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Abstract— Given a model of an uncontrolled system and
a requirement specification, a supervisory controller can be
synthesized so that the system under control adheres to the
requirements. There are several ways in which informal be-
havioral safety requirements can be formalized, one of which
is using mutual state exclusion requirements. In current im-
plementations of the supervisor synthesis algorithm, synthesis
may be inefficient when mutual state exclusion requirements
are used. We propose a method to efficiently enforce these
requirements in supervisor synthesis. We consider symbolic
supervisor synthesis, where Binary Decision Diagrams are used
to represent the system. The efficiency of the proposed method
is evaluated by means of an industrial and academic case study.

I. INTRODUCTION

A challenge in control software development is satisfying
the ever-increasing demand for quality, performance, and
safety. As a result, the control software becomes progres-
sively complex to design. Traditionally, the requirements for
the software are specified informally, and the engineers try to
manually design a controller that satisfies the requirements.
This is a time-consuming and error-prone task. To tackle this
issue, supervisory control theory [1] can be applied, which
provides a framework to control discrete-event systems. In
this framework a plant model is used to define all possible
system behavior. Additionally, a formal requirement specifi-
cation is constructed to define what plant behavior is allowed
or not. With these inputs, a supervisory controller can be
computed algorithmically (synthesized) so that it restricts the
plant’s behavior in accordance with the specification.

Some examples where supervisory control theory is ap-
plied to controller design are; Theme park vehicles in [2],
a patient support table of a magnetic resonance imaging
scanner in [3], and a waterway lock and movable bridge
combination in [4]. Despite the advantages of applying this
technique, and the examples thereof shown in case studies,
industrial acceptance is scarce. [5] points to state space
explosion as one of the barriers to industrial acceptance.
When the size of the system grows, the time- and space
(memory) required for synthesis grows exponentially. This
is often mitigated by splitting the problem in smaller sub-
problems, e.g., in modular synthesis [6]. Another state of the
art approach to mitigate state space explosion is symbolically
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representing the system using Binary Decision Diagrams
(BDDs) [7]–[12]. This paper investigates a method to im-
prove the efficiency of this symbolic approach.

We use CIF [13] as part of the Eclipse Supervisory Control
Engineering Toolkit (Eclipse ESCET™) to model plants and
requirements and symbolically synthesize a supervisor1. In
CIF, requirements can be specified in three ways:
• requirement automata, prescribing allowed behavior as

sequences of events.
• mutual state exclusion, forbidding a particular combi-

nation of states to be reached.
• state-transition exclusion, requiring an event to be dis-

abled for a given combination of states.
The latter two requirement types are discussed in [14]. These
are also the requirement types that we consider in this paper.

One can imagine that a particular informal requirement,
can be modeled in multiple ways using the different options
described above. We provide an example.

Example: We consider two traffic lights, each is regulating
the traffic for their road at a two-way intersection. The plant
behavior can be modeled by two automata, given in Fig. 1.

The informal requirement is that the traffic lights should
not be green at the same time, as this may result in a colli-
sion. This requirement can be formalized by a requirement
automaton, given in Fig. 2.

Alternatively, the requirement specification can be given
by a mutual state exclusion requirement:

not(LightA.Green and LightB.Green)
As another option, the modeler may give two state-

transition exclusion requirements, specifying that one light
can only be turned green if the other light is red:

green A needs LightB.Red
green B needs LightA.Red

Through general usage of CIF, it has been noticed empiri-
cally that the manner in which the requirements are modeled
can impact the efficiency of performing supervisor synthe-
sis, even if they represent the same informal requirement
specification and the same controlled behavior is achieved.
Notably the usage of mutual state exclusion requirements
would lead to computations that required a lot of time and
memory. Consequently, this type of requirement specification
was sometimes avoided when modeling larger systems. This
can be observed in, e.g., the model in [4].

For the purpose of modeling ease and model clarity, in
a number of cases it might be useful to use mutual state

1The ESCET toolset and documentation is open source and freely
available at https://www.eclipse.org/escet/. ‘Eclipse’, ‘Eclipse
ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.

https://www.eclipse.org/escet/
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Fig. 1. Traffic light plant automata
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Fig. 2. Traffic light requirement automaton

exclusion requirements. For the traffic light example above,
the mutual state exclusion requirement is arguably the most
straightforward formalization of the informal requirement
specification. Ideally, the usage of mutual state exclusion re-
quirements would not be penalized by a higher computational
effort of synthesis. This introduces the problem statement
discussed in this paper: How can mutual state exclusion
requirements be enforced (more) efficiently in symbolic su-
pervisor synthesis? Our answer to this question is structured
as follows: In Section II the preliminaries are provided on
Extended Finite Automata (EFA), requirement specification,
and symbolic supervisor synthesis. We introduce a method
to convert mutual state exclusion requirements to state-
transition exclusion requirements in Section III. This method
is evaluated for an industrial and an academic case study in
Section IV. Concluding remarks are given in Section V.

A. Related work

[15] and [16] investigate finding a partitioning of BDDs
to represent transition relation systems to reduce time effort
of reachable state computation. [17] extracts verification
constraints from circuits and properties and exploits them
to efficiently perform symbolic model checking algorithms.
In the above works some of the principles about transition
systems and BDDs are common with what we discuss here.
However, they do not consider the enforcement of require-
ments through supervisor synthesis. Also, we already men-
tioned some works on symbolic supervisor synthesis, [9]–
[12]. However, none of these works specifically investigate
efficient enforcement of mutual state exclusion requirements.

II. PRELIMINARIES

In this section we first introduce EFA and their symbolic
version. Next, we formalize the specification of requirements.
Finally, we discuss symbolic supervisor synthesis.

A. Automata

We consider an EFA A defined as 8-tuple

A = (L,D,Σ, T, L0, D0, Lm, Dm)

where L is the domain of locations, D=D1×...×Dp is the
domain of variables and Σ is the set of events, usually called

the alphabet. The alphabet is split into two disjoint subsets;
Σc and Σu representing controllable and uncontrollable
events respectively. L0 is the set of possible initial locations,
D0=D1

0×...×D
p
0 is the set of possible initial variable values,

Lm is the set of marked locations, and Dm is the set of
marked variable values. T is a set of transitions where a
transition t is defined as 5-tuple

t = (lo, lt, σ, γ, υ)

where lo and lt are the origin and target location in L, σ is
an event in Σ, γ : D → {false, true} is the guard evaluation
function and υ : D → D is the update function that assigns
new values to the variables.
L(A) denotes the language/behavior of automaton A.

A1||A2 denotes the synchronous composition of automata
A1 and A2 [18]. The state of the EFA consists of the current
automaton location and the value of each of the variables as
a pair (l, d) ∈ L×D. Consequently the initial states are pairs
from L0×D0 and the marked states are pairs from Lm×Dm.

As noted in the introduction, we perform symbolic super-
visor synthesis, i.e., a symbolic representation of the EFA
is constructed to perform synthesis on. The symbolic repre-
sentation makes use of predicates that can be represented by
BDDs. Therefore, we will consider performing synthesis on
a Symbolic EFA (SEFA) defined as a 5-tuple

AS = (X,Σ, E,X0(X), Xm(X))

in which X is the set of symbols representing the automaton
locations and the variables declared in that automaton. The
state is defined by a valuation of these symbols. Σ is the
alphabet. X0 and Xm are predicates over the symbols that
respectively represent the initial and marked states. Note that
for a predicate P (X) we may simply write P when the used
set of symbols is clear from the context. E is the set of edges,
with edge e defined as triple: e = (σ, g(X), u(X,X+)),
where σ is an event, g is a guard predicate, expressing from
what states the event may occur, and u is an update predicate
over current state symbols and new state symbols X+ =
{x+|x ∈ X}, representing what state will be reached when
the edge occurs from a particular current state. In this way,
an edge e may correlate to multiple transitions in T . [19]
discusses construction of an SEFA from a (set of) EFA.

Example: For the traffic light plant model given in Sec-
tion I, the set of symbols would be {LightA, LightB}.
The initial state predicate would be LightA.Red ∧
LightB.Red, where LightA.Red expresses that symbol
LightA is valued Red. The SEFA edge for LightA
turning green is given by (green A, LightA.Red,
LightA+.Green ∧ LightB+ =LightB).

B. Requirements

A mutual state exclusion requirement I is an expression
defining a predicate over states in X that always needs to
hold in the controlled system. A state-transition exclusion
requirement is defined by J ⇒ t, where J is an expression
defining a predicate over states in X that needs to hold in
the controlled system for transition t to occur. Examples



for these requirement types are provided in the introduction.
The modeler may define multiple mutual state- and state-
transition exclusion requirements. Even though we define the
safe states or states from which the transition is allowed to
occur, we call it an ‘exclusion’ requirement because it is a
restriction on the plant behavior.

In this paper we will regard state-edge exclusion re-
quirements, essentially a set of state-transition exclusion
requirements for all transitions t that pertain to an edge
e. In this case we will write J ⇒ e directly. We will
refer to the set of all mutual state exclusion requirements as
MS, and to the set of all state-edge exclusion requirements
as SE. For simplicity we will consider specifications that
do not contain any requirement automata. Enforcing the
requirements expressed by automata in supervisor synthesis
is well known [1], [18], [20].

C. Symbolic Supervisor Synthesis

The purpose of applying supervisor synthesis is to generate
a supervisor automaton such that the synchronous prod-
uct between the plant automaton and supervisor is safe,
nonblocking, controllable, and maximally permissive. Safe
means that the requirements always are adhered to. Non-
blocking indicates that from every reachable state, a marked
state can be reached. Controllable means that when the
plant can execute an uncontrollable transition, this transition
can also be executed in the synchronous product between
supervisor and plant. In other words, the supervisor does not
stop any uncontrollable events from occurring. Maximally
permissive says that these properties are ensured without
disabling any events that don’t strictly need to be disallowed.

In Algorithm 1 a supervisor synthesis algorithm is pre-
sented. This synthesis algorithm is based on the algorithm
introduced in [20]. The application of BDDs in this algorithm
is studied in [21], [22]. We have split up the algorithm over
multiple algorithms to enable reuse of parts later.

In the synthesis algorithm, first requirements are applied
by Algorithm 2. In this algorithm, a safe state predicate P
is computed by first taking the conjunction of all mutual
state exclusion requirements. This predicate returns true only
for states for which all mutual state exclusion requirements
hold. As a convention we will use that the empty-conjunction
is true. Next, the state-edge exclusion requirements are en-
forced by computing a safe state predicate and safe edges in
Algorithm 3. When these requirements consider edges with
controllable events, the guard can simply be strengthened
by taking the conjunction with the predicate, so that the
edge only occurs when the requirement holds. This is not
possible when the edge is labeled by an uncontrollable event.
In that case, the safe state predicate is modified to exclude
states from which the edge can take place, but the state-edge
exclusion requirement does not hold. The predicate g → J
specifies the states where the state-exclusion requirement is
adhered to, where ‘→’ denotes logical implication.

Algorithm 1 iteratively calculates a set of nonblocking
states N , followed by a set of bad states B. Only the
safe edges with strengthened guards computed in Algorithm

Algorithm 1 SS (Supervisor Synthesis)
Input: Plant SEFA AS = (X,Σ, E,X0, Xm), mutual state

exclusion requirements MS, state-edge exclusion require-
ments SE

Output: Supervisor SEFA S
1: (N,ES) = applyRequirements(MS,SE,E)
2: repeat
3: N ′ = N
4: N = BRS(N,ES , Xm)
5: B = BRS(true, {(σ, g, u) ∈ E|σ ∈ Σu},¬N)
6: N = N ∧ ¬B
7: until N = N ′

8: for all (σ, g, u) ∈ ES with σ ∈ Σc
9: g(X) = g(X) ∧ ∃X+ [N(X+) ∧ u(X,X+)]

10: end
11: S = (X,Σ, ES , X0 ∧N,Xm ∧N)

Algorithm 2 applyRequirements

Input: Mutual state exclusion requirements MS, state-edge
exclusion requirements SE, edges E

Output: Safe state predicate P , safe edges E
1: P =

∧
I∈MS I

2: (P,E) = applyEdgeRequirements(P,E,SE )

3 will be considered in the supervisor synthesis. N is
initiated with the safe states found by Algorithm 2. The
calculation to obtain N and B is done by the means of
a backward reachability search, given in Algorithm 4. This
search is performed on the predicates by using the existential
quantification operator [22], [23]. The bad states are removed
from N . The removal of these states can induce other
states to become blocking. Therefore, the algorithm repeats
these steps until the fixpoint is reached, i.e., no further bad
states get removed. Next, the guards of the edges labeled
by controllable events are strengthened such that the guard
can only be true when the nonblocking predicate is true
for the state that is reached after taking the edge. Finally,
the supervisor SEFA is constructed. The conjunction is
taken between the initial state predicate and the nonblocking
predicate, so that the supervised system is only initialized
in nonblocking states. The supervised system will remain
in nonblocking states, as the strengthened guards prevent
transitions from nonblocking to bad states.

III. CONVERSION OF MUTUAL STATE EXCLUSION
REQUIREMENTS TO STATE-EDGE EXCLUSION

REQUIREMENTS

As stated in the introduction, it has been found empirically
that synthesis on models containing state exclusion require-
ments was inefficient, and therefore they are sometimes man-
ually converted to state-edge exclusion requirements. From
practice it has been found that this can solve the inefficiency
problem. Therefore this is also the direction in which we seek
our solution; we convert the state exclusion requirements to
state-edge exclusion requirements. For practical reasons we



Algorithm 3 applyEdgeRequirements

Input: State predicate P , edges E, state-edge exclusion
requirements SE

Output: Safe state predicate P , safe edges E
1: for all (σ, g, u) ∈ E, (J ⇒ (σ, g, u)) ∈ SE
2: if σ ∈ Σc
3: g = g ∧ J
4: else
5: P = P ∧ (g → J)
6: end if
7: end for

Algorithm 4 BRS (Backward Reachability Search)
Input: Restriction predicate Pr, edges E, start predicate P
Output: Coreachable predicate P ′

1: repeat
2: P ′ = P
3: P ′(X) = Pr(X)∧(P (X)∨

∨
(σ,g,u)∈E ∃X+ [P (X+)∧

g(X) ∧ u(X,X+)])
4: until P ′ = P

do so automatically rather than manually.
In Algorithm 5 the mutual state exclusion requirements

are first converted into state-edge exclusion requirements.
This is done by iterating over all the mutual state exclusion
requirements and edges. For each edge and mutual state
exclusion requirement a predicate R is constructed that
expresses the states from which the edge can be performed
and the requirement holds after executing the edge. In the
controlled behavior, the edge can only be performed from
the states indicated by g ∧ I , because states where I does
not hold are not reached by a safe supervisor. In all cases
that the edge can be performed, R must hold so that a safe
state is reached. In line 4 it is checked whether there are
any states for which this does not hold. If that is the case, a
state-edge exclusion requirement is added that requires R to
hold for the edge to occur. Next, the initial state predicate
is modified so that all mutual state exclusion requirements
hold in the initial state. Thus, the system starts in a safe
state, and does not leave the safe states as a result of the
generated state-edge exclusion requirements. The generated
and existing state exclusion requirements are applied in line
10, in the same manner as Algorithm 2.

In Algorithm 1, we can substitute line 1 with the following
line, to apply the introduced efficient enforcement of the
requirements:
1: (N,ES ,X0)=applyRequirementsEfficient(MS ,
SE , E,X0)

After this substitution, the behavior of the controlled
system, i.e. synchronous composition between plant and
synthesized supervisor, remains the same:

Theorem 1: L(SS′(AS ,MS, SE)||AS) = L(SS(AS ,MS,
SE)||AS), where SS′ is Algorithm 1 with line 1 substituted
as indicated above.

Algorithm 5 applyRequirementsEfficient

Input: Mutual state exclusion requirements MS, state-edge
exclusion requirements SE, edges E, initial states X0

Output: Safe state predicate P , safe edges E, safe initial
states X0

1: for all I ∈ MS
2: for all (σ, g, u) ∈ E
3: R(X) = ∃X+ [I(X+) ∧ g(X) ∧ u(X,X+)]
4: if (g ∧ I → R) 6= true
5: SE = SE ∪ {R⇒ (σ, g, u)}
6: end if
7: end for
8: end for
9: X0 = X0 ∧

∧
I∈MS I

10: (P,E) = applyEdgeRequirements(true, E,SE )

IV. EXPERIMENTS

We perform some experiments to evaluate the new method.
In Section IV-A we discuss how the computational effort
is measured, and some relevant settings for the synthesis
algorithm that were used for the experiments. Then we
introduce an industrial and academic case study in Sections
IV-B and IV-C respectively2. For both case studies we
perform measurements to express the computational effort
for the current baseline method (SS using Algorithm 2) and
the introduced converted method (SS′ using Algorithm 5).

A. Measuring computational effort

For symbolic supervisor synthesis, the computational ef-
fort can be expressed by peak used BDD nodes and BDD op-
eration count [21]. The first metric is the maximal combined
size of all BDDs during synthesis. Computer memory is
always finite, so this is the main limiting factor for successful
synthesis. The second metric is the number of times a recur-
sive call is made to any BDD operation, indicating the time
effort. These metrics allow measuring computational effort
in a deterministic, platform-independent way and include no
overhead in their measurements, opposed to more traditional
metrics such as computer memory usage and wall-clock time.
Performing synthesis with constant parameter settings results
in the same result each time for the BDD-based metrics.

The BDD variable order and the order in which the edges
are iterated over in the for loops have a large impact on the
computational effort of a particular synthesis [21], [22]. The
variable and edge order influence the synthesis efficiency
that is found when comparing the two methods. I.e., if
for both methods the same variable and edge order are
used, a relative difference in effort can be computed. This
relative difference can be different for different variable and
edge orders. Note that the variable- and edge order only
influence the computational effort of a synthesis, the resulting
supervisor is not affected. Therefore, the experiments are
executed as follows. 10 random variable orders and 10

2The used CIF models are available here: https://github.com/
sbthuijsman/CASE21_enforce_requirements

https://github.com/sbthuijsman/CASE21_enforce_requirements
https://github.com/sbthuijsman/CASE21_enforce_requirements
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random edge orders are computed. For each combination
of these, synthesis is performed for both methods, so 200
experiments per model. The efficiency of the method is
evaluated by comparing the average results. Variable ordering
heuristics FORCE and sliding window [21] are applied to
the randomly generated variable orders, as this is the most
realistic usage circumstance.

The authors note that CIF has some functionality to
simplify the guard expressions in the resulting supervisor.
For example when the supervisor guard is exactly the same
as the plant guard, the supervisor guard for this edge can be
‘true’ as this results in the same behavior in the controlled
system. Such simplifications can make the supervisor guard
restrictions more readable. They however do require compu-
tational effort and are performed in none of the experiments
that we present to enable proper quantitative comparisons
between the results. The supervisor guards are thus computed
as presented in Algorithm 1.

B. Lithography machine initialization

[24] discusses an approach for initialization and termi-
nation of flexible manufacturing systems. In this approach
a discrete-event model represents the system in a modular
manner. Constraints can be enforced, and the existence of
successful initialization and termination sequences under
these constraints can be proven from any state. [24] includes
an industrial use case on lithography machines. These ma-
chines are used in the semiconductor industry to manufacture
integrated circuits. In [24], existing machine artifacts are
used as the modular specification, which are converted into
a network of automata in CIF.

We present the results of a case study on the indus-
trial lithography initialization model. [24] also constructed
a termination model, for which the results are practically
the same. The complete model is much too large to per-
form (monolithic) synthesis. Therefore a partial model is
constructed in [24]. This model is specified in CIF by 16
automata, the product of their number of states (worst-
case state space size) is 1.85 · 1016. There are 51 mutual
state exclusion requirements, each requirement being an
expression that refers to two automata. Applying Algorithm 5
results in generation of 74 state-edge exclusion requirements.

baseline
converted

Fig. 4. BDD evolution lithography machine initialization

TABLE I
BDD OPERATIONS FOR SYNTHESIS PROGRESSION

Progression of synthesis BDD operations
Finished applying
requirements

baseline 171 448
converted 1 001 676

Finished computing
nonblocking predicate

baseline 75 040 338
converted 11 058 198

Finished synthesis baseline 75 920 257
converted 11 156 718

The experiments are performed as discussed in Section
IV-A. The results are shown in Fig. 3. Of each synthesis the
computational effort is shown using the BDD metrics on a
logarithmic scale. Quite some variance can be observed as a
result of the random variable- and edge orders. Nevertheless,
it can be concluded from the results that for this model
the introduced method, where the mutual state exclusion
requirements are converted into state-edge exclusion re-
quirements, has a beneficial influence on the computational
effort. Each synthesis where Algorithm 5 was applied instead
of Algorithm 2 required less memory, and for almost all
syntheses less time as well. The mean computational effort
of the syntheses is reduced by a factor 2.4 (from 8.9 · 104

to 3.7 · 104) for peak BDD nodes, and a factor 5.4 (from
6.3 · 107 to 1.2 · 107) for BDD operation count.

We study how this reduction in effort is achieved by the
new method. For this we use Fig. 4. This image shows how
the combined size of all BDDs evolves during synthesis.
This is constructed from measurements on the lithography
initialization model with the variable- and edge orders chosen
such that the effort is close to the mean for both the baseline
and converted method found previously. The metrics that we
use, peak used BDD nodes and BDD operation count, are the
maxima along both axes in this figure. Some vertical lines
are drawn that indicate progression points in the synthesis
algorithm. These are detailed in Table I.

As expected, the new method takes longer to apply the
requirements as this includes performing the conversion
too. However this effort is won back in the calculation
of the nonblocking and guards predicates. Because of the
conversion, not all the state exclusion requirements are
in the nonblocking predicate, but rather in the guards of
the edges. Even though the nonblocking predicate might
express a larger set of states, the required space to express
it (number of BDD nodes) is smaller. This is beneficial,
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because the nonblocking predicate is constantly used during
the synthesis; these computations are now on a smaller BDD
resulting in less computational effort. We also observe that
in the baseline the memory usage spikes when the guards
are computed (lines 8-10 of Algorithm 1). This spike does
not occur for the new method, as the conditions where the
requirements are not met were already largely included in
the guards of the edges during the conversion.

C. Cat and Mouse Tower

As academic use case we take the Cat and Mouse Tower
(CMT) from [25]. This model has been selected as it includes
mutual state exclusion requirements, and additionally can be
scaled in size.

On each floor of the tower there are five rooms as shown
in Fig. 5. Cats and mice can move between the rooms as
indicated by the arrows. All doors can be controlled, except
for the bidirectional cat door between rooms 2 and 4. There
are n levels. Between each level there is a controllable
connection that both cats and mice can use. This connection
is between room j of level 5·i+j to room j of level 5·i+j+1,
for i ∈ N0, j ∈ {1, 2, 3, 4, 5}, and 5 · i+ j < n. There are k
cats and k mice, and consequently each room can also hold
between 0 and k cats and/or mice. The cats start in room
1 of level 1, and the mice start in room 5 of level n. The
informal requirement of this system is that there can never
be a cat and a mouse in the same room at the same time.

Same as [25], the model is constructed as a network of
finite state automata. For each room two automata with k+1
states each are used that represent the amount of cats and
mice present. The state of the automata is updated accord-
ingly when the event occurs that a cat or a mouse moves
between rooms. For each room a mutual state exclusion
requirement is specified, expressing that there is either no
cat or no mouse.

The same experiments as in Section IV-B have been
repeated for this model for some combinations of n and k.
The results are summarized in Table II. Table II addition-
ally shows how many state-edge exclusion requirements are
generated by Algorithm 5 during each synthesis.

For this model, the computational effort is lower when us-
ing the baseline method, rather than the proposed conversion
method. We study the evolution of the BDD size during the
synthesis for why this might be the case. Fig. 6 shows the

TABLE II
CMT EXPERIMENTAL RESULTS

n k method
mean peak
BDD nodes

mean BDD
operations

generated
s-e reqs.

5 1
baseline 8.8 · 103 5.3 · 105 n.a.
converted 9.0 · 103 6.6 · 105 86

5 3
baseline 3.2 · 105 3.5 · 108 n.a.
converted 3.0 · 105 4.5 · 108 258

10 1
baseline 3.2 · 104 5.4 · 106 n.a.
converted 3.2 · 104 6.6 · 106 176

10 2
baseline 2.9 · 105 2.3 · 108 n.a.
converted 2.6 · 105 2.7 · 108 352

baseline
converted

Fig. 6. BDD evolution CMT

evolution of the BDD during synthesis of a CMT model with
n = 5 and k = 1. This is constructed from measurements
with a variable- and edge order chosen such that the effort is
close to the mean for both the baseline and converted method.
Again we observe that for the new method it takes longer
to apply the requirements; it requires 1.5 · 105 more BDD
operations. However, it can be seen that this invested effort
is not won back later during synthesis; the total synthesis
requires 1.3·105 more BDD operations. Essentially, not many
additional nodes are required after applying the requirements
to compute the nonblocking predicate. I.e., for the CMT
model the nonblocking predicate is relatively simple to
express when compared to the other predicates representing
the system. The same was observed for the CMT model for
larger values for n and k.

On the contrary, for the lithography machine initialization
model we saw the expression of the nonblocking predicate
was relatively complex. The new method focuses on reducing
the BDD size of the nonblocking predicate. As the nonblock-
ing predicate has a larger impact on the computational effort
of the lithography machine model compared to the CMT
model, there is less efficiency to be gained for the CMT
model by applying the conversion method. As it turns out,
for the CMT model the efficiency gain was too little to win
back the invested effort for applying the conversion.

To further support the statement above, why the method
might work for one model and not the other, we create a mod-
ified CMT model so that the construction of the nonblocking
predicate becomes relatively complex. The modification is as
follows: Initially there are no cats or mice in the tower; cats
can enter room 1 level 1, and mice can enter room 5 level n
uncontrollably whenever there is space; each room can hold



baseline
converted

Fig. 7. BDD evolution modified CMT

k cats or mice; the total number of cats and mice is now
only limited to the combined capacity of all the rooms. The
same experiment as before is performed for this model for
n = 3, k = 1. In each synthesis, 52 state-edge exclusion
requirements are generated from the mutual state exclusion
requirements. For this model, using the proposed method
reduces the mean peak BDD nodes by a factor 3.7 (from
5.9 · 104 to 1.6 · 104) and the BDD operation count by 4.7
(from 2.6 ·107 to 5.6 ·106). So for this model the conversion
from state exclusion requirements to state-edge exclusion
requirements is beneficial. In Fig. 7 we have once more
plotted the evolution of the BDD sizes during two average
sample syntheses of this model. Once more, converting
the requirements requires more computational effort for the
new method, but this is won back when computing the
nonblocking predicate. Unfortunately, at the moment we have
no way to predict which method will be more efficient.

V. CONCLUSIONS

Mutual state exclusion requirements and state-edge exclu-
sion requirements can be used to formalize a requirement
specification. The use of mutual state exclusion requirements
was found to have a negative impact on the computational
effort to apply synthesis, and were therefore omitted in some
cases. We present a method to enforce mutual state exclusion
requirements by converting them to state-edge exclusion
requirements first. The gain in computational efficiency of
synthesis is evaluated for the industrial lithography machine
initialization model, and the academic CMT model. For
the lithography machine model, the method is shown to
be beneficial. However, for the CMT model it is not. The
proportion of computational effort required to compute the
nonblocking predicate after applying the requirements is
shown to influence the efficiency of the method. It is shown
how the method can be efficient for a modified version of
the CMT model.
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