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1
INTRODUCTION

Optical magnification is one of the most intuitive methods of extending our senses beyond
their biological limitations. Despite, or perhaps thanks to this intuitiveness, it has proven
tremendously powerful. The development of compound telescopes in the early 17th
century [1, 2] for the first time revealed satellites around other planets and provided the
most direct evidence for the heliocentric model of the solar system to date [3], helping us
place ourselves in the cosmos. The closely related microscope soon led to the revolutionary
discovery of the cellular nature of life [4, 5] and direct evidence for germ theory [3, 6]. Ever
since, optical measurements have played a central role in the advancement of science and
technology.

For all its power, optical magnification has a prominent limitation. The wave nature of
light means that light in free space cannot be focussed into a volume smaller than about
one-half of its wavelength to a side. Conversely, even with ideal optics, imaging distorts
the subject over length scales comparable with the wavelength of the light used. This set of
closely related results is known as the diffraction limit: since visible light has a wavelength
around 500 nm, traditional optical imaging cannot resolve details at nanometre scales.

Yet, whereas the early days of optical technology revealed the riches of the microscopic
world, the nanoscopic world has even more to offer. Structures at the nanoscale explain
the molecular mechanisms of life [7, 8] and open up the possibility of functional complex
matter, with material properties tailored to specific uses [9–11]. In the modern world,
analysis and characterisation of nanostructures is an urgent need in the life sciences [12–
16] and semiconductor industry [17–19], both of which are increasingly focussed on objects
at the nanoscale.

Diffraction has not stopped optics from progressing to nanoscopic scales. Various
super-resolution techniques have been developed, enabling the study of (living) matter
at the molecular level (see section 1.1.2 below). Moreover, not all optical measurement
techniques are hampered by the diffraction limit in the way that imaging is. Interfero-
metry, for instance, directly exploits the wave nature of light and has enabled some of the
highest-resolution measurements to date (section 1.1.3). It is worth noting that not all
nanoscale measurement and characterisation techniques depend on light. Scanning probe
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techniques can provide high-resolution topographical and electronic information, as in
scanning tunnelling microscopy [20, 21] and atomic force microscopy [22–24]. Electron
microscopes can provide both of these functions as well as reveal crystal structures, for a
myriad of applications [25–30]. Nonetheless, light is exceptional in many ways. Optical
measurements tend to be non-destructive and minimally invasive (section 1.1.3). The elec-
tronic transitions of many materials, organic and inorganic, lie in the visible range, which
means that optical spectroscopy can reveal a wealth of chemical information [31]. High-
quality sources exist for many applications. High-power femtosecond laser systems are
used to reveal and modify material properties. Widely available laser diodes are extremely
bright and can have high spatial and temporal coherence. These properties make inter-
ferometry, spectroscopy and other optical measurement techniques fast and inexpensive.
The high frequency of light waves, around 500 THz, combined with the wide transparency
windows of many optical materials, permit transfer of optical signals at extremely high
bandwidth [32]. Besides in its frequency spectrum, light also carries information in its po-
larisation state and spatial modes, both of which further enhance the effective bandwidth
of optical signals. In a sensing context, each optical information channel can interact with
samples differently and thus encode structural, chemical or electronic information. With
the unlocking of the nanoscale and the many unique advantages of light, interest in optical
sensing techniques is as strong as ever.

The journey of optical sensing to the nanoscale is not complete. Modern super-
resolution techniques have several key weaknesses, from limited throughput to restrictions
on types of samples, which we will discuss in this chapter. Yet, far-field signals may con-
tain a tremendous amount of information across different frequency, wavevector and
polarisation channels. Recently, inverse design approaches [33–35] have honed in on the
challenge of nano-optical information retrieval in terms of information: how do we extract
the maximum amount of information from a given set of signals? In this thesis, we explore
the paradigm of near- to far-field transduction as an approach to nano-optical sensing.
In this paradigm, we dynamically place known structures in the near-field of a sample in
order to convert inaccessible near-field optical fields to readily measured far-field inform-
ation. Over the course of this thesis, we investigate how nano-optical information may
be extracted from such complex far-field channels, in doing so opening up a new path to
super-resolution information retrieval.

In the following sections, we will briefly review how optical sensing at the nanoscale
came to its current state, analysing the different approaches to super-resolution imaging
as well as non-imaging optical sensing. We will elaborate on our paradigm of near- to
far-field transduction and argue it may contribute to further advancement in nano-optical
information retrieval and benefit science and technology.

1.1. A BRIEF HISTORY OF OPTICAL SENSING AT THE NANOSCALE

1.1.1. THE DIFFRACTION LIMIT

In the early days of optical technology, image quality was limited by lens defects. Glass-
making improved by an evolutionary process of trial and error. In the late 19th century, the
introduction of mathematical models to the craft brought the design of optical elements
itself into the domain of science [36]. This soon led to the realisation that in conventional
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microscopes, as in figure 1.1, diffraction precludes arbitrarily sharp focussing [37–39]. The
original phrasing of the diffraction limit states that objects cannot be distinguished when
separated by less than

D =λ/(2 NA) (1.1)

with wavelength λ and numerical aperture NA = n sinθ, in turn with n the refractive index
of the surrounding medium and θ the opening half-angle of the collection path. This means
that structures smaller than this length scale will not be imaged faithfully and cannot be
reconstructed from the observed image without additional information. The diffraction
limit as stated here is derived for a scalar field and does not account for the effects of the
vectorial nature of light at high numerical apertures; we will elaborate on this in chapter
2. The equality in the diffraction limit (eqn. 1.1) can only be met with near-perfect optics.
Each of the various lens aberrations will generally worsen the discrepancy between real
and apparent feature size. Reducing these aberrations and optimising lens arrangements
was the main source of improving microscope quality for the decades around the turn of
the 20th century, as optical engineers tried to meet, but not surpass, the diffraction limit
[40, 41].

Figure 1.1: Imaging with a conventional microscope: the combination of objective and tube lens creates a
magnified image, which may be recorded with a camera.

1.1.2. OPTICAL IMAGING BEYOND THE DIFFRACTION LIMIT

SUPER-RESOLUTION THROUGH NEAR-FIELD SENSING

The first feasible proposal to image beyond the diffraction limit was published in 1928,
imagining a small aperture positioned within some 100 nm of a sample of interest [42,
43], which was theorised to allow highly localised sampling of the optical response of
the sample. A variant on this proposal was first realised in 1984 [44], following advances
in mechatronics [45] and an earlier implementation in the microwave regime [46]. The
experimental platform used in the optical experiment came to be known as near-field
scanning optical microscopy (NSOM) [47]. It operates by scanning a sharp probe, often a
pulled fibre [48], in close proximity to a surface, typically within tens of nanometres [43,
45]; we will discuss the technical challenge of probe-sample distance control in section
2.4. NSOM is able to beat the diffraction limit by more than an order of magnitude, which
it can do because the probe may interact with the near-field of the sample: that is, with
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optical energy that does not propagate out to infinity. We will define the near-field more
precisely in sections 2.2 and 2.3.

Depending on the NSOM configuration used, the probe may either be used as a highly
localised light source [44], with photons reaching the sample only by tunnelling out from
the sharp end of the probe, or to locally pick up transient or confined light [49]. Notable
variants include apertureless or scattering-type NSOM (s-NSOM) (figure 1.2a), which uses
a sharp probe not to illuminate or collect, but to locally scatter light into free space so
that it may be detected normally [50–52]. Another technique based on the same distance
control technology is the solid immersion lens. In this technique, a high-index material is
placed in close proximity to a sample, such that evanescent field structures created in the
high-index material are still felt by the sample [53]. Of course, solid immersion can only
beat the diffraction limit by the refractive index of the solid. Techniques based on sharp
near-field probes are powerful and flexible, able to attain resolution as good as 1 nm, [54]
and compatible with polarisation [55, 56] and phase-resolved readout [57].

Near-field position control is technically challenging, but good solutions have been
developed both for sharp probes (section 2.4) and more recently for planar structures [58].
A more fundamental limitation to the near-field techniques described is the necessity of
physically scanning the probe over every point at which optical information is to be extrac-
ted. This, especially combined with the low signal levels achievable by photon tunnelling
through a subwavelength optical fibre tip, makes NSOM measurements particularly slow.
A number of proposals have been put forth to help speed up near-field measurements [59,
60], but the standard in NSOM technology remains a single probe scanning point by point.

SUPER-RESOLUTION THROUGH TAILORED ILLUMINATION

The diffraction limit is derived for the scenario of a point source of light propagated
through circular apertures. Finer resolution can be achieved by exploiting the coherence
of monochromatic light. This was likely first noted in the context of radar antenna arrays,
which can be engineered to have arbitrarily narrow peaks in their radiation patterns at the
expense of antenna gain [61]. This phenomenon came to be known as superoscillation [62],
in which arbitrary spatial distributions of light can be created over finite domains, though
at very low intensity: typically, superoscillatory peaks have intensity at least five orders
of magnitude below nearby sidebands. Nonetheless, superoscillation can and has been
used for extremely high-resolution optical sensing [63–66]. Less dramatic manipulations of
incident wavefronts can already provide a significant improvement in resolution, especially
when the polarisation degree of freedom is controlled as well [67]. Although the forward
and reverse directions are described by the same wavevectors, measuring both can be
beneficial. The 4π microscope in particular exploits interference between light collected
through the forward and reverse paths to improve over the incoherent diffraction limit by a
factor of four [68].

One class of techniques exploiting engineered illumination patterns are referred to as
structured illumination microscopy (SIM) [69]. Such techniques exploit the moiré patterns
that arise when a periodic illumination pattern is superimposed on the spatial frequencies
of a sample structure. This moiré effect shifts high spatial frequency information into the
observable region, allowing reconstruction of images with a resolution twice as high as
would otherwise be possible [69–71]. Advanced implementations incorporate additional
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known structures in the near-field of the sample (figure 1.2b), which permits a further
improvement in resolution [72–74]. Without such structures, arbitrarily high spatial resol-
ution may be attainable by combining SIM with non-linear photoresponse [75], though
the practical constraints of measurements at a wide range of power levels may hinder
implementation.

SUPER-RESOLUTION THROUGH DIRECT INVERSION

Although the diffraction limit prescribes that direct imaging will blur sample features,
isolated point sources may still be localised: such sources will take on the shape of the
point spread function of the microscope [76]. Given sufficient signal and knowledge of the
imaging system, this function can be fitted to the image in order to retrieve the position of
the sources. This is a simple example of inverse problem solving. For general distributions,
inversion may be impossible: the problem is ill-posed [77] because the information that
distinguishes different possible solutions is lost. Inversion may still be feasible under
certain assumptions, like in the case of sparse point sources.

A series of techniques have been developed that allow the individual point sources
that makes up complex fluorescent samples to be isolated, drastically simplifying the
inverse problem. The oldest of these, stimulated emission depletion (STED) microscopy,
achieves super-resolution by selectively suppressing fluorescence in a ring around a sub-
diffractive region of interest through a carefully engineered de-excitation spot. The only
fluorescent signal still captured then comes from the sub-diffractive central region [78].
Other fluorescence-based techniques, including photoactivated localisation microscopy
(PALM) and stochastic optical reconstruction microscopy (STORM), exploit statistical
analysis on the behaviour of dark states in fluorescent molecules to identify individual
fluorophores [79, 80]. As such, they can make few-nanometre resolution images in three
dimensions [81–83]. Fluorescence-based super-resolution imaging has had tremendous
impact in the life sciences, where fluorophores can readily be incorporated into otherwise
inscrutable biological structures [84, 85].

1.1.3. NON-IMAGING NANO-OPTICAL SENSING AND METROLOGY

Imaging is just one application of optical measurements. Of particular note for this thesis
are the non-imaging optical sensing techniques classified as optical metrology, which
includes precise measurements of (relative) length, distance, position and shape [86–89].
One highly successful technique for optical distance measurement is interferometry, which
is widely used in (commercial) analysis and positioning systems [89–92] and in exceptional
cases has been used to measure displacement with attometre resolution [93]. However,
interferometers, like most of the tools in traditional metrology, are macroscopic devices
[91]. Retrieving structural parameters of single nanostructures from measured signals,
without super-resolution techniques, remains a challenging inverse problem.

Metrology is of particular importance in the semiconductor industry. As critical device
features shrink to to just a few nanometres, so do process tolerances. Verifying whether
processes and devices meet these stringent tolerances is largely up to optical metrology
[94–96]. One core component of wafer metrology is overlay error: the misalignment
between fabricated layers. Optical scatterometry is used commercially to retrieve overlay
error with nanometre-scale precision by exploiting the modes of extended gratings [97–
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99]. Another key component is critical dimension metrology, which verifies the actual
fabricated dimensions of features, so that they may be compared to design values. In many
applications, but critical dimension metrology in particular, optical methods compete
[100] with techniques such as atomic force microscopy [101–105] and scanning electron
microscopy [106, 107]. Between these, optical methods generally have the lowest resolution,
but have the advantage of being fast and non-destructive. Optical metrology is generally
model-based [100, 108], meaning that assumptions are made about (complex) refractive
index and feature shape or size, other than the ones to be measured. This means that other
sources of (traceable) information are needed to first calibrate the model. The advantage of
the optical model comes in when, after this initial calibration, new measurements quickly,
precise and non-destructively reveal differences with the calibration set.

Another part of wafer inspection concerns defect particle detection [109]. Various
steps in wafer processing can generate or deposit particles, which are increasingly likely
to disrupt device function as feature sizes shrink. Particle contaminants can be fatal to
process yield and were one of the last barriers to commercialisation of EUV technology
to be overcome [110]. Key to preventing particle contamination is the detection and
classification of such particles, as this will provide clues to their origin. In some cases,
classification may also permit salvaging of a suspect wafer by way of an appropriate
cleaning step. Detection of small (20 nm or smaller), low-index particles can be done by
destructive methods [111] or advanced scatterometry implementations [112, 113].

1.2. THE NEAR- TO FAR-FIELD TRANSDUCTION PARADIGM
Nano-optical sensing has transformed nanoscience. Nonetheless, the existing techniques
each have their limitations: near-field scanning is a slow process and without near-field
elements, techniques beat the diffraction limit only by a small factor or under specific
assumptions. With the widespread interest in nanoscience, new techniques that may
circumvent these limitations are being studied in various places. Some aim to perform
imaging without near-field information by comparing far-field measurements with those
for similar samples, solving the inverse problem, for instance, through machine learning
[114, 115]. Of course, without near-field information, such approaches cannot uniquely
determine nanoscale structure in general. Others aim to improve on NSOM by parallelisa-
tion, with each fibre channel or mode acting as a separate near-field probe [116–118]. This
approach quickly runs into issues where spacing channels too closely leads to coupling
between the channels and spacing them too far apart leads to impractically large probes.
There is a possible intermediary between these approaches: to transduce near-field inform-
ation from a wide range into the far-field, then take on the inverse problem of untangling
the spatial structure of the near-field from the resulting complex patterns.

In this thesis, we explore the paradigm of near-field probes acting as near- to far-field
transducers. We specifically embrace the coupling of near-field modes to different far-field
modes, aiming to solve the inverse problem of retrieving near-field information from
far-field channels by combining many such channels. In order to interact with nanoscale
optical features directly, we consider introducing a known, two-dimensional nanostructure
into the near-field of the sample. Such a structure, consisting of an engineered, finite
pattern of sub-diffractive refractive index contrast in a plane, is known as a metasurface

patch. Thanks to their sub-diffractive features, metasurfaces may provide modes with
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Figure 1.2: Three near-field assisted nano-optical sensing techniques. (a) Scattering-type near-field scanning
optical microscopy. A scatterer is brought into the near field of a sample of interest. Interactions between the
scatterer and (weakly) scattering features on the sample can be seen as a change in far-field signal. (b) Localised
plasmonic structured illumination microscopy. A nanoparticle array, typically embedded in the structure, scatters
high-frequency information out of the sample. (c) Optical sensing through near- to far-field transduction by a
metasurface. The metasurface, which contains a range of spatial frequencies, scatters complex nano-optical
information into the far field.

intricate spatial dependence of field profiles [119, 120]. We specifically aim to exploit
the near-field enhancement seen around resonant plasmonic particles, where fields near
metal-dielectric interfaces are strongly enhanced with respect to drive field intensity. Apart
from the sharp spatial dependence resulting from such field profiles, field enhancement
also makes plasmonic systems fine sensors, routinely achieving single-molecule sensitivity
[121, 122]. They are particularly attractive for our purposes because of the high scattering
cross-sections obtainable with plasmonic structures, including both particle and hole
optical antennas. Metasurfaces composed of many such antennas will have a large number
of optical modes. Since each mode may couple differently to different far-field channels,
we now have a probe that transduces aspects of the near-field response of a sample into
different degrees of freedom in its far-field scattering patterns.

Figure 1.2c sketches the envisioned technique: a metasurface patch is placed in the
near-field of a sample. The ensemble is illuminated from afar. Multiple scattering between
metasurface and sample then transduces information about nanoscale optical features of
the sample into the far-field. The envisioned approach may be regarded as an advanced
implementation of s-NSOM (figure 1.2a), where a probe is scanned across a sample in order
to scatter light captured in its near-field out to a detector. However, the probes we envision
are much more intricate ones. In that sense, our approach more resembles structured
illumination, particularly the nanoparticle array-assisted variants (figure 1.2b): the probe
is used to introduce engineered optical patterns into the sample near-field. In contrast
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with this structured illumination technique, we intentionally introduce a wide range of
spatial frequencies, such that sample information over this entire range may be scattered
out. The main challenge then is solving the inverse problem, to reconstruct nanoscale
optical features from far-field measurements.

Inverse problems are generally tough and ours is not an easy one. It immediately
provokes a number of questions. Some relate to the fundamental possibility to extract
near-field information from far-field measurements. Light that interacts with a complex
transducer is drastically altered in its spatial character. Can we still deduce where the light
originated from, when the light field is so perturbed? If so, does the transducer provide any
benefit over direct imaging and deconvolution of a transfer function? Given the additional
complexity introduced by multiple scattering, does that result extend to scattering objects?
Can we use these insights to efficiently measure quantities of particular interest, like overlay
error?

Other questions relate to the metasurface: what is a good transducer? We envision a
transducer with a complicated mode structure that couples to a wide range of far-field
modes. Different illumination conditions will lead to different near-field patterns. How
flexibly may given transducers be used to generate specific near-field patterns? What
resolutions in near-field patterns are achievable? Do near-field patterns engineered at
some resolution allow us to sense at that same spatial resolution?

Finally, there are questions relating to information flow. The optical far field is a
high-dimensional concept, with wavevectors, frequencies, polarisations and more. In
our near- to far-field transduction scheme, near-field information ends up in all such
degrees of freedom. It is an open question how many of, and which such degrees of
freedom we need in order to retrieve any particular bit of information. Are some far-field
channels more informative than others? How can we combine the information from
complementary channels? Does selective read-out of particular channels lead to more
efficient measurement and shorter integration times in real measurement problems?

The answers to all these questions determine how effective our proposed technique
will be in different measurement contexts. We will address many such questions over the
course of the following chapters.

1.3. OUTLINE OF THIS THESIS
Chapter 2 of this thesis introduces a number of theoretical and experimental methods that
help us analyse and implement our near- to far-field transduction strategy. We will discuss
evanescent fields, discrete dipole modelling, Fourier optics, and shear force probe-sample
distance control.

In chapter 3, we address the question of whether light is transduced into the far field
in a way that can be inverted to source position. We introduce a library-based method of
nano-optical parameter retrieval from far-field images. Applying this method to experi-
mental data collected using cathodoluminescence on a plasmonic structure, we retrieve
the position of the induced point-like light source with a precision of λ/200.

In chapter 4, we investigate whether these results can be extended to localisation of
scattering objects. We introduce a glass fibre tip into the near-field of plasmonic struc-
tures and retrieve its position from far-field data. We specifically explore how extended
plasmonic structures assist in localisation.
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In chapter 5, we ask whether a given transducer can be used to generate particular sets
of near-field patterns. We investigate how manipulation of far-field illumination conditions
can dynamically shape the near-field of metasurface patches. In calculations based on a
discrete dipole model, we reproduce complete bases of exposure patterns on a rectangular
grid and show that these patterns facilitate sensing of scattering objects.

In chapter 6, we study how our approach can help us measure overlay error between
nanoscale objects. Exploiting moiré patterns to create a wide range of different overlay
errors on a given sample, we show that overlay error is successfully retrieved, including
based on calibration on separate targets.

In chapter 7, we examine how combining measurements of different far-field degrees
of freedom can help in parameter retrieval. Measuring using different far-field illumination
and analysis polarisations, we find more information when datasets are merged. We
show that distributing a given photon budget over two polarisation channels can improve
localisation performance and verify this experimentally.
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2
METHODS

This chapter will introduce a number of theoretical and experimental techniques that will

prove valuable in the study of near- to far-field transduction. First, we discuss how light

may be described in reciprocal space and deduce the nanoscopic origin of the diffraction

limit. Then, we discuss scattering of light by discrete point dipoles. After this, we explore

some insights the description of light in wavevector space provides for imaging. Finally, we

discuss shear force feedback for near-field position control.
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2.1. EVANESCENT FIELDS AND THE DIFFRACTION LIMIT
Many problems in science and engineering are more readily solved in reciprocal time
or space [1, 2]. The propagation of light is an excellent example. Maxwell’s equations
describe the electric and magnetic field each as three-dimensional vector fields E and H

that together obey certain laws in time and space [3]. We are free to use Fourier transforms
[4] to convert between real space and reciprocal space for any of the dimensions:

E(r, t ) = E(x, y, z, t ) ↔ E(kx ,ky , z, t ) (2.1)

and similarly for the magnetic field. Importantly, spatial frequencies in electromagnetic
fields in vacuum have a special interpretation as solutions to the wave equation [5]:

(
1

ε0µ0
∇2 +

δ2

δt 2

)

E = 0 (2.2)

where ε0 and µ0 are the permittivity and permeability of vacuum. We will treat the problem
in vacuum for brevity, though it is easily extended to homogeneous media. The wave
equation, of course, permits solutions of the form E(r, t ) = E0 ei(ωt−k·r), where (temporal)

frequency ω and wavevector k =
(

kx ,ky ,kz

)

are related by |k| =
√

k2
x +k2

y +k2
z =ω/c0 with

c0 = 1/
p
ε0µ0. Such a wave will travel at the speed of light along k. An example of this

connection is shown in figure 2.1a. This insight is known as the angular spectrum repres-
entation of electromagnetic fields [6], which maps the electric field distribution in equation

2.1 to a set of plane waves along k =
(

kx ,ky ,kz

)

with kz =
√

|k|2 −k2
x −k2

y . The latter equa-

tion presents an interesting edge case: when k‖ =
√

k2
x +k2

y > |k|, kz becomes imaginary.

This wavevector still corresponds to a solution to the wave equation, but the intensity of
that solution falls off exponentially in z. Such a solution is referred to as an evanescent

wave. An example evanescent field profile is shown in figure 2.1b. The exponential drop-off
means that particularly high spatial frequencies do not generally propagate out to infinity
away from the z = 0 plane. The largest spatial frequency that will propagate corresponds
to k‖ = |k|, a plane wave propagating along the plane of the decomposition. A wave with
k‖ =

p
2|k|, on the contrary, will decay along z over a length scale of 2π/|k| = λ, where

λ is the wavelength of the light used. For large spatial frequencies k‖, the spatial extent
of the exponential tail becomes approximately equal to the in-plane wavelength itself:
λ‖ = 2π/k‖. One definition of the optical near field is as the region where evanescent
fields have appreciable strength. Of course, as the length scale of decay depends on spatial
frequency, this does not produce a unique length scale. What it does tell us is that in order
to directly sense fields structured at some small fraction of a wavelength, evanescent fields
dictate that we need to probe at a comparable distance from the source.

The relation between spatial frequency and propagation also implies the existence
of some sort of diffraction limit. Practically only propagating waves can be collected in
the far field (as opposed to the near field, by the definition in this section). These waves
correspond to spatial frequencies up to the inverse of the wavelength of the light used. If
we model a point source as a delta peak in electric field in one point in a plane, its Fourier
transform has infinite extent. The far field corresponds to all propagating light, so all
k‖ ≤ |k|. In terms of numerical aperture, we consider all waves propagating in the forward
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Figure 2.1: (a) A spatially modulated field oscillates and couples to propagating waves. The field shown here has
|kx | = |k|/2. (b) A spatially modulated field oscillates, but couples only to evanescent waves. The field shown here
has |kx | = 1.05 |k| and so falls off exponentially in z. (c) The Airy disc, the pattern produced by imaging a small
isotropic source with only those wavevectors k‖ ≤ kmax. The inset shows the corresponding picture in wavevector
space, identifying the propagating and non-propagating regimes in a far-field flux versus wavevector graph.

direction, so that the maximum angle from the normal θmax =π/2 and numerical aperture
NA = n sinθmax = n. High-fidelity imaging can be modelled as considering exclusively
that part of the Fourier transform where k‖ ≤ |k| and transforming back. This process
turns a point source into a broadened peak known as the Airy disc [7, 8]. This intensity
peak, sketched in figure 2.1c, has a width at half-maximum of FWHM ≈ 0.52λ/NA when
all propagating waves are included. Around its central maximum lie alternating dark and
bright rings of decreasing amplitude. The width of the first such dark ring 2r0 ≈ 1.22λ/NA
is often quoted as the diffraction limit, the resolution limit in optical imaging [8]. The same
theory applies on both sides of an imaging set-up: a far-field image in free space cannot
make use of frequencies greater than the wavevector of the light used.

Our analysis here is simplified in a number of ways. For one, the description of a
point source of light as a delta peak in electric field disregards the vectorial nature of
light. The electric field, magnetic field and wavevector of a propagating wave all have
to be orthogonal. For this reason, a point source of light has to radiate across a range
of polarisation channels. Polarisation may break the point symmetry of the problem
and lead to a spot elongated along the dominant polarisation axis [6]. We also did not
account for the distinction between spatial frequency content and feature size. The field of
superoscillation shows that it is very well possible to create arbitrarily fine patterns with
finite spatial frequency content, albeit at the expense of intensity [9, 10]. Another major
simplification is that we consider only fields in a vacuum. Homogeneous media show
the same behaviour, although at smaller scale, as the wavelength of light in the medium
is reduced by a factor of refractive index n = p

εµ. Structured media, in contrast, may
strongly alter the patterns of electromagnetic fields. One way in which structured media
alter field patterns is that an object with different refractive index than its environment will
create an electromagnetic field feature, a region where field deviates from the background
value, of similar size as the object, even with unstructured illumination. This field feature
may involve both light scattered into the far-field and light captured in evanescent waves.
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Small metallic particles, for instance, may have a plasmonic resonance. When driven
on resonance, such particles will have both a strong near-field response, with a sharp
position dependence of field strength in the region surrounding the particle, and also
scatter light into far-field propagating waves [11, 12]. This phenomenon is exploited in
both scattering-type near-field scanning optical microscopy [13, 14] and plasmon-assisted
structured illumination microscopy [15, 16]. It is also how we interact with near fields
in this thesis: by placing objects within the near field of a target of interest to transduce
evanescent waves to propagating ones, or vice versa.

2.2. DISCRETE DIPOLE ANALYSIS
Electromagnetic waves interacting with matter cause charges to move. These moving
charges have their own fields and so cause scattering of light. Such induced charge distri-
butions may be expressed in terms of their multipole moments. A useful mathematical
abstraction is the point dipole: an electric or magnetic point particle found as the limit of
bringing two opposite charges arbitrarily close together while keeping dipole moment fixed
[5]. Since a pair of dipoles has a quadrupole moment and more complex configurations
of dipoles have higher multipoles, any net-zero charge distribution can be represented
by a suitable (possibly infinite) collection of point dipoles. This approach is referred to as
discrete dipole modelling and can be used to calculate both field structures and far-field
radiation patterns [17, 18]. Moreover, it turns out that certain systems of small particles
are modelled faithfully with a small number of such point dipoles [19]. Electromagnetic
fields in finely structured matter are often modelled by numerical methods, such as finite
element and finite-difference time domain methods [20, 21]. Compared with these, the
discrete dipole model is a very fast way to get a qualitative sense of the behaviour of sys-
tems of interacting particles. It is a particularly good match for plasmonic particles, which
thanks to their small sizes and strong interactions can often be modelled as single dipoles.

In our discrete dipole model, we consider particles i polarisable by a driving electric
field at their position Ei , through

pi =
↔
αi Ei (2.3)

with polarisability tensor
↔
α. We can generally calculate the incident field strength, but the

scattering system itself may add additional terms. The field of a single electric dipole at

position r′ may be expressed in terms of its (tensorial) Green’s function
↔
G(r,r′) as E(r) =

µ0µω2
↔
G(r,r′)p. This Green’s function may be found by modelling the dipole as a point-like

current distribution and reads [6]

↔
G(r,r′) =

e±ik∆r

4π∆r

[
k2

∆r 2 + ik∆r −1

k2∆r 2

↔
I +

3−3ik∆r −k2
∆r 2

k2∆r 2

∆r∆r

∆r 2

]

(2.4)

=
e±ik∆r

4π∆r

(
1

k2∆r 2

[

−
↔
I +3

∆r∆r

∆r 2

]

︸ ︷︷ ︸

Near-field

+
1

k∆r

[

i
↔
I −3i

∆r∆r

∆r 2

]

︸ ︷︷ ︸

Intermediate field

+
[
↔
I −3

∆r∆r

∆r 2

]

︸ ︷︷ ︸

Far-field

)

, (2.5)

where we make use of the unit tensor
↔
I , k = p

µ0µε0εω is the spatial frequency of the
driving field, δr = r′− r and δr = |δr|. In the last line we have grouped terms by order in
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∆r . As energy flux scales with the product of E and H, both of which scale with
↔
G(r,r′),

the rightmost term, which is of order 1/∆r , is both the lowest term that contributes to net
energy transport away from the dipole and the highest permitted by energy conservation.
We refer to this term as the far-field term. It corresponds to the famous donut-shaped
radiation pattern of a dipole antenna, with no energy radiated along the dipole axis. The
other two terms fall off more quickly with distance from the dipole and are termed the
near- (1/∆r 3) and intermediate-field (1/∆r 2) terms. The near-field term provides a com-
plimentary definition of the near field to the one from section 2.1: the near field region is
that region where the near-field term dominates scattering problems. We enter this regime
when k∆r ≪ 1, so, the near field by this definition extends for a fraction of a wavelength.

Over the rest of this section, we will discuss what the discrete dipole model can tell us
about scattering by individual particles. We will then discuss how systems of scattering
particles may be solved in a discrete dipole model.

2.2.1. HARMONIC OSCILLATOR MODEL OF A DIPOLE SCATTERER
We will model a dipole scatterer as a small spherical particle of radius rant. For such a
particle, we can derive [22] a static polarisability of

↔
α= 4πε0εm r 3

ant
ε−εm

ε+2εm

↔
I (2.6)

with a particle permittivity ε in a medium of permittivity εm. In case of highly conductive
materials, such as the popular plasmonic materials of gold and aluminium, we can use a
(modified) Drude model to describe the frequency dependence of this permittivity. For
a free electron gas as a function of frequency, permittivity ε = 1+χ relates polarisation
and electric field as P = ε0χE . We consider the one-dimensional equation of motion for a
moving electron with kinetic energy loss rate γ0. The uniform γ0 approximation makes
this a Drude model. Subject to a Lorentz force F =−eE , this electron will move as

r̈ =−γ0ṙ −
e

me
E(t ). (2.7)

We can solve this equation in frequency space:

−ω2r = iγ0ωr −
e

me
E(ω) −→ r (ω) =

e

me

1

ω(ω+ iγ0)
E(ω). (2.8)

In a material, the charge of the electrons is balanced by the positively charged lattice
ions. Displacement of the electron gas will thus polarise the material. For the polarisation
density of the free electron gas we may write [23]

P (ω) = nep(ω) =−nee r (ω) =−
nee2

me

1

ω(ω+ iγ0)
E(ω) ≡ ε0χE(ω). (2.9)

We now define plasma frequency ωp =
√

nee2/(meε0) and conclude

ε(ω) ≡ 1+χ(ω) = 1−
ω2

p

ω(ω+ iγ0)
. (2.10)
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With εm ≈ 1, equations 2.10 and 2.6 combine to

↔
α= 4πε0εr 3

ant

ω2
0

ω2
0 −ω2 − iγ0ω

↔
I where ω0 ≡

√
1
3 ωp. (2.11)

Rewriting this equation and transforming it to the time domain gives us the equation of
motion for a damped harmonic oscillator

d2

dt 2
p+γ0

d

dt
p+ω2

0 p =βE (2.12)

where we use oscillator strength β = 4πε0εr 3
antω

2
0. Such a harmonic oscillator will have

a natural frequency of ωn =ω0

√

1− (γ0/2)2/ω2
0 and a quality factor of Q =ω0/γ0. In this

case, the oscillator may be driven not only by external fields, but will also cause an electric
field to act on itself. This is known as the self-action of the scatterer and corresponds to its
Green’s function at vanishing separation [6]

Gself = lim
r→0

1

4π

[
2

3
ik +

1+cos2θ

2r
+

3cos2θ−1

k2r 3

]

. (2.13)

In order to incorporate this effect, we rewrite the perceived electric field as the sum of an
external drive and a self-action term E = Edr +Eself. This lets us rewrite the equation of
motion as

−ω2p− iγ0ωp+ω2
0 p =βE (2.14)

−(1+µ0µβGself)ω
2p− iγ0ωp+ω2

0 p =βEdr. (2.15)

We can consider the real and imaginary parts of Gself separately. The imaginary part has
the effect of an additional damping term and for that reason is generally interpreted as
radiative damping: damping due to energy radiated into the far field. Its value is found
from equation 2.13 as Im(Gself) = k/(6π) =p

µ0µε0εω/(6π). The real part in essence causes
a shift of the undamped resonance frequency ω0. The peculiar fact that Re(Gself) diverges,
per equation 2.13, is a consequence of abstracting a finite-sized scatterer to a point dipole.
A regularisation procedure, which is beyond the scope of this work, resolves this divergence
by defining an exclusion volume that restores finite polarisation density [6, 24, 25]. In
practice, this captures the Re(Gself) term in a new ωr, replacing ω0. The full equation of
motion then reads

[

−iµ0µβ

p
µ0µε0ε

6π
ω3 −ω2 − iγ0ω+ω2

r

]

p =βEdr. (2.16)

We see that the imaginary part of Gself makes the equation anharmonic. It may be inter-
preted as modifying the damping rate of the dipole, though with a stronger frequency
dependence than the intrinsic damping. In the limit of small rant, we have small β and we
retrieve harmonic oscillator behaviour.
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2.2.2. SCATTERING CROSS-SECTION AND ALBEDO
For any scattering problem we can define the scattering cross-section

σsc =
Prad

〈Sdr〉
(2.17)

with total reradiated power Prad and cycle-averaged incoming energy flux 〈Sdr〉. For a
propagating wave, we have 〈Sdr〉 =

√

(ε0ε)/(µ0µ)|E|2/2. Time-averaged radiated power
is found from the Larmor formula Prad = µ0µ

p
µ0µε0ε ω

4 |p|2/(12π) [26], such that for a
single particle

σsc =
(µ0µ)2

6π
ω4 |α|2 (2.18)

with single-particle polarisability along the driven axis α. With the fourth-order depend-
ence on ω and |α|∝ r 3

ant, this equation shows the scaling as σsc ∝ r 6/λ4 of scattering by
small, off-resonant particles that Rayleigh found by dimensional analysis [27]. For large
particles, the third-order term in equation 2.16 dominates and we can insert this into 2.18
to find

σsc,unit =
(µ0µ)2

6π
ω4 36π2

(µ0µ)2ε0εω
=

6π

µ0µε0ε

1

ω2
=

3

2π
λ2. (2.19)

This limit is known as the unitary limit as it represents full reemission of captured energy.
We can confirm these trends by numerically integrating calculated far-field energy flux
for various particle radii, as seen in figure 2.2. Albedo for a nanoparticle is the ratio of
radiated power to total captured power Ptot = Prad+Pabs, i.e. radiated power plus absorbed
power. From our results here, we see that small particles have near-zero albedo, as they
absorb nearly all of the energy they interact with. Large particles have near-unity albedo,
re-emitting almost all the energy they capture.

2.2.3. SETS OF INTERACTING DIPOLES
We wish to find the field distribution from a set of dipoles p = {p j } = {p j n} with positions
r′ = {r j } = {[x j , y j , z j ]} and natural frequencies {ω1, j } in an external driving field. For any
particular dipole pi we have

Epi
(r) =µ0µω2

↔
G(r,ri )pi . (2.20)

Dipole moments pi must be found by solving the self-action corrected equation of motion
from section 2.2.1 with an additional interaction term. Rederiving equation 2.16 with an
additional field term we find

[

−iµ0µβ

p
µ0µε0ε

6π
ω3 −ω2 − iγ0,iω+ω2

r,i

]

pi (2.21)

=βi Edr +βi

∑

j 6=i

Ep j
(ri ) (2.22)

=βi Edr +βi

∑

j 6=i

µ0µω2
↔
G(ri ,r j )p j . (2.23)
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Figure 2.2: Scattering cross-section for particles of various sizes. Calculated values are shown compared to the
small-particle and large-particle limits.

We can gather up the interdependence into a matrix
↔
α

−1 relating p = {p j n} to Edr =
{Edr,n(r j )} as

↔
α

−1p = Edr. (2.24)

The tensor
↔
α

−1 (like
↔
α) will now have dimensions 3n j ×3n j , forming an inverse polarisabil-

ity tensor relating external fields to dipole moments. In order to facilitate further analysis,
we introduce the dimensionless variables

ω̂=
ω

ωc
(2.25)

γ̂=
γ

ωc
(2.26)

r̂i j =
ri j

λc
=

p
µ0µε0ε

2π
ωcri j (2.27)

β̂=
µ0µ

2

β

λc
=

µ0µ
p
µ0µε0ε

4π
ωcβ= (kcrant)

3 (2.28)

and write the entries of
↔
α

−1 as

α−1
i n, j m =

µ0µ

2

ω2
c

λc







−i 2
3 ω̂

3 − 1
β̂i
ω̂2 − i

γ̂0,i

β̂i
ω̂+

ω̂2
r,i

β̂i
i = j , n = m

0 i = j , n 6= m

− e
i2πω̂r̂i j

2πr̂i j

[(

1+ i2πω̂r̂i j −1

4π2ω̂2 r̂ 2
i j

)

+
(

3−3i2πω̂r̂i j

4π2ω̂2 r̂ 2
i j

−1

)

n̂m̂
r̂ 2

i j

]

i 6= j , n = m

− e
i2πω̂r̂i j

2πr̂i j

(
3−3i2πω̂r̂i j

4π2ω̂2 r̂ 2
i j

−1

)

n̂m̂
r̂ 2

i j

i 6= j , n 6= m

(2.29)
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Figure 2.3: Field intensity distribution (square panels) and far-field energy flux (circular panels) for small systems
of point scatterers. The scatterers are driven by a plane wave propagating along z and polarised along y . Field
intensity is normalised to driving field intensity and clipped to 200% for visibility. The far-field maps are shown
versus parallel wavevector k‖, where T indicates the forward (+z) direction and R the reverse (−z) direction.
Energy flux is corrected for the apodisation factor and normalised to its maximum for each system individually.
(a) A single point scatterer. (b) Two point scatterers, separated along y by ∆r = λ/2. (c) Two point scatterers,
separated along z by ∆r =λ/4. (d) Two point scatterers, separated along z by ∆r = 13λ/4.

The inverse polarisability matrix can be inverted numerically for specific systems.
Together with the Green’s functions of the individual scatterers, this allows calculation of
the fields both at specific positions and in the far-field limit. Several examples of such
calculations for different systems are shown in figure 2.3. Here we consider particles
illuminated from the left along the z-axis with light polarised top-bottom along the y-axis.
Shown are two-dimensional cross-sections of local field intensity and far-field energy flux
versus parallel wavevector k‖ in both forward and reverse directions. Local field intensity
is expressed in terms of the intensity of the incident plane wave. In figure 2.3a we see the
field around a single dipole scatterer with scattering strength appropriate for an rant =λ/12
particle with Q = γ0/ωr = 10. Field intensity diverges near the point dipole and we have
clipped the colour scale to avoid this. We observe the near-field lobes around the dipole,
extended somewhat along the polarisation axis. We also see an interference pattern where
backscattering into the incident beam creates a standing wave. The figure also shows
far-field images, as might be captured in a high-NA Fourier microscope, as we will discuss
in section 2.3. These images have been corrected for the apodisation factor (section 2.3).
We recognise the donut profile of dipole radiation, with no radiation towards the poles and
uniform intensity along the equator. Due to symmetry the forward and reverse scattering
pictures are identical. With two scatterers, the relative configuration affects scattering
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patterns. The fields of two scatterers driven in phase, but separated by half a wavelength,
will destructively interfere along their separation axis. In figure 2.3b, this leads to further
suppression of radiation along ±y . Figure 2.3c, conversely, has drive phase and retardation
combine to cancel out back-scattering in the −z direction. With greater separation, we
start to see diffraction orders, where certain angles correspond to constructive interference.
This is seen in figure 2.3d, though the precise distance still leads to the same cancelling of
back-scattering seen in figure 2.3c.

We can further demonstrate the physical use of the model by reproducing a number of
results from coupled mode theory. Consider two identical point dipoles separated by r and
driven along that same axis. The inverse polarisability matrix for this system reads

↔
α

−1 =
µ0µ

2

ω2
c

λc




−i 2

3 ω̂
3 − 1

β̂
ω̂2 − i

γ̂0

β̂
ω̂+ ω̂2

r

β̂
− ei2πω̂r̂

2πr̂
2−i4πω̂r̂
4π2ω̂2 r̂ 2

− ei2πω̂r̂

2πr̂
2−i4πω̂r̂
4π2ω̂2 r̂ 2 −i 2

3 ω̂
3 − 1

β̂
ω̂2 − i

γ̂0

β̂
ω̂+ ω̂2

r

β̂



 . (2.30)

It has eigenvectors v± = [1,±1], implying one in-phase and one antiphase mode. On
resonance the matrix should be singular, so that for the two eigenmodes we require

−i
2

3
ω̂3 −

1

β̂
ω̂2 − i

γ̂0

β̂
ω̂+

1

β̂
=±

ei2πω̂r̂

2πr̂

2− i4πω̂r̂

4π2r̂ 2
. (2.31)

This equation is not analytically solvable without further assumptions. In the small-particle
limit we can drop the third-order term, but not the coupling term, which may be arbitrarily
large. Close to ω̂ ≈ 1 we can simplify further using ω̂r̂ ≈ r̂ . Considering only positive
frequencies the resonance condition is now satisfied at

v+ =
[

1
1

]

−→ ω̂+ = Re





√

1−
(
γ̂0

2

)2

− β̂
ei2πr̂

2πr̂

1− i2πr̂

4π2r̂ 2



 (2.32)

v− =
[

1
−1

]

−→ ω̂− = Re





√

1−
(
γ̂0

2

)2

+ β̂
ei2πr̂

2πr̂

1− i2πr̂

4π2r̂ 2



 (2.33)

Increasingly strong coupling shifts the even mode v+ down in frequency while the odd
mode v− goes up. For sufficiently small separation the even mode stops oscillating alto-
gether. Through Re

(p
x
)

= 0 → Re(x) < 0 we can find a lower bound rmin on this separation:
for two small, low-loss, spherical particles

r̂min =
1

2π
3
√

β̂ or rmin = rant. (2.34)

The frequency of the odd mode meanwhile increases boundlessly. This analysis is the
electrodynamic equivalent of a seminal quasi-static analysis of plasmonic hybridisation,
in which the normal modes are interpreted as ‘bright’ and ‘dark’ modes [28].

Which modes a given field will drive depends on the phase relation between the drive
terms at the two positions. We expect the even mode to appear for two particles driven
in phase by a field polarised along their axis of separation. An in-phase field polarised
perpendicular to the separation will produce coupling with the opposite sign compared to
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Figure 2.4: Two modes for a pair of identical scatterers, shown by their reponse in dipole moment versus
separation and drive frequency. The scatterers have scattering strength as for particles with rant = λ/15 and
Q = γ0/ωr = 10. Top panels show the full spectrogram. Bottom panels show the resonance frequency, found as
the frequency of maximum dipole moment, and the quality factor, found as the FWHM linewidth of the response.
(a) A positive-coupling mode, found by driving the scatterers with a plane wave polarised along their separation
axis. (b) A negative-coupling mode, found by driving the scatterers with a plane wave propagating orthogonal to
and also polarised orthogonal to their separation axis.

the previously analysed case, as per equation 2.4. As such, it will couple to a (bright) mode
with the opposite trend in frequency. Numeric inversion of the polarisability matrix allows
us to calculate the response of such a pair of dipoles versus drive frequency and separation.
The results of such calculations, driving positive-coupling and negative-coupling modes
separately, are shown in figure 2.4. We recognise the resonance as the frequency where
response is largest. With smaller separation, coupling strength increases and resonance
frequency shifts in the predicted direction. If we trace the resonance frequency precisely,
we also see the effect of retardation in the coupling between the scatterers as an oscillation
with a periodicity of λ. A similar effect is seen in the linewidth of the modes. More
complicated systems of dipoles can be analysed similarly: by constructing and inverting
their coupling matrix, then calculating the near- and far-field distributions resulting from
their dipole moments given a drive field.

2.3. FOURIER OPTICS

The angular spectrum representation shows that there is a direct relationship between
spatial frequencies and propagation direction. This has a number of consequences for
imaging, besides predicting the existence of a diffraction limit. We will evaluate some
consequences relevant for the design of imaging systems and discuss the value of imaging
in frequency space. In this analysis, we use a simplified ray optics picture, where light
is taken to propagate along straight lines (in homogeneous media) and to only change
direction by refraction or reflection at interfaces. This approximation is valid in the limit of
systems much larger than the wavelength of light [29]. In figure 2.5a we sketch image form-
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ation in a standard microscope. We see that for a source in focus on the optical axis, there
is a maximum ray angle θmax = sin−1

(

k‖/|k|
)

that still propagates unobstructed through
the system. This maximum angle determines the numerical aperture NA = n sinθmax

of the optical system. Larger angles may still correspond to propagating waves, but no
longer contribute to image formation. In wavevectors terms, we now consider parallel
wavevectors with a lower maximum than before: k‖ ≤ kmax < |k|. Since this is still a circular
domain in wavevector space, the shape of the imaged spot is the same as for the Airy
disc, but wider by a factor |k|/kmax. Numerical aperture thus features in most measures
of resolution, including the aforementioned Airy disc zero ring diameter 2r0 ≈ 1.22λ/NA.
In-focus but off-axis sources correspond to rays that after the objective propagate along
kx,r = |k| x

fobj
, and likewise for y . This brings us to another important feature of objectives:

their back focal plane. In this back focal plane, the principal rays from all object positions
meet. The objective maps rays from all positions (xo, yo) in the (front) focal plane to rays
with (kx,r,ky,r). Conversely, rays leaving the object position along wavevector (kx,o,ky,o)
pass through positions (xr, yr) in the back focal plane. The objective is thus seen to perform
a two-dimensional spatial Fourier transform between the object in its (front) focal plane
and the image in its back focal plane. If the (optically) smallest aperture in the objective is
circular and lies in the back focal plane, our analysis on numerical aperture and resolution
applies over a range of object positions. The associated parameter, complementary to
numerical aperture, is the field of view FOV = 2 rmax, with rmax the largest distance from
the optical axis from which rays may originate and still be mapped to the corresponding
positions and wavevectors in the back focal plane. Like the sample plane, the Fourier
plane may be imaged on a camera, revealing directly the spatial frequencies that make up
a sample. Exploiting the relationships between patterns in real and reciprocal space is the
domain of Fourier optics [30].

The same approach can help us answer questions about the design of imaging systems.
Specifically, we consider the properties an imaging system must have in order to perform
faithful magnification, such that I

(

xi, yi
)

= I
(

M xo, M yo
)

, where index o represents the
object to be magnified and i the resulting image, magnified by M in a ray optics picture.
For this simple relation to link the real-space images, their frequency components must be
linked by I

(

kx,i,ky,i
)

= I
( 1

M
kx,o, 1

M
ky,o

)

. Since we have k‖ = |k|sinθ, we require

no sinθo = ni
sinθi

M
(2.35)

This rule is known as the Abbe sine condition and sets an important requirement on
objective design. Since wavevectors are mapped to the back focal plane at different dens-
ities, an isotropic source will produce a back focal plane intensity pattern that scales as
I (k‖) ∝ 1/cosθ. This factor applies to all transformations between front and back focal
plane and is known as the apodisation factor. It is often divided out of measured Fourier
images to provide a better sense of relative intensities. The sine rule also predicts that well-
designed objectives produce a beam width of d = 2no sinθmax fobj = 2NA ftube,nom/Mnom,
with fobj = ftube,nom/Mnom the objective focal length, which may be derived from the nom-
inal magnification of the objective Mnom at the nominal tube lens focal length ftube,nom

[29, 31]. It is often convenient to approximate lenses as planar devices that refract light as
per the thin lens equation, which relates the position of the image of an object si to the
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Figure 2.5: (a) Schematic diagram of a conventional microscope, showing finite aperture, ray angles and beam
width. (b) Geometrical optics with thin lenses showing an object, an intermediate image at infinity and a
magnified final image. (c) An advanced microscope that permits filtering in real and reciprocal space. (d) A
Fourier microscope, capable of measuring angle-resolved radiation patterns directly. A real-space image plane
can be used for spatial filtering. (e) The Fourier microscope from (d) converted to a real-space microscope by
insertion of an additional Fourier lens.

position of that object so through its focal length (figure 2.5b) as

1

si
=

1

so
+

1

f
(2.36)

in the convention where all distances are measured with respect to the lens and along
positive z (left-to-right). Trigonometry as in figure 2.5b makes clear that ray angles in this

approximation are related by no tanθo = ni
tanθi

M
. This means that lenses not specifically de-

signed to obey the sine condition can only perform distortion-free imaging in the paraxial
limit of long focal lengths compared to beam width, where angles θ are small.

Optical fields may be modified in various ways between the objective and the tube
lens. Some such modifications are parasitic and lead to degradation of image quality. For
instance, an object that clips part of the beam will distort the final image by removing
rays corresponding to spatial features. Deliberate modifications come in two types. There
are spatially uniform modifications, like colour filtering, which are best performed in
sections of the beam path where propagation is collimated. Normal incidence means
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optical distances are as intended, which avoids shifting of interference fringes, and the
presence of the material conveniently does not move the effective focal point of the beam.
Otherwise, there are spatial modifications. These are normally meant to be made either
in real space or in reciprocal space. Real space filtering can be done in the sample plane,
but for non-contact methods may be done in any image plane, possibly facilitated by
large magnification. Such a real-space filtering set-up is shown in figure 2.5c. Filtering
in reciprocal space can be done in the objective back focal plane, thanks to the Fourier
action of the objective. As this plane is generally located inside microscope objectives, it is
convenient to image the back focal plane and filter in such a Fourier plane. The typical way
to do this is through a 4f correlator, a one-to-one telescope that images a plane without
modification apart from possible filtering in its Fourier plane. This is also shown in figure
2.5c.

Filtering in Fourier space has a wide range of applications [30]. Perhaps most import-
antly, direct transmission or specular reflection of an illuminating beam may be blocked.
This means that only scattered light is collected and the resulting real-space distribution
will be a type of dark-field image. It is important to be aware that filtering in real or re-
ciprocal space, by its very nature, affects the complementary channel. In particular, just
as small structures must have broad features in frequency space, observing structures
through a narrow spatial filter blurs their Fourier image. Likewise, filtering down to a nar-
row range of wavevectors blurs spatial images. Real and reciprocal space filtering may still
be combined, for instance to limit the collection area and subsequently make dark-field
images. Figure 2.5d shows a Fourier microscope, designed to image not the sample plane,
but its Fourier transform in the objective back focal plane. Such a microscope may be
used in conjunction with real-space filtering, in order to limit the area from which light
is collected, by installing spatial filters in any real-space image planes in the microscope.
It is often convenient to align Fourier microscopes by first aligning a real-space image.
Microscopes can be designed such that a single lens can be added or removed to switch
from Fourier imaging to real-space imaging. This is illustrated in figure 2.5e, which shows
that adding a single lens to the Fourier microscope from 2.5d will (temporarily) convert
it to a real-space microscope. The ability to measure angle-resolved radiation patterns
directly makes Fourier optics a powerful tool in the study of nanoscale scattering systems.

2.4. SHEAR-FORCE NEAR-FIELD MICROSCOPY
In order to interact with the near field of a structure, we wish to probe it with a physical
object. Since by any definition, the near field does not extend more than a fraction of
a wavelength from the sample, this is a significant technical challenge. For dynamical
positioning of a probe in the near field of a sample, a distance feedback mechanism is
needed. One such method is shear force feedback [32–34]. This technique exploits the
additional damping force a laterally vibrating probe experiences when it is brought close
to a surface. The nature of this force is a topic of debate and varies between experimental
configurations, with adsorbed water, dielectric interactions and nanoscale fluid dynamics
all being feasible candidates. For probes brought close to hydrophilic substrates, like glass
or the native oxide on silicon, it is likely that the adsorbed water layer is responsible, as
evidenced by the strong influence of humidity [34]. We will discuss how this mechanism
may be used for near-field probe positioning.
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Figure 2.6: Shear force feedback with a quartz crystal oscillator. (a) A pulled fibre end for use as a near field probe,
shown mounted on a quartz crystal oscillator and in a magnified image of the tip. (b) The Butterworth-van Dyke
equivalent circuit of the quartz crystal oscillator and the main features in its frequency response. During shear-
force probe usage, we use the electromechanical series resonance ωs. (c) Pre-amplifier circuit for measurement of
the series resonance circuit impedance. (d) The full shear force control loop, with the tuning fork Z representing
the pre-amplifier circuit including the quartz crystal oscillator.

Shear force feedback systems are typically used in conjuction with pulled glass fibres.
Such probes are fabricated by laser-induced heating and pulling, which leads to very sharp
tips, with radii of curvature as small as 30 nm. In order to induce a mechanical vibration,
such fibres are mounted on the side of a quartz crystal oscillator (figure 2.6a). The crystal
oscillators used in this work (Premier Farnell X32K768L104) are marketed as tuning fork
frequency references and have a nominal resonance frequency of 215 = 32768Hz. Their
frequency response can be modelled by the Butterworth-Van Dyke circuit, which uses
a complex impedance (R, Cm, Lm) to encode the electro-mechanical response and a
separate electrical capacitance (Cp) between the electrodes (figure 2.6b) [1, 35, 36]. This
circuit sustains both a series resonance ωS = 1/

p
CmLm and a parallel resonance ωP =

1/
√

CmCpLm/(Cm +Cp). We will use the series resonance. When a fibre tip is mounted, the
resonance frequency shifts up by around 1 kHz and quality factor goes down dramatically,
from Q > 104 to Q ≈ 103. These effects are attributed to the combination of stiffening
of the arm with the fibre, damping action in the glue, and energy losses to the mount
point because the extra mass unbalances the oscillator prongs. In shear force contact, the
additional damping force causes the fibre end to lag behind the oscillator prong, exerting a
force that acts against the motion and raising the effective spring constant of the oscillator
prong [33]. This causes a shift in resonance frequency, as per the circuit model.

For feedback, we first bring the quartz crystal oscillator into resonance by experiment-
ally finding its frequency of minimum impedance. We then activate the control loop
and approach a substrate until a phase shift is detected, which indicates a shear force
interaction. We measure this frequency shift by way of a pre-amplifier circuit (figure 2.6c)
that eliminates the parallel resonance by compensating the Cp capacitance with a small
subcircuit that behaves as an adjustable capacitor (Cv). This adjustable capacitor is driven
out of phase with the quartz crystal oscillator (QCO) to give it an effective impedance of
Cv = −Cp. The virtual ground between the crystal oscillator and the variable capacitor
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thus only receives signal through the impedance of the series arm of the crystal oscillator
equivalent circuit. This signal is amplified (A) to produce the output signal Vout. We wish to
compare the output signal to the drive signal Vin to find the phase shift across the oscillator
∠Z at constant frequency near the series resonance. The resonance shift also causes a
change in signal amplitude |Z |, but it is understood [33] and has been confirmed exper-
imentally that phase readout is the faster and more reliable way to measure shear force.
We use a lock-in amplifier (Stanford Research Systems SR865A) to measure the relative
phase ∠Z between the signal generator reference Vin and the pre-amplifier output voltage
Vout. This DC voltage signal is centred to zero voltage at ∆∠Z = π/2 and has amplitude
65 mV°−1. This signal is referred to as the error signal. It is used as input to a controller that
aims to minimise it by raising or lowering the piezo voltage that sets fork-sample distance.
This system is shown schematically in figure 2.6c, where the tuning fork Z represents the
full pre-amplifier circuit. During successful operation of the distance control system, the
controller keeps phase shift ∠Z constant. This corresponds to constant extra damping
force and so, ideally, constant height over the substrate.

We demonstrate shear force distance control by scanning over a deep 50×110 nm2 slot
milled into a layer of gold using a focussed ion beam. We typically scan at a rate of some
500 nms−1 to give the feedback loop time to adjust for height variations, as the response
time of the tuning fork alone is already around 30 ms. We collect topography signal by
recording the calibrated extension of the feedback piezo actuator during constant-height
scanning. Because height variations may be small compared to substrate tilt over a wide
scan, we subtract the plane of best fit. In figure 2.7a we show a topography map, in which
we clearly recognise the slot as a depression. Several broad peaks surrounding the slot are
likely to be material redeposited during focussed ion beam milling. The slot has a depth
of 200 nm, but its apparent depth is under 20 nm. This may be due to the feature being
narrow with respect to the radius of curvature of the tip. During scanning we also collect
the error signal ∆∠Z , which tells us whether the phase shift across the oscillator is being
kept constant, as intended. If the step response of the feedback loop is too slow for the local
sample slope, this will be seen as a peak or dip in phase shift. Our measured error signal
vaguely recalls the contours of the topography, but it is mostly dominated by apparently
uncorrelated noise. This, combined with the quality of the topography map, tells us our
control loop is properly tuned.

In this thesis, we aim to use shear force distance control primarily not for measuring to-
pography, but to perform nanopositioning of optical elements. It is an attractive technique
for this application because the crystal oscillator works with very small (few-nanometre)
oscillation amplitude, which permits distance-controlled steady-state measurement of
optical interactions in addition to lock-in style measurements as are also possible with, for
instance, atomic force microscopes.

Optical interactions, of course, depend strongly on material and shape. This means
that in order to exploit the capability of positioning scatterers near other objects to the
fullest, we would like to be able to position other objects than glass fibre tips. Quartz
crystal oscillators have been used in conjunction with a variety of probes for different
applications [37, 38]. Similarly, we have developed a technique to mount AFM cantilever
tips (Bruker RTESPA-300, Bruker FIB3D2-100 and others) on quartz crystal oscillators.
We demonstrate shear force topography mapping with a sharp silicon probe (Bruker
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Figure 2.7: (a) Shear force topography mapping with a pulled fibre probe. Measured topography around a slot
of nominal dimensions 50×110 nm2 milled into a layer of gold. (b) Error signal over the same region as (a). (c)
Shear force topography mapping with a sharp silicon probe. Measured topography around a slot of nominal
dimensions 110×550 nm2 milled into a layer of gold. (d) Error signal over the same region as (c).

FIB3D2-100) by scanning over a deep 110×550 nm2 slot milled into gold. The topography
measurement again shows a clear and sharp dip (figure 2.7c), demonstrating that distance
control works with the composite probe. The corresponding error map (figure 2.7d) is not
as smooth as for the fibre probe measurement seen before. This is likely related to the
higher scan speed used in this measurement and possibly magnified by the greater depth
reached by the probe on its transit across the wider slot. Additionally, the parameters on
the PID controller were tuned for minimum error signal with the fibre probes. Different
types of probe may require re-tuning. Nonetheless, topography is reproduced faithfully
and this method is expected to lead to reliable positioning of nanoscale objects in the
optical near-field of a substrate.

2.5. AN INTEGRATED FAR-FIELD OPTICAL AND SHEAR-FORCE

NEAR-FIELD MICROSCOPE
We are interested to see how interactions in the optical near field affect a wide variety of
far-field optical degrees of freedom. Shear-force feedback provides the means to dynamic-
ally position objects over nanometre scales. We additionally want to be able to manipulate
various far-field optical degrees of freedom both in illumination and detection. To this
end, we develop an integrated real-space, Fourier, spectrometric, polarimetric shear-force
microscope with real- and Fourier space filtering capabilities. A schematic overview of
this set-up is shown in figure 2.8. The centrepiece is a shear force feedback system. Since
we intend to use the shear force probes as scatterers and only illuminate and collect light
from free space, this limits us to reflection measurements. Illumination is provided by
a supercontinuum laser source (NKT Whitelase Micro) with appreciable intensity from
around λ= 500nm through to infrared telecom wavelengths. This beam is collimated and
may be attenuated by neutral density filters or filtered spectrally by bandpass filters of
window 10 nm or 40 nm. A Fourier plane at this point permits filtering in reciprocal space,
but wider spots can be achieved more efficiently with a beam expander. This plane is pro-
jected onto the back focal plane of the microscope objective (Nikon CFI Plan Apochromat
Lambda 60XC, NA = 0.95, air, with cover glass correction) through a 4f-correlator. The



2

34 2. METHODS

centre plane of this correlator may be used for spatial filtering of the incident beam and
typically contains a 200µm pinhole, which maps to an illumination spot of up to 2.2µm
on the sample. In most measurements, a focussed spot is used instead, diffraction-limited
by the objective NA = 0.95. Illumination may be assisted by a white LED used for Koehler
(defocussed) illumination of the sample plane.

Collection is done through the same objective, with the input and output paths split by
a 50/50 beam splitter. Sample observation may be performed through a CMOS camera
(Basler acA1920-uc) in a real-space image plane on the low-light side of a 90/10 beam
splitter in the output path. The remainder of the light is imaged through a 4f-correlator on
the entrance slit of a spectrometer (Andor Shamrock 303i with iVac 316 CCD camera). The
full image camera permits the spectrometer to be used for direct band structure imaging,
with wavelength on one axis and ky in a narrow range of kx , as selected by the spectrometer
entrance slit, on the other. The centre plane of the correlator is used for spatial filtering,
often with a 500µm pinhole, which maps to 5.5µm on the sample. The correlator also
permits insertion of a polariser or wave plate as well as colour and neutral density filters.
The correlator may be modified with an optional Fourier lens to project a real-space image
on the spectrometer slit, which typically helps with signal level. An optional beam splitter
can direct the part of most of the light onto a separate detection path. This path permits
Fourier filtering and Fourier- or real-space imaging on another CMOS camera (Basler
acA1920-um), with filtering capabilities in both real and reciprocal space. Insertion of a
beam splitter also permits simultaneous use of the spectrometer and separate camera.
We are thus able to measure position-, wavevector-, colour-, and polarisation-resolved
far-field data.

The objective is used in conjuction with samples fabricated on 170µm glass cover slips.
A correction ring allows aberration-free imaging through such cover slips. The sample stage
has a three-dimensional piezo actuator (PI Nanocube P-616.3C) for nanometre-precision
scans and is motorised for coarse motion (Thorlabs k-cube system on Ultralign 562 stage).
Shear force probes are positioned on the sample surface by way of piezo actuators (Piezo
Jena PXY80D12 en PZ20D12), with one axis controlled by the analog feedback loop and the
other two used for scanning and positioning.

To illustrate the potential this set-up has for testing optical sensing schemes, we collect
light scattered off the 50×110 nm2 slot mapped in figure 2.7a, from the reverse side. Due
to its plasmonic resonance the slot works as an optical antenna. Its field profile may be
perturbed by the presence of objects in the near field. This experiment thus simulates
a set-up for detection of nanoscopic particles or defects, in which the objective and slot
antenna together take the role of a near-field scanning head and a probe positioned on the
flip side represents a defect on an otherwise homogeneous sample.

When we collect (cross-polarised) scattered light from the slot antenna whilst scanning
the probe, we see (figure 2.9a) that integrated intensity falls some 5% when the probe is
located right over the antenna. This feature has a width (FWHM) of only 200 nm and is
thus sub-diffractive. This is made possible by the close proximity of the slot antenna to
the sample, as simulated by the probe. We thus see that shear force feedback can be used
to position scatterers in the near field of another object. We will use this ability to explore
optical interactions in the near field. We can similarly use the silicon AFM probe from
figure 2.7c to study optical interactions. With that probe too, the optical signal shows a dip
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Figure 2.8: Layout of the integrated far-field and shear-force near-field optical microscope used in several chapters
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NA illumination (orange). The beam path for Köhler illumination is also shown (yellow). Inset: CAD drawings of
the microscope tower, showing the sample stage, shear force scanning head and objective.

in the same place as the topography signal. This suggests that we are able to detect optical
interactions between a silicon tip and the near-field of a slot antenna. The ability to use
commercial AFM probes as freely positionable scatterers opens up a world of possibilities,
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Figure 2.9: (a) Optical interactions between a shear force probe and a plasmonic slot antenna, as per the
cartoon drawing. Intensity is integrated over the full collection aperture over a 50 nm band around resonance
at 700 nm. The inset shows the corresponding topography map, the same as in figure 2.7a. (b) Studying optical
interactions with a composite probe using a sharp silicon tip (Bruker FIB3D2-100). Intensity is integrated over
the full collection aperture over a 10 nm band around resonance at 620 nm. The inset shows the corresponding
topography map, the same as in figure 2.7b.

from strongly scattering tips coated with any of a number of metals to ultra-sharp carbon
nanotubes probes. The insensitivity of the positioning system to the type of probe may
also allow scanning with more complex probes with multiple tips or a flat end. These
might more accurately simulate the properties of targets of interest or, eventually, allow
the experiment to be inverted to actually make the scanning head the moving part. All
these developments may help explore the physics of such near-field interactions as well as
contribute to a range of possible applications in defect and particle detection.

In this demonstration, we have not yet made use of the Fourier, spectrometric or polar-
imetric capabilities of the microscope. These will come into play in the following chapters.
In chapter 3, we will first develop a general method of retrieving optical parameters from
measured data. We will perform such nano-optical information retrieval based on different
far-field degrees of freedom in chapters 4, 6 and 7, using experimental data collected in the
microscope discussed here.
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SUPER-RESOLUTION WITHOUT

IMAGING: LIBRARY-BASED

APPROACHES BASED ON

NEAR-TO-FAR-FIELD

TRANSDUCTION BY A

NANOPHOTONIC STRUCTURE

Super-resolution imaging is often viewed in terms of engineering narrow point spread

functions, but nanoscale optical metrology can be performed without real-space imaging

altogether. In this chapter, we investigate how partial knowledge of scattering nanostructures

enables extraction of nanoscale spatial information from far-field radiation patterns. We

use principal component analysis to find patterns in calibration data and use these patterns

to retrieve the position of a point source of light. In an experimental realisation using angle-

resolved cathodoluminescence, we retrieve light source position with average error below

λ/100. The patterns found by principal component analysis reflect the underlying scattering

physics and reveal the role the scattering nanostructure plays in localisation success. The

technique described here is highly general and can be applied to gain insight into and

perform sub-diffractive parameter retrieval in various applications.

The work described in this chapter has been published separately as ACS Photonics 7, 3246-3256 (2020)
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3.1. INTRODUCTION

Advances in semiconductor technology and the biological sciences generate great interest
in optical characterisation at nanometre scales. Because wide-field microscopy is fun-
damentally unable to reproduce nanometre-scale details, due to the diffraction limit [1],
a wide range of super-resolution techniques, which work around this diffraction limit,
have been developed and deployed [2, 3]. These techniques are used in direct imaging
as well as in precision metrology, which relies on many of the same phenomena [4, 5].
Many super-resolution techniques rely on exploitation of a carefully engineered point
spread function (PSF) that describes the transformation from a point on the sample to the
image plane. In the case of fluorescent super-resolution techniques, like photo-activated
localisation microscopy (PALM) [6–8], an image is built up by individually identifying and
localising optically active sites by fitting their PSF, which requires precise knowledge of
the PSF and invokes the assumption that the active sites are sparse point emitters. In
contrast, near-field scanning optical microscopy (NSOM) [9–11] achieves high-fidelity
images by constructing a maximally sharp PSF, at the cost of a complicated measurement
apparatus. Techniques using a PSF either require explicit inversion through computational
elimination of the PSF from image features, or produce an image that is smoothed out
by convolution with the PSF. In both cases, spatial resolution scales with PSF width and a
good PSF model is crucial to the success of the technique.

Looking beyond the paradigms of real space imaging, it is very well possible to circum-
vent the need for a PSF model and retrieve spatial information from radiation patterns
directly. The scattering properties of nanophotonic structures depend strongly on their
nanoscale features, with parameters such as relative position, size and permittivity of
features all affecting far-field information channels such as radiation pattern, scattering
spectrum and total radiative rate. Such changes in scattered signals may be observed
regardless of the details of the imaging system. Figure 3.1 sketches the particular case
where a light source moves in the vicinity of an optical antenna. This displacement leads
to clear changes in the radiation pattern (scattered intensity versus direction) as a function
of displacement, illustrating the principle that the structure factor of a scattering system
provides information about its internal configuration. This insight has already enabled
nanoscale information retrieval in particle detection [12, 13], position sensing [14–16]
and even imaging [17–19]. Propagation of spatial information through strongly scattering
systems has also been studied in the context of imaging through complex media [20–
23]. However, the general challenge of imaging-free retrieval of nanoscopic information
remains largely unexplored.

In this chapter, we study how a scattering structure in the near field of a sample embeds
nanoscopic information into far-field radiation patterns, enabling the experimental re-
trieval of the position of a point-like source of light with deeply sub-wavelength precision.
In doing so, we introduce a general-purpose localisation technique based on principal
component analysis, which provides understanding of which features in radiation patterns
contribute to localisation precision. We verify that this precision is indeed caused by the
scattering structure through comparison with dummy measurements. More generally,
we discuss how information about specific features of partially known systems may be
extracted from alternative far-field channels such as radiation patterns, rather than from
real-space imaging of parts of a sample.
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Figure 3.1: Nanoscale changes in system parameters can strongly modify far-field scattering behaviour. Here, a
shift in scattering patterns reveals the small displacement of a light source with respect to a scattering structure.

3.2. PARAMETER RETRIEVAL METHOD

To demonstrate our parameter retrieval procedure, we first discuss a synthetic experiment
on basis of a theoretical toy model. This model consists of a point source of light located
in a plane that lies a fraction of a wavelength below a sub-diffractive linear array of four
scattering sites, as shown schematically in figure 3.2a. We consider strong scatterers with
parameters such as we might find for the plasmonic resonance of silver nanoparticles
100 nm in diameter [24]. Our objective is to retrieve the position of the light source with
respect to the array, just from far-field scattering patterns. We describe this system with a
discrete dipole model. As discussed in section 2.2, this powerful tool to study the qualitative
behaviour of collections of scattering sites [25–28] natively includes multiple scattering,
self-action and propagation delay [29, 30]. Multiple scattering leads to induced dipole
moments for each of the array antennas, depending on light source position. Variations
in the far-field scattering patterns then result from interference between the different
scattering pathways. Fig 3.2b and 3.2c show calculated scattering patterns for two positions
of the light source, plotted as radiant flux as function of parallel momentum into the upper
half-space above the structure and source. The parallel momentum kx = k0 cosφsinθ

and ky = k0 sinφsinθ is equivalent to a reporting of azimuthal angle φ and polar angle θ

(angle relative to the normal to the scattering target), and this type of scattering pattern
is readily measured in nanophotonics, for instance through back-focal plane detection
[31–33]. In the present example, the radiation pattern has only a comparatively broad
feature due to the small spatial extent of the target (figure 3.2b). The pattern shifts and
changes upon a change of source position (compare figures 3.2c and 3.2b). A set of such
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Figure 3.2: Library-based parameter retrieval from synthetic far-field scattering patterns. (a) Layout of the
scattering problem: a light source moves with respect to a four-element chain of scatterers. (b) Calculated
scattering pattern for the light source 0.25λ south of the centre of the array. (c) Scattering pattern for a light
source 0.90λ east of centre. (d) Singular value decomposition of a set of reference radiation patterns. Round
panels show radiation pattern basis elements versus wavevector and square panels show principal components
versus reference position. Numbers indicate the index of the element, as ordered by singular value. Black circles
indicate the position of the array elements. (e) Singular values for the decomposition in (d) and for the same
problem at half the spatial resolution.

scattering patterns for light source positions spaced λ/32 apart, in a 64×64 grid, constitutes
a library of synthetic reference data.

In order to systematically identify patterns in the library, we employ the technique
of principal component analysis (PCA), which is used in a variety of fields to help detect
patterns in complicated datasets [34–36]. Specifically, we construct a matrix A whose rows
contain the pixel intensities for each of the normalised reference images Ai . Reference
images are Euclidian normalised to ‖Ai‖ = 1 to help us study patterns without strong
effects from intensity variations. Singular value decomposition (SVD) allows any matrix A

to be rewritten as A =UΣV ∗, where the asterisk represents conjugate transposition, with
U and V unitary matrices and Σ diagonal [37]. For mathematical convenience, we will
work only with libraries that have more pixels per image than images in the library, so that
Σ has one entry per reference image. The entries of Σ are the singular values σi of the set
of images A and represent the weight that each basis element has in the original dataset.
For every singular value, the corresponding column of V forms an optimal basis vector, or
basis element, and the corresponding column of U presents its overlap with each of the
reference images in the dataset A. It is instructive to consider UΣ as a single unit, known
as the principal components of the dataset A. The basis elements are defined in the same
coordinate space as the reference images, meaning that they cover a circular domain in
(kx,ky)-space. The principal components form maps on the same spatial coordinate grid
as the reference positions. Together, they describe the basis that most efficiently reproduce
the reference dataset. In particular, when ranked by singular value, the first basis element
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has the largest possible overlap with all reference images. Every next basis element has
the largest possible overlap with the part of the reference images that is orthogonal to
all previous basis elements. PCA thus provides a highly efficient way to encode arbitrary
datasets in terms of shared features in their entries.

We now take the SVD of our synthetic reference library in order to investigate what
shared features the decomposition identifies. Part of this SVD is shown in figure 3.2d. For
each component, we show the basis element of the angle-dependent scattered far-field (left,
circular maps, red-white-blue colour scale) and the corresponding principal components
as a function of light source position in a plane (right, square maps, green-purple scale).
Each set of principal components shows the degree to which the corresponding basis
element contributes to the total scattering signal at each position. The complete basis
has 642 = 4096 such pairs, one per image in the reference library, of which we show only
those few with the largest principal components. The first basis element has large positive
value for all wave vectors and its corresponding principal component map show that it
is almost uniformly high at all reference positions. This element thus corresponds to the
common features shared by all radiation patterns. Further elements have more intricate
structure, and moreover present principal components that are position dependent. In
other words, these higher order elements quantify the degrees of freedom in the radiation
patterns in the library that form the main variation, and the principal components quantify
how strongly these elements admix into the response as function of the source position. In
linear algebra terms, each given reference image in the library can be decomposed in the
basis elements, with expansion coefficients varying exactly as the principal components
with source position. The principal component maps thus provide direct information on
the position at which any given reference image was taken. Focusing on a salient feature as
example, basis elements such as the third show beaming by the array, where moving the
light source along the north-south axis (as per the compass in figure 3.2) concentrates light
emission in that direction, in line with the literature on plasmonic phased arrays [38–40].
This is also seen in the radiation pattern in figure 3.2b, which corresponds to a position
near the maximum of the third set of principal components. As another example, the
left and right endpoints of the array (along the east-west axis in the principal component
images) appear as special points, at which the sets of principal components vary sharply,
particularly visible in the fourth and eighth sets of principal components. We see the
westward band of the fourth set of principal components in the radiation pattern in figure
3.2c, corresponding to a position near the eastern edge of the principal component maps.
These examples show that PCA can provide an effective summary of the physical response
of a complex scattering problem, decomposed into a small set of physically intuitive
contributors.

Basis elements and their principal components are seen to have the broadest features
for the largest principal components. This matches the interpretation that the largest
principal components correspond to the dominant, most general features in radiation
patterns. In contrast, the lowest-weight elements (not shown) largely encode numerical
details and noise that is orthogonal between reference images. The smooth features of
the basis elements show us that the fine angular resolution used in these calculation is
not required to recognise the important features. The fact that some, like the seventh
and eighth basis elements, rely on specific features at large angles suggests that the large
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numerical aperture used is of particular value. As a rule of thumb, the physical size of
a transducer ultimately determines the multipole moments that it supports and that
radiate into the far field, which in turn determines the angular span over which radiation
pattern variations occur. The information relevant for position retrieval is contained in
the few basis elements with the largest singular values. Indeed, we see in figure 3.2d that
the later pairs are characterised by much finer structure in both the basis element and
principal components. PCA of calibration data reveals that only a few features in radiation
patterns carry a lot of weight in explaining the full dataset. This indicates that most of
the basis can be discarded with little loss of information, allowing efficient storage of the
library and affirming that the SVD has identified a small number of important radiation
pattern features. An excellent question is how many basis elements (and corresponding
principal components) are required to encode the variability in radiation patterns. While
mathematically the dimensionality increases with spatial sampling density, in reality the
basis elements and their weight in the decomposition are set by the scattering physics.
Indeed, simulations with lower sampling density yield the same dominant basis elements
and a similar drop off of the magnitude of the singular value with index, as seen in figure
3.2e. Basis functions lose physical significance once their singular value hits a noise floor
set by numerical or experimental noise, around index 400 in this example. For a given
numerical, synthetic or experimental noise level, the number of relevant basis elements is
given by the rate of the singular value drop-off versus index.

In order to use the library for parameter retrieval, we take a radiation pattern for any
light source position within the sampled domain and project it onto the optimal basis in the
library. The coefficients of this projection are to be compared to the principal components
for each reference image. In case the sample radiation pattern is identical to one of the
library radiation patterns, there will be a perfect match with the principal components
at the corresponding position. More generally, the projection coefficients for any sample
radiation pattern form a coordinate vector in a higher dimensional space, in which each of
the reference images also has a coordinate, given by their principal components. The best
match between sample image and library image can then be obtained by finding the library
coordinates that have minimum Euclidean distance to the sample coordinate. This best
matching image would then pinpoint the sample image source positions. Quantitatively, in
order to produce a match in the range [0,1], matches between a set of principal components
(UΣ) j and a sample image Si normalised to ‖Si‖ = 1 are calculated as

Mi j = 1−
1
p

2

∥
∥(UΣ) j −Si V

∥
∥ . (3.1)

Such an analysis can be seen in figure 3.3a, where projection match with each reference
position is shown for three sample positions (indicated by circles). For now we do not
consider distortions or noise, so the radiation patterns used here are identical to reference
data at the same positions. Matches at the correct positions are perfect and there is no
ambiguity in the choice of best estimate. Overall, positions closer to the correct position
are more similar to the sample data than those farther away, while the precise contours
echo the principal components of the reference dataset. The first panel of figure 3.3a, in a
corner of the calibrated region, is a fairly good match with most positions far away from
the array, due to principal components that peak sharply around the array. Conversely,
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Figure 3.3: Position retrieval using a library. (a) Match between library and ideal data versus reference position for
three different light source positions, marked with blue circles. White circles indicate array element positions. (b –
i) Localisation confidence interval and sample position reconstruction error versus reference position for four
types of data. (b, c) Ideal data. (d, e) Sample positions displaced 30% of a library step to the north and east with
respect to library positions. (f, g) Sample data taken with array elements randomly changed in diameter by up to
5%. Circles sized proportionally to element scattering strength. (h, i) Sample data degraded by shot noise as for a
signal with an average 3 counts per pixel, as shown to left of (h).

the third panel matches fairly well only with positions close to the array. In all three
cases, the specific structure of principal components around the sampled positions allows
unambiguous position retrieval.

To maximise robustness to noise, projection match should peak as sharply as pos-
sible. Peak sharpness can thus be taken as a measure of localisation confidence in noisy
systems. We quantify this confidence by defining a viability threshold Θ: points signific-
antly above the median match in the projection maps are considered viable solutions, by
Θ= ηmax(M)+ (1−η)median(M), where M are the match values between a given scatter-
ing pattern and each library entry. Practically, we use a viability criterion η= 1−1/e ≈ 63%,
in line with common definitions of linewidth. With this threshold, we find the number of
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points larger than the threshold Nv and define the confidence interval W as the full-width
of a symmetric peak of equal area,

W =
√

4

π
∆r

√

Nv (3.2)

where ∆r is library sampling step size. This measure of confidence, shown in figure 3.3b,
generally behaves as we would expect: it is maximal at the ends of the array and low
far away from it. The finest confidence intervals are found where the library’s principal
components (figure 3.2d) have the largest gradients, like in the position indicated in the
middle panel of figure 3.3a, where both the second and third sets of principal components
are strongly position dependent; conversely, no principal components vary strongly just
north and south of the array, leading to low confidence in those regions. Confidence also
peaks in the corners of the reference region, as an artefact resulting from the relative rarity
of neighbours. Features seen in the confidence map are robust to the precise value of
η, remaining similar all the way from η = 50% to η = 80%. This allows the confidence
intervals to be used to evaluate how sensitively a given transducer lets us retrieve position,
or parameters more broadly, in different regions.

In our demonstration so far, we have used the same synthetic data for calibration and
testing. This leads to correct retrieval of all positions, as seen in figure 3.3c, where the
distance between known sample position and best estimate based on library comparison is
shown versus reference position. In practical use, we expect various non-idealities. Sample
data may be taken at slightly different positions than reference data, the transducer may be
different between reference and sample measurements and signals may be noisy. We will
study the effects of each of these distortions in our theoretical model. First, we consider
position retrieval with sample data taken on a grid of positions displaced by 30% of the
step size (λ/32) to the north and east with respect to the reference grid and project these
onto the original library. Projection matches are visually indistinguishable from the data
in figure 3.3a, as they should be: the projection matches are smooth and the confidence
map shows a feature size of roughly λ/2, so a step of under λ/32 should not make much
of a difference. Localisation confidence itself is affected slightly, as seen in figure 3.3d,
which we attribute to the shift in position causing a slight broadening of the projection
match peaks. Though each sample position still has a clear nearest reference position, the
best estimate does not always find this position, as seen in figure 3.3e. As the principal
component landscape is not flat, one of the three other surrounding reference positions
may indeed provide a better match than the nearest reference position. Where the nearest
position is not the best match, the best match is found either one step east or one step
north in every case, supporting this interpretation. In experiment, noise may make it more
likely that a further-off point provides the best match. In the low-noise regime, symmetry
may still be broken by numeric artefacts in the low-weight basis elements. We also note
that much larger sample positioning errors would bring the new sample positions closer to
other reference positions, which would lead to reliable localisation with a fixed offset, so
that the current scenario should be considered the worst case for this type of error. The
second type of non-ideality concerns our assumption that the transducer does not change.
In practice, it may be desirable to use calibration for one device to perform parameter
retrieval with another, despite minor fabrication imperfections. Any single transducer
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may also degrade over time. To judge the effect of such changes, we calculate sample
data using the original reference positions, but changing the effective diameter of each
array element by a random amount up to 5%, as might occur in a lithography process.
We apply our parameter retrieval procedure, again using the original library. As for the
shifted sampling grid, projection matches are visually indistinguishable from those figure
3.3a, but localisation confidence intervals (figure 3.3d) broaden slightly, similar to the
shifted case. Best match positions are off in a number of places, but errors are under two
steps (λ/16) everywhere. Finally, we explore the effect of noise. We calculate radiation
patterns affected by shot noise as for an average signal level of 3 counts per pixel over our
181×91 pixel detector. We attempt position retrieval using the original library. Confidence
intervals (figure 3.3h) are much more broad than for the other cases as the noise makes
library match worse for all positions. Despite the high noise level, the vast majority of
positions are retrieved correctly and errors of two steps or more are rare. Most errors occur
near the north and south ends of the reference area, far from the array, where confidence
intervals are broadest. The scenarios explored here represent a wide range of experimental
imperfections. Each shows limited impact on localisation success. This makes us confident
that the parameter retrieval technique will prove robust to the differences between different
experimental realisations.

The success of this theoretical demonstration allows us to reflect on the main merits
of our approach, as opposed to other possible approaches that retrieve position inform-
ation from far field scattering patterns. In particular, our proposed method envisions
a library-based retrieval that applies PCA to real-world calibration data, in other words
proposing a matching of measured data to a previously measured library. This should be
juxtaposed to model-based/model assisted approaches. Scattering properties of complex
nanophotonic structures can be predicted through a number of theoretical and numerical
methods, ranging from quasi-exact discrete dipole models to full-field simulation with
finite element or finite-difference time-domain methods. While these techniques can
solve many scattering problems to arbitrary accuracy, they require fine knowledge of the
structure of interest for their results to be applicable. The most ambitious model-based
parameter retrieval would be to attempt inversion of the scattering problem. While in the
simplest of cases, it may be possible to invert scattering problems analytically by working
out the parameter dependence of certain far-field information channels, this route of direct
inversion is generally infeasible to retrieve arbitrary parameters for realistic systems. The
difficulty stems from the non-separable dependence of observables on various parameters,
including possible quantities of interest, caused by two aspects of the physics at play. In the
dipole scatterer at hand, coupling between different induced dipoles depends non-linearly
on relative positions and drive frequency. Moreover, optical experiments have much more
convenient access to field intensity than to the full complex field, which precludes direct
numerical back-propagation of the far-field data to reconstruct the light source.

Without a direct inversion approach, parameter retrieval would have to be performed
through some combination of tabulating forward modeling results and matching to meas-
ured data. This approach would be tantamount to building a library of model results
instead of measured reference data. In large-scale applications, like CMOS manufacturing
fabrication processes, that are very well characterised, such a priori predictive approaches
may prove valuable. Unfortunately, for most other branches of nanofabrication to realise
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scattering structures, the predictions of models are generally not robust to the fabrica-
tion imperfections that occur in actual devices. We argue, based on the present work, to
instead make use of real-world calibration of scattering patterns without any assistance
from modeling. This has the benefit that it only requires experimental conditions and
device properties to be unchanged between the moment of building up the library for a
structure, and use of the structure for metrology. Indeed, as our experimental realisation
(reported below) shows it is entirely possible to build up a library of scattering patterns
versus some known parameter for a single device without knowing or modeling the precise
device geometry, and without needing to account for any distortions of the far field pat-
terns downstream in the optical measurement system. Given sufficiently low noise and an
appropriate comparison algorithm, the library entry with the same parameter values will
provide an excellent match to the experimental result without recourse to modeling.

Finally, we note that the concept of a library, and subsequent retrieval of parameters
allows for other solutions than PCA-based techniques. Recently, several groups have
addressed related challenges through machine learning, successfully retrieving parameters
with sub-diffractive precision as good as λ/25 for optical wavelength λ [41, 42]. For such
demonstrations, the number of distinguishable parameter values is typically orders of
magnitude smaller than the size of the ‘training set’, i.e. the size of the calibration library
that is required. In an additional drawback, it is often difficult to interpret how the neural
network performs its function and whether it is robust to minor changes in parameters,
regularisation being one of the oldest [43] and toughest [44] problems in machine learning.
Instead, using a calibration-based, transparent method, we precisely retrieve parameter
values with small reference libraries and additionally gain insight into the structure of the
reference data.

3.3. EXPERIMENTAL REALISATION
We demonstrate the proposed imaging-free super-resolution technique experimentally,
by retrieving the position of a point-like source of light with respect to a known scattering
nanostructure. We induce point-like light emission by focusing a high-energy electron
beam (30 keV) on a substrate in a scanning electron microscope. Where the electrons
cross the vacuum/gold interface, the rapid change in electric field dynamically polarises
the material, causing light emission through cathodoluminescence [45, 46]. For optical
purposes, this light source can be modelled as a radiating out-of-plane point dipole at the
interface, its apparent size being set by the focal spot of the electron beam [47, 48]. We
collect the light emitted in this process using a parabolic mirror of acceptance angle 1.47 sr
and project it onto a camera, revealing the radiation pattern as radiated intensity versus
emission angle [49, 50]. We filter the light down to a band around λ = 500nm to avoid
washing out of features in radiation patterns. Figure 3.4a schematically shows the key parts
of our angle-resolved cathodoluminescence setup. As scattering nanostructure we use a
bullseye antenna, a type of structure well-known for its strong beaming [51] and widely
used to control light emission from nanoscale sources [33, 52–56]. The antenna, shown in
figure 3.4b, is fabricated by FIB milling of monocrystalline gold and consists of a 1.2µm
plateau surrounded by 8 concentric grooves, 600nm in width and around 100nm in depth,
separated by ridges 600nm in width. With a point-like light source on the symmetry axis
of the bullseye, the radiation pattern will likewise be cylindrically symmetric. As the light
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Figure 3.4: Experimental realisation of a light source moving with respect to a nanophotonic structure. (a) Layout
of the main parts of the cathodoluminescence setup used in these experiments. An electron beam is focussed onto
a bullseye antenna and induces light emission. A parabolic mirror, with its focal point on the antenna, captures
this light and directs it through a colour filter to a camera. (b) The bullseye antenna used in the measurements
presented here. (c) Radiation pattern constructed from camera image with light source 500nm (=λ) north-west
of centre on the central plateau of the bullseye antenna. Wavevectors not captured by the mirror are masked in
white. (d) Like (c), but with light source 500 nm south-east of centre.

source moves away from the symmetry axis, the radiation pattern shifts as propagation
delay changes the relative phase between scattering sites.

We capture such radiation patterns and transform them to momentum space [49],
leading to images of radiant flux versus emission direction like those shown in figures 3.4c
and 3.4d, taken at positions 500 nm north-west (3.4c) and south-east (3.4d) of the bullseye
antenna centre. The main feature in both patterns is a ring-like structure around the centre
that shifts its intensity maximum to different angles as electron beam position changes.
This feature is attributed to beaming and matches literature reports on similar structures
[50]. Blind spots caused by the finite extent of the mirror and a hole through which the
electron beam reaches the sample do not hinder observation of the position-dependent
features.

We now compose a reference dataset for 8×8 electron beam positions in a grid with
100 nm (λ/5) steps. This grid is situated around the centre of the central plateau of the
bullseye antenna and covers most of it; figures 3.4c and 3.4d correspond to the radiation
patterns at two opposite corners. We normalise the dataset as before and take its SVD in
order to apply our localisation algorithm. Figure 3.5a shows part of the SVD constructed
for this dataset. Like for the synthetic data, the first basis element is a largely position
independent background. Subsequent elements again show smooth features both in basis
elements and in position dependence. For instance, one may recognise beaming along
both diagonals in the third and fourth elements, which occurs for light source positions
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Figure 3.5: Parameter retrieval with an experimental reference library. (a) SVD for an experimental reference
dataset, shown as in figure 3.2d. The central plateau of the bullseye antenna is slightly wider than the diagonal of
the principal component maps. (b) Comparing new data with the reference library for three positions, indicated
by circles. (c) Position estimates for test data based on localisation algorithm versus actual position. Colour scale
indicates error between best estimate and known position. Where estimates were incorrect, arrows indicate the
direction of the error. Data shown are for a grid with 100 nm steps. (d) Like (c), but 10 nm steps.

off-centre along the appropriate diagonal.

As for the synthetic data, we can compare sample measurements with the library to
find position estimates. To this end, we take sample measurements at positions identical
to reference positions, within experimental accuracy. Projecting individual measurements
onto the reference library reveals a projection match landscape as before. As seen in figure
3.5b, these landscapes typically peak at the correct sample positions, indicated with circles,
as in the numerical example before. Comparing best estimates with known positions gives
a vectorial localisation error. Figure 3.5c shows a map of localisation error versus position,
where colours indicate the magnitude of errors and arrows indicate in which direction
the error was made, if any. We see that almost all positions were identified correctly
(94% of positions match). To explore position retrieval precision, we repeat calibration,
measurement and analysis on an 8×8 grid with much smaller position steps of 10 nm. As
seen in figure 3.5d, most positions (81%) are still identified correctly. The average position
retrieval error is below 5 nm (λ/100). Where positions were not retrieved correctly, we see
a clear correlation in error directions (southward). This is reminiscent of the behaviour
seen in our theoretical demonstration when using a displaced sampling grid (figure 3.3e),
suggesting that errors may be dominated by a small systematic drift in bullseye position
between measurement of calibration and sample data. Localisation may thus be more
accurate than our technical implementation can show.

So far, the full library has been used to estimate light source position. As discussed
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previously, most spatial information is contained in those few basis elements with largest
principal components. Disregarding the low-weight elements in the optimal basis allows
us to compress the library: if Nused out of Ntot basis elements are used for position retrieval,
we reach library compression of a factor Ntot/Nused. We explore how this compression
affects localisation precision. For the set of measurements on the 10nm grid, half the
optimal basis may be discarded without any loss in localisation performance. Figure 3.5e
shows how average error varies as a function of the number of basis elements used. Average
error grows slowly as the library is compressed until just a few basis elements are left, as
we expected from the large weight of the most important elements. In fact, using just
four basis elements, for library compression by a factor 16, average localisation error stays
below 10 nm. This means that the calibration data can be stored in a highly efficient way,
but also shows how SVD has identified the most vital features of the radiation patterns,
speaking for the robustness of the localisation technique.

To investigate the contribution of the nanophotonic structure to the success of the
localisation experiment, we compare the previously discussed experimental results with
measurements taken on plain gold. Radiation will be emitted even in the absence of surface
structuring, with a radiation pattern that is of course expected to be entirely independent
of where the electron beam excites the surface. Thus source localisation should be strictly
impossible in absence of a nanophotonic scattering structure. In practice, in our setup,
captured radiation patterns will vary slightly as the electron beam is scanned around the
mirror focus, owing to off-axis aberrations of the parabolic collection mirror. In figure 3.6a,
we show the SVD for a dataset for 5×5 electron beam positions in a grid with 200 nm steps
on plain gold. In contrast with the data presented in figure 3.5a, there is fairly little spatial
structure in either the basis elements or the principal components after the background.
What little structure can still be seen in the third and fourth basis elements is likely due
to mirror aberrations, due to which some position information can still be extracted. The
drastic loss in basis element structure from removal of the antenna indicates that the plain
gold radiation patterns do not encode electron beam position in any clear features.

The effect of the nanophotonic structure is seen most clearly in the singular values. In
figure 3.6b we compare the plain gold dataset with a dataset taken with the same experi-
mental parameters on a bullseye antenna. The first singular value, reflecting background
signal, is identical for the two cases. Subsequent singular values, however, are lower and
drop off much more quickly for plain gold than with bullseye antenna. Both sets of singular
values eventually tend to the noise level, but the greater number of large singular values
indicates the additional position information encoded in the radiation patterns by the
nanophotonic structure. At this large step size, it is just barely possible to reconstruct
electron beam position on plain gold, in contrast with very reliable reconstruction on the
bullseye antenna. What little spatial information remains in the transducer-free experi-
ment may be attributed to aberrations, which could be further reduced by experimental
tweaks, but are already minute compared to the wealth of spatial information provided by
the bullseye antenna. This shows that scattering by the nanophotonic structure is essential
to our technique.
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Figure 3.6: Experimental data without nanostructure. (a) SVD of radiation patterns for a grid of electron beam
positions on plain gold, shown as in figure 3.2d. (b) Comparing singular values between reference datasets on a
nanostructure and on plain gold.

3.4. CONCLUSIONS AND DISCUSSION

We have proposed a library-based approach to extract nanoscale spatial information about
structures from far-field radiation patterns, i.e., without the use of a real-space imaging
setup. We explored the proposed imaging-free localisation method theoretically, demon-
strating that principal component analysis of radiation patterns can produce libraries
that efficiently encode nanoscale parameters of scattering systems. In our experimental
demonstration, we have shown that the proposed method is able to retrieve light source
position relative to a nanophotonic system, in the form of a bullseye antenna, with few-
nanometre, λ/100, precision, deeply below the diffraction limit. These results are achieved
at signal-to-noise ratios that are not particularly demanding to reach, comparable with
those commonly encountered in, for instance, single molecule microscopy and single
nanoparticle darkfield scatterometry. We require a bare minimum of calibration images,
one library entry per source position, in contrast with the vast quantities of calibration
data used in machine learning-based methods. Localisation is shown to work well over
ranges from hundreds to tens of nanometres, with precision possibly limited only by the
accuracy and tolerances of the experimental setup. The PCA-based technique provides a
number of handles that provide insight into the pattern recognition upon which it operates,
particularly direct visualisation of the principal components of calibration data and of
the projection match for different reference positions. Our numerical and experimental
demonstrations both show smooth optimal basis elements and principal components,
implying a degree of robustness of localisation success to experimental drifts and noise.
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For our experimental demonstration, comparison between nanophotonically mediated
reference data and those generated by a light source on plain gold reveals how localisation
is facilitated by the complexity introduced to the radiation patterns by the nanophotonic
structure.

Unlike common imaging techniques, our method does not rely on a sharp PSF, but
rather uses partial information about the sample to directly invert measured data to a given
parameter. This means we cannot define an intrinsic resolution for our method based
on PSF width. Though we have shown deeply sub-diffractive localisation precision, this
precision will ultimately depend on the interplay between signal-to-noise ratio and the
length scale over which measured signals, like radiation patterns, change. It is interesting
to consider how the underlying physics may be used to tune this length scale. We know
that variations in the size of structures affect radiation patterns through their structure
factor, which varies over length scales comparable with the wavelength of the light used.
Hybridisation between nanophotonic scatterers, on the other hand, leads to strong changes
in spectral response and radiation patterns when scattering sites move at separations of
a small fraction of the wavelength. Careful engineering of the interplay between these
effects, and so, of the optical modes of the overall structure, may allow future work to tailor
transducers for improved localisation range and precision.

We have shown examples of retrieval of light source position from radiation patterns,
but we believe the method itself can be applied much more generally. For instance, we
expect the same approach to be able to retrieve arbitrary parameters that affect far-field
information channels, including orientation and relative scattering strength between sites,
spectral properties, and absence or presence of sample features. Initial theoretical results
suggest that retrieval of the positions of multiple coherent light sources is feasible; further
exploration may be able to quantify these results and extend them to incoherent sources
and imaging-like problems. The method also does not necessarily depend on radiation pat-
terns and we believe that parameter retrieval may be performed based on such information
channels as scattered optical frequency spectrum or, indeed, based on real-space images,
possibly with whatever sort of optical distortion, as in the problems studied in the field of
imaging through complex media. Vastly reduced angular information may prove sufficient
for parameter retrieval in low-dimensional problems, or conversely, inclusion of phase or
polarisation information may allow more precise and more efficient parameter retrieval.
For problems where calibration with experimental data is infeasible, the method can be
adapted to use synthetic reference data generated by a physical model. The method is
specifically intended to be applicable to architectures other than the cathodoluminescence
setup used in our experimental demonstration. A carefully characterised collection of
structures with randomly deposited luminescent particles may serve as the reference set
for retrieval of particle position or orientation on new structures. Another approach is to
exploit the analogy between the cathodoluminescence-induced light source, which is like a
vertically oriented dipole source, and structures of interest well described by out-of-plane
dipole moments. This would allow building a library using cathodoluminescence and
using the observed radiation patterns to retrieve the precise position of other vertically
oriented emitters. While transition radiation in CL provides information for vertically ori-
ented dipoles only, one can also envision building libraries for in-plane or random dipole
orientations using samples with deliberately included emitters at shallow depths (e.g.,
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quantum wells, phosphor films). Given the generality of our method across parameters
and architectures, we foresee a wide range of applications in nanoscale metrology.

3.5. METHODS

MODEL

Our scattering example system consists of a point source of light moving in a plane λ/4
below a linear array of four scattering sites spaced λ/4 apart. The array particles are strong
scatterers with a Q = 10 resonance around the drive frequency, as might be found for silver
nanoparticles around 100 nm in diameter and resonant at visible wavelengths [24]. We
use a dipolar drive field oriented along the long axis of the array as a light source. Discrete
dipole calculations were made using custom code implementing the Green’s function of
a dipole and coupling matrix inversion in Python. The SVD algorithm is deterministic
and results should be identical between the many available implementations; we use the
implementation in the Python NumPy library.

PLASMON ANTENNA

The bullseye antenna was fabricated by removing excess material in Czochralski-grown
〈111〉 single-crystalline gold. Focussed ion beam milling was performed in a FEI Helios
NanoLab dual SEM/FIB system with a 9.7 pA beam of 30 keV Ga+ ions over 100 rounds
with pixel dwell time 10µs at pixel pitch 7.5 nm.

CATHODOLUMINESCENCE SETUP

Cathodoluminescence measurements were taken in a Thermo Fisher 650 Quanta SEM
system and analysed in a Delmic SPARC system. Radiation patterns were generated with a
4 nA electron beam at an energy of 30 keV, collected with an aluminium mirror of accept-
ance angle 1.47 sr, filtered down to a 40 nm band around λ= 500nm and integrated for 30
seconds on a back-illuminated CCD camera. A full set of 8×8 measurements thus took
32 minutes of integration. To limit the effects of sample stage drift, drift correction was
performed every second during integration by taking an SEM image of a known region and
automatically repositioning based on observed position error. Background correction was
performed by subtracting radiation patterns collected with blanked electron beam.
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4
LOCALISING NANOSCALE OBJECTS

USING NANOPHOTONIC NEAR-FIELD

TRANSDUCERS

We study how nanophotonic structures can be used for determining the position of a nearby

nanoscale object with subwavelength accuracy. Through perturbing the near-field envir-

onment of a metasurface transducer consisting of nano-apertures in a metallic film, the

location of the nanoscale object is transduced into the transducer far-field optical response.

By monitoring the scattering pattern of the nanophotonic near-field transducer and com-

paring it to measured reference data, we demonstrate two-dimensional localisation of the

object accurate to 24 nm across an area of 2×2µm2. We find that adding complexity to the

nanophotonic transducer allows localisation over a larger area while maintaining resolu-

tion, as it enables encoding more information on the position of the object in the transducer

far-field response.

The work described in this chapter has been published separately as Nanophotonics 10, 1723-1732 (2021)
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4.1. INTRODUCTION

Nanoscale metrology is imperative for advances in nanoscience, biology, and semicon-
ductor technology. As many structural features of interest are smaller than the optical dif-
fraction limit, they are not resolved through direct imaging with a conventional microscope.
In fluorescence imaging, multiple super-resolution techniques have been developed, such
as photo-activated localisation microscopy and stimulated emission depletion microscopy,
that allow imaging of smaller features by relying on careful fitting or engineering of a point
spread function [1, 2]. An alternative approach to construct images with subwavelength
resolution is by detecting the evanescent optical fields close to the sample that contain
high-frequency spatial information. In near-field scanning optical microscopy, a nanoscale
probe is brought into close proximity of the sample surface, enabling coupling to the optical
near field and access to high-resolution information [3, 4]. A drawback of such scanning
microscopy techniques are the relatively long acquisition times that are needed for physical
translation of the probe to perform raster scanning. Therefore, development of near-field
techniques that do not rely on physical scanning, enabling rapid nanoscale-resolution
sensing and imaging, would be of great benefit to nanoscale metrology.

Scattering-type near-field scanning optical microscopy (s-NSOM) [5, 6] maps the
optical near field of a sample by moving a nanoscale scatterer through it and collecting
scattered light. The intensity of the scattered signal as a function of position, usually
measured on a bucket detector with a single degree of freedom, gives information on the
permittivity distribution of the sample [7] or on the optical near field supported by the
sample. In this chapter, conversely, we aim to construct an optical near-field transducer in
the form of a nanophotonic target structure that determines the position of a nanoscale
perturbation located near the structure on basis of collected scattered light. The ‘sample’
in s-NSOM terms becomes in our work a transducer that encodes the location of a scatterer
— the known tip in s-NSOM, but here the unknown variable under study — into a far-field
optical response. Our approach to retrieving the scatterer position purely from optical
fields is to not use a bucket detector for total scatterered intensity, but instead to exploit
the many degrees of freedom, including wavevector, polarisation, and wavelength, that
can be detected in the scattered signal [8, 9]. Those many degrees of freedom in the
scattered far-field potentially encode detailed subwavelength information on the location
of the scatterer near the transducer [10]. So unlike s-NSOM, where spatial information
is obtained from consecutive measurements while raster-scanning a detecting element,
here we exploit the complexity and connection of near and far fields to obtain spatial
information from a single measurement. Indeed, methods based on far-field scattering
signals have been developed to localise a single scatterer in a carefully tailored illumination
beam with subwavelength resolution [11–15]. In such a framework, one would expect
the sensitivity, resolution and field of view to be controllable by design of the complex
nanophotonic scattering structures in terms of geometry and mode structure, as shown in
figure 4.1. While in this chapter we focus on sensing the location of a single scatterer, one
could ultimately imagine a combination of multiplexed readouts of multiple degrees of
freedom in the scattered field with optimised metasurface near-field transducers to obtain
rapid nanoscale sensing and potentially even imaging without physical movement of the
transducer.

In this chapter, we demonstrate a nanophotonic near-field transducer for detecting the
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Figure 4.1: (a) A complex nanophotonic structure scatters incident light into many degrees of freedom in the far
field. These contain rich subwavelength information on a sample positioned in the near field of the structure,
which functions as a near-field transducer. A multiplexed readout of these degrees of freedom may enable rapid
nanoscale sensing without translation of the transducer. (b) SEM images of the near-field transducers used in
this chapter, which consist of one or more apertures in a gold film.

position of a subwavelength object based on angle-resolved far-field scattering patterns, as
a first step towards rapid nanoscale sensing. To this end, we experimentally investigate
the dependence of the angle-resolved optical signal scattered from the transducer and
containing many degrees of freedom, on the position of a nanoscale object in its near
field. The near-field transducer consists of one or more apertures in a gold film (see
figure 4.1b), which upon excitation provides high optical near fields in the direct vicinity
of the apertures. The transducer is illuminated from the far field, while reflected light
is collected to image its far-field scattering pattern. Introduction of a nanoscale object
will influence the near-field environment of the transducer as it alters the permittivity
distribution, resulting in changes in the radiation pattern. The way in which the radiation
pattern is modified depends on the position of the object. Therefore, monitoring the
far-field radiation pattern of the transducer enables retrieval of the position of the object,
provided that the patterns are uniquely different for each position. To experimentally verify
this technique, we first build a library of radiation patterns, placing a nanoscale object at a
grid of positions near a near-field transducer and recording the radiation pattern for each
object position. Next, we reconstruct the object position with subwavelength resolution
solely from a measured far-field radiation pattern using a library-based approach exploiting
singular value decomposition (chapter 3). We show that our technique greatly benefits
from employing more complex nanostructures as near-field transducers, which enables
accurate retrieval of the object position across the entire transducer area.
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4.2. EXPERIMENTAL METHOD

We consider the experimental system sketched in figure 4.2a. We measure the far-field
radiation pattern of a near-field transducer, consisting of one or more nanoapertures in
a metal film on a glass coverslip, and monitor how it changes when a nanoscale object
is moved through its near field. The experimental setup is shown in figure 4.2b. Light
from a supercontinuum white light laser (Fianium WhiteLase Micro), spectrally filtered
to cover a wavelength range of 500 – 750nm, is transmitted through a linear polariser and
focussed to a diffraction-limited spot on the transducer using a microscope objective (60×,
NA = 0.95, Nikon CFI Plan Apochromat Lambda). Reflected light is collected through the
same objective, transmitted through a second linear polariser, and detected on a camera
(Basler acA1920-um), which images the back focal plane of the objective. To suppress
spurious signals from the substrate, the polarisation component orthogonal to the incident
polarisation is detected. Light scattered by the transducer can experience polarisation
conversion, while direct reflections of the substrate are expected to maintain the incident
polarisation. To test our near-field transducer, a small perturbation is required that we
can place at a controlled position in the near field of the transducer. This role is played
by a tapered optical fibre (tip radius 50 nm) [16]. The fibre is positioned at a height of
approximately 10 nm above the transducer using shear-force feedback [17] and can be
scanned transversally using closed-loop piezo actuators with strain gauges for position
read out. We emphasise that the setup is in terms of components identical to a near-field
scanning probe mounted on an inverted microscope, but with the unconventional addition
of Fourier imaging. However, where the sharp fibre tip is usually viewed as the sensor that
detects optical information, here the viewpoint is reversed. The fibre tip is the object to be
detected and localised, while the nanoaperture pattern is the transducer.

The near-field transducers consist of one or more apertures milled in gold. They
are fabricated by first depositing a 150 nm gold film on a glass substrate using thermal
evaporation. Subsequently, focussed ion beam milling using 30 keV Ga ions (1.5 pA, dwell
time 2µs, pixel pitch 5 nm) is used to mill the apertures. The use of apertures in an opaque
layer eliminates direct scattering of the illumination beam from the object; any observed
interaction between the object and the light is mediated by the transducer. Figure 4.2c
shows a schematic of a transducer containing a single slot aperture of 110×50nm2. The
incident light is vertically polarised, while the aperture is oriented at 45°, allowing for
excitation of modes polarised along either axis of the aperture, to obtain polarisation
conversion required for cross-polarised detection. A typical measured cross-polarised
radiation pattern of a single aperture is shown in figure 4.2d. As is common in back-
focal-plane microscopy, the raw camera image reports radiation patterns as function
of normalised parallel momentum (kx,ky)/k0 of the radiated light where k0 is the wave
number in vacuum. Due to the cross-polarised detection, a four-lobe pattern appears at
large angle (NAs from circa 0.85 to 0.95). In the experiments, the object is raster scanned
across the transducer while its radiation pattern is captured at each position.

4.3. LOCALISATION STRATEGY

To demonstrate high-resolution localisation of the object we develop a strategy with two
main ingredients. The first is that we determine object locations by comparing measured



4.3. LOCALISATION STRATEGY

4

63

(a) (b) (c)

Object

Aperture

Positioning

system

-1 -0.5 10.50
-1

-0.5

1

0.5

0

2000

1500

1000

500

0

Ein

Edet2
5

0
n
m

Camera

LP

LP

Wavevector kx/k0

(d)

W
a
v
e
v
e
c
to

r 
k

y
/k

0

In
te

n
s
it

y
 (

c
o
u
n

ts
)

Figure 4.2: Experimental setup. (a) Minute changes in the near-field environment of an aperture influence its
far-field radiation pattern. Monitoring the aperture’s radiation pattern enables retrieval of the position of a
nanoscale object. (b) Linearly polarised light is focussed on the aperture using a microscope objective. Reflected
light is collected through the same objective, filtered using a linear polariser (LP), and the cross-polarised signal
is detected on a camera, which is imaging the back focal plane of the objective. A tapered optical fibre, positioned
in the near field of the aperture using shear-force feedback, acts as the object. (c) Schematic of a near-field
transducer containing a single aperture of 110×50nm2. The incident light is vertically polarised. The object is
scanned across the aperture following a raster grid (white marks). (d) Measured cross-polarised radiation pattern
of the aperture.

radiation patterns against a prerecorded library. Data collection thus has two stages: first
to record the library, and subsequently to take the test data. The second main ingredient is
that we use a highly efficient representation of the library of radiation patterns to facilitate
the comparison between test and library data. This representation of the measured radi-
ation patterns uses singular value decomposition, as previously used to localise a point
source of light (chapter 3). We note that, alternatively, the comparison between test and
library data could be a task suitable to address with machine learning, provided that the
library data set is sufficiently large — typically orders of magnitude larger than the number
of parameter values to be distinguished.

We collect the library data in a matrix M that contains each of the normalised radiation
patterns, one per object position, as a single row. Through a singular value decomposition,
we decompose this matrix into M =UΣV †, with U , V unitary matrices and Σ a diagonal
matrix. Here, U forms a basis for object position and V for the radiation pattern. The
entries of Σ, the singular values σi , reflect the importance of each component in describing
the data set M and are sorted in order of decreasing magnitude. In our experiment, each
column of V , called the principal component direction, represents a vector (basis element)
of the orthogonal basis for the representation of the radiation patterns generated by the
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structure, for different positions of the object. In other terms, all possible radiation patterns
can be represented as a superposition of these elements. Each column of U provides the
projection of the corresponding basis element on the total scattering pattern per object
position. In other words, it provides a coefficient that, multiplied with the corresponding
singular value, expresses the contribution of the basis element in the total scattering pattern
for each position, known as the principal component. To directly reflect the importance of
a radiation pattern basis element at each position, we treat UΣ as a single entity.

Once we have efficiently summarised the library of radiation patterns by singular value
decomposition, we explore retrieval of object positions from radiation patterns taken in a
second measurement run. We use the previously acquired library data set as a reference
and project the new measurements onto the radiation pattern basis V of the reference data.
Next, we calculate the match of newly acquired data A at positions i with the reference
data at positions j , which we define as 1−

∥
∥(UΣ) j − Ai V

∥
∥/
p

2. A high match indicates high
similarity between radiation patterns (as discussed in chapter 3). To obtain an estimate
for the object position based on the measured radiation patterns, we take the reference
position that is associated with the highest match as the retrieved position. Comparing this
with the actual position of the object, known from the calibrated reading of the position of
the piezo actuators that control the probe, allows for defining a reconstruction error as the
distance between the actual and retrieved positions.

4.4. RESULTS
First we investigate the dependence of the radiation pattern on the object position for a
transducer consisting of a single aperture in figure 4.3. Figures 4.3b and 4.3c show the
measurement results of 21×21 probe points covering an area of 1×1µm2 in 50 nm steps,
for a small aperture of 250×110nm2, of which a SEM image and shear-force topography
scan are shown in figure 4.3a. The measured dependence of the cross-polarised radiation
pattern of the aperture on the object position is presented in figure 4.3b in the form of a
singular value decomposition. Shown in the figure are the first eight principal component
directions V , columns of the radiation pattern basis, and matching principal components
UΣ, describing the importance of the radiation pattern basis element at each object
position. To reconstruct the radiation pattern for a specific object position, one considers,
for each component, the vector of the radiation pattern basis V (left), multiplies this
pattern by the corresponding value of UΣ (right), and finally sums over all components.
The first, most important, component of the data set shows little position dependence,
and its radiation pattern closely resembles figure 4.2d. This component corresponds to the
common denominator shared by all measured radiation patterns. It consists of four lobes
of high intensity at far off-normal angles, resulting from polarisation conversion in the
direct reflection of the gold surface. Furthermore, a region of non-zero intensity is visible
at near-normal angles in the centre, corresponding to light reflected from the aperture.
A strong position dependence is visible for the next two components. The second and
third components share two similar features in their position dependence: a high signal
centred on the aperture and a gradient across the entire scan area. Let us first consider the
feature centred on the aperture, for either of these two components. Comparing positions
near the aperture to positions at larger distance shows that UΣ negatively peaks at the
aperture, which means that the corresponding radiation pattern element V is mainly of
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importance for positions near the aperture, and with a negative sign. Taking the negative
sign into account, this radiation pattern element shows a negative contribution to the
intensity at near-normal angles in the centre and positive at high angles. As every measured
radiation pattern has been normalised individually, these relative contributions actually
correspond to a decrease in absolute intensity at low angles, while leaving the signal at
high angles unaffected. Thus, the second and third components reveal that when the
object is positioned near the aperture, less light is reflected back at low angles. This can be
explained by interaction with the object introducing an extra loss channel. The gradients in
UΣ are the result of a slight drift in aperture position relative to the microscope during the
experiment, which is also observed in measurements without any nearby object. To remove
major continuous drifts of this kind, we fit a two-dimensional plane to UΣ for each of the
first three components and subtract their effect from the data before further analysis. We
note that any instability in the aperture and object positions will also negatively influence
the match of data between subsequent measurement runs. Further components also
exhibit structure in position dependence across the scan area. However, their magnitude
is much lower, indicating that they are of less importance in describing the measured
radiation patterns.

We now turn to matching the newly acquired test data set A with the reference data
(figure 4.3c). Each of the images in the 21×21 grid shows the match of the radiation pattern
at this specific object position with all positions of the reference data set. Three positions
are highlighted for which a zoom is provided. One can recognise that the measurement
with the object centred on the aperture (left) matches best with the same position from the
reference data, and poorly for all positions far away from the aperture. For an off-centre
object position (middle), the measurement matches well with most measurements taken
at similar distance from the aperture, visible as a bright circle in the image, but neither with
the aperture (dark colour, strong mismatch), nor with radiation patterns further out. Finally,
for object locations far from the aperture (right), the radiation pattern matching essentially
reports that the object is surely not at the aperture, without further specific information on
distance to the aperture centre. The observation that, in the vicinity of the aperture, the
radiation pattern mainly depends on just the radial distance from the object to the aperture
matches with the sharply peaked feature centred at the aperture that is visible in the most
important components of figure 4.3b, and can be explained by considering the small,
subwavelength, aperture acting as a single-mode filter. This subwavelength aperture has
dimensions small enough such that its transmission is dominated by a single evanescent
spatial mode [18], of which we measure the far-field radiation pattern. Information about
near-field perturbations of the environment that is scattered to the far field on the other
side of the aperture has to be mediated via this single mode, resulting in a single degree
of freedom for detection. The far-field intensity radiated in this single mode reflects the
strength of the perturbation, which due to the almost circular symmetry of the aperture
translates to the distance from the object to the aperture.

Therefore, we investigate if an aperture of larger size, that can support multiple modes,
shows more components with a stronger dependence on object position. Figures 4.3(e-f)
show the principal components of the library data set for a large aperture of 690×200nm2.
Its geometry is shown in figure 4.3d. The singular value decomposition of the measured
object position dependence of the radiation pattern is depicted in figure 4.3e. Similar to the
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Figure 4.3: Measured dependence of the radiation pattern on the object position for a (a-c) small aperture and
(d-f) large aperture. (a, d) SEM image (top) and shear-force topography scan (bottom) of the transducer. (b, e)
Singular value decomposition of a set of reference data for 21×21 probe points covering an area of 1×1µm2

in 50 nm steps. Shown are the first eight principal component directions V (blue-red), forming a radiation
pattern basis, and matching principal components UΣ (purple-green), representing the importance at each
object position. (c, f) Match of signal data with reference data. Each of the images in the 21×21 grid shows the
match of a newly acquired radiation pattern at this position with all positions of the reference data set. Three
positions are highlighted below.
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small aperture, there is a strong component that corresponds to the presence of the object
near the aperture, leading to less reflected light at low angles, now visible in the second
component. Here, its spatial extent is larger, and elongated, matching the larger size of
the aperture. Additionally, the vertical position of the object is encoded in a strong third
component, redistributing intensity diagonally in the radiation pattern. This agrees with
a picture of the large aperture supporting multiple modes, interacting either resonantly
or below cutoff, as expected for elongated apertures [18]. The position dependence of
further components is reminiscent of higher-order modes at the aperture, but care must
be taken in drawing conclusions about their exact shape as there is no guarantee for the
singular value decomposition to reveal features directly matching the physical modes of
the aperture.

Shown in figure 4.3f is the matching of subsequently recorded test data with the pre-
viously acquired reference data set for the large aperture. Similar to the small aperture,
the general trend is that measurements match well with reference data taken with the
object at the same distance from the aperture. The geometry of the aperture, elongated
along the diagonal, is apparent in the centre of the scan area, for instance as the region
over which data taken with the object at the aperture (left) matches well to the reference
data has an elliptical shape. Interestingly, measurements with the object just above the
aperture (middle) now match well with those positions, but worse with positions below
the aperture. This is a result of the third principal component in figure 4.3e which encodes
the vertical object position, and which was not as important in the principal components
of the smaller aperture radiation patterns.

Comparing the reference position with the highest match to the actual object position
gives the error in reconstructing the position, which is shown in figure 4.4. Figure 4.4a
displays the reconstruction error versus actual object position for a measurement on the
small aperture covering an area of 2×2µm2 in 100 nm steps. Arrows indicate the direction
in which the error is made. The figure shows that it is possible to accurately retrieve the
object position from its radiation pattern for positions within an area of approximately
0.5µm in diameter around the aperture. At positions further away from the aperture, the
typical reconstruction error increases, since the measured radiation patterns depend less
strongly on position. Nonetheless, the span over which retrieval is correct is not limited
to a single point at the aperture position, nor to the aperture size, but to an area of size
that is set by λ, over which the near field has intricate spatial features. Zooming in on
this central area in a new set of measurements, Figure 4.4b shows the results of a set of
measurements across an area of 0.25×0.25µm2 in steps of 25 nm, centred on the aperture.
Here, the average reconstruction error is 32 nm (≈λ/22).

For the larger aperture, reconstruction errors are displayed in figures 4.4c and 4.4d. We
find similar behaviour to the small aperture. However, the area around the aperture where
the object position is correctly retrieved is increased in size and the average reconstruction
error at the aperture has decreased. This is attributed to the multimode nature intrinsic
to the increased aperture size and the resulting additional strong position-dependent
components in the radiation patterns.

Finally, in an approach to increase the field of view, i.e., the area of successful retrieval
of the object position, we consider a two-dimensional array of slot apertures as transducer,
as shown in figure 4.5a. The apertures, each of size 110×50nm2, are arranged in a centred



4

68 4. LOCALISING NANOSCALE OBJECTS

(a)

(b)

0
2

0
0

4
0

0
6

0
0

R
e
c
o
n
s
tr

u
c
ti

o
n
 e

rr
o
r 

(n
m

)

0
5

0
1

0
0

1
5

0

R
e
c
o
n
s
tr

u
c
ti

o
n
 e

rr
o
r 

(n
m

)

O
b
je

c
t 

p
o
s
it

io
n
 (

n
m

)
O

b
je

c
t 

p
o
s
it

io
n
 (
μm

)

Object position (nm)
1000-100

-100

0

100

(d)

Object position (nm)
1000-100

-100

0

100

(f)

Object position (nm)
1000-100

-100

0

100

(c)

Object position (μm)
10-1

(e)

Object position (μm)
10-110-1

-1

0

1

Object position (μm)

-1

0

1

-1

0

1

Figure 4.4: Position estimates for signal data retrieved by the localisation algorithm versus actual position for a (a,
b) small aperture, (c, d) large aperture, (e, f) and two-dimensional aperture array. The colour scale shows the
error between the reconstructed position and the known position. For incorrect estimates, arrows indicate the
direction of the error. The reconstruction error is measured across an area of (a, c, e) 2×2µm2 in 100 nm steps,
and (b, d, f) 0.25×0.25µm2 in 25 nm steps. In (a, c, e), the outline of the transducer is indicated (dashed).

rectangular lattice of pitch 160 nm by 200 nm. Such a structure naturally supports many
more modes than a single aperture and could exhibit a highly intricate spatial near-field
distribution through multiple scattering of plasmon waves mediating coupling between
the apertures. The diffraction-limited illumination spot is centred on the array and has
a width of approximately 900 nm that is smaller than the size of the array. Figure 4.5b
displays the singular value distribution of the dependence of the radiation pattern on the
object position for a measurement covering an area of 2×2µm2 in 100 nm steps. Multiple
components show strong position-dependent features, not only near the illumination spot
but extending across the entire array. This intricate position dependence of the radiation
pattern may enable successful reconstruction of the object position across a large area.

Figure 4.5c shows the match between radiation patterns in the subsequent test data
acquisition run against the reference measurements. For positions around the centre of
the scan area (magnified panels), it is clear that the point of best matching moves in step
with object position across the array. This demonstrates that the position of the object
with respect to the aperture array is encoded in the radiation pattern. Comparing the
position of highest match with the actual object position gives the reconstruction error,
which is shown in figure 4.4e. The object position is accurately retrieved across a large
part of the aperture array, covering an area of approximately 2×2µm2. At positions away
from the array, the reconstruction error increases. Figure 4.4f shows the reconstruction
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Figure 4.5: Measured dependence of the radiation pattern on the object position for a two-dimensional aperture
array. (a) SEM image (top) and shear-force topography scan (bottom) of the transducer. (b) Singular value
decomposition of a set of reference data for 21×21 probe points covering an area of 2×2nm2 in 100 nm steps.
Shown are the first twelve principal component directions V (blue-red), forming a radiation pattern basis, and
matching principal components UΣ (purple-green), representing the importance at each object position. (c)
Match of signal data with reference data. Each of the images in the 21×21 grid shows the match of a newly acquired
radiation pattern at this position with all positions of the reference data set. Some positions are highlighted to the
right.

error for a measurement area of 0.25×0.25µm2 in steps of 25 nm, centred on the array.
Here, the average reconstruction error is 24 nm (≈ λ/29). Similar reconstruction errors
are observed at off-centre object positions on the array. This shows that using extended
complex nanostructures as a near-field transducer enables accurate retrieval of the object
position across an area covering almost the entire transducer.
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4.5. CONCLUSION
In summary, we have constructed a nanophotonic near-field transducer for detecting the
position of a subwavelength object, which is encoded in the far-field radiation pattern of the
transducer. By monitoring the radiation pattern and using a library-based technique, we
demonstrated retrieval of the object position accurate to 24 nm across an area of 2×2µm2.
We find that introducing more complexity to the nanophotonic transducer allows for
encoding of more information about the object position in its rich far-field scattering
signal.

An excellent question would be what limits the precision and the field of view of suc-
cessful position retrieval, and how to enhance these. Ultimately, the localisation precision
will rely on differences between radiation patterns, which contain a component that is
modified due to the presence of the object. One may expect this to depend on the signal-to-
noise ratio of the measured radiation patterns, but also on gradients in the optical near field.
The field of view is related to the spatial extent of a transducer with a complex multimode
structure. Therefore, it is essential to optimise the geometry of the transducer to construct
maximally localised near-field distributions, for instance using insights into the spatial
mode structure of such arrays of apertures, exploiting plasmon resonances of the apertures.
It would be exciting to investigate what physics fundamentally limits the precision and field
of view. In the current experiments, the library and test data have been obtained using the
same transducer. Whether every realisation of the transducer requires separate calibration
would be an interesting question, and robustness of the library could be taken into account
in the design of the transducer. Making use of additional degrees of freedom, such as
polarisation and wavelength, can enable encoding of even more information in radiation
patterns. Although in this work, we focusfed on a multiplexed readout of multiple degrees
of freedom in the signal scattered from a complex nanophotonic near-field transducer,
an alternative route towards rapid nanoscale sensing without physical movement of the
transducer would be to incorporate active reconfiguration of the illumination conditions,
with the aim of shaping the transducer optical near field [19–21]. We will explore this
approach in chapter 5. Extraction of nanoscale information with a combination of complex
illumination, transducer, and detection opens up further avenues of improvement using
compressive sensing methods [22, 23]. We note that, while in the current demonstration a
microscope objective has been used for illumination and collection, our technique is com-
patible with multimode fibre-based imaging methods [24, 25]. This opens up the possibility
of integrating nanostructured transducers at the end of high-numerical aperture fibres that
could be advantageous in industrial applications. Promising prospects of nanophotonic
near-field transducers could for instance be found in the detection of nanoscale defects
and contaminants for large-area mask or wafer inspection in semiconductor industry.
Our approach to encode subwavelength position information in radiation patterns using
a near-field transducer may also extend to fluorescence microscopy, thereby impacting
super-resolution imaging in biophysical contexts [26].
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5
PROGRAMMING METASURFACE

NEAR-FIELDS FOR NANO-OPTICAL

SENSING

Control of optical fields at the nanoscale holds the promise of fast, efficient imaging methods,

but is elusive due to the diffraction limit. In this chapter, we investigate how a single

metasurface patch in the near field of a sample plane may be used to create a wide variety of

intensity patterns by applying different illumination profiles from the far field. Numerical

analysis shows that one metasurface patch may be used to generate complete bases of

illumination patterns on a grid as fine as λ/16. The limits of control are explored in terms

of degrees of freedom on the illumination side and spatial resolution on the sample side.

These illumination patterns are expected to enable sub-wavelength structured illumination

microscopies, compressive imaging and sensing. Quantitative analysis of how the engineered

fields may be used for detection of small scattering particles demonstrates the potential the

approach holds for nanoscale optical sensing.

The work described in this chapter has been published separately as Adv. Opt. Mater. 2100435 (2021)
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5.1. INTRODUCTION

Optical fields are shaped by the interference of incident, scattered and re-emitted fields.
Control of such optical fields, in particular of the distribution of field intensity in space,
is key to both optical microscopy [1–4] and lithography [5, 6]. At sufficiently large scales,
such control can be provided by far-field optics, for instance through the imaging of
binary masks [6], or its dynamic equivalent of active wavefront shaping [7, 8]. At the
nanoscale, diffraction precludes arbitrarily fine far-field control of field structure [9–11].
In industrial lithography, the state of the art in resolution is achieved either by accepting
the diffraction limit and using the smallest possible wavelength [12] or by forgoing optics
altogether by switching to electron beam writing [13]. Super-resolution techniques, like
near-field scanning optical microscopy (NSOM) [14–16] and photo-activated localisation
microscopy (PALM) [17–19], show a number of ways to work around the limitations of
far-field optics, achieving deeply sub-diffractive resolution. However, fluorescence-based
techniques are limited to sparsely distributed sources and scanning probes have very
simple and small exposure or collection volumes that necessitate slow, point-by-point
raster-scanning measurements. Modern inverse design approaches to computational
imaging and parameter retrieval [20–22] (see also chapter 3) defeat these constraints by
careful modelling. Yet, these methods take up either additional complexity to account for
their limited knowledge of exposure field patterns or the requirement of detailed a priori
knowledge on the family of structures under study. Improved control of nanoscale fields
would drastically expand the range of applications where such computational imaging can
compete with traditional super-resolution techniques.

Structuring light on the nanoscale for imaging purposes has been studied in a number
of contexts and by a number of methods. Beams generated by far-field optics can generate
nanoscale features through the phenomenon of superoscillation [23, 24], but superoscil-
latory features are inevitably many orders of magnitude weaker than the corresponding
diffraction-limited spot and have large sidebands [25–28]. In order to control nanoscale
fields without those drawbacks, one has to make use of structures in the near-field of
the target plane. This notion leads to nanoscale equivalents of structured illumination
microsopies, wherein imaging and sensing information can be retrieved from measure-
ments in which an object has been illuminated by a sequence of diverse illuminations [3,
29–31]. One such approach is based on disordered media, where illumination naturally
creates optical bright spots, with positions dependent on incident wavefront [32, 33]. Other
approaches use periodic lattices, which permit the creation of hot-spots at positions linked
to lattice sites [34, 35]. Finally, the hot-spots of small systems of plasmonic particles may
be controlled by incident polarisation [36], by wavelength and incidence angle [37, 38], or
by illumination with pulses that are suitably shaped in time [39]. For imaging and sensing
it would be highly desirable to have a solution able to provide hot-spots that can be con-
trolled independently over a large area, or at least able to provide near field illumination
patterns that are sufficiently diverse and linearly independent to form a complete basis for
imaging. No one of the solutions outlined above can provide independently controllable
hot-spots over a large area. For very small areas of interest, a few-particle system can
provide a good level of control. The degree to which this fine control can be extended to
larger areas by adding more modes to the system remains an open question.

In this chapter, we explore how supplying specific far-field illumination patterns to a
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metasurface patch can dynamically shape near-field energy distribution. We use numerical
optimisation of wavefronts to optimise for desired near-field patterns and show that this
approach can generate complete bases of near-field patterns below a fixed array of dipolar
resonant scatterers. We study the illumination wavefronts required to generate these
patterns. We investigate the conditions under which fields can be generated reliably
and discuss the scattering physics underpinning the structure of the near-field patterns.
Looking towards applications, we demonstrate that the engineered near-field distributions
may be used to detect scattering particles.

5.2. METHOD

We consider a two-dimensional system of subdiffractively spaced scattering sites, referred
to as a metasurface patch, close to a target (sample) plane, as sketched in figure 5.1.
The question we wish to answer is: supposing one illuminates this metasurface patch
from the far field through a high-NA microscope objective, with full control over the
wavefront offered in the objective back focal plane, what field intensity distributions
can one make in the target plane? As a first step to answering this question, we select a
specific metasurface patch design: a 4×4 square grid with pitch λ/4, situated λ/8 to the
left of the target plane, illuminated from the left. The scattering elements are taken to be
identical isotropic strong scatterers, resonant at the drive frequency, with a polarisability
of |α| = 5.56×10−33 Cm2 V−1 and a quality factor of Q = 10, comparable with 100 nm silver
plasmonic nanoparticles at optical frequencies. We treat this as an optimisation problem,
optimising the illumination to create given near field patterns on the grid of positions in
the target plane directly beyond the metasurface patch scatterers.
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Figure 5.1: The problem setting explored in this chapter: an incident field is focussed onto a dipole array, where
the scattered fields produce a specific intensity pattern just beyond the array. We aim to find incident fields that
will produce arbitrary intensity patterns.
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In order to calculate the near-field distribution that a given incident field will result in,
we model the metasurface patch as a collection of discrete dipoles. The discrete dipole
model, discussed in section 2.2, allows us to quickly work out the qualitative behaviour of
sets of interacting particles [40–43] and natively includes multiple scattering, self-action
and retardation [44, 45]. For the metasurface patch, three orthogonal induced electric
dipole moments describe each of the sixteen scatterers. The final amplitude and phase
distribution is found as the self-consistent sum of the incident field and the multiple
scattering-induced fields of all dipoles. As we are primarily interested in the range of
distinct patterns that can be created, rather than the precise parameters required, we
take the environment of the particles to be homogeneous in refractive index, instead of
accounting for, e.g., supporting substrates. This scenario could be obtained experimentally
using index matching oil. Alternatively, our approach could be extended to account for
arbitrary series of interfaces by appropriately modifying the dipoles’ Green’s functions [46].

We envision illumination to be offered as a programmable paraxial, cylindrical beam, in-
cident on the back focal plane of an objective. The objective transforms the incident beam
into a shaped spherical wave converging onto the metasurface patch. This transformation
can be mathematically described by the well known microscope objective transformation
rules for aplanatic lenses, which relate incident beams of finite circular aperture (equival-
ent to NA ≤ 1) to object-side spherical waves upon evaluation of a diffraction integral [47,
48]. We model the incident illumination as a paraxial beam with its waist at the aperture
edge, expanded in the Laguerre-Gauss basis [49, 50], given by

Ep,l (r,φ, z) =C LG
lp
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p the generalised Laguerre polynomials, and integer p and l with p ≥ 0. This basis con-

sists of cylindrically symmetric amplitude patterns, with phase wrapping l times around
the origin. Given this symmetry, the Laguerre-Gauss basis is a natural way to describe fields
on a circular aperture. Since we are interested in the level of control over near fields that
one can obtain with limited degrees of freedom in the incident beam, we truncate the basis
to finite maximum p and l . Importantly, microscope objectives have a hard cut-off at finite
beam radius r , which maps to the numerical aperture of the objective and thus the edge of
its back focal plane. While the pure Laguerre-Gauss basis is orthonormal, truncating it to a
finite aperture removes the normalisation, as well as orthogonality between basis elements
with identical p. To restore orthonormality, we use a modified Laguerre-Gauss basis with
indices p ′ and l . Each Ep ′

i
,l is constructed from the elements Ep j ,l with j < i through the

Gram-Schmidt process [51, 52], resulting in an orthonormal basis Ep ′
j
,l for j < i .

For a given target near-field pattern we seek optimal illuminations through numerical
optimisation of the coefficients for each (p ′, l ) basis element. For an orthonormalised
Laguerre-Gauss basis truncated at p ′

max and lmax, with two polarisation degrees of freedom,
there are N = 2(p ′

max +1)(2lmax +1) input parameters. We denote these as the complex
coefficients cp ′,l , with the full vector having Euclidean norm ||cp ′,l || = 1, corresponding



5.2. METHOD

5

77

to unit power. We shall primarily use the first 30 modes, with p ′ ≤ 2 and |l | ≤ 2, but will
also explore the effect of using more and fewer modes. Through the discretised diffraction
integral [47, 48] we find the incident field driving the metasurface patch, which is input to
the discrete dipole model that lets us calculate the resulting near-field intensity distribution
in the target plane. The optimisation procedure is to find the complex coefficient cp ′,l

values that results in a target plane field distribution most similar to a set target distribution.
We will look for field patterns with spots in the target plane in the same grid as the scattering
sites in the metasurface, as the near-field hot-spots of the scattering sites provide fine
features to field structure through their localised field enhancement hot-spots. In this way,
a 4×4 metasurface can address a 4×4 target pattern t. Since the scatterer hot-spots at
each target position are expected to be the only sharp features in the field distributions,
we may also expect these positions to provide a representative picture of the overall field
distribution. On the target points, we consider binary target patterns t: each individual
position is either required to be on, or off. We judge the match between the observed
pattern s at the selected positions and the target pattern t by a fitness function based on
cosine similarity. Cosine similarity S(s,t) is the most commonly used metric to compare
high-dimensional patterns [53, 54]. It finds the angle between two vectors:

S(s,t) =
s · t

||s|| ||t||

For vectors s and t with only positive entries, S(s,t) lies between 0 (orthogonal) and 1
(perfect match). Cosine similarity only describes the shape of a pattern and is not sensitive
to its intensity. We separately include an intensity criterion in the fitness function, to
reward solutions where an appreciable fraction of intensity ends up in the target pattern,
rather than in side lobes. This leads to the following fitness function:

F (s,t,Θ) =
1

2
S(s,t)+

1

2
C (s,t,Θ) with C (s,t,Θ) = min(1,

∑
s

Θ
∑

t
)

With thresholdΘ= 0 this fitness function is pure cosine similarity. The threshold introduces
a penalty for solutions that have less than a certain amount of energy per ‘on’ position.
Using a threshold rather than a continuous scale, rewarding more intensity, means that the
‘energy landscape’ we are optimising over is not affected once the solver reaches sufficient
intensity in the solution, thereby retaining the desirable features of cosine similarity. To
obtain a gauge for sensible threshold values, we express it as a fraction of the maximum
peak intensity Pmax attainable at the focus of a beam with unit power at NA = 1. Dipole
field enhancement may lead to peak intensities greater than this reference value. For
now, we set a threshold of Θ= Pmax/100; we will explore the effect of different threshold
levels later on. For the optimisation itself, we use Powell’s conjugate direction method
as implemented in NumPy [55], starting from random starting amplitude and phase in
each coefficient and normalising the coefficients at subsequent iterations to maintain unit
power. In order to save computation time, we tabulated the fields in the target plane for
the various orthonormalised Laguerre-Gauss elements and exploit linear superposition to
find fields for arbitrary coefficients. optimisation with p ′

max = 2 and |l |max = 2 converges
in seconds on a standard desktop computer. The best fitness results out of a few tens
of runs are used in order to avoid suboptimal local minima. Per this procedure, we find
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illumination patterns that produce a local optimum in fitness, as measured by two criteria:
first, by having the right intensity pattern and second, by having a minimum intensity per
‘on’ position.

5.3. COMPLETE BASES OF EXPOSURE PATTERNS
We first test our method by setting as target the addressing of individual points in the 4×4
grid, optimising intensity at a specific point and keeping the others dark. Figure 5.2a-c
shows the obtained solutions for the three points that are unique under symmetry: corner
(5.2a), edge (5.2b) and bulk (5.2c). In each case, field intensity in the target plane shows a
distinct single peak at the desired position, proving (by symmetry) that the method can
specifically address any position on the grid. By the fitness metric used in optimisation,
these solutions match 100% to the optimisation target. Before exploring the structure of
these solutions, we show that the method can also reproduce multiple-spot patterns: figure
5.2d shows an optimised checkerboard pattern on the same grid, with the checkerboard
clearly recognisable. The ability to address specific sets of points is notable, considering
that the λ/4 separation between the target points is appreciably smaller than the diffraction
limit.

In order to understand how the method achieves these target plane field structures,
we examine the induced dipole moments in the scatterers. In the same subfigures 5.2a–d
we show the magnitude of the dipole moments in the metasurface under the illumina-
tion conditions producing this solution, as well as the magnitude of their z-components.
Looking at the induced scatterer dipole moments for each solution, we observe that the
spots generally correspond to strong z dipole moments. The spots may thus be regarded
as the hot-spots of individual dipoles, which accounts for their observed sub-diffractive
width (≈ λ/5). Most of the other dipoles have negligible dipole moment or are oriented
in-plane, directing their largest field enhancement out of the target plane. Some notable
exceptions, like the corner sites on the checkerboard (figure 5.2d), are oriented mostly
in-plane. In these cases the target position lies on the flank of a comparatively broad
feature with its field in-plane. For each solution we also show the incident wavefronts
found to produce these solutions. The incident wavefronts are shown as calculated at the
microscope objective back focal plane, specifically as the required flux density on the Abbe
sphere plotted as a function of parallel momentum (kx ,ky ) of the spherical wave offered to
the metasurface targets. We see that solutions are fairly smooth, with a few large bright
spots. This is promising with an eye to experimental implementation, as it suggests that
limited spatial resolution in creating wavefronts will not hamper performance.

By way of illustration, we explore the bulk spot solution in some more detail. Figure
5.2e shows how the incident field is built up from the different orthonormalised Laguerre-
Gauss elements in two polarisation channels. Incident field basis elements with l 6= 0
are required to produce a solution that is not circularly symmetric. Balancing elements
with opposite l produces l-fold symmetric patterns, which can be rotated by the relative
phases for the elements. Following this far-field design strategy, as one might when tasked
to solve the problem by hand, would result in a set of weights symmetric around l = 0.
Though we can certainly recognise a semblance of the expected symmetry in the corner
and bulk solutions, this symmetry is imperfect. Another symmetry that could have been
analytically expected and is shown to a limited degree by the numerical solutions is that
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between the x and y polarisation channels, which is also seen by the symmetry across
the diagonal in the drive fields for figures 5.2a and 5.2c. Such solutions, that respect
the symmetries of the various problems, may form the global minimum in the fitness
landscape of our optimisation. However, it may also be that several distinct solutions solve
the optimisation problem, possibly not all respecting the underlying symmetry. In any
case it is an interesting observation that the demonstrated level of convergence is evidently
sufficient to obtain effective solutions.

Finally, we plot the intensity distribution produced by the bulk spot solution in the
target plane in the absence of the dipole array (figure 5.2f) and the same in the dipole
array plane (fig 5.2g). Field intensity still peaks at the target position, but much less
sharply than is the case in presence of the scatterer array, with appreciable intensity at
both neighbouring dipole positions and neighbouring target positions. The single fine
spot observed in the actual solution before must thus be the result of multiple scattering
within the array. This balances enhancing the field at the target spot with simultaneously
cancelling out the drive field away from the target by destructive interference, resulting in
a high-fitness solution.

Besides the single point basis, applications may benefit from the ability to generate
other bases. Here we specifically think about compressive sensing techniques that may
allow information retrieval with fewer measurements than a single-pixel measurement
basis would require. We attempt to create one example, the Hadamard basis. This basis is
given by the rows of a Hadamard matrix Hn of size n×n, defined as a solution of Hn H T

n =
nIn [56–58]. Hadamard matrices form the optimal basis in a number of compressed
sensing applications and are commonly used for that reason [59–61]. For n a positive
integer power of two, Hadamard matrices may be constructed blockwise through [56]

H1 = [1] H2k =
[

H2k−1 H2k−1

H2k−1 −H2k−1

]

(5.2)

Hadamard matrices have entries equal to 1 and −1. As we cannot produce negative
intensity, we will use offset Hadamard matrices with low level zero. When we map each
of the sixteen patterns in the basis H16 onto our 4×4 grid, we see that ten are unique by
symmetry (for instance, H16(2) is equivalent to H16(5)). We use our optimisation technique
to attempt to reproduce these patterns, with a binary on/off mask as before. The resulting
optimal field intensity distributions are seen in figure 5.3a. We immediately recognise
the target patterns in the solutions, illustrating the flexibility of illumination control on
the metasurface patch in generating field distributions. In order to demonstrate yet more
intricate fields, we can apply the same procedure to an 8 × 8 metasurface patch and
accordingly more target positions. With 64 distinct target spots, the 30 orthonormalised
Laguerre-Gauss modes used so far are insufficient to produce a complete basis, so we
use p ′

max = 6 and |l |max = 6 for this optimisation. Figure 5.3b shows the result for one of
the more challenging target field distributions in the 8×8 patch. Again, the pattern is
clearly recognisable. Using the power of reconfigurable illumination, our general-purpose,
unoptimised metasurface is seen to be suitable for the generation of near field patterns that
enumerate intricate, complete bases, exploiting the coupling between different elements
and the interference between drive and scattered fields.
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Figure 5.2: Structure of optimal solutions. (a) Solution for single spot at corner of 4×4 grid. Field map shows
intensity, with white circles indicating target positions. Dipole moment magnitude and dipole moment z-
component are plotted for each dipole in the array, both normalised to the strongest dipole moment magnitude
in the array. Finally, the incident field pattern found by the optimiser to produce this result is shown. The incident
field pattern is shown as energy flux on the Abbe sphere, plotted in wavevector space. (b-d) Like a, but for a
target hot-spot at an edge position, a target hot-spot at a bulk position and a checkerboard target. (e-g) Detailed
structure of the bulk position solution in (c). (e) Incident field pattern, with weights for each element in the
orthonormalised Laguerre-Gauss basis for x- and y-polarisations and the resulting field pattern amplitude and
phase for both polarisation channels. (f) Intensity profile produced by the optimised incident field in the dipole
plane, without scatterers present. Positions corresponding to target positions are circled. (g) Like f, but intensity
profile in the target plane.

5.4. RESOLUTION AND EFFICIENCY LIMITS

Looking towards nano-optical field control and sensing, it is interesting to see how far
below the diffraction limit we can push the optimisation method. The metasurface patches
considered so far were all taken to have a subdiffractive pitch of λ/4. We repeat the
Hadamard pattern optimisation procedure for pitches from λ/2, close to the diffraction
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Figure 5.3: Complex patterns reproduced by tailored illumination of a dipole array. (a) The complete Hadamard
basis reproduced on a 4×4 grid, with only those patterns unique under symmetry shown. Besides normalised
field intensity maps, insets show the target pattern and labels indicate the pattern index. All intensity maps are
normalised to their maximum value and shown at the same scale; target positions are circled. (b) One element of
the Hadamard basis on an 8×8 grid, specifically number 46. Shown as in (a), using the same scale.

limit, through λ/32, more than an order of magnitude below it. In order to do so, we scale
the entire system down proportionally, so that array-target distance is always one-half of
the array pitch. As shown in figure 5.4a, obtained fitness is excellent for all patterns at large
pitch, with a general trend of fitness decreasing with smaller pitch. When interpreting
values of the fitness function, it should be noted that only very high values are sure to
faithfully reproduce the pattern, because, for instance, for an all-on target, a solution where
one position has no intensity at all may still have 97% fitness. To get a better understanding
of which solutions worked, we use a digital criterion: a solution is successful if all ‘on’ spots
are over 2/3 of the maximum intensity and simultaneously all ‘off’ spots are under 1/3
of the maximum intensity. This criterion is useful for characterising solutions returned
by the optimisation, even though it is not suitable as a direct optimisation metric itself
because its landscape is not smooth [62]. Solutions for which the criterion is not met are
marked with a black dot in figure 5.4a. We see that solutions with fitness over 98% are
generally successful. With this criterion, we see that all solutions successfully reproduce



5

82 5. PROGRAMMING METASURFACE NEAR-FIELDS FOR NANO-OPTICAL SENSING

Figure 5.4: Limits to optimisation. (a) Fitness of solutions for H16 elements at different scales. Field maps show
specific solutions for Hadamard elements 6 (below) and 3 (right). All scale bars have length λ/16 and intensity
maps are shown as in figure 5.3. (b) Number of H16 Hadamard elements successfully reproduced with different
numbers of far-field modes. Solid lines show results with dipole array, dashed lines without. (c) Number of H16
Hadamard elements successfully reproduced with different intensity thresholds.

their target patterns down to pitch λ/16. Notably, the loss in performance is much stronger
for some target patterns than for others. This is mostly explained by considering the spatial
frequencies present in the various patterns, one extreme case being the uniform all-on
pattern H16(1). This pattern barely loses performance from the largest to the smallest pitch
and at any scale would be solved by an ‘electrostatic’ approach. In this case, the target
pattern has an intrinsic symmetry that can be exploited directly, rather than requiring a
tuning of the retarded multiple scattering interactions between metasurface elements. The
checkerboard H16(6) on the contrary is a tricky problem, as evidenced by it achieving the
lowest fitness at pitch λ/8 and failing at λ/32. The solutions for pitch λ/8 and λ/16, in
the lower insets, show that at smaller pitch, the hot-spots in fact become more distinct,
due to the smaller distance between the dipoles and the target plane. Nonetheless, fitness
worsens slightly. The reason for this is that although the features around the ‘on’ dipoles
become sharper at small distance, parasitic features appear at the ‘off’ dipoles as well. This
effect is more pronounced in the right-hand insets, which show the solutions for H16(3),
an easier, lower-frequency target, at pitch λ/16 and λ/32. Here we see the same trend: at
extremely short distances, even out-of-plane dipole moments lead to appreciable intensity
in the target plane. We thus see that although eventually low contrast in the drive field
limits our ability to address sites independently, multiple scattering within the array can
take us a full order of magnitude beyond the diffraction limit.

The incident field basis used in optimisation is truncated to a limited number of ele-
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ments. Intuitively it stands to reason that each additional basis element adds a degree
of control over the drive field features. It is interesting to see how this control over incid-
ent field features translates to control over target plane features. We test this relation by
varying the number of modes in our optimisation routine and comparing performance,
using 12 ((p ′

max, lmax) = (1,1)), 18 ((p ′
max, lmax) = (2,1)), 30 ((p ′

max, lmax) = (2,2))and 182
((p ′

max, lmax) = (6,6)) modes. With 16 individual target sites, assuming linearity, we would
expect to need at least that many basis elements to reproduce any complete basis. Figure
5.4b (solid lines) shows how the number of available modes affects performance, counting
the successfully reproduced patterns (out of 16) versus array pitch. As observed previously,
with 30 modes, we successfully reproduce all elements for pitch as small as λ/16. Optimisa-
tion with 12 modes is insufficient to produce all 16 elements at any pitch, as expected, but
already 18 is sufficient at large pitch. At 30 modes nearly all solutions are already successful.
Adding more modes beyond this point makes relatively little difference: a six-fold increase
in the number of modes, from 30 to 182, adds only a single successful solution, at pitch
λ/32. That our problem is not linear — we optimise for intensity — appears to have only
limited effect on the number of required basis functions, with close to the bare minimum
of modes required in a linear system already providing nearly full control. Why 18 is not
enough may be related to the intensity criterion used, or to large overlap between the drive
fields corresponding to some of the elements after focussing. The minor improvement in
performance offered by additional modes at very small pitch seems to confirm our earlier
interpretation: performance there is limited by low contrast between different dipole and
target positions in the drive fields.

The relative importance of drive field structure and dipole-dipole interaction may be
disentangled by considering the same problem without the dipole array, and instead using
wavefront shaping to directly create intensity patterns in the target plane. Results of this
process are shown by dashed lines in figure 5.4b. At large pitch, performance without the
dipole array is remarkably similar to that with the dipole array, with full control achieved
from 18 modes onwards. However, only with the largest number of modes can all targets
still be solved at pitch λ/4. Towards smaller pitch, the loss of control is drastic, with
only the simplest patterns reproduced successfully. This shows that at fine resolutions,
multiple scattering of the drive field by the dipole array is the mechanism that allows the
full complexity of target patterns to be reached.

It is well known that arbitrarily fine sub-diffractive features in optical fields can be
engineered by exploiting super-oscillation. Such control comes at the expense of intensity,
with parasitic features typically over five orders of magnitude stronger than the desired
sub-diffractive feature [25–28]. Though fundamentally different, we can compare the field
strengths obtained in our method with such results. Dipole hot-spots can provide large
field enhancement, but we may not be able to exploit this fully due to a combination
of two aspects. The first reason is the finite distance between the dipole scatterers and
the target plane, when accounting for realistically size optical antennas. Furthermore,
interactions between dipoles spaced closely together limit the polarisability that one can
pack in a single optical antenna. Our fitness criterion contains a threshold Θ: the minimum
required peak intensity at the target positions relative to incident field maximum peak
intensity. We can vary this threshold to see how easily we can realise solutions at the given
intensity. Figure 5.4c shows the results of this analysis, ranging from no intensity criterion
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at all to a required significant field enhancement. Without the intensity criterion, the
full Hadamard basis is reproduced successfully, even at pitch λ/32. At Θ= Pmax/100, all
but the highest-resolution targets still work. Beyond this, performance falls off quickly.
Interestingly, the best results at any given intensity criterion are found at a pitch of λ/8. This
may represent a balance between small dipole-sample distance, which increases intensity,
and antenna resonance hybridisation effects that would lead to a detuning of the system
from the assumed optical drive frequency, which would thereby tend to reduce intensity
enhancement. Overall, we see that Θ = Pmax/100 leads to good solutions. Though not
exploiting dipole field enhancement in the way a single scanning dipole can, we see that
unlike the other extreme of superoscillation, our method is able to retain an appreciable
fraction of incident intensity in the target plane.

5.5. NANOSTRUCTURES FOR SENSING AND LOCATING SMALL

SCATTERERS
While freely programmable near-field patterns with deep subwavelength resolution should
in principle be of large use for microscopy, it is not immediately obvious how to utilise
them to obtain images. We envision that the easiest usage scenario would be in fluorescent
imaging. There, one could use a bucket detector with no spatial resolution for detected
fluorescence, yet still obtain spatial information by cycling through a full basis of near
field pump intensity patterns. This notion is similar to structured illumination microscopy
[3, 31], which uses programmable though not spatially resolvable fluorescence excitation
patterns. Key in this application scenario is that fluororphores are mutually incoherent
local reporters of pump field intensity that are not themselves a partner in the multiple
scattering process at the pump wavelength. Much more challenging would be image
formation where the metasurface patch would serve as a near-to-far-field transducer
to sense passive, i.e., scattering objects in the target plane (see chapter 4). To establish
to what degree our optimised fields are suitable for sensing purposes, we calculate the
effect of introducing a scattering particle into the target plane beyond the metasurface
on the overall far-field scattered signals. We consider a weakly scattering, off-resonant
perturber, with a polarisability of |α| = 5.56×10−35 Cm2 V−1. This value corresponds to a
small dielectric particle, best described in the single-scattering regime. For any incident
field, we can calculate (or, in experiment, measure) the radiation pattern ΦA(k) of the
array, without the perturber, as flux per solid angle. The sensing signal we use is the total
change in this radiation pattern as the perturber is introduced (resulting in a radiation
pattern ΦA,P(k), figure 5.5a), relative to the total flux ΦP(k) scattered by the perturber when
illuminated by a focussed beam of unit power, without the array:

S =
∫

BFP

[

ΦA,P(k)−ΦA(k)
]

dk /

∫

BFP
ΦP(k) dk (5.3)

Without the array, this dimensionless quantity would be limited to a maximum value of 1.
Higher values should thus be taken to mean an improvement in sensing performance over
straightforward free-space scatterometry. The dipole array has a scattering cross-section
some four orders of magnitude larger than the perturber, which sets an upper bound on S.
We calculate sensing signal S as a function of perturber position with some of the optimal
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Figure 5.5: Sensing with the engineered fields. (a) The sensing method considered: an optimised wavefront is
supplied to the perturbed dipole array. We detect changes in its scattering pattern. (b-e) Change in scattering
signal versus position of a perturber, for different engineered incident fields. Insets show the pattern used.

drive fields found previously. Figures 5.5b-e show signal S versus perturber position for the
target patterns corresponding to those in the insets. The scattered signal maps have peaks
directly matching those in their target patterns, with the same sub-diffractive length scales.
This means that a single measurement will reveal the presence or absence of the scatterer
at its target sites, compatible both with simple searches and compressive sensing strategies
[60]. Moreover, normalised signal level peaks at S > 100, meaning that the dipole array
strongly enhances the signal compared with free-space measurement. We note that with
no moving parts in the system, switching between different incident patterns can be done
at video rates and faster, so that the technique could enable both efficient, rapid sensing,
or sensing of objects moving in time. For instance, one can envision using metasurface
patches with incident field control for sensing and tracking of freely diffusing analytes in
solution [63].

5.6. DISCUSSION
We have explored how reconfiguration of far-field wavefronts may be used to control
near-field intensity profiles mediated by a metasurface patch. With a small, rectangular
metasurface grid, our numerical optimisation technique produces intensities under the
metasurface elements that faithfully reproduce the target patterns. For both simple and
complex bases, the technique is able to reproduce all basis elements faithfully at resolutions
as small as λ/16. Studying the dipole moments in the array shows that the optimisation
finds solutions that use the array dipole hot-spots to create the target patterns. We have
investigated the structure of the required wavefronts and found they are fairly smooth,
which makes experimental realisation feasible. Tweaking the optimisation conditions
has allowed us to quantify the limits to this form of near-field control. With the thirty
(orthonormalised) Laguerre-Gauss modes up to p ′ = 2 and l = 2, Hadamard patterns were
reproduced faithfully for pitch as small as λ/16. An order of magnitude more modes proved
insufficient to reproduce the complete basis at pitch λ/32. Looking into the intensity of
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the hot-spots in the target patterns, we have found good solutions for intensities up to one
order of magnitude below the maximum spot intensity of the incident beam. Finally, we
have shown that the engineered fields can be used for programmable, position-selective
particle sensing, with the metasurface patch providing significant enhancement in signal
level compared to direct illumination.

All the results presented here are based on very simple metasurface patch designs: a
square grid of either 4×4 or 8×8 identical and isotropic antennas right above the points
of interest. The generated solutions that we find tend to have ‘on’ scatterers with large
dipole moments along z, placing its plasmonic hot-spot in the target plane. This observa-
tion suggests that engineering of the metasurface patch, in terms of spatial arrangement
and the per-building block polarisability tensor, should provide further control of near
field programmability. For instance, one can envision engineering the scatterers to have
hot-spots in certain locations by manipulating their electric and magnetic dipole and
multipole response [64]. Another approach is to tailor the response of the scatterers to
respond preferentially to certain polarisations or wavelengths, allowing different scatterers
to contribute to different patterns [36, 38]. What sort of metasurface design is optimal for
field control on a given set of target positions is an interesting question. For instance, it is
unclear whether generally the scattering sites should be located directly over the points of
interest, to maximally exploit their near-field enhancement, or at intermediate positions, to
exploit collective behaviour like the Talbot effect [65] or other designed array features [66].
Another open question is how a finite patch from a periodic array, as used here, compares
to layouts where every point has a distinct scattering environment, like in a plasmonic
quasicrystal [67, 68]. The fact that even the simple metasurface patch design considered
in our work already shows a fine level of control over near-field intensity distributions
indicates that the combination of metasurface patches and programmable illumination
will form a powerful new method for nano-optical sensing.
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6
CALIBRATION-BASED OVERLAY

SENSING WITH

MINIMAL-FOOTPRINT TARGETS

Overlay measurements are a critical part of modern semiconductor fabrication, but overlay

targets have not scaled down in the way devices have. In this chapter, we produce overlay

targets with very small footprint, consisting of just a few scattering nanoparticles in two

separate device layers. Using moiré patterns to deterministically generate many overlay

errors on a single chip, we demonstrate successful readout of the relative displacement

between the two layers and show that calibration on one realisation of the targets can be

used for overlay measurements on subsequent instances. Our results suggest using greater

quantities of smaller overlay targets may benefit performance both directly and through

finer sampling of deformation.
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6.1. INTRODUCTION

Overlay error — the misalignment between different patterned layers on a chip — is a key
quantity in wafer metrology [1, 2]. With feature sizes shrinking and the semiconductor
industry increasingly focussed on few-nanometre nodes, minimising overlay error is crucial
to manufacturing yield and device performance [3–5]. Typical overlay targets consist of
a set of one-dimensional gratings [6]. Scatterometry on a full set of these gratings allows
reconstruction of two-dimensional overlay error, based on understanding of the scattering
properties versus position error [7, 8]. These overlay targets are sized based on their
scattering physics and do not scale down with device feature size, leaving overlay targets
20−100µm squared in the midst of devices fabricated with nanometre-scale precision.
Moreover, the few-nanometre overlay error tolerance in advanced nodes means that non-
uniform overlay across a complete wafer becomes highly relevant. Sampling overlay error
at just a few positions leaves appreciable uncertainty in the wafer deformation model
that predicts overlay at intermediate positions [4, 6]. It could thus be advantageous to
implement smaller overlay sensors, which might be placed in more positions to better
sample overlay error across the wafer.

In this chapter, we perform overlay error retrieval with targets of minimal footprint: just
four nanoparticles, for a target around 400×400 nm2 in size. Using principal component
analysis on angle-resolved intensity patterns, we measure overlay retrieval performance.
We investigate the effect of fabrication errors on the reliability of this method by reusing
calibration data for overlay measurement on a different device and comparing overlay
retrieval error.

6.2. RESULTS

The overlay targets we study consist of plasmonic nanoparticles. Such particles are known
to couple strongly to light despite their small size [9, 10], with scattering cross-sections
larger than their geometric cross-section. This helps to maximise scattered signal despite
the small area. Such particles may be created during patterning steps using metal, but
they may otherwise be replaced by resonant particles made out of dielectrics [11]. We use
disc-shaped gold nanoparticles of diameter 110 nm and height 40 nm, distributed over
two layers: three on corners of a 150 nm square in the bottom layer and another centred
on the same square, but in the top layer. The layers are fabricated on a boro-silicate glass
substrate. We use electron beam physical vapour deposition to deposit gold over a shadow
mask patterned by electron beam lithography. The hard mask is lifted off as a sacrificial
layer, leaving the bottom layer of nanoparticles. We apply a spacer layer of 89 nm of com-
mercial spin-on glass (Microresist OrmoComp) and repeat the process to fabricate the top
nanoparticle layer. The top layer is coated with an identical layer of spin-on glass to avoid
reflections near the focal plane. This four-nanoparticle design can show significant chiral
optical response and has been proposed as a plasmonic ‘ruler’ as the three-dimensional
arrangement strongly modifies optical spectra [12]. Such spectral tuning through spatial
configuration has been demonstrated in arrays of a larger-scale variant of these structures
in the infrared [12]. The four-fold asymmetry in the design makes the design polarisation-
sensitive, which we exploit in chapter 7. Two realisations of these overlay targets are shown
in figure 6.1a and 6.1b, as imaged by scanning electron microscopy. As overlay error in
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Figure 6.1: (a) Scanning electron image of a minimal-footprint overlay target with small overlay error. Particles
circled in blue sit in the bottom (far) layer, the particle circled in red sits in the upper (near) layer. (b) Like (a), but
with much larger overlay error. (c) Deterministically producing many different overlay values on a single chip
using the moiré effect. Distances in this cartoon are not shown to scale: the distance between individual targets is
5µm compared to the 400 nm width of the individual targets. (d) Basic set-up for measurement of overlay error
using angle-resolved intensity data.

this target is the distance between the centre of the circumscribed square of the three
bottom particles and the centre position of the top particle, we see that the target in figure
6.1a has moderate overlay error (30 nm) and the target in figure 6.1b has large overlay
error (180 nm). We recognise the individual nanoparticles, imaged through the spin-on
glass layer. Our goal is then to reliably and efficiently measure the overlay error in these
structures.

In order to test these overlay targets over a range of overlay errors, we exploit moiré
patterns. We use electron beam lithography to fabricate arrays of both bottom and top
components of the target, but with slightly different pitch: 5.0000µm for the bottom layer
and 5.0375µm for the top layer. This way, we realise individually addressable copies of
our overlay target with steps in overlay error of 37.5 nm in both X and Y directions, as
visualised schematically in figure 6.1c. Note that in the fabricated devices, the separation
between individual overlay targets is more than ten times their width. We will refer to
these synthetic overlay errors as overlay values, in order to avoid confusion with the error
in measurement of these overlay values. One convenient property of this experimental
architecture is that a small overlay error in our fabrication process will simply shift the
origin of our overlay reference grid. In experiment, the overlay values in our overlay targets
range from −187.5 nm to 187.5 nm in 11 steps along both X and Y, with uniform deviations
of up to 15 nm for separate arrays. This fabrication process deterministically provides us
with targets with different overlay values, on which we may test overlay retrieval techniques.

In order to determine overlay value, we collect angle-resolved intensity data. We
illuminate the targets with supercontinuum laser light (NKT Whitelase Micro) filtered down
to a 10 nm band around 620 nm. The effective numerical aperture of the illuminating beam
is NAin = 0.37, which produces a focal spot significantly wider than the overlay targets.
This reduces the sensitivity of the experiment on the nanometre-scale positioning of
the overlay target with respect to the laser spot. We collect the back-scattered light over
a numerical aperture of NAout = 0.95 through the same objective. The angle-resolved
intensity distribution is projected onto a camera, as shown schematically in figure 6.1d. We
use a standard CMOS camera (Basler acA1920-40um) at an integration time of 40 ms, which
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is comparable with common practice in overlay metrology [6]. We disregard the central
NAin = 0.37 that corresponds to specular reflection, instead looking at the light scattered
out of this cone by the overlay targets. Two of the scattering patterns thus collected are
shown in figure 6.2a. The images correspond to overlay values of around −180 nm (top) and
190 nm (bottom) along the X axis. We see that the scattering patterns are clearly different
and show beaming along the axis between different particles, in line with the literature on
plasmonic phased array experiments [13, 14]. These scattering patterns are to be mapped
to overlay value.

We retrieve overlay value from angle-resolved intensity data by the same calibration-
based method developed and applied in chapters 3 and 4, where it was used to retrieve
the position of light sources and scattering objects. By this method, we collect scattering
patterns for all the overlay values available in the moiré pattern. We then use singular
value decomposition, a tool from principal component analysis, to identify patterns in the
relation between overlay value and scattering pattern. Singular value decomposition finds
a linear basis for the set of intensity images, such that the total weight of each successive
element in the basis is maximal [15]. For many problems, this permits compression of
the reference dataset, where only the first few, largest-weight elements are preserved with
minimal loss in information. In figure 6.2b, we show the first six angle-resolved linear basis
elements (round patterns, red-blue) and the corresponding weight each element has at the
different overlay values (square patterns, green-purple). The bottom-layer nanoparticles
are drawn for scale. From this perspective, overlay value corresponds to the position of
the fourth, top-layer nanoparticle. After the first element, which corresponds to a largely
overlay-independent background, we see two basis elements that map almost directly to
Y and X overlay value. The latter, the third element, also explains the patterns we saw in
figure 6.2a. Further elements encode finer overlay value dependence of scattering patterns.
The optimal basis also provides some insight into how these overlay targets work, i.e. to
what degree their response is due to near-field interactions between the nanoparticles
versus far-field interference by the individual scattering signals of each nanoparticle. Near-
field interactions are strongest when particles are close together, with a sharp position
dependence. If near-field interactions were the dominant mechanism, we would likewise
expect to see a sharp overlay value dependence in the radiation patterns, probably around
the points where the top-layer particle sits directly over any of the bottom-layer particles.
Instead, the dominant basis elements are nearly linear over the full 350 nm overlay value
range. This suggests that the overlay target produces its scattering patterns mostly by
single scattering and far-field interference. Calculation of the optimal basis in figure 6.2b
constitutes calibration of the overlay target: we now know the overlay value dependence of
scattering patterns on this set of devices.

In the first test, we collect the new scattering patterns on the same structures as were
used for calibration. Experimental imperfections due to detection noise and optical re-
alignment are thus not shared between both data-sets, but fabrication imperfections are.
The new patterns are projected onto the optimal basis and we compare the coefficients
with the weights found for every overlay value in the reference set. Summing the square
of residuals gives a match value at each overlay value. The overlay value corresponding
to the largest match is taken as our best estimate of overlay value given the measurement
data and the calibration. We perform this procedure at every overlay value and calculate
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Figure 6.2: (a) Example scattering patterns for overlay targets with overlay values −180 nm (top) and 190 nm
(bottom) along the X axis. The scattered light fills a cone of NAout = 0.95. The dark region in the centre corresponds
to the illumination cone of NAin = 0.37. (b) The first six elements of the singular value decomposition of a set of
calibration data. Round, red-blue panels show the elements of the linear basis for angle-resolved intensity data
and square, green-purple panels show the weight this element holds at each overlay value. Scale bars around
element 5 show the extent in momentum space of the basis elements as well as the overlay range covered by
the calibration. Black circles mark the size of the overlay target with respect to the calibration area; if these are
taken as static, overlay value corresponds to the position of the fourth particle. (c) Retrieving overlay with the
calibration data. Overlay retrieval error is calculated for new measurement data, using earlier calibration data
from the same device. Where overlay value is not retrieved correctly, arrows indicate in which direction the error
is made. Black circles show the scale of the overlay target, as in (b).

the retrieval error: the overlay value difference between the best estimate and the actual
known overlay value. The results of this analysis are shown in figure 6.2c. Arrows indicate
in which direction the correct overlay value was missed for those cases where it was not
retrieved correctly. We see that most overlay values are retrieved correctly, with the size of
non-zero retrieval errors mostly a single 37.5 nm step. We can further define an ensemble
error ∆OVe, i.e. the average retrieval error across the entire calibrated domain:

∆OVe =
1

nx ny

∑

(x,y)
|vx y | (6.1)

with vx y the individual retrieval error vectors for all overlay values (x, y) on the nx ×ny
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domain. For these measurements, ensemble error is around ∆OVe = 20nm. We note that
these errors are larger than the few-nanometre requirements in advanced nodes. However,
this should be considered in the light of the enormous reduction in size, from 100µm to
400 nm to a side. Although here we show just one realisation, the errors in figure 6.2 do
not appear to have a preferred direction, suggesting that combining multiple such sensors
could improve performance. It is also conceivable that finer steps in the calibration set
would reduce ensemble error. Further investigations might explore whether the source
of the error lies in sensitivity to defects, positioning or something else and thus what the
practical bounds on retrieval error are. From the available data, we conclude that overlay
retrieval with the designed targets works reliably over the 375 nm range.

So far, we have used devices that we had taken calibration data on beforehand. Of
course, in overlay metrology, the target is specifically unknown, having been shaped by
process variations that it is the purpose of metrology to calibrate. To test this more realistic
case, we now reuse the optical calibration data from one device to retrieve overlay value on
a separate one with its own fabrication imperfections. Analysing these in the same way
as before, we find the results in figure 6.3a. We see that retrieval errors are appreciably
larger than with a calibrated device, with ensemble error now around ∆OVe = 60nm. This
increase in error is likely due to variability in our fabrication process. Indeed, a main
challenge for benchmarking metrology innovations for CMOS technology using prototypes
fabricated by e-beam technology, is that e-beam lithography does not reach the reliable
fabrication quality of CMOS processing. Due to the small size of the targets, which leaves
them vulnerable to nanometre-scale defects, a highly optimised process would be required
to ensure reproducibility. To get a better feel for the source of errors, we have repeated our
previous measurements, both calibrated on the same device and independently calibrated,
on both devices, with different polarisations. We can also treat sample data as calibration
data and vice versa. We show all ensemble errors found in this way in figure 6.3b. We see
that the calibrated structure consistently outperforms the independently calibrated one,
but also that the independently calibrated device consistently obtains an ensemble error
around ∆OVe = 65nm. This suggest that the differences between structures may cause a
more or less fixed ensemble error level, rather than a wide spread. Of course, measurements
on more devices of this type would be needed to further inform our interpretations and
verify how non-ideal device fabrication affects overlay retrieval performance.

6.3. DISCUSSION
We have performed two-dimensional overlay retrieval with tiny overlay targets, consisting
of just four nanoparticles. Using a moiré grid to deterministically produce a wide range
of overlay errors on a single chip, we show overlay retrieval error with mean error around
20 nm on calibrated devices, using tens of millisecond integration times. This performance
is obtained by principal component analysis of angle-resolved intensity data, which shows
that the main variation in patterns maps nearly linearly to the two spatial axes. Reusing
calibration data on separate structures shows overlay retrieval errors around 65 nm, which
is clearly larger than on calibrated structures, but nonetheless shows that the unavoidable
defects arising from nanoparticle fabrication may be tolerable in overlay metrology.

The overlay targets demonstrate here are much smaller than typical overlay targets.
Of course, larger overlay targets do provide stronger scattering signal, besides the added
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Figure 6.3: (a) Overlay retrieval with independent calibration data, shown like figure 6.2c. (b) Overlay retrieval per-
formance across measurements, either using a fully calibrated device or retrieving overlay through independent
calibration data. Differently oriented triangles correspond to different polarisations.

benefit of diffraction orders, which will affect the accuracy with which overlay error can be
measured. This may be part of the reason why the current demonstration does not meet
the commercial few-nanometre requirement. For the measurements with independent
calibration, another reason may be sought in fabrication errors. The fabrication process
employed is known to produce errors in particle size and shape that cause variance in
scattering properties [16]. We fully expect that the carefully controlled fabrication processes
used in the semiconductor industry will drastically reduce variability between devices,
bringing the ensemble error level for structures with independent calibration much closer
to the error level of the fully calibrated devices. If the errors for calibrated structures can be
shown to be uncorrelated, as seems to be the case from the data presented here, multiple
minimal-footprint targets could be used to bring effective ensemble error down to tolerable
levels. With the five order-of-magnitude difference in footprint, this would still represent a
major gain in area. Our algorithm exclusively used angle-resolved intensity data to retrieve
overlay. It is worth asking how the performance of this readout scheme compares to use
of spectral information, as performed elsewhere [12], or use of other far-field degrees of
freedom like polarisation. Optimal far-field measurement schemes remain a fascinating
target for further research.

Our minimal-footprint targets seem to encode overlay error in radiation patterns
through far-field interference, rather than through more strongly position-dependent
multiple scattering mechanisms. With this in mind, it is interesting to ask how more
precise overlay sensors may be designed for a given measurement [17, 18]. One path could
be to exploit phenomena with a stronger position dependence, such as plasmonic coupling
between individual nanoparticles [19] or molecular ruler-like systems [20]. Overlay sensors
are typically made, by necessity, out of the same material as the layers between which
overlay error is to be measured. This means that metallic particles, as used here, can only
be used in part of overlay applications. For others, dielectric (gap) resonators [11] may be a
good alternative, especially seeing how our technique does not appear to require multiple
scattering between overlay target elements. As device features continue to shrink and
overlay metrology becomes increasingly vital to process yield, we expect that innovation in
overlay targets will prove critical.
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7
INFORMATION ADVANTAGE FROM

POLARISATION-MULTIPLEXED

READOUT OF NANOPHOTONIC

SCATTERING SENSORS

Optical metrology is an important tool in industry and science, with the goal of retrieving

parameters accurately at maximum speed and minimum photon budget. We explore how

multiplexing readout across different polarisation channels can enhance such parameter

retrieval in nanophotonic overlay sensors. We retrieve overlay error for nanoscale scattering

structures and show that multiplexing either incident or analysed polarisation leads to

improved parameter retrieval in the systems studied, with improvements equivalent to more

than 7 dB in signal level at fixed photon budget. These results demonstrate that significant

advantages in measurement performance of nano-optical sensors can be gained by exploiting

the vectorial nature of optical fields.
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7.1. INTRODUCTION

Advancements in overlay and critical dimension metrology are critical enablers of contin-
ued scaling in the modern semiconductor industry [1–3]. The strong desire for inspection
to match the throughput of other process steps [4] has led to the dominance of optical
methods, which generally work more quickly than scanning probes [5, 6] or electron beam
based methods [7, 8]. As such, these is great pressure for non-contact optical inspection
methods to evolve beyond the current state of the art [9–11]. With process requirements
growing ever more stringent [12, 13], the various optical critical dimension measurement
techniques, using polarimetry, ellipsometry, interferometric scatterometry and more [10,
14–17] need to grow faster and more precise.

Polarisation effects are known to affect signals in many ways and are frequently ex-
ploited in metrology, with Mueller polarimetry, which resolves the full 4×4 matrix that
describes polarisation transfer through a sample [18, 19], an established technique in
semiconductor metrology [13, 20]. The power of polarimetry is further enhanced when
combined with other information channels, for instance as in angle-resolved polarimetry
[21]. However, full polarimetry is a large investment in terms of experimental complexity.
Full high-NA angle-resolved polarimetry and characterisation of the polarisation transfer
function of a sample both require a complex series of measurements. In the case of sample
metrology, it typically requires careful calibration of the optical set-up and a detailed theor-
etical model of the structure of interest. It is worth considering if polarisation information
can be used in metrology in a more straightforward way, without recovering the full Mueller
matrix, which requires at least 16 measurements, but simply by measuring more than one
polarisation channel and combining the information thus collected.

In this chapter, we show that for a given photon budget, more precise overlay inform-
ation can be extracted from a scattering target by polarisation multiplexing than from
unpolarised measurements. We measure overlay error on few-nanoparticle scattering over-
lay sensors and aim to optimise measurement precision. We consider several strategies for
multiplexing light polarisation in input and output channels. Applying a calibration-based
method to retrieve overlay from devices with a wide range of overlay errors, we compare
the performance of the different strategies to quantify the information gained by combin-
ing polarisation channels. We explore the dependence of performance improvement on
photon budget through a discrete dipole model and analyse both theoretically and in ex-
periment how overlay performance for different strategies relates to wavevector resolution.
Finally, we discuss how combining information from different polarisation channels may
benefit nano-optical sensing more broadly.

7.2. METHOD

We study polarisation multiplexing by applying it to overlay measurement. In overlay
measurement, we consider two layers of a sample that have a small but unknown in-plane
displacement with respect to the design, as a result of fabrication tolerances. The challenge
is to measure this displacement, known as the overlay error. We use the same overlay
targets employed in chapter 6. These overlay targets have an exceptionally small footprint
of only 400 nm to a side, consisting of four nominally identical gold discs of thickness 40 nm
and diameter 110 nm. Such particles have a plasmonic resonance at a wavelength around
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Figure 7.1: (a) Device structure. Left: electron image showing overlay error on an overlay target: zero overlay
occurs when the red cross, centred on the red-circled particle, overlaps with the white cross, centred between the
blue-circled particles. Circled arrows define the polarisation axes in the same XY frame as the electron image.
Right: schematic cross-section of device, showing arrangement of layers and objective. (b)-(d) Three strategies
for polarisation multiplexed measurement, either (b) changing an input polariser between measurements, (c)
changing an analysis polariser between measurements or (d) reading out two polarisation channels in parallel.
(e)-(f) Example measurements using quadrant detectors in two input polarisation channels. Circular panels show
detector pixel intensities, square panels show the relative arrangement of particles that produced this reading.
(g)-(h) Two entries from the singular value decomposition of a full reference set for 11×11 overlay values. Circular
panels show pixel intensity components corresponding to this basis element, square panels show the weight this
basis element has for each position of the fourth particle.

700 nm, around which frequency they strongly scatter incident light. We use a layout with
three particle in the bottom layer, arranged in an L-shape, and a solitary particle in the
top layer, all embedded in commercial spin-on glass (MicroResist Ormocomp) with the
layers separated by 89 nm (more details in chapter 6). This system is studied optically from
below, as sketched in figure 7.1a. The overlay error in this target is the distance between the
midpoint between opposite particles in the bottom layer and the midpoint of the particle
in the top layer. The relevant displacements and axes are indicated on a scanning electron
image of one such structure in figure 7.1a. This design breaks the symmetry between
some of the axes, such as D and A, without breaking that between H and V unless the
top-layer particle does so. This may lead to some polarisations, or combinations thereof,
providing more sensitive overlay measurements than others. We fabricate such targets with
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a wide range of relative displacements. Devices lie on a grid where both X and Y overlay
nominally range from −187.5 nm to 187.5 nm in 37.5 nm steps (see chapter 6). Fabrication
produced a constant offset of around 15 nm and nanometre-scale fabrication errors on top
of that. The calibration-based measurement method we will use is not affected by these
non-idealities. We will refer to these engineered overlay errors as overlay values. The grid
allows us to verify our overlay measurement performance over this entire parameter range
and compare the different readout strategies.

There are several feasible strategies for measuring complementary polarisation chan-
nels for a static sample structure. In the first we consider polarising a beam of light before
directing it to a sample. The reflected (or transmitted) light is captured on a detector,
possibly but not necessarily after focussing. By rotating the input polariser, the sample
response to light of complementary polarisations may be measured separately, as sketched
in figure 7.1b. Both independent measurements can then be used together to address the
overlay problem. We refer to this approach as input polarisation multiplexing. Alternatively,
the sample may be illuminated with light of a fixed polarisation, or with unpolarised light,
which is analysed along different polarisation axes. This analysis may be performed in
series by rotating an analyser, in analogy with the input polarisation multiplexing scen-
ario, as sketched in figure 7.1c. Alternatively, both channels may be measured at once by
employing a beam splitter and two analysers or a polarising beam splitter, as sketched in
figure 7.1d. The latter two strategies, which we refer to as output polarisation multiplexing,
are equivalent in the case of static samples, but either may have practical advantages over
the other. We wish to explore how input and output polarisation multiplexing compare to
standard approaches that use a single fixed polarisation or unpolarised light, as well as to
each other.

In our measurements, we collect radiation patterns in the form of Fourier images
representing radiant flux versus parallel wavevector (kx, ky) up to the numerical aperture of
our objective NAout = 0.95. The sample is illuminated with NAin = 0.37 and the part of the
Fourier images corresponding to specular reflection of the illuminating light is blocked. We
will mostly consider measurements made with an effective quadrant (four-pixel) detector,
with the radiation pattern centred on the detector, so that all pixels show equal intensity in
the case of a symmetric radiation pattern. We implement such a detector experimentally
by projecting Fourier images onto a higher-resolution camera (Basler ACA1920-40UM)
and integrating the counts in each quadrant of the observed back focal plane image. This
produces four pixel values per measurement in the case of traditional single-polarisation
measurements and eight in polarisation-multiplexed cases. Experimental details are
otherwise as in chapter 6. We collect far-field data for the full grid of overlay values available
on the sample. Two example measurements for different overlay values are shown in figure
7.1e and 7.1f. Circular panels show intensity on each segment of the quadrant detectors for
horizontal (top) and vertical (bottom) polarisation.

The measured intensities are the result of an interplay of scattering events within
the device that, for ideal devices, we might be able to predict by any number of theoret-
ical methods. Though we will use a discrete dipole approximation to qualitatively study
some of the behaviours of the devices, for actual overlay retrieval we opt for a calibration-
based method. Unlike forward theoretical modelling, such calibration-based methods
handle realistic fabrication artefacts and parasitic reflections without complication. The
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calibration-based method we use to extract overlay value from far-field data was previously
used to localise point-like light sources (chapter 3) and scattering objects (chapter 4). It
requires one reference measurements per resolvable value in the calibrated domain. In
this case, this means one measurement for each overlay value in the sample grid. Each
such measurement is used as a row in a signals matrix A. Singular value decomposition
finds the optimal basis for a set of measurements, as discussed in chapter 3 and specifically
for this type of data in chapter 6.

Two elements of such an optimal basis, from the singular value decomposition of the
data collected on the full grid before, are shown in figures 7.1g and 7.1h. Circular panels
show the value of the basis elements at each pixel for either polarisation. Square panels
show the weight these basis elements have at each position in the reference set. There
are as many basis elements as pixels, but only a few have appreciable weight anywhere.
The examples shown are interesting because they have large weight, but also a smooth
dependence of weight on position, with broad, contiguous regions of positive or negative
weight. Importantly, each of the basis elements has different pixel values for the two
polarisation channels. This means that being able to resolve the polarisation channels
may provide additional information: there is a difference that would have washed out in a
single-polarisation or unpolarised light measurement.

7.3. RESULTS
We use this calibration-based method to reconstruct overlay from new data. In order to
illustrate the qualitative behaviour of the method, we first turn to a theoretical model.
We use a discrete dipole approximation, where the overlay target is modelled as four
point scatterers of polarisability |α| = 5.56×10−33 Cm2 V−1 and a quality factor Q = 10
in a homogeneous medium. As discussed in section 2.2, discrete dipole models let us
quickly estimate the qualitative behaviour of sets of interacting particles [22–25], taking
into account multiple scattering, self-action and retardation [26, 27]. We can calculate
far-field data on quadrant detectors and analyse them in much the same way as for the
experimental data. We specifically include synthetic shot noise for the appropriate photon
budget, around N = 106, which corresponds to the integrated intensity over all pixels
in all measured polarisation channels. We can calculate far-field data for a large grid of
overlay values, 2λ in 31 steps to a side, and take their singular value decomposition. For
newly calculated data, with independent noise, we project these new data onto the optimal
basis and compare the coefficients with those for the reference positions through the least
square of residuals. The reference position corresponding to the best match is taken as
the overlay value estimate. In figure 7.2a we show the error in such estimates for one full
set of newly generated test data using input polarisation multiplexing, projected onto the
optimal basis. Some patterns can be seen in these noisy data, with retrieval errors largest
in the corners and along the symmetry axes of the quadrant diode. We can average many
(ni ) instances to find an average error ∆OVa at some overlay value (x, y):

∆OVa,x y =
1

ni

∑

i

|vi | (7.1)

where vi are the individual error vectors between the estimated and correct overlay value,
for each instance i . Averaging 300 instances of the error map from figure 7.2a, with different
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Figure 7.2: Overlay retrieval in theoretical input polarisation multiplexing. (a) Overlay retrieval error versus
overlay value for one set of noisy synthetic data. (b) Average error versus overlay value for the scenario used in (a).
(c-d) Average error versus position for experimentally relevant library dimensions, for (c) unpolarised detection
and (d) H-V polarisation resolved detection. (e) Ensemble error versus photon budget for a range of polarisation
strategies, with library dimensions as in (c).

noise realisations, produces the average error map in 7.2b. We see some fine structure in
average error versus overlay, but mainly that overlay performance is best for small overlay
value. We can now rephrase our original challenge: we intend to find out if and how such
average error maps improve with the introduction of polarisation multiplexing at constant
total photon budget.

We first test input polarisation multiplexing in theory. We consider the same overlay
values available in experiment and calculate average error for two polarisation strategies:
unpolarised light and input polarisation multiplexing between H and V polarisation (as
defined in figure 7.1) for the same total photon budget (integration time). The considera-
tion of constant photon budget means that any advantage of multiplexing would imply that
the incorporation of another polarisation channel is more valuable to overlay retrieval than
averaging twice as long in a single polarisation channel. We calculate average error versus
overlay and, as can be seen in figures 7.2c and 7.2d, average error is appreciably lower with
polarisation resolution than without. In some cases, polarisation resolution appears to
allow distinguishing between some non-unique solutions, like directly below the outer
particles in the bottom layer. Nearly all positions show an improvement in average error
and it is conceivable that all would with more averaging. We can further analyse these data
by averaging the error maps across all overlay values to produce an ensemble error ∆OVe:

∆OVe =
1

nx ny

∑

(x,y)
∆OVa,x y (7.2)

for all nx ×ny pairs of overlay value (x, y) in the library. This ensemble error depends
on the size and density of the library, but may be compared with ensemble errors for
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Figure 7.3: Overlay retrieval in experimental input polarisation multiplexing. (a-b) Overlay retrieval error for (a)
unpolarised detection and (b) H-V polarisation resolved detection. Dimensions are the same as in figure 7.2(c).
(c) Ensemble error for experimental data versus polarisation strategy: a single fixed polarisation, unpolarised illu-
mination and detection and resolved orthogonal polarisation channels. Differently oriented triangles correspond
to different devices under test, averages are calculated across all data for a given polarisation strategy.

libraries with the same dimensions. The ensemble error for given library dimensions
will be a function not only on the polarisation multiplexing strategy used, but also of
the available photon budget. We calculate this ensemble error over a range of photon
budgets and for the polarisations used before, as well as multiplexing between D and A
polarisations and all corresponding single polarisations. The results of these ensemble
average calculations, plotted in figure 7.2e, show the two multiplexed strategies drastically
outperforming both unpolarised and single-polarisation measurements. As a rule, the V-H
polarisation channels and their combinations perform a bit better than the A-D ones, but
the difference is small compared to the large advantage from polarisation multiplexing,
which corresponds to an effective improvement in photon budget of around 7 dB for
photon budgets around 3×105: the performance obtained with multiplexed data would
otherwise require four times the averaging time.

Due to the nature of the calibration-based method used, average and ensemble errors
depend on the size and density of the library. The largest possible average error corresponds
to

p
2(N−1) steps for a square library of N×N positions. Moreover, even without any signal,

we can achieve an ensemble error of only around half the library width by guessing all data
were taken at the library centre. This is likely to limit observed ensemble error at very small
photon budgets. Our method thus is only valid in the regime of small ensemble errors.
Since the results of figure 7.2e are found at ensemble errors that are a small fraction of the
width of the library, we expect to be able to observe any differences between polarisation
strategies — as indeed we do. This improved performance of the polarisation resolved data
in the discrete dipole model indicates that polarisation multiplexed measurement results
in a significant improvement in overlay retrieval performance.

By the same approach, we compare the overlay retrieval performance of different
polarisation strategies on experimental data. We calculate overlay retrieval error for a
new set of measurements on the same structures, using the reference library from figures
7.1g and 7.1h. In figure 7.3a and 7.3b, we show such error maps for unpolarised and V-H
resolved measurements, on the same scale as the discrete dipole results in figure 7.2c.
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Unlike in the theoretical case, we do not directly recognise the shape or orientation of
the overlay target in the data. It is likely that fabrication errors or experimental details
dominate the pattern of errors, as both are expected to be large with few-nanoparticle
overlay targets. Nonetheless, we see a drastic improvement in overlay retrieval performance
from including polarisation information when comparing the unpolarised case to the
polarisation-resolved one. We repeat this experiment on different realisations of the same
set of structures. When we calculate ensemble error for each set of such measurements, as
well as for single-polarisation measurements (the same combinations of polarisations as
in theory), we find the results shown in figure 7.3c. These results confirm the improvement
in performance: single-polarisation and unpolarised measurements perform similarly, but
polarisation-resolved measurements perform much better, with average ensemble error
across a series of measurements going from around 70 nm (two library steps) to around
10 nm (a fraction of one library step). This improvement is greater than the improvement
found at similar ensemble error in the theoretical results (figure 7.2e). This may be because
experimental performance is limited by other sources of error than shot noise, the only
noise source included in the theory. The experimental data confirm that input polarisation
multiplexing can drastically improve overlay retrieval performance.

We similarly study output polarisation multiplexing. Discrete dipole analysis, using
the same library dimensions as in experiment, shows very similar trends as for input
polarisation multiplexing. Figure 7.4 shows ensemble error calculated versus photon
budget for unpolarised input and readout, single-polarisation input (H or V) and readout
along the same polarisation and for unpolarised input with H-V polarisation resolved
readout. Like for input polarisation multiplexing, we see that single-polarisation and
unpolarised analysis perform similarly, but are outperformed by polarisation-resolved
readout. The effective improvement in photon budget is over 7 dB at a photon budget of
106. Repeating our earlier experiments with (temporal) output polarisation multiplexing
instead of input polarisation multiplexing, we again see a significant improvement going
from unpolarised measurements to H-V polarisation resolved ones, as in figures 7.5a and
7.5b. A series of such measurements across different devices (7.5c) show the same trend as
the theory: polarisation-resolved analysis significantly outperforms the other strategies,
confirming that, like input polarisation multiplexing, output polarisation multiplexing
leads to more precise overlay retrieval.

At this point we ask how polarisation channels relate to other possible information
channels in causing the observed improvement in performance. We have so far considered
quadrant detectors.Instead, we can analyse the calculated or measured radiation patterns
at higher resolution in momentum space, keeping the detector pixel grid centred on the
centre of Fourier space and covering the same numerical aperture with more pixels. We can
calculate the photon budget, i.e. measurement time, required to obtain a certain maximum
ensemble error. Several observations may be made about the results of these calculations
for output polarisation multiplexing, shown in 7.6a. First, detectors with more pixels allow
a given performance to be obtained at lower photon budget than those with fewer pixels.
The largest advantage is seen going from just a few pixels to some tens, beyond which the
improvements become smaller. This may be related to the number of effective degrees of
freedom of the radiation patterns considered: the small size of our overlay targets means
that their radiation patterns will be fairly smooth and may be reconstructed from fewer
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Figure 7.5: Overlay retrieval in experimental output polarisation multiplexing. (a-b) Overlay retrieval error for (a)
polarisation-insensitive and (b) polarisation-resolved analysis. (c) Ensemble error for experimental data versus
polarisation strategy, shown as in figure 7.3c.

samples than would be needed to reconstruct the radiation patterns of extended structures.
Another observation is that the polarisation-resolved photon budget requirements are
consistently lower than those for unpolarised measurement. This demonstrates that polar-
isation multiplexing is advantageous over a wide range of photon budgets and detector
resolutions (in pixels).

One way to quantify this advantage is as effective noise reduction: the reduction in
measurement time to obtain equal overlay retrieval performance when using (output)
polarisation multiplexed analysis instead of unpolarised analysis. We calculate effective
noise reduction as a function of initial (unpolarised) photon budget, which is related to
ensemble error as per the data in 7.4. This analysis is shown in figure 7.6b. We see that
effective noise reduction generally increases with photon budget. Few-pixel detectors
are much more helped by polarisation resolution than the high-resolution detectors that
permit good overlay retrieval even without polarisation resolution, as we saw from figure
7.6a. Effective noise reduction at 106 photons appears to plateau at slightly more than 3 dB
for anywhere between tens and thousands of pixels. With lower photon budgets, effective
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Figure 7.7: Experimental overlay retrieval performance versus detector resolution. Ensemble error as measured
with different strategies, plotted versus detector resolution. Triangles show the experimental data averaged to
obtain the lines.

noise reduction decreases for all detector resolutions, but more strongly so for few-pixel
detectors. These few-pixel detectors are much more error-prone with or without polar-
isation resolution at these photon budgets, such that noise reduction at a photon budget
of 105 is nearly independent of detector resolution. The 2 dB effective noise reduction in
this regime still corresponds to an appreciable speed-up in measurement time for a given
precision.

We can also analyse how greater detector resolution affects experimental overlay re-
trieval performance. This is implemented experimentally by taking the original high-
resolution camera images and dividing the region of interest into smaller superpixels than
the quadrants considered before, thus retaining more of the wavevector information in the
camera images. In figure 7.7 we show the dependence of ensemble error on detector resol-
ution for unpolarised measurement and output polarisation multiplexed measurement.
We see that performance improves rapidly with the number of pixels for small numbers of
pixels but then plateaus, matching our expectation that the small scales involved would
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lead to broad features in Fourier images. Polarisation resolution with a quadrant detector,
for 8 degrees of freedom in total, provides performance between those of non-resolved
detection with 9 and 16 degrees of freedom. We thus see that, one-for-one, the additional
polarisation-resolved degrees of freedom are more valuable in overlay retrieval than the ad-
ditional wavevector degrees of freedom. We also see that a polarisation-resolved 3×3 pixel
detector outperforms non-resolved detection at many thousands of pixels. The precise
numbers and degree of improvement are likely to depend on the details of the scattering
problem under study. However, these data show that not all degrees of freedom are equally
informative, polarisation proving to be a particularly informative one on scattering systems
such as those considered here.

7.4. CONCLUSION AND DISCUSSION
We have explored how combining different polarisation channels may assist parameter
retrieval in optical metrology. Our results indicate that combining information from mul-
tiple polarisation channels leads to significantly better overlay retrieval performance than
standard approaches for few-nanoparticle overlay targets. Pairing different incident light
polarisations and pairing different analysis polarisations both provide an improvement in
effective photon budget of 7 dB or more, as compared with either unpolarised or single-
polarisation illumination and detection. These results are expected from discrete dipole
theory, which predicts the advantage will persist over a wide range of photon budgets, and
verified using experiments. Comparing polarisation-multiplexed readout with additional
degrees of freedom from higher wavevector resolution, we see that polarisation resolution
is particularly valuable, with a 3×3 detector with polarisation multiplexing outperforming
a non-polarisation-resolved detector with many thousands of pixels.

It seems likely that polarisation multiplexing can help in parameter retrieval not just
for our few-particle overlay targets, but for any metrology problem where sample inter-
actions are polarisation-dependent, particularly in such applications as alignment and
shape measurement. The technique may be particularly valuable for nanoscale scattering
systems, which due to their size cannot encode information in fine features in scattering
patterns. It would be interesting to explore which combinations of polarisation channels
would provide most information for a given target. Conversely, overlay targets may be
designed for maximum sensitivity for given measurement conditions [28, 29]. One may
consider a similar multiplexing approach working based not on the polarisation degree of
freedom, but for instance on distinct incident wavevectors or wavelengths, all of which
may interact differently with samples. Further studies may investigate how these different
degrees of freedom interact and complement one another in terms of sample information
encoded. Multiplexing strategies like those tested here are particularly attractive because
of their simplicity. Output polarisation multiplexing in particular can be performed very
easily and at minimal expense, requiring only a polarising beam splitter and twice the
camera pixels to introduce. As such, polarisation multiplexing has the potential to enable
more precise measurements in a myriad of applications.
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8
CONCLUSION

Over the course of this thesis, we have seen that Fourier images encode nanoscopic near-
field information. The library-based method developed in chapter 3 retrieves such nano-
scopic information reliably, successfully localising light sources and both microscopic
and macroscopic scatterers (chapters 4, 6 and 7). It is also robust to perturbations and
noise, with potential for compression of the calibration dataset. It is, however, limited to
discretised libraries and a correspondingly finite set of possible parameter values. This
contrasts with analytical models, which describe far-field scattering patterns as a continu-
ous function of scattering parameters like relative position. Such models lend themselves
to a different type of analysis: exploiting a quantitative model of information in each
degree of freedom. Calculating the interdependence of far-field observables on scattering
parameters lets us quantify the (Fisher) information a given observable carries about each
such certain parameter [1, 2]. It would be highly interesting to investigate how different
far-field channels compare in terms of their information content with regard to nanoscopic
parameters of the optical system. Such an approach might be used to engineer optimised
variants of measurement schemes, for instance of the polarisation-multiplexed readout we
have discussed. For instance, it might find that certain polarisation combinations are more
informative than others, or that certain combinations of wavevectors directly measure
some particular parameter.

One way to still apply continuous information theory whilst avoiding setting up a full
analytic model of a scattering system, would be to interpolate (and possibly extrapolate)
calibration data. We have seen that in many cases, our principal component analyses find
simple dependence of radiation patterns on the parameters of interest, with the dominant
components often linear relations. We can invert this process by considering a few (or-
thogonal) simple functional forms and calculating which have appreciable overlap with
the parameter dependence in the calibration data. For suitable problems and functional
forms, the radiation pattern corresponding to this functional form will then represent
this continuous degree of freedom. Further investigation could resolve how well such
interpolation would work for a range of problems, but also how few calibration points are
necessary for a given structure. We expect this would relate to the number of degrees of
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freedom in the scattering problem, in much the same way we saw a limited number of
singular values play a significant role in our principal component analysis. One challenge
would then be to cleverly sample the parameter space to calibrate well with the minimum
number of data points.

We have seen that in the parameter retrieval problem of chapter 7, polarisation inform-
ation is more valuable than longer integration of wavevector information, showing better
performance at equal total photon budget. It is hard to imagine that this result would be
an artefact of our parameter retrieval technique and so we expect that it will generalise
to a wide range of problem settings. The advantage of polarisation multiplexing is extra
encouraging for the fact that it is so simple to implement: projecting the two output ports
of a polarising beam splitter onto two camera sensors (or different regions of one) produces
higher-precision parameter retrieval. A four-fold speed-up in integration time is highly sig-
nificant in applications and it is worth investigating to what degree this insight generalises
to other metrology techniques that do not normally use polarisation information.

The polarisation multiplexing strategy is a specific realisation of a more general idea.
Different far-field channels encode information differently and combining different de-
grees of freedom may may make parameter retrieval more efficient. We have mentioned
the information theoretical perspective on this, where variability in some observable en-
codes variability in some underlying parameter. A more directly physics-based question is
which physical degrees of freedom are most likely to complement one another in terms
of information encoded. Apart from polarisation and wavevector, we may for instance
consider real-space and (frequency) spectral information. Wavevector and real-space
information are closely related, specifically through the phase profile of the observed
wavefront. Whether this helps or harms the synergy between their information flows
remains to be seen. Interferometry could directly provide the additional information from
insight into the phase profile. Wavelength multiplexing is another possibility. With the
relatively broad resonances of plasmonic particles, varying wavelength over a narrow range
is approximately equivalent to scaling up or down the scattering structure. Over larger
wavelength ranges (many tens of nanometres), distinct resonances may be exploited. This
looks like a promising avenue of exploration, especially where resonances are particularly
sensitive to some quantity of interest.

This brings us back to a question from chapter 1: what is a good transducer? In chapter
5, we showed that a fairly simple transducer, a regular 4× 4 array of dipole scatterers,
can nonetheless be used to produce intricate near-field patterns by tailoring its far-field
illumination channels. We saw that these field patterns might then be used for efficient,
spatially resolved scatterometry. This is an encouraging result, but does not mean the
transducer is optimal. For practical applications, we not only want efficiency to be as high
as possible, but we are also interested in robustness to imperfections in fabrication and
experimental alignment. There is no obvious rational design strategy for engineering the
optimal transducer to measure a given parameter. One might start from a few (intuitive
or random) designs and considering the dependence of parameter retrieval performance
on the transducer design parameters. This approach would permit use of all the same
techniques we have mentioned in the context of optimising readout of a given far-field
radiation pattern. Ideally we would, in fact, design the transducer in conjunction with
the measurement strategy, optimising far-field sensitivity to the parameters of interest.
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Figure 8.1: The inverse problem of parameter retrieval from far-field data. Three parts of the measurement
apparatus can be optimised together: illumination, transduction, and detection.

In this way, we can define a challenging inverse design problem, with three separate
components, as sketched in figure 8.1: the illumination parameters, the transducer, and the
analysis scheme. For a given many-dimensional sample input-output relation, depending
on various parameters of interest, we wish to retrieve these parameter values. Feasible
approaches to this design challenge include any of the analytical techniques of inverse
problem solving [3–5] as well as machine learning techniques [6, 7].

One extreme case of parameter retrieval is imaging: retrieving the full refractive index
distribution of the top layer of a sample, in our case at nanoscale resolution. This is a major
step ahead from the experimental demonstrations in this thesis, which have focussed on
retrieval of typically two parameters (X and Y displacement). Though the problem can
be expressed in the same terms, the large difference in complexity means our calibration-
based technique cannot be applied in its current form. As currently defined, calibration
data are taken for every possible combination of parameter values, which is evidently
infeasible for a problem with many independent refractive index values at different po-
sitions. We may still be able to perform calibration by assuming that different sites are
independently transduced to the far-field. In effect, this assumes that multiple scattering
within the sample plays a minor role in radiation patterns and disregards far-field interfer-
ence between the fields of coherently driven sites. To what degree these approximations
are valid will depend on sample structures and material properties. The sensing study in
chapter 5 shows that if we are able to switch hot-spots at specific positions on and off, we
can selectively sense scatterers at the corresponding position. Using exposure patterns
with a combination of spots also provides a basis for compressed sensing of complex
patterns [8–10]. In such techniques, prior information about the sample, like a known
distribution or number of scattering sites, is exploited to retrieve full-resolution sample
data with fewer samples than would ordinarily be required (in imaging, less than one
measurement per pixel). As such, compressed sensing could serve as a way to permit
high-resolution parameter retrieval or even imaging at reasonable measurement time.

We started this thesis with a very applied perspective, envisioning a microscopy tech-
nique suitable for nanoscopic sensing and metrology. For that reason, it makes sense to
evaluate the results in the context of technology readiness [11]. Likely the most directly
applicable result in this thesis is the insight that polarisation-multiplexed readout may
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improve parameter retrieval at negligible experimental cost. This idea may be implemen-
ted in demonstrations of existing (non-polarising) metrology tools to test whether it also
provides a benefit in those contexts. The broader idea of microscopy through transduction
of near- to far-field information by a metasurface is a step further from applications. As
discussed, we have so far only tested retrieval of a few parameters at the same time. Going
beyond this would require an exploration of the calibration scheme and whether sample
sites can be treated as independent scatterers, as well as possible experimental improve-
ments to permit variation of more parameters in real time. Experimental demonstration of
near-field programming by far-field optimisation requires some way to verify the generated
patterns. This may be done through established near-field microscopy techniques (chapter
1) or perhaps through clever use of fluorescent markers. The envisioned implementation
of a metasurface scanning head, in the near-field of a sample, is also a significant technical
challenge. Positioning a spatially extended structure with respect to a flat substrate is an
active topic of research [12]. Rapid scanning and careful distance control, because trans-
duction is bound to be distance dependent, are the next challenges in the mechatronics
puzzle posed by our technique. Integration of all these elements will work towards the
development of metasurface-assisted near- to far-field transduction into a fast, efficient
technique for near-field sample inspection.
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S. G. “End-to-end nanophotonic inverse design for imaging and polarimetry”. Nan-

ophotonics 10, 1177–1187 (2020).

5. Bouchet, D., Seifert, J. & Mosk, A. P. “Optimizing illumination for precise multi-
parameter estimations in coherent diffractive imaging”. Opt. Lett. 46, 254 (2021).

6. McCann, M. T., Jin, K. H. & Unser, M. “Convolutional neural networks for inverse
problems in imaging: A review”. IEEE Signal Process. Mag. 34, 85–95 (2017).

7. Lucas, A., Iliadis, M., Molina, R. & Katsaggelos, A. K. “Using deep neural networks for
inverse problems in imaging: Beyond analytical methods”. IEEE Signal Process. Mag.

35, 20–36 (2018).

8. Candès, E. J., Romberg, J. K. & Tao, T. “Stable signal recovery from incomplete and
inaccurate measurements”. Commun. Pure Appl. Math. 59, 1207–1223 (2006).

9. Cambareri, V., Rovatti, R. & Setti, G. “Maximum entropy hadamard sensing of sparse
and localized signals”. in 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (2014), 2357–2361.



REFERENCES

8

119

10. Massa, A., Rocca, P. & Oliveri, G. “Compressive sensing in electromagnetics - a
review”. IEEE Antennas Propag. Mag. 57, 224–238 (2015).

11. Héder, M. “From NASA to EU: the evolution of the TRL scale in Public Sector Innova-
tion”. Innovation J. 22, 3 (2017).

12. Ernst, S., Irber, D. M., Waeber, A. M., Braunbeck, G. & Reinhard, F. “A planar scanning
probe microscope”. ACS Photonics 6, 327–331 (2019).





NANO-OPTICAL SENSING AND

METROLOGY THROUGH NEAR- TO

FAR-FIELD TRANSDUCTION

SUMMARY
Imaging of nanoscale structures with visible light is hindered by the diffraction limit, which
prevents free-space focussing of light into dimensions smaller than a large fraction of its
wavelength. Various superresolution techniques exist to circumvent these problems, each
with their own drawbacks. In particular, high-resolution imaging of unlabelled samples
is a tricky and slow process. In this thesis, we envision a sensing technique exploiting a
metasurface patch introduced into the near-field of a sample. Near-field interactions then
transduce nanoscopic spatial information into the far-field. We explore the capabilities
and limitations of such a technique in terms of sensing and metrology performance.

Super-resolution imaging is often viewed in terms of engineering narrow point spread
functions, but nanoscale optical metrology can be performed without real-space imaging
altogether. We investigate how partial knowledge of scattering nanostructures enables
extraction of nanoscale spatial information from far-field radiation patterns. We use
principal component analysis to find patterns in calibration data and use these patterns to
retrieve the position of a point source of light. In an experimental realisation using angle-
resolved cathodoluminescence, we retrieve the light source position with an average error
below λ/200. The patterns found by principal component analysis reflect the underlying
scattering physics and reveal the role the scattering nanostructure plays in localisation
success. The technique described here is highly general and can be applied to gain insight
into and perform subdiffractive parameter retrieval in various applications.

Extending these results from light sources to scattering objects, we study how nano-
photonic structures can be used to determine the position of a nearby nanoscale object
with subwavelength accuracy. By perturbing the near-field environment of a metasurface
transducer consisting of nano-apertures in a metallic film, the location of the nanoscale
object is encoded into a far-field optical response. Monitoring this scattering pattern
and comparing it to measured reference data, we demonstrate localisation of the object
accurate to 24 nm across an area of 2×2 µm2. We find that adding complexity to the nano-
photonic transducer allows localisation over a larger area while maintaining resolution,
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as it enables encoding more information on the position of the object in the transducer
far-field response.

More complex transducers enable another strategy: to use incident degrees of freedom
to control near-field structure. We study how a single near-field metasurface patch may
be used to create a wide variety of sample plane intensity patterns by applying different
illumination profiles. Numerical analysis shows that one metasurface patch may be used
to generate complete bases of intensity patterns on a grid as fine as λ/16. We explore the
limits of control in terms of the number of modes on the illumination side and spatial
resolution on the sample side. We then show how the engineered fields may be used for
particle detection, showing the potential the approach holds for nanoscale optical sensing.

Nanophotonic scattering systems encoding nanoscopic information in their radiation
patterns may be used for metrology. We demonstrate this with overlay targets consisting
of just four nanoparticles, of which we fabricate many copies with a range of synthetic
overlay errors. We successfully measure these overlay errors by the calibration-based
technique used before. Additionally, using calibration on separate targets, we show that an
independent model is effective, despite the small size of the targets.

Finally, we study how combining measurement under different polarisation conditions
may be used to improve parameter retrieval performance. Specifically, we consider how
precisely we can measure overlay with a given photon budget, distributed across differ-
ent illumination or detection channels. Our results show that polarisation multiplexing
retrieves overlay much more accurately than single-polarisation or unpolarised measure-
ment. Confirming our theoretical analysis, we observe that multiplexing either incident or
analysed polarisation produces an improvement in precision equivalent to 7 dB in signal
level.

The results in this thesis suggest several interesting directions for information retrieval
research and for sensors development. Sensors may be able to benefit from polarisation
multiplexing or near-field programming. Quantitative analysis of the information content
of different degrees of freedom may enable optimal sensing strategies. Pending technical
implementation, metasurface-assisted near- to far-field transduction may prove a powerful
technique for nano-optical sample inspection.



NANO-OPTISCHE DETECTIE EN

METROLOGIE MIDDELS

TRANSDUCTIE VAN HET NABIJE

NAAR HET VERRE VELD

SAMENVATTING
Structuren op de nanoschaal laten zich niet zonder meer afbeelden met zichtbaar licht.
Dat komt door de diffractielimiet, die zorgt dat licht niet fijner gefocusseerd kan worden
dan tot een volume met een diameter bijna zo groot als de golflengte van het licht. Er zijn
superresolutie-technieken die om de diffractielimiet heen werken, maar al die technieken
hebben ook nadelen. In het bijzonder gaat het fijn afbeelden van pigment-vrije structuren
alleen moeizaam en traag. In dit proefschrift beschouwen wij een meetmethode gebaseerd
op een meta-oppervlak, een oppervlak met verstrooiende structuren fijner dan de schaal
van de golflengte van licht, dat dicht bij een monster wordt gebracht. Interacties in het
nabije veld verstrooien nanoscopische ruimtelijke informatie over het monster dan naar
het verre veld. We zoeken uit wat de sterktes en zwaktes van zo een techniek zijn, in termen
van meetnauwkeurigheid.

Superresolutie-technieken worden soms gezien als een kwestie van fijne punt-
overdrachtsfuncties, maar het is mogelijk om superresolutie-informatie te verkrijgen geheel
zonder reële afbeeldingen. Wij onderzoeken hoe gedeeltelijke kennis van verstrooiende
nanostructuren het mogelijk maakt nanoscopische informatie af te leiden uit stralingspa-
tronen. We maken gebruik van hoofdcomponentenanalyse om patronen in kalibratiedata
te vinden en we gebruiken die patronen om de positie van een lichtbron te achterhalen. In
een experiment gebruikmakend van cathode-luminescentie vinden we de positie van een
lichtbron met een gemiddelde fout kleiner dan λ/200. De gevonden patronen geven inzicht
in de onderliggende verstrooiingsfysica en laten zien hoe de nanostructuur bijdraagt aan
het succes van de methode. De beschreven methode is breed toepasbaar en kan in allerlei
toepassingen helpen bij het uitlezen van sub-diffractieve parameterwaarden.

Na lichtbronnen passen we deze methode toe op verstrooiende objecten, door te
onderzoeken hoe nanofotonische structuren kunnen worden gebruikt om de positie van
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een dichtbij geplaatst object met sub-diffractieve precisie te achterhalen. Als het nabije
veld van een meta-oppervlak, bestaand uit nanoscopische gaatjes in een metaallaag, wordt
verstoord, wordt de positie van de verstoring gecodeerd in het optisch verre veld. Door
dit stralingspatroon op te nemen en te vergelijken met kalibratiedata, achterhalen we de
positie van de verstoring met een precisie van 24 nm in een domein van 2×2 µm2. Extra
complexiteit in het meta-oppervlak blijkt het mogelijk te maken dezelfde precisie te halen
over een groter oppervlak, door meer informatie in het verre veld van het meta-oppervlak
te coderen.

Complexere meta-oppervlakken staan ons ook toe vrijheidsgraden in de inkomende
bundel te gebruiken om de nabije veld-structuur te manipuleren. We bestuderen hoe een
vast, eindig meta-oppervlak kan worden gebruikt om allerlei verschillende patronen in
het nabije veld te produceren, door enkel de belichting uit het verre veld aan te passen.
Berekeningen tonen aan dat één meta-oppervlak complete bases van intensiteitspatronen
in het nabije veld kan genereren, op roosters zo fijn als λ/16. We verkennen de grenzen van
deze controle als functie van het aantal beschikbare vrijheidsgraden in de belichting en de
ruimtelijke resolutie op het monster. Ook laten we zien hoe de ontworpen velden kunnen
worden gebruikt om deeltjes te detecteren. Dit onderschrijft de potentie de methode heeft
voor nano-optische inspectie.

Nanoscopische informatie verwerkt in de stralingpatronen van nano-fotonische ver-
strooiende systemen kan ook worden gebruikt voor metrologie. We laten dit zien met
uitlijningsverificatiestructuren bestaand uit slechts vier nanodeeltjes. We maken een groot
aantal exemplaren van zulke structuren, met bewust gekozen uitlijnfouten. Deze uitlijn-
fouten lezen we uit met dezelfde methode op basis van kalibratie die we eerder hebben
gebruikt. Met kalibratie op andere structuren laten we ook zien dat een onafhankelijk
model de uitlijnfouten af kan lezen, ondanks de kleine schaal van de structuren.

Tot slot bestuderen we hoe parameters nauwkeuriger kunnen worden afgelezen door
verschillende polarisatiekanalen te combineren. We kijken hoe nauwkeurig we uitlijn-
fout kunnen meten met een vast fotonbudget, al dan niet verdeeld over verschillende
polarisatiekanalen in belichting of detectie. Onze resultaten laten zien dat polarisatie-
reconfiguratie veel preciezere metingen van uitlijnfout oplevert dan meten met één en-
kele polarisatie of met ongepolariseerd licht. De metingen bevestigen onze theoretische
voorspellingen en laten een prestatieverbetering zien die overeenkomt met 7 dB in signaal-
sterkte.

De in dit proefschrift beschreven resultaten werpen verschillende interessante richtin-
gen op voor onderzoek naar reconstructie van informatie uit metingen en ontwikkeling van
sensoren. Sensoren kunnen baat hebben bij polarisatie-reconfiguratie en ontworpen na-
bije velden. Gekwantificeerde analyse van de informatie in verschillende vrijheidsgraden
kan helpen detectie-strategieën te optimaliseren. Als de methode technisch is geïmple-
menteerd, verwachten wij dat transductie van het nabije naar het verre veld middels een
meta-oppervlak een krachtige techniek voor nano-optische inspectie kan worden.
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