

NMPO

Citation for published version (APA):
Corda, S., Kumaraswamy, M., Awan, A. J., Jordans, R., Kumar, A., & Corporaal, H. (2021). NMPO: Near-
Memory Computing Profiling and Offloading. In F. Leporati, S. Vitabile, & A. Skavhaug (Eds.), Proceedings -
2021 24th Euromicro Conference on Digital System Design, DSD 2021 (pp. 259-267). Article 9556449 Institute
of Electrical and Electronics Engineers. https://doi.org/10.1109/DSD53832.2021.00048

DOI:
10.1109/DSD53832.2021.00048

Document status and date:
Published: 11/10/2021

Document Version:
Author’s version before peer-review

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/DSD53832.2021.00048
https://doi.org/10.1109/DSD53832.2021.00048
https://research.tue.nl/en/publications/98888edf-38b7-4ced-ac7e-5a1dd1ebe787

NMPO: Near-Memory Computing Profiling and
Offloading

Stefano Corda1,2/Madhurya Kumaraswamy1, Ahsan Javed Awan3, Roel Jordans1, Akash Kumar2, Henk Corporaal1
1Eindhoven University of Technology 2Technische Universität Dresden 3Ericsson Research

{s.corda, r.jordans, h.corporaal}@tue.nl, m.kumaraswamy@student.tue.nl
stefano.corda@mailbox.tu-dresden.de akash.kumar@tu-dresden.de ahsan.javed.awan@ericsson.com

Abstract—Real-world applications are now processing big-data
sets, often bottlenecked by the data movement between the
compute units and the main memory. Near-memory computing
(NMC), a modern data-centric computational paradigm, can
alleviate these bottlenecks, thereby improving the performance
of applications. The lack of NMC system availability makes
simulators the primary evaluation tool for performance esti-
mation. However, simulators are usually time-consuming, and
methods that can reduce this overhead would accelerate the early-
stage design process of NMC systems. This work proposes Near-
Memory computing Profiling and Offloading (NMPO), a high-
level framework capable of predicting NMC offloading suitability
employing an ensemble machine learning model. NMPO predicts
NMC suitability with an accuracy of 85.6% and, compared to
prior works, can reduce the prediction time by using hardware-
dependent applications features by up to 3 order of magnitude.

I. INTRODUCTION

Modern big-data applications comprise machine learning,
radio-astronomical imaging, and bioinformatics algorithms
[1]. These workloads usually impose high compute and data
requirements, which may cause bottlenecks. Most of the
applications that process large datasets frequently stall in the
cache hierarchy due to the data movement between the main
memory, and the processor [2]. A proposed solution to this
problem is near-memory computing (NMC) [3]–[5], which
is an opposite computing paradigm to the classical compute-
centric being data-centric and performs the computation near
the memory, avoiding the data-movement mentioned above.
NMC is possible by the recent advancement in memory tech-
nologies. Indeed, technologies such as 3D-stacked memory [6]
have higher bandwidth, a large number of channels, reduced
power consumption, and the possibility to place accelerators
on the logic layer of the memory itself [7], [8]. Prior works
show how NMC can efficiently be employed to improve
the performance of applications such as graph processing
[9], numerical simulations [10], machine learning [11], image
processing [12], and radio-astronomical imaging [13].

Nevertheless, due to the poor availability of NMC systems,
mainly consisting of prototypes, it is challenging to profile and
evaluate the suitability of NMC architectures. Predominantly,
system designers use simulation techniques to evaluate work-
loads [14]. These simulators need to be configured for each
new DRAM technology and are time-consuming: they can
take up to days or even weeks for real-world application with

ever-growing big-data datasets. A systematic methodology
for identifying any application’s NMC suitability helps the
programmer in faster early design stage exploration. Therefore,
this work proposes a high-level Near-Memory computing
Profiling and Offloading (NMPO) framework for evaluating
the NMC suitability of applications by employing an ensemble
machine learning algorithm. NMPO’s goal is to provide a
quick estimation of the NMC suitability by training a Random
Forest (RF) model with micro-architecture dependent profiling
characteristics. NMPO trains and predicts using hardware-
dependent characteristics that are usually faster by approx-
imately 2 to 3 orders of magnitude [15] compared to the
platform-independent features employed in related work [16].
This huge overhead difference is due to the large memory
requirements that hardware-independent analysis needs for
certain analysis, while hardware-dependent characterization
relies on fast hardware performance counters. Despite this
benefit, NMPO still needs to run the time-consuming NMC
simulations for training the ML model, and it also needs
information about the NMC performance.

Summarizing the paper’s contributions:
• NMPO, a fast high-level profiling and offloading frame-

work for NMC systems, to analyze an application in
the early design phases and evaluate if it is suitable
for NMC offloading. We employ hardware-dependent
profiling techniques and ensemble machine learning mod-
els with feature selection and hyper-tuning to build the
framework.

• NMPO predicts NMC suitability with an accuracy of
85.6%, and it reduces the prediction time by 2 to 3
order of magnitude compared to the state-of-the-art NMC
performance prediction model [16].

The paper is structured as follows: Section II presents
the essential concepts on application characterization, NMC
simulation and machine learning models. In Section III we
explain the adopted methodology. Then, Section IV shows
our framework evaluation results in terms of accuracy and
speed. Related works are discussed in Section V and Section
VI concludes the paper.

II. BACKGROUND

This section reports the necessary background about perfor-
mance monitoring counters (II-A), NMC simulation (II-B) and

1

ar
X

iv
:2

10
6.

15
28

4v
1

 [
cs

.A
R

]
 2

9
Ju

n
20

21

ensemble machine learning models (II-C).

A. Application characterization

Key application features that are used later for taking
offloading decisions can be collected in different ways. The
quicker and easier way of evaluating an application on a
traditional CPU is using hardware performance monitoring
units (PMUs). Modern CPUs have specific programmable
components programmed to gather information from different
locations of the chip. Currently, a wide range of tools and
libraries can be employed for this task, such as PAPI [17],
LIKWID [18], and perf [19]. Perf is a ready-to-use utility
available in most current Linux distributions. This utility
collects an enormous amount of information from the analyzed
application, such as cache misses, Clock cycles per Instruc-
tions (CPI), and floating-point operations. We summarize the
main features that are collected in Table I.

TABLE I: Perf event list of the Host Machine.

Event name Units Event name Units
power/energy-pkg/ Joules L1-dcache-loads countof
power/energy-psys/ Joules L1-dcache-stores countof
power/energy-ram/ Joules L1-icache-load-misses countof
uncore imc/data reads/ MiB LLC-load-misses countof
uncore imc/data writes/ MiB context switch countof
fp arith inst retired Gflops App execution time seconds
branch-instruction/branches countof LLC-loads countof
branch-misses countof LLC-store-misses countof
cache-misses countof LLC-stores countof
cpu-cycles OR cycles countof branch-load-misses countof
instructions countof branch-loads countof
L1-dcache-load-misses countof Instructions/cycle IPC

B. NMC simulation

Since NMC systems adoption is still not widespread, sim-
ulators are necessarily employed to determine their perfor-
mance. Extended versions of Ramulator [11], [12], [14],
[16] are utilized because of its easy extendibility, speed and
accuracy. Ramulator is a cycle-accurate and portable memory
simulator that simulates a wide range of modern DRAM
technologies such as HBM (High Bandwidth Memory), HMC
(Hyper Memory Cube), and WideIO. Fig. 1 shows a high-
level representation of Ramulator. It consists of a memory
controller that takes the simulation’s input. This input can be
a set of memory traces generated by a CPU simulator such
as Zsim [20], which is called standalone mode, or it can be
generated by an execution-driven engine such as Gem5 [21],
which is named integrated mode. Ramulator’s core consists of
a tree of DRAM state-machines (left side of Fig. 1), where
each node is a class instance such as HMC that derives its
properties from its parents’ nodes. Each DRAM class has a
hierarchy of banks, channels, ranks, etc., representing different
nodes having a specific label as property. Ramulator-PIM, an
extended version of Ramulator, can simulate computing units
such as Out of Order (Ooo) cores on the logic layer of 3D-
stacked memory.

For the evaluation of power consumption metrics Ramulator
is integrated with DRAM power models such as DRAMPower

[22]. In Table II we summarize the main performance metrics
that can be extracted using Ramulator-PIM.

Fig. 1: High-level overview of Ramulator.

TABLE II: NMC system performance metrics.

Statistic Units Category
ramulator.cpu cycles cycle Ramulator-PIM
ramulator.ipc Instruction/cycle Ramulator-PIM
ramulator.cpu instructions countof Ramulator-PIM
ramulator.total time ns Ramulator-PIM
Average Power mW DRAM Power
Total Trace Energy pJ DRAM Power

C. Ensemble machine learning

Complex decisions such as application offloading to suitable
accelerators may require sophisticated tools such as machine
learning (ML) prediction models. These models are usually
trained on a section of the available features dataset and tested
on the remaining part. Then, they are employed to predict,
make decisions or classify an unknown dataset. While simple
models such as a Decision Tree can be effective, in the case of
many features, ensemble ML models are more accurate [23].
Ensemble ML models consist of several simple models trained
on a different and random subset of the training dataset. The
final decision, classification, or prediction is then made by
evaluating all the simple models’ results by selecting the most
common outcome.

Random Forest (RF) [24] is an ensemble ML model that
consists of a set of decision trees. RF uses either a categorical
response variable, referred to in [25] as “classification”, or
a continuous response referred to as “regression”. Similarly,
the predictor variables can be either categorical or continuous.
The decision trees are partitioned based on binary recursion.
The predictor space uses a sequence of binary splits to
partition. The root node contains the whole list of predictors.
The splitting criterion gives a measure of “goodness of fit”
(regression) or “purity” (classification) for a node, with large
values representing poor fit (regression) or an impure node
(classification).

2

RF model performance is boosted by tuning the hyper-
parameters, which are characteristics of the model that
can impact model accuracy and computational efficiency.
These values are set before fitting the model and optimized
through trial and error methods like grid search and ran-
dom search. Multiple models are fitted with several hyper-
parameter value sets, their performances are compared, and the
best performing one is chosen. The popular hyper-parameters
tuned for Random Forest models are; the number of de-
cision trees (N estimators), the number of features to re-
sample (Max features), the depth of each tree in the forest
(Max depth), the minimum number of samples required to
split each node (Min samples split) and the minimum number
of samples required for each leaf (Min samples leaf).

III. METHODOLOGY

The NMPO framework and the experimental setup are
described respectively in Subsection III-A and in Subsection
III-B.

A. NMPO

NMPO (see Fig. 2) consists mainly of two separate parts:
the first one for characterizing the application and training
the machine learning model and the second one where the
offloading decision is taken by employing the ML model’s
prediction result. More precisely, in the first phase, the appli-
cations are characterized on the host system (1) employing
PMUs and collecting information as reported in Table I. Then,
the applications are simulated on the NMC system (2), using
Ramulator and DRAMPower to obtain the performance mea-
surements (see Table II). The performance metrics gathered
from these steps are applied to evaluate the NMC offloading
suitability. Thus, we label the data for the machine learning
model by our criteria of offloading based on Energy-Delay-
Product speedup, which is computed as follows:

EDP speedup = Host EDP/ NMC EDP (1)

Accordingly, for the collected training data, we label the
offloading decision as “yes” if EDP speedup > 2, “maybe” if
1 < EDP speedup > 2 and “no” if EDP speedup < 1. Finally,
the machine learning model is trained (3) using the previous
analysis metrics. We employ k-fold validation to evaluate the
ML model. For each of the K folds, the model is trained on
the remaining (K - 1) folds, which are considered training data
and tested on the remaining data or the left-out fold, which
serves as the testing data. The performance of the machine
learning model is evaluated as the average performance over
K-iterations of cross-validation. The hyper-parameters, which
are the ML algorithm variables, are tuned to optimize the
prediction model’s accuracy. The application offloading of
the unseen application is performed by first profiling the
application A , similarly to 1 , on the host system with PMUs
(see Table I). Then, the trained ML model uses the extracted
features to predict the offloading decision on an NMC system
B . More precisely, since the key feature is the Ramulator IPC

(see Fig. 7), the ML model predicts this key feature for unseen

application by employing RF regression model by using only
the host system characterization and later predicts the NMC
suitability by classifying the results. The performance of the
machine learning model evaluates as the average performance
over K-iterations of cross-validation. For example, let the RF
ensemble model compute the regression error in predicting the
kth part using RMSE and cross-validation score (CV) as:

RMSEk =

√∑
i∈kth part (Predictedi − Actuali)

2

N

CV =
1

K

K∑
k=1

RMSEk

We shaped the NMC offloading decision as a classification
problem, where the key error metric is accuracy that corre-
spond to the ratio of correct prediction and the total number
of prediction:

Accuracy =
Number of correct predictions
Total number of predictions

We also applied the confusion matrix as an alternative tool
to better visualize the same information. In the confusion
matrix, each row of the matrix represents the instances in a
predicted class, each column represents the instances in an
actual class. The confusion matrix is named since it makes it
easy to see if the system confuses one class for another.

B. Experimental setup

Fig. 3: System overview.

Our experimental setups consist mainly of a host processor
(see Fig. 3), an Intel i9 9900K, and an NMC system with
out-of-order (Ooo) cores placed on the logic layer of the
HMC memory. The details of the host and NMC system are
presented in Table IV.

TABLE IV: Systems parameters.

Host system
Intel i9 8 cores, 2 threads per core, 1 socket, 4.7GHz,
9900K 16MB L3 cache, 64GB DDR4 2666MHz,

NMC system
Ramulator 8 single issue Ooo cores 1.25GHz

2-way, 2 cache-lines, 64B per cache-line
32 vaults, 8 stacked-layers, 256B row buffer, 4GB HMC
16-bit full duplex high-speed SerDes I/O link 15GBps

3

Fig. 2: Near-Memory Computing Profiling and Offloading (NMPO) overview.

TABLE III: Applications and parameters.

Application Datasets levels Time (min)
Name Task Threads 1 2 3 4 5 6 7 Test ML RT
atax Computes AT̂ times Ax 8,16 4000 6000 8000 10000 12000 14000 16000 17000 3.25 180
chol Decomposes a matrix to triangular matrices 8,16 1024 1500 2000 2200 2600 3000 3400 4000 6 720
doit Multiresolution ADaptive NumErical Scientific 8,16 75 100 128 150 200 256 300 350 6.25 5760

gemv Multiple matrix-vector multiplication 8,16 4000 6000 8000 10000 12000 14000 16000 18000 7.15 186
gesu Summed matrix-vector multiplications 8,16 4000 6000 8000 10000 12000 14000 16000 18000 8.35 202
mvt Matrix Vector Product 8,16 4000 6000 8000 10000 12000 14000 16000 18000 7.56 173
syrk Symmetric rank k update 8,16 1024 1500 2000 2500 2750 3000 3500 4000 9.32 4568

syr2k Symmetric rank 2k update 8,16 1024 1500 2000 2500 2750 3000 3500 4000 8.4 4898
trmm Triangular matrix multiplication 8,16 1024 1500 2000 2500 2750 3000 3500 4000 7.35 5280
grid Radio-astronomical visibilities gridder 8,16 128 256 512 2048 2560 3072 3584 4096 8.15 /

degrid Radio-astronomical visibilities degriddeg 8,16 128 256 512 2048 2560 3072 3584 4096 8.32 /

The applications are profiled on the host system five times,
extracting mean values with the perf package available with
Ubuntu 18.04. The NMC system is simulated with Ramulator-
PIM [26] once, since the results do not vary in different runs.
Power and time parameters for HMC are derived from [22],
[27] and fed to the NMC simulator. As a benchmark, we
selected a set of application from Polybench since it consists
of simple mathematical operations extensively used in modern
applications, and are also commonly used in NMC related
work [28]. We selected implementation of the benchmark
using OpenMP [29], [30], in order to exploit parallelism on
the CPU. Aside from synthetic benchmarks, we use the current
state-of-the-art gridding, and degridding algorithm for radio-
astronomical imaging Image Domain Gridding (IDG) release
0.7 [31], [32]. As shown in Fig. 3, we analyzed only the
kernel of interest. While Polybench applications have just
one kernel, IDG contains different kernel such as gridder and
degridder. The benchmarks, their parameters, and the value
associated with the different dataset sizes are listed in Table
III. The datasets are carefully chosen to be large enough to
generate DRAM accesses and evaluate whether the application
is really suitable for NMC. We also reported the time spent by
the machine learning (ML) for the training, hyper-tuning and
prediction and the Ramulator simulation time for collecting
training data (RT).

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we discuss the results of application profiling
and offloading. Further, empirical evidence in terms of valida-
tion and error metrics of the prediction models is presented.

Finally, the prediction models are applied to the test cases for
identifying the NMC suitability for a target application, thus
aiding the users in early design stage explorations.

A. Application profiling

This stage provides the training data required to build and
test our machine learning model Section III-A. Applications
with chosen datasets levels in Table III are profiled to collect
various statistics from perf, Ramulator-PIM and DRAMPower
as discussed in Section II-A. The roofline model [33], [34]
is a method for capturing the compute-memory ratio of
computation and determines if the application is compute-
bound or memory bound. The roofline model shows the
application’s achieved performance (GFLOP/s) and arithmetic
intensity (FLOP/Byte) against the machine’s maximum achiev-
able performance.

In Fig. 4 the roofline model of 16 threads test datasets is
plotted as an example. Application such as gridder, degrid-
der and doitgen are compute-bound; Symmetric rank update
algorithms (syrk and syr2k) are in the DRAM-bound region,
whereas the rest of the applications are L3-cache bounded.
This tool helps to demonstrate the heterogeneity of the bench-
mark employed.

In Fig. 5 Total energy (J) vs Execution time (s) is de-
picted for all test cases for 16 threads showing the above-
mentioned applications heterogeneity. The proposed work uses
the energy-delay product (EDP) of host and NMC, where
energy is the total energy consumption of cores and delay
is the amount of time for executing applications. Then, we
compute the EDP Speedup (Fig. 6 shows only the EDP

4

10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

104

Intel i9 9900K

L3

DDR4

FLOP/Byte

G
FL

O
P/

s
atax doit gemv gesu mvt chol
syrk syr2k trmm grid degrid

Fig. 4: Roofline model of test cases using 16 threads.

Fig. 5: Execution time and total energy of test cases on Intel
i9 using 16 threads.

speedup for the test cases using 16 threads) for each training
dataset.

Fig. 6: EDP Speedup of Polybench test cases using 16 threads.

B. Application offloading

1) Feature selection: Feature selection methods are in-
tended to reduce the number of input variables to ones that are
the most beneficial to a model to predict the target variable.
This technique is employed to improve estimators’ accuracy
scores or boost their performance on very high-dimensional
data sets. In our analysis, we selected the essential features
using Pearson correlation. It is represented by a number
between -1 and 1 that indicates the extent to which two
variables are linearly related. A value closer to 1 implies a
stronger positive correlation, and a value closer to -1 indicates
a negative correlation.

In Fig. 7, we show the correlation of the main features we
used in this work. It may be easily visible that the correlation is

A B C D E F G H I J K
A
B
C
D
E
F
G
H
I
J
K

- 0 . 5

- 0 . 2

0 . 1

0 . 4

0 . 7

1 . 0

Fig. 7: Correlation plot of input features (see legend in Table
V).

TABLE V: Legend for Fig. 7.

Feature Symbol
Host Total energy (J) A
Host EDP B
Host Total DRAM access (GB) C
Host FLOPs D
Host GFLOP/s E
Host FLOP/B F
Ramulator IPC G
Ramulator Total Time (ns) H
Ramulator/DRAMPower Total trace energy (pJ) I
Ramulator EDP J
Speedup K

equal to 1 for the same metric, while in the other cases is lower.
Ramulator IPC is a key factor for making offloading decisions,
and indeed it has the highest correlation with the EDP speedup.
Since it is time-consuming to run Ramulator each time for
a new unseen application or application with a different
data set, we deploy an RF regression model to predict the
Ramulator IPC and consequently predict the NMC suitability
classification. This step is quicker than NMC simulation and
enables early design exploration of unseen applications.

2) NMC suitability prediction: After the model is trained,
validated and tuned, the final step is to test it on an unseen
application. Similarly to [16], we trained the model using the
data of all the application excluding the one the model will
predict. In this manner, the prediction will be more complex,
and the application can be considered unseen. Since Ramulator
is time-consuming and, in particular, it takes several days
to simulate for the radio-astronomical imaging algorithms,
even with a small image such as 128x128 pixels, we used
only Polybench applications for the training (excluding the
predicted application if necessary). In particular, for this small
dataset, more than 8640 minutes are necessary and large disk
space is required, such as a few terabytes. Furthermore, we
simulate the above-mentioned small dataset for Gridder and
Degridder, which are well-known compute-bound application
[32] and will not benefit from NMC in any case to prove the
unsuitability of these kernel for NMC offloading. Indeed, their

5

EDP speedup is small (near 0).

Fig. 8: Confusion Matrix.

The confusion matrix Fig. 8 reports the distribution of true
and false positive of the prediction done by NMPO. For
instance, in the bottom row 9 tests are predicted correctly
8 times as “yes” and 1 time as false positive “maybe”. The
prediction results are slightly related to the roofline model,
which is still a good tool for application characterization.
Indeed, compute-bound applications do not benefit from NMC,
L3 memory bounded application benefit from NMC, and the
other applications can benefit from NMC based on the dataset
size as applications tend to incur frequent cache misses in L3
and stall on data to be fetched from DRAM [35]

(a)

(b)

Fig. 9: Model probability of predictions: (a) 8 threads, and
(b) 16 threads.

The machine learning model classification probability for
the test cases is reported in Fig. 9 for both 8 and 16 threads
test cases. For instance, for the atax test case using 8 threads,
the probability of predicting “yes” is about 60%, while for
mvt it is 100%. This heavily depends on the training datasets
employed.

The overall model accuracy is reported in Fig. 10 per
applications. While some applications have a 100% accuracy,

Fig. 10: Accuracy of offloading using NMPO.

some of them are below 80%. In average, the accuracy is
85.6%.

3) Improved estimation for training time: Similar to [16]
the main bottleneck in these design space explorations is
usually located in the training phase, where the NMC system
must be simulated. This procedure usually can take days for a
single application for real-world datasets. Furthermore, in [16]
the prediction phases consist in characterizing the application
employing PISA [15]. However, PISA is slower than PMUs
and for specific applications needs more than 64GB of DDR4,
making this step really challenging. We reported in Fig. 11
the execution time speedup of perf compared to PISA. We
employed the datasets reported in Table VI, which are smaller
compared to the ones in Table III but that has value since the
PISA overhead increases with the dataset size. We can notice
2 to 3 order of magnitude improvement comparing perf to
PISA, thus making the use of perf for the prediction phase
more convenient.

Fig. 11: Perf vs PISA execution time comparison.

TABLE VI: Dataset employed for comparing perf and PISA.

Application Dataset perf time [s] PISA time [s]
atax 2000 0.23 503.85
chol 512 0.16 28.01
doit 64 0.27 20.78

gemv 2000 0.26 55.62
gesu 2000 0.32 69.27
mvt 2000 0.24 356.16
syrk 512 0.54 201.25

syr2k 512 0.86 416.44
trmm 512 0.36 140.6

V. RELATED WORK

Near-memory computing past works focused mainly on
selecting specific memory-bound applications and optimize
them with custom architectures on the logic-layer of 3d-
stacked memory [4]. A few of them focused on offloading

6

mechanisms or performance prediction to decide if the NMC
system’s scheduling is beneficial. We summarize the main
related work on application offloading on NMC systems in
Table VII.

TABLE VII: NMC offloading related work.

Name Year Offloading Accelerator Memory
Zhang et al. [36] 2014 estimation model GPU HMC
Ahn et al [37] 2015 compiler and run-time GPU HMC
Hsieh et al. [38] 2016 run-time Ooo cores HMC
Hadidi et al. [39] 2017 compiler Fixed function units HMC
Ahmed et al. [40] 2019 compiler Fixed function units HMC
Corda et al. [41] 2019 PCA in-order cores HMC
Singh et al. [16] 2019 ML model in-order cores HMC

Zhang et al. [36] employ a performance prediction model to
decide how to schedule applications on their GPU-based NMC
architecture. Ahn et al. [37] propose an offloading ad data
mapping mechanism hidden to the programmer. This compiler-
based mechanism can efficiently schedule workloads on their
NMC-GPU system employing metrics such as memory band-
width cost-benefit and memory mapping benefits. Hsieh et al.
[38] propose an ISA extension to support NMC execution
on an NMC system consisting of Ooo cores and HMC.
The programmer must use this specific instruction to offload
specific instruction to the NMC architecture. Hadidi et al. [39]
extend GraphPIM [9] propose a compiler-based mechanism for
instruction offloading on CPU/GPU-NMC systems. Ahmed et
al. [40] propose a compiler-based mechanism able to detect
code sections that reduce the off-chip data movement when
accelerated on a CPU connected to HMC. Corda et al. [41]
employ PISA-NMC [42], an extended version of PISA capable
of extracting metrics related to memory and task parallelism,
to evaluate the correlation of these metrics and the NMC
offloading suitability using the Principal Component Analysis
(PCA). Singh et al. [16] design a high-level framework for
predicting unseen application performance on an NMC system.
This framework consists of a tuned random-forest model
trained with hardware-independent feature and performance
on an NMC system with HMC and in-order cores. While
the model is capable of predicting the energy-delay-product
accurately, prediction is slow. Indeed, this prediction needs
to gather the hardware-independent feature of the unseen
application using PISA [15], which may take from 2 to 3
orders of magnitude compared to the application’s execution
time in the host system as we show in Section IV-B. We use
the hardware-dependent application features collected with a
small execution time overhead to predict the NMC offloading
suitability to overcome this critical issue. Furthermore, while
in [16] specific datasets are so small that they cannot be
sampled by perf the PMUs (execution time lower than 0.001s),
we selected large datasets that can generate DRAM traffic.
This makes it possible to evaluate which applications are
suitable for NMC offloading when accessing external DRAM.

Performance prediction of unseen applications on specific
architectures is a widely researched topic. However, just some
of them focus on NMC. Indeed, as shown in Table VIII, most
of them focus on CPU and GPU as target offloading archi-
tecture. Concerning the machine learning model employed, in

past work, linear regression, ANN and random forest have
been employed with different tuning options. Similar to Singh
et al. [16] and Mariani et al. [43] we employ the random forest
algorithm because it can achieve higher prediction accuracy.

TABLE VIII: Performance prediction related work.

Name Year ML model Architecture
Joseph et al. [44] 2006 Linear Regression CPU
Calotoiu et al [45] 2013 Empirical model CPU
Bailey et al. [46] 2014 Linear Regression CPU/GPU
Wu et al. [47] 2015 ANN GPU
Mariani et al. [43] 2017 Random Forest Cloud HPC
Singh et al. [16] 2019 Random Forest NMC

VI. CONCLUSION

We present NMPO, a high-level framework based on en-
semble learning models and hardware-dependent profiling that
facilitate quick and precise predictions to offload suitable
applications to NMC kernels. This framework aids in the
early design stage exploration of unseen applications on
modern DRAMs like HMC. Unlike slow simulators, NMPO
employs an ensemble learning technique called Random Forest
with hyper tuning to speculate the offloading of an appli-
cation. Furthermore, NMPO is much faster than the current
state-of-the-art NMC simulator, and other machine learning-
based frameworks with platform-independent profiling since
hardware-dependent characterization used in NMPO has far
less execution time overhead than hardware-independent ones.
Thus, NMPO with 85.6% accuracy, quicker analysis and user-
friendliness is the go-to ML-based framework for early design
stage exploration.

ACKNOWLEDGMENTS

This work is funded by the European Commission under
Marie Sklodowska-Curie Innovative Training Networks Eu-
ropean Industrial Doctorate (Project ID: 676240). We would
like to thank Gabor Nemeth from Ericsson Research for his
feedback on the draft of the paper.

REFERENCES

[1] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Performance
characterization of in-memory data analytics on a modern cloud server,”
in 2015 IEEE Fifth International Conference on Big Data and Cloud
Computing, 2015, pp. 1–8.

[2] A. J. Awan, “Performance characterization and optimization of in-memory
data analytics on a scale-up server,” Ph.D. dissertation, KTH Royal
Institute of Technology, 2017.

[3] G. Singh, L. Chelini, S. Corda, A. Javed Awan, S. Stuijk, R. Jordans,
H. Corporaal, and A. Boonstra, “A review of near-memory computing
architectures: Opportunities and challenges,” in 2018 21st Euromicro
Conference on Digital System Design (DSD), 2018, pp. 608–617.

[4] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans,
H. Corporaal, and A.-J. Boonstra, “Near-memory computing: Past,
present, and future,” Microprocessors and Microsystems, vol. 71,
p. 102868, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0141933119300389

[5] O. Mutlu, “Processing data where it makes sense in modern computing
systems: Enabling in-memory computation,” in Proceedings of the 2019
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 5–6. [Online].
Available: https://doi.org/10.1145/3299874.3322805

[6] D. Lee, G. Pekhimenko, S. Khan, S. Ghose, and O. Mutlu, “Simultaneous
multi layer access: A high bandwidth and low cost 3d-stacked memory
interface,” 2015.

[7] J. T. Pawlowski, “Hybrid memory cube (hmc),” In HCS, 2011.

7

https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://doi.org/10.1145/3299874.3322805

[8] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim, “Hbm
(high bandwidth memory) dram technology and architecture,” 2017 IEEE
International Memory Workshop (IMW), pp. 1–4, 2017.

[9] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim: En-
abling instruction-level pim offloading in graph computing frameworks,”
in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 457–468.

[10] J. v. Lunteren, R. Luijten, D. Diamantopoulos, F. Auernhammer, C. Ha-
gleitner, L. Chelini, S. Corda, and G. Singh, “Coherently attached pro-
grammable near-memory acceleration platform and its application to sten-
cil processing,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019, pp. 668–673.

[11] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Ma-
her, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C. Wu, M. Hempstead, and X. Zhang, “Recnmp: Accelerating
personalized recommendation with near-memory processing,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Architec-
ture (ISCA), 2020, pp. 790–803.

[12] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim:
Programmable in-memory image processing accelerator using near-bank
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 804–817.

[13] S. Corda, B. Veenboer, A. J. Awan, A. Kumar, R. Jordans, and H. Cor-
poraal, “Near memory acceleration on high resolution radio astronomy
imaging,” in 2020 9th Mediterranean Conference on Embedded Comput-
ing (MECO), 2020, pp. 1–6.

[14] B. Y. Cho, Y. Kwon, S. Lym, and M. Erez, “Near data acceleration
with concurrent host access,” in Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture, ser.
ISCA ’20. IEEE Press, 2020, p. 818–831. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00072

[15] A. Anghel, L. M. Vasilescu, R. Jongerius, G. Dittmann, and
G. Mariani, “An instrumentation approach for hardware-agnostic
software characterization,” in Proceedings of the 12th ACM International
Conference on Computing Frontiers, ser. CF ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2742854.2742859

[16] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk,
O. Mutlu, and H. Corporaal, “Napel: Near-memory computing application
performance prediction via ensemble learning,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–6.

[17] D. Terpstra, H. Jagode, H. You, and J. J. Dongarra, “Collecting
performance data with PAPI-C,” in Tools for High Performance
Computing 2009 - Proceedings of the 3rd International Workshop
on Parallel Tools for High Performance Computing, September 2009,
ZIH, Dresden, M. S. Müller, M. M. Resch, A. Schulz, and W. E.
Nagel, Eds. Springer, 2009, pp. 157–173. [Online]. Available:
https://doi.org/10.1007/978-3-642-11261-4 11

[18] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments,” in Proceedings of the
2010 39th International Conference on Parallel Processing Workshops,
ser. ICPPW ’10. USA: IEEE Computer Society, 2010, p. 207–216.
[Online]. Available: https://doi.org/10.1109/ICPPW.2010.38

[19] B. Gregg, “Performance counters,” 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018. [Online]. Available:
http://www.brendangregg.com/perf.html

[20] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser. ISCA ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
475–486. [Online]. Available: https://doi.org/10.1145/2485922.2485963

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug. 2011.
[Online]. Available: https://doi.org/10.1145/2024716.2024718

[22] Y. L. Karthik Chandrasekar, Christian Weis and K. Goossens,
“Drampower: Open-source dram power & energy estimation tool.”
[Online]. Available: http://www.drampower.info

[23] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings
of the First International Workshop on Multiple Classifier Systems, ser.
MCS ’00. Berlin, Heidelberg: Springer-Verlag, 2000, p. 1–15.

[24] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, p. 5–32, Oct.
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[25] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

[26] CMU-SAFARI, “Zsim+ramulator - a processing-in-memory simulation
framework,” https://github.com/CMU-SAFARI/ramulator-pim, 2020.

[27] C. Weis, A. Mutaal, O. Naji, M. Jung, A. Hansson, and N. Wehn,
“Dramspec: A high-level dram timing, power and area exploration tool,”

Int. J. Parallel Program., vol. 45, no. 6, p. 1566–1591, Dec. 2017.
[Online]. Available: https://doi.org/10.1007/s10766-016-0473-y

[28] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, “Scheduling techniques for gpu architectures
with processing-in-memory capabilities,” in 2016 International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT), 2016,
pp. 31–44.

[29] Cavazos-lab, “Polybench/acc,” https://github.com/cavazos-
lab/PolyBench-ACC, 2016.

[30] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012 Inno-
vative Parallel Computing (InPar), 2012, pp. 1–10.

[31] ASTRON, “Image domain gridding (idg),” https://gitlab.com/astron-idg/
idg, 2020.

[32] B. Veenboer and J. Romein, “Radio-astronomical imaging on graphics
processors,” Astronomy and Computing, vol. 32, p. 100386, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2213133720300408

[33] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[34] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and
M. Püschel, “Applying the roofline model,” in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2014, pp. 76–85.

[35] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “How data
volume affects spark based data analytics on a scale-up server,” in BPOE.
Springer, 2015, pp. 81–92.

[36] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
85–98. [Online]. Available: https://doi.org/10.1145/2600212.2600213

[37] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vi-
jaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading and
mapping (tom): Enabling programmer-transparent near-data processing in
gpu systems,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016.

[38] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015.

[39] R. Hadidi, L. Nai, H. Kim, and H. Kim, “Cairo: A compiler-assisted tech-
nique for enabling instruction-level offloading of processing-in-memory,”
ACM Trans. Archit. Code Optim., 2017.

[40] H. Ahmed, P. C. Santos, J. P. C. Lima, R. F. Moura, M. A. Z. Alves,
A. C. S. Beck, and L. Carro, “A compiler for automatic selection of
suitable processing-in-memory instructions,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), 2019, pp. 564–569.

[41] S. Corda, G. Singh, A. J. Awan, R. Jordans, and H. Corporaal, “Platform
independent software analysis for near memory computing,” in 2019 22nd
Euromicro Conference on Digital System Design (DSD), 2019, pp. 606–
609.

[42] ——, “Memory and parallelism analysis using a platform-independent
approach,” in Proceedings of the 22nd International Workshop on
Software and Compilers for Embedded Systems, ser. SCOPES ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 23–26.
[Online]. Available: https://doi.org/10.1145/3323439.3323988

[43] G. Mariani, A. Anghel, R. Jongerius, and G. Dittmann, “Predicting cloud
performance for hpc applications: A user-oriented approach,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2017, pp. 524–533.

[44] P. J. Joseph, Kapil Vaswani, and M. J. Thazhuthaveetil, “Construction
and use of linear regression models for processor performance analysis,”
in The Twelfth International Symposium on High-Performance Computer
Architecture, 2006., 2006, pp. 99–108.

[45] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated per-
formance modeling to find scalability bugs in complex codes,” in SC
’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[46] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. R.
De Supinski, “Adaptive configuration selection for power-constrained het-
erogeneous systems,” in 2014 43rd International Conference on Parallel
Processing, 2014, pp. 371–380.

[47] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,” in
2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 564–576.

8

https://doi.org/10.1109/ISCA45697.2020.00072
https://doi.org/10.1145/2742854.2742859
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1109/ICPPW.2010.38
http://www.brendangregg.com/perf.html
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2024716.2024718
http://www.drampower.info
https://doi.org/10.1023/A:1010933404324
https://github.com/CMU-SAFARI/ramulator-pim
https://doi.org/10.1007/s10766-016-0473-y
https://github.com/cavazos-lab/PolyBench-ACC
https://github.com/cavazos-lab/PolyBench-ACC
https://gitlab.com/astron-idg/idg
https://gitlab.com/astron-idg/idg
https://www.sciencedirect.com/science/article/pii/S2213133720300408
https://www.sciencedirect.com/science/article/pii/S2213133720300408
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/3323439.3323988

	I Introduction
	II Background
	II-A Application characterization
	II-B NMC simulation
	II-C Ensemble machine learning

	III Methodology
	III-A NMPO
	III-B Experimental setup

	IV Experimental Results and evaluation
	IV-A Application profiling
	IV-B Application offloading
	IV-B1 Feature selection
	IV-B2 NMC suitability prediction
	IV-B3 Improved estimation for training time

	V Related Work
	VI Conclusion
	References

