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In their recent work [1], Broido and Clauset address
the problem of the analysis of degree distributions in net-
works to classify them as scale-free at different strengths
of “scale-freeness.” Over the last two decades, a mul-
titude of papers in network science have reported that
the degree distributions in many real-world networks fol-
low power laws. Such networks were then referred to as
scale-free. However, due to a lack of a precise definition,
the term has evolved to mean a range of different things,
leading to confusion and contradictory claims regarding
scale-freeness of a given network. Recognizing this prob-
lem, the authors of [1] try to fix it. They attempt to
develop a versatile and statistically principled approach
to remove this scale-free ambiguity accumulated in net-
work science literature. Although the paper presents a
fair attempt to address this fundamental problem, we
must bring attention to some important issues in it:

1. Classification: Even if a classifier of scale-freeness
of a given degree sequence is flawless, there exists
an unavoidable and exploitable arbitrariness in ap-
plying this classifier to classify networks that are
characterized not by one, but by many degree se-
quences, such as directed, bipartite, multilayer, or
temporal networks.

2. Correctness: The classifier of scale-freeness of a
given degree sequence used in [1] is not flawless for
at least two reasons:

(a) Hypothesis testing: The hypothesis testing
methodology employed by the classifier makes
sense only under very stringent assumptions
about the data that are not likely to hold true
in any real data.

(b) Estimator convergence: Even if the data
does satisfy these assumptions, the hypoth-
esis testing classifier yields correct answers
only if the power-law exponent estimator em-
ployed by the classifier performs sufficiently
accurately. However, how large the data size
must be for the required accuracy is entirely
unknown.

Taken together these issues introduce subtle but poten-
tially major defects in the validity of the conclusions
in [1]. In the following, we discuss these issues in more
detail.

1. Classification. The main result in [1] is the
classification of a large collection of real-world complex
networks into a complex collection of classes of differ-
ent strengths of scale-freeness. Here, we do not discuss
the definitions of these classes proposed in [1]. What is
important is that all of these definitions rely on the out-
comes of the classifier from [2]. This classifier classifies a
given degree sequence as scale-free or not.

For now, consider this classifier as a black box, and
suppose that it is “ultimately correct.” Only a small frac-
tion of networks analyzed in [1] are undirected, unipar-
tite, single-layer and static, thus having only one degree
sequence. Most networks in [1] are directed, multipar-
tite, multiplex, multilayer, temporal, or combinations of
these. Therefore, they have not one but many degree
sequences—as many as the number of snapshots in case
of temporal networks, for instance. Applied to each such
sequence, the classifier reports whether it is scale-free or
not. That is, for most networks, there are not one but
many scale-free/not-scale-free answers from the classifier.
Based on these many answers, how can one tell whether
a given network as a whole is scale-fee or not?

A significant portion of [1] is an attempt to find an
appropriate answer to this question. We believe that
this question should not be even pursued because it does
not really make much sense. Indeed, it asks to apply a
categorization (“scale-free”) of objects of one type (de-
gree sequences) to objects of a different type (networks).
Therefore, any attempt to answer this question would in-
troduce unavoidable arbitrariness that can be exploited
to tune the overall results to any desirable outcome.

To see why, imagine a universe in which all networks
are multilayer with exactly two layers, one of which is
classified as scale-free, while the other is not scale-free.
If we say that a network is scale-free when at least 50%
of its degree sequences are scale-free, then all networks in
our universe are scale-free. But if we change our defini-
tion just a little bit—a network is scale-free when strictly
more than 50% of its degree sequences are scale-free—
then we suddenly change our conclusion about the uni-
verse to exactly the opposite—our universe has no scale-
free networks at all! In both cases we completely ignore
and obfuscate the fact that 50% of network layers in our
universe are scale-free.

In simple terms, it makes no sense to call a bucket ripe
based on any percentage of ripe apples it contains.
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2. Correctness. Above we have assumed that the
degree sequence classifier from [2] is “ultimately correct.”
This is, unfortunately, not the case. Here, we discuss
the two most important issues with the classifier. They
lie within its two different parts: the hypothesis testing
methodology and the power-law parameter estimator.

2(a). Hypothesis testing. The hypothesis that
the classifier from [2] tests is whether a given degree se-
quence (in a given real-world network) is likely to be an
i.i.d. sample from a pure power-law distribution. A pure
power-law distribution is defined as the distribution with
the probability mass function P (k) = Ck−γ for all de-
grees k ≥ kmin, where γ > 0 is the power-law tail expo-
nent, C is the normalizing constant, and kmin ≥ 1 is the
minimum degree above which the pure power-law behav-
ior is observed; for k < kmin, P (k) can be anything. The
two parameters of such a distribution—the power-law ex-
ponent γ and the minimum degree kmin—are estimated
within the second part of the classifier by the PLFit es-
timator, also from [2].

Similarly to the previous section, consider this estima-
tor as a black box for now, and suppose that it is “ulti-
mately correct.” Applied to any degree sequence and re-
lying on the assumption that the degree sequence was in-
deed sampled i.i.d.’ly from a pure power-law distribution,

the estimator always reports its best estimates γ̂, k̂min

of the distribution parameters γ, kmin. Given these esti-
mates, the hypothesis testing methodology then proceeds
as follows.

First, the hypothesized distribution is set to be the
pure power-law distribution with parameters γ = γ̂ and

kmin = k̂min, and the Kolmogorov-Smirnov (KS) dis-
tance D∗ between this distribution and the empirical dis-
tribution of the given (real-world) degree sequence under
investigation is computed for k ≥ kmin. The KS dis-
tance between two distributions is the largest distance
between their cumulative distribution functions. Then,
a large number of artificial degree sequences are sampled
i.i.d.’ly from the hypothesized distribution, and for each
sequence the KS distance between the sequence and the
hypothesized distribution is computed as well, resulting
in a sequence of KS distances. Finally, the p-value is de-
fined as the fractions of these distances larger than D∗.
The hypothesis is rejected if p < 0.1. Indeed, if p is low,
then with high probability, an i.i.d.’ly sampled sequence
from the hypothesized distribution is KS-closer to this
distribution than the given (real-world) sequence of in-
terest. If so, then this sequence is unlikely to be an i.i.d.
sample from the hypothesized pure power-law distribu-
tion.

What makes this hypothesis testing procedure possible
in principle is the initial test assumption that the source
distribution is a pure power law. This is because pure
power laws (known as Zeta distributions in statistics)
form a parametric family of distributions whose parame-
ters γ, kmin can be estimated by an estimator. As evident
from the exposition above, the described hypothesis test-
ing methodology would fall apart for any nonparametric

(infinite-dimensional) family of distributions, simply be-
cause it would require an estimation of an infinite number
of parameters from finite data.

However, the same assumption that makes this hy-
pothesis testing methodology possible, also makes it quite
unrealistic. This is because there are no known reasons
to expect that the complex stochastic processes driving
the formation and dynamics of real-world networks would
result in pure power-law distributions. Even if some un-
known underlying cause does try to generate pure power
laws in a given real-world network, its results are cer-
tainly expected to get perturbed by other random inter-
fering processes, noise, measurement inaccuracies, data
processing artifacts, and so on.

Pure power laws are not often seen in network models
either. In fact, we are not aware of any popular net-
work model with pure power-law degree distributions,
other than the configuration model where this purity is
enforced by hand. Remarkably, generating networks in
this model properly and efficiently is quite a challenge [3].
All other popular network models do not produce pure
power laws.

The most basic example of that this is indeed the
case, is preferential attachment—the “harmonic oscilla-
tor” of power laws in network science. As was proven two
decades ago in [4–6], when network science was born, the
degree distribution in the original plain vanilla version
of preferential attachment is not a pure power law but
P (k) = 4/k(k + 1)(k + 2), k = 1, 2, . . .. This distribu-
tion belongs to the class of regularly varying distribu-
tions. This large class of distributions subsumes pure
power laws, but also includes all “impure” ones. Our re-
view of this mathematically well-studied generalization
of pure power laws has recently appeared in [7].

If pure power laws are not expected to be present in
data, then the described hypothesis testing procedure
that looks for them, is expected to yield negative results.
These expected results are the main results in [1], docu-
mented succinctly in its title.

That is, the main results in [1] can be summarized as
follows. Instead of trying to make rigorous sense out of
numerous reports over the last two decades stating that
the degree distributions in many real-world networks are
close to power laws (in the famous but informal P (k) ∼
k−γ formula), the authors misinterpret these reports as
if they report pure power laws (P (k) = Ck−γ). This
purity is the key assumption in the described hypothesis
testing procedure used to define the proposed scale-free
classifications. It is definitely not surprising then that
the main result of this misinterpretation of what “scale-
free” might mean is that “scale-free networks are rare.”
However, this is not the end of the story.

2(b). Estimator convergence. Thus far we have as-
sumed that the PLFit estimator of γ and kmin from [2] is
“ultimately correct.” Indeed, it was very recently shown
in [8] that PLFit is consistent. Here, consistency means
that if we draw an increasing number n of samples from a
fixed regularly varying distribution with the exponent γ
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and then feed them to the PLFit, then the PLFit’s esti-
mates γ̂ of γ based on these samples tend to γ as n tends
to infinity. We note that the consistency proof in [8] does
not directly apply to degree distributions because it ap-
plies only to continuous regularly varying distributions.
A degree distribution can be made continuous by adding
uniform continuous noise to integer degrees, for instance.
No PLFit implementation does that, but informal intu-
ition and empirical evidence suggest that the PLFit is
likely to be consistent in direct application to discrete
regularly varying distributions as well.

The main problem here is that even though we now
have a proof that the PLFit estimates γ̂ converge to γ
as n→∞, there are no results whatsoever on the speed
of this convergence. That is, it is entirely unknown how
large n must be so that the PLFit’s γ̂ lies within a given
accuracy window around the true γ.

Since we do not know how large the data must be so
that the PLFit is sufficiently accurate, it is quite pos-
sible that a given (real-world) network is so small that
the PLFit’s estimate γ̂ is very far from the true γ. If
such an inaccurate estimate is then fed to the hypothe-
sis testing methodology described above, it results in a
large KS distance D∗ simply because we got the γ wrong,
which inevitably leads to a low p-value. As a result, the
hypothesis is wrongfully rejected.

We note that this issue was well understood in [2],
whose authors wrote, “. . . one prefers large statistical
samples when attempting to verify hypotheses such as
these,” or “. . . p-values should be treated with caution
when n is small.” However, the authors of [1] do not
mention this issue at all.

The PLFit is not an exception in terms of unknown
convergence speeds. There are plenty of consistent es-
timators of power-law exponents developed in statistics.
Almost nothing is known about the speed of convergence
of any of those estimators. Therefore, there is no way to
place any rigorous confidence intervals on their estimates,
unless the data satisfies some strong assumptions that
can never be verified in reality [7]. This lack of control
over estimation accuracy and error makes the PLFit, as
well as all other power-law exponent estimators, impossi-
ble to use in any hypothesis testing procedure, including
the one described above. What can we do then in such
daunting conditions?

Since there is no theory behind how fast PLFit’s esti-
mates converge to the true values, the best we can do to
get a feeling about the convergence speed is to apply the
estimator to a sequence of degree sequences of increas-
ing size known to converge to a power law [7]. In Fig-
ure 1 we do so for our power-law “harmonic oscillator”—
preferential attachment.

We see in Figure 1 that the PLFit estimates γ̂ do ap-
pear to converge to the true value γ = 2.1 as the network
size grows, suggesting that the PLFit converges not only
on continuous distributions, but also on discrete ones.
However, we also see that this convergence is not mono-
tone, and the point where the PLFit’s estimation accu-
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FIG. 1. The convergence speed of the PLFit estima-
tor [2] applied to preferential attachment networks.
For each network size n, 100 random networks of this size
are grown according to the preferential attachment algorithm
based on redirection [9] with the power-law exponent set to
γ = 2.1. For each network, the PLFit estimator is applied to
its degree sequence, and the resulting estimates are then fed
to the hypothesis testing procedure from [2] that computes
the p-value. The hypothesis that the degree sequence is sam-
pled from a power law is rejected if p < 0.1. The left and
right panels display the estimates of γ and the p-values, re-
spectively. The dots show these data for each network, while
the squares and circles show the means and medians for each
network size n.

racy improves significantly coincides with the point where
the median of the p-value crosses the 0.1 threshold, which
happens for network sizes about 104. In other words,
in the considered preferential attachment networks with
more than 104 nodes, the methodology from [2] works
as one would expect. However, for smaller-size networks
this procedure breaks down, returning wrong estimates
of γ and hence small p-values, leading to erroneous re-
jection of the hypothesis that we are dealing with power
laws.

We have just seen that for the methodology from [2]
to work correctly, networks must be larger than 104 in a
very controlled lab environment with relatively “clean”
(albeit not pure) power laws in preferential attachment.
What can we then say about real-world networks where
power laws, if any, are expected to be much “dirtier” in
a completely uncontrolled and unknown way? How large
should such networks be for a given estimation accuracy?

Unfortunately, we cannot say anything at all in this
regard for the following two related reasons. First, we
usually have no idea what the true distribution produc-
ing the observed degree sequence in a given real-world
network is. Second, the speed of PLFit’s convergence
likely depends very strongly not only on key parameters
of this distribution, such as γ, but also on its very fine
details, especially the details of its deviation from a pure
power law. One thing is crystal clear though: networks
must be “very large.” However, since there is no theory
behind the convergence speed, there is no way to tell how
large this “very large” is.

How large are the real-world networks considered
in [1]? The authors report this information only indi-
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rectly in Figure 1 in [1]. Careful examination of this fig-
ure shows that the fractions of networks with sizes below
103 and 104 are about 50% and 70%, respectively. That
is, a majority of real-world networks considered in [1]
are actually smaller than 104, the size needed for syn-
thetic preferential attachment networks to be correctly
diagnosed as scale-free using the methodology employed
in [1]. For the reasons above, it is not surprising then
that this methodology finds the considered real-world
networks to be “rarely scale-free.” For the same reasons,
there are no guarantees that these findings reflect reality.

Summarizing, the conclusions in [1] rely on the fol-
lowing major assumptions, organized in the order of log-
ical dependency:

1. the network is large enough for the PLFit estimator
to yield sufficiently accurate estimates that do not

break the hypothesis testing procedure,

2. the (unknown) network formation process produces
pure power-law degree sequences so that the hy-
pothesis testing procedure can be employed, and
the resulting p-values can be trusted, and

3. the proposed network classification scheme, which
relies on as many of such p-values as the number of
the degree sequences that the network has, makes
perfect sense.

Our main point is that it is impossible to asses the va-
lidity of the first innermost assumption in application to
any real data, so that whether the second and third as-
sumptions are valid does not really matter. However,
we have also argued that they are likely to be invalid as
well. Taken together, these points imply that extreme
care must be taken when it comes to interpreting the
conclusions in [1].
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