], which also depicts an approach to find saliency regions. The main drawback
of CAM is that it is restricted to CNNs that do not include fully-connected layers. Another
approach was introduced by Zeiler et al. [196] to find salient regions by occluding parts
of the input and attaching a deconvolution net to the model we want to analyze. All these
techniques share a common goal, although their methods differ.

Regarding explanation techniques for RNNs, Van der Westhuizen et al. [176] apply existing
saliencymethods like the ones described previously to temporal inputs (electrocardiogram).
They found that deletionmasks provided the best results and saliency regionsmatchedmed-
ical concepts like types of waves that are used to recognize patterns. Regarding temporal in-
puts and hybrid models that combine convolutional and recurrent layers, recent work [51]
analyzes saliency approaches and shows that they do not suffice to provide good explana-
tions. Through visualization, they demonstrate that more research is needed to better un-
derstand how this type of model works with temporal input data.

5.4 Problem Definition

We define the problem of correcting predictions in a neural network model using tasks that
depict the main goals in our system. Our goal is not to improve a given model in terms
of predictive accuracy. Rather, it is to find incorrect predictions in environments in which
ground truth is missing to enable users to correct and indicate what the prediction truly is.
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In this section, we firstly introduce a description of the model and data that we use in our
approach. Next, we define a set of tasks and give a brief description of them.
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Figure 5.3: Deep learning model for sleep stage scoring [163]. It comprises two convolutional branches with
different kernel sizes, a shortcut connection and two bidirectional LSTM layers.

5.4.1Model Description and Dataset

To introduce our approach, we use a DL model [163] that scores sleep data. A graphical,
high-level description is shown in Figure 5.3. It has two convolution branches with different
kernel sizes: a smaller one to capture temporal information (i.e., EEG patterns) and a larger
one to capture frequency information (i.e., frequency components). The derived features are
then concatenated and fed to the recurrent part of themodel, which is formed by two bidirec-
tional long short-term memory (LSTM) layers. A residual learning approach is used, which
is stated by the fully connected layer parallel to the bidirectional LSTMs, to keep track of the
features extracted in the convolution step. Finally, all these activations are added up and fed
to a fully connected layer with a 5-softmax activation function that serves to normalize the
output into a probability distribution of five classes. The model is trained in two steps using
data from a sleep study [81] available on PhysioNet [56]. In the first step, the representation
learning (i.e., convolutional layers) is done. Next, a residual learning approach is used to
train the two LSTM layers as well as the shortcut connection (i.e., fully connected layer in
Figure 5.3). Once the model is trained, it can be used without the necessity to retrain. In this
model, convolutional layers act as feature extractors directly from the raw input signal, while
LSTM layers learn transition rules between sleep stages. The model achieves an accuracy of
82.0% [163].

The data used to train the model represents the sleep recordings of 20 patients (from subject
SC4001E0 to subject SC4192E0) over twonights. Adepiction is shown in Figure 5.4. For each
patient 𝑗 and session 𝑘, a signal 𝑓𝑗,𝑘(𝑡) is measured, where 𝑡 ∈ ℤ indicates a point in time
in seconds. The signal is sampled at a frequency of 100𝐻𝑧, resulting in 100 measurements
per second. 𝐸𝑖,𝑗,𝑘 = [𝑓𝑗,𝑘(30𝑖), 𝑓𝑗,𝑘(30𝑖 + 1),⋯ , 𝑓𝑗,𝑘(30𝑖 + 29)] represents the 𝑖-th epoch,
which is a 30-value vector for patient 𝑗 and session 𝑘. Each epoch 𝐸𝑖,𝑗,𝑘 is 30 seconds long,
accumulating a total of 3000 values. Finally, 𝐶𝑖,𝑗,𝑘 indicates the corresponding classification
for the 𝑖-th epoch of patient 𝑗 in session 𝑘.
The signal 𝑓 is gathered from sensors placed on the head of the patient during sleep. On
average, there are 1075 epochs per patient and session, resulting in 1075 predictions over
approximately 9 hours of sleep and above 3 million points. Examples of signal 𝑓 for each
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Figure 5.4: Illustration of the data used in our approach for patient 𝑗 and session 𝑘. An example of a signal is
given for epoch 𝐸2,𝑗,𝑘 which is classified as stage N2 after being run through the model.

sleep stage are shown in Figure 5.2. Besides all this data, we retrieve the following informa-
tion from the model:

Probabilities for each possible class are provided by DL models in classification. Thus, a
function 𝑃(𝐸𝑖,𝑗,𝑘) provides a vector 𝑃𝐸𝑖,𝑗,𝑘 of probabilities where 𝑃𝑐𝐸𝑖,𝑗,𝑘 ∈ [0, 1] depicts
the likelihood of epoch 𝐸𝑖,𝑗,𝑘 being classified as class 𝑐. Analogous, 𝑃𝑐𝐸𝑖,𝑗,𝑘 = 𝑃(𝐶𝑖,𝑗,𝑘)
where 𝑐 is the class predicted for epoch 𝐸𝑖,𝑗,𝑘 , that is, the class with the highest prob-
ability.

Activation Maps, also named feature maps, depict the output produced by a certain layer
𝑙 in a DL model after applying an internal function. This function depends on the
type of layer. For instance, convolutional layers apply convolution over the input data
to derive new features, i.e., produce an output. As evident, these features are used to
determine the classification of unseen, new input data. Therefore, they can be used to
discover similarities in predictions. The function 𝐴(𝐸𝑖,𝑗,𝑘 , 𝑙) retrieves the activation
map for epoch 𝐸𝑖,𝑗,𝑘 and layer 𝑙, containing a variable number of activations 𝑢𝑖,𝑗,𝑘,𝑙 .

Saliency Maps describe how important the attributes of the input data are for a layer of
the model to predict that input as a particular class. The function𝑀(𝐶𝑖,𝑗,𝑘 , 𝑙) provides
the saliency map for the epoch corresponding to classification 𝐶𝑖,𝑗,𝑘 and layer 𝑙. In
our case, each saliency map contains a constant number of values 𝑣𝑚𝑖,𝑗,𝑘,𝑙 ∈ [0, 1]
with 𝑚 ∈ [0,⋯ , 2999], that indicates how important the 𝑚-th value is for layer 𝑙
to classify 𝐸𝑖,𝑗,𝑘 as 𝐶𝑖,𝑗,𝑘 . Our approach uses Grad-CAM [144] to compute saliency
maps. The dimension of the map this method gives depends on the output size of the
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layer. However, to keep a constant size, the values of the output are rescaled with linear
interpolation to match the size of the input instances, i.e., 3000 values.

5.4.2 Tasks

Based on multiple interviews with two somnologists and four DL experts, we define a set of
tasks that are considered relevant for the analysis of DL predictions for sleep scoring:

T1 Fix incorrect predictions. Incorrect predictions are a serious problem. Finding them
is not a trivial task when there is a lack of ground truth. Hence, users, independently
of their expertise, should be enabled to explore the data in such a way that they can
find potentially incorrect predictions and repair them by indicating the actual class.

T2 Understand why the model made a prediction. Once potentially incorrect predic-
tions are found, it is necessary to understand why the model made such a prediction.
This helps users to understand whether the prediction is correct or not.

T3 Re-tag predictionswith basic support. The systemmust allow users to re-tag selected
predictions. Hints must be provided to users to help them make a decision.

We designed a workflow to support the defined tasks (see Figure 5.5). Users can perform
actions in whichever order they decide.
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Figure 5.5: Depiction of our workflow and the mapping to the views of our design. Arrows depict a common
way of interaction, although other routes are possible. Upper case words summarize the most important ac-
tions performed in each view. The tasks that each view performs are also shown in the diagram.

5.5 V-Awake

In this section, we introduce the main components of our approach (see Figure 5.6 for an
overview). Although it was designed for sleep experts, the components are generic enough
to be used by experts with different backgrounds (T1).
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5.5.1 Cohort View

The primary goal of the cohort view (Figure 5.6A) is to provide a summary of the data for
each patient 𝑗 and session 𝑘. The summary displays information regarding the gender of
the patient, identifier and length of the recording session, and distribution of the predictions
𝐶𝑖,𝑗,𝑘 . This provides an overview that can be examined to spot interesting cases for experts.

The summary of the predictions plays an important role because itmight showparticularities
that are of interest (e.g., absence of predictions of a particular class, or an abnormal class
distribution). It is depicted with a horizontal stacked bar chart per patient. Thewidth of each
bar encodes the ratio of predictions of a class relative to the total number of predictions.

The ultimate goal from a usability perspective is that the user selects a case of interest. To
facilitate it, search, sort and layout features are provided. Regarding the latter feature, users
can select a stage of interest to be placed as the first element in the stacked bar chart to make
comparisons between different subjects.

Below the panel that displays all the patients, two stacked bar charts are shown in the same
fashion. The top one shows the distribution of predictions for the patient selected in the
cohort view. The bottom one shows the aggregated distribution for all the patients. The
location of both charts facilitates comparison of the local (i.e., selected patient) and global
(i.e., all patients) distributions. Moreover, the summary view (Figure 5.6A1) provides infor-
mation regarding the results of the model for the validation dataset. A confusion matrix is
shown, which can be used by users to determine the cases that the model fails more often.
When a patient is selected, estimated values are provided. These values are computed by
interpolating the global values from the validation set of the model.

5.5.2 Predictions View

Predictions are the core items in our work. Our approach provides two different ways to
directly interact with them. They are discussed in the following subsections.

Sleep Cycles View

Thesleep cycles view is presented in Figure 5.6B1 andprovides an overviewof thewhole sleep
session in a familiarmanner to the expert. It emphasizes the transitions between sleep stages.
This piano roll representation enables users to spot interesting patterns quickly. The view is
based on a time series chart where x and y axes denote time relative to the beginning of the
recording and sleep stage, respectively. Colors are used to encode stages. The background
displays the fluctuations in the certainty of predictions (i.e., probabilities 𝑃(𝐶𝑖,𝑗,𝑘)), without
interfering with the core part of the view. Fluctuations can be utilized by the expert to spot
regions in which the model was less certain and therefore prone to misclassifications.

To prevent visual clutter in the global trend, a preprocessing step is applied to the data to ex-
tract possible outliers. It consists of extracting consecutive prediction sequences that belong
to the same class and contain fewer predictions than a set threshold. The threshold can be
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adjusted by the user. For example, users can set a lower value to extract outliers that form
very quick transitions. This helps to find cases in which the model rapidly changes stages,
potentially indicating that there are misclassifications. The visual encoding in the sleep cy-
cles view highlights transitions that should not occur in a normal context. In a normal sleep
pattern, transitions should happen in a specified order. For instance, it is not possible to
immediately move from awake to REM. Outliers are visually represented as dots visually
disconnected from the main trend, which is represented as a piano roll. This particular visu-
alization supports the task of spotting faulty predictions (T1).

The view relies on brushing to focus on a specific area of the prediction space. The other
views are updated accordingly restricting further actions to the selected area. Furthermore,
when an action is performed in other components, the sleep cycles view updates accordingly
by visually de-emphasizing corresponding predictions.

Blocks View

Similar to the sleep cycles view, the blocks view (Figure 5.6B2) depicts an overview of all
the predictions generated for a selected patient and session, which are represented as blocks
and are placed sequentially from the top-left corner to the bottom-right corner. The major
difference with the previous is the visual encoding and the interactions. While the sleep
cycles view emphasizes transitions between stages, this focuses on the sequentiality of the
predictions. The blocks view serves two main purposes:

1. Give an overview of the predictions in constant time intervals. Intervals directly
connect with medical concepts (e.g., N1 should last up to 7 minutes). To provide
more flexibility, time intervals are adjustable by users, allowing the exploration of the
predictions from different time perspectives.

2. Highlight the predictions that are under consideration. The location of this view is
ideal for depicting the predictions that are filtered out from other components. This
allows users to be aware of the time position of the predictions that are selected af-
ter performing brushing in other views (see Figure 5.6). Moreover, users can directly
add or remove elements by clicking them. This provides fine-grained control over the
elements that are currently selected. This control is useful to incorporate or exclude
predictions that are located nearby in time and that the expert considers to be inter-
esting for further analysis.

The size of the blocks can encode extra information such as the probability and the entropy
of a prediction. The latter is defined as:

−
𝑛

∑
𝑐=0

𝑃𝑐𝐸𝑖,𝑗,𝑘 ⋅ log𝑛 𝑃𝑐𝐸𝑖,𝑗,𝑘 ,

where 𝑛 is the number of classes. This encoding helps to visually identify predictions that
deviate from others in terms of probability. The probability metric emphasizes high prob-
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ability predictions, while entropy emphasizes extreme cases in which the probability values
are very similar.

5.5.3 Dimensionality Reduction View

Subject A

Subject B

TSNE MDS PCA

Subject A Subject A

Subject B Subject B

Figure 5.7: Comparison of tSNE, MDS and PCA for two subjects in a setting with ground truth available. Each
square represents a prediction, the color depicts the predicted sleep stage. Circles with a black border repre-
sent predictions from themodel that do notmatch the label assigned as ground truth. tSNEworks, in general,
better than other methods to identify borderline cases.

Thedimensionality reduction view (Figure 5.6C) depicts a scatter plot with a dimensionality
reduction computed over all the activations of a layer on the predictions of a given patient
and session. It is used to find incorrect predictions by identifying visual overlaps (i.e., impure
clusters). The data displayed in this view is defined as:

𝜎([𝐴(𝐸0,𝑗,𝑘 , 𝑙), 𝐴(𝐸1,𝑗,𝑘 , 𝑙),⋯ , 𝐴(𝐸𝑁,𝑗,𝑘 , 𝑙)], 𝑛𝑐),

where 𝜎 represents a dimensionality reduction function and 𝑛𝑐 is the number of principal
components that 𝜎 provides. The rationale for the election of a layer is that each layer in a
DL model learns different features from data. The layers close to the output are believed to
effectively separate the features linearly [40].

We considered three dimensionality reduction functions: Principal Component Analysis
(PCA) [66, 73, 123], Multidimensional Scaling (MDS) [84] and t-distributed Stochastic
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Neighbor Embedding (tSNE) [96]. Figure 5.7 shows a comparison of them for two differ-
ent subjects in a context with ground truth. The same model as in our approach is used to
compute the projections. Circles with black borders depict misclassified predictions. As can
be seen, PCA tends to group cases belonging to the same class and does not discern mis-
classified cases, hence we discarded this method. On the other hand, MDS and tSNE appear
to better divide the space so that boundary cases for incorrect predictions stand out more.
tSNE is the default option in this view. The design of this view addresses task T1 since the
location of the predictions in the plot might provide useful information.

Generally, dimensionality reduction techniques use heuristics to find the most optimal so-
lution. They involve randomization, resulting in a different output every time the method is
executed. Even though this randomization has benefits, it can worsen the exploratory pro-
cess since the user would not get the same result in two different executions. To prevent this
from happening, we decided to set the seed to a fixed value. Nevertheless, we provide users
with options to set a random or a different value for the seed if desired.

We heavily rely on linking and brushing to help users spot suspicious elements, with the
previously introduced components all coupled. Multiple dimensionality reduction plots can
be visualized at the same time. They all are coupled, enabling an exploratory process inwhich
we could compare different aspects:

1. Different layers. Users might be interested in exploring the dimensionality reduction
output for activations of different layers. This is useful, for example, when the model
has a hybrid architecture. Exploring the activations of convolution and recurrent lay-
ers side by side can lead to interesting findings. By default, the previous-to-last layer
is selected because it has been shown that it performs the best for these methods.

2. Number of principal components. In most cases, the use of two components enables
a fairly sufficient exploration. However, when this is applied, the sequential nature of
the predictions is lost. To tackle this, in our approach it is possible to switch from 2 to
1 principal component, used for the vertical axis, while the horizontal axis is used for
the sequence number of the epoch.

When this occurs, the plot adapts the axes to either show both components or the only
main component together with the sequence number of the prediction.

5.5.4 Selections View

To facilitate addressing task T1, we provide a mechanism to store selections of predictions.
They are collected and presented in this view (see Figure 5.6D). Selections are depicted by
indicating the occurrences of predictions for each class. To enable quick identification, a
textual label is displayed together with the summary. Labels are defined by the user at the
creation of a selection.

An indicator depicting the number of selected predictions is also shown. It reflects either an
absolute or distinct count of predictions. The latter count is also used to compute a ratio over
the total. The ratio is used to visually inform the user in case it goes above a threshold. The
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threshold is determined by subtracting 100 and the model’s accuracy percentage. This acts
as a warning to keep the number of selected predictions low. The rationale for this threshold
is that, assuming that the model’s accuracy is similar to the one obtained for the evaluation
data, then it should make around the same percentage of incorrect predictions in a real-life
scenario.

5.5.5 Input View

Understanding why the DL model made a prediction (T2) is addressed with this view (Fig-
ure 5.6E). By visualizing an instance of input data (i.e., an epoch 𝐸𝑖,𝑗,𝑘), a resolution can be
made to decide the correctness of a prediction (i.e., a classification 𝐶𝑖,𝑗,𝑘).
Our approach displays the values of signal 𝑓 for a given epoch. Also, consecutive epochs
can be displayed side-by-side at the same time to give a notion of context to the users. Fur-
thermore, users can move forwards and backward to retrieve the next or the previous pre-
diction’s input respectively. This can be performed by pressing the right or left arrow on the
keyboard. We visualize epochs through traditional line plots, with a fixed scale for the y-axis
to facilitate the comparison of signals that have different amplitudes. Although this infor-
mation is enough for the expert to infer the stage that an epoch represents, we also provide
some clues on what the model was seeing at the moment of making a decision. To this end,
our approach provides the corresponding values of a saliency map. By default, the saliency
maps 𝑀(𝐶𝑖,𝑗,𝑘 , 𝑙) and 𝑀(𝐶𝑖,𝑗,𝑘 , 𝑙′), where 𝑙 and 𝑙′ represent two convolutional layers from
two convolutional branches of our model, are averaged. The layer parameter can be adjusted
to visualize any convolutional layer of the model or a combination of them. Saliency maps
are encoded as one-dimensional heat maps. This enables easy exploration of the salient re-
gions of the input, without disturbing the visualization of the input data itself. This design
addresses task T2.

Finally, the re-tagging task (T3) can be performed in this view. To quickly change the class
of a prediction, glyphs are presented on the top of the view. Colors encode the class that a
glyph represents. We also use position and text to encode some other information:

• The glyph at the left-most position indicates the current value associated with the pre-
diction. In case it is the original prediction, it is marked with the label P, which stands
for Prediction. If the class was changed by the user, the label F is used, which stands
for Fixed. Moreover, the glyph also shows the probability that the model output by a
text label.

• The other glyphs are slightly separated from the previous ones. This emphasizes that
the probabilities they depict are normalized with respect to their values. This is helpful
because the model we use tends to produce high-probability predictions. As a result,
the probabilities for the rest of the stages are extremely low, making it hard to enable
a comparison between them. By normalizing their values, easier comparison can be
made by the user.

When a prediction is corrected, the visual encoding in all the other displays changes accord-
ingly to indicate so. This is helpful to avoid the user from revisiting corrected predictions.
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5.6 Use Case

Sleep is a natural process consisting of transitions between sleep stages that tend to follow
rules. Alterations in the transitions can be an indicator of a sleep disorder. These alterations
can be reflected in different manners: longer duration of a particular stage (e.g., stage N1
should last up to 7 minutes), continuous changes between stages (e.g., from N2 to awake
and vice versa) or the absence of some stage (e.g., REM). These patterns might represent
either the effect of a sleep disorder or problems in our predictive model to correctly classify
sleep stages. The main goal of the exploration is to find out possible misclassifications and
fix them.

We demonstrate our approach with a use case on a single dataset [81]. The subjects consid-
ered for our use case range from SC4201E0 to SC4822GC.These subjects were not considered
in the training phase of the DL model. Note that the source of the dataset also provides the
ground truth, which we use in a posterior stage to calculate the percentage of actualmisclas-
sifications found in the exploratory use cases. We show how components in our approach
together with domain knowledge from experts enable the identification of possible misclas-
sifications as well as interesting patterns from the cohort.

5.6.1 Exploration Patient 1

The exploration (see Figure 5.6 for an overview) was conducted with the help of the somnol-
ogists. We picked a patient that seemed interesting because of the deviations in the distribu-
tion of sleep stages. The expert remarked that it was unusual to not have a single prediction
of REM stage. This could be because the patient has some disorder, or because the model
was wrong when making predictions.

REM stage usually happens after N3, or after a short period of N2. In Figure 5.2, we can
see that N1 and REM are somewhat similar in shape. Therefore, it may be that the model
had difficulties distinguishing them. We started the exploration by narrowing the analysis to
consider awake, N1 and N2. We noticed some interesting patterns in the sleep cycles view.
For instance, we saw that slightly two hours after the start of sleep, therewas a noticeable drop
in the probability prediction and there were some outliers from N1 (see Figure 5.8 S2). We
selected that region for further analysis. After moving forward in the sleep cycles view, we
saw two other interesting patterns: quick alternations between awake and N1. This pattern
was seen between four and five hours after the beginning of sleep (see Figure 5.8 S3). The
pattern looked suspicious because of the quick changes between stages. We selected and
saved them for analysis.

At the beginning of the sleep cycles view, there were two periods of awake followed by some
predictions of N1 and N2 (see Figure 5.8 S1). We noticed that the probability of the model
dropped in that region considerably. When we selected slightly more than the first hour of
sleep, the dimensionality reduction plot showed some overlapping areas that looked suspi-
cious. We selected and saved those areas. Nearly at the end of the sleep record, there was
a period of N3 predictions (see Figure 5.8 S4). According to the expert, this was suspicious
because N3 tends to shrink during the night. We selected all these predictions for further
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analysis. Figure 5.9 shows some of the overlapping areas for selections S1, S2, S3 and S4. The
brushed predictions are potential misclassifications.

00h 01h 02h 03h 04h 05h 06h 07h 08h 09h
REM

N3

N2

N1

W
S1 S3S2 S4

Figure 5.8: The four selections made in the exploratory use case.

At that point, we focused only on the dimensionality reduction plot to observe the whole
picture. We observed sparse predictions of class N1 and N3 in an area principally covered
by predictions of classN2. Therefore, we selected and saved predictions belonging to classes
N1 and N3 in the overlapping area (see Figure 5.9 S5).
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Figure 5.9: Selection of possible misclassifications. For instance, S5 depicts an area of N2 predominance, but
N1 and N3 predictions are found.

After performing the selections, we ended up with 311 predictions. While reviewing the
input data for each prediction, we annotated 217 as misclassified, which represented 69% of
the whole selection. Posterior analysis using the ground truth showed that 249 predictions
weremisclassifications. Therefore, we found 87%of themisclassificationswith our approach.
It is important to remark that the information about the number ofmisclassificationswas not
available during the exploration of the data. During annotation of the block ofN3predictions
nearly at the end of sleep, we discovered that theyweremisclassified because the input signals
seemed to contain an artifact (see Figure 5.10) following a very regular pattern. The expert
indicated that this might be due to a problem with the location of the sensors that were
interfering with the movements of the eyes.
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Figure 5.10: Artifact found during the exploratory process. It is too regular and free of noise to depict a bio-
signal.

Theneeded time to analyze the plots and to select pieces of data was about 5 minutes. We do
not measure the time to analyze each epoch. However, if we consider the time proposed by
the sleep scoring manual [119], which recommends investing up to 2 seconds per epoch, it
would result in above 10 minutes. If we apply the same time per epoch for the whole output
space, it would result in investing 39 minutes. Therefore, we would roughly save 24 minutes
for this particular subject.

5.6.2 Exploration Patient 2

For the second exploration, we used the same patient and session as shown in the video
demonstrating the usage of our approach. This session contained 775 predictions. We im-
mediately observed that the sleep cycles seemed to be more uniform. It could also be seen
in the locations of predictions in the dimensionality reduction view, which were better lo-
calized forming clusters-like structures.

In this case, we took advantage of the outliers from the sleep cycles view and the location of
predictions in the dimensionality reduction plot. The sleep cycles view showed some inter-
esting areas that contained outliers. They were seen after one hour and a half (aN2 sequence
with N1 and N3 outliers), slightly before two hours (a REM sequence with N1 and N2 out-
liers), around three hours (a N2 sequence with N3 and REM outliers) and so on. When
selecting each of these areas individually, we observed the corresponding predictions in the
dimensionality reduction view. We observed some overlapping areas in this plot. They could
be an indicator of misclassifications, thus we selected and saved them.

After repeating this process iteratively, we created a global selectionwith 57 predictions. This
represented 7%of the total output space. Out of those predictions, we found 35misclassifica-
tions. Posterior analysis using the ground truth showed that there were 63misclassifications.
Therefore, we were able to find 55% of misclassifications. As for the previous patient case,
this information was not available beforehand.
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5.7 Discussion and Limitations

Theuse case depicted in Section 5.6 shows howour approach can be used by experts to utilize
domain knowledge to guide exploration towards finding misclassifications.

Finding misclassifications when there is no ground truth is an unsolvable problem per se.
Visually exploring and analyzing predictions can shed light and ensure a certain degree of
correctness. The ability to select parts of data based on observations enables experts to in-
crementally cover most of the misclassified predictions. The tight interaction between com-
ponents helps to verify earlier assumptions (e.g., quick transitions between stages might rep-
resent misclassifications).

As for other approaches, ours has limitations. For instance, the usage of our system does not
guarantee the discovery of all the misclassifications. The interaction and exploration of pre-
dictions cannot always lead to finding all the faulty predictions, and in some cases, it might
become difficult to understand the dimensionality reduction. Moreover, the dimensionality
reduction might be ineffective if the model produced poor separations of the feature space.
This limitation is not specific to our approach but inherent to the dimensionality reduction
approach.

We performed an informal qualitative evaluation of our approach with both somnologists
and DL experts. They found our approach useful and helpful to fill the gap in current set-
tings in which a DL model is used. They expressed that being able to see the context of the
predictions in different forms was very helpful. For instance, linking the time-location of a
prediction with its location in the dimensionality reduction plot was useful to better analyze
incorrect predictions. They also found views and visualizations of our approach appropri-
ate for sleep experts. They stated that, after some explanation, the dimensionality reduction
view was understandable and useful for spotting incorrect predictions. Also, the ability to
create selections that matched hypotheses was an interesting way of addressing the problem.
Finally, they also remarked that visualizing the input for a particular prediction in conjunc-
tion with the saliency map was useful to understand what the model was recognizing in
signals. Having a smaller version of the sleep cycles view in the cohort view was proposed
by one of the somnologists. This could help spot interesting patients from an overview of
the transitions between sleep stages. However, it might be difficult to visualize due to the
size of the components.

The somnologists also pointed at the lack of amechanism to filter cases with some interesting
properties. Filtering cases in which the input signal is mostly 0 volts would be desirable be-
cause it might reflect a misplacement or disconnection of the electrodes. The experts would
also like to use the system to better understand the model. The interest of the experts arose
when they observed the input of incorrect predictions. Even though this is not the goal of
our system, we certainly believe this would greatly improve the system.

When the somnologists were askedwhether they could use data correctedwith our approach
despite the fact it cannot be guaranteed to be fully correct, one stated the following: ”It re-
ally, really depends on where the errors lie. If there is some misclassification between N1 and
N2, it probably will not affect the clinical interpretation too much. But if all errors converge
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to misclassifying REM as something else, it will affect it. As another example; if epochs are
misclassified as wake sparsely through the hypnogram, it may result in a very fragmented look-
ing hypnogram, which may be classified as abnormal; while if the same amount of (mistaken)
wake epochs are grouped into 2 or 3 a little bit longer periods of consolidated wake, it may
look normal to a doctor”. We believe these issues are addressed by our approach since users
can spot suspicious patterns, analyze them in terms of activations from the DL model and
inspect corresponding input data. From the comments of the somnologist we can argue
that the number of found misclassifications is not crucial as long those that could affect the
diagnosis of sleep disorders are analyzed.

5.7.1 Approach Generalization

Deep learning models can be used to detect cancer tissue in video frames (e.g., colonoscopy
[169]). Generally, the traditional approachworks by examining a patient with a tubular cam-
era that explores the colon while the doctor analyzes the video in real time. Deep learning
can be incorporated in this process to aid doctors during the examination. Our approach
can be generalized to be applied in this scenario. Sleep staging and cancer detection share
the characteristic of having sequences of predictions of a recording session. The sleep stag-
ing model uses epochs, while the cancer detection model uses video frames. Although the
nature of the data is different, they have the temporal aspect in common. Both tasks aim to
classify input sequences in a small set of classes and both scenarios are divided by patients
and sessions. To generalize our approach, it would need to handle video frames keeping the
rest of the system intact.

5.7.2 Scalability

The bottleneck of our approach is the dimensionality reduction. Our implementation can
compute tSNE over one thousand of records with thousands of dimensions in a few seconds.
If the number of dimensions was higher, a pre-process step could be applied to randomly
project dimensions to a lower space, feeding the result to the dimensionality reduction tech-
nique. This approach seems to be effective for tSNE as Donahue et al. stated [40]. In our
approach, we handle over 1000 samples per patient on average. In case this number was too
high to be handled, the analysis could be performed by examining chunks of thousands of
samples per time. The major drawback of this approach would be to ensure that we have
enough representatives of each class in each step. On the visual aspect, the main concern is
the number of classes that our approach can present. In the case of sleep scoring, there are
only five different classes. However, in other domains, this number might be substantially
higher.



Interactive Correction of Deep Learning Predictions in Sleep Staging

5

75

5.8 Conclusions

In this work, we have presented V-Awake: a visual analytics approach to find and correct
faulty predictions in real-life scenarios. It is a novel visual analytics approach that combines
different visual and interactive components to enable users to effectively find and correct
predictions in a sleep staging context.

We have demonstrated the usability of our approach in a use case. It shows that our ap-
proach can be used to find suspicious patterns that can represent misclassifications. Besides,
a generalization of our approach has also been proposed, stating that it can be transferred
to other domains with minor modifications. The discussion with experts reflected a real in-
terest from them in our approach as well as ways to improve it. Although our tool does not
guarantee a perfect correction, it does enable experts to analyze interesting patterns to make
sure that a proper diagnosis can be performed afterward.

As future work, we would like to investigate how to incorporate active learning such that
users could reinforce the model with our approach. This idea requires more research to
ensure that the learning process provides benefits instead of creating a bias in the model that
deteriorates the predictive accuracy. We also plan to extend the approach such that users
can explore the dimensionality reduction plot from a higher level, that is, focusing on the
entire cohort population rather than a single patient. We expect this to provide some further
insight into patients that have more faulty predictions. Our idea is that we could apply a
dimensionality reduction method over the entire population to find groups of patients that
share similar peculiarities in terms of activations of layers. With this, users would only have
to analyze some representative subjects from a particular cluster and apply the learned facts
to the rest (e.g., majority of faulty predictions in stage REM, similar sleep patterns, etc.).
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6
Explainability for Sleep Staging

Most of the interpretability techniques for deep learning focus on visual representations of a
very special type of input data: images. However, this is not the only domain in which neural
networks are effective. Besides, several techniques currently exist to interpret the layers of a
neural network. Most of these approaches are meant for convolutional neural networks (CNN)
applied to images. As a result, there is a lack of contributions in the literature concerning in-
terpretability for input domains different from images. In this work, we aim at shedding light
on the challenge of explaining deep learning models’ decisions for temporal data. Unlike im-
ages, time series are not that easy to understand. Even with the use of saliency maps to signal
a specific region that the model considered important to make a prediction, it remains difficult
to understand why the model considered that particular part of the input space more impor-
tant. We explore some aspects of state-of-art approaches to see whether they are applicable to
temporal inputs or not.

The contents of this chapter have previously appeared in Garcia Caballero, H. S., West-
enberg, M. A., and Gebre, B. Explainability for one dimensional temporal inputs of deep
learning models. Demo at the 1st Workshop on Visualization for AI explainability (VISxAI)
(2018). Online publication [51].
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6.1 Introduction

M ost of the interpretability techniques for deep learning focus on visual representations
of a very special type of input data: images. There are plenty of examples of deep learn-

ing architectures that try to perform a particular task on this input domain: object recogni-
tion [196], image captioning [24, 44, 185], image segmentation [118] or image classification
[83], among others. However, this is not the only area in which neural networks are effective.

Much effort has been made to apply these models to other tasks like sleep scoring [163],
speech recognition [8], music classification [25], to name a few. A new type of architecture
has been proposed to deal with temporal data. TheConvolutional, Long short-termmemory,
fully connected Deep Neural Networks (CLDNN) [141] can extract features from raw input
signals using convolutional layers. Next, these features are fed to aRecurrentNeuralNetwork
(RNN), which takes into account the temporal relationships between the samples. Finally, a
Deep Neural Network (DNN) produces the output of the model.

In terms of explainability, several techniques currently exist to interpret the layers of a neural
network. Most of these approaches are meant for convolutional neural networks (CNN)
applied to images. As a result, there is a lack of contributions in the literature concerning
interpretability for input domains different from images.

Another important aspect when it comes to explainability is how to deal with architectures
that combine multiple convolutional branches. The motivation to use more than one con-
volutional branch could be to extract different types of features from the input data. For
instance, one part of the model could try to look at very small, local features, while the other
might apply convolution on a bigger input range to extract global-like patterns. The result-
ing features that the model learned might not be easy to interpret in terms of input, since
the model might be seeing different things in both branches leading to a misunderstanding
of what the model learned.

Understanding the output of deep learning models in particular (and machine learning al-
gorithms in general) might not be crucial in every field. However, in some contexts, this is
an important fact that requires attention. For example, in a medical context, it is important
to understand why a particular output was produced instead of another one. This may help
to comprehend whether the model is performing in the right way or, on the contrary, it is
producing the incorrect output.

In this work, we aim at shedding light on the challenge of explaining deep learning models’
decisions for temporal data. Unlike images, time series are not that easy to understand.
Even with the use of saliency maps to signal a specific region that the model considered
important tomake a prediction, it remains difficult to understand why themodel considered
that particular part of the input space more important. Showing such saliency maps can
be misleading. Images are natural to humans because it is easy to recognize meaningful
objects, and by highlighting some areas of the images, it is possible to associate ideas. On
the other hand, signals are just values that fluctuate over time and might be meaningless.
Thus, just signaling a region of these values may not be sufficient to form a mental idea that
gives meaning to the pointed regions.
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6.2 Images and Time Series

Images and signals are similar in terms of data representation. A signal of 100 points can be
thought of as an image of 100 pixels wide and 1 pixel tall with a single channel. Although
they are very similar in these terms, images and signals differ in their visual representations.
While an image can be very quickly understood, a time series needs more visual aids to help
the user to find interesting facts (e.g. trends, patterns, and so on). We can extrapolate from
this fact into the explainability domain: while the explanation on an image is fairly easy to
understand by any user, the same way of explaining may not be suitable for a time series.

(a) (b)

Figure 6.1: (a) shows an example of Saliency Map on image domain for VGG-19 model [149] where the model
labeled the picture as ”flute, traverse flute”. The approach proposed by Fong and Vedaldi is applied to get the
saliencymap [45]. (b) shows a Saliency Map applied to three input signals for amodel that scores sleep stages
[163]. All of them represent the same class (awake)

Figures 6.1a and 6.1b represent two examples of saliency maps applied to both domains that
we discuss in this work. Figure 6.1a depicts a person playing a traverse flute. The coloring
on the image corresponds to the saliency map technique applied, which detects the traverse
flute concept. We can see that the model looked at the music instrument itself, as well as
the face of the player. This might mean that the model learned the traverse flute concept in
pictures in which it was played by a musician. On the other hand, the examples shown in
Figure 6.1b depict three different signals representing the same subjacent class (awake). It
is quite difficult to understand the underlying reasons of the deep learning model to classify
the three of them as awake by just looking at the saliency maps. The displayed saliency
map corresponds to the so-called l14_conv layer of the model depicted in [163]. This model
concatenates two convolutional branches. The layer we are using corresponds to the right
branch, which is in charge of capturing frequency information. It can be seen that the first
and the second examples have some similar patterns. However, the model focuses on some
part that does not look particularly relevant at first sight. Moreover, the third example seems
to give the highest importance to a different wave shape.
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6.3 Case Study

6.3.1Model

Figure 6.2: Architecture of the model used in this work (taken from [163]). Trainable layers are depicted in
blue.

The model used [163] to conduct this case study is shown in Figure 6.2. The model is used
to score sleep stages from a raw input signal. It has a CLDNN architecture with two con-
volutional branches that are concatenated and fed to a bidirectional long short-term mem-
ory layer. A residual learning approach is also used in this model to maintain the features
extracted by the convolutional layers of the model. Finally, these features are added up
element-wise with the ones generated by the two bidirectional LSTM layers to be fed to a
softmax layer that produces the final output, which can be either awake, S1, S2, SWS and
REM.This class represents the sleep stage in which a patient is at a certain point.

The data used to train the model [56] represents the sleep recordings of 20 patients for two
nights. Those recordings are taken from sensors placed on the head of the patients during
sleep to record the so-called electroencephalograph. The model that we use was trained
with the Fpz-Cz derivation. An overview of possible placements for the electrodes in the
electroencephalography can be seen in Figure 6.3. The data per patient and night forms the
input of the model, which is divided into 30 seconds long epochs. The sampling frequency
is 100Hz, resulting in 3000 points per epoch. The data was obtained between 1987 and 1991
in a study of age effects on sleep. Each recording night has 1075 samples on average. That
is, there are 1075 predictions per patient per night on average. Input examples are shown
in Figure 6.4 to provide a reference point on how the input space looks like. All examples
belong to subject SC4022E0 (second night).

Sleep experts usually look at multiple derivations to score a given epoch. However, this
model was trained with a single derivation and still scores quite accurately compared to ex-
perts. That is why it seems interesting to investigate the decisions that such a model is taking
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Figure 6.3: Illustration of possible placements of electrodes to record electroencephalography. In this work
we are using the placements indicated with the green stroke.
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Figure 6.4: Fpz-Cz derivation for several epochs from the second night of subject SC4022E0. Each row depicts
a distinct sleep stage according to the ground truth score.

when processing epochs. More information on sleep scoring can be found in the American
Academy of Sleep Medicine manual for the scoring of sleep [119].

6.3.2 Dataset

The data used in this section is a sample, which represents a patient, of the previously de-
scribed dataset. The model has not seen that sample in the training stage. Moreover, the
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epochs that form the sample have been selected randomly to ensure they are as heteroge-
neous as possible. We have selected three epochs per class, as well as others that the model
classified incorrectly.

6.3.3Model Explanation

In order to explain what the model is doing to classify instances, we are going to use Grad-
CAM as a saliency map technique. Grad-CAM [144] is a technique to produce visual ex-
planations of CNNs. The technique is a generalization of the work of Zhou et al. [200] in
which no modifications on the model are needed to obtain the saliency map. This approach
takes the gradient information into account to determine how the neurons of a CNN layer
contributed to a specific-class prediction. This information is usually then rendered as a heat
map on top of the input to indicate the contribution of that subset of the input to the final
output.

The visual interface designed for this use case provides a widget with the possible classes that
our model outputs. By selecting a class and a layer of the model we can visualize the Grad-
CAMcoefficients as a gradient. In principle, these coefficients depict the parts that themodel
considered important to output the prediction. Notice that the output of the Grad-CAM is
layer dependant, thus the output of Grad-CAMwill have the same shape of the output shape
of the layer. We have applied an interpolation to re-scale this size to match the input size
(3000 points). This widget also enables the selection of misclassifications to be visualized.

Generally, in the models with just one convolutional branch, the most interesting layer to
look at is the last convolutional layer. It is believed that the deeper layers of themodel tend to
capture higher-level constructs. Thus, in our case, we have twomain options (see Figure 6.2).

The bottom convolutional branch of the model has a smaller filter size (FS/2). This can be
seen in the result of the Grad-CAM for the left layer. Apparently, it pays attention to more
local and prompt features. On the other hand, the top convolutional branch of themodel has
a bigger filter size (FSx4). Because of this, the visualization shows longer parts of the input
that the model looks at. This layer seems to have somewhat recognizable patterns. However,
it is not always the case.

An interesting effect can be seen when inspecting the REM or SWS stage for the last convo-
lutional layer of the larger filter branch (see Figure 6.5). It can be seen that the first sample
of REM and the first and second samples of SWS have only zeros as Grad-CAM values. This
could mean:

• Either the input only produced negative activations, which are not considered in the
Grad-CAM (notice that it uses a ReLU approach to remove the negative activations);
or

• the input only produced zero activations, meaning that this layer has no filters capable
to recognize any particular pattern.

Moreover, the second and third REM samples show a somewhat similar pattern, and just a
small part of the input is considered to be important. Interestingly, it is exactly the opposite
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Figure 6.5: Grad-CAM coefficients for different sleep stages and epochs. (a) depicts examples for REM sleep
stage, (b) for SWS and (c) for samples that have beenmisclassified as REM.

for those samples that have been incorrectly classified as REM.This might highlight that the
model needs no features from this layer to classify correctly samples for those two stages.

If we continue with the same class (REM), and now look at the last layer of the smaller filter
size convolutional branch (see Figure 6.6), we can see a more uniform distribution of the
coefficients. This could mean that in order to classify a sample as REM, the model mainly
uses the left convolution. However, it still remains unclear why some parts are considered of
more importance than others.

0 1

Epoch 857

Epoch 710

Epoch 356

Figure 6.6: Grad-CAM coefficients for epochs correctly classified as REM. A uniform distribution of coefficients
can be observed.

6.3.4 Does the model predict the same by occluding the input?

We have seen that by applying Grad-CAM some parts of the input get strongly highlighted
compared to others. It seems logical to wonder what the model would do if we occluded
some parts of the input. In this section, we will hide portions of the input to see whether the



6

84 Case Study

model still produces the same output or not.

In order to make this case study more reliable, we will occlude just one epoch per time to
ensure that the LSTM layers do not affect the output.

To hide part of the input space we consider the following aspects:

• Grad-CAM values: These values will be used to determine what parts of the input
space must be hidden.

• Occlusion direction: We think of two manners to hide values: 1) values that are less
than the set threshold; and 2) values that are greater than the threshold. The first
will start hiding from the lower coefficients (i.e. zero). The latter will start from the
highest ones. This is analogous to beginning with non-important values or the most
contributing ones.

• Occlusion operator: When hiding parts of the input, we usually cannot tell themodel
that it should not consider them. That is why we need to define an operator that gen-
erates new values to replace the original input. In this work, we have used three, but
others might be used: zero, random, or sinusoidal values. Except zero values, the
other two operators map values in the range -158 and +158. The sinusoidal operator
has been chosen because it well represents a basic, standard wave.

If we start tweaking these parameters by first interacting with the ”less than” operator, we im-
mediately notice that the model produces different outputs with some minor modifications.
Figure 6.7a shows a selection of epochs that were predicted as REM.The background depicts
the coefficients of Grad-CAM for the last convolutional layer of the bigger filter branch. If we
try to occlude parts of the input with lowGrad-CAMcoefficients, we are occluding the values
that are, in principle, not important for making the prediction (see Figure 6.7b). However,
we see that the model is predicting something different (awake) for epoch 720. This might
be because we are occluding values that are considered important by the right layer. How-
ever, by switching to the last layer of the smaller filter branch (see Figure 6.8a) and using the
same configuration, epoch 7 gets classified as awake and epoch 880 as N2 although we are
just occluding their least important portions of the input space (see Figure 6.8b).

We have noticed that the occlusion technique cannot be applied in the same way as for im-
ages. When dealing with images, the occlusion happens by setting the pixels of a sub-region
of the image to a constant value. In the case of time series, we can decide to set the value
of a range of the time series to 0, random values or whatever other function that replaces
the original values of the series. The main drawback appears because the model seems to be
able to recognize those new values as another class. Therefore, depending on the occlusion
operator the model will output different predictions even when we replace the values that
are not important for a given layer of the model.

Another interesting fact is that some operators seem to have a stronger effect than others.
For instance, the random operator seems to force an awake prediction with minor changes
on the input. Zero and sinusoidal operators seem to have a similar strength. However, the
output tends to go towards different classes.
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Figure 6.7: Examples of occlusions applied to three epochs classified as REM. (a) depicts three epochs with
their corresponding Grad-CAM coefficients for the last layer of the bigger filter branch, whereas (b) shows a
sinusoidal occlusion applied to the lowest Grad-CAM coefficients. Epoch 720 results in a different prediction.
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Figure 6.8: Sameexamples as in Figure 6.7 but (a) Grad-CAM is nowapplied to the last layer of the smaller filter
branch. (b) applies the same occlusion technique resulting in different predictions for epochs 7 and 880.

6.3.5 Learned Filters

In this section, we will explore the filters that the model learned in the training phase. In
order to do so, we look at the activationmaps produced by the layers of themodel. Intuitively,
the same filters should be active for samples of the same class.

Thewidget below shows the filters of the selected layer using squares. The color of the square
depicts how active that filter was for the given input, darker being more active. The function
that determines how active the filter was can be tweaked with one of two options: average
or maximum. The first takes the average value of the activations, and the second takes the
maximum value. Filters can be hovered to get a plot of the activations. When a filter is
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hovered, the same filter is also plotted for the other samples. By clicking on the filters, they
will remain highlighted, allowing to explore the activations and see what part of the input
was responsible to generate such activation. Notice that only the two first layers of themodel
can be explored in the activations plot on the left of the samples. This decision has beenmade
because it makes sense to map those activations to the input space, but it does not for deeper
activation maps that are computed over the activation maps of previous layers.

In general terms, we have noticed that the filters of the left branch of the model tend to
produce similar activations for the same class. On the contrary, filters on the right branch
appear to be somewhat more sparse.

Let us take a closer look at the stage Awake and the first layer of the smaller filter branch. In
Figure 6.9a we can see three different epochs and the filter activations for the aforementioned
layer, where black depicts a strong activation and white depicts no activation. We observe
that similar groups of neurons tend to be active. If we explore one of the black filters we can
easily discover that theirmost intense activity occurs in parts of the inputs that are similar for
all the samples (Figure 6.9b). On the contrary, if we look at the white filters, no interesting
pattern is visible (Figure 6.9c).

Epoch 33

Epoch 642

Epoch 965

0 1

a)

0 1 0 1

b) c)

Figure 6.9: (a) Learned filters of the first layer of the smaller filter branch. (b) shows the activation in the input
space for a an active filter, whereas (c) depicts a nearly non-active filter.

In some cases, some filters are rarely active for all the samples that we consider in this case
study. This might mean that they have not learned any feature in the training phase that can
be applied to our samples.

If we move now to stage S1 and we combine with the first layer of the bigger filter branch
(see Figure 6.10a, big filters), it becomes apparent that it is slightly harder to see possible
patterns that the model is recognizing because this type of wave has a very small variation.
Also, we notice that the activation of the filters is not as homogeneous as in other cases. On
the other hand, the first layer of the smaller filter branch (see Figure 6.10a, small filters) has
many more similar activations for the three samples of this sleep stage. Also, if we explore
the activations for the most activated filters we can see that they are active in parts of the
samples that have a similar pattern. For instance, we can see that one filter (see Figure 6.10b)
is detecting parts of the signal that are local minima, while another filter (see Figure 6.10c)
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seems to look at localmaxima.

a) b) c)Epoch 61

0 1

Epoch 71

Epoch 918

0 1 0 1

big filter

small filter

Figure 6.10: (a) Comparison of learned filters for the first layer of both big and small filter branches for three
different epochs, (b) a filter that seems to recognize localminima, and (c) a filter that recognizes localmaxima.

Another interesting fact can be seen by alternating with misclassification. In this case, we
can see that different filters get activated for the right classifications and for the wrong ones.
This is somewhat reasonable since it indicates that the model has recognized a class by using
different filters. This might be used in other contexts to help to identify wrong predictions
of a model.

6.4 Discussion

During this work, we have seen that saliency map techniques applied to time series can indi-
cate what themodel was looking at to some extent. However, we think this is still insufficient
to understand models that deal with temporal data.

An important fact that we have not considered in this work is how the recurrent part of the
model influences the predictions. We believe it is important to develop explanations that
combine both parts since they are related. However, it is still not clear how to address this
challenge. Onemay think that it is important to understandwhat features are being extracted
by the convolutional layers of the model. Nevertheless, one could also think in terms of
relations between sequences of inputs, or sequences of features from the inputs, as recurrent
layers do. The combination of both viewsmight play a crucial role in the understanding of the
way the model is making predictions and not solely considering convolutional or recurrent
layers apart from each other.

While it is still unclear how to deal with our challenge, we believe there may be some basic
approaches that could, at least, help final users understand what deep learning models are
doing inside when they deal with temporal inputs. For instance, providing users with ba-
sic information such as averages of certain regions of an epoch, main trends or correlation
coefficients, to name a few. The combination of these indicators may lead to a better under-
standing since the traditional techniques just provide us with some internal information of
the model reflected on the input.
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Final users of the deep learningmodels represent another important factor thatmust be con-
sidered when developing new explanation techniques. In some cases, they are not familiar
with the model itself and they lack knowledge in the area of machine learning. However,
they can benefit from using these models to boost their daily processes, perform tasks more
accurately or just to get extra support in their daily challenges. For example, the medical
domain can (extremely) benefit from using deep learning models, although some effort is
needed to unbox these types of models and explain them in a simple, accurate way.

6.5 Conclusions

In this work, we have introduced the problem of making sense when dealing with temporal
inputs in deep learning approaches. As opposed to images, temporal inputs are not as easy
to understand as images. Thus, understanding what a deep learning model is ”looking at”
when making decisions is also hard.

The aim of this work is at triggering curiosity in the community of deep learning and visu-
alization to explore alternatives that effectively deal with temporal inputs (e.g. brain signals,
voice, market stock fluctuation, etc.), different architectures (e.g. multiple convolutional
branches) and the combination of convolutional and recurrent layers. All these ingredients
shape a gray area that, to the best of our knowledge, has not been deeply studied yet. Al-
though several techniques have been developed recently to interpret these models, they are
mainly focused on images rather than other types of inputs. On the other hand, the usage of
convolutional layers in conjunction with recurrent ones is becoming more and more pop-
ular to deal with temporal data. In this scenario, the convolutional branch acts as a feature
extractor that are then fed to the recurrent part of themodel tomake the decision. Therefore,
effectively understanding what the model is doing is a crucial step to get reliable models that
can be used in somewhat more critical tasks (e.g. diagnosis).
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7
Performance Assessment of Sleep

Staging Models

Machine learning is becoming increasingly popular in the medical domain. In the near fu-
ture, clinicians expect predictive models to support daily tasks such as diagnosis and prognostic
analysis. For this reason, it is utterly important to evaluate and compare the performance of
such models so that clinicians can safely rely on them. In this paper, we focus on sleep staging
wherein machine learning models can be used to automate or support sleep scoring. Evaluation
of these models is complex because sleep is a natural process, which varies among patients. For
adoption in clinical routine, it is important to understand how the models perform for different
groups of patients. Moreover, models can be trained to recognize different characteristics in
the data, and model developers need to understand why and how performance of the different
models varies. To address these challenges, we present a visual analytics approach to evaluate
the performance of predictive models on sleep staging and to help experts better understand
these models with respect to patient data (e.g., conditions, medication, etc.). We illustrate the
effectiveness of our approach by comparing multiple models trained on real-world sleep staging
data with experts.

The contents of this chapter have previously appeared in Garcia Caballero, H. S., Corvo,
A., van Meulen, F., Fonseca, P., Overeem, S., van Wijk, J. J., and Westenberg, M. A. Per-
sleep: A visual analytics approach for performance assessment of sleep staging models. In
Eurographics Workshop on Visual Computing for Biology and Medicine, VCBM 2021 (2021),
The Eurographics Association [49].
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7.1 Introduction

Machine Learning (ML) has increased in popularity in the medical domain [117] due to its
success in tasks such as segmentation, classification and anomaly detection. One example
is sleep medicine, where models have been proposed to score sleep stages and support sleep
diagnosis [127, 158, 163]. These advancements bring opportunities to automate such time-
consuming [72], tedious and subjective tasks typically conducted by specialists. Assuring a
good performance of such models is crucial for somnologists to safely rely on them.

Generally, the evaluation of ML models for sleep staging is complex for three reasons. First,
sleep is a natural process that runs and evolves over time. When predictions are produced by
amodel, errors can occur at different periods of the sleep. The location of these errors is cru-
cial because it can bias the diagnosis of sleep diseases (e.g., non-REM parasomnias usually
occur in the first third of the night). Second, common statistics (e.g., accuracy, F-measure,
etc.) only provide a coarse-grained perspective of the performance [198]. A closer look at
predictions and patients is necessary to better evaluate ML models. Finally, wrong predic-
tions can suggest that fragmented sleep occurs. This can potentially be misinterpreted as a
sleep disorder. Inherently, all these problems can be different across groups of patients. Sleep
varies among patients due to physiological reasons (e.g., age, medication, etc.). Therefore,
models can be faulty in generalizing among different groups of patients. A more personal-
ized approach would be beneficial to better understand the behavior of ML models among
different groups.

In recent years, the availability of different forms of data has enabled the construction of
ML models that exploit different characteristics of the data. In particular, we observe a
trend towards usage of so-called surrogate devices such as smart watches, phones, etc. as
the source of data for MLmodels [47, 95]. In the case of sleep staging, surrogate devices can
be used to track the sleep of patients for longer periods and in less-intrusive manners than
polysomnography. Usually, models consuming surrogate data output a smaller set of sleep
stages than those trained on polysomnography due to less detailed data (e.g., high detail
electroencephalogram (EEG) vs. low detail actigraphy and heart rate). In general, mod-
els trained on different data can fail in recognizing situations such as sleep fragmentation,
arousals, etc. Analyzing and comparingmodels for sleep staging with heterogeneous sources
of data can provide valuable insights to experts.

To the best of our knowledge, no approaches have been presented yet to conduct perfor-
mance analysis in this sort of scenario. To this end, we present PerSleep, a visual analytics
approach that aids ML experts in sleep staging to assess the performance of the models they
employ. Ourmain contribution is the first visual analytics approach to evaluate and compare
performance of two models in sleep staging. Multiple hypnograms can be visualized simul-
taneously to make quick comparisons of the same target hypnogram for different models. In
comparison with state-of-the-art approaches in performance analysis, ours does not solely
focus on the input data of the model but also the patient data. The novelty of our work lies
in the application of visual analytics in sleep staging rather than the design of new visual
idioms. Furthermore, we hope that our work provides a useful example for the assessment
of complex models for judging time series data for varying populations, like neurological
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Figure 7.1: Examples of EEG waves and their corresponding sleep stage. Time and amplitude scales are dif-
ferent in each example.

brain disorders [6] such as epilepsy and autism, or physiological disorders like heart failure
detection [87]. We present a use case on real-world data to demonstrate our approach. The
use case was conducted with three experts. Results, limitations and generalization are dis-
cussed. Finally, we provide directions for future work for performance evaluation in sleep
staging.

7.2Medical Background

When a patient is believed to be suffering from a sleep disorder, a polysomnography (PSG)
is often done, an electrophysiological recording of sleep and sleep-related events overnight.
In a PSG, brain activity (measured by EEG), muscle activity (measured by EMG) and eye
movements are recorded to assess sleep structure. In addition, other aspects are recorded
such as bodymovements and breathing patterns. Afterwards, the recording is evaluated and
annotated on an epoch-by-epoch basis. Epochs represent time-fixed periods (typically 30 sec-
onds duration), which can then be analyzed by technicians in order to assign a sleep stage.
The process of assigning sleep stages to epochs is called sleep staging, which was invented in
the 1960’s. During sleep staging, sleep is scored epoch-by-epoch as one of the five disjoint
categories according to the American Academy of Sleep Medicine (AASM) [119]: Wakeful-
ness,N1,N2,N3 andREM. Sleep stages are characterized by specific physiological properties,
which are based on consensus criteria. Figure 7.1 depicts some characteristics that can be
observed in the EEG signals of a PSG. Wakefulness with the eyes closed is usually charac-
terized by alpha waves (8-13Hz) in the EEG produced by the occipital lobe of the brain,
while sleep stage N1 often presents theta waves (4-7Hz). Other stages are characterized by
interactions of multiple physiological stimuli that result in the presence of EEG phenomena
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like k-complexes, spindles, or sawtooth-like waves. The sequence of annotated sleep stages
during sleep is visually represented by a hypnogram, which is analyzed by a somnologist to
understand the sleep pattern of a patient.

Generally, somnologists look for patterns in the hypnogram in terms of overall presence of
and transitions between sleep stages. These patterns have clinical meaning, i.e., they can
be indicators of sleep disorders. For instance, fragmented hypnograms present many transi-
tions between sleep stages occurring in short time intervals, resulting in a fragmented sleep
pattern. Such pattern can be indicative of a sleep disorder such as insomnia and narcolepsy.

Progress made in ML in this area has brought the opportunity for hospitals to switch to
automatedmethods, which can be used to score PSGs. To this end, models need to be robust
and reliable to assure the validity of the outcome they output. To support their assessment,
better understanding of howmodels perform on clinical data is essential, and with our work
we aim to contribute to that.

7.3 Problem Definition

It is difficult to developMLmodels with a high accuracy and reliability in sleep staging. Fur-
thermore, assessing the performance of a model is non-trivial. The result of an automated
process is a hypnogram, rather than just statistics on individual epochs, and the overall qual-
ity of a hypnogram is hard to assess. Also, the performance of a model can depend on char-
acteristics of the patients, such as age and gender. In general, models in sleep staging do not
consider the demographics of the patients and focus on the physiological signals such that
the model can generalize from these. This is due to two reasons. First, if demographics such
as age and sleep disorders were to be considered by the model, it would require an immense
amount of representative data of all combinations of age groups, and each sleep disorder,
requiring thousands of participants. Obtaining this large amount of data is challenging and
time consuming as it often involves patients being recorded, for at least one entire night,
with many sensors in a sleep center. Second, it may be that the sampling done when select-
ing the patients introduced bias due to specific features (i.e., artifacts) of such selected group
being hooked on by the model. These may not be true for other patients belonging to that
category and not included in the sampling. The goal of this project is therefore to develop a
visualization to enable experts to evaluate and understand the performance of ML methods
for producing hypnograms, also in relation to the properties of patients.

The data used in performance assessment of sleep staging models is multivariate as it com-
bines patient’s data of different nature (e.g., demographics, clinical information and physi-
ological records) and the model’s data (e.g., predictions and probabilities). The dataset de-
picting patient data is a table with an undetermined number of attributes. Typically, age
(quantitative), gender (categorical) and other comorbidities (categorical) are part of the pa-
tient’s data. In general, both categorical and ordered attributes can be part of the patient’s
data. Moreover, each physiological record of the patient is a field, where each cell depicts
the physiological measurements for a given point in time. In sleep staging, the sampling
frequency is uniform. In most situations, this field dataset is fed to the ML model to predict
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a list of sleep stages. Each sleep stage is a categorical value representing one of the possi-
ble classes defined by the AASM. Similarly, a list of probabilities is also produced by the
model, where each probability is a quantitative value. Aggregations are often used to sum-
marize performance data. For example, a confusion matrix is a table where both items and
attributes depict sleep stages. Each cell of this table contains a quantitative value.

The system should support various levels of detail for the evaluation of the performance,
where each level leads to its own questions, and enable smooth transitions between these:

L1 Based on individual epochs: What is the probability of the model for a given predic-
tion? What was the input data for a given epoch?

L2 Based on individual hypnograms: What are themain differences between twomodels?
How did the confidence of the model fluctuate over the entire night?;

L3 Based on aggregate results across large sets of patients: What are the scores for aggre-
gate statistics? Are there correlations between data attributes?;

Furthermore, the expert must be able to split the set of patients into cohorts, specific sub-
groups, based on their properties, and compare the performance for cohorts and focus on
specific cohorts, to answer questions such as how does one subgroup compare to another? and
are there groups of patients that have similar performance indicators?. Also, rather than focus-
ing on just a single model, the expert should be enabled to compare multiple models using
different data and/or ML models where the test model depicts the one to be evaluated (e.g.,
neural network) and the referencemodel acts as ground truth (e.g., manual scoring).

From the previous levels of detail and questions, we derive the following tasks:

T1 Explore the distribution of patients in terms of attributes. This provides an overview
of what sort of distribution an attribute follows for the entire group of patients. Visu-
alizing such distributions can help to detect odd behaviors in our model. [L3]

T2 Find correlations between data attributes. Correlations are important to gain insights
into the behavior of the model. For example, it may be the case that our model per-
forms worse for patients that are old and take a specific medication. Hence, experts
should be enabled to perform selections on attributes to generate and validate hy-
potheses. [L3]

T3 Analyze the performance of amodel. Summarized statistics such as accuracy or kappa,
only give a glimpse of the whole picture. Instead, an exploratory process is needed to
gain insights into several factors that usually are intertwined. For example, accuracy
value can be low and yet the clinical interpretation of both test and reference hypno-
grams be the same. [L3, L2]

T4 Compare hypnograms. Visualizing the hypnograms for both test and reference mod-
els is crucial to understand whether the performance of the model is good enough for
medical purposes. When inspecting the epochs of a patient, the approach must en-
able experts to select portions for closer inspection. Input data should be provided to
contextualize an epoch. [L2, L1]

Tasks T1 and T2 shall also be performed for groups of patients.
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Figure 7.2: Illustration of three example problems in performance analysis for sleep staging: error grouping
(a), global performance (b), and fragmentation (c). In (a), most of the misclassifications occur in the first and
last third of the night, whereas the second third is the most accurate. (b) shows shifted predictions where the
model predicts nearly the same global pattern but slightly earlier in time, resulting in low accuracy. Last, in (c)
we seemany transitions (fragmented hypnogram) between REM to N2 that are not present in the ground truth.

7.4 Related Work

In this section, we provide a review on previous work on performance analysis, time series
and sleep analysis.

Performance Analysis. In performance analysis, predictions are the core element to be in-
vestigated. Generally, they are generated in combination with a set of probabilities that indi-
cate how likely the prediction is to be of a certain class. A common approach in performance
analysis is to explore the entire set of probabilities to find possible outliers. Most approaches
visualize probabilities grouped by predicted class. ModelTracker [7] does not stratify predic-
tions in classes because it just considers binary classification. Squares [136] is an extension
fromModelTracker to support multiclass analysis. It makes use of histogram-like visualiza-
tion to show probability distributions. They explicitly divide these into two groups: labeled
and predicted class. The authors use color encoding to depict situations where both labeled
and predicted class agree or disagree. Our work follows a similar approach as Squares, but
using a somewhat simplified visual encoding to present probabilities. Moreover, we comple-
ment it with a confusionmatrix that is used to explore specific cases in more detail by means
of interaction.

Boxer [55] is a system that assists experts in developing and assessing classifiers. They ad-
dress multiclass classification by means of interactive views that are formed by standard vi-
sualizations. It allows experts to layout views in boxes such that it gives different perspectives
of the data, resulting in a flexible analysis of the performance of the classifiers. While Boxer
considers multiple classifiers at the same time, our approach focuses on two models to max-
imize contrast and highlight differences. Furthermore, Boxer does not handle time-series
data. In addition, our approach is model-agnostic within the sleep staging domain.

Time Series. A common visualization approach consists of displaying the input data of a
model together with the predictions. It enables the exploration of the input features of a
model. In the sleep staging domain, the input data is temporal. This data has received little
attention as most works in ML literature target either multidimensional [198], text [160] or
image data [126]. All these approaches provide interaction to select subsets of predictions
to explore the whole (or partial) input space.



Performance Assessment of Sleep Staging Models

7

95

Some work has been done in understandingMLmodels where time is a component. Retain-
Vis [86] andDPVis [85] utilize neural networks and continuous-time hiddenMarkovmodels
respectively, whereas our work is model agnostic. They stratify patients into different groups
defined beforehand, wherein our approach any data attribute can be used for this purpose.
Finally, RetainVis and DPVis take feature contribution as key in their designs. Our work,
however, does not take feature contribution into account and just focuses on performance
indicators and patient data.

Sleep Analysis. The work of Combrisson et al. [28] presents a visualization tool to help
technicians to manually score hypnograms. Automated techniques are used in their work
to detect characteristic features in EEG signals. Their approach emphasizes the detected
features in the polysomnography such that technicians can make better informed decisions
when scoring the hypnogram. Although we do not aim to manually score hypnograms nor
detect features in the EEG, we do make use of hypnograms in our approach. Hypnograms
are the de facto standard of visualizing the sequence of sleep stages, and are also used in
several other approaches [46, 127]. Our work focuses on assessing the performance of mod-
els, whereas the aforementioned work addresses the design of ML models from a pure ML
perspective focusing on the inner workings of models.

In earlier work, we introduced V-Awake [52], a visual analytics system to help sleep tech-
nicians finding potential misclassifications from deep learning models in sleep staging. V-
Awake was received positively by the domain experts, but rather than fixing errors after-
wards, they also aimed to develop better models, and they missed systems to assess the qual-
ity of these. This led to the work presented here. PerSleep would be used when designing a
model. Afterwards, V-Awake would be used in a real-world scenario to find possible mis-
classifications.

In summary, the major contribution of our work is the first system that focuses on the eval-
uation of the performance of models for sleep staging. Sleep staging is very special and
important, and we must carefully design something ad hoc for that. It differs from other
domains due to the incorporation of a time domain (epochs) and the need for flexibility to
define subgroups. Currently, systems do not consider both characteristics simultaneously
and generally focus on predictions independently from each other. Also, sleep staging is a
great example of a ubiquitous pattern, not only for health applications, but also many other
domains like epilepsy and autism [6], and heart failure detection [87].

7.5 PerSleep

The tasks defined in Section 7.3 steered the design of PerSleep. In this section, we introduce
its main components (see Figure 7.3).

7.5.1Model Selection

Themodel selection component (Figure 7.3A) enables users to import newmodels (contain-
ing scoring data) to PerSleep by clicking the plus button. These models can be easily selected
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now to allow for quick switching between distinct models. For instance, when exploring
the hypnogram of a patient, it is interesting to switch between different models to verify if
differences arise in terms of performance. In PerSleep, we compare two models: a test and a
reference model. When both models are selected, all the relevant performance information
will be displayed accordingly.

7.5.2 Patient Data

The patient data component consists of four views to provide an overview of the distribution
of our entire population of patients and mechanisms to select and create groups of patients.

Patient Attribute Views

After discussingwith the experts in sleep staging their needs, we opted for two linked views to
present the patient’s data in twoways: a barchart plot (Figure 7.3B1) and a parallel coordinate
plot (PCP, Figure 7.3B2). Experts can decide what attributes to show at each time, focusing
the analysis in specific parts of the entire dataset.

The barchart plot is useful to gain an understanding of the data distribution quantitatively
(task T1). The PCP can be used to understand correlations in the data attributes (task T2).
We use curves as a solution for the crossing problem [58]. The PCP provides a mechanism
to have the same axis ranges for a set of selected attributes. This is useful to make direct
comparisons between attributes (e.g., accuracy and kappa) when they have different value
ranges. Experts can manually arrange the axes of the PCP in any desired order. PerSleep
uses colors to depict patients belonging to groups of interest, i.e., created groups.

Some of the data attributes presented in our approach are computed dynamically when a
model is selected. These attributes aim to summarize the information contained in the
hypnogram and are meant to help detecting scenarios like those depicted in Figure 7.2:

Performance metric per third of the night This attribute can be used to inspect how the
accuracy and kappa fluctuate during different parts of the night (see Figure 7.2a). Ex-
perts in the sleep domain usually divide the night into three equal parts to carry out
their analysis (e.g., non-REMparasomnias usually occur in the first third of the night).

Pair-wise alignment metric The Smith-Waterman sequence alignment [152] is a local se-
quence alignment that we apply in order to verify how well test and reference model
align. This helps to detect situations in which the accuracy metric is poor but the
overall pattern of both hypnograms is somewhat similar (see Figure 7.2b).

Transitions and Sleep Fragmentation Index (SFI) Thenumber of transitions as well as the
SFI [112] can be useful to detect situations in which a model does not recognize sleep
fragmentation adequately (see Figure 7.2c).

Sometimes, it is interesting to incorporate new data attributes. For instance, the expert may
want to know how many transitions there are for a certain stage to verify a hypothesis gen-
erated during exploration. To this end, our approach enables the creation of these attributes
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on the fly, which are then saved for subsequent exploratory sessions. To do so, users need to
manually code how the values of these new attributes are computed by using the JavaScript
language. A dialog can be opened by clicking on the cog icon present above the barchart
plot and the PCP.This mechanism is meant to be used by users with knowledge on scripting
languages, which is usually the case for ML experts.

The barchart and the PCP highly rely on brushing and linking to perform selections. When
a selection is made in one of the views, the other is updated with the same selection. Having
both perspectives (i.e., quantitative and correlative) linked helps the experts to better under-
stand the global context of their data. More precisely, having visual feedback in the barchart
when performing a selection in the PCP aids to understandwhether the data selected follows
a different distribution compared to the entire population or not.

Group Manipulation View

In Figure 7.3B3 the group manipulation view enables creation andmanipulation of groups of
patients. Created groups and their number of patients are shown in this view, which helps
addressing T1 and T2 for groups of patients. Every group is identified with a name and a
color that are assigned when created. In our system, we assume non-overlapping groups.
Once patients have been added to a group, the PCP component updates accordingly, color
coding each patient with the group color that it belongs to.

PerSleep provides a mechanism to create groups automatically using DBSCAN [43]. The
clustering technique is fed with the normalized confusion matrices for each patient. Nor-
malization is done per patient according to the total number of epochs. The aim of the clus-
tering is to help experts in finding groups of patients that have similar model performance.
The technique takes two parameters: minPts and 𝜖. We set minPts to be 2 as we are inter-
ested in groups that contain at least two patients. 𝜖 can be adapted to enable exploration of
different cluster outputs. We use an euclidean distance as the distance metric.

Groups can be selected on demand to explore performance data exclusively for those patients
contained in the selected group.

Population View

The population view (see Figure 7.3B4) contains a table-like view that displays descriptive
information of the recording of the patients and a summary of the disagreement for the
selected models. We opt to explicitly encode the differences between the two sequences
[54] by computing the epochs in which they disagree. This can be utilized to spot regions
of disagreement, which partly supports task T4. Our visual encoding guarantees visibility
[114] of the disagreements. Moreover, visual aids are added to depict three partitions of each
sequence to ease comparison between patients with different sleep duration. Recordings can
have different lenghts, which are shownnumerically. For each patient, the visualization of the
recording is stretched over the full width of the column to ease comparison. This ismotivated
by discussion with experts who needed to understand if errors present any pattern at a night
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Figure 7.4: Glyph design of probability view. A multi-axis depicts the distribution of true positives and false
positives per class. A line plot reveals the probability distribution for each prediction contained in a selected
bin. The right axis depicts the labeled class.

level. The population view also indicates the groups to which patients belong. It is done by
color coding the icon button placed on the left side of this view.

Users can sort the table of patients based on data attributes. This helps to quickly find patients
for which a model performs the worst or the best. This view provides ways to select a patient
for further exploration. Once a patient is selected, the patient data view, performance view
and physiological data view change accordingly to show the information for this patient. We
opt to keep the selected patient always visible by creating a visual duplicate on the top of
the list. This is very helpful for experts to be aware of the patient that was selected, even
when scrolling through the list. The group view updates to indicate the group to which this
patient belongs by changing its visual encoding (see Figure 7.3B3). Moreover, patients can be
unchecked such that they are not included in a group upon group creation. This gives a fine-
grained method to exclude patients from the selections performed in the patient attribute
views.

7.5.3 Performance View

To support task T3 we introduce the performance view, which is composed of two compo-
nents: probability view and confusion matrix view. They are aimed to be used together to
gain insights into the performance of the model.

The probability view depicts a multi-axis view that conveys information about the probabil-
ities for every epoch (see Figure 7.4). Each axis depicts the probability for each sleep stage,
which are divided in ten bins of equal size ranging from 0 to 100. We distinguish between
two categories: agreements and disagreements, which are placed on the right and left of each
axis respectively. Each category features a vertical barchart depicting the number of pre-
dictions for a specific probability. The agreements represent the true positives, whereas the
disagreements can represent either false negatives or false positives based on the choice of the
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user. False negatives for class 𝐶 in a multiclass problem are those samples where the reference
model classified as 𝐶, whereas the test model classified otherwise. Similarly, false positives
are samples where the test model classified as 𝐶 but the referencemodel did differently.

This view is linked with other components and updates when a selection is performed to
accordingly show the aggregated values. Also, the expert can select specific bins in this view
to generate a line plot in the background (see Figure 7.3C1). It displays a double histogram
for each class where each bin depicts the probability of a prediction. For each histogram,
the right side shows agreements between both models (i.e., true positives and true nega-
tives), whereas the left side depicts disagreements (i.e., false positives, false negatives or a
combination of both). Moreover, the right-most axis depicts either the labeled or predicted
class depending on whether the user is interested in false positives or false negatives, respec-
tively. This complements the information shown in the confusionmatrix view to give a better
overview of the performance of the model.

The confusion matrix view (see Figure 7.3C2) provides a performance summary for every
sleep stage. It is a standardway of presenting performance inmulti-class scenarios. Although
it can present information for any number of distinct classes, it is a good practice to keep this
number low. In general, we deal with up to five distinct classes in sleep staging, thus clutter
is not an issue. Previous work [52] also used a confusion matrix to guide the user to find
potential misclassifications when ground truth is not available. In PerSleep, ground truth is
available. Therefore, our confusion matrix shows the actual data rather than an estimate.

Sleep staging is, by definition, an imbalanced problem [163] with higher frequency of class
N2. This poses the problem of getting biased insights when visually inspecting the confu-
sion matrix. We provide an interactive confusion matrix where experts can decide how to
display the data in the cells. Four possibilities are available: whole numbers, percentages,
precision and recall. Percentages, precision and recall values are shown as ratios in our ap-
proach. When selecting recall or precision in the confusion matrix, the visual encoding
adapts to better convey that numbers are normalized per column or per row. The confu-
sion matrix can convey a general message on where accuracy and error occur more often.
However, it is difficult to get an idea on the relative distributions of errors. For this reason,
we accompany the confusion matrix with a double, vertical bar chart (Figure 7.3C3). The
top side shows the true positives and true negative epochs (i.e., matching epochs), whereas
the bottom side displays either false negatives, false positives or a combination of both (i.e.,
mismatching epochs).

Next to the confusionmatrix, accuracy and kappa statistics are shown. These are understood
by most experts in sleep staging.

Experts can interact with the cells of the confusion matrix. When one is selected, it filters
out those patients that have at least one epoch in the selected category. For example, experts
can select patients where REM is confused with N3. This particular situation is of interest
since REM and N3 are conceptually very different.
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7.5.4 Physiological Data View

The physiological data view is shown in Figure 7.3D1, D2 and D3 and addresses task T4.
This component provides a close look at the predictions of the test model, the ground truth
of the reference model, and the signals for a single patient. Restricting to a single patient is
motivated by discussions with the somnologist who stated that visualizing hypnograms si-
multaneously for many patients would rather obfuscate the analysis. By default, the hypno-
grams of the selected models are displayed. However, the expert may alternatively choose to
visualize the hypnogram of other models (Figure 7.3D2) for quick comparisons.

This view features a piano-roll visualization for both test and reference scored hypnograms
(see Figure 7.5a). It provides a visual overview on how similar they are. Both hypnograms
follow a linear representation, with relative scale and unified layout [19]. Sometimes, devi-
ations can be subtle and difficult to spot. To this end, we propose a combination of juxta-
position and explicit codification of differences [54]. The difference view follows the same
principles as in the population view. The piano roll encodes sleep stages with position and
color. Experts can switch to a single color piano-roll, which is closer to the representations
they currently use in the sleep domain, or customize the colors for each sleep stage, which
updates the entire interface of PerSleep. Our previous work [52] featured a similar view,
however it was restricted to just one hypnogram to enable experts to spot and brush inter-
esting patterns to find misclassifications.

When probability data is available, experts can choose to visualize it togetherwith the hypno-
gram (see Figure 7.3D1). This provides an overview on how the probabilities fluctuate, po-
tentially signaling situations in which the model was not sure about a prediction. Similar
to our previous work [52], the probability is encoded in the background of the hypnogram.
Two modes are provided: predicted sleep stage or chosen sleep stage. The first projects the
probability of the class that is predicted in a certain epoch, whereas the second enables ex-
perts to visualize the probability of a sleep stage for all the epochs. This is useful to generate
hypotheses about what the model detects in the input data.

Basic demographic information, such as age and sex, is shown in this view when a patient
is selected. These demographics are important for experts in order to correctly interpret the
hypnogram. The sleep of young and old people is different, for example. Patient ID and
file name are shown for completeness such that the expert can quickly identify the patient
being visualized and from which file the PSG is taken. Experts can explore patient data in
full detail by clicking on the medical notes icon, which opens a new window where the full
data is listed in tabular form.

A widget on the upper left brings the set of signals. The expert can select any available sig-
nal to be shown below the hypnograms (Figure 7.3D3). This provides a flexible mechanism
to deal with models that have different input signals (e.g., with and without respiratory in-
formation). Every signal is shown through a time window, which can be configured by the
expert. Navigation is enabled in epoch units. The expert can set the length of the signal in
seconds to be displayed, giving more flexibility to explore the epochs surrounding a predic-
tion.

Twomain interactions are provided. The first one concerns selections of parts of the hypno-
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Figure 7.5: Glyph design used in physiological data view. a) depicts the way we visualize hypnograms when
selections are done in the performance view; b) shows the way we encode the differences between predicted
and labeled hypnograms, where the colored stripes indicate disagreement and different opacity is used to
depict current selection; c) presents the slider used to select a specific epoch.

grams with focus+context. To this end, we rely on brushing over the difference view. It
facilitates the selection of disagreeing, or interesting in general, fragments. The second in-
teraction enables quick navigation to the input data for a specific epoch. This can be done
by dragging a slider over the hypnograms. The design of the slider provides hints indicating
the class of the test and the reference models. A line connecting both ends encodes whether
they both classes agree. Examples can be seen in Figure 7.5c.

7.5.5 Complexity and Scalability

PerSleep has been implemented as a web app that entirely runs on client side. This means
that data never goes out of the local machine of the user, and everything remains in the local
storage of the web-client. This decision was made to ensure there are no privacy issues with
the data being analyzed. However, it also introduces limitations that need to be addressed.

The visualization of the input data besides the outcomes is important for performance eval-
uation. In sleep staging, many physiological signals are recorded, resulting in a large amount
of data. In order to enable a smooth data exploration, we make use of WebAssembly [61] to
run EDFlib, a C library that reads EDF [80] files efficiently. With this approach, we achieve
a nearly native speed, resulting in a smooth and viable data exploration.

Another consideration goes for the computation of data attributes. As discussed in previous
sections, our approach providesmechanisms to define new attributes. These are recomputed
on demand every time a new model has been imported. This ensures that PerSleep remains
responsive during the exploratory phase.

We have run experiments with 236 patients and 463,090 epochs. In other experiments based
on real-world data, we handled smaller amounts of data in terms of patients and, thus, num-
ber of epochs. Our approach has been able to handle all our experiments adequately and
no concerns arose from our users. We have observed that the probability view tends to be
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computationally most demanding of our system. However, we have not experienced any
significant impact on the interactive performance for real-world use cases.

7.6 Use Case

We demonstrate our approach on a real-world multivariate sleep dataset which contains
three different alternative sleep staging models, based on the use of ECG, respiratory effort
and ECG+respiratory data. The data that these models consume can be extracted from sur-
rogate devices. For example, the ECG model is fed with heart rate variability, which can
be measured with most modern smartwatches. The interest of the experts in these models
is to verify if they could replace the gold standard (i.e., PSG) to perform sleep studies in a
less intrusive manner. The three models output 4 classes: awake, N1+N2, N3 and REM. The
dataset was recorded in a Dutch hospital as part of a study about sleep in 74 patients with
intellectual disabilities more than 16 years old who suffered from a variety of sleep problems.
Some patients present comorbidities such as heart problems and epilepsy. The patients re-
ceived a PSG during routine clinical care. Patients with absent ECG channels or poor ECG
and EEG were discarded from the study. Patients’ attributes such as age, sex, comorbidities,
primary diagnosis, whether they receive medication, etc. are available in the dataset. We
show how the visualizations and interactions in our approach help experts to gain insights
into this dataset. The use case was performed throughout several interactive group sessions
with a somnologist, a machine learning expert and a signal processing expert. The three
users are all knowledgeable about sleep and machine learning. A multidisciplinary setting
is common for assessing the performance of a ML model. Each expert can add a different
point of view: the somnologist provides a clinical perspective, the ML expert adds knowl-
edge about the model and the signal processing expert includes feedback about the signals
fed to the ML model.

Generally, interesting patients are those that exhibit an extremely good or bad performance
compared to others. Initially, we created a case study in our system containing the patients
recorded in the previously defined study. Then, we incorporated the data from the three
models, resulting in 79,573 epochs per model.
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Figure 7.6: a) initial set of patients for ECG model; b) selection with accuracy higher than 50%; c) selection of
patients older than 60.

First, experts selected the ECG model as test model, and human scoring based on EEG as
the reference model. We started the exploration by inspecting relationships between data at-
tributes. Experts wanted to verify if there was some correlation between basic demographics
and accuracy. For this, the experts selected age in the barchart view, and age and accuracy
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in the PCP. After a first inspection of the PCP, the experts observed a certain trend of lower
accuracy scores for older patients. In particular, for 3 out of 4 patients (75%) that are 60 or
older, the ECG model scored lower than 50% in terms of accuracy. This contrasts to pa-
tients that are younger than 60, where for just 6 out of 70 of them (9%) the model scored
lower than 50% accuracy (Figure 7.6). This finding was interesting, as there is no data on
age dependency of alternative sleep staging models. We explored the same set of patients
with the respiratory model. In this case, only 1 out of 4 patients scored lower than 50% ac-
curacy, which may indicate that the ECG model is not reliable for older patients. A closer
inspection of this patient revealed that the ECGmodel was not able to detect any REM stage,
and most of times the model confused N3 with N1/N2.

Epilepsy appears to be more prevalent among people with intellectual disabilities. In fact, it
is believed that up to one-fifth of the population with intellectual disabilities also suffer from
epilepsy. Epilepsy certainly has an impact on sleep abnormalities. In particular, it can in-
crease sleep latency (i.e., time to fall asleep), sleep fragmentation, awakenings and stage shifts
[104]. However, in addition, epileptic activity in the EEG canmake it more difficult to anno-
tate sleep stages. For these reasons, the experts wanted to understand how the ECG model
was performing on these patients. To this end, the experts created two groups: patients with
and without epilepsy. These groups resulted in 28 and 46 patients respectively. We observed
that average accuracy and kappa values were very similar for both groups, which suggests
that the ECG model is not performing differently for patients with epilepsy.
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Figure 7.7: Patient (ID 51) with diagnosed epilepsy. The ECG model (top row) performed slightly better than
respiratory model (bottom row) although the former used data with many artifacts as input, which is shown
for epoch 275 and a 30 seconds window.

To gainmore insights into the epilepsy patients, the experts sorted the patient list by accuracy
to focus on the top and bottom cases. In particular, we found one case with low accuracy
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(44%) which contained only ECG artifacts (Figure 7.7 top). Despite this, the model was still
able to classify some sleep stages. The experts switched the test model to check how the
respiratory and ECG+respiratory models performed. The respiratory model, whose data
does not seem to contain artifacts, scored slightly lower (42%) than the ECG (Figure 7.7
bottom). However, it was interesting to note that the combination of both (ECG+respiratory)
provided a slightly better performance (48%). Experts looked at commentsmade by the sleep
technicians by clicking on the medical notes icon. It was clear that the technician scoring
the reference sleep recording had trouble identifying some sleep stages while it was easy to
distinguish between wake and sleep. It was difficult to decide between N1/N2 and N3 in this
patient. After reading these annotations, the experts suggested that the ECG model may be
providing a better scoring than the human EEG based scoring.

From this moment of the analysis, experts focused on selecting patients from the full pa-
tient list to obtain an idea on common problems. Experts detected two common situations:
REM misclassifications and N3 fragmentation. Regarding REM misclassifications, the ex-
perts proposed that this could be caused by sleep apnea (often occurring in this stage), or
autonomic dysfunction leading to abnormal ECG patterns in REM. By inspecting the data,
they were able to verify that a breathing disorder was indeed diagnosed for some of these
patients.
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Figure 7.8: Examples ofmisleading statistics. The top row (ID 114) presents a case inwhich the test ECGmodel
does not recognizeREM fragmentation (see red circles). Bottom row (ID 133) have similar clinical interpretation
(i.e., similar overall pattern) despite the low accuracy and kappa of the test model.

During this part of the analysis, experts found cases in which aggregated metrics (accuracy
and kappa) were absolutely misleading. In particular, they found cases where kappa and
accuracy were high, but the clinical interpretation of the two hypnograms would be very
different (Figure 7.8 top) due to the absence of sleep fragmentation. Similarly, we found
some cases in which kappa and accuracy were low, but the clinical interpretation of the test
model wouldmost likely be the same as the referencemodel (Figure 7.8 bottom) because the
overall pattern of transitions looks alike for the test and the reference model.
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7.6.1 Sleep Fragmentation

Sleep fragmentation is one of the problems depicted in Figure 7.2. One of the causes of
sleep fragmentation is medication. To analyze how our model copes with this, the experts
selected three attributes in the PCP view: transitions in the referencemodel, medication and
transitions in the test model. Immediately, they observed two things: medication seems to
have an influence in the total number of transitions in the reference model but not in the test
model; and the test model produced a significantly lower number of transitions for all the
patients (see Figure 7.9). The latter may indicate that the model is smoothing the resulting
hypnograms.
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Figure 7.9: PCP comparing transitions in test and reference model against medication. As can be seen, the
test model seems to smooth the number of transitions for patients with and without medication.

In order to verify this hypothesis, the experts created two groups of patients. The first group
contained patients with a low number of transitions (≤ 150) whereas the second had a high
number of transitions (> 150) according to the reference model. Initially, they noticed that
both groups had different performance metrics (70% vs 60% accuracy; 0.5 vs 0.4 kappa).
Next, they wanted to gain more insights into the behavior of the model for each group. They
started the analysis by selecting the group with many transitions and sorting the patient list
by accuracy. After inspecting several patients with different accuracy values, they discov-
ered that sleep fragmentation was indeed not correctly detected in the vast majority of the
cases. They repeated the process for the other group of patients. They found out that thema-
jority of patients did not present a very fragmented hypnogram, but they found a few cases
that presented fragmentation and yet the model produced a smoother version that omitted
such fragmentation. This may indicate that the model is not able to capture the transitions
between sleep stages as a human scorer would.

7.7 Discussion

The use case presented in Section 7.6 shows how PerSleep can be used for an exploratory
analysis to evaluate the performance of a ML model for sleep staging. This is done by lever-
aging the proposed design to explore the data from different perspectives. Tight linking
between patient data and epoch data provides the somnologist and the ML experts a mech-
anism to generate and test hypotheses that would otherwise require a lot of manual work.
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The definition of performance for sleep staging is ill-defined due to the coarse-grained na-
ture of traditional metrics that are often provided when evaluating sleep staging classifiers.
According to the somnologist and ML expert: “There was a clinical message out of this. It
shows that the clinical interpretability of a surrogate or target hypnogram definitely is not fully
determined by the kappa and accuracy numbers”. This claim strongly supports the need for
visual analytics systems that help in performing exploratory analysis of performance in sleep
staging.

The current workflow for performance analysis in sleep staging is rather cumbersome. It of-
ten involves several steps performed in different platforms and software. Among the steps,
we can find visual tasks like analysis of hypnograms, etc. Our approach unifies all the steps
and provides mechanisms to link elements in a visual manner. A remark from the somnol-
ogist after the use case was: “In papers, you very often look either at the group level or some
illustrated hypnograms. One of the merits of PerSleep resides in the ability to analyze very
quickly individual recordings (i.e., hypnograms) so one could search for specific reasons why
discrepancies happen, which can really be different from subject to subject”.

In general, working with clinicians limits the choices when designing a visual analytics sys-
tem. For example, we found that the PCP was on the edge of complexity for the doctor.
This motivates using simple visualizations. Clinicians are used to some graphical represen-
tations (in this case hypnograms). These traditions must be respected and included in the
final design. Otherwise, the system may become unusable for clinicians.

As for other approaches, ours has limitations. For instance, ours does not deal with tech-
niques that use inputs such as images. This affects the generalization of our approach. Also,
we heavily rely on prior knowledge from the expert on themodels being analyzed such as the
input data, or the set of patients (e.g., healthy or not). Additionally, the creation of new data
attributes relies on prior knowledge with scripting languages, which can be a problem for
experts on sleep medicine that lack of a more technical background. Finally, our approach
does not provide mechanisms to distinguish between findings that may not be statistically
significant. We however believe this is alleviated because the users can rely on their expertise
to decide whether the findings are representative or not.

7.7.1 Approach Generalization

Our approach can be generalized to other domains. In the medical field, it can be applied
in epilepsy prediction [147]. In this context, ML models are used to detect seizures from
EEG data. Hence, this domain shares many similarities with sleep staging: predictions are
collected per patient, which also has multivariate data, and they are sequential. The data
abstractions of the epilepsy and the sleep staging domains are alike.

In epilepsy detection, MLmodels are trained to, at least, detect two different classes: seizure,
and non-seizures. These classes can be split into more specialized ones to characterize the
severity of the epilepsy: simple-partial, complex-partial, generalize convulsive and generalize
non-convulsive seizures. The former two epilepsy seizures happen in one hemisphere of the
brain, whereas the latter two happen in the whole brain. Usually, the duration of a seizure
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ranges from seconds to minutes. Users in this field would be interested in correctly recog-
nizing the type of seizures to determine the severity of the epilepsy attack and correlate the
predictions of the model with other clinical data. Our approach was designed to address the
tasks stated in Section 7.3. Except T4, which involves comparing hypnograms, the remain-
ing tasks would still be suitable in this field. Additionally, locating the origin of the seizure
is important in epilepsy detection. In this regard, the EEG (i.e., the brain electrodes) already
gives some clues on where the seizure took place. Therefore, it would be necessary to add a
new task. This would help in locating the origin of the seizure.

7.8 Conclusions

We presented a novel approach to evaluate the performance of MLmodels for sleep staging.
It combines different visual and interactive components to enable experts to conduct their
exploratory analysis. In contrast to related work, we address a problem that involves predic-
tions over time in combination with patient data, which cannot be dealt with using current
approaches. A use case has been presented to demonstrate our approach where we describe
the main discoveries made by experts during exploration.

In principle, a similar approach like ours can be used to any situation where complex dy-
namic signals have to be judged for the state of the object of interest. In our case, we took
care to understand the needs of our collaborators and carefully tuned the system accordingly.
This may be simply the way to go, but it is also intensive. The design of a generic, flexible
system that enables similar functionality without programming is still an open challenge.
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Conclusions

In the previous chapters of this dissertation we attempted to answer the research question in-
troduced in chapter 1: “How can we use interactive visualization and automated techniques
to understand and optimize medical workflows?” This chapter discuss the main conclusions of
our work and directions for future research.
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8.1 Achievements

I n this dissertation, several visualizations, interactions and experiments were presented.
They all cover the broad topic of improving medical workflows and target specific topics

within process mining and machine learning. The presented approaches, which are in form
of interfaces, prototypes and use cases, helped to answer the research question. Our research
was divided into twomain areas, namely processmining andmachine learning. An overview
of the conclusions of chapters 3 to 7 is presented below.

Soundness Analysis in Petri nets
In chapter 3, we presented a tool to visually assess the soundness of a Petri net, where analysis
tasks were presented. We demonstrated the usability of our approach with two use cases.
One limitation of our approach is that it relies on the state space, which cannot always be
computed in a reasonable time.

Performance and Conformance Checking for Process Models
In chapter 4, we proposed an approach to analyze process-centric information of an event
log in combination with clinical longitudinal data. We demonstrated our approach on an
sepsis dataset. We showed that our approach can be used to assess conformance between
modeled and real behavior of a clinical process.

Interactive Correction of Deep Learning Predictions in Sleep Staging
In chapter 5, we presented a visual analytics approach for interactive correction of machine
learning predictions in the real world. It is a novel visual analytics approach applied in a
sleep staging context. The provided use case shows that our approach can be used to find
and correct suspicious predictions. Discussion with experts revealed their genuine interest
and also opportunities for improvement. Although a perfect correction is not guaranteed,
our approach does enable experts to analyze interesting or suspicious patterns.

Explainability for Sleep Staging
In chapter 6, we introduced the problem ofmaking sense when dealing with temporal inputs
in deep learning approaches. Sleep staging is an example of scenario where temporal inputs
are used to score the sleep of a person. In our experimentswe found that themodel seemingly
detected patterns in the input data. However, such patterns were not easy to relate tomedical
concepts such as k-complexes, spindles and alpha waves. Our experiments focused on a
single channel input, which can be a limitation for models trained on multiple channel.

Performance Assessment of Sleep Staging Models
In chapter 7, we presented a novel approach to evaluate the performance of ML models for
sleep staging. In contrast to related work, we address a problem that involves predictions
over time in combination with patient data. Our approach enables for a flexible exploration
that takes the patient data and the performance at its core. A use case was presented to
demonstrate our approach, which showed that experts were enabled to make useful discov-
eries during exploration.
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8.2 Research Question

The previous chapters of this dissertation presented visual methods and experiments in an
attempt to answer the research question proposed in chapter 1:

How can we use interactive visualization and automated techniques to understand and
optimize medical workflows?

Moreover, in the same chapter, we divided the research question into smaller, more targeted
questions. Figure 8.1 depicts an overview of the main contributions presented in this dis-
sertation and the relations between these, which helped to answer the research question.
Moreover, a discussion on how our proposals contributed to answering these questions is
presented below:

1. How can we understand the circumstances under which soundness breaks down in a
Petri net? The visualization and interactions proposed in chapter 3 provide insights
into soundness verification for process models. The method used in our approach
[181] to compute the state space employs a threshold to decrease the depth of the
space to be explored. Although this workaround simplifies the computation of the
state space, it can still take considerable time to finish if the semantics of the Petri net
are too complex. Alternatively, an incremental approach could be used to alleviate this
issue. In this sense, progressive visual analytics [159] could be a perfect match for this
task.

In Petri nets, we have places and transitions. Places can be contained inmultiple states
of the state space. This was one of the challenges we addressed with our design as this
information is important to have a better context of the role of a place in the semantics
of the Petri net. For example, we can visualize if a place belongs to a single final state,
multiple or none just with an overview. Regarding soundness, we use a combination
of multiple views to show three important aspects for soundness verification: the Petri
net, interesting states of the state space and the runs. These views and the interactions
between them enable the exploration of interesting states.

Our approach showed to be effective in analyzing the circumstances under which
soundness breaks. It represents a step ahead in comparison with traditional tech-
niques where soundness verification is not presented together with the process model,
making it more difficult to understand the circumstances under which the process is
no longer sound. Our approach addresses this gap and enables experts to analyze these
circumstances.

2. How can we gain insights into the modeled and real processes of hospitals with confor-
mance checking? Methods proposed in the literature to assess the conformance of a
process in a hospital did not consider the patient perspective. Linking both process
and clinical data can result in valuable insights into the processes running at hospitals
and the guidelines they follow to treat certain diseases. Taking the patient perspective
into account helps to better understand the process followed in a hospital. For exam-
ple, deviations can occur based on the result of lab tests, delays in the delivery of drugs
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Figure 8.1: Overview of themethods and experiments described in this dissertation and themain interactions
between them.

and problems in the administration of the hospital. The patient data perspective to-
gether with process mining analysis techniques is the major novelty of our approach.
Patient information is not currently taken into account by automated techniques due
to the complexity of formalizing all possible cases and guidelines. Besides, doctors
rely on their own experience to make decisions, which can make the incorporation of
such knowledge in an automated approach infeasible. Our design can also be used to
find ways of dealing with certain diseases that do not match the guidelines. This can
be useful to explore new ways of treating certain patients or to detect problems with
guidelines.
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We found that having domain knowledge is important to operate a system like ours.
Chapter 4 presented a sepsis case. The guidelines to treat this disease impose certain
time frames to run tests and provide medications. Such domain knowledge is fun-
damental to explore how the real behavior fits those time constraints. Our design
enables experts to filter cases based on different constraints so they can replicate those
imposed by the guidelines and verify whether they are fulfilled. This flexibility is cru-
cial for the generalization of our solution, as this can be applied to other domains with
minor adaptations.

3. How can we support the usage of machine learning in a real-world, clinical setting? Ma-
chine learning represents a promise for the future of healthcare. The usage of auto-
matedmodels can be problematic due to the lack of trust and confidence in the output
of such models, making adoption in a real world setting even harder. Our proposal
involves several views on the same data that can help experts to find potential misclas-
sifications. Our goal is twofold: fixing misclassifications and building trust.

Despite the importance of the problem tackled, no other techniques have yet been
proposed in the same direction for sleep staging. With V-Awake we found out that
the combination of dimensionality reduction techniques, detailed views of the epochs,
expert knowledge and interaction was sufficient to detect potential misclassifications.
We also realized that patients with abnormal sleep behaviormay be difficult to analyze
since abnormal patterns may be wrongly taken as misclassifications.

Acquiring extra knowledge about the inner works of the model is beneficial to enable
a more efficient exploration. To this end, chapter 6 showed experiments with a neural
network. In these experiments, we found that some layers of the model were recog-
nizing intuitive patterns in the input data. This can be used by experts to validate the
features extracted by the model to make certain classifications, which enhances the
trust in the model.

4. How can we evaluate the performance of a machine learning model for different groups
of patients? Performance assessment in machine learning classification is challenging
by itself. Generally, just an overview or a high-level snapshot of the performance per
class is examined. In clinical settings, however, the performance of the model may be
influenced by other factors that are not evident with a traditional performance eval-
uation. Naturally, each person has different underlying physiological characteristics.
This is also the case in sleep, where for instance the sleep of a young person differs
from the sleep of an old one. In order to enable machine learning experts to bet-
ter evaluate the performance of models for sleep staging, we combined performance
information (e.g., predictive accuracy, Cohen’s kappa value, etc.) with patient infor-
mation (e.g., sex, age, medication, previous disorders, etc.) in chapter 7. The usage
of multiple linked views has the advantage of exploring the data from several per-
spectives. Moreover, the creation of subgroups of patients was beneficial to divide the
cases to be explored in smaller and more comprehensible groups. We discovered that
easing the inspection of hypnograms in conjunction with patient data is effective to
better understand the performance of machine learning models in sleep staging.

One of the biggest challenges to evaluate the performance in sleep staging is that mul-
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tiple problems can arise simultaneously. Chapter 7 showed three common problems,
although others exist. Therefore, our design needed to address multiple situations in
a flexible manner. We incorporated a PCP to explore correlations in data attributes.
Moreover, the ability to compute new data attributes proved to be effective to enable
a flexible exploration of the data and quickly test new hypotheses.

8.3 Directions for Future Research

The methods and experiments presented throughout this dissertation, described in chap-
ters 3 to 7, enabled us tomake advancements in improvingmedical workflows. We validated
our prototype solutions by presenting use cases and discussing our work with domain ex-
perts. In the process of our research, we could not tackle all problems. For this reason, in
this section we provide pointers for future research.

Applicability
Themethods presented in chapters 3 to 7 were applied to specific domains such as Petri nets,
sepsis and sleep staging. This limits the applicability of the presented approaches. However,
our methods are generic enough to be applied to other applications in healthcare. Chap-
ters 5 and 7 present methods applied to sleep staging, but they also provide directions for
application in other domains where time series data plays an important role, such as epilepsy
detection and colon cancer video inspection. The method presented in chapter 3 concerns
Petri nets, which can be a limitation for the applicability of our method. Many process mod-
els can be converted into Petri nets, which can help dodge this limitation. Finally, chapter 4
presented a combination of process mining and visualization techniques applied for a sepsis
case. Researching how to adapt our methods for bigger process models with hundreds of
activities would be crucial to apply our methods in such scenarios.

Machine Learning in the Real World
In chapter 5 we assumed the model to be static, but the integration of active learning may
be greatly beneficial in the design presented in chapter 5. It could be used by experts to
improve the model when potential misclassifications have been found. This requires more
research to ensure that the learning process provides benefits. For example, it may be the
case that our model loses the ability to generalize, resulting in overfitting. Furthermore,
the dimensionality reduction plot presented in chapter 5 can be raised to a higher level. In
particular, focusing on the entire cohort population rather than a single patient could provide
some further insight into patients that have more faulty predictions. Our intuition is that we
could apply a dimensionality reduction method over the entire population to find groups
of patients that share similar peculiarities in terms of activations of layers. With this, users
would only have to analyze some representative subjects from a particular cluster and apply
the learned facts to the rest (e.g., majority of faulty predictions in stage REM, similar sleep
patterns, etc.).

Process Mining and Patient Data
Future directions should enable the user to work in terms of cohorts of patients and present
correlations, distributions and process deviations between them. Moreover, research on how
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to increase the scalability of the design of chapter 4 to deal with larger and more complex
processes is necessary.

Chapter 3 used automated techniques to compute the state space of a Petri net. Future di-
rections must consider alternatives to compute just the parts of the state space that are used
in the analysis. One option might be to explore the state space incrementally by comput-
ing just portions and incrementally compute the rest on demand with user interaction. In
this context, progressive visual analytics [159] may be a good fit. Furthermore, displaying
the runs in an intuitive matter is not a trivial task. The design presented in chapter 3 lacks
an explicit way to display loops and concurrency, which would help to perform important
tasks (e.g., examine concurrency, loops and causal order in runs). Experiments to compare
different approaches for displaying the runs would be beneficial to discern the most suitable
approach.

Machine Learning Performance and Patient Data
Clustering can be beneficial in performance evaluation to find groups of patients that share
similar problems. This follows the same reasoning as for the future directions presented for
machine learning in real world. Future work should extend the clustering capabilities of
the approach described in chapter 7 and evaluate different techniques and distance metrics.
As proposed by the experts, analyzing more than two classifiers simultaneously can ease
the task of performance assessment. However, it is not entirely clear how to combine all
this information in a visual analytics approach that remains simple enough to be used by
domain experts. Finally, analyzing the uncertainty of a model would be greatly interesting.
Amotivation example is thework of Stephansen et al. [158], where the uncertainty produced
by a sleep staging classifier was used to model a narcolepsy classifier, raising expectations for
the discovery of other sleep-related disease markers. Incorporating this information in a
visual analytics system could help to discover new markers.

8.4 Lessons Learned

Throughout the development of this dissertation, I learned several lessons that I would like
to pass to future PhD students in this area. I collected these in the following points.

Expert knowledge is crucial, but it also has limitations All projects presented in this dis-
sertation contain, in a higher or lesser degree, expert knowledge. Usually, it steered
the definition of the problems that we tackled and the final solutions. For this reason,
expert knowledge is absolutely important to the success of a project. However, expert
knowledge by itself is not enough to successfully deliver a good visualization design.
Experts tend to stick to techniques and methods that are familiar to them. This may
limit the scope of the choices and decisions taken in a visualization design. Finding a
good balance between expert knowledge and visualization principles is the key.

Intuition can play in your favor Sometimes, intuition is somewhat disregarded in favor of
a reasoning process. It is important to reason about every choice made in a visualiza-
tion design, but intuition and inspiration are important as well. In particular, at the
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beginning of exploring a new problem, where things are not absolutely clear, following
your instinct can entail the success of such idea.

Data is often difficult to obtain When collaboratingwith other institutions, using their data
for analysis is crucial as this represents real-world data. However, in some occasions,
problems may arise with privacy and confidentiality, leading to delays and sometimes
making access to that data hard, if impossible. Having a backup plan is important to
ensure the continuity of your work.

Do not be intimidated Thevisualization community is continuously growing and there are
very smart and experienced people. Sometimes, it may be scaring to present or defend
your work in front of them, but it is absolutely worth it. The community is open and
welcoming, and even the brightest people started as a student. Not being the best is
allowed as long as you always aim to your best.

Themedical domain is special Working with people involved in the medical field can be
challenging. People in this domain often have to follow guidelines, privacy rules, and
are under continuous time pressure. Moreover, their visualization knowledge is based
on simpler techniques such as bar charts, line charts, etc., and they are only willing to
spend time if it provides clear benefit. Carefully taking these constraints into account
is vital for the success of a project.

8.5 Finally

A central topic in this dissertation is the applicability of machine learning models in real-
world contexts. In particular, we focus on healthcare, which can greatly benefit from using
machine learning in their daily workflows. The benefits are clear to everyone: improve time,
reduce costs, assist doctors in taking difficult decisions, to name a few. However, many times
we tend to avoid some obvious consequences. If machine learning models are not perfect,
can we trust them to influence the decisions about real patients? This question significantly
influenced some of the ideas presented in this dissertation.

Much work is done currently in better understanding complex machine learning models.
This certainly helps doctors utilize these because they better understand how the model
works. However, this may not be sufficient in the (near) future. With an increase in the us-
age of machine learning, there will be a more urgent need for systems that increase the trust
of doctors. Visualization presents itself as a splendid candidate to this end. An indication
can be seen in the increase of publications in the field of explainable artificial intelligence.

I absolutely believe that visualization and machine learning will play a key role in the future
of medicine. This is the reason why I include these words at the end of my dissertation to
encourage people in the field to work towards more trustworthy and reliable techniques that
can help clinicians in real-world scenarios where ground truth is no longer available.
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Summary

Visual Analytics for Medical Workflow Optimization

Workflows concern the sequences of steps taken to perform a task. Optimizing such work-
flows is crucial to minimize the time spent, especially in the medical domain. Recent ad-
vancements in process mining and machine learning have brought new ways to analyze and
improve the medical workflows that physicians use at work. Process mining provides a way
to analyze the properties of a workflow, enabling a better understanding. Machine learning
leverages the capability of computers to perform human tasks (e.g., classification) to de-
crease the time spent by doctors in such tasks, enabling them to focus on more prominent
tasks (e.g., diagnosis).

In this dissertation, novel visual analytics approaches are presented to understand and opti-
mize medical workflows. In particular, we focus on the following research question:

How can we use interactive visualization and automated techniques to understand and
optimize medical workflows?

To answer this question, we show how visualization and automated techniques can be com-
bined to understand medical workflows and to improve specific tasks from both process-
centric and machine learning perspectives. For each, we introduce novel visual approaches
that enable hypothesis-driven exploration of the output produced by such automated tech-
niques.

The first part of this dissertation introduces approaches that are process-centric, i.e., they
combine process mining and visual analytics to improve medical workflows. In chapter 3
we propose a visual approach to analyze workflows in the form of Petri nets. We combine
processmining techniques with visualization to enable exploration of properties of Petri nets
that are desirable when designing workflows, enabling experts to detect erroneous scenar-
ios and trace these in Petri nets. Chapter 4 presents a visual analytics approach that com-
bines the output of process mining algorithms for sepsis analysis. Specifically, alignments
are computed and visualized to understand if the daily work conforms to or deviates from
the guidelines proposed to treat sepsis. To this end, event logs are aligned with a given pro-
cess model representing a guideline, enabling an exploratory process of the deviations from
the guideline.

In the second part, we focus on the optimization of specific tasks within workflows via ma-
chine learning approaches. Chapter 5 introduces the first visual analytics approach to find
misclassifications in ground-truth free environments for sleep staging. In particular, we en-
able hypothesis generation and verification to find misclassifications and to eventually cor-
rect them bymeans of interaction. We discuss how this approach can be applied in other do-
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mains. Chapter 6 presents a case study of explanability for one dimensional temporal inputs
in deep learning. Several perturbations are studied to analyze their effect in the generation
of saliency maps. These are used to visualize the fragments of the input that are relevant
for a model when making a decision. We focus on the sleep staging domain again, but our
results can be applied to any temporal input data. In chapter 7 a visual analytics approach
is proposed to evaluate the performance of sleep staging classifiers. Understanding the per-
formance for different cohort of patients is critical to utilize such classifiers conveniently.
Moreover, the sequential behavior of sleep introduces challenges that are not present in tra-
ditional classification problems and need to be addressed. Finally, in chapter 8 we present
conclusions and opportunities for future work.
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Workflows concern the sequences of steps taken 
to perform a task. Optimizing such workflows is 

crucial to minimize the time spent, especially in the 
medical domain. Recent advancements in process 
mining and machine learning have brought new ways to 
analyze and improve the medical workflows that 
physicians use at work. Process mining provides a way 
to analyze the properties of a workflow, enabling a 
better understanding. Machine learning leverages the 
capability of computers to perform human tasks (e.g., 
classification) to decrease the time spent by doctors in 
such tasks, enabling them to focus on more prominent 
tasks (e.g., diagnosis).

In this dissertation, novel visual analytics approaches 
are presented to understand and optimize medical 
workflows. In particular, we focus on the following 
research question:

How can we use interactive visualization
and automated techniques 

to understand and optimize medical workflows?

To answer this question, we show how visualization 
and automated techniques can be combined to 
understand medical workflows and to improve specific 
tasks from both process-centric and machine learning 
perspectives. For each, we introduce novel visual 
approaches that enable hypothesis-driven exploration 
of the output produced by such automated techniques.
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