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Summary
Respiration rate (RR) and respiration irregularities are often the earliest indicators
of physiological deterioration. Furthermore, respiratory disorders can be charac-
terized by cessations of breathing, i. e. apneas. Consequently, in some hospital
environments, such as critical care and sleep clinics, respiration is continuously
monitored using different sensors and electrodes. In sleep clinics subjects affected
by sleep-disordered breathing (SDB), where obstructive sleep apnea (OSA) is
one of the most common disorders, are diagnosed using polysomnography (PSG),
which monitors several vital signs. Between these, respiratory motion (effort) and
flow are monitored using respiratory belts and flow sensors (thermistors and/or
pressure transducers) positioned close to the nostrils and/or mouth. The many
sensors and electrodes required and their wiring can cause discomfort in patients
and interfere with their sleep. Premature babies, instead, are cared for in neonatal
intensive care units (NICUs). Apnea of prematurity (AOP) is a common develop-
mental disorder in this population and it is characterized by the presence of apneas.
Here, respiration is monitored through chest impedance (CI) that, by using the
same electrodes used to measure the electrocardiogram (ECG), monitors changes
in the thoracic impedance reflecting the breathing mechanics. The sensitive skin
of premature infants can suffer from irritation or even damage due to the use of
adhesive electrodes.

Unobtrusive solutions for respiration monitoring are being investigated aiming
at reducing the discomfort of patients. Between the unobtrusive alternatives
(e. g. radars, pressure-sensitive films, and audio) cameras are an attractive option.
They can provide contextual information and images of the patients, which can
be useful to the caregivers for patient observation. Camera-based respiration
monitoring still faces several challenges as its application in complex hospital
environments is not straightforward. In this thesis, we investigate the use of
cameras as a substitute for the current respiration monitoring technologies. In
particular, we proposed solutions for improved apnea detection and classification,
automatic respiratory pixels identification, and non-respiratory motion robustness
and analysis. Furthermore, practical challenges have also been considered, such as
the possibility of using low-cost cameras to develop a multi-camera setup and the
use of cameras in real clinical settings, bringing the technology closer to the clinic.

Firstly, in Chapter 2 the necessity of strategies for the detection of a cessation
of breathing (COB), or even an apnea, with low latency usable in camera-based
respiration signals, was addressed. The algorithm was developed to detect sudden
amplitude changes in the respiration waveform. The proposed method was applied
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ii Summary

to the respiration signals extracted from a set of infants’ video recordings collected
with red-green-blue (RGB) and near-infrared (NIR) cameras. A method from
literature was used to extract the respiration signal from the videos. Our method
successfully detected short COBs, that were present in the videos, and obtained
comparable results to the benchmark method with the difference that our solution
can detect COBs with low latency.

Next, in Chapter 3 we analyzed the usability of a thermopile array as a low-
cost alternative to thermal cameras for the detection of respiratory flow. Camera
solutions in the thermal domain would offer several advantages in clinical settings,
e. g. absence of illumination problems and visibility of both respiratory motion
and flow. However, their still high cost combined with the clear necessity of multi-
camera setup prevents this technology from being considered as a viable option. A
feasibility study was conducted to analyze the performance of the thermopile array
using videos collected on healthy adults. Different simulated respiratory patterns
and rates, as well as spontaneous breathing, were included. The thermopile array
performed well in the ideal conditions of the study, but limitations are highlighted
due to the extremely low-resolution of the setup (8× 8 pixels).

In Chapter 4 a respiration detection algorithm that automatically identifies the
pixels containing respiration information from a combination of the three camera
views is described. The method was developed and tested using low-resolution
thermal videos acquired in a neonatal ward. Moving to a clinical environment, i. e.
the neonatal ward, the setup used was adapted to reflect possible complications,
we used three low-resolution thermal cameras (60× 80 pixels each) to look at the
infants from different positions. The use of low-resolution devices allows multi-
camera setups avoiding reaching prohibitive costs and prevents possible privacy
complications. However, face or body landmark detectability, already complex in
hospital environments and infants, becomes further challenging. The algorithm
proposed, to automatically identify respiratory pixels, is independent of facial and
body landmark detection. The method was benchmarked against a similar method
from literature and the superior performance and adaptability of our solution
were shown. In this first study, only the moments in which the infants were not
moving were used, proving that the method can successfully work in the absence
of movement, and highlighting the necessity of motion robustness strategies.

Chapter 5 responds to the clinical expectation of usability and to the limitation
of the previous solution by analyzing the RR monitoring algorithm during different
motion events in the infants’ thermal videos. The method’s usability was extended
to non-thermal videos as well. Severe movements of the infants were automatically
identified from the videos and are not included in the detection of respiration,
reflecting the limitation of the current monitoring technology, i. e. CI, which often
also fails to give an accurate RR during these moments. Minor movements of the
infants were included in the analysis and the performance in the detection of the
RR during these events, during the absence of motion, and during non-nutritive-
sucking (NNS) was compared. The inclusion of these segments allows to increase
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the usability of the method increasing the similarity with the CI and proving the
improved motion robustness of our solutions, but limitations on the accuracy of
the RR are highlighted.

In Chapter 6 a method to automatically identify the pixels containing specif-
ically respiratory flow in infants’ thermal videos without relying on facial land-
mark detection is proposed. Mixing respiratory motion and respiratory flow is
problematic in the case of apneas with an obstructive component, i. e. with
respiratory effort present. The algorithm proposed in Chapter 4 and Chapter 5 still
presented this drawback. Furthermore, obstructive apneas (OAs) are simulated to
compare their detectability between a respiration signal obtained by using only
the respiratory flow and one obtained by mixing respiratory flow and motion. The
apnea events are detected using the method proposed in Chapter 2. Finally, in
Chapter 7 the long-term societal impact of this work is analyzed for the patients
and their families, for the clinicians, and for industry. Knowledge utilization is
also detailed.

In summary, this thesis analyzes the possibility of using camera-based respi-
ration monitoring in clinical settings aiming at apnea detection. Overall, further
research is required to evaluate the accuracy of respiration monitoring using cam-
eras in the clinic. Combining multiple contactless technologies could be the best
way to tackle practical problems typical of complex environments, and extend the
range of vital signs detectable without contact with the patients.
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CHAPTER1
Introduction

1.1 Respiration

The primary function of the respiratory activity is gas exchange. Oxygen is
transferred to the bloodstream and tissues, whereas carbon dioxide is removed
from the body. This is possible thanks to the respiratory system, which includes
the upper airways (nose, pharynx, and larynx) and the lower airways (trachea,
bronchial tree, and lungs) [1].

Diaphragm and external intercostal muscles are the main actors in the me-
chanics of breathing, through their contraction and relaxation the volume of
both thoracic cavity and lungs changes, causing variations in the internal lungs
pressure [2]. Two main phases are generally defined, as shown in Figure 1.1, and
detailed below.

• Inspiration is initiated by the contraction of the diaphragm and external
intercostal muscles, and followed by an increase in the volume of the thoracic
cavity and lungs. The pressure in the lungs decreases allowing air to move
into the lungs following the pressure gradient [3]. The main effect is inhaling
air, ideally through the nasal cavities, where thanks to the underlying blood
vessels the inhaled air nearly saturates with water vapor and warms up
reaching almost the body temperature.

• Expiration follows the inspiration phase and it is a passive process. It is
caused by the relaxation of the inspiratory muscles. This results in a decrease
in the thoracic cavity’s and lungs’ volumes, producing an increase of pressure
inside the lungs [3]. Thus, the air is driven out of the lungs. The exhaled air
is saturated with water and warm, close to the body temperature, and will
lose some of its humidity and warmth to the mucous membrane.

Respiration is automatically controlled by the respiratory control center in the
brain [2]. The respiration rate (RR), usually indicated as the number of breaths
per minute, is one of the main vital signs. The range of a normal RR at rest is

1
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Chest
expands

Chest
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Diaphragm 
Diaphragm
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Figure 1.1: The two phases of breathing; adapted from [4].

dependent on age. In Table 1.1 examples of the normal RR for some age groups
can be found, indicated in breaths per minute (BPM).

1.1.1 Respiratory patterns and apnea
Abnormal respiratory patterns, e. g. with largely varying RR or with cessations
of breathing (COBs), may require clinical observation or intervention, or may
indicate underlying conditions. When the RR is higher than the normal range, the
term tachypnea is used, whereas lower RRs correspond to a bradypnea. Changes
in the depth of breathing, i. e. deep and shallow, are referred to as hyperpnea
and hypopnea. Apnea is used to identify the absence of breathing. Two main
families of respiratory disorders are characterized by the occurrence of apneas,
sleep-disordered breathing (SDB) and apnea of prematurity (AOP). These are
considered as the two targeted applications for this work. Most of the contributions
included in this thesis will focus on infants. However, the solutions proposed can
be potentially generalized for both settings, taking into account the differences
(e. g. environments, population, monitoring devices). Therefore, this chapter will
introduce and discuss both SDB and AOP.

Table 1.1: Average RR at rest by age [5].

Age Average resting RR
Birth to 6 weeks 30-60 BPM
6 months 25-40 BPM
3 years 20-30 BPM
6 years 18-25 BPM
10 years 15-20 BPM
Adults 12-20 BPM



1.1. Respiration 3

SDB includes abnormal breathing patterns during sleep, such as apnea, hy-
popnea, and Cheyne–Stokes respiration. An apnea can be defined as a COB of at
least 10 s [6]. Hypopneas are characterized by shallow breathing for more than
10 s with ventilation reduced by 30% to 90% and the presence of at least 4%
reduction of oxygen saturation [7]. Cheyne-Stokes is a complex breathing pattern,
consisting of periodic alternating phases of apnea and breathing. The latter is
characterized by a crescendo-decrescendo pattern [5]. Apneas are divided into two
main categories, one is called obstructive apnea (OA), which is caused by a collapse
of the upper airway, the other is central apnea (CA), caused by the cessation of
respiratory effort or drive [7]. The most common form for patients with SDB is
the obstructive sleep apnea (OSA). Moderate to severe OSA was reported to occur
more frequently (17%) in men in the age group of 50-70 years, and is less common
in women in the same age group (9%) [6]. It can also be present in children and
the elderly. Central sleep apnea (CSA) is less common and occurs in between
5% and 10% of patients with SDB, and is frequently a consequence of a vascular
disease [8]. Apnea can also manifest in a mixed pattern, i. e. mixture of obstructive
and central cases [9]. OSA has been associated with many comorbidities. If left
undiagnosed and untreated it can lead to increased risks of hypertension, stroke,
heart failure, diabetes, car accidents, and depression [10], and typical consequences
of living with SDB are fatigue, tiredness, and lack of energy [11].

In premature infants, AOP is a typical respiratory disorder. In particular,
AOP is present in nearly all infants born before 29 weeks gestation or with
a birth weight (BW) below 1 kg, 54% of the infants with a gestational age
(GA) between 30 and 31, and lower for higher GAs [12]. It is linked to the
immaturity of the respiratory control system. Therefore, AOP commonly resolves
with maturation, and it is usually classified as a developmental disorder [13]. Thus,
there is an inverse correlation between the incidence of AOP and the GA and BW.
The definition of apnea in the infant case is a COB that lasts at least 10 s if
accompanied by bradycardia or desaturation, or a COB that lasts 20 s. Different
apnea types can be present, central, obstructive, and mixed. Examples are visible
in Figure 1.2. The most common apnea type in premature infants is mixed apnea
(MA), approximately 50% of long apneic episodes (minimum duration 15 s) [15,16].

Chest
wall

movement

Chest
wall

movement

Chest
wall 

movement

Tidal
volume

Tidal
volume

Tidal
volume

10 sec10 sec Central ApneaMixed Apnea     10 secObstructive Apnea

Figure 1.2: Apnea types: mixed, obstructive, and central; adapted from [14].
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In CA cases respiratory flow stops due to the absence of breathing effort, whereas
OA is caused by the collapse of the upper airway, particularly the pharynx [13,17].
Periodic breathing (PB) is a breathing pattern distinct from AOP, it can occur
in term and preterm infants, usually for higher postmenstrual age (PMA). It
is considered to be benign and is characterized by an alteration of COBs and
breathing. The breathing pauses in PB can last up to 10 s [18]. In infants, long
apneic events can lead to hypoxic-ischemic injuries of the brain. Moreover, studies
are still establishing the presence of links between apneas and neurodevelopmental
impairment, like cerebral palsy [12].

1.2 Respiration monitoring

Monitoring and diagnosing breathing disorders is essential. One of the main vital
signs that needs to be monitored continuously is the RR, next to heart rate (HR)
and oxygen saturation. RR changes and respiratory irregularities, particularly
apneas, need to be detected. Respiration can be monitored by monitoring the
respiratory flow or the respiratory motion. Indirect methods to detect respiration
have also been used. The commonly used methods in clinical practice require, usu-
ally, contact with the body or positioning sensors in the facial areas. Contactless
solutions have also been developed to reduce patients’ discomfort.

1.2.1 Traditional methods

SDB, and in particular apneas, can be diagnosed and monitored using polysomnog-
raphy (PSG), where two respiratory motion bands and flow sensors are used to
monitor both respiratory flow and motion [19]. This enables accurate apnea and
hypopnea detection. Figure 1.3a shows the sensors and electrodes commonly used
during PSG. In neonatal intensive care units (NICUs), chest impedance (CI) is
usually used as respiration can be monitored using the electrodes already used
to measure the electrocardiogram (ECG). A photo of an infant cared for in a
NICU is visible in Figure 1.3b, the photo clearly shows the current invasiveness
of monitoring. The methods available to monitor respiratory flow and motion are
detailed in the following sections.

Respiratory flow

The gold standard method to monitor respiratory flow is the pneumotachograph
which can be used to collect the temporal trend of inhaled and exhaled air and
quantify the airflow. The air needs to flow through a resistive component which will
cause pressure variations measured through a pressure transducer. The necessity
to use a sealed face mask to ensure the lack of airflow leaks makes this method
not well tolerated by patients, and particularly by infants [22, 23]. Temperature-
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(a) (b)

Figure 1.3: Examples of current monitoring (a) graphical representation of a
subject undergoing a PSG study [20]; (b) photo of an infant in a NICU [21].

based sensing can be also used to exploit the difference in temperature between
the warm exhaled air and the inhaled one from the environment. Different sensors
can be used, e. g. thermocouples and thermistors. These sensors have usually a
small dimension and can be integrated into facial masks or positioned close to the
nostrils and/or mouth to detect temperature variations, usually at the upper lip.
The airflow measure obtained with these methods is not considered as accurate as
the pneumotachograph, being a more qualitative estimation than a quantitative
one [24]. Moreover, a clear limitation is the displacement of the sensors [25].
Intranasal pressure transducers have been commonly used in combination or as
an alternative to temperature-based sensors due to their increased sensitivity [26].
They are less inconvenient than pneumotachograph but require the use of a nasal
cannula and present limitations in the case of patients who are mostly mouth-
breathers [24,27]. Hot wire anemometers are used similarly to pneumotachographs
and exploit the cooling effect produced by the air flowing on a heated wire, the
sensors can be embedded in a ventilator line. The main drawback lays in the
sensor fragility [28].

Another difference between inhaled and exhaled air is the concentration of
carbon dioxide. Capnography exploits this difference to monitor respiratory flow,
also this measure is considered qualitative. Different sensors can be used to achieve
this, the most common one is based on infrared spectroscopy, which exploits
the absorbance peak of carbon dioxide at 4.26µm [29]. While this measure is
available in most ventilators, it is mostly used in intubated patients in critical
care and anesthesiology, for verifying the endotracheal tube placement, and the
cardiopulmonary resuscitation effectiveness [30].

Respiratory motion

Breathing mechanics can be monitored using different sensors. Respiratory belts
are very common in different environments. They consist of belts positioned
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around the abdomen and/or the thorax of the subject measuring variations in the
circumference. Different working principles are possible. Respiratory inductance
plethysmography (RIP) uses two elastic bands, one for the thorax and one for
the abdomen, the bands are equipped with coils. Changes in the inductance are
measured reflecting the respiratory motion [24]. The sum of the abdominal and
thoracic signals, after proper calibration, provides an estimation of the tidal volume
[27]. Alternatively, the sensing can be performed using different technologies,
e. g. strain gauges or fiber optics [22, 31]. Accelerometers, gyroscopes, or their
combination can be also used to monitor chest movements [32].

The use of impedance pneumography or CI, is very common in clinical care,
especially in NICUs [23]. The advantage of the method is the possibility of using
the same electrodes used to measure the ECG, eliminating the need for additional
sensors. The technology works by measuring changes in the impedance when
injecting a low high-frequency current. The changes in air volume due to the
respiratory activity are reflected in changes in impedance [32]. The tetrapolar solu-
tion is more accurate but would require the use of additional electrodes, therefore,
usually, the bipolar solution is used [22]. Diaphragmatic electromyography (EMG)
is also a possible solution to monitor the diaphragm’s activity, the less invasive
solution uses surface electrodes [33]. However, the method shares limitations with
CI, as motion and cardiac artifacts [27], and obtaining a pure signal is not trivial
due to cross-contamination [34].

Indirect

Respiration activity can be also monitored through cardiac activity, due to the
effect the first has on the latter. Several modulations have been identified. This
effect can be exploited to extract a respiration signal from the ECG and photo-
plethysmography (PPG) signals [31]. Algorithmic solutions are being used to fuse
amplitude, baseline, and frequency modulations aiming at obtaining an accurate
respiration signal [35]. The clear advantage of these methods would be obtaining
two signals with the same sensing technology. However, questions about accuracy
and differences between different patient populations are still present [36].

Apnea detection and alarms

The detection of apneas is linked to the accurate detection of a respiratory wave-
form. Generally, methods that monitor respiratory flow tend to be uncomfortable
to wear but can detect any type of apnea. However, they are unable to distinguish
between the different types. On the other hand, methods that monitor respiratory
motion are generally able to detect only the occurrence of CAs, as the other two
types can still present respiratory effort. In clinical environments, apnea detection
is performed using specialized equipment like patient monitors or PSG.
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Focusing on SDB, PSG is considered a gold standard diagnostic test [37] thanks
to the many signals monitored. Sleep stages, hypopneas, and apneas are detected
and scored by a polysomnographic technologist to determine the apnea-hypopnea
index (AHI). The main problem, in this case, is associated with the discomfort of
the patients undergoing PSG studies, and the fact that PSG recordings need to
be analyzed and scored by trained polysomnographic technologists, making this
solution a costly technique not available to all patients [37]. Home sleep apnea
testing (HSAT) is used as an alternative for home monitoring of apnea occurrence
in subjects who do not have other sleep disorders. Sleep staging is not possible
due to the reduced range of signals monitored and limitations are present which
could lead to false negative results or underestimation of the severity of OSA [19].

In the NICU environment it is clinically important to detect apneas. First of all,
as long apnea events can have serious consequences, direct intervention is often
needed to stop the event, e. g. through tactile stimulation [38]. Furthermore,
monitoring the number of apneas, their type, and the severity of the events
is relevant to decide on the maintenance or discontinuation of therapies, e. g.
caffeine and/or respiratory support. Finally, the presence of apneas is relevant
when deciding to discharge infants, as infants may only leave the hospital if they
are considered apnea-free [39]. Therefore, alarms are generated if an apnea event
lasting longer than a certain amount of time is detected by the patient monitor.
This threshold is often 20 s [40].

CI is used in NICUs to obtain a respiration signal. Two typical problems in this
environment are the generation of false alarms and missing apnea events [41, 42].
The first can be caused by poor electrode contact, motion artifacts, and shallow
breathing [43]. Missing apnea events, on the other hand, can be caused by two
main problems. CI is able to monitor respiratory effort, therefore the occurrence
of OAs and MAs cannot be detected. The other problem that can cause missing
an apnea event is the presence of a cardiac artifact [23]. Cardiac artifacts are a
typical problem of CI, that in the absence of respiration detects the cardiac activity,
during bradycardia the HR is in the range of normal breathing for infants [43,44].
Therefore, in the clinic, nurses can experience a loss of confidence in the apnea
alarms due to the false positives, apnea alarms were indeed reported to be one
of the least reliable according to NICU nurses [45]. Considering the clustering of
apnea, bradycardia, and desaturation (ABD event) [46], a combination of these
alarms is often implicitly used by nurses to decide whether a clinically relevant
apnea is occurring. However, it has been observed that in the case of very long
apnea events (duration higher than 60 s) HR and oxygen saturation fall later and
more slowly compared to the shorter ABD events [47]. Consequently, if the patient
monitor fails in detecting the apnea event, the clinical intervention required can
be significantly delayed. This can have serious consequences on infants and can
result in prolonging apnea events when the event could have been interrupted if
accurately detected and followed by a prompt intervention [47].
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1.2.2 Unobtrusive alternatives
All methods presented until now require positioning electrodes or sensors on the
face or body, the use of facial masks or nasal prongs, or wearing thoracic/abdom-
inal belts. These solutions are perceived as extremely uncomfortable for patients,
especially when combined with sensors to monitor other vitals [48]. Moreover,
in NICUs the use of contact solutions can cause skin irritation and injury to
premature infants [49, 50]. Furthermore, the high number of sensors and wires
resulted in impeding parent-infant bonding [21]. Several contactless alternatives
are being developed to reduce discomfort and to enable unobtrusive continuous
respiration monitoring and apnea detection.

Most of the unobtrusive methods are able to monitor respiratory motion.
Among these, radar has been widely researched due to the high distance of usage
and ability to penetrate non-metal materials. Radars can monitor chest-wall
movements, thanks to the Doppler effect, obtaining both respiratory and cardiac
activities. Developments on this technology are focusing on both algorithms and
hardware [51]. While several works analyze the performance on healthy subjects in
lab settings [52–57], recent research has started moving to the clinical environment
as well [58–62].

Pressure-sensitive films are also being integrated into bedding and mattresses.
As radars, they can monitor both respiratory and cardiac activities by detecting
mechanical vibrations. The sensors, usually piezoelectric or electromechanical,
can be an array and output the distribution of pressure in the area, which requires
strategies to combine or select array elements, or output a single signal, which can
be heavily polluted by any motion artifacts. Several studies have been performed
[63–65] some in the clinic [66, 67]. Capacitive electrodes can be integrated into
the bedding as well, to monitor respiration activity similarly to CI [68]. Motion
artifacts and baseline wandering are common problems [69].

Cameras

Cameras have also been used to monitor respiration. They have the main advan-
tage of providing a video, i. e. images of the patient, which also delivers contextual
information. In particular, red-green-blue (RGB) and near-infrared (NIR) cameras
can monitor respiratory motion. RGB cameras or monochrome cameras with
sensitivity in the visible range have been widely used for this purpose [70–79].
However, poor light conditions in most clinical environments combined with the
necessity of continuous monitoring, i. e. overnight as well, limit the future use
of this technology. Many solutions do not use make use of color information
making the algorithms easily transferable to videos collected using NIR cameras,
which represent a more viable alternative. When used in combination with NIR
illumination, these cameras can monitor respiration also in complete darkness
without disturbing the subject [80–84]. However, the required additional illumi-
nation complicates the measurement setup and increases the cost.
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Recently, cameras with depth sensing are also acquiring more interest [85–89].
While the advantages of adding the depth information would fall on an additional
detector for respiratory motion, it should be considered that it may share limi-
tations with simple camera solutions, e. g. both would not visualize respiratory
motion if a blanket is positioned to hide it. All the contactless methods presented
until this point can monitor respiratory motion but not flow, therefore, even if
their possible future use in clinical practice would reduce the obtrusiveness of the
monitoring, it will anyway maintain limitations in the detection of apneas that
have obstructive characteristics.

Thermal cameras detect infrared radiation naturally emitted from objects.
Cameras sensitive in the range of mid-wave infrared (MWIR), 3 to 5µm, and long-
wave infrared (LWIR), 8 to 14µm, provide adequate sensitivity for medical use [90].
They have been used in different health fields, but thanks to the independence of
light conditions combined with the ability of monitoring both respiratory motion
and flow, they gained interest in respiration monitoring. Studies with cameras
sensitive in the MWIR were initially conducted [91–93]. Afterwards, LWIR became
more popular, several studies were conducted in lab conditions [94–99], in outdoor
environments [100], and in the clinic [101–103]. Works that combine thermal
images with other camera modalities have also been proposed [104–106]. Thermal
cameras are traditionally costly, however, low-cost solutions are recently being
investigated for respiration monitoring [100, 105, 106]. Thermopile arrays are also
low-cost thermal devices, they have been used for several applications, e. g. fever
screening and fall detection [107,108], but their use for vital signs monitoring has
not been investigated yet. Overall, multi-thermal-camera setups would be required
when aiming at continuous respiratory motion and flow monitoring. Therefore, the
use of low-cost thermal solutions would allow the implementation of multi-camera
setups without reaching prohibitive costs.

Background on video processing for respiration monitoring

Research has been focusing on different challenges related to camera-based res-
piration monitoring. Generally, a common sequence of processing steps can be
identified in studies that aim at detecting respiration from videos. Firstly, the
part of the images that contain the respiration information needs to be identi-
fied. This step can be referred to as region of interest (ROI) detection. Several
strategies have been proposed to achieve this. Many works use manual selection of
ROIs sometimes combined with tracking [70, 99–101, 109–113]. Other strategies
involve the detection of specific landmarks, e. g. nose (for thermal imaging)
or chest/abdomen detection [83, 91, 95, 97, 99, 104, 106, 114]. Skin detection has
been also proposed [73, 79]. However, these solutions can result in being difficult
to generalize for all sleeping positions and are further complicated for infants.
Therefore, methods based on a specific feature or a combination of features were
developed as well, e. g. pseudo-periodicity, [71, 75–77,102].
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The ROI detection step is commonly followed by strategies to extract the
respiration signal. This is very frequently obtained from the average of the pixels’
intensity or based on motion estimation, e. g. optical flow (OF). The use of
geometrical variations of the ROI was also proposed [79]. Moreover, indirect
methods based on remote PPG are also possible [113]. Steps that focus on artifacts
reduction and detection can be considered, artifacts may be caused by motion or
obstructions. For example, strategies aiming at motion and clinical intervention
detection were studied [75, 77, 79]. Finally, the last step involves the analysis of
the respiration signal to detect significant parameters or events. This analysis can
be performed retrospectively, or by providing information with low latency. RR is
commonly calculated, and apnea occurrences have been also detected [73,99,106].

1.3 Problem statement and objectives

In this section, we first describe the challenges that will be addressed, and later
the objectives of this thesis.

1.3.1 Problem statement

Contact-based methods to monitor respiration require the use of belts, facial
masks, or adhesives, causing discomfort or even skin irritations to patients. Camera-
based respiration monitoring has been researched as an unobtrusive alternative to
traditional methods, nevertheless, its application in hospital environments still
requires further research and development. This thesis explores the possibility
of using video respiration monitoring in a clinical setting and proposes technical
and algorithmic solutions aiming at continuous respiration monitoring and apnea
detection.

Particularly, we identified several problems that need further attention before
such technology could be implemented in hospital environments. Firstly, the
possibility of detecting apneas and COBs with low latency from the respiration
waveform obtained from videos needs to be addressed. Secondly, algorithmic
strategies to locate the pixels containing respiratory flow and respiratory motion
independent of facial and body landmarks need further development. Moreover,
with the purpose of detecting and identifying apneas, respiratory flow should
be detected separately from respiratory motion in thermal recordings. Finally,
a problem common to most technologies is the sensitivity to motion artifacts.
Camera-based solutions are not immune to this problem. Strategies aiming at
motion artifact rejection and robustness are needed to explore the possibility of
reliably and continuously using this technology in real settings.



1.4. Thesis outline 11

1.3.2 Objectives
We aim at developing a camera setup and algorithms to improve and extend the
usage of cameras for respiration monitoring and apnea detection in the clinic.
Based on the problems listed above, we define the objectives of this thesis.

Obj. 1: the development of a strategy to detect apneas from a respiration wave-
form. The method should decide on the presence of apneas with low
latency opposed to methods that work in a retrospective manner. Fur-
thermore, the possibility to detect short COBs should also be taken into
account, as these may be relevant for apnea prediction purposes.

Obj. 2: the design of a setup using cameras low-cost enough to enable a multi-
camera setup. Thermopile arrays’ usability and their limitations for
respiration monitoring need to be explored.

Obj. 3: the introduction of a multi-camera setup in the clinic for the collection
of videos. The recordings will enable the development of algorithms and
the analysis of working conditions in clinical settings.

Obj. 4: the development of a reliable method to automatically identify the pixels
containing respiration information overcoming the limitations associated
with facial/body landmarks detection.

Obj. 5: the analysis of the motion patterns and occurrence of movements during
the recordings. This will allow estimating of the possible coverage of our
system and developing strategies to improve the motion robustness and
reject severe or problematic movements.

Obj. 6: the automatic separation of respiratory flow from respiratory motion in
thermal videos where both signals are present. This has the potential to
improve apneas detection and classification.

1.4 Thesis outline

This section illustrates the content of each chapter of this thesis. The chapters are
briefly described and the associated publications are indicated.

Chapter 2 presents a method for the detection of COBs and apneas with low
latency. The method has been developed and tested on respiration signals ex-
tracted from infant’s videos collected with RGB and NIR cameras. The method
is based on the comparison of a short-term and a long-term standard deviation,
which allows monitoring amplitude changes in the respiration waveform. The
recordings contained several short COBs which are used to demonstrate and
estimate the performance of our solution. Finally, a method from literature,
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that works retrospectively, is used as the benchmark. This contribution has been
published in [C1].

Chapter 3 analyses the usability of a thermopile array for the detection of respi-
ratory flow as an alternative to microbolometer-based devices. This is a feasibility
study and videos were collected on healthy adult volunteers in lab settings. Several
conditions are considered, variable distances, orientations, different respiratory
patterns, and RRs. An initial strategy to automatically select the pixels containing
respiration is also proposed. This contribution has been published in [J1].

Chapter 4 proposes a method to combine multiple camera views and an algorithm
to automatically identify the pixels containing respiration. This algorithm is based
on the combination of three features and it is independent of facial/body landmarks
detection and visibility. Videos acquired in a neonatal ward using three low-
resolution thermal cameras are used. Only the moments in which the infants are
not moving are considered in this study. Furthermore, the method is compared to
a similar method from literature. This contribution has been published in [J2].

Chapter 5 extends the contribution of Chapter 4 by combining the respira-
tion monitoring algorithm with motion detection and classification. This allows
increasing the usability of the solution moving towards continuous unobtrusive
respiration monitoring. The videos acquired in a neonatal ward using three low-
resolution thermal cameras are used. The motion in the videos is quantified and
if considered severe by our classification an indication that the infant is moving is
provided, otherwise, the respiration and RR are indicated. This contribution has
been published in [J3].

Chapter 6 presents an algorithm to automatically distinguish the pixels con-
taining respiratory flow from the ones containing respiratory motion in thermal
videos. Aiming not only at respiration monitoring but also at improving apnea
detection and classification, the differentiation of respiratory flow from motion is
necessary. The algorithm is based on features that allow an automatic selection of
the respiratory flow pixels independent of facial landmarks detection. Moreover,
the positions of the respiratory flow in the thermal videos acquired in a neonatal
ward are also analyzed. The contribution presented in Chapter 2 is used in this
work as a proof of concept to demonstrate the advantages of monitoring respiratory
flow and motion when OAs occur. This contribution has been published in [J4].

Chapter 7 analyses the long-term societal impact of this thesis under different
points of view, i. e. the patients and their families, the clinicians, and the industry.
This chapter contains also a description of the knowledge utilization referring to
two patent applications filed during this work, [P1] and [P2].

Chapter 8 summarizes the results and identifies future research directions.



CHAPTER2
On-line cessations of breathing detection

Abstract

Apnea detection is essential in neonatal settings as hypoxia can lead to permanent
impairment. Short cessations of breathing are widespread in infants and their
monitoring could be useful for the prediction of longer apneas. The aim of this
chapter is to investigate the accuracy of our on-line cessation of breathing detector.
Signals obtained through camera-based respiration monitoring were analyzed in
five infants with 91 annotated cessations of breathing. The method proposed is
based on the comparison of short-term and long-term standard deviations allowing
the detection of sudden amplitude reduction in the signal with low latency. A
new strategy able to detect short cessations of breathing on-line was successfully
validated yielding an average accuracy of 93%.

This chapter is based on:
I. Lorato, S. Stuijk, M. Meftah, W. Verkruijsse, and G. de Haan, “Camera-based
on-line short cessation of breathing detection,” in 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 1656–1663, IEEE, 2019.
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2.1 Introduction

Vital signs are of critical value to check the health of premature infants. Their mon-
itoring is, therefore, standard practice in neonatal intensive care units (NICUs).
Since apnea of prematurity (AOP) is common in this population, continuous res-
piration monitoring is crucial [23]. Apneas are prolonged pauses in the respiration
and are common in infants with a gestational age (GA) below 34 weeks [115],
the hypoxia typically associated with apnea could cause long-term or permanent
impairment [116]. Respiration monitoring based on chest impedance (CI) currently
used in NICUs presents limitations when detecting apneas, in particular, cardiac
artifacts are a common cause of missed apnea detection [43]. Moreover, motion
artifacts and other thoracic movements can also be misinterpreted as respiration
[117]. Apneas are strictly defined as a cessation of breathing (COB) longer than
20 s or a COB of 10 s accompanied by bradycardia and/or desaturation [118].
However, discussions on the definition of clinically relevant apneas move the focus
also on shorter COBs [119]. Short apneic episodes are common in infants and are
defined as a respiratory pause of at least 3 s [120]. Moreover, this type of events
can provide insights on the infant’s respiratory system [121] and lead possibly to
apnea prediction [122].

Since adhesive electrodes and sensors can cause stress or even skin damage to
infants’ sensitive skin [123], research in this field has been focusing on alternative
non-contact respiration monitoring techniques. Among these, radars [124, 125],
red-green-blue (RGB) or near-infrared (NIR) cameras [70, 72, 126], vision system
based on depth sensing [127,128], thermal cameras [101,111], and pressure-sensitive
films [66, 129] are the most researched for respiration monitoring in a NICU
environment. Cameras represent one of the best solutions for NICUs applications.
In the first place, because they are completely unobtrusive passive sensors and
they allow to monitor multiple vital signs simultaneously. Moreover, cameras also
provide contextual information that would be useful to nursing staff for infants’
observation, and it would promote family-centred NICUs through live video feed
to parents [130].

In this chapter, an approach for the on-line detection of short apneic events
through camera-based respiration monitoring is proposed. Many methods for
respiration detection algorithms using cameras have been developed targeting
an infant population. Jorge et al. [131] proposed a camera-based approach for
respiration monitoring based on a skin detection algorithm, which is not ideal
for NICUs applications since infants’ abdominal areas are commonly covered with
blankets or snuggles. Though approaches based on remote photoplethysmography
(PPG), e. g. [113], also rely on skin visibility, they can work on facial skin that is
more likely uncovered. However, motion robustness necessitates multi-wavelength
cameras. RGB cameras are a seemingly logical choice, but visible illumination
may disturb sleep and is, therefore, not allowed. Proposals using wavelengths in
the infrared range suffer from high cost of multi-wavelength cameras, or parallax
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when using 3 cameras in parallel. Therefore, remote PPG-based solutions are not
straightforward in such a complex environment. However, when monitoring respi-
ration based on motion, skin visibility and color information are not indispensable
for the signal detection. For example, Allinovi et al. [76] proposed a method based
on maximum likelihood modeling and motion magnification able to automatically
select the region of interest (ROI). The method proposed was tested on a limited
dataset of adults and infants videos, with a window size of 20 s for estimation of
the respiration signal and the respiration rate (RR). The latency (caused by the
processing window) is particularly important when aiming at apnea detection and
therefore, the method proposed by Janssen et al. [77] was preferred as a starting
point for our work. The method, called video respiration monitoring (VRM),
was extensively tested on adults videos, but limited experiments were performed
on infants. Still, we consider this method very appealing for NICU-applications,
particularly because of its attractive automatic ROI detection independent of skin
visibility and the low latency of the method.

The output of the VRM algorithm is used as starting point for the detection
of short apneic events in the respiration signal. Other works have been focusing
on apnea detection strategies starting from video extracted respiratory signals,
Jorge et al. [73] proposed an approach based on camera where COBs longer than
20 s were classified based on the RRs. If the RRs of the videos were lower than
20 breaths per minute (BPM) for a period longer than 20 s and no other motion
was present in the video segments then it was classified as an apnea. However,
aiming at the detection of short apneas time-domain approaches are preferable,
being more sensitive to particularly short variations. Also Cattani et al. [71]
tested the detection of apneas on camera-based respiration signals. The apnea
detection strategy consisted in comparing the time-domain signal with an empirical
constant threshold equal to 0.14. Constant thresholds have the drawback of not
being able to adapt dynamically to changes in the signals, such as reductions in
amplitude. Lee et al. [43], instead, proposed an approach based on modeling the
distribution of normal breathing patterns and apnea ones, reaching an average
detection performance over 90% by analyzing CI signals. The approach is, how-
ever, suitable only for retrospective analysis as specified by the authors, since the
empirical parameters were optimized after filtering and baseline removal of the
entire signal. This method has been widely used in apnea related publications,
e. g. [42,47,132,133], and has also been employed for the detection of short apneic
events [122], therefore we decided to use it for comparison purposes.

The main contribution of this chapter is the development of an on-line short
COB detection strategy based on the comparison of a short-term standard devia-
tion with a long-term standard deviation. The RR is obtained as a byproduct of
our processing. The rest of the chapter is organized as follows: Section 2.2 explains
the method used and the dataset, Section 2.3 presents the results. Sections 2.4
and 2.5 contain respectively the discussion and the conclusions.
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2.2 Materials and methods

This section details the materials and methods used for the development and
testing of the COB-detector.

2.2.1 Materials

The videos used in this chapter were collected in the neonatal ward of the Máxima
Medical Centre (MMC) in Veldhoven, The Netherlands. Two different setups were
used for the data collection. Both studies received approval from the MMC and one
study also received approval from the Internal Committee for Biomedical Ethics
in Philips Research (ICBE2013-41-3797). Informed parental consent was obtained
for all infants involved in the studies.

Dataset

The videos were annotated by a single person, the COBs were annotated only
when clearly visible in the video. In total, 5 infants were included, Table 2.1
shows the postmenstrual age (PMA) expressed as the GA plus the postnatal age
(PA), the total duration of the videos per infant, and the number of short apneic
event annotated. The dataset includes both videos containing COBs and videos
not containing any cessation events for control purposes. The videos have different
duration going from 1 minute to 5 minutes reaching a total cumulative duration
of 190.4 minutes. In total 91 short apneic events were annotated, the average
duration and standard deviation of the COB population are 5.4± 1.9 s.

Table 2.1: Video details and parameters of the infants in the dataset.

ID PMA
(weeks)

Number
of videos

Total Duration
(min)

COB
annotated

1 36+6.71 10 16.5 11
2 30+4.85 20 34.3 4
3 30+2.42 10 49.8 31
4 30+2.42 10 46.2 24
5 29+1.14 9 43.6 21
Overall 59 190.4 91
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Experimental setup

The dataset includes videos collected with two different setups. In both cases,
the CI from the patient monitor (Philips MX800) was also acquired for reference
purposes. In the first study, a camera (UI-2220SE, IDS) was positioned on a tripod
to have a view of the infants’ chest/abdomen area, and some videos were collected
from the top and others from the side. The videos were collected under visible
light conditions with a frame rate of 20 frames per second and with a resolution
of 576× 768 pixels. Since color information is not relevant for respiratory motion
detection, we used grayscale images. The videos were selected based on the quality
of the reference signal and on the light conditions since the dataset also included
measurements taken in particularly dark settings. Two infants (ID 1 and 2 in
Table 2.1) were selected with a total video duration of 50.8 minutes.

The second setup included a monochrome visible light camera with the NIR
filter removed (UI-22330SE, IDS) positioned on the incubator using suction cup
mounting and visualizing an overview of the infant. NIR custom-made illumination
was used since the normal workflow of the NICU was not disrupted and the
incubator was covered as common practice, limiting the ambient light. The illumi-
nation unit comprised of LED arrays at three different wavelengths (660, 760, and
810 nm). The illumination level of all LEDs resulted in being around 0.2 mW/cm2
at the skin level of a patient, below the imposed limits (ANSI/AAMI/IEC 60601-
2-21:2009). The videos were collected with a frame rate of 15 frames per second,
a resolution of 608 × 864 pixels, and subjected to compression. In this case, the
videos were selected only based on the quality of the reference signal. Using this
setup, three infants are recorded as part of this dataset with a total video duration
of 139.6 minutes.

2.2.2 Methods
Figure 2.1 summarizes the principal steps of the processing algorithm. The NICUs
videos are input to our processing. The VRM algorithm of Janssen et al. (detailed
in the next section) is used to extract the respiratory signal. On this respiratory
signal, we run our COB-detector. Additionally, we compute and output the RR.
In our benchmarking, we shall compare our COB-detector with the results from
Lee et al. [43], and the RR with the CI-reference. The proposed algorithm was
implemented in MATLAB (MATLAB 2018b, The MathWorks Inc., Natick, MA,
USA).

Video respiration monitoring algorithm

The VRM algorithm proposed by Janssen et al. in [77] is a respiratory motion
detection algorithm based on optical flow (OF). The algorithm automatically
detects the ROI for respiration detection and returns the respiration signal. When
non-respiratory motion is detected, the respiration waveform is put to zero and
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Figure 2.1: Main processing steps leading to the detection of COBs.

a template indicating that motion unrelated to respiration is present can be ob-
tained. The same parameters introduced in the paper for the neonatal case [77]
were used in this work.

The CI signal and the respiration signal obtained from the videos are both
filtered using a bandpass Butterworth filter of the 4th order between 30 and
80 BPM since this is the normal range of RR in NICU infants including tachypnea
cases [134]. The signals have different sampling frequencies corresponding to 15
frames per second or 20 frames per second depending on the acquisition and are
processed with a sliding window approach with a window size of 3 s and a slide of
1 frame.

Cessation of breathing detection

In the case of a central apnea (CA) breathing cessation, a strong decrease in
amplitude of the respiratory signal can be expected. Hence, our proposed COB-
detector aims at signaling relative decreases in the standard deviation of the
respiratory signal. Such a decrease can be recognized, by a short-term standard
deviation σs becoming significantly smaller than a long-term standard deviation
σl. Parameters in such an approach are the window-lengths for computation of
the two standard deviations, and the threshold to define if a drop is “significant”.
Therefore, two window lengths are defined: a short window ls in which a feature,
corresponding to the short-term standard deviation, is estimated, and a long
window ll in which the long-term standard deviation is calculated. The calculation
of σl is performed as the median of the previously evaluated σs. The median
operation was preferred to the average for its robustness to outliers that can be
present as sudden high signal amplitude due to undetected non-respiratory motion.
The duration of ls and ll was chosen considering the length of the targeted COBs,
which varies from 3 to 10 s. Moreover, the short window should contain at least a
single period of respiration to be able to detect also the RR. Since the minimum
RR expected is 30 BPM, ls can be minimum 2 s. We arbitrarily decided to use
ls equal to 3 s. Furthermore, a too long ll will cause the threshold to not adapt
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dynamically to changes in the amplitude of the signal. On the other hand, a
too short ll will result in adapting also during apneic events. Therefore, as a
compromise, ll was chosen to be equal to 11 s.

More formally, let resp(nTs) be the time-domain signal after filtering obtained
either from videos or from the reference, n depends on the current window and it
is defined as n = 0 + (j − 1), 1 + (j − 1), ..., (N − 1) + (j − 1). Where, j indicates
the current window, the number of samples per window is N = ls/Ts and Ts is the
sampling time. Then the short-term standard deviation is evaluated according to:

σs(j) =

√∑(N−1)+(j−1)
n=0+(j−1) (resp(nTs)− µ(j))2

N
, (2.1)

where, µ(j) is the average of resp(nTs). Thus, a value corresponding to the
standard deviation of the time-domain signal will be obtained for each 3 s window.
The long-term standard deviation will be evaluated on a window length ll equal
to 11 s, however to reduce the delay in the detection, σl is estimated with a fewer
number of σs until j > H with H = ll/Ts:

σl(j) =

 median
1≤k≤j−1

(σs(k)) if j ≤ H

median
j−H≤k≤j−1

(σs(k)) otherwise.
(2.2)

In each window σs(j) and σl(j) are compared. If the ratio between the two
standard deviations results in being lower than 33%, the jth window is considered
to contain a COB and a binary template, CD, is created as follows:

CD(j) =
{

1 if σs(j) ≤ σl(j)/3
0 otherwise.

(2.3)

CD(j) indicates if the window j contains a COB. Figure 2.2 shows two examples,
a signal containing COBs and one without.

Lee’s method is applied on each video retrospectively on both CI and VRM
signals. The method returns a probability of apnea, which is then converted to
the weighted apnea duration as the area under the probability curve. The limit
on the duration of the apneas detected, previously defined by Lee et al. as 5 s,
is adjusted to this case making the smaller apnea detectable equal to 3 s, and
obtaining, therefore, a second binary template for reference.

In the VRM respiration signal, since also motion information is available,
cessations are not considered when motion unrelated to respiration is present and
the standard deviation value σs(j) for a jth window containing motion is not
considered in the calculation of the σl(j).
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Figure 2.2: Examples of respiration signals, the two upper plots show a VRM
respiration signal containing two COBs and a VRM respiration signal without
cessations. The binary template, CD, labelled as “COB detected” has been
multiplied for 100 for visualization purposes. The two plots in the bottom show
the σs used as feature for COB detection and the threshold based on the σl.

Respiration rate estimation

In each 3 s window the RR is estimated as the frequency corresponding to the
peak in the spectrum for both VRM signal and CI. The spectrum is evaluated
using fast Fourier transform (FFT), zeropadding is performed reaching a number
of samples equal to 120 · N . Moreover, to compensate for small variations, the
RRs obtained are filtered using a moving mean filter followed by a moving median
filter each with a window size of half a second.

Evaluation metrics

To compare RRs obtained with CI and VRM respiration signals the percentage of
time in which the difference between the two is within ±6 BPM is used as metric.
This percentage has been evaluated in each video and then averaged. Moreover,
for fair comparison, the RRs estimated in windows containing COBs according
to the annotations and those estimated in windows where motion of the infant
unrelated to the respiration was detected from the VRM algorithm have not been
considered in the calculation of this metric.

To evaluate the difference between the COB detection algorithm proposed in
this chapter and the one proposed by Lee et al. [43], sensitivity (SE) and specificity
(SP) are calculated for each method using the manual annotation of the videos as
reference. As defined in [71] SE will be:

SE = TTP

TTP + TFN
, (2.4)
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with time true positive (TTP) and time false negative (TFN) being respectively
the total duration of the time intervals with COBs detected correctly and with
COBs incorrectly missed by the algorithm. And SP will be:

SP = TTN

TTN + TFP
, (2.5)

with time true negative (TTN) being the duration of the time intervals with no
COBs in which there are no wrong detection, whereas time false positive (TFP) is
the total length of the time segments with no COBs in which COBs are erroneously
detected. Therefore, SE represents the ability of the algorithm to correctly detect
COBs when present, whereas SP is the ability to correctly exclude the presence of
COBs particularly important to avoid false alarms. The accuracy (ACC) can be,
therefore, defined as:

ACC = TTN + TTP

TTN + TTP + TFP + TFN
. (2.6)

2.3 Results

Table 2.2 contains the average results obtained for all the infants, sensitivity, speci-
ficity, and accuracy were estimated by comparing the detection of COBs performed
with the method proposed in this chapter and Lee’s method on both CI and VRM
signals. In bold are indicated the best results comparing our method and Lee’s.
Figure 2.3 shows some examples of the obtained results. Figure 2.3a contains an
example where motion but no COB was present, whereas Figure 2.3b shows the
results obtained when three COBs were present. In the CI case, the COBs were
all correctly detected by our method, whereas the detection is incomplete in the
video signal case for both the proposed method and the benchmark one.

Table 2.2: Average SE, SP, and ACC results obtained with the method proposed
in this chapter, indicated as ours, and Lee et al. method [43].

SE (%) SP (%) ACC (%)

VRM Ours 76.32 94.39 93.16
Lee’s method 86.68 91.50 90.64

CI Ours 83.15 96.97 96.00
Lee’s method 77.02 97.99 96.60
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Figure 2.3: Example of results obtained: (a) CI and VRM respiration signal
and RR when motion unrelated to respiration is detected; (b) case with COB
annotated. The amplitudes of the respiration time-domain signals were scaled to
1 for visualization.

2.4 Discussion

The method proposed in this chapter proved to be able to detect short apneic
events. Preliminary results were obtained with videos of five infants containing



2.4. Discussion 23

91 COBs in total. The comparison between our method and the one previously
proposed by Lee et al. shows that our method resulted in higher specificity and
accuracy for the respiration signals obtained from the videos, whereas the opposite
happens in the CI case. Moreover, the results were always higher in the case of
CI signal compared to the VRM signal using our COB-detector. This is most
likely due to the noisiness of the signals, the VRM respiration signal relies on the
correct detection of the ROI, that can be momentarily lost after strong movements
causing low amplitude in the signal that can be misinterpreted as COBs. On
average for both CI and VRM signals our method reached an accuracy of 94.6%
against the 93.5% of Lee’s method. Considering the high false alarm rate already
present in the NICUs [45] it is of paramount importance to prefer specificity to
sensitivity especially in the short apnea cases for which clinical relevance is still
under discussion. Moreover, our method is able to work in an on-line fashion,
whereas Lee et al. claim that their method requires several minutes of clean signal
to work accurately and that an adaptation is needed for on-line detection [43],
this is mostly due to the filtering and removal of baseline from the signal before
the estimation of the moving standard deviation, on which the parameters of the
Fermi function were optimized. Our method is also based on standard deviation
but proved to work with a sliding window of 3 s, making COBs rapidly detectable
by the system.

Moreover, the RRs obtained with the video signal and the CI as reference were
compared. The RR extracted from the VRM signal is 75% of the time within
6 BPM from the CI one. Higher errors were obtained for infants with ID 3,4, and
5, this can be due to the compression of the videos and/or to a higher number of
events with small motions unrelated to respiration. It should be considered that
most of the studies using frequency-based RR detection used windows ranging
from 8 to 20 s [73, 76, 113] in our case the 3 s window in which the FFT was
performed leads to fast estimations but can also cause higher errors due to the
poor frequency resolution.

This chapter introduces a new method for the detection of short apneas that
can work on-line. The results are still considered preliminary, firstly the COBs
were not annotated by an expert, however, the use of videos and not of CI for
the annotations makes the result less subjective. Moreover, also longer apnea
should be considered, there is no suggestion that such a method would not work
for a different COB population, however, parameters such as ll would need to be
adjusted. The parameters used in this chapter were chosen arbitrarily or based
on reasoning and the same parameters were chosen for CI and VRM signals, an
optimization of these parameters could lead to improved results.

VRM delivered a respiration signal from videos with varying orientations and
settings, e. g. containing motion or with infants covered. The algorithm is
characterized by a set of empirically chosen parameters, adjusting the parameters
could lead to improved respiration signals thanks to a more accurate detection of
unwanted motion and a faster adaptation of the ROI following big movements.
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2.5 Conclusions

The method described in this chapter proved to be able to detect short apneic
events yielding an accuracy equal to 93.16% in the video signal case. The method
can detect COBs with low latency and it is based on the comparison of short-term
and long-term standard deviations. The detection of such short apneic events
could lead to apnea prediction preventing hypoxic damages in infants. The method
described in this chapter will be used in Chapter 6 to detect simulated obstructive
apneas.



CHAPTER3
Respiratory flow monitoring using a

thermopile array

Abstract

Low-resolution thermal cameras have already been used in the detection of res-
piratory flow. However, microbolometer technology has a high production cost
compared to thermopile arrays. In this chapter, the feasibility of using a thermopile
array to detect respiratory flow is investigated in multiple settings. To prove the
concept, we tested the detector on six healthy subjects. Our method automatically
selects the region of interest by discriminating between sensor elements that output
noise and flow-induced signals. The thermopile array yielded an average root
mean square error (RMSE) of 1.59 breaths per minute. Parameters such as
distance, respiration rate, orientation, and oral or nasal breathing resulted in being
fundamental in the detection of respiratory flow. This chapter provides the proof
of concept that low-cost thermopile arrays can be used to monitor respiratory
flow in a lab setting and without the need for facial landmark detection. Further
development could provide a more attractive alternative for the earlier bolometer-
based proposals.

This chapter is based on:
I. Lorato, T. Bakkes, S. Stuijk, M. Meftah, and G. de Haan, “Unobtrusive res-
piratory flow monitoring using a thermopile array: a feasibility study,” Applied
Sciences, vol. 9, no. 12, pp. 1–15:2449, 2019.
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3.1 Introduction

Continuous respiratory monitoring can be used to predict potentially serious clin-
ical events like cardiopulmonary arrest [25,135], and it is particularly relevant for
the detection of specific clinical conditions such as apnea of prematurity (AOP),
sleep-disordered breathing (SDB), or sudden infant death syndrome (SIDS) [97].
Respiratory activity can be monitored with a variety of techniques including
flow sensors, chest wall motion sensors, and indirect extraction of the respiration
signal [25]. However, in some applications, flow sensors are necessary. In par-
ticular, obstructive apnea (OA) is a type of apnea characterized by the presence
of chest wall motion, but absence of flow [23]. Various sensors can be used to
detect respiration flow such as pneumotachographs, oro-nasal thermistors, or nasal
pressure transducers. These, however, need to be positioned close to the nostrils,
fixed on the upper lip, or integrated in a mask and result in being particularly
uncomfortable for patients [23].

Many remote sensing technologies have been used to monitor respiration, e. g.
red-green-blue (RGB) and near-infrared (NIR) cameras or radars. Their detection
is, however, based on respiration motion, not flow. An unobtrusive way to monitor
respiration flow is based on thermal imaging, also called infrared thermography
(IRT) [93, 136]. Most of the work on IRT uses the nostrils and/or the mouth
area as the region of interest (ROI) to evaluate the thermal-induced respiratory
variations. The ROI can be determined manually or automatically by using
anatomical characteristics, e. g. medial canthus region, combined with tracking
algorithms [91,92,101].

In applications such as sleep monitoring, multiple cameras would be necessary
to monitor the patient continuously and cover all possible orientations. This would
undoubtedly raise the cost of the solution, making it even more important to find
an inexpensive sensor solution to detect respiration (and the absence of it). Cho et
al. [100], for example, used a FLIR ONE to detect respiration flow in outdoor and
indoor settings. The work focused on the robustness to environmental thermal
dynamics. Scebba et al. [137] proposed a sensor fusion of FLIR Lepton and RGB
cameras. Both works used ROIs focused on the nostrils area and relatively small
microbolometer-based thermal cameras. Microbolometers are the most common
sensors for uncooled infrared imaging: the infrared radiation absorbed changes the
resistance of the material [138].

Thermopile arrays, instead, consist of multiple thermopile sensors. These
sensors are constituted by thermocouples in series, which are based on the See-
beck effect, i. e. they generate a voltage proportional to the infrared radiation
absorbed [139]. They have been widely used for non-contact thermometers [140],
fall detection [107], human detection [141–143], and fever screening [108]. Thermal
cameras based on microbolometers started having smaller dimensions and cost, as
FLIR ONE or FLIR Lepton. However, the main difference between thermopiles
and microbolometers lies in the production cost, microbolometer-based infrared



3.2. Materials and methods 27

imagers require several costly processes that significantly raise the price [144]. It
would, therefore, be of interest to understand if a thermopile array could be used
as a respiratory flow detector, yielding a further reduction in cost. Moreover, the
detection of facial landmarks is not straightforward in more complex environments
[102], especially when the resolution would be further reduced. A recent work
from Pereira et al. [102] proved the usability of a thermal camera to detect the
respiration signal without the use of anatomical features, both on healthy adults
and infants in the neonatal intensive care unit (NICU). The method uses a black-
box approach, wherein the resolution is reduced by averaging multiple pixels.
Moreover, an empirical signal quality index (SQI) is used to analyze the spectrum
of each cell, and the ROI containing respiratory information is chosen based on
the SQI value. In the data used, both face and torso are included in the field
of view, as specified in a previous work where the same dataset was used [95].
The respiration signal detected is a combination of motion-related breathing (due
to shoulder motion) and thermal changes due to respiration flow. The proposed
approach eliminates the need of ROI selection based on facial features. However, an
unconstrained combination of motion and flow-related information is not desirable
and should not be trusted in environments where apneas and, in particular, OAs
are common.

In this chapter, we present an unobtrusive respiration monitoring technique
that uses a thermopile array and a ROI detection method that does not require
facial landmarks’ visibility. The accuracy of the breathing signal detection was
assessed in optimal stationary conditions on healthy adults in a laboratory envi-
ronment as a proof of concept. To prove the feasibility of detecting respiration
with a thermopile array for typical respiration conditions, oral/nasal breathing
and different respiration rates (RRs) have been analyzed. Furthermore, several
other factors like distance from the sensor and orientation have been considered
to mimic real-world applications.

The rest of the chapter is organized as follows, Section 3.2 introduces the
background and the main challenges, and contains the processing steps and the
experimental setup. The results and discussion will be presented, respectively, in
Section 3.3 and Section 3.4. Finally, Section 3.5 provides the conclusions.

3.2 Materials and methods

Modern thermal cameras have a sensitivity in the order of 10−2 K [138]. However,
a typical thermopile array can only provide a sensitivity in the order of 10−1 K.
Considering that the thermal variations in both adults and neonates have been
reported to be higher than tenths of a Kelvin [145], such a sensitivity should be
theoretically sufficient for the detection of flow. The detection of respiration flow
through thermal sensing is not only dependent on the amplitude of the thermal
variation. Sensor characteristics also contribute in determining the ability to
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detect such changes. The partial area effect [146] is a known dependency that
describes the relationship between the real amplitude (temperature in this case),
field of view, number of pixels, distance, size of the target, and the amplitude
(temperature) detected by a sensor. It follows that the target size, i. e. the surface
involved in thermal heat exchange, is an important parameter in the detection of
flow. For example, differences are expected if the measurements are taken in frontal
view, i. e. subject facing the device, or side view, with the head on a pillow. In the
second case, the pillow material will also take part in the heat exchange process,
increasing the area involved. This phenomenon was already observed by Abbas et
al. [101]. The partial area effect is particularly important in sensors with a broad
field of view and a low number of pixels and limits the distance of usage.

Another challenge can be found in the RR, higher RRs will result in lower
temperature variations due to the heat capacity. Moreover, oral and nasal res-
piration show differences in temperature and humidity content depending on the
environment. In particular, oral exhaled air results in having a higher temperature
compared to the nasal one with an ambient temperature of 20◦C [147].

A single thermal sensing element equipped with proper optics would be enough
for detecting the respiration flow. However, aiming such a sensor in the correct
direction would result in being particularly complicated. Taking into account
all the above considerations, a Panasonic Grid-EYE was selected to prove the
feasibility of detecting respiration flow. The sensor has a sensitivity of 0.16 K and
a resolution of 8 × 8 pixels with an angle of view of 60◦, and it is particularly
low-cost compared to other sensors on the market.

3.2.1 Materials

The thermal videos used in this chapter were collected on healthy volunteers using
the thermopile array Panasonic Grid-EYE. The study was approved by the Internal
Committee Biomedical Experiments of Philips Research with ID: ICBE-2-26849,
and informed consent was obtained from each subject prior to the study.

Datasets

The videos were collected in different orientations, at different distances, and with
different breathing patterns. The subjects were asked to lie down as still as possible
on a bed or sit on a chair and to breathe spontaneously or according to an audio
stimulus. Two different datasets were collected: the first one to prove the detection
of respiration with such a sensor in different settings, and the second one to prove
the feasibility in the detection of respiration flow and to assess the performance of
the proposed algorithm. Each video had a duration of 2 min.
Dataset A: constant guided breathing in different settings
The videos were collected on a single subject since the purpose of the analysis
performed was not to highlight inter-subject variability. For each condition, 3
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videos were collected. Unless specified otherwise, the videos were collected during
nasal respiration and with the subject lying down. Overall, Dataset A consists of
39 videos.

• Distance: videos were collected in side view with different distances, i. e.
from 10 to 50 cm, and with a constant RR of 20 breaths per minute (BPM).

• Respiration rate: different constant RRs were used as the breathing pattern,
i. e. from 10 to 30 BPM. Videos were collected in side view with a constant
distance of 20 cm.

• Orientation and oral/nasal respiration: videos with a constant RR of 20 BPM
and distance of 20 cm were collected in side and frontal orientations during
both nasal and oral breathing.

• Shoulder motion: the videos were collected in a seated position, with a
constant RR of 20 BPM and a variable distance, i. e. 50 and 100 cm.

Dataset B: guided breathing with different patterns
Since the aim of this chapter is to provide a proof of concept, we chose to use 5
subjects similar to the number of subjects used in [100] for their proof of concept
study. Videos were collected with guided and spontaneous breathing. For each
subject, two videos at constant RR of 10 and 30 BPM were collected, a video with
a linearly-variable RR, and a video with an RR with two sudden change from 10 to
30 BPM. Moreover, videos during spontaneous respiration were collected. All the
videos were collected in side view during nasal respiration at a distance of 20 cm.
Overall Dataset B consists of 25 videos.

Experimental setup

The thermal images were collected using a Grid–EYE thermopile array AM8854
from Panasonic. The sensor has 64 thermopile elements arranged in an 8 × 8
grid, and it is sensitive in the long-wave infrared (LWIR) range. The field of view
covered by the Grid–EYE is 60◦, and it has a frame rate of 10 Hz. The sensor
was connected to an Arduino UNO through the I2C bus, and the acquisition was
performed through MATLAB.

The data collection was performed in a room with an ambient temperature of
around 20◦C. It should be specified that respiratory activity causes also motion
of the head and shoulders. This kind of motion is visible also in thermal images.
Therefore, measurements to prove feasibility in flow detection have been taken
with a subject lying down and shoulders out of the field of view. Moreover,
measurements in seated positions have also been collected to prove the detection
of respiration based on motion. Figure 3.1 shows the experimental setup.

Chest impedance (CI) was used as ground truth for respiration monitoring.
Since the measurements were acquired in a stationary condition, CI can be consid-
ered reliable. The signal has been acquired using three electrocardiogram (ECG)
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(a) (b)

Figure 3.1: Experimental setup: (a) subject lying down on a bed; (b) subject in
a seated position.

electrodes, as is common in clinical practice, and a patient monitor (Philips MP50)
with a sampling frequency of 62.5 Hz.

3.2.2 Methods

The main steps of the processing chain are summarized in Figure 3.2. The videos
are first preprocessed. Afterwards, a pixel containing the respiration needs to be
selected, and the RR is extracted in the frequency-domain. The processing chain
was implemented in MATLAB (MATLAB 2018b, The MathWorks Inc., Natick,
MA, USA), and the data processing was performed offline.

Preprocessing

The collected data suffered from irregular sampling. Hence, in the first processing
step, the data were interpolated to produce a dataset that was uniformly sampled
in the temporal dimension with a sampling frequency of 10 Hz. Afterwards, the
spatial mean was removed to suppress the thermal variations of the environment.

Figure 3.2: Block diagram summarizing the processing chain.
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The videos were then processed with a sliding window approach with a window size
of 30 s. The first RR estimate would, therefore, be available after 30 s and then
updated. This time lag was considered acceptable since in some clinical environ-
ments manual estimation of RR is typically performed by nurses by counting chest
movements over a period of time that goes from 15 to 60 s [148]. Moreover, such a
window was also chosen taking into consideration the trade-off between frequency
resolution and temporal resolution, typical of spectrogram methods. Using a time
window of 30 s allowed obtaining a relatively good frequency resolution equal to
2 BPM. For each window, the pixels’ signals were filtered using a Butterworth
bandpass filter going from 10 to 40 BPM, since the normal RR in healthy adults
lies in this range [113].

Pixel selection and pixel update

The pixel containing the respiratory information should be identified. An approach
was proposed in [102] where an empirical metric, SQI, was evaluated based on four
features of the spectrum. The SQI is dependent, however, on empirically chosen
thresholds. The method to identify the pixel with the strongest respiratory signal
proposed in this chapter also operates in the Fourier domain. For each pixel, the
time-domain samples were Hanning-windowed, then transformed through a 1D
fast Fourier transform (FFT), and the value of the highest peak in the normalized
magnitude spectrum was used as a strength indicator. Consequently, an 8 × 8
matrix of strength indicators was obtained, and the maximum element in this
matrix was used to identify the pixel containing the respiratory signal.

Formally, let x̂m,l(nTs) be the filtered, Hanning-windowed time-domain signal
for the jth window where the spatial mean has been removed. m and l are used
to indicate a pixel in the 8 × 8 images and n = 0 + (j − 1), 1 + (j − 1), ..., (N −
1) + (j−1) depends on the current window j. The number of samples per window
was N = 300, and the sampling time was Ts = 0.1 s. ym,l(fk) is the spectrum
of the preprocessed time-domain signal x̂m,l(nTs) and | ym,l(fk) | its magnitude,
with fk = k/(NTs) Hz and k = 0, 1, ..., N/2 − 1. We define the height of the
normalized spectrum’s peak as:

qm,l =
max

lim1≤fk≤lim2
(| ym,l(fk) |)√

lim2∑
fk=lim1

| ym,l(fk) |2
, (3.1)

where lim1 = 0.167 Hz and lim2 = 0.667 Hz, i. e. boundaries of the respiration
band.

We assumed the respiration signal to be pseudo-periodic, thus, the spectrum
would contain a peak. Noise, on the other hand, would show a relatively flat
spectrum, as illustrated in Figure 3.3. In our algorithm, we interpreted a higher
peak in the normalized spectrum as an increased likelihood that the pixel would
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Figure 3.3: The upper plots show the time-domain signal and spectrum of a pixel
where no respiratory information is present. The plots on the second row show the
time-domain and spectrum of another pixel that contains a respiration signal. The
upper figure shows a thermal image where a subject is in a profile view at 20 cm
from the sensor, the lower one shows the distribution of the normalized spectrum’s
peak calculated per each pixel, i. e. Q. The pixels containing the signals plotted
are indicated.

contain the respiratory signal, and we only used a single pixel in the array in the
position (mpr

, lpr
) defined as:

(mpr
, lpr

) = arg max
(m,l)

(qm,l). (3.2)

The pixel needs to be selected for each window j. For the first z windows, the
position was chosen by selecting the pixel with the highest peak in the normalized
spectrum. The successive positions were, instead, dependent on the preceding z
positions, limiting the search space of the following pixels. This procedure was
intended to prevent rapid pixel-switching, which could deteriorate the computed
spectra, whereas the scenario (substantially static subject) did not require a rapid
adaptation. A mask was created based on the z preceding positions that allowed
the following ones to move only to an adjacent position. The value z was fixed
empirically to 10 windows.

Respiration signal extraction and respiration rate estimation

Once the pixel is selected, the respiration signal is obtained for each window as:

resp(nTs) = x̂(mpr ,lpr )j
(nTs), (3.3)
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where (mpr
, lpr

)j indicates the pixel selected with the proposed method in the jth
window.

To estimate the RR, the spectral density (SD) can be calculated. The SD can
be estimated as the squared magnitude of the Fourier spectrum, known as the
periodogram method:

SDPER(fk) = ympr ,lpr
(fk) · ympr ,lpr

(fk)∗ =| ympr ,lpr
(fk) |2 . (3.4)

Several other methods have been developed to estimate a more precise SD, au-
toregressive (AR) models have already been used to extract respiration from pho-
toplethysmography (PPG) and have shown good potential [149]. AR models are
parametric methods for signal modeling and SD estimation. The model assumes
that a signal can be modeled based on the weighted sum of p precedent values.
In the spectral domain, in particular, the SD can be estimated as:

SDAR(fq) = σ2Ts∣∣∣∣1 +
p∑
b=1

abexp(−j2πfqbTs)
∣∣∣∣2
, (3.5)

where σ2 is the variance of the noise, the ab are the weights of the AR model, and p
is the model order [150]. The weights need to be estimated and the order indicated.
Moreover, it should be noted that this parametric model allows the estimation of
SDAR in an arbitrary number of points between 0 and 1/(2Ts). Therefore, in
general, fq can be different from the previously-defined fk. AR models are not
directly affected by the discrete Fourier transform (DFT) limitations because they
estimate the frequency response directly, without implicit windowing and spectral
resolution restrictions. Therefore, AR models have been used especially when
spectra need to be estimated on short windows. This parametric method is suited
for narrowband signals with medium or high signal to noise ratios (SNRs) [151].

Several methods are available for AR modeling, detailed information can be
found in [152]. Burg’s method was chosen for its stability and accuracy on short
data recordings. The model order p is not known a priori, and since there is no
optimal method yet, many methods have been proposed in the years to correctly
estimate it [153]. Chaichulee et al. [154] recently proposed to determine the order
by choosing the p that minimizes the error obtained by comparing the peak of
AR’s SD and the Fourier spectrum. In this chapter, Chaichulee’s method has
been used, the optimal model order was selected for each window, and fq was
chosen to be equal to fk. In Dataset B, the RRs have been estimated with both
the AR model and periodogram, to compare the performances. The range of
order was empirically chosen and went from 15 to 30 with a step of 1 whereas in
Dataset A the periodogram method was used.

The RR was estimated as the frequency corresponding to the highest peak.
Once the RRs were estimated, a moving median filter was applied averaging 10
estimations together. Moreover, the time-domain signal was reconstructed by
gluing together the segments, as explained in [155].
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Evaluation metrics

SNR, RMSE, and relative error (RE) have been used to evaluate the performance
of the thermopile in detecting the respiration signal. The SNR was evaluated
according to:

SNR = 10 log10


1.67∑

fk=0.12
(U(fk)SD(fk))

1.67∑
fk=0.12

((1− U(fk)) SD(fk))

 , (3.6)

where SD(fk) is the signal’s spectral density estimated using the periodogram or
AR method and U(fk) is a binary template window centered on the spectrum’s
peak and first harmonic with a predefined width equal to 2 frequency bins. The
first harmonic was included as the respiration signal is not a perfect sinusoid. The
SNR was evaluated on each window, and the average of all the windows was used.
The RMSE has been evaluated using CI as the reference:

RMSE =

√√√√√ Nw∑
j=1

(
r̃fj − rfj

)2

Nw
, (3.7)

where r̃fj is the RR estimated, rfj is the one obtained using the CI, and Nw is
the number of windows evaluated. RE has also been estimated to allow a better
comparison.

Moreover, the videos collected in Dataset A have also been compared by as-
sessing the number of pixels involved in the respiration signal. This was performed
by evaluating the absolute value of the correlation coefficient between the detected
respiration signal and the signals contained in other pixels. If the correlation was
higher than 0.7, then the pixel was considered to contain a respiration signal as
well and was added to the pixel count.

The temperature variation detected by the thermopile due to respiration was
also considered. This was obtained by using the range of the signal, i. e. the
maximum amplitude minus the minimum amplitude. Both the amplitude and the
number of pixels have been estimated on each window and then averaged for the
entire measurement.

3.3 Results

The results obtained using the thermopile array are presented for the two different
datasets.
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Dataset A

An overview of the analysis performed on Dataset A is shown in Figure 3.4. Mul-
tiple distances, RRs, and frontal or side nasal/oral breathing have been compared.
The dots and squares represent the average of the three signals obtained for each
setting, whereas the error bars show the standard deviations. Signals at distances
of 20 and 30 cm, and 40 and 50 cm were grouped together, as a variation of 10 cm
was not considered enough to show the effect of increasing distance. Therefore, in
the distance case, the average and standard deviation were evaluated on six signals
per setting. Moreover, Figure 3.5 shows the pixels containing the respiration signal
in the case of a measurement taken at 50 cm in side view with the subject lying
down and 50 cm in the frontal seated position, as well as the results obtained when
the respiration was detected through shoulder motion.

Dataset B

Table 3.1 contains the average of the results obtained for each subject for the four
different respiration patterns used, with both the periodogram and AR model. The
last row shows the overall average results, in bold we indicate the best results for
RMSE, RE, and SNR. Figures 3.6 and 3.7, instead, show the time-domain signals,
the spectra evaluated through FFT on each window, and the RRs estimated in
comparison with the reference for the five cases. It should be specified that in the
case of guided breathing with a sudden change, an additional filter was applied.
As can be expected from the results obtained in Dataset A, breathing at 30 BPM
will have a lower amplitude compared to the 10 BPM one. This effect caused a
delay in the detection of the frequency change. Therefore, a ramp filter has been
applied to each window of the sudden change signals to amplify high frequencies
in the breathing range. Correlation plots and Bland–Altman analysis for all the
subjects and breathing scenarios are displayed in Figure 3.8. The mean bias was
0.23 BPM with the limits of agreement being −5.05 and 5.51 BPM. Moreover, the
results also showed a strong correlation between the CI estimated RR and the one
estimated with the thermopile array, yielding a ρ = 0.95.

3.4 Discussion

The results obtained for the two datasets and the different challenges are discussed
separately.

Dataset A

• Distance: the comparison of the performance between different distances
proved that the thermopile would lose accuracy at larger distances. In
particular, amplitude, SNR, and the number of pixels would decrease with
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Figure 3.4: Overview of the differences in amplitude, SNR, number of pixels,
and RMSE in Dataset A: (a,b) results for signals acquired at different distances;
(c,d) comparison of different RRs; (e,f) different orientations and oral and nasal
respiration, M and N indicate respectively mouth and nose breathing.

larger distances, and the RMSE would increase. Amplitude decreased from
an average of 0.98◦C to 0.83◦C. The SNR reduced from 5.66 dB to 2.97 dB,
whereas RMSE went from 0 BPM to 0.18 BPM with a standard deviation of
0.45 BPM. The number of pixels did not result in a big change on average,
but it can be noticed that the standard deviation for the 20–30 cm case was
much higher compared to the 40–50 cm case. This reduced performance with
larger distances is mainly due to the partial area effect. As already expected,
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Figure 3.5: Respiration detection through shoulder motion: (a,b) the first figure
shows a thermal image, and the second one shows the spectrum peak magnitude
distribution of a subject seated and lying respectively at 50 cm of distance; (c,d)
overview of the differences in amplitude, SNR, number of pixels, and RMSE when
data were collected from a seated subject at 50 and 100 cm.

the low-resolution combined with the broad field of view limits the distance
at which the sensor can be used.

• Increasing RR: breathing with higher RR resulted also in a reduction of the
amplitude from 1.30◦C to 0.82◦C, and the SNR drastically reduced from
9.34 to 0.71 dB, whereas the number of pixels from 1.60 to 1.00. The RMSE

Table 3.1: Average of five subjects of the results obtained on Dataset B.

Breathing Pattern
Periodogram AR

RMSE RE SNR RMSE RE SNR
(BPM) (%) (dB) (BPM) (%) (dB)

10 BPM 0.00 0.00 8.71 0.00 0.00 13.59
30 BPM 0.00 0.00 5.15 0.00 0.00 8.15
Chirp 1.41 1.19 4.09 1.41 1.21 5.87

Sudden Change 5.57 7.79 2.19 6.57 9.61 7.90
Spontaneous 0.98 1.59 4.27 0.99 1.72 5.81

Avg. 1.59 2.11 4.88 1.79 2.51 8.26
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(a)

(b)

Figure 3.6: Results obtained for Dataset B with constant breathing pattern at
10 and 30 BPM, respectively; on the left the time-domain signal, in the middle
the Fourier spectrum per each window, and on the right the RR extracted with
both the periodogram and AR and the CI one.

remained constant. During higher RR the flow applied to the surroundings
would be imposed for less time, reducing the heat exchanged and, therefore,
the quality of the thermal signal.

• Orientation and oral/nasal respiration: in this dataset, both orientation and
nasal/oral respiration were compared. Frontal measurements were expected
to produce a reduced variation in temperature due to the small surface
for heat exchange available. Indeed, both frontal nasal and frontal oral
respiration resulted in performing particularly worse compared to the other
settings. Frontal oral respiration performed worse compared to the nasal
case resulting in a higher RMSE. Side oral respiration resulted in causing a
bigger temperature variation and higher SNRs. This behavior was expected
since in the side case, the pillow’s textile material would be involved in heat
exchanges as well, increasing the surface. This setting involved many more
pixels, i. e. on average 2.76 compared to side nasal breathing, which resulted
in 1.21 pixels on average. The variation in amplitude and SNR was not
as big. The differences can be explained by considering the differences in
expired air temperature as already indicated in Section 3.2 and differences
in the flow direction.
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(a)

(b)

(c)

Figure 3.7: Results obtained for Dataset B with different patterns; on the left
the time-domain signal, in the middle the Fourier spectrum per each window, and
on the right the RR extracted with both the periodogram and AR and the CI
one. (a) chirp pattern; (b) pattern with two sudden changes; (c) spontaneous
breathing.

• Shoulder motion: measurements were collected in a seated position at 50
and 100 cm when the shoulders were included in the field of view. Figure 3.5
shows the two different situations: in the first case, the signal resulting in
the maximum peak magnitude was coming from the shoulder area, whereas
in the second case (side view with the subject lying down), the signal was
coming from the nose area. This is caused by the higher amplitude of the
temperature variation due to respiratory shoulder motion compared to the
temperature variation produced by respiratory flow in the frontal view at
the same distance. Shoulder and head motion due to respiration can be
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Figure 3.8: Bland–Altman plot and correlation plot for all the subjects and
settings in Dataset B. Reference indicates the RR estimated with the CI, whereas
estimate indicates the one estimated using the thermopile array.

suppressed by performing the measurement with the subject lying down,
at least for adults. Moreover, due to the partial area effect, the error in
the detection of respiration through motion increased drastically already at
100 cm.

Dataset B

Constant RR of 10 and 30 BPM both performed well, resulting in an RMSE of
0 BPM for both the periodogram and AR model. A difference in the SNR can
be noted between the two RRs since the respiration at 30 BPM resulted in a
lower SNR compared to the other one. This was already expected considering
the results obtained in Dataset A. Chirp had a median error of 1.41 BPM for
both the periodogram and AR model, whereas the pattern with sudden change
resulted in the highest RMSE, 5.57 BPM and 6.57 BPM, respectively. This was
expected since in the sudden change case when indecision between the two peaks
was present (similar height of the peaks in the spectrum), an error of 20 BPM
could be obtained. Moreover, the sudden change was the only case in which
the AR performed particularly worse compared to the periodogram. This can be
explained considering that the SNR in this case was significantly lower compared to
the other four cases, and AR is known to perform well in cases of high or medium
SNRs. In the spontaneous breathing case, the RMSE resulted in being around
0.98 for both SD estimators. Moreover, both correlation and Bland–Altman plots
in Figure 3.8 show a bias in the estimated RR at 10 and 30 BPM. This bias was
due to a delay in the detection of the transition between 10 and 30 BPM in the
signals acquired with the sudden change pattern.

The periodogram yielded an average RMSE of 1.56 BPM compared to 1.79 BPM
of the AR model, the RE was 2.11% and 2.51%, respectively, and the SNR resulted
in being on average 4.88 dB and 8.26 dB, respectively. The difference in error
was on average only 0.23 BPM, which we considered insignificant. On the other
hand, the SNR was always higher in the AR model case. The similarity in the
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results is justifiable considering that Chaichulee’s method binds AR and Fourier
spectrum evaluated through FFT to have the same RR estimation, therefore
limiting AR models to the same limitations of DFT. AR modeling can improve the
results obtained in short windows, but a new method for order selection should be
investigated.

In this chapter, respiration detection using a thermopile array was proven
to be feasible in controlled settings. It should be noted that this is a proof
of concept, future research should focus on proving the usability of such a sen-
sor with a higher number of subjects and in clinical practice. Some limitations
can be identified in the current approach, such as a lack of motion robustness
and the pseudo-periodicity assumption for the respiration signal. Strategies to
compensate motion are required. Considering that RGB cameras can currently
monitor multiple vital signs and would be probably included in clinical practice
in the future, a combination of RGB videos and thermopile array images could be
used to track the identified pixel. A similar approach has been proposed in [137]
however, their solution relied on facial landmark detection. Moreover, the pseudo-
periodicity assumption would not hold in cases of apneas or other respiratory
patterns. Strategies to overcome this challenge are required before moving to
clinical practice.

3.5 Conclusions

A thermopile array has been tested to prove the feasibility in detecting respiratory
flow. The results showed that respiration motion dominates the measurement for
a seated subject. This indicates that a lying adult subject is crucial to mea-
sure respiratory flow successfully, rather than head and shoulder motion due to
respiration. Moreover, the results prove the sensor can detect respiratory flow
in different ideal settings, and with variable RRs. The pixel selection method
successfully detected the pixel containing the respiration flow thermal signature.
The method for pixels selection was used as starting point for the development of
the method presented in Chapter 4. The overall conclusion is that a thermopile
array can be used for unobtrusive respiration monitoring. However, the usability
has only been demonstrated in ideal conditions for healthy adults and extending
the usage to a more challenging population, e. g. infants, and environment may
not be straightforward. Further development may provide interesting low-cost
alternatives to the earlier microbolometer-based proposals.





CHAPTER4
Multi-camera infrared thermography and
automatic respiratory pixels identification

Abstract

Respiration is monitored in neonatal wards using chest impedance (CI), which
is obtrusive and can cause skin damage to the infants. Therefore, unobtrusive
solutions based on infrared thermography are being investigated. This chapter
proposes an algorithm to merge multiple thermal camera views and automatically
detect the pixels containing respiration motion or flow using three features. The
method was tested on 152 minutes of recordings acquired on seven infants. We
performed a comparison with the CI’s respiration rate yielding a mean absolute
error equal to 2.07 breaths/min. Merging the three features resulted in reducing
the dependency on the window size typical of spectrum-based features.

This chapter is based on:
I. Lorato, S. Stuijk, M. Meftah, D. Kommers, P. Andriessen, C. van Pul, and G.
de Haan, “Multi-camera infrared thermography for infant respiration monitoring,”
Biomedical Optics Express, vol. 11, no. 9, pp. 4848–4861, 2020.
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4.1 Introduction

Premature infants are cared for in neonatal intensive care units (NICUs) where
their vital signs need to be continuously monitored to detect critical events. To
measure these biosignals, like electrocardiogram (ECG), respiration, and oxygen
saturation, many electrodes and sensors are applied on the infants’ sensitive skin
causing discomfort and, in some cases, also skin damage [156]. Respiratory fre-
quency is usually monitored since respiratory instability and apneas, cessations
of breathing (COBs), can be common in preterm infants and in term newborns
with respiratory diseases [157], and may require immediate action of the caregiver.
Chest impedance (CI) is used to monitor respiratory frequency in NICUs, which
can be measured using the electrodes already applied for measuring the ECG.
However, this method still suffers from motion artifacts and it is not reliable for
neonatal apnea detection [43].

Unobtrusive or non-contact solutions to monitor respiration are being inves-
tigated for clinical environments. The two main observable effects of respiration
are respiratory motion and respiratory flow. Respiratory motion can be monitored
unobtrusively using different solutions as red-green-blue (RGB) or near-infrared
(NIR) cameras [77, 79], radar-based solutions [57, 124], pressure-sensitive films
[66, 158], or thermal cameras [95, 109]. Of these, thermal cameras are able to
also deliver flow information unobtrusively [101,159].

Respiratory monitoring is often used to detect apneas, which can be classified
in three main categories: central, obstructive, and mixed. In central apneas (CAs)
no stimulus for breathing is given by the brain and therefore, both respiratory
motion and respiratory flow are absent, whereas in the other two categories some
sort of respiratory motion, i. e. respiratory effort, is present [115]. Therefore, when
aiming at apnea detection and classification, technologies that can detect both
flow and motion are more appealing, like infrared thermography (IRT). Previous
studies based on thermal cameras in a NICU environment used facial landmarks
detection to locate the nasal area by exploiting for example the medial canthus
region, one of the warmest areas of the face [91,97]. This is however quite complex
in infants’ thermal recordings and requires high resolution thermal images, or
proximity of the camera to the nasal area [100], or a combination of thermal and
RGB cameras [137]. Therefore, approaches aiming at automatic region of interest
(ROI) detection in thermal imaging are being developed [102,160].

Pereira et al. [102] designed an algorithm to automatically select the ROI
containing respiration signals in infants. This algorithm relies on a large resolution
reduction which allows reducing the noise in the thermal recordings. Afterwards,
a signal quality index (SQI) is calculated for each ROI based on the spectrum
and an empirical threshold is used to decide which ROI can potentially contain
a respiration signal. Such an approach is very promising as it allows to obtain
a respiration signal even when the nose is not clearly visible in infant thermal
recordings. Our previous work [160], described in Chapter 3, proposed an alter-
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native approach tested on a thermopile array, which is a very low-cost device that
delivers low-resolution thermal images. The algorithm proposed for the automatic
detection of the ROI was based on the height of the normalized spectrum peak
and required no empirical thresholds to be defined. While the first work was
developed for a high-resolution thermal camera and was tested also in infants, the
second one was developed for an extremely low-resolution thermopile array but was
tested only for adults in ideal conditions. However, both approaches propose the
use of features for the localization of the pixels containing respiration based solely
on the spectrum shape, this may be complex to generalize as different spectrum
characteristics can affect the result. For example, the frequency resolution of the
spectrum affects how the energy is distributed and if short windows are used, it
may result in noise pixels’ spectra being difficult to distinguish from respiration
ones due to the spectral leakage, especially when the signal to noise ratio (SNR)
is low.

Moreover, considering complex environments as NICUs, the use of multiple
camera views is important to obtain proper coverage in all the infants’ possible
positions for the detection of both respiratory flow and motion signals, called in
this chapter respiration thermal signature. Furthermore, since neonates in NICUs
are inside incubators and the incubators’ Plexiglas walls are not transparent for
thermal cameras, these should be positioned inside the incubator which is not
feasible for large high-resolution cameras. Even in the case of babies being in an
open bed, bulky cameras can obstruct caregivers’ and parents’ interaction with
the infant, therefore, the use of smaller thermal solutions should be investigated.

Building on our previous contribution [160], detailed in Chapter 3, this chapter
proposes a new algorithm based on an automatic ROI detection for respiration
monitoring in multi-camera low-resolution thermal videos. We propose a data
fusion on a pixel level and define three features that can be merged together
to obtain a more accurate localization of the respiration pixels without relying
on spectrum shape only, spatial averaging, or facial landmarks detection. This
algorithm was tested on thermal videos recorded on seven infants in a real neonatal
ward, reaching a total amount of 152 minutes using CI as reference.

The rest of this chapter is organized as follows. Section 4.2 explains the method
developed, the setup used, and the dataset. Section 4.3 presents the results. These
are then discussed in Section 4.4 together with limitations and possible future
research, and Section 4.5 contains the conclusion.

4.2 Materials and methods

The data collection performed, the videos collected, and the algorithm for the
automatic respiratory pixels identification are described in this section.
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Table 4.1: Infants’ data, the gestational age (GA) is indicated in weeks (w) and
days (d), postnatal age (PA) is in days

Infant Gender GA
(w+d)

PA
(days)

Weight
(g)

Sleeping
Position

Duration
(minutes)

1 F 26w 4d 59 2445 Supine 34.52
2 M 38w 5d 3 4140 Supine 9.24
3 M 34w 1d 16 2995 Supine 31.17
4 M 26w 3d 59 2750 Prone 11.10
5 M 39w 2 3670 Lateral 10.76
6 F 40w 1d 6 3420 Supine 44.70
7 M 40w 2d 1 3775 Lateral 10.17

4.2.1 Materials

The study was conducted in the neonatal ward of the Máxima Medical Centre
(MMC) in Veldhoven, The Netherlands and the study received a waiver from the
Ethical Committee of the MMC. A written informed parental consent was obtained
for all the infants included. The thermal videos were collected using three FLIR
Lepton cameras.

Dataset

The inclusion criteria of the study were: (i) babies monitored using ECG electrodes
for clinical purposes, (ii) clinically stable, (iii) in open bed. Both preterm and
term babies were included in the study. In total fifteen babies can be included
in this study. This chapter uses the recordings collected on the first nine babies,
two babies have been excluded from further processing due to the blanket position
that resulted in completely hiding the respiratory motion while the respiratory flow
was also barely visible. Table 4.1 presents the information regarding the remaining
seven infants. For each baby, around three hours of videos were acquired, except
for Infant 7 where only one hour was acquired. Since we expected problems from
interfering motion (examples baby moving, parents’ or nurses’ handling, or soother
presence) we selected only moments without patient handling and patient motion.
The videos were, therefore, manually annotated, the useful moments can vary
from around nine minutes to forty-five depending on the infant. One baby with
respiratory support was included for feasibility purposes and corresponds to Infant
1 in Table 4.1.

Experimental setup

The recordings were performed using three FLIR Lepton thermal cameras. These
were Lepton 2.5, with a resolution of 60 × 80 pixels, the cameras are sensitive in
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the long-wave infrared (LWIR) range, specifically from 8 to 14 µm. The thermal
sensitivity is around 50 mK and the average frame rate is 8.7 Hz. The sensors were
connected to smart I/O modules (Pure Thermal 2 or Pure Thermal Mini) and
these were connected to a laptop through USB. The acquisition was performed
using MATLAB, the temperature readings were obtained by using the cameras
with the factory default calibration.

The cameras were positioned around the babies’ open beds to cover all possible
infant positions inside the bed, mounting arms as shown in Figure 4.1 were used.
We chose to use multiple cameras to increase the camera coverage and have a good
visualization of both respiration motion and flow considering different infants’
positions. The two cameras pointing at the infant face from the two sides are
called camera 1 and 2, whereas camera 3 is the camera on the foot side of the bed
registering the entire baby area. We specify that camera 3 is actually a Lepton
3.5 which differs from the others only for the resolution, equal to 120 × 160. We
noticed the 60× 80 resolution was sufficient in detecting the respiration rate (RR)
and decided to use all the cameras at the same resolution. The images of the
Lepton 3.5 were, therefore, down-scaled to 60 × 80 simulating the use of a third
Lepton 2.5. All three cameras have a shutter that has been deactivated during
the acquisition to avoid delays caused by the closing and opening of the shutter.
The reference signal, CI, was obtained from the patient monitor (Philips MX800)
sampled at 62.5 Hz. An artifact was used to synchronize the videos with the
patient monitor.

Figure 4.1: The three FLIR Lepton cameras positioned around an infant’s open
bed, two with white housing and one with blue housing.
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Figure 4.2: Major processing steps summarized.

4.2.2 Methods

The videos from the cameras are merged obtaining a single image plane. Based
on three features a core-pixel, presumed to contain a strong respiratory signature,
is selected. This core-pixel is then combined with temporally highly correlating
pixels to form the respiratory output signal. Consequently, this output uses both
respiratory flow and motion present in all camera views. The RR can then be
estimated as the frequency corresponding to the peak of the spectrum. These steps
are summarized in Figure 4.2 and explained in more detail in the next sections. Our
algorithm will be benchmarked against Pereira’s method [102], adapted to make it
work with our hardware setup. The algorithm was developed and executed offline
in MATLAB (MATLAB 2018a, The MathWorks Inc., Natick, MA, USA).

Preprocessing

The videos were recorded using MATLAB. However, due to the acquisition strat-
egy, the sampling rate of the videos was not uniform. Therefore, to obtain
uniformly sampled videos, a 1D linear interpolation, i. e. using the standard
MATLAB function interp1, was performed for each pixel’s time-domain signal
resulting in three videos sampled at 9 Hz (the choice of the sampling frequency is
not particularly critical and 9 Hz was chosen such that it was close to the average
frame rate). At this point we considered two possible steps, one is treating the
videos as three separate streams and then combine the RRs, the other one is
combining the videos on a pixel level and process them as a single video. The
first approach has some advantages based on the independence of each view, for
example, if a movement is visible only in one of the cameras the other two can
potentially still deliver a good RR estimation. The second one, instead, rejects
weaker respiration signatures, that can be obtained from unfavorable camera views,
allowing to use only the overall best pixels. Most importantly, however, the first
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method does not perform well when only one of the cameras detects a correct
RR, and therefore, the second method has been implemented. The result, after
merging the videos, is a single video with spatial dimensions equal to M ×L with
M = 180 and L = 80 pixels as shown in Figure 4.2. It should be specified that
we did not correct the single views’ temperature values as visible in Figure 4.2
because the absolute temperature values do not affect the processing since each
pixel’s time-domain signal is used independently (the feature called Gradient is
the only one that could be affected by differences in the temperature values as
this could lead to a false edge-detection, however, the combination with the other
features compensates for this effect).

The merged video was processed with a sliding window approach with a window
size equal to 15 s and a slide of 1 s, the window size was chosen as a trade-off
between accuracy and latency. A 15 s window results in a resolution of 4 breaths
per minute (BPM), and the slide size results in an updated RR every second.

Automatic respiratory pixels detection

We based our respiration pixels selection strategy on different features that are
used to find a core-pixel in the entire image, this pixel will be then used to find
the other pixels that contain respiration. As the core-pixel is crucial to the result,
the features are built to ensure a very strict selection. A simplified block diagram
of the algorithm is shown in Figure 4.3. Each pixel is processed separately, let
xm,l(nTs) be each pixel’s time-domain signal in a 15 s window and at the position
(m, l). If we define the current 15 s time window as the jth window then n is
defined as n = 0+(j−1)/Ts, 1+(j−1)/Ts, ..., (N −1)+(j−1)/Ts with N being
equal to 135 samples, i. e. the samples in 15 s with a sampling time Ts = 0.111 s.
Three features were used to select the core-pixel in each window:

• Pseudo-periodicity: the first feature is similar to the one presented in Chap-
ter 3 and our previous work [160], i. e. the height of the normalized spectrum

Figure 4.3: Simplified block diagram of the respiratory pixels selection algorithm.
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peak that assumes the respiration signal to be pseudo-periodic and thus
identifiable compared to noise. Each xm,l(nTs) is filtered with a differential
filter, the filtered version is named x′m,l(nTs). This is transformed, after
the application of Hanning window and zeropadded till Nz = 120 · N ,
using a 1D discrete Fourier transform (DFT) obtaining y′m,l(fk) with k =
0, 1, ..., Nz/2− 1 and fk = k/(NzTs) Hz. and it is defined as

qm,l =
max

0≤fk≤ (Nz/2−1)
NzTs

(| y′m,l(fk) |)√√√√ (Nz/2−1)
NzTs∑
fk=0

| y′m,l(fk) |2

. (4.1)

The qm,l calculated for each pixel are elements of the M × L matrix called
Q, see example in Figure 4.4. The feature defined in Chapter 3 and in [160]
resulted in not being accurate enough for the selection of a core-pixel in each
jth window without any previous knowledge, modifications were, therefore,
required. A constraint on the selection of the possible pixel, based on the
proximity to the previously chosen pixels, was described in Chapter 3, which
causes a dependency on the first selected core-pixel which is undesirable.
Therefore, to avoid this dependency we introduced two new features.

• Respiration rate clusters (RR clusters): the second feature comes from the
consideration that pixels containing the respiration thermal signature are
clustered in groups with similar frequencies, i. e. the RR. Therefore, for our
second feature, we select the frequency corresponding to the highest peak in
the spectrum as:

rrm,l = arg max
fk

(
| y′m,l(fk) |

)
. (4.2)

The rrm,l are arranged back into the image shape, RR called Frequency
Map with dimensionsM ×L, on which a non-linear spatial filter with a 3×3
kernel is applied, as follows:

wm,l = 1
9

3∑
r=1

3∑
o=1

(
1

exp(κ1 | rrm,l − rrr,o | /rrm,l)

)
, (4.3)

while r and o identify the kernel cell, m and l indicate the current central
pixel in the entire M ×L image. The constant κ1 was set to 70, it was found
to be not very critical and chosen such that it results in a weight equal to
around 0.5 for a 1% relative error. Therefore, the resulting matrix will map
the pixels having similar frequencies in their neighborhood and it is called
W, an example can be seen in Figure 4.4.

• Gradient: this feature assumes that respiration motion is visible in the
thermal recordings and, considering that this is only visible if there is a
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thermal contrast, an edge map is built using the gradient as follows:

gm,l =

1 if

√(
∂ām,l
∂m

)2
+
(
∂ām,l
∂l

)2
> κ2

0 otherwise,
(4.4)

with Ā being a thermal image in degree Celsius representative of the current
window j and evaluated as the average of all the thermal images in the
window, ām,l is an element of Ā. A gradient of at least 1◦C is considered
and, therefore, the constant κ2 is equal to 1◦C. The gradient operation is
performed with the central difference method, using the standard MATLAB
function gradient. The resulting matrix is called G, Figure 4.4 shows an
example.

Once the features are calculated, the matrices, Q, W, and G are normalized
to have values between 0 and 1 and then multiplied element-wise, obtaining a
combination of the three features, called V.

The core-pixel that is assumed to contain a respiratory thermal signature is
then selected as the pixel corresponding to the maximum of V as:

(mpr
, lpr

) = arg max
(m,l)

(vm,l) . (4.5)

Once this pixel is selected, the other pixels containing respiration, both flow and
motion, can be found based on the Pearson’s correlation coefficient. More formally,
the time-domain signals, xm,l(nTs), are filtered at this point with a Butterworth
bandpass filter from 30 to 100 BPM, corresponding to the normal RR range in
infants including also tachypnea cases [134], this filtered signal is called x̂m,l(nTs).
The Pearson’s correlation coefficient calculation on these DC-free signals as:

cm,l =

N∑
t=1

(
x̂mpr ,lpr

(t)
)

(x̂m,l(t))(
N∑
t=1

(
x̂mpr ,lpr

(t)
)2 N∑

t=1
(x̂m,l(t))2

)1/2 . (4.6)

The cm,l indicate the correlation between the chosen core-pixel (mpr
, lpr

) and a
pixel in position (m, l). x̂mpr ,lpr

(t) and x̂m,l(t) are the filtered time-domain signals
of the core-pixel and a pixel in position (m, l) respectively. t is an index that sweeps
the time samples. In this chapter, we considered pixels with an absolute correlation
higher than κ3 = 0.7, empirically chosen:

P = (m, l) : | cm,l |> κ3. (4.7)

P consists of a set of pixels that are assumed to contain a respiratory thermal
signature. Figure 4.4 shows an example of all the features.



52 Chapter 4. Multi-camera infrared thermography and automatic respiratory pixels identification

Q

20 40 60 80

50

100

150

W

20 40 60 80

50

100

150

G

20 40 60 80

50

100

150

A

20 40 60 80

50

100

150

V

20 40 60 80

50

100

150

Image showing the selected pixels

20 40 60 80

50

100

150

Figure 4.4: On the top row an example of the three features used, on the
bottom row a representative thermal image, the result of the multiplication, and a
representation of all the pixels contained in P. The core-pixel (mpr , lpr ) is shown
in white in the last figure.

All pixels contained in P are combined together with an average operation,
after correcting for the sign of each time-domain signal. The result is a single
time-domain signal representing the respiration signal detected in the jth window.
The signal is Hanning windowed and the spectrum is obtained through DFT. The
RR is estimated as the frequency corresponding to the spectrum’s peak for each
window. A final time-domain signal is obtained using an overlap-add procedure
as explained in [155].

Benchmarking and reference

We benchmark our multi-camera and multi-feature ROI detection algorithm against
Pereira’s method [102] applied on all the three different views available in our
dataset. A large spatial averaging is applied in Pereira’s method, which was
impossible to reproduce on our images due to the very different starting resolutions
(our images have a resolution of 60 × 80 pixels, whereas the images used in [102]
have a resolution of 1024 × 768 pixels). Therefore, this step had to be skipped,
as a consequence the quantization errors may be stronger in our dataset than in
Pereira’s set after down-scaling. Afterwards, a Hamming window is applied as done
originally and at this point Pereira’s method removes the DC component without
further filtering. Directly using Pereira’s method on our data resulted in SQIs
being higher for the noise pixels than the pixels showing the respiration signal.
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Consequently, the method failed as the wrong pixels were selected. This must
be due to two main differences in our setup: the lower spatial resolution, which
prohibits further downscaling, and the lower frame rate. Particularly, Pereira’s
method relies on spectrum features, such as the one called F2, that depend on
the frame rate. Therefore, we had to optimize Pereira’s method to work with our
data.

We were forced to apply a filter to attenuate the low part of the spectrum in
order to get meaningful results. We used a differential filter as in our method,
this filter does not change the essence of Pereira’s method, so we feel it is a fair
adaptation. DFT is applied to obtain the spectrum, and the magnitude of each
spectrum is normalized for the maximum as done in Pereira’s method. The SQI
needs to be calculated at this point, in [102] three frequency bands were defined, a
low-pass band below 0.1 Hz, a band-pass between 0.1 Hz and 3 Hz and a high-pass
band above 3 Hz, and the SQI is calculated using four empirical spectrum features
(i. e. the paper [102] mentions that F1 is the maximum amplitude in the high-pass
band, F2 is the percentage of values in the high-pass band that are larger than an
empirical threshold, F3 is the difference between the maximum amplitudes in band-
pass and low-pass bands, and F4 is the ratio between the maximum amplitudes in
the low-pass and band-pass bands). Pereira et al. empirically chose a threshold,
applied on the SQI, equal to 0.75 to eliminate the pixels that do not contain a
respiratory signal. The three frequency bands so defined allow using the method
also for the detection of heart rate (HR), whose typical frequencies are, therefore,
included in the band-pass band. In our case, HR detection is not one of the
application’s goals and also is not practically implementable due to our limited
sampling frequency which would not respect the Nyquist–Shannon theorem (i. e.
the sampling frequency should be at least two times the highest frequency of a
band-limited signal, for HR detection in infants upper limit up to 5 Hz can be
considered [72]). Therefore, we adapted the band to the same band we use in our
application (low-pass below 0.5 Hz, band-pass between 0.5 Hz and 1.7 Hz, and
high-pass higher than 1.7 Hz).

The SQI has been calculated using the four features indicated in the origi-
nal paper but some thresholds that were empirically defined had to be slightly
adapted. Therefore, (i) the threshold for the calculation of the feature called F2
was increased from 0.1 to 0.2 and (ii) all the pixels having an SQI higher than
0.5 have been further processed for the RR calculation. We estimated the RR
for each of the valid pixels and combined them using the median, obtaining an
RR estimated for each window. The optimization of the SQI threshold for all the
views and babies was the most problematic, as it resulted in a trade-off between
the inclusion of many noise pixels, and obtaining not a number (NaN) caused
by the absence of pixels meeting the criterion. We realized that using a higher
threshold, e. g. 0.6 would be favorable resulting in a reduction of the error in some
of the recordings, however, the use of a higher threshold could not prevent NaN.
Therefore, even though by tuning the thresholds for every single view and every
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single baby the results may get better, we decided to use the same thresholds for
all views which, in our opinion, is more realistic.

The RR was also estimated for the simultaneously collected CI signal in the
same way, the CI signal was firstly filtered with a Butterworth bandpass filter
from 30 to 100 BPM. The RR so obtained constitutes our reference for both our
method and Pereira’s. Moving mean and median filters with 9 points were then
applied in all cases.

To compare the results with the reference, root mean square error (RMSE),
mean absolute error (MAE), and a percentage of correct estimates (PR) have
been calculated. PR is defined as the percentage of estimates in which the abso-
lute difference between an estimated RR and the reference RR is below 2 BPM,
corresponding to the accuracy of a DFT with 4 BPM resolution. More formally:

PR =

Nw∑
j=1

(
| rfj − r̃fj |< 2

)
Nw

· 100, (4.8)

where Nw is the number of windows, and rfj and r̃fj are respectively the CI’s
RR and the estimated RR (ours or Pereira’s) obtained in the jth window. We
analyzed the contribution of each of our features used for the detection of the
core-pixel, and how the error varies when combining them. Moreover, to prove
the dependency on the window size of features based on the spectrum shape, we
analyzed how the average MAE changes by keeping all the thresholds values and
changing the window size to 8 s, for our method and for the benchmark one.

4.3 Results

Table 4.2 provides the MAE, RMSE, and PR for our method and the benchmark
applied on all the camera views. On the last row the average results considering all
the infants is presented, the best results for MAE, RMSE, and PR are indicated
in bold. Our method yields an average MAE equal to 2.07 BPM and an average
PR of 70.90%, whereas the benchmark obtains its best results on camera 3 with a
MAE equal to 3.18 BPM and a PR of 56.30% (we also tested the benchmark on
camera 3 at full resolution, i. e. 120 × 160, the results were similar with a MAE
equal to 3.39 BPM). Figure 4.5 shows an example of results obtained with the
method proposed in this chapter and the benchmark method. A correlation and
Bland–Altman analysis was also performed for our method against the CI reference
and displayed in Figure 4.6. A mean bias of −0.55 BPM was obtained with the
limits of agreement equal to −6.25 BPM and 5.14 BPM, and the correlation plot
shows the agreement between our estimated RRs and the reference ones obtaining
a ρ = 0.97.

Figure 4.7 shows how the individual features, used to select the core-pixel,
influence the performance. The benchmark results of camera 3 are included in
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Table 4.2: Results showing MAE in BPM, RMSE in BPM, and PR for our
method and the benchmark one.

Infant Ours Benchmark
Cam 1 Cam 2 Cam 3

MAE RMSE PR MAE RMSE PR MAE RMSE PR MAE RMSE PR
1 0.64 1.08 92.37 2.16 3.06 66.11 4.51 5.76 42.02 1.50 2.16 78.76
2 2.89 3.37 52.39 4.22 5.57 37.40 4.40 5.31 40.03 3.99 4.72 38.79
3 4.41 5.79 35.06 7.34 8.82 15.78 7.58 9.41 21.24 4.43 5.85 36.83
4 1.55 2.72 84.30 4.55 6.00 42.04 2.41 3.38 67.38 1.84 3.15 82.23
5 1.54 2.50 81.74 15.43 16.46 8.18 2.87 4.02 66.95 4.51 5.62 46.09
6 1.70 2.39 72.33 NaN NaN 27.20 5.50 7.15 40.68 3.45 4.39 51.25
7 1.73 2.17 78.10 3.34 4.10 48.90 4.37 5.50 53.38 2.54 3.37 60.16

Avg. 2.07 2.86 70.90 NaN NaN 35.09 4.52 5.79 47.38 3.18 4.18 56.30

this figure to allow comparison. The results obtained with a window of 8 s are
also shown in Figure 4.7, the average MAE with this reduced window for all the
babies in our method was 2.19 BPM, and 5.18 BPM for the benchmark applied
on camera 3.
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Figure 4.5: Example of results obtained on Infant 1, on the top row the first
image shows the merged thermal images from the three views, the second one
and the third one show respectively the pixels selected for the respiration signal
estimation with our proposed method and the benchmark method. On the bottom
row instead the normalized time-domain signals from the CI reference and our
method and the RRs estimated in all the methods.
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4.4 Discussion

In this chapter, a new algorithm has been proposed to retrieve the RR without
facial landmark detection in low-resolution thermal recordings by combining pixels
that highly correlate with a core-pixel that was carefully selected based on three
new features. Moreover, we introduced the use of multiple parallel camera views,
with data fusion on the pixel level, to enable respiration detection regardless of
the momentary position of the babies. Our method was benchmarked against an
adaptation of the method proposed by Pereira et al. [102].
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Figure 4.7: Bar plot showing the average MAE obtained when using only the
Pseudo-periodicity feature (Q) or fusing it with the RR clusters (W) and the
Gradient (G) features. An analysis on how the average MAE changes due to the
window size in our method and the benchmark is also included.
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The results obtained from around 152 minutes of infants’ thermal videos proved
that the method is able to correctly identify the pixels containing the respiration
thermal signature, yielding an average MAE of 2.07 BPM and around 71% of
correct estimates, i. e. error below 2 BPM. The highest MAE was obtained in
the case of Infant 3, this infant showed a periodic breathing (PB) pattern, which
is a form of immature breathing typically present in newborns [18] causing fast
changes in momentary RR. Our results were better than the benchmark, regardless
of the camera view selected (the benchmark performed still worse than our method,
even when the combined pixel data was provided as an input, and the benchmark
algorithm again optimized for this different input). Camera 3 obtained the best
benchmark result, this was expected since camera 1 and 2 may contain segments
in which no flow or motion are visible in one of them due to the infant position.
We further emphasize that to obtain the benchmark results, Pereira’s method had
to be further optimized in order to get meaningful results with our data.

The Bland–Altman plot in Figure 4.6, shows the ability of our method to
correctly estimate the RR, obtaining a mean bias of −0.55 BPM. The limits
of agreement give an indication of the error spread [−6.25; 5.14] BPM. Outliers
are also present, these can be caused by synchronization problems that could be
present in the data, considering that infants can have a fast changing RR small
delays can cause high errors. Moreover, we should consider that the reference
signal, i. e. the CI, is also prone to errors, e. g. due to loose electrodes and baby
movements.

As visible from Figure 4.7, using only the Pseudo-periodicity feature was not
reliable enough to select a core-pixel in each window, the use of a second and
a third feature significantly improved the results. Moreover, our combination of
three features proved to be more robust to spectrum changes due to a different
window size yielding for a window of 8 s a MAE equal to 2.19 BPM compared to
the significantly worsened results of the benchmark on camera 3, 5.18 BPM. We
attribute this result to the use of RR clusters and Gradient, that are not dependent
on the spectrum shape.

Our low-resolution cameras were able to detect both respiratory motion and
flow when the relative position of the baby and the camera were favorable. Babies
in open bed are a particular population in neonatal wards and their habits and
sleeping patterns can significantly differ from babies in incubators. Infants in
open bed are usually covered with blankets which can end up hiding the motion
happening underneath. In two babies out of nine both flow and motion were
not detectable, this was explained by the blanket position which ended up hiding
the respiratory motion while the cameras did not have a good position for the
detection of the flow. A baby with respiratory support was also included in this
study, Infant 1, and resulted in having the lowest MAE compared to all other
infants. this baby had a particularly quiet sleep compared to the others and the
presence of the nasal cannula introduced a thermal contrast region on the face
itself, increasing the number of pixels containing respiration motion.
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One of the most evident limitations is that we isolated around 152 minutes of
useful moments from a total amount of 19 hours corresponding to the 13.3% of
the time. This can be due to several reasons, firstly, events such as feeding, diaper
changing, and nursing care took up to one hour with the baby being completely
out of bed. Secondly, the algorithm is currently not able to cope with significant
motion of the baby or another person in the field of view. This implies that all
segments including random motion of the baby, or nurses’ or parents’ hands in the
field of view cannot be used. Since the babies included in this study were in open
bed in a single-family room, where the presence of parents is highly encouraged
to develop parent-infant bonding, segments where parents are comforting their
baby (i. e. hands in the field of view) were quite frequent, as we shall discuss
later. The occurrence of these moments could be higher compared to the case of
babies in incubators. Furthermore, also, the use of a soother is quite common in
this population and causes a motion pattern that can result in being similar to
respiration patterns but at a different frequency, these moments have, therefore,
been excluded too.

A recent work studying a vast dataset of RGB video recordings of infants in
incubators [79] showed after the annotation of 384.3 hours that in 54.9% of these
the reference (CI) was poor, in the 11.5% the infant was out of the incubator,
and in the 11.3% there were clinical interventions, and therefore, following our
classification 22.3% would remain as useful data. CI is usually disturbed during
baby motion and when there is poor electrodes contact. Considering the different
infant populations of the two studies we could attribute our reduced percentage of
valid data to the use of the soother and to the increased parent presence. However,
a more detailed annotation should be performed to analyze thoroughly the possible
coverage obtainable with this type of setup and to investigate how to improve the
algorithm or the setup for a more realistic clinical application, this is detailed in
Chapter 5.

This pilot study gave us good insights on the use of such technologies in a
complex environment as a neonatal ward. Even though the focus of this chapter
was to verify the accuracy of our algorithm in detecting the RR, there is evidence
suggesting this type of setup could also be used to detect the occurrence of apneas
and other patterns as shown in the examples in Figure 4.8. COBs were observed in
Infant 6. These were clearly visible in the video thanks to the mattress changing
temperature due to the respiratory flow. Infant 3 showed a typical PB pattern
throughout most of the measurements.

The detection of such events needs further analysis and should be part of future
development. Moreover, our algorithm currently detects the respiratory thermal
signature, without distinguishing between motion and flow, this can be a limitation
when aiming at apnea detection and should be further studied, Chapter 6 proposes
a solution to this problem. Our method was tested in a neonatal ward setting
including only patients in an open bed, the method, the setup, or the algorithm
may need adaptation to work in a NICU setting with babies in incubator, due to
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Figure 4.8: Example of detectable COBs, the figures represents two segments
from Infant 6 and 3, the first row contains the respiration signal obtained with our
method and the second row shows the one obtained from the CI reference. Short
apneic events are indicated with the arrows and the PB pattern is clearly visible
in Infant 3.

the warm and humid environment inside incubators.

4.5 Conclusions

A novel approach for automatic respiration pixels detection in multi-camera ther-
mal recordings was introduced. Our approach is based on the merging of the
three camera views and the use of three features for the detection of the pixels
containing respiration motion or flow. This type of approach has the advantage of
being independent of the nose visibility required in approaches based on facial
landmark detection and tracking. Our method was benchmarked against the
method developed by Pereira et al., adapted to work with our recordings, and
both were compared to the RRs obtained with the CI, on 152 minutes recordings
acquired on seven infants. Our method yielded a PR of around 71% compared
to the benchmark best results of around 56%. Our algorithm obtained a MAE
equal to 2.07 BPM by comparing our estimated RRs to the ones obtained from
the CI reference, and using more features, not only dependent on the spectrum
shape, guarantees robustness to window size changes. The algorithm proposed in
this chapter will be used with adaptations in the following Chapters 5–6.





CHAPTER5
Camera-based respiration monitoring and

motion analysis

Abstract

Aiming at continuous unobtrusive respiration monitoring, motion robustness is
paramount. However, some types of motion can completely hide the respiration
information and the detection of these events is required to avoid incorrect rate
estimations. Therefore, this chapter proposes a motion detector optimized to
specifically detect severe motion of infants combined with a respiration rate de-
tection strategy based on automatic pixels selection, which proved to be robust to
motion of the infants involving head and limbs. A dataset including both thermal
and red-green-blue (RGB) videos was used amounting to a total of 43 hours
collected on 17 infants. The method was successfully applied to both RGB and
thermal videos and compared to the chest impedance signal. The mean absolute
error (MAE) in segments where some motion is present was 1.16 and 1.97 breaths
per minute (BPM) higher than the MAE in the ideal moments where the infants
were still for testing and validation set, respectively. Overall, the average MAE
on the testing and validation set are 3.31 BPM and 5.36 BPM, using 64.00%
and 69.65% of the included video segments (segments containing events such as
interventions were excluded based on a manual annotation), respectively. More-
over, we highlight challenges that need to be overcome for continuous camera-based
respiration monitoring. The method can be applied to different camera modalities,
does not require skin visibility, and is robust to some motion of the infants.

This chapter is based on:
I. Lorato, S. Stuijk, M. Meftah, D. Kommers, P. Andriessen, C. van Pul, and G.
de Haan, “Towards continuous camera-based respiration monitoring in infants,”
Sensors, vol. 21, no. 7, pp. 1–18:2268, 2021.
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5.1 Introduction

Vital signs need to be monitored in specific hospital environments. Infants, in
particular, may need continuous monitoring when admitted to neonatal wards
like neonatal intensive care units (NICUs). Commonly monitored vital signs
include heart rate (HR), respiration rate (RR), blood oxygen saturation, and skin
temperature. Respiratory instability in infants is one of the main reasons for
admission. Therefore, respiration is monitored in neonatal wards to detect critical
situations like apneas, i. e. sudden cessations of breathing (COBs). If leading to
hypoxia, these events can result in long-term or permanent impairment [116], and
therefore, the detection of apneas is crucial.

The monitoring of respiration, but in general of most vital signals, requires at-
taching electrodes and sensors to the infants’ skin, which can be uncomfortable for
the infants or even cause skin damage [161]. Moreover, impedance pneumography
or chest impedance (CI), which is commonly used in neonatal wards for respira-
tion monitoring, is not very reliable in apnea detection [23]. For these reasons,
unobtrusive solutions are being investigated for both hospital environments and
home-care. Respiration motion can be detected using red-green-blue (RGB) or
near-infrared (NIR) cameras [73,76,78], radars [57,124,125], or pressure-sensitive
films [66, 129, 162]. Solutions using thermal cameras as in mid-wave infrared
(MWIR) or long-wave infrared (LWIR) have also been investigated [97, 101, 106].
Thermal cameras can detect both respiration motion and respiratory flow, which
can be useful in the detection and identification of apnea episodes in infants since
obstructive apneas (OAs) and mixed apneas (MAs) still present respiratory effort,
i. e. motion, but no flow [115].

Motion artifacts are a major problem for both the current monitoring tech-
nologies, e. g. CI, and most of the non-contact solutions [163, 164]. Motion
robustness is, therefore, paramount when aiming at a continuous RR detection in
infants. Moreover, since lethargy (hypotonia and diminished motion) and seizures
(epileptic insult, repetitive motion activity) are associated with serious illnesses
of the newborn [165, 166], motion is an important vital sign, that has also been
linked to the prediction of apnea and neonatal sepsis [167,168].

Multiple works proposed solutions to tackle the motion artifacts or random
body movement problem in camera-based respiration detection [75, 77]. How-
ever, not all random body movements hide the respiration information and by
excluding all the segments containing motion from the respiration monitoring step,
potentially usable segments are also excluded. In a recent study published by
Villarroel et al. [79] motion robustness was achieved by combining an indicator of
the quality of the reference signal with an indicator of the agreement between the
RRs obtained using different sources. However, the detection of the respiration
signals is dependent on skin visibility. Infants who are cared for in open beds in
neonatal wards or in home-care environments are usually covered with blankets and
wear clothing. A solution based on skin visibility, particularly of the chest/torso
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area, would, therefore, be impractical for these cases.
Therefore, extending Chapter 4, which estimated the RR in static moments ex-

tracted from infants’ thermal videos, we analyze the performance of our algorithm
in challenging conditions containing various types of motion, also semi-periodic
ones such as non-nutritive-sucking (NNS). We aim at achieving motion robustness
by ensuring that the RR can be accurately estimated also in the presence of
some motion, e. g. head and limbs movements. We achieve this using a motion
detector optimized to detect specifically the kind of motion hiding the respiratory
information, which often cause impaired CI reference signal as well. This algorithm
was trained and tested on thermal and RGB videos, both video types were acquired
on different infants, i. e. the babies in the thermal videos are different from the
babies in the RGB videos. In total, the thermal dataset includes around 42 hours
of video recorded on fifteen infants in a neonatal ward. The RGB dataset is smaller
and includes 50 minutes of video recorded on two infants. We, therefore, prove
that both our motion detector and our RR estimation algorithm with improved
motion robustness can be used for both visible and thermal modalities, without
the need of skin visibility.

The remaining of this chapter is organized as follows: Section 5.2 describes
the method developed and explains the setup used and the dataset. Sections 5.3
and 5.4 present the results obtained and the discussion, respectively. Section 5.5
contains the conclusions.

5.2 Materials and methods

In this section the datasets used, the manual annotation performed, and the
experimental setups are detailed. Furthermore, the method for motion detection
and respiration monitoring are described.

5.2.1 Materials

Both thermal and RGB datasets used in this chapter were collected in the neonatal
ward of the Máxima Medical Centre (MMC) in Veldhoven, The Netherlands. Both
studies received a waiver from the ethical committee of the MMC (the thermal
dataset with ID N19.074 and the RGB dataset with ID N12.072), and informed
consent was obtained from the infants’ parents prior to the study.

Dataset

The dataset was split into two sets, one called the training and testing set, which
is used to optimize and test the motion detection step, and adjust our respiration
monitoring algorithm. The other one called the validation set will be used to
obtain unbiased results for both the motion detection step and the RR detection
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Table 5.1: Infants’ data for the training and testing set (indicated with T&T)
and the validation set (indicated with V). The gestational age (GA) is indicated
in weeks (w) and days (d), postnatal age (PA) is in days.

Infant Video Type GA
(w+d)

PA
(days)

Sleeping
Position

Duration
(hours) Set

1 Thermal 26w 4d 59 Supine 2.98 T&T
2 Thermal 38w 5d 3 Supine 2.74 T&T
3 Thermal 34w 1d 16 Supine 2.93 T&T
4 Thermal 26w 3d 59 Prone 3.16 T&T
5 Thermal 39w 2 Lateral 3.05 T&T
6 Thermal 40w 1d 6 Supine 2.95 T&T
7 Thermal 40w 2d 1 Lateral 0.92 T&T
8 RGB 36w 47 Supine 0.30 T&T
9 RGB 30w 34 Supine and Lateral 0.57 T&T
10 Thermal 26w 4d 77 Supine 2.94 V
11 Thermal 26w 4d 77 Supine 2.97 V
12 Thermal 33w 4d 5 Supine 2.97 V
13 Thermal 34w 2d 9 Supine 2.87 V
14 Thermal 32w 2d 11 Supine 2.96 V
15 Thermal 35w 1d 8 Supine 2.94 V
16 Thermal 38w 1d 2 Supine 3.00 V
17 Thermal 27w 5d 16 Supine 2.96 V

step. Table 5.1 contains the infants’ data and the duration of the recordings for
the training and testing set, and the validation set. The infants were assigned to
the two sets based on the availability of the data. The thermal videos, partially
already used in Chapter 4, amount to a total of around 42 hours acquired on fifteen
infants, all the infants were monitored for around 3 hours except for infant 7, which
has a total video duration of around 1 hour, due to setup problems. The RGB
videos of infants 8 and 9 amount to a total video duration of around 52 minutes.

Manual annotation

The videos content was annotated, including the occurrences of motion events,
and it was then used as ground truth for the motion detection step. A MATLAB
built-in application called Video Labeler was used to annotate the videos. A set
of labels was defined to describe the possible visible events, the labels are not
exclusive, meaning that multiple labels can be true at the same time. We defined
two classes of motion type 1 and type 2 motion. The labels are presented in
Table 5.2.

The main difference between the two types of motion, i. e. 1 and 2, is the
involvement of the chest in the motion event. Type 1 is a motion that involves
the chest/torso area, where the respiration motion can be usually seen. In our
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Table 5.2: Labels used for the manual annotation.

Annotation Labels Subcategories and Details

Included (i) Infant activity

• Still
• Type 1 motion
(motion including chest/torso area)
• Type 2 motion
(motion involving limbs or head)

(ii) NNS -

Excluded
(iii) Interventions includes both parents’ and

caregivers’ interventions

(iv) Other

• Someone in the background
• Baby out of bed
• Camera motion
• Unsuitable view

classification, this is, therefore, considered as the kind of motion that results
in hiding the respiration information, which can cause artifacts also in the CI
reference signal. Type 2, instead, does not involve chest or torso movements but
affects other parts as, head, hands, arms, fingers, or even facial expressions.

The segments of videos including events labeled as categories iii and iv in
Table 5.2 were excluded in this work since they would require different detectors,
e. g. interventions detection or infant presence detection [79]. In particular, the
included and excluded percentages in the entire dataset are, respectively, 73.86%
and 26.14%. The majority of the excluded moments are caused by the babies being
out of bed and by interventions, 46.4% and 31.8%, respectively. The breakdown
of the included moments is shown in Figure 5.1 split between the training and
testing, and the validation set.

The segments containing type 1 motion events are considered unusable for
the estimation of the RR, whereas the ones containing type 2 motion, still, and
NNS are considered usable. The cumulative percentages of type 2 motion, still,
and NNS constitute 70.03% and 68.85% of the included moments for the training
and testing, and the validation set, respectively. The remaining part contains the
fragments annotated with type 1 motion. The occurrence of type 1 motion is,
therefore, very similar between the two sets.

Experimental setup

Two different setups were used to collect the RGB videos and thermal videos used
in this chapter. The thermal videos were collected using three thermal cameras
positioned around the infants’ bed. The cameras used are FLIR Lepton 2.5, they
are sensitive in the LWIR range, the resolution is 60 × 80 pixels, the thermal
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sensitivity is 50 mK, and the average frame rate is 8.7 Hz. The acquisition was
performed using MATLAB (MATLAB 2018b, The MathWorks Inc., Natick, MA,
USA). Due to the acquisition strategy, the 3 hours of recording are split into 9
videos of 20 minutes each, gaps of up to 4 s can be present between the videos.
For further information on the setup refer to Chapter 4.

The visible images were obtained in a separate data collection with a single
RGB camera (UI-2220SE, IDS), that was positioned on a tripod to visualize the
baby in the open bed. Some videos were collected from the side and others from
the top. The frame rate and resolution are, respectively, 20 Hz and 576 × 768
pixels. In both cases, the reference RGB signal sampled at 62.5 Hz was collected
using the patient monitor (Philips MX800). To solve the synchronization problem,
an artifact (simultaneously disconnecting the CI leads and covering the view of
one of the cameras) was generated at the start of each recording to synchronize
CI and videos.

5.2.2 Methods

The algorithm proposed in this chapter can be split into two main parts, i. e.
motion detection and RR estimation. The first was designed to detect type 1
motion, since segments containing type 2 motion are considered usable for the RR
detection and it is, therefore, not necessary to detect their occurrence. Therefore,
if type 1 motion was detected the RR could not be accurately estimated and
an indication that the baby was moving was provided. Otherwise, the video
segment did not contain type 1 motion and it was classified as usable and the
RR was estimated using the second part of our algorithm. These steps are shown
in Figure 5.2. The algorithm was implemented using MATLAB.
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Figure 5.1: Results of the manual annotation: the breakdown of the included
class into the subcategories for the training and testing, and the validation set.
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Figure 5.2: Main blocks of the processing chain and an example of the results.

Preprocessing

The thermal videos were linearly interpolated to compensate for the acquisition
strategy, which resulted in a non-uniform sampling rate because external triggering
was not used. A 1D interpolation was applied to each pixel’s time-domain signal,
using the MATLAB function interp1, the result was three videos sampled at 9 Hz,
close to the average frame rate, with a resolution of 60 × 80 pixels. The RGB
data were converted to grayscale (using the MATLAB function rgb2gray) and
downscaled, to allow faster processing, with a downscale factor of 3 resulting in
a final video resolution of 192 × 256. The grayscale videos were also temporally
downsampled to reach the same sampling rate as the thermal videos, i. e. 9 Hz,
from an initial sampling frequency of 20 Hz, for faster processing. The frame sizes
will be indicated as M̃ × L̃, which will correspond to 60× 80 in the thermal case
and 192× 256 in the visible case.

A sliding window approach was used for both the motion detection and the RR
estimation steps. Considering a trade-off between latency and frequency resolution
and the fact that the use of longer windows means more sliding windows may
contain motion events, a relatively short window size of 8 s was chosen with a
slide of 1 s. A simplified diagram of the motion detection and the respiratory
pixels identification algorithms is shown in Figure 5.3.

Motion detection

• Gross motion detector: let X(nTs) be the frames in the jth window, with
n = 0 + (j − 1)/Ts, 1 + (j − 1)/Ts, ..., (N − 1) + (j − 1)/Ts, and N = 72
samples, corresponding to the samples in the jth window with a sampling
period Ts = 0.111 s. The gross motion detector was based on the absolute
value of the difference of frames (DOF) in the jth window. More formally:

D(uTs) = |∂X(nTs)
∂n

|, (5.1)
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Figure 5.3: Simplified block diagram of the motion detection and the respiratory
pixels selection algorithms.

the ∂
∂n operator represents the partial derivative with respect to the time

dimension. D(uTs) contains the frames resulting from the absolute value of
the DOF operation at each time sample, with u = 0 + (j − 1)/Ts, 1 + (j −
1)/Ts, ..., (N − 2) + (j − 1)/Ts. At this point, a first threshold value was
introduced, which turnsD into binary images identifying what we considered
to be moving pixels:

MP(uTs) =
{

1 if D(uTs) > thr1

0 otherwise.
(5.2)

thr1 is a threshold that was introduced to differentiate the source of the
change between noise and motion, it is defined as:

thr1 = Range(X)
f1

, (5.3)

the numerator represents the range of X, i. e. the difference between the
maximum value and the minimum value considering all the pixels of all the
frames in X, and f1 is a value that was optimized. The ratio of moving
pixels was then calculated as:

s(uTs) =
∑M̃
m̃=1

∑L̃
l̃=1 mpm̃,l̃(uTs)
M̃ · L̃

. (5.4)
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Here, mpm̃,l̃(uTs) is an element of MP(uTs) at the position (m̃, l̃).

• Motion classification: the ratio of moving pixels s(uTs) was used to perform
the classification between usable and unusable segments for RR detection.
In particular, we aim at detecting the unusable moments, i. e. the ones
containing type 1 motion. The main assumption is that type 1 is part of a
more complex kind of motion, typical of infants’ crying motion. Therefore,
the simplest way to detect it is to assume that type 1 motion will result in
more moving pixels compared to any of the usable segments.
To perform a classification between the two, a second threshold thr2 was
introduced, which was applied to the ratio of moving pixels s(uTs). The
final classification was, therefore, performed on a window-based fashion, i. e.
each window was classified as containing type 1 motion, corresponding to 1,
or usable, corresponding to 0.
Since we used three cameras in the thermal setup, we applied this algorithm
three times. For the RGB dataset this was not necessary, as there was only
a single camera used. In the visible case the classification will be:

Motionvis(j) =
{

1 if ∃ u : s(uTs) ≥ thr2

0 otherwise.
(5.5)

For the thermal case instead:

Motionth(j) =


1 if ∃ u : (s1(uTs) ≥ thr2 OR

s2(uTs) ≥ thr2 OR
s3(uTs) ≥ thr2)

0 otherwise.

(5.6)

s1(uTs), s2(uTs), and s3(uTs) are the ratios of moving pixels obtained from
the three thermal views.

• Ground truth: The ground truth used to evaluate the performance of our
motion detector was obtained based on the manual annotations presented
in Section 5.2.1. In particular, the ground truth was built using the sliding
window approach. Each window was classified as excluded, as type 1 motion,
or as usable. The condition used was the presence of at least a frame in the
window which results in being true for one of those categories. The excluded
class had the priority, if this was true for at least a frame in the window, the
entire window was classified as excluded. If the latter was false then type 1
motion was taken into consideration in the same manner, and lastly if the
two above were both false we classified the window as usable.

• Parameters optimization: the factor f1, for the moving pixels detection,
and the threshold thr2, for the motion classification, were optimized. A
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leave-one-subject-out cross-validation was used to optimize the two param-
eters. The approach was chosen considering that environment changes,
e. g. environment temperature, blankets type, and position, can influence
the parameters values and therefore, the between-baby variability is more
important than the within-baby variability. The set of parameters that
resulted in the highest balanced accuracy for each fold was considered as a
candidate set. The final chosen set was the most selected candidate set. This
metric was preferred compared to the classic accuracy due to the imbalance
in our two classes (usable was more frequent than type 1 motion). The
optimization was performed on the training and testing set, presented in
Table 5.1. This set includes 9 babies and therefore, 9 folds were performed
in the cross-validation. Two sets of parameters were empirically chosen
for the training and correspond to f1 = [4; 5; 6; 7; 8; 9; 10; 11; 12] and
thr2 = [0.004; 0.005; 0.006; 0.007; 0.008; 0.009; 0.010; 0.011; 0.012]. The
most chosen set, used in the next steps, was f1 = 8 and thr2 = 0.005,
more information on the results can be found in Section 5.3.

Respiration rate estimation

Respiratory signal and rate were both estimated in the windows in which the
motion detection step results in the usable category using an adjustment of our
previous method [169], introduced in Chapter 4. Briefly, first the images of
the thermal videos were merged together in a single image plane, resulting in a
single video with resolution 180× 80, whereas the grayscale videos were processed
with the single view available, i. e. videos with resolution 192 × 256. These
two possible frame dimensions will be referred to as M × L. Our method is
based on the automatic detection of the pixels containing respiration information.
This is performed using the three features presented in Chapter 4 and in [169],
improvements were applied to tackle new challenges highlighted by the extension
of our dataset and of the acceptable motion.

The changes involve an adaptation of the second feature, Respiration rate
clusters, adapted to overcome the presence of the respiration’s first harmonic and
NNS pattern in part of the extended dataset. The third feature (Gradient) was also
adapted for the use on visible images, now added to the dataset, and finally, the
correlation value that indicates which pixels contain the respiration information
was increased. More in detail, each pixels’ time-domain signal is indicated as
xm,l(nTs), with (m, l) indicating the pixel. Three features were used to find a core-
pixel, in each ĵth window, which was then employed to find (using a correlation
metric) all the helpful pixels that can be combined to compute the respiratory
signal, with ĵ = j : Motion(j) = 0.

• Pseudo-periodicity: this first feature is based on the assumption that res-
piration can be considered a periodic signal. This feature was not changed
compared to [169]. A differential filter was used to attenuate low-frequencies
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resulting in filtered time-domain signals called x′m,l(nTs). The signals were
zeropadded, reaching a length equal to Nz = 120 · N , and multiplied for a
Hanning window. Afterwards, a 1D discrete Fourier transform (DFT) was
used to estimate the spectrum called y′m,l(fk) with k = 0, 1, ..., Nz/2 − 1
and fk = k/(NzTs) Hz. This feature consists in the calculation of the height
of the normalized spectrum’s peak. More formally:

qm,l =
max

0≤fk≤ (Nz/2−1)
NzTs

(| y′m,l(fk) |)√√√√ (Nz/2−1)
NzTs∑
fk=0

| y′m,l(fk) |2

. (5.7)

Each qm,l represents the height of the peak of the normalized spectrum of
the pixel in position (m, l), qm,l are elements of the first feature Q.

This feature is sensitive to the presence of type 2 motion. Regions moving
due to this type of motion can generate a big variation in the pixels’ values
(depending on the contrast). This variation can, therefore, produce a strong
DC component, which will result in a high qm,l. The combination with the
other features allows us to obtain motion robustness, Figure 5.4 presents an
example during a type 2 motion and the Pseudo-periodicity feature is visible
in Figure 5.4b.

• Respiration rate clusters (RR clusters): this feature is based on the obser-
vation that respiration pixels are not isolated but grouped in clusters. To
automatically identify the pixels of interest more accurately, modifications
were introduced to this feature to improve the robustness to the presence of
NNS, typical when the infant has the soother, and to cope with the presence
of the respiration’s first harmonic. The frequencies corresponding to the
local maxima of the spectrum y′m,l(fk) were found and the properties of the
harmonic were checked:

hm,l = arg localmax
lim1<fk<lim2

(| y′m,l(fk) |), (5.8)

hm,l is a vector, obtained for the pixel in position (m, l), containing the
frequencies of the local maxima in the band of interest, which is identified
by lim1 and lim2 respectively 0.5 and 1.83 Hz. The length of the vector
is, therefore, variable and dependent on the spectrum content of each pixel
(m, l), this operation was performed using the MATLAB function findpeaks.
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The harmonic properties were checked:

rrm,l =



hm,l(1) if ∃ ẑ > 1 :
| hm,l(ẑ)− 2 · hm,l(1) |< 1

NTs
AND

(ym,l(hm,l(ẑ)) < ym,l(hm,l(1)) AND
y′m,l(hm,l(ẑ)) ≥ y′m,l(hm,l(1)))

arg max
fk

(
| y′m,l(fk) |

)
otherwise,

(5.9)
ym,l(fk) is the spectrum of the pixels’ time-domain signal calculated as
y′m,l(fk) but without applying the differential filter and hm,l is an element
of hm,l.
We have, therefore, estimated the main frequency component for each pixel.
To avoid erroneous RR estimation caused by higher frequencies components,
e. g. caused by NNS, the rrm,l that were higher than lim2 were put to zero.
Therefore:

r̂rm,l =
{
rrm,l if rrm,l < lim2

0 otherwise.
(5.10)

The r̂rm,l are elements of R̂R, Frequency Map, an example is shown in
Figure 5.4f. The non-linear filter introduced in [169] was applied:

wm,l = 1
9

3∑
r=1

3∑
o=1

(
1

exp(κ1 | r̂rm,l − r̂rr,o | /r̂rm,l)

)
, (5.11)

where r and o identify the kernel cell, whereas m and l indicate the pixel. κ1
is a constant empirically chosen and equal to 70 as indicated in our previous
work [169] and in Chapter 4. The resulting frame W will map the pixels
having similar frequencies around them.
It should be noted that the r̂rm,l on which we imposed the value 0 in
Equation 5.10, will not result in a high wm,l, even if there are clusters of
zeros in R̂R. This is due to the equation of the filter that with r̂rm,l = 0 will
produce not a number (NaN). The same will happen for regions with type
2 motion, where the main frequency component is the DC. This property
allowed to avoid type 2 motion regions in the pixel selection phase achieving
motion robustness, an example is visible in Figure 5.4e.

• Gradient: this last feature is based on the assumption that respiration
motion can be only visualized at the edges. This feature has been modified
to make it independent of the setup used:

gm,l =

1 if

√(
∂ām,l
∂m

)2
+
(
∂ām,l
∂l

)2
> κ2,

0 otherwise,
(5.12)
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Figure 5.4: Example of features obtained during a type 2 motion, i. e. arm
motion. In (a,d) the merged thermal images are presented, the circle indicates
the position of the baby’s arm where the type 2 motion is happening. The images
in (b,c,e) show the three features. While in this case, Pseudo-periodicity and
Gradient are sensitive to the presence of type 2 motion, RR clusters is not, this
is due to the R̂R matrix shown in (f) where the arm area can have frequencies
equal to zero.

where ∂
∂m and ∂

∂l represent the partial derivatives in the two spatial di-
mensions, and κ2 = Range(A)/16 was empirically chosen since resulted in
identifying the edges of both thermal and grayscale images, with A being
the series of frames in the ĵth window. Ā is an average image representative
of the current window ĵ evaluated as the average of all the images in A,
with elements ām,l. The resulting matrix will be the third feature G. The
use of Ā to evaluate the gradient can also ensure robustness to some type 2
motion, whose regions will not be visible in the average image if the motion
is transient enough. In the example in Figure 5.4c the pixels involved in
the type 2 motion are still selected in the Gradient feature, but RR clusters
ensures the correct pixels are chosen.

The features, Q, W, and G, were then combined together, after being normalized
between 0 and 1, by multiplying them and obtaining V. This feature combination
was used to identify the core-pixel as:

(mpr , lpr ) = arg max
(m,l)

(vm,l) , (5.13)
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where vm,l identifies an element of V. The pixels containing respiration infor-
mation were then found from this core-pixel based on the Pearson’s correlation
coefficient, estimated using a bandpass filtered version of the pixels’ time-domain
signal. The filter used is a Butterworth bandpass between lim1 and lim2. In
Chapter 4 pixels having a correlation higher than 0.7 with the core-pixel were
considered to contain respiration information, this threshold on the correlation
value has been increased in the current version of the algorithm considering the
reduction in window size and the fact that the accuracy of the correlation estima-
tion depends on the length of the signal. Therefore, the threshold has been set to
0.9 and indicated with κ3. In particular:

P = (m, l) : | cm,l |> κ3, (5.14)

where cm,l is the correlation between the core-pixel (mpr
, lpr

) and the signal of
the pixel in position (m, l), calculated using the MATLAB function corrcoef. P
will, therefore, be a set indicating the pixels containing the respiration signal and
can have variable dimension depending on the window ĵ. To calculate the RR and
the respiration signal, all the bandpass filtered time-domain signals of the pixels
in P were combined using an average operation. The RR was calculated from the
spectrum of this signal after using a Hanning window, and the RR was estimated as
the frequency corresponding to the spectrum’s peak for each window. The same
was applied to the CI signal to estimate the reference RR from the waveform.
These spectra were then arranged into a short time Fourier transform (STFT).

Evaluation metrics

Accuracy (ACC), balanced accuracy (BalACC), sensitivity (SE), and specificity
(SP) were calculated for the test step of the cross-validation and for the validation
dataset to obtain unbiased performance results. The RR was compared to the
one obtained using the CI. Mean absolute error (MAE), root mean square error
(RMSE), and percentage of correct estimates (PR) [169], considering an accuracy
of 3.75 breaths per minute (BPM) caused by the window size, were calculated.
We estimated the percentage of time used (PT) by calculating the percentage of
windows classified as usable by the motion classification step on the number of
windows in the included data (which includes also type 1 motion occurrences).

To prove the improved motion robustness of our algorithm, we used the annota-
tions to identify the moments containing only type 2 motion and compared them
with the ones containing only stillness. Moreover, the contribution of the NNS
segments to the error was also analyzed. The average MAE was obtained in all
these windows to analyze their contribution to the final error. In these cases, PT
is calculated by considering also the information of the manual annotation on the
occurrences of specific events. For example, PT for the segments containing only
type 2 motion is calculated considering the number of windows classified as usable
by our motion detection and that according to the manual annotation contain only
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Figure 5.5: ROC curve obtained with the nine folds of the cross-validation by
using all the parameters combinations.

type 2 motion, or PT in the usable segments excluding NNS is evaluated using the
number of windows classified as usable and that do not contain NNS according to
the manual annotation.

5.3 Results

The average receiver operating characteristics (ROC) curve for all nine folds ob-
tained from the cross-validation applied on the training and testing set, is presented
in Figure 5.5. The blue points represent the average sensitivity and specificity on
all folds for that particular combination of f1 and thr2, whereas the cross is the
average sensitivity and specificity on all folds corresponding to the most chosen
parameter set. Table 5.3 shows the results of ACC, BalACC, SE, and SP using
the final chosen set of parameters for the testing stage of the cross-validation and
for the validation set that was not involved in the training.

The results obtained in the RR detection step are shown in Tables 5.4 and 5.5.
The first one shows the MAE obtained in all moments considered usable by our
motion detection step (that includes segments containing NNS) and the error in

Table 5.3: Average performance of the motion detection step for all the babies
of the training and testing, and the validation set using the chosen parameters.

ACC BalACC SE SP

Training and testing set 88.22% 84.94% 80.30% 89.58%
Validation Set 82.52% 77.89% 66.85% 88.93%



76 Chapter 5. Camera-based respiration monitoring and motion analysis

Table 5.4: Average and standard deviation of MAE and PT on all babies of the
training and testing set for the previous version of method [169] (Chapter 4) and
the current one presented in this chapter, in the windows classified by the motion
detector as usable. We further show the contribution of the NNS to the overall
error (these segments were obtained using the manual annotation).

Previous Version of Method [169] Current Version of the Method
Usable NNS Only Usable NNS Only

MAE
(BPM) 4.54 ± 1.82 9.39 ± 3.68 3.55 ± 1.63 7.11 ± 4.15

PT 68.59% ± 13.29% 4.59% ± 6.93% 68.59% ± 13.29% 4.59%± 6.93%

the moments containing only NNS, whose windows were determined using the
manual annotation. Moreover, a comparison between the respiration detection
method introduced in Chapter 4 and in [169], and the modified one introduced in
this chapter is also presented. Table 5.5 contains the results obtained in all the
usable segments excluding the NNS windows on the two sets. Moreover, using the
manual annotation, we also show the errors in the windows containing only type
2 motion, and in the ideal moments in which the infants are still.

Figure 5.6 presents Bland–Altman and correlation plots for the training and
testing set, and the validation set, respectively, using the RRs in all the usable
windows excluding the NNS. The mean bias were −0.42 and −0.18 BPM and the
correlation plot shows the agreements between the reference and our estimation
with a ρ = 0.90 and ρ = 0.80 for the training and testing set, and the validation
set. Example results are presented in Figures 5.7–5.9.
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Figure 5.6: Bland–Altman and correlation plot: (a) training and testing set, (b)
validation set. RRCI and RRV ideo are in BPM.
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Table 5.5: Results of the two sets in the segments classified as usable by our
motion detector excluding the NNS windows, obtained thanks to the manual
annotation. The errors in the windows containing type 2 motion and moments
where the infants were still are also included. MAE and RMSE are in BPM.

Infant Usable Excluding NNS Type 2 motion Only Still Only
MAE RMSE PR PT MAE PT MAE PT

T
ra
in
in
g
an

d
te
st
in
g

1 1.86 3.34 83.61% 70.38% 1.57 27.92% 1.51 34.61%
2 2.87 3.97 73.71% 40.60% 2.56 20.90% 2.64 13.02%
3 6.30 8.09 39.44% 67.83% 6.32 39.23% 6.28 24.38%
4 4.43 6.21 60.16% 72.75% 4.99 44.09% 2.49 20.39%
5 5.04 7.61 56.44% 40.22% 4.84 29.24% 2.24 5.35%
6 2.97 4.73 71.34% 66.74% 3.70 29.96% 1.94 31.69%
7 2.80 4.15 72.08% 46.16% 2.57 30.28% 0.70 4.61%
8 1.89 3.40 88.63% 89.71% 1.76 11.47% 1.91 77.84%
9 1.62 2.70 85.55% 81.60% 2.88 24.16% 1.08 56.76%

Avg. 3.31 4.91 70.11% 64.00% 3.47 28.58% 2.31 29.85%
± s.d. ± 1.61 ± 1.94 ± 15.84% ± 17.82% ± 1.62 ± 9.56% ± 1.62 ± 24.22%

V
al
id
at
io
n

10 4.46 6.62 61.41% 63.62% 5.52 34.40% 2.44 22.78%
11 3.79 5.54 64.96% 55.55% 4.01 34.62% 2.27 12.29%
12 6.23 7.98 38.98% 68.20% 5.98 33.70% 6.60 23.35%
13 6.29 8.51 44.00% 69.53% 6.30 51.04% 3.59 6.13%
14 6.89 9.56 47.37% 73.38% 7.35 44.73% 4.58 18.00%
15 4.75 6.65 54.11% 78.86% 4.83 42.08% 4.39 26.81%
16 4.09 5.73 60.97% 76.84% 4.39 28.92% 3.21 30.73%
17 6.40 8.78 47.79% 71.22% 7.64 40.14% 3.15 19.60%

Avg. 5.36 7.42 52.45% 69.65 % 5.75 38.71% 3.78 19.96%
± s.d. ± 1.21 ± 1.49 ± 9.35% ± 7.47% ± 1.32 ± 7.14% ± 1.40 ± 7.90%

5.4 Discussion

Our method for motion robust respiration detection can be used for both thermal
and visible modalities, and it does not rely on skin visibility or facial landmark
detection. Moreover, it is able to detect motion events that are problematic for
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Figure 5.7: Example of the STFT obtained using the camera and the CI
reference. The noisiness of the reference’s spectrum during type 1 motion shows
the sensitivity of the reference to this type of artifact. The excluded segments are
due to camera motion.
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Figure 5.8: Example of results showing the RR estimated using our cameras and
algorithm, and the reference one. The difference in the manual annotation of type
1 motion and the detected one is visible in the bottom plot. Examples of frames
during the type 1 motion (infant crying) are also shown.

respiration monitoring, ensuring a more accurate RR detection and delivering
motion information. The manual annotation showed that the RR can be poten-
tially estimated in around 70% of the included data since the remaining 30% is
annotated as type 1 motion. The impossibility to accurately estimate an RR in
these segments is a limitation present in all unobtrusive technologies but also in
the current monitoring modalities, i. e. CI. An example of the RRs estimated
using both camera and CI in the moments annotated and automatically classified
as type 1 motion is provided in Figure 5.7. The sudden noisiness in the spectrum
clearly indicates the inaccuracy of the RRs estimation in these segments.

Table 5.5 shows an average PT of around 64% and 70% for the two sets,
however, there is considerable variability in the PT between the infants, especially
in the training and testing set, as shown by the standard deviation. Infants that
are more agitated will have an increased occurrence of type 1 motion, reducing
the amount of time usable for RR detection, which can be also lower than 50%
(can be partially due to NNS occurrence as well). However, considering that CI
is also unable to provide an RR in these cases, the information that the infant is
agitated and moving frequently may be much more informative than an inaccurate
estimation of RR. In addition, a patient who is moving for a longer period of time
is not likely to be in danger due to a serious apnea and, therefore, the motion
information itself is giving information about the patient, e. g. the motion could
be also linked to the discomfort of the infants [170].
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Our motion classification reached an accuracy equal to 88.22% in the training
and testing set. It should be noted that the accuracy results are underestimating
the real accuracy. The manual annotation was performed by a single person
and while the automatic classification is on a second by second basis (due to
the sliding window’s slide), the manual annotation tends to overlook particularly
short events. An example is visible in Figure 5.8, the detected label (the result
of the automatic classification) can present fast oscillations, whereas the manual
annotation is more stable and sometimes stretched compared to the detected label
(anticipated starting point and/or postponed ending point). The validation set
obtained a lower accuracy result, i. e. 82.52%, this is due to the reduced sensitivity
of our motion classification on this dataset. These results could indicate that not
enough data were included in our optimization step or that the training dataset is
not representative enough. Differences were observed between the two sets in the
blanket position, which could end up hiding some of the moving pixels. Whether
the infant’s sleeping position plays a role warrants further analysis. Moreover, the
motion detection strategy, as it is implemented now, is limited by changes in the
distance (between camera and infant) or zoom, however, all infants in our study
occupy a similar portion of the image, although small variations are present. The
method may need to be optimized for different distances or features in the images
could be used to make the method independent of the distance.

Table 5.4 presents a comparison of the MAE obtained by our previously pub-
lished method [169], detailed in Chapter 4, and the adjusted one presented in this
chapter, obtaining an improvement of around 1 BPM on the average MAE. The
harmonic problem was particularly noticeable in one of the infants, i. e. infant 8,
where the introduction of our adjustment drastically reduced the error (from 7.17
to 1.89 BPM). The NNS is present in less than 5% of the included segments. This
is mostly due to the study protocol since hours in which the parents were not in
the wards were preferred, as the babies would then spend more time in the bed,
but this was not always possible. The percentage of presence of NNS is, therefore,
likely underestimated and not completely representative. This percentage could
be higher if the parents are in the neonatal ward next to the infant or in home-care
because the soother will be given to the baby more often in these cases. The MAE
obtained during NNS is reduced in our new implementation, though still higher
than the average MAE considering all usable segments. NNS frequencies have
been reported to vary and can correspond to the ones of the normal RR or be
higher up to 150 sucks per minute [171,172]. Therefore, if the frequencies of NNS
are higher than the normal RR range, our algorithm can detect the respiration
pixels and correctly estimate the RR. However, if the NNS frequency is inside
the respiration band, our method can no longer discriminate between NNS and
respiratory signals. This is a limitation present in all methods that automatically
identify the region of interest (ROI) or technologies that monitor the motion in
an area, e. g. continuous-wave radars. This problem, particularly important for
home-care and babies cared for in open beds, should be further analyzed.
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Furthermore, in Table 5.5, a comparison of the results between the training
and testing set, and the validation set, in the usable moments excluding NNS, is
provided. The errors are higher in the validation set compared to the training
and testing one. We believe this is a consequence of the reduced sensitivity of the
motion classification step for the validation set, which leads to the inclusion of
segments with type 1 motion in the moments used for the estimation of the RR.
Other factors influence the average error, one is the presence of babies breathing
with a periodic breathing (PB) pattern, a physiological breathing pattern in infants
associated with the alternation of normal breathing and breathing pauses [18]. One
of the babies in the training and testing set continuously breathes following a PB
pattern (infant 3), whereas another baby in the training and testing set (infant 4)
and six babies in the validation set (infants 10, 11, 12, 13, 15, and 17) resulted
in having segments with a PB pattern. PB pauses have been reported to last 6
to 9 s [132], in our dataset, we observe breathing pauses with a duration of up
to 10 s. It becomes evident that by using a window size of 8 s, we will detect
an RR in windows that do not contain any respiration-related oscillations. This
causes the estimation of the error to be higher than the real one because both our
method and the CI will provide an incorrect estimation of the RR, an example
is visible in Figure 5.9. Our method requires the selection of respiration pixels
in every window, if there is no respiration information in the video segment, the
selected pixels will contain noise. The results are, therefore, also dependent on the
length of the breathing pauses which can be different for each baby. This problem
needs to be further analyzed considering also apneas, and the number of pixels
selected could be used as an indicator to detect the absence of respiration. The PB
pattern is, anyway, clearly visible in the time signals, and in the future, methods
for cessations of breathing detection such as [43, 173] could be used to identify
the breathing pauses and remove these from the RR comparison. Moreover, some
of the recordings in the validation set (belonging to infants 13 and 14) contain
segments in which the respiration motion is not visible due to the blanket position,
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directly influencing the error. This problem was highlighted also in Chapter 4.
By comparing the errors in the ideal moments where the infants are still and in

the moments where type 2 motion occurs, differences can be noted. On average, the
MAE during type 2 motion segments is higher than the one during ideal moments,
with an increase of 1.16 and 1.97 BPM for training and testing, and validation
set, respectively. We believe the cases in which the errors are higher for the type
2 motion may be related to the position of the pixels containing respiration. Our
approach is based on the assumption that respiratory pixels are visible on the edge
of the blanket and chest/neck area, and type 2 motion, like arm motion or head
motion, will not affect our performance. However, this is not always true, like in
cases where most of the respiration pixels come from the arm or the head itself,
which is happening in some babies’ videos. This is again caused by the blanket
covering the main source of respiration signal, i. e. the chest. We can expect this
problem to be further reduced in infants in incubators that are not covered. The
inclusion of the type 2 motion segments allows to drastically increase the amount
of time used for respiration estimation at a cost of a higher error.

The two videos of infants 8 and 9 collected using an RGB camera seem to per-
form better, yielding lower MAE compared to the other babies (except for infant 1
whose MAE is comparable). However, we believe that conclusions regarding which
technology performs best cannot be drawn from this comparison, as such would
require a dataset acquired simultaneously with both camera types. Moreover, the
RGB videos were not included in the validation set, therefore, the performance
of our algorithm on this type of video should be further analyzed and more data
should be included.

Overall, our MAEs and Bland–Altman plots are comparable with studies per-
formed in similar populations, e. g. the work of Villarroel et al. [79] showed a
MAE of 4.5 and 3.5 BPM for their training and test set respectively, very similar
compared to our 3.31 and 5.36 BPM. Our method, though, can be used on both
thermal and RGB/NIR cameras, provides motion information, and does not rely on
skin visibility but only on respiration motion being visible. The limits of agreement
in Figure 5.6b are higher than the ones in the training and testing set and higher
compared to the results obtained in [79], this is due to a combination of the
problems previously described.

This chapter provides promising results and highlights possible challenges for
neonatal respiration monitoring. In particular, in the cases of babies cared for in an
open bed and babies in a home-care environment, the NNS presence and its effect
on unobtrusive vital signs solutions should be investigated further, although the
presence of the NNS motion itself could indicate the absence of critical situations.
Moreover, one of the main limitations of our method, but in general of camera-
based solutions, is the respiration motion being hidden by blankets covering the
infants. While camera-based solutions provide contextual information undoubt-
edly usable for the detection of motion, they may also require the fusion with a
different technology that would not be affected by this type of problem, such as
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radar or pressure-sensitive films, or a clearer protocol for blanket positioning.

5.5 Conclusions

This chapter presents a combination of a method for motion detection, optimized
to detect motion hiding respiration, and a method for RR detection that, using
three features, automatically selects the pixels of interest. The motion robustness
achieved thanks to our features, allows us to increment the amount of time used for
camera-based respiration detection, including segments that contain limbs or head
movements. The test of the cross-validation obtained an accuracy of around 88%
in the motion identification. A lower accuracy was obtained in our validation
set, indicating that the optimization could be improved. The RR estimation
was compared with the CI reference and yielded an average MAE of 3.31 and
5.36 BPM for the training and testing set, and validation set, respectively. The
MAE during type 2 motion was higher than the one in the ideal moments of 1.16
and 1.97 BPM for the training and testing set, and validation set, respectively.
This proves the motion robustness is improved, but more work is needed to achieve
continuous unobtrusive respiration monitoring. Limitations on the use of camera-
based solutions in a neonatal ward environment are highlighted in this chapter,
i. e. the PB influence on the errors, the blanket covering respiration motion, and
the NNS presence. This method can be used for different camera modalities and
does not require skin visibility.



CHAPTER6
Automatic separation of respiratory flow

from motion in thermal videos

Abstract

Both respiratory flow (RF) and respiratory motion (RM) can be visible in thermal
recordings of infants. Monitoring these two signals usually requires landmarks
detection for the selection of a region of interest. Other approaches combine
respiratory signals coming from both RF and RM, obtaining a mixed-respiratory
(MR) signal. The detection and classification of apneas, particularly common in
preterm infants with low birth weight, would benefit from monitoring both RF
and RM, or MR, signals. Therefore, we propose in this chapter an automatic
RF pixels detector not based on facial/body landmarks. The method is based
on the property of RF pixels in thermal videos, which are located in areas with
a smooth circular gradient. We defined 5 features combined with the use of a
bank of Gabor filters that together allow selecting the RF pixels. The algorithm
was tested on thermal recordings of 9 infants amounting to a total of 132 minutes
acquired in a neonatal ward. On average the percentage of correctly identified RF
pixels was 84%. Obstructive apneas (OAs) were simulated as a proof of concept to
prove the advantage in monitoring the RF signal compared to the MR signal. The
sensitivity in the simulated OA detection improved for the RF signal reaching 73%
against the 23% of the MR signal. Overall, the method yielded promising results,
although the positioning and number of cameras used could be further optimized
for optimal RF visibility.

This chapter is based on:
I. Lorato, S. Stuijk, M. Meftah, D. Kommers, P. Andriessen, C. van Pul, and G.
de Haan, “Automatic separation of respiratory flow from motion in thermal videos
for infant apnea detection,” Sensors, vol. 21, no. 18, pp. 1–16:6306, 2021.
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6.1 Introduction

Respiration is one of the most important vital signs, able to detect early clinical
decline [174]. It can be monitored in hospital wards to detect critical events and
respiratory irregularities. In neonatal intensive care units (NICUs), in particular,
the immaturity of the respiratory control system of premature infants is the
main cause of apnea of prematurity (AOP), which is one of the most common
diagnoses [115]. Infants’ breathing patterns can present cessations of breathing
(COBs), the ones that last 20 seconds or 10 seconds accompanied by bradycardia
and/or desaturation are called apneas [116]. Three main categories of apneas
can be defined: central apnea (CA), which is characterized by cessation of both
respiratory flow (RF) and effort, obstructive apnea (OA) which is caused by the
collapse of the upper airway and it manifests as cessation of airflow and presence
of respiratory effort, and mixed apnea (MA) which is a mixture of the previous
two [115].

Infants in NICUs are typically monitored using several adhesive skin sensors
and electrodes. Respiration is monitored using chest impedance (CI), which is
measured using the electrocardiogram (ECG) electrodes. However, this method
is not able to detect OAs, due to the presence of respiratory effort [175]. Dis-
criminating between different types of apnea is difficult due to limitations of the
technology used. Moreover, both CI and other methods that may be used to
improve the detection of apneas require attaching sensors and electrodes to the
skin or positioning sensors close to the nostrils. This causes discomfort or even skin
irritation in preterm infants. Because of these reasons, unobtrusive monitoring of
vital signs, and in particular of respiration is being investigated.

Numerous technologies are being researched for the unobtrusive monitoring
of respiration: radars [124, 176], red-green-blue (RGB) and near-infrared (NIR)
cameras [79, 177], thermal cameras or infrared thermography (IRT) [103, 110],
pressure-sensitive films [66,158], and vision systems with depth sensing [178,179].
All these techniques, apart from thermal cameras, are able to monitor only respi-
ratory motion (RM). The clear advantage in monitoring both RF and motion is
the more accurate detection and classification of apneas. Identifying the type
of apnea is clinically relevant as the required therapeutic intervention can be
different [13]. Studies suggest that the phase shift between abdomen motion and
thorax motion can also be monitored using normal RGB/NIR cameras and could
be used to identify OAs [83]. However, the identification of the regions can be quite
challenging, especially for infants or in general if the subject is covered by a blanket
or sheet. IRT remains the most promising option when aiming at unobtrusive
apnea detection and classification.

Studies using thermal cameras for the detection of RF have been published in
recent years. Several works proposed to detect RF based on a manually selected re-
gion of interest (ROI) [99–101,109–112], others used facial and/or body landmarks
based solely on thermal images [91, 95, 97, 99] or by combining it with RGB/NIR
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images [104, 106, 114]. While facial and body landmarks detection can be used in
controlled settings, using them in hospital settings without any constraints on the
subjects’ position is quite challenging [102]. Moreover, the identification of multi-
ple ROIs is required, considering that patients could be nose or mouth-breathing.
In addition, by selecting ROIs specifically at the nose/mouth areas the thermal
variations due to RF which can be registered in the environment, e. g. on the
pillow, would be ignored. This is, sometimes, the only source of RF in the video,
as will be shown in this chapter. Recent solutions propose to automatically identify
respiratory pixels in thermal videos [102,169,180], also described in Chapters 4–5.
These methods, however, have the disadvantage of mixing the thermal variations
due to RF and motion into a single signal, obtaining a mixed-respiratory (MR)
signal, the terminology used is further detailed in Section 6.2.

For these reasons, we propose in this chapter an automatic RF pixels detector
using characteristics that set RF and RM pixels apart. Particularly, RF pixels
can be located in non-edge areas of the videos and due to the thermal diffusion
the airflow generates areas with a smooth gradient. Also, RM can be in-phase
or in anti-phase with the RF. The use of this algorithm results in an RF signal,
which can be used for a more accurate detection and classification of apneas.
The algorithm will be applied to a set of low-resolution infants’ thermal videos
collected in a neonatal ward. The data amounts to a total of 132 minutes split
between 9 infants. Finally, we adapted the videos to simulate OAs and used these
as a proof of concept for apnea detection using the COB-detector described in
Chapter 2. The performance in the apnea detection was analyzed for the different
respiration signals obtainable from a thermal video. Particularly, we compared the
performance of the RF signal, obtained with the method proposed in this chapter,
with the one of an MR signal which is obtained using the method explained in
Chapter 5 and in [180].

Section 6.2 details the background and reasoning behind the method, and
describes the processing steps and the experimental setup. Section 6.3 and Sec-
tion 6.4 contain the results and the discussion, and Section 6.5 provides the
conclusions.

6.2 Materials and methods

In thermal videos, respiration can be detected by monitoring RF, RM, and/or
both. The videos, therefore, contain RM pixels, RF pixels, and noise-pixels. Pixels
simultaneously affected by RF and RM can also be present, the term MR pixels is
used to indicate the pixels belonging to this category as well as the ones belonging
to the RF or RM pixels. Therefore, we define:

• RF signal: the signal obtained by combining together only the RF pixels.

• RM signal: the one obtained using only the RM pixels.
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• MR signal: this signal can be obtained by combining respiration pixels,
regardless their origin, i. e. the MR pixels. This is the signal that was
obtained in the previous Chapters 4–5, and earlier research [102,169,180].

Aiming at apnea detection and classification, we need to monitor the RF signal
since this allows us to accurately detect OAs. However, to differentiate between an
OA and a CA, motion information is also needed. It could be possible to monitor
the RM signal, but the MR signal can also be used as it will become a RM signal
in the windows containing apneas (since the flow contribution will not be present
in those segments). Based on this reasoning we aim at monitoring the RF signal
and the MR signal which can potentially ensure an accurate apnea classification
and detection.

To obtain the RF signal, a preferably automatic selection of the RF pixels is
needed. To arrive at an automatic detection, we may use the following character-
istics:

1. RM pixels are located at (typically sharp) edges in the thermal image, e. g.
the boundary of the head. Without a gradient, the RM would not be visible.
Moreover, the steeper the gradient, the stronger the temporal signal. RM
pixels typically extend 1-dimensionally (along an edge).

2. RF pixels can be located in non-edge areas of the image. Moreover, the
temperature changes due to ex/inhalation generate areas with a smooth
circular gradient, caused by thermal diffusion. Consequently, they typically
extend 2-dimensionally in the image.

3. RM signals can be in phase, or in anti-phase with the RF signal, depending
on the direction of the motion and the temperature gradient. The RF
always results in warming regions during exhalation and cooling regions
during inhalation, whereas the RM, for example, could be visible at the edge
between blanket and face resulting in warm pixels becoming colder during
inhalation, or at the edge between the infant’s head and the sheet, resulting
in colder pixels becoming warmer during inhalation.

6.2.1 Materials

The videos used in this chapter were collected on infants who were nursed in
an open bed in the Neonatal Medium Care Unit of the Máxima Medical Centre
(MMC) in Veldhoven, The Netherlands. The study received a waiver from the
ethical committee of the MMC and the infants’ parents signed an informed consent
before the study.
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Dataset

The thermal videos collected amount to a total of around 42 hours acquired from 15
infants. A manual annotation was performed to analyze the content of the videos.
All events visible in the videos were annotated. Particularly, the movements of
the infants were divided into three main categories, still, type 1 motion, and type
2 motion. Still is when all body movements are absent apart from RM, type 1
and 2 motion were defined to differentiate between movements including the chest
and movements involving only other parts of the body. Also, the presence of a
soother was annotated, as this may affect the algorithm. Caregivers’ and parents’
interventions, baby out of bed, motion of the camera, and unsuitable camera view
were also annotated. More details on the annotation can be found in Chapter 5.

In this chapter we focus solely on the video segments in which the infants
are still, all other events were neglected. The total absence of body motion was
preferred to allow an accurate annotation of the RF pixels location, detailed in the
next section. Moments in which the infant was still but had the soother were also
not considered since the soother may end up physically hiding RF. The moments
in which the infants were still for at least 30 s amount to 339 minutes considering
all the 15 infants. Segments shorter than 30 s were not used.

To eliminate video fragments without visible flow, an annotation was carried
out by watching the unprocessed videos. The main strategy was looking for
pseudo-periodic temperature variations at nostrils or textiles around the infant.
Knowing that RF was present in the video segments was required for the develop-
ment and testing of the algorithm. This selection results in around 142 minutes
unequally split on 11 infants. Moreover, two babies presented periodic breathing
(PB), a benign breathing pattern made of an alternation of COBs and normal
breathing [14]. These infants were removed from the usable data since the presence
of COBs, not annotated, would cause underestimating the performance of the RF
pixels selection and of the OA detection. Therefore, our dataset in this chapter
amounts to around 132 minutes split in 87 segments and unevenly distributed on
9 infants. Figure 6.1 presents the distribution of the data and the percentage on
the total 42 hours. Table 6.1 shows the infants’ information, all the infants are in
supine position except Infant 4 who is in prone position and Infant 1 is the only
infant with a nasal cannula. Moreover, Infant 2 and Infant 6, are the only infants
in this dataset that do not have a nasogastric feeding tube. For further comments
about the flow visibility in the recordings, refer to Section 6.4.

Annotation of the respiratory flow pixels location

To obtain a reference RF signal and to be able to estimate if our algorithm selects
the correct pixels, each video segment of each infant was examined to locate the
RF pixels. MATLAB (MATLAB 2018b, The MathWorks Inc., Natick, MA, USA)
was used for the manual annotation, and bounding boxes were used to annotate
all the frame regions affected by airflow. Regions containing flow may occur at the
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Figure 6.1: Percentages of video segments in which the infants are still with a
minimum duration of 30 s, with flow visible, and with no PB. All percentages are
reported with respect to the total recording time of 42 hours.

nostrils, on the mouth, and/or on textiles surrounding the infants’ face, these were
all considered as valid RF pixels positions. The RF pixels were annotated at the
location where pseudo-periodic temperature variations were visible in the thermal
videos. Figure 6.2 shows the relative importance of the areas annotated as RF
pixels in our videos. The figure also shows the individual percentage per infant of
segments with flow visible compared to segments with the infant still for at least
30 s. The annotated RF pixels were used as the ground truth to evaluate the
performance of the automatic RF pixels detection. A reference respiratory flow
(RefRF) signal was obtained by averaging all the annotated RF pixels and was

Table 6.1: Information on the infants and the data used in this chapter. The
gestational age (GA) is indicated in weeks (w) and days (d), postnatal age (PA)
is in days.

Infant GA PA Total Duration Number of
(w+d) (days) (minutes) Video Segments

1 26w 4d 59 4.84 4
2 38w 5d 3 1.86 3
4 26w 3d 59 26.93 28
6 40w 1d 6 17.53 11
10 26w 4d 77 24.48 16
11 26w 4d 77 8.29 4
14 32w 2d 11 3.62 3
15 35w 1d 8 33.84 16
17 27w 5d 16 10.78 2
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Figure 6.2: Information on the location of the annotated RF pixels for each
infant and the percentage per infant of segments with flow visible compared to the
segments annotated as still for at least 30 s.

used for comparison purposes with the RF signal obtained using our algorithm.

Obstructive apnea simulation

Our dataset did not include naturally occurring OAs, however, we wanted to
include a proof of concept of enhanced OA detection with RF monitoring. There-
fore, we built a dataset with simulated OAs, using the earlier videos. In total, we
simulated 87 OAs. To simulate an OA, we substituted the annotated RF pixels
with noise-pixels from the images for a time period of 10 s in the middle of each
video segment. The low-frequency content of the noise-pixels was removed and
replaced with the low-frequency content of the original RF pixels. In this way, all
RF pixels will contain noise for the selected 10 s, and the RM pixels are, instead,
not altered.

Experimental setup

The videos were collected using three FLIR Lepton 2.5 cameras, these devices
were chosen based on their relatively low cost, which allows the use of multiple
cameras improving the coverage of the patient. The cameras are sensitive in the
long-wave infrared (LWIR), have a resolution of 60 × 80 pixels, and an average
frame rate equal to 8.7 Hz. The three cameras were positioned around the infants’
open bed. The CI from the patient monitor (Philips MX800) was acquired as the
reference respiratory signal. For more information regarding the setup, we refer
to Chapter 4.
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Figure 6.3: Summary of the processing and example results. RF pixels are
automatically detected in the thermal videos and used to calculate the RF signal
and the flow-based RR. Moreover, the RF pixels location is manually annotated.
The annotated RF pixels are substituted with noise to simulate the occurrence of
an OA. A COB-detector is used to compare the performance in OA detectability
between the RF signal and the MR signal.

6.2.2 Methods

The identification of the RF pixels is based on five features, partially already
introduced in [180] and in Chapter 5, combined with the new use of a bank of
Gabor filters. These filters allow us to exploit the characteristic of RF pixels,
i. e. that they typically occur in 2D-smooth areas. Using the chosen pixels, a RF
signal and the flow-based respiration rate (RR) were obtained. Moreover, OAs
were simulated in the 87 video segments and our previously proposed method for
the detection of COBs [173] was used. The method has been detailed in Chapter 2.
This allows comparing the detectability of the OAs in the different respiration
signals we obtain from the thermal videos (i. e. MR signal and RF signal). These
steps are summarized in Figure 6.3.

Preprocessing

The thermal images coming from the three camera views were merged on the same
image plane as explained in Chapter 4 and as visible in Figure 6.3, obtaining a
single video with resolution 180×80, i. e. M×L. Each pixel time-domain signal was
interpolated with a 1D linear interpolation to compensate for the uneven sampling
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Figure 6.4: Simplified block diagram of the respiratory pixels selection algorithm,
for both MR and RF pixels.

rate. The resulting frame rate is 9 Hz, close to the average frame rate of the FLIR
camera. This was also explained and used in our previous works [169,180] and in
the previous Chapters 4–5.

Respiratory flow detection

The method for the automatic detection of RF pixels, is based on the aspects
previously explained. Briefly, a set of 5 features is combined to identify the RF
pixels. A flow-core-pixel, i. e. a pixel that is most likely to belong to the RF pixels,
is selected as it will be used as a basis for the calculation of one of the features.
Gabor filters are introduced for the accurate selection of the flow-core-pixel. A
simplified block diagram of the algorithm for the detection of both MR pixels and
RF pixels is shown in Figure 6.4. The time-domain signals of each pixel in each
window are referred to as xm,l(nTs), where (m, l) indicates the pixel position, and
n = 0 + (j − 1)/Ts, 1 + (j − 1)/Ts, ..., (N − 1) + (j − 1)/Ts. Each window is
identified by the integer j, and consists of N = 72 consecutive samples in an 8 s
fragment, sliding in steps of 1 s. The sampling period Ts equals 0.111 s.
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Gabor filters are well-known bandpass filters used in image processing for
texture and edge detection. The kernel is formed by a sinusoidal carrier and a
2D Gaussian envelope. Several Gabor filters can be generated by varying the
spatial frequency of the sine wave and the orientation of the filter. By applying
a set of filters to an image, edges and textures can be emphasized. Considering
the properties of the distribution of RF pixels and RM pixels, we apply a bank
of Gabor filters by varying the orientation and the spatial frequency aiming at
locating RF pixels, which should have a similar response for all orientations. For
RM pixels, on the other hand, we expect a higher response in specific directions,
being mostly along, possibly curved, lines. We used the MATLAB built-in function
to generate the bank of Gabor filters, i. e. gabor. We empirically selected a
set of parameters for the orientation and for the spatial frequency of the filters,
λ = 3, 4, ..., 8 pixels/cycle and θ = 10◦, 20◦, 30◦, ..., 170◦. Multiple spatial
frequencies were chosen to allow the method to work with both flow visible at
nostrils/mouth or flow visible on textiles, as these usually produce regions affected
by flow with different sizes. The bank is applied to an input map called Flow Map,
which will be defined later, by convolving the input map with each Gabor filter.
In particular:

Ψ(λ, θ) = |F̂M⊗ Γ(λ, θ)|, (6.1)

where Γ(λ, θ) represent a Gabor filter, and F̂M is the input map. The Ψ(λ, θ) are
the magnitudes of the Gabor responses for each spatial frequency λ and orientation
θ. We select the flow-core-pixel by multiplying all the Gabor responses Ψ(λ, θ).
The flow-core-pixel is the pixel corresponding to the highest value in the image
resulting from the multiplication:

(mpf
, lpf

) = arg max
(m,l)

∏
λ,θ

Ψ(λ, θ)

 . (6.2)

Therefore, (mpf
, lpf

) indicates the position of the flow-core-pixel in each window.
The map given as input to the Gabor filters is called Flow Map and is a combination
of 5 features. In particular:

FM = Ĉ · C̃flow · Q̃ · W̃ · (J−G). (6.3)

C̃flow is a new feature introduced to locate RF pixels more accurately, and called
Covariance Map. Each element represents the covariance between the signal of
the flow-core-pixel found in the previous window and the signal of the other pixels
in the video segment. C̃flow is the normalized version of the Covariance Map:

cflowm,l
=
{

1 if j = 1
1
N

∑N
t=1 x̂(mpf

,lpf
)j−1(t) · x̂m,l(t) otherwise. (6.4)

cflowm,l
represents, therefore, the covariance between the signal of the chosen flow-

core-pixel in the previous window (mpf
, lpf

)j−1 and the signal of a pixel in position
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(m, l), x̂m,l(t) and x̂(mpf
,lpf

)j−1(t) are the filtered time-domain signals, whereas t
is an index that sweeps through the samples in the jth window. The time-domain
signals were filtered with a bandpass filter between 30 and 110 breaths per minute
(BPM), i. e. the expected breathing frequency range of an infant. The cflowm,l

were then normalized resulting in a matrix between −1 and 1, i. e. C̃Flow. The
covariance was preferred to the correlation coefficient because it allows taking into
consideration also the standard deviation of the time signals, which is advantageous
assuming the biggest thermal variations are associated with respiration. Moreover,
the sign of the covariance was kept which allows rejecting anti-phase signals, which
can only originate from motion.

The other 4 features in Equation 6.3 were previously developed to obtain a MR
signal from thermal videos, for a detailed explanation refer to [180] and Chapter 5.
These features were designed to locate MR pixels but can be adapted for the
identification of the RF pixels. Q is called Pseudo-periodicity and is based on
the estimation of the height of the normalized spectrum’s peak. W is called RR
clusters and is based on the application of a 2D non-linear filter for the detection
of pixels that have similar frequencies nearby. G is Gradient, which identifies the
edges of the thermal images. These three features were used to identify a core-
pixel, i. e. a pixel that best represents the MR signal. Once a core-pixel is found
the Pearson correlation coefficient is used to locate all the other pixels containing
respiration signals and theMR signal is obtained by averaging these pixels together
as explained in our previous work [180] and in Chapter 5. The Pearson correlation
coefficients obtained between the core-pixel and all the other pixels are arranged
in a matrix called Correlation Map and indicated with C. The Correlation Map
obtained from the core-pixel can be used to locate the MR pixels. We binarized
this map by applying an empirical threshold κ3 on the absolute values equal to
0.6:

Ĉ = |C| > κ3. (6.5)

The Flow Map can be obtained by combining this binarized Correlation Map with
the Covariance Map and the other features as explained in Equation 6.3. Q̃,
W̃, and G represent the Pseudo-periodicity, RR clusters, and Gradient features
respectively, the tilde is used to indicate that the features were normalized between
0 and 1, G is already binary. J is an M × L matrix containing all ones and,
therefore, the combination with the Gradient feature gives a weight equal to 1 to
the non-edge regions. The Flow Map was then binarized by applying an empirical
threshold, ξ1 equal to 0.2:

F̂M = FM > ξ1. (6.6)

Even though the combination of these features allowed removing most of the RM
pixels from the selectable pixels, in the first window the Covariance Map is not
computed and some of these pixels may still be present in the binarized Flow Map.
Moreover, considering the flow-core-pixel is used to estimate the Covariance Map
in the following windows, the detection of the right pixel is particularly important.
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Additionally, the Flow Map may still contain some noise-pixels as well as the flow
ones. Therefore, to select the flow-core-pixel accurately, we introduced the bank of
Gabor filters, and the F̂M was given as input to the bank, as done in Equation 6.1.

The RF pixels are, therefore, detected, in the first window of each video
segment, only the flow-core-pixel is used, afterwards, all non-zero pixels in F̂M
are considered RF pixels:

Pflow =


(mpf

, lpf
) if j = 1

(m, l) : F̂M(m, l) = 1 otherwise.
(6.7)

Pflow is, therefore, a set containing the positions of the detected RF pixels. The
conditions for RF pixels detection are quite strict, it could happen that no pixel is
found, in that case the previously chosen RF pixels are used in the current window
as well. The RF signal is obtained by averaging together all RF pixels contained
in Pflow. An example of the features in the first window is shown in Figure 6.5a,
and the features obtained in the following window in Figure 6.5b. The figures show
the advantage introduced by the use of the Covariance Map, rejecting anti-phase
RM pixels. As a consequence, the Flow Map in Figure 6.5b does not contain RM
pixels compared to the Flow Map in Figure 6.5a.

The MR signal is also obtained from the videos, using our method previously
described in [180], and will be used for comparison purposes.

Obstructive apnea detection

We adjusted our previously published COB-detector [173], presented in Chapter 2,
to evaluate the detectability of OAs, which were simulated as previously described.
The COB-detector assumes that COBs can be detected by monitoring sudden
amplitude changes and it is based on the comparison of a short-term standard
deviation and a long-term standard deviation. The only adaptations applied to
our previous published implementation concern the length of the windows for the
calculation of the two standard deviations. The duration of these windows was
chosen in Chapter 2 based on the targeted COB. In particular, the window for the
calculation of the short-term standard deviation should be close to the minimum
COB duration, an apnea of 10 s. The window for the long-term standard deviation,
which is calculated as the median of the short-term standard deviations, must
be higher than the COB duration. Otherwise, the long-term standard deviation
will dynamically adapt to the standard deviation during the apnea event (i. e.
detecting the cessation of the event while the apnea is still ongoing). In our
current implementation, the short-term standard deviation is calculated using 8 s
windows, which is the same sliding window approach used for the RR estimation.
The long-term standard deviation is calculated in a window of 15 s. This window
could be reduced to 11 s considering the fact that this is closer to the designed
duration of the OA, but we kept it higher to easily adapt to non-simulated cases.



6.2. Materials and methods 95

Pseudo-periodicity RR Clusters Non-edge Regions Correlation Map

Covariance Map Flow Map Flow Map Binarized
Product of Gabor Responses

and Flow-core-pixel

(a)
Pseudo-periodicity RR Clusters Non-edge Regions Correlation Map

Covariance Map Flow Map Flow Map Binarized
Product of Gabor Responses

and Flow-core-pixel

(b)

Figure 6.5: Example of features used for the detection of the RF pixels, the
location of the annotated RF pixels is indicated with a red perimeter: (a) the
features and the choice of the first flow-core-pixel; (b) the features used to locate
the RF pixels in the next window.

The RF signal and MR signal were obtained as described in the previous
section using our dataset with simulated OAs. The COB-detector was applied to
the RefRF signal, as reference of the results achievable when monitoring RF, on
the RF signal obtained from applying our method, and also on the MR signal to
highlight the limitations of monitoring this type of signal when aiming at apnea
detection.



96 Chapter 6. Automatic separation of respiratory flow from motion in thermal videos

Evaluation metrics

To evaluate the performance of the RF pixels detector, we used the annotated RF
pixels as a reference. In each window, we evaluate the percentage of detected RF
pixels that belong to the annotated RF pixel areas. In particular:

PF (j) = #(Pflow
⋂
Pann)

#(Pflow) · 100, (6.8)

the symbol # is used to indicate the cardinality of the sets, and Pann is a set
containing the annotated RF pixels. Moreover, to estimate the number of RM
pixels erroneously included in the Pflow set, we calculate the percentage of the
detected RF pixels that belong to the pixels used to calculate the MR signal after
removing Pann from the set. Formally:

PM(j) = #(Pflow
⋂

(Pm −Pann))
#(Pflow) · 100, (6.9)

with Pm indicating the set of pixels used to obtain the MR signal. The PF (j) and
PM(j) are then averaged to obtain an average percentage of correct and incorrect
pixels detected in each video segment. The mean absolute error (MAE) is also
estimated to compare RRs obtained using the RF signal, the MR signal, or the
RefRF signal and the RR of the CI reference.

For the OA detection step, accuracy (ACC), sensitivity (SE), and specificity
(SP) are calculated, by comparing the OA detection result with a template signal.
The template signal has been built to be equal to one in the segment containing
a simulated OA, and to zero in the rest of the signal. ACC, SE, and SP are
calculated as defined in [71,173], i. e. by considering the total duration of the time
intervals with OAs correctly and incorrectly detected (time true positive and time
false positive), and correctly and incorrectly not detected (time true negative and
time false negative).

6.3 Results

Figure 6.6 shows an example for each infant of the detected and the annotated RF
pixels. This figure clearly shows the variability in flow location and infant positions
contained in our relatively small dataset. Note that each video segment of each
infant may have a different flow location, due to the infant moving, therefore, this
example figure does not cover all the cases present in the dataset.

The results of the RF pixels detection step and the MAE obtained for the
different respiration signals obtained are shown in Table 6.2. The percentage of
correct RF pixels detection, PF , is on average equal to 84.28%, and PM , RM
pixels erroneously included, is on average 0.35%. The average MAEs obtained by
comparing the RRs of the CI reference with the one of RF signal, RefRF signal,
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Figure 6.6: An example thermal image with a description of the content, and
examples of the annotated RF pixels and the detected ones for the different infants
included.

and MR signal are respectively 2.20 BPM, 1.85 BPM, and 2.11 BPM. Moreover,
Table 6.3 contains the results of the OA simulation and detection step, showing
ACC, SE, and SP calculated using the three different signals obtained from the
videos. The superior performance of the RF signal, average SE 73%, compared to
the MR signal, average SE 23%, in detecting the simulated OA is clearly shown
here. Therefore, by monitoring the RF signal instead of the MR signal there was a
gain in SE of around 50%, the SP also improved. An example of the OA simulation
and the results of the COB-detector are visible in Figure 6.7, the images also show
the pixels used to obtain the different signals.

Table 6.2: Percentage of correct RF pixels detection, PF , and RM pixels
erroneously included, PM . MAE comparing the RRs of the CI with the RRs
of the RF signal, the RefRF signal, and the MR signal.

Infant PF PM MAE (BPM)
RF RefRF MR

1 99.67% 0.00% 0.68 0.67 0.64
2 86.30% 0.15% 1.27 1.26 1.42
4 80.99% 0.35% 3.62 2.51 2.16
6 95.68% 0.13% 0.74 0.71 1.26
10 40.93% 1.21% 4.83 2.98 2.71
11 78.93% 1.19% 1.64 1.30 1.56
14 91.57% 0.00% 2.91 3.14 3.56
15 84.65% 0.12% 2.13 2.00 4.02
17 99.84% 0.00% 2.00 2.11 1.62

Avg. 84.28% 0.35% 2.20 1.85 2.11
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Figure 6.7: Example results of the automatic pixels detection step and of the
OA simulation and detection step. The RefRF signal shows the simulated OA,
the RF signal calculated using the automatically detected RF pixels is also able to
detect the OA. In the MR signal, however, the OA is not visible, being the signal
obtained by mixing RM and RF pixels.

6.4 Discussion

The proposed method obtained promising results in the automatic identification
of RF pixels in thermal videos, obtaining RF signals. Based on our annotation,
the time in which the RF was visible in the video segments and where the infants
were still, amounts to around 142 minutes split between 11 infants. Therefore,

Table 6.3: Accuracy, sensitivity, and specificity of the OA detection for the RF
signal, the RefRF signal, and the MR signal.

Infant RF RefRF MR
ACC SE SP ACC SE SP ACC SE SP

1 95.49 82.92 96.36 97.74 95.38 98.33 86.09 0.00 100.00
2 88.28 66.78 98.09 97.12 96.76 97.51 76.46 23.83 97.83
4 91.25 61.61 97.32 97.02 95.85 97.15 76.82 31.05 86.42
6 95.42 94.04 96.07 98.43 99.18 98.23 87.09 79.31 87.10
10 89.21 15.96 98.45 97.69 95.68 97.94 82.98 5.73 92.37
11 95.53 74.09 99.86 99.86 95.70 99.65 87.31 6.42 93.09
14 98.16 86.81 100.00 98.31 89.51 99.83 84.11 18.64 94.71
15 95.93 80.82 98.31 98.88 96.41 99.18 76.83 22.37 81.53
17 99.85 97.52 99.89 99.86 96.43 99.98 91.12 22.46 92.50

Avg. 94.35 73.39 98.26 98.32 95.66 98.64 83.20 23.31 91.73
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for 4 infants, flow was never visible in the recordings due to the reasons we shall
discuss here. The average percentage of still segments with a minimum duration
of 30 s that were annotated to have flow visible for the 11 infants is 49% with a
maximum of 98% reached by Infant 4.

Different aspects can affect flow visibility in thermal videos. Firstly, the relative
position between the infant face and the camera plays an important role in the
visibility of RF at the nostrils, and since infants move, the cameras’ positions were
not always optimal in our study. In addition, the blanket may end up covering
the infant’s nose/mouth where flow is expected to be visible. The flow visibility
annotation was performed by visual inspection of the unprocessed videos, it is
possible that flow was present in some recordings but not directly visible due to a
low contrast and therefore, neglected in this work. We cannot draw conclusions on
whether the low-resolution of our setup had an influence on the flow visibility or on
whether the thermal sensitivity of the cameras was insufficient as well. Moreover,
other possible factors which make flow detection more complex in infants compared
to adults were also mentioned by Abbas et al. in [101], such as the reduced lung
volume or the small nasal aperture.

Solutions should aim at maximizing RF visibility in thermal videos. An array
of cameras could be used to ensure the visibility of the nostrils area in the videos.
Moreover, most of the infants in our dataset are in supine position, which is
recommended for infants with a higher PA. However, in NICUs most of the infants
in the incubators are in prone position. We expect the prone position to increase
the flow visibility on the textiles surrounding the face. Infant 4 was the only infant
in prone position in our study and this infant has the highest percentage of flow
visibility when the infant is still, as visible in Figure 6.2. Some of the other infants,
like 15 or 6, have also flow visible on the textiles even if they are positioned supine,
thanks to the head position.

Our automatic RF pixels detection resulted in a percentage of correct RF
pixels detected, PF , of 84% as shown in Table 6.2. Based on PM , RM pixels were
hardly mixed in, which indicates that the edge removal strategy left a very limited
number of RM pixels in the selectable pixels. It should be noted that PM is an
estimation of the RM pixels erroneously included, as the RM pixels used for the
calculation are the detected MR pixels after removing the annotated RF pixels.
This is, therefore, dependent on the MR pixels detected by our previous algorithm,
which are selected based on a threshold on the correlation with a core-pixel [180].
PM may be, therefore, underestimated, an annotation of the RM pixels may be
needed to accurately estimate PM , the remaining percentage of pixels would then
belong to the noise-pixels category. The PF was relatively low for Infant 10, 41%.
In some of the recordings with the flow visible at the nostrils, due to a combination
of camera position, head position, and temperature gradient between the nose and
face, the RF pixels were not correctly identified. Therefore, the removal of the
edge caused problems if all RF pixels were located on an edge, which can occur if
the flow is visible only at the nostrils and if the relative position between camera
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and infant’s face causes the nose to be at the edge of the face. Although this last
problem could be overcome with a different camera position, further complications
are the nose having a lower temperature compared to the face creating additional
edges in the image, and the presence of a nasogastric tube which can also create
gradients close to the nostrils. The MAE for the RF signal was slightly higher
than the MAE obtained with a MR signal. Compared to the RefRF signal MAE,
the one for the RF signal was significantly higher for infants 4 and 10. The second
one is linked with the wrong pixel selection, and similarly, in the case of Infant 4,
in some of the segments, noise-pixels were selected instead of RF pixels causing
a large MAE. In this case, the flow was also visible on the textiles, however, due
to the infant position, the removal of the edges caused the flow region on the
textiles to have a more linear shape, the flow was, therefore, not selected. These
limitations are further corroborating the need for more cameras and views, which
will allow visualizing RF, but also visualizing it away from the image’s edges. Our
experiments prove that low-cost cameras provide a feasible solution, so adding
more cameras should not lead to prohibitive costs, but workflow disturbances
should be also considered and minimized.

The proof of concept for the OA detection indicates that there is indeed an
advantage in monitoring the RF signal compared to the MR signal, the sensitivity
drastically increased from 23% to 73%, and also the specificity improved as visible
in Table 6.3. This result was expected, since the RM pixels were left untouched
for the OA simulation. However, if the main source of respiration in the video
segments is RF, as is the case in Infant 6, then also the MR signal obtained a
relatively good sensitivity in the OA detection. The lowest sensitivities for the
RF signal are linked to the incorrect detection of the RF pixels, indeed infants 10
and 4 resulted in lower sensitivities. This is a proof of concept, and this method
should be tested on thermal recordings of real apneas. MA is the most common
apnea in infants, characterized by the presence of obstructed inspiratory effort
segments as well as central pause segments. Leaving the RM pixels unaltered for
the OA simulation is a simplification, as the inspiratory effort of MAs and OAs
can present changes in the amplitude and/or frequency compared to the RM signal
pre-apnea [14].

Moreover, an important discussion point is the presence of ambiguity between
the absence of RF, leading to a possible apnea alarm, and the absence of RF
visibility. This ambiguity can again be mitigated by increasing the number of
camera views, maximizing RF visibility. However, for infants covered with a
blanket, this may not be a solution as the blanket could hide the RF. Still, AOP
resolves with maturation and, thus, occurs more often in an infant population
that is commonly positioned in incubators, i. e. infants with low gestational and
postmenstrual age [116]. Infants nursed in incubators are usually not covered by
traditional blankets and, thus, the problem is less relevant in this situation. Given
an optimal number of views, the ambiguity could still be significant after motion
events, which were not studied in this chapter. The method may be combined
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with a gross motion detector, similar to the one presented in Chapter 5, and our
algorithm for RF pixels detection would need to be reinitialized after a movement
of the infant (because of the time dependency introduced in the calculation of the
Covariance Map). The ambiguity would exist, then, between an apnea occurring
after a movement and a position change due to the movement that hides RF
completely. Apneas can be preceded by motor activity [181], however, infants are
unlikely to completely change posture on their own so as to hide RF from all
camera views. If the posture is changed by caregivers, then a protocol could be
introduced to make sure the cameras are in a good position to still visualize RF.

Finally, infants in NICUs may need respiratory support to treat severe AOP
or to treat other diagnoses. While the nasal cannula may not directly limit the
visibility of RF, as in the case of Infant 1 or as shown in [182], the use of a larger
interface (nasal mask) will inevitably hide RF at the nostrils. If RF is not visible
in the thermal videos due to one of the discussed reasons, RM would anyway be
visible in most of the recordings [180], implying that the information available for
apnea identification would be similar to the current one, i. e. CI. It should be
specified that bradycardia and desaturation need to be also detected in the case of
a COB of 10 s to define it an apnea, therefore, for a future complete unobtrusive
monitoring of apneas in the NICU these vitals (heartbeat and oxygen saturation)
need to be included as well [177].

6.5 Conclusions

The method proposed in this publication was able to detect automatically RF
pixels in thermal videos reaching an average percentage of correct pixels detected of
84%. RM pixels were correctly rejected and they were hardly erroneously selected,
0.35%. The MAE was slightly higher on average compared to the one of the RefRF
signal, 2.20 and 1.85 BPM, respectively. The proof of concept for the OA detection
indicates a clear advantage in monitoring a RF signal compared to a MR signal,
the sensitivity increased from 23% to 73%. However, the method should be tested
in thermal recordings containing real apneas. RF was annotated to be visible on
average in the 49% of the segments in which the infant was still. The number
of cameras and their position play an important role in RF visibility in thermal
videos, and require further analysis.





CHAPTER7
Societal Impact

In this thesis, the use of cameras and video algorithms for respiration monitoring
and apnea detection has been investigated. Even though healthcare companies
are developing camera-based monitoring products, the use of such technology
for cardiorespiratory monitoring in clinics is still limited. Studies performed in
ideal lab conditions are needed in the initial stage of new technology testing.
However, the research in camera-based health monitoring is beyond the initial
stage. Therefore, clinical studies are required to move forward and properly assess
the usability of cameras in healthcare. Which in turn will allow providing clinicians
a clear picture of the situation, avoiding the creation of false expectations. The
collaboration between research institutes, hospitals, and industry can deeply con-
tribute to facilitating this process. The work included in this thesis was performed
within the Eindhoven MedTech Innovation Centre (e/MTIC) in collaboration with
Philips, Máxima Medical Centre, and the Eindhoven University of Technology.
This thesis contributes to the analysis of the usability and of the performance
of camera technology in the clinic and highlights limitations. The possible long-
term impact of this work for the patients and their families, for clinicians, and
for industry is discussed in the following sections. Knowledge utilization is also
detailed.

Impact for patients and family

Patients would directly benefit from the use of contactless solutions to monitor
vital signs as this would reduce the discomfort caused by traditional monitoring
methods. In the case of premature infants, the use of contactless solutions helps
to reduce the possibility of skin damage. It is clear that the solution developed
for the clinical study to monitor respiration using cameras will not substitute all
the monitoring needed in critical care or other fields, however, it is a first step
towards completely unobtrusive monitoring. For example, in neonatal intensive
care units (NICUs) the availability of non-contact respiration monitoring could
already allow removing, for some babies, the electrocardiogram (ECG) electrodes.
These are the main cause of skin damage due to the adhesive electrodes and are
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used to obtain both heart rate (HR) and respiration rate (RR). Considering that
HR can be monitored through photoplethysmography (PPG) as well, and RR
could be available from camera-based solutions, monitoring ECG would only be
necessary for infants with specific diagnoses. Moreover, the use of cameras for
home-monitoring has also considerable interest and potential.

Impact for clinicians

The use of cameras and the possibility of monitoring motion may contribute to
the reduction of the high false apnea alarm rates currently burdening clinical staff.
Motion detection would enable artifact reduction relevant also for other vitals
apart from respiration. In addition, gross motion information is considered very
relevant for clinical practice and has been linked to the prediction of apneas and
discomfort detection. Nurses could also make use of the camera feed to observe the
patients from the main nursing station for confirming the necessity of intervention.

Impact for industry

The research conducted proves the possibility of using low-cost thermal cameras
for the detection of respiration unobtrusively. Even though the accuracy and the
usability of this type of solution still need to be studied further, the possibility to
use low-cost thermal solutions is particularly relevant for industry considering the
average high cost of traditional thermal cameras.

7.1 Knowledge Utilization

As output of this work three invention disclosures were generated which then
resulted in two patent applications filed [P1] and [P2]. Two invention disclosures
were combined into a single patent application [P2]. The two patent applications
are summarized in the following sections.

7.1.1 Patent application 1

This section provides a summary of the patent application [P1]. Unobtrusive vital
signs monitoring for infants is being researched for both hospital and home-care
environments. Solutions can involve cameras, radars, or pressure-sensitive films.
Some technologies can monitor both respiratory and cardiac activity. Some of
these, e. g. continuous-wave radar or single pressure-sensitive film, monitor an
entire area. On the other hand, cameras, arrays of pressure-sensitive films, and
some radars, e. g. frequency-modulated continuous-wave, require strategies to
locate the respiration or heart information in the multidimensional output. Many
solutions exploit features to automatically locate cardiac and respiratory activity
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Figure 7.1: Block diagram of proposed solution, adapted from [P1].

signatures in the output and provide information on the RR and the HR. The
aforementioned methods and techniques use the implicit assumption that the only
periodic signals detectable are the vital signs of interest. Non-nutritive-sucking
(NNS) is the motion produced when an infant is moving the soother or pacifier.
This motion is periodic and frequencies from 10 to 150 sucks per minute have been
reported. Therefore, the presence of NNS can produce errors for the detection
of both RR and HR, misidentifying NNS as one of these two vitals. This may
cause false bradycardia or tachypnea and it is therefore not desirable. The patent
application [P1] proposes the use of a smart soother where sensors can be used to
detect the NNS and through algorithm/software solutions the NNS contribution is
neglected in the vital signs detection phase. A schematic of the solution is visible
in Figure 7.1. Moreover, an example from our data collection when NNS is present
in the respiration band is shown in Figure 7.2.
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Figure 7.2: Example of results obtained when the NNS frequency is unknown
and in the respiration band. The pixels containing NNS are automatically selected
instead of the respiratory flow pixels present. Therefore, the wrong RR is detected.
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7.1.2 Patent application 2
This section provides a summary of the patent application [P2]. Apnea detection is
particularly important in specific environments, e. g. sleep hospitals and NICUs.
Considering the different types of apneas, central, obstructive, and mixed, the
necessity of monitoring both respiratory motion and flow to differentiate the type
is evident. The obtrusiveness of the current monitoring technologies combined
with the limitations in apnea detection with obstructive components, e. g. chest
impedance (CI), leads to the necessity of unobtrusive solutions able to accurately
detect and identify all apnea types. Thermal cameras are the only unobtrusive
solution able to monitor both respiratory motion and flow. Recent methods
in this field aim at automatic region of interest (ROI) detection to overcome
limitations of facial and body landmarks detection. However, these solutions are
unable to distinguish contributions coming from respiratory flow and motion in
thermal recordings. Therefore, the patent application [P2] proposes algorithmic
solutions that exploit characteristics of and differences between respiratory flow
and respiratory motion. A possible implementation of this approach has been
provided in [J4] and Chapter 6. A general block diagram of this solution is visible
in Figure 7.3a. Moreover, considering the differences between non-thermal and
thermal videos, i. e. the first visualizes only respiratory motion and the second both
flow and motion, it is possible to combine the information from both modalities
to automatically obtain a respiratory motion and a respiratory flow signal. If
the images coming from the two cameras modalities are aligned, automatic ROI
selection strategies could be applied on both and the pixels found in the non-
thermal videos can be removed from the thermal video leaving only the respiratory
flow pixels. A block diagram is visible in Figure 7.3b.

(a) Algorithmic solution, adapted from [P2].

(b) Combination of thermal and non-thermal imaging.

Figure 7.3: Block diagrams of the solutions proposed.



CHAPTER8
Conclusions and future research directions

8.1 Conclusions

In critical care settings in hospitals or for sleep monitoring in sleep clinics, vital
signs are continuously monitored for diagnostic purposes and/or detecting clinical
deterioration and critical events. Respiration is used for the detection of respira-
tory instability and apneas, i. e. sudden cessations of breathing (COBs). Apneas
are typical for two main disorders: sleep-disordered breathing (SDB) and apnea of
prematurity (AOP). In neonatal intensive care units (NICUs), respiratory motion
is monitored using chest impedance (CI) which is detected through the electrodes
used to measure the electrocardiogram (ECG). In sleep clinics, polysomnography
(PSG) is used to diagnose and monitor SDB and respiration is detected through
respiratory bands and thermistors and/or pressure transducers. The use of sensors
requiring contact with the patient causes discomfort and premature infants may
also exhibit skin irritation and damage due to the use of adhesive electrodes.
Moreover, CI is also unable to detect the occurrence of an apnea if respiratory
motion (effort) is still present.

Improved and unobtrusive solutions are required to monitor respiration, detect
apneas, and reduce patients’ discomfort. Cameras have been researched in this
field to monitor several vital signs. Compared to other unobtrusive methods,
cameras provide images of the patients useful to obtain contextual information,
which can be used for other applications as well e. g. patient observation. De-
pending on the camera used, different vital signs can be monitored. Focusing
on respiration, cameras sensitive in the visible range and near-infrared (NIR)
can monitor respiratory motion, whereas thermal cameras in long-wave infrared
(LWIR) and mid-wave infrared (MWIR) can monitor both respiratory motion
and flow. NIR and thermal cameras are more suited to environments where
patients have to be continuously monitored due to the necessity of monitoring
vital signs overnight or during poor light conditions. Challenges are still present
and require to be addressed before such technology could be employed in the
clinic. The objectives of this thesis are: the detection of apneas and COBs
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with low latency (Obj. 1), the use of low-cost cameras (Obj. 2), testing in real
clinical settings (Obj. 3), automatic respiratory pixels identification (Obj. 4), non-
respiratory motion robustness and analysis (Obj. 5), and separating respiratory
flow and motion automatically (Obj. 6).

Chapter 2 contributes to Obj. 1 by introducing and describing a method
to detect COBs with low latency. The method proposed assumes that a COB
can be identified by detecting a significant reduction in the respiration waveform
amplitude. The solution is, therefore, based on the comparison of two standard
deviations, short-term and long-term. The method has been tested on respira-
tion signals extracted from red-green-blue (RGB) and NIR videos acquired in
a neonatal ward. Short COBs were present in the recordings, their occurrence
was annotated and they were used to analyze the performance of the algorithm.
A method from the literature fit for retrospective use has been applied and the
output is used as comparison. The performance of the two methods is comparable,
however, our solution can operate on-line. A limitation of the study is the absence
of longer apnea events in the recordings.

Chapter 3 contributes to Obj. 2 by investigating the possibility of using ther-
mopile arrays as low-cost alternative to thermal cameras for the detection of
respiration. Videos were collected in ideal lab conditions to study the feasibility
of the solution. Several distances, respiration rates (RRs), respiratory patterns,
and positions have been considered. A method to automatically identify the pixels
containing respiration has also been proposed. The study was a proof of concept
to demonstrate that thermopile arrays can be used to monitor respiration in ideal
conditions, however, the extremely low-resolution of the chosen device limits the
possible applications.

Obj. 3 was defined as the introduction of a multi-camera setup in the clinic
for the collection of videos. Based on the results of Chapter 3, another low-cost
camera solution was identified for the development of the camera setup. Three
FLIR Lepton cameras were selected, the resolution is higher than the thermopile
array previously used, 60× 80 against 8× 8 pixels and the sensitivity is improved
as well. Three views were considered a minimum requirement to visualize both
respiratory flow and motion, i. e. one overview camera for motion, and two looking
at the face (left and right) for the flow. A data collection was conducted in the
Neonatal Medium Care Unit of the Máxima Medical Centre (MMC) resulting in
around 42 hours of thermal videos collected on 15 infants positioned in open bed.
The data collected was used in Chapter 4, Chapter 5, and Chapter 6.

Chapter 4 contributes to Obj. 4, and describes an algorithm to merge multiple
camera views in a single image plane and the combination of three features able to
automatically locate the respiratory pixels. The features designed are independent
of facial and body landmarks. This algorithm was compared with a method from
literature adapted to be used with our setup. Our method yielded better results
and resulted in being able to adapt more easily to window size changes. The
methods were tested on part of the thermal videos collected in the Neonatal



8.1. Conclusions 109

Medium Care Unit of the MMC. However, in this study, only the moments in
which the infants were not moving were considered.

The work detailed in Chapter 5 directly extends the usability of the algorithm
introduced in Chapter 4, and contributes to Obj. 5. The respiration monitoring al-
gorithm (slightly adapted compared to the previously described one) was combined
with motion detection and classification. Two main types of motion were identified.
Type 1 includes the chest/torso area and type 2 involves the face or limbs. The
main assumption behind the extension of the usability of the method was that if
non-respiratory motion does not correspond to a type 1 motion, then respiratory
motion is still visible and detectable. The performance of the motion detection and
the respiration monitoring during the different motions was analyzed. Detecting
an RR not only in the moments in which the infants were still (type 2 motion
included) allowed to increase the coverage of the method, but the error increased
as well. This can be linked to the blanket covering the main source of respiratory
motion, i. e. the chest, causing the only respiratory pixels to belong to the areas
involved in type 2 motion. The possibility of errors in respiration monitoring
caused by the presence of non-nutritive-sucking (NNS) in the recordings is also
pointed out. The usability for non-thermal recordings was demonstrated in this
work by applying the method to RGB recordings.

In Chapter 6 an algorithm to automatically distinguish respiratory flow from
respiratory motion pixels was proposed contributing to Obj. 6. Thermal recordings
acquired in the neonatal ward in which respiratory flow was visible were used to
develop this method. The algorithm relies on the differences between respiratory
motion and flow pixels, and it is based on a combination of features with a bank of
Gabor filters. The method proved to be successful in detecting the respiratory flow
pixels but limitations are present due to the non-optimal camera views. Moreover,
a proof of concept to demonstrate the advantage of monitoring respiratory flow
was included. Obstructive apneas (OAs) were simulated in the recordings and the
method previously presented in Chapter 2 was used to detect the occurrence of the
simulated apneas. Monitoring respiratory flow instead of mixing flow and motion
contributions resulted in improving the apnea detectability.

Chapter 7 described the long-term societal impact of this work, highlighting
the importance of research for camera-based vital signs monitoring. Two patent
applications are summarized and included as knowledge utilization of this thesis.
The first proposes a solution to monitor vital signs of an infant unobtrusively
and accurately eliminating the possibility of errors caused by NNS, as pointed
out in Chapter 5. Therefore, this patent application is contributing to Obj. 5.
The second proposes strategies to differentiate between respiratory flow pixels and
respiratory motion pixels to obtain an uncontaminated respiratory flow estimation
and identify accurately the presence of apneas. One possible solution is the one
implemented in Chapter 6, this patent application contributes to Obj. 6.
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8.2 Future research

The dataset used in Chapters 4, 5, and 6, was collected in the Neonatal Medium
Care Unit of the MMC. While the usability of such a low-cost setup is demon-
strated for infants cared for in an open bed, the possibility of introducing the
setup in an incubator has to be further analyzed. Incubators are not transparent
for thermal radiations and the setup would need to be positioned inside. The
small dimension of the cameras would allow this positioning, but proper mounting
is required to minimize mechanical risks. Moreover, incubators are heated and
humidified environments, therefore a decrease of the thermal contrast should be
expected. A clinical study is required to verify how these changes affect the
usability of the setup and the algorithms.

The number of cameras and their views should be further analyzed for the
different environments to maximize the visibility of both respiratory motion and
flow. In particular, the blanket covering the infants in an open bed resulted in
hiding the respiratory motion in some of the recordings. This could be a recurrent
problem, not only in this environment but also in sleep clinics where subjects can be
covered with blankets or sheets. Combining cameras with additional unobtrusive
sensors, e. g. radars or pressure-sensitive films, would ensure the availability of
respiratory motion from multiple sources. A data fusion could, therefore, mitigate
camera-related limitations that result from a hindered view. The visibility of
respiratory flow in thermal recordings is also dependent on the camera view and
the subject position. An array of thermal cameras is likely required to improve the
availability of respiratory flow. Moreover, the usability of the camera solution in
the detection of non-simulated apnea events needs to be demonstrated for infants
or adults undergoing a sleep study.

It is evident that camera solutions, but also other contactless methods, are
unable to provide accurate information on respiratory activity during severe mo-
tion. However, this limitation is also present in contact methods commonly used in
clinical practice, i. e. CI. Therefore, while it is important to know and understand
the limits of a new technology potentially introduced in the hospital, this should
not be perceived as a major limitation especially when it is shared with the
technology that we are aiming to substitute. Moreover, gross motion monitoring
can be considered an additional vital sign since it has been acquiring interest in
the clinical field. Motion activity has been indeed linked to applications such as
prediction of apneas [167,183] and discomfort detection [170].

Aiming at remote apnea detection, other vital signs need to be monitored
apart from respiration, i. e. oxygen saturation and heart rate (HR). NIR cameras
can monitor both in the dark with proper illumination, however studies are still
required to overcome limitations due to motion artifacts and skin visibility [177].
Moreover, to achieve continuous monitoring, event detection is required to detect
the patient’s presence in the bed or occlusions to the camera view, e. g. caused
by caregivers’ interventions. Machine learning methods have been used with
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promising results in this field [79,184].
Overall, clinical studies are still required to properly analyze the achievable

results with cameras compared to contact methods, and to evaluate the accuracy
of such solutions. Many other possible applications that could require the mon-
itoring of respiration are not properly discussed in this thesis since the focus is
on respiratory disorders characterized by the occurrence of apneas. The use of
cameras should be assessed also for applications such as home-care monitoring,
baby monitors, or respiratory gating.
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