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ABSTRACT: Halide perovskites make efficient solar cells but suffer from several stability issues.
The characterization of these degradation processes is challenging because of the limited
spatiotemporal resolution in experiments and the absence of efficient computational methods to
study these reactive processes. Here, we present the first reactive force field for molecular
dynamics simulations of the phase instability and the defect-induced degradation in CsPbI3. We
find that the phase transitions are driven by the anharmonic fluctuations of the atoms in the
perovskite lattice. At low temperatures, the Cs cations tend to move away from their preferential
positions, resulting in worse contacts with the surrounding metal halide framework which
initiates the conversion to a nonperovskite phase. Moreover, our simulations of defective
structures reveal that, although both iodine vacancies and interstitials are mobile in the
perovskite lattice, the vacancies have a detrimental effect on the stability, leading to the
decomposition of perovskites to PbI2.

In the past decade, halide perovskites have emerged as a
promising alternative to silicon for solar cells due to their
exceptional optoelectronic properties and facile fabrication
methods.1,2 Despite a considerable increase in the performance
of perovskite solar cells (PSCs), evidenced by their increase in
their efficiency from 3.8% in 20093 to over 25% in 2020,4 the
commercialization of perovskite solar cells is hindered by their
poor long-term stability. Halide perovskites have a three-
dimensional structure with the AMX3 chemical formula, where
A is a monovalent inorganic or organic cation (Cs+,
methylammonium MA+, or formamidimium FA+), M is a
divalent metal cation (Pb2+ or Sn2+), and X is a monovalent
halide anion (I−, Br−, or Cl−). The metal and halide ions form
a network of corner-sharing MX6 octahedra, with the center of
the cuboids formed by these octahedra occupied by the
relatively large monovalent A cation. The crystal lattice is held
together by a mix of ionic and relatively weak covalent bonds,
as a result of which this class of materials has a soft and
dynamical lattice.5−8 Such a dynamical lattice has significant
implications in both the efficiency and the long-term stability
of PSCs. In particular, electron−phonon coupling has shown
to directly affect the charge carrier mobility and carrier
lifetime.9

Most of the stability issues of PSCs come from the intrinsic
instability of the perovskite absorber layers.10−13 Such
instability issues include a phase instability where the
perovskite transforms to a more stable nonperovskite phase,
with worse optoelectronic properties and thus a decreased
power conversion efficiency of the PSC.14 Moreover, spin
coating, the typical fabrication method of perovskites,
introduces a large number of defects in the perovskite

films,15,16 the migration and accumulation of which is
suggested to have a major impact on the long-term stability
of PSCs.17−19 While experimental studies offer a wide variety
of insights at the macroscopic and mesoscopic scale, the
interpretation of the atomistic details of the degradation
processes is often difficult. Computer simulations can make a
significant contribution to the understanding of the atomistic
and microscopic mechanisms.
So far, the bulk of the computational investigations of halide

perovskites has been done using computationally expensive
methods based on quantum mechanics (QM),20−22 only
allowing for the simulation of short time scales and small
system sizes. Molecular dynamics (MD) simulations that make
use of classical force fields are an efficient means to study large
systems at long time scales. One of the first classical force fields
for the hybrid halide perovskite MAPbI3, developed by
Mattoni et al.,23 has seen a wide range of applications, which
include cation dynamics,23 defect dynamics,24,25 and dis-
solution in water.26 However, this interatomic potential is
primarily tailored to pure perovskite systems. Recently, some
advances have been made in the development of potentials for
mixed compositions, including the AMOEBA polarizable force
field by Rathnayake et al. for hybrid (MAPbI3) and inorganic
(CsPbI3) perovskites27 and a potential for CsPb(BrxI1−x)3 by
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Balestra et al.28 While these existing force fields have shown to
be a powerful means to study a wide range of dynamical
properties, they are unable to describe the formation and
breaking of chemical bonds.
From the above, we conclude that a reactive force field

(ReaxFF) interatomic potential, that employs a dynamical
bond order to describe the creation and breaking of
bonds,29−31 can be a valuable computational framework to
study degradation processes in halide perovskites. Here, we
present the first effort toward the development of a ReaxFF
force field for halide perovskites, specifically inorganic CsPbI3.
We obtain a set of ReaxFF parameters by training against
accurate reference data from QM calculations. To demonstrate
the applicability of our ReaxFF force field in investigations of
dynamical and reactive processes, we perform molecular
dynamics simulations to study two instability problems found
in CsPbI3, i.e., the phase instability and defect-accelerated
decomposition. Combining analyses, such as phase diagrams,
positional probability distributions, mean square displace-
ments, and atom trajectories, we provide important atomistic
insights for both degradation processes.
The ReaxFF parameters for CsPbI3 were trained against a set

of reference data calculated with density functional theory
(DFT) with the PBE + DFT-D3(BJ) exchange-correlation
functional32−34 in the VASP software package.35−38 The
training set included different perovskite phases of CsPbI3
and precursor structures (CsI and PbI2). The calculations
covered equations of state, atomic charges, formation energies,
defect formation energies, and defect migration barriers (see
Supporting Notes 1 and 2 in the Supporting Information for
details). The parameter optimization was done with a Monte
Carlo-based force field optimizer39 as implemented in AMS
2020.40 As a starting point for the parameter optimization, we
used the Cs and I ReaxFF parameters from the electrolyte-

water parameter set by Fedkin et al.41 Without any ReaxFF
parameters for Pb in the literature, we used the atomic
parameters from the parametrically similar element platinum
by Fantauzzi et al.,42 which we appropriately adjusted to
account for the valency and atomic mass of lead.
Following this optimization procedure, we obtained a

parameter set that exhibits a good match between ReaxFF
and the reference data. The optimized I/Pb/Cs ReaxFF
parameters can be found in the Supporting Information. A
comparison of the overall agreement between ReaxFF and the
reference data is shown in Figure 1a and Figure 1b, with a
more detailed overview shown in Supporting Note 3 of the SI.
Generally, the ReaxFF parameter set shows a good agreement
for the equations of state (EEOS), perovskite formation energies
(Ef

CsPbI3), and defect migration barriers (Em
def). To demonstrate

the agreement, a comparison of the bulk equations of state for
CsPbI3 is shown in Figure 1c. In addition to the comparison to
the reference data, we also carried out some validation tests to
confirm that the ReaxFF parameter set has predictive power,
i.e., not only describing the entries in the training set well but
also capturing some material behavior not explicitly trained
against. Here, we carried out geometry optimizations of the
different bulk perovskite phases using the ReaxFF. A complete
comparison to DFT calculations and X-ray diffraction
measurements43 is summarized in Table S2. The results
show minimal discrepancies (<2%). We highlight another
validation by comparing the phase transition barrier for the
inversion octahedral tilting in tetragonal CsPbI3 in Figure 1d.
The ReaxFF calculated barrier of 0.14 eV agrees well with our
DFT result of 0.17 eV.
First, we use our I/Pb/Cs parameter set to investigate the

phase evolution of CsPbI3. We carry out ReaxFF MD
simulations with AMS 202040 for a CsPbI3 model system at
several discrete temperatures between 100 and 700 K, as

Figure 1. (a, b) Overall agreement between the prediction with the I/Pb/Cs ReaxFF force field and the reference data from DFT. (c) Comparison
between the equations of state of bulk CsPbI3 from DFT (circles) and ReaxFF (squares). (d) Comparison of the inversion barrier for the
octahedral tilting pattern in tetragonal CsPbI3 from DFT (circles) and ReaxFF (squares).
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shown in Figure 2a (see Supporting Note 2 for details). Based
on the evolution of the lattice vectors, we conclude that CsPbI3

adopts the orthorhombic, tetragonal, and cubic phase from low
to progressively higher temperatures,43,44 with two phase
transitions occurring at 350 ± 10 K and 450 ± 10 K. These

phase transition temperatures are in qualitative agreement with
experiments, with an underestimation of about 100 K for both
transitions.43 We attribute this underestimation to the slight
overprediction of the lattice parameters during our simulations
in comparison to experiments. We nevertheless find good
agreement in the thermal expansion coefficient from ReaxFF
(12.9 × 10−5 K−1), which falls in the range of experimental
values (11.8 × 10−5 K−145 and 15.3 × 10−5 K−143).
To investigate the reversibility of the phase evolution, a

model system is subjected to a continuously changing
temperature in Figure 2b and Figure 2c, respectively, showing
the gradual heating and cooling. The similarity of the phase
diagrams obtained from gradual heating and gradual cooling
confirms that the phase transitions are reversible. We note that
the ReaxFF MD simulations did not always show a complete
reversibility (see Supporting Note 4). We attribute this to the
formation of an orthorhombic structure that consists of
multiple differently oriented domains. Such domains are
stuck in different orthorhombic orientations and persist over
time because of the lack of sufficient thermal energy. A similar
phenomenon, i.e., the formation of various orthorhombic
domains in CsPbI3, has also been observed in experiments.46

After having investigated the overall phase behavior of
CsPbI3, we now analyze the dynamics of the lattice at different
temperatures. For this we use a method outlined by Carignano
et al.47 with which the anharmonic character of the atomic
fluctuations can be characterized. To do so, we define the
geometrical parameter δ, which is the shortest distance from an
I atom to the straight line interconnecting the two neighboring
Pb atoms, as is shown in Figure 3a. The subsequent
comparison of the probability distribution P(δ) from
simulations against one derived for a harmonic approximation
(see Supporting Note 6) allows for the qualitative description
of the anharmonic character. We focus on a high-temperature
cubic and a low-temperature orthorhombic phase, respectively,
at 200 and 500 K, as shown in Figure 3b and Figure 3c,

Figure 2. (a) The temperature dependence of the lattice vectors of
CsPbI3 from constant temperature simulations. (b, c) The evolution
of the lattice vectors during gradual heating and cooling. The orange
and yellow bars, respectively, indicate the phase transition temper-
atures for the orthorhombic to tetragonal and tetragonal to cubic
phase transitions. In all figures the pseudocubic lattice vectors a, b,
and c are used.

Figure 3. (a) Schematic representation of the geometrical parameter δ that is used an an indicator for the anharmonicity. (b, c) Comparison of the
probability distributions of the geometrical parameter δ from simulations at 200 and 500 K (solid line) against the best fit of the harmonic model
(dashed line). (d, e) Positional probability distribution of the Cs cations with respect to their average position in the perovskite lattice (black dot)
from ReaxFF MD simulations at 200 and 500 K.
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respectively. By comparing the MD simulations and the best fit
of the harmonic approximation, we observe that the harmonic
approximation breaks down in both perovskite phases. The
presence of this anharmonic character can be rationalized by
Goldschmidt’s principle of maximum cation−anion con-
tact.48,49 The tilting of the octahedra combined with a shift
of the cation position allows for a better contact between the
Cs ions and the surrounding iodine ions and thus stabilizes the
perovskite structure. Interestingly, such behavior is highly
sensitive to the temperature, with the largest degree of
anharmonicity found at 200 K, which is significantly reduced
at 500 K. We associate this reduction with the increase of the
thermal energy, which induces a collective atom movement in
the form of phonons,9,50 causing the perovskite system to
fluctuate between many distorted structures. At high temper-
ature, such fluctuations become so fast that the time-averaged
structure becomes cubic. We note that this decrease in the
anharmonicity of the motion of the atoms is in line with the
increase of symmetry when going from the orthorhombic to
tetragonal and eventually cubic phase of CsPbI3.
We next analyze the dynamics of the Cs cations in CsPbI3 by

constructing a positional probability distribution of the Cs
cations. At 200 K, as shown in Figure 3d, we observe a directed
motion of the cations, with a preferential movement in the
positive xy-direction. We attribute this directional cation
movement to the anharmonicity of the inorganic framework
we observed above. We rationalize that this tendency of Cs
cations to move away from the equilibrium positions can
induce a structural instability, potentially converting to the
nonperovskite yellow phase reported in experiments.43,44,51

Our finding of Cs moving away from a stabilizing site to a
destabilizing site is in line with experimental observations by
Straus et al. from single-crystal X-ray diffraction measure-
ments.49 In contrast, the Cs distribution at 500 K, in Figure 3e,
demonstrates that the directionality in motion of the Cs
cations is lost, resulting in an isotropic distribution. This
observation can readily be explained by the lack of any long-
time local structure due to the rapid fluctuations of the metal

halide framework. We suggest that the fluctuations of both the
Cs cations and iodide anions result in good contacts between
the two, stabilizing the perovskite phase at high temper-
atures.43,45

Another source of instability for halide perovskites is
connected to the migration of ions. Two halide migration
mechanisms, i.e., interstitial-assisted and vacancy-assisted
mechanisms, have been proposed to be the major contributor
to ion migration in the hybrid halide perovskite MAPbI3.

24,52,53

Here, we investigate the relative importance of the two
mechanisms in CsPbI3. To do so, we carry out MD simulations
to probe the temperature evolution of the self-diffusion
coefficients of iodine vacancy and interstitial point defects.
The simulations are done under atmospheric pressure at
temperatures ranging from 450 to 700 K, from which the self-
diffusion coefficients are extracted (see Supporting Note 2).
The temperature evolution of the self-diffusion coefficients of
both types of iodine point defects is shown in Figure 4a with a
complete overview of the diffusion coefficients given in Table
S3. Focusing on the self-diffusion coefficients, the information
shows that in the investigated temperature range, where
ReaxFF predicts CsPbI3 to have a cubic phase, both types of
defects exhibit similar rates of diffusion (10−9 to 10−8 cm2 s−1).
The self-diffusion coefficients can be well described by a single
Arrhenius relation. Therefore, we associate the migration of
both point defects with a single activation energy of Ea,II = 0.28

eV for iodine interstitials and Ea,VI
= 0.19 eV for iodine

vacancies, with a prefactor of D0,II = 3.1 × 10−6 cm2 s−1 for the

former and D0,VI
= 3.6 × 10−7 cm2 s−1 for the latter. The

relatively low energy barriers for both indicate that both ion
migration processes readily occur in CsPbI3. Specifically, our
value for the energy barrier of iodine vacancy migration (0.19
eV) matches well with those observed for halogen vacancies in
the inorganic perovskites CsPbBr3 (0.25 eV) and CsPbCl3
(0.29 eV) as measured by Mizusaki et al. using impedance
spectroscopy.54

Figure 4. (a) Temperature evolution of the self-diffusion coefficients of iodine vacancies (VI) and iodine interstitials (II). (b) Collection of
snapshots of the different steps encountered during decomposition of CsPbI3 in the presence of an iodine vacancy (red dot) at 600 K. The
perovskite decomposes by forming a Pb/I cluster near the iodine vacancy. (c) Snapshots from the initial stages of the perovskite decomposition,
showing the formation of an iodine Frenkel defect that subsequently results in a complex of edge-sharing metal halide octahedra that breaks away
from its position in the lattice to form a PbxIy complex.
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Finally, we observe for high temperatures that the vacancy-
rich CsPbI3 systems have the tendency to result in the
decomposition of the perovskite structure. In Figure 4b we
show such an example, using snapshots of a ReaxFF simulation
of CsPbI3 with an iodine vacancy concentration of 3.0 × 1019

cm−3 at 600 K; however, a similar decomposition of the
perovskite lattice is observed for concentrations as low as 4.5 ×
1018 cm−3. At the onset of the simulation, two iodine vacancies
are dispersed in the perovskite phase. After some time, we
observe that a lead species close to the iodine vacancy moves
away from its position in the lattice, forming a locally Pb/I-rich
domain. Further evolution of the system causes the Pb/I-rich
region to grow in size, resulting in the formation of a Pb/I
cluster. To elucidate the details of such a degradation process,
an overview of the initial stages of the perovskite
decomposition is shown in Figure 4c. The snapshots show
that the degradation process begins with the formation of an
iodine Frenkel defect close to the existing iodine vacancy; one
iodine atom leaves its original position to create a vacancy and
at the same time forms one iodine interstitial site. As a result of
this, two octahedra are connected by the newly formed
interstitial site, forming a complex of edge-sharing octahedra in
which the PbIx octahedra are only weakly bound to the rest of
the perovskite lattice. Consequently, the lead species of either
of these octahedra easily move away from their position in the
lattice, forming a face-sharing PbxIy complex, which sub-
sequently grows to form a larger Pb/I cluster. Although the
focus here is on the effects of iodine vacancies, we note that
other types of vacancies (Pb and Cs) also resulted in the
decomposition of the perovskite lattice through a similar
mechanism (see Supporting Note 7), but at higher onset
temperatures (700 K) than for iodine vacancies (600 K). This
is because the involvement of Pb or Cs vacancies in the
formation of iodine Frenkel defects is indirect, by making room
in the perovskite lattice and facilitating the movement of the
surrounding I species.
We hypothesize that such face-sharing PbxIy complexes serve

as the nucleation center for the decomposition of the
perovskite structure, eventually leading to the decomposition
of the halide perovskite into PbI2. Our finding corroborates
with recent observations from transmission electron micros-
copy experiments by Manekkathodi et al., in which PbI2
nanoparticles are detected in the vicinity of lattice defects
such a grain boundaries in mixed halide perovskites.55

Moreover, our finding provides an atomistic interpretation of
the fact that iodine-rich conditions can have a stabilizing effect
on halide perovskites,56 by inhibiting the formation of iodine
vacancies that, from our ReaxFF simulations, appear to
accelerate the degradation of the perovskites.
In summary, we develop and apply the first ReaxFF force

field for studying dynamical processes associated with the
stability issues of CsPbI3. We demonstrate the phase instability
at low temperature as a result of a combination of the
dynamics of the Cs cations and the anharmonic nature of the
fluctuations of the inorganic framework. The Cs cations prefer
to locate at positions with good contact with the metal halide
framework, which is facilitated by rapid dynamical fluctuations
at high temperatures. When lowering the temperatures, Cs
cations tend to move away from this preferential position,
potentially resulting in the conversion of the perovskite phase
to the nonperovskite phase. We also identify that iodine
vacancies are detrimental to the stability of halide perovskites
by facilitating the formation of iodine Frenkel defects and

resulting in the decomposition of the perovskite lattice into
Pb/I clusters. Our findings suggest that materials engineering
strategies that mitigate the structural distortion (mixing with
larger organic cations57,58 or smaller anions such as the Br
anion59) and reduce iodide vacancies (the synthesis of halide
perovskites in I-rich conditions60 or the inclusion of
additives61) can improve the phase stability and defect related
stability of CsPbI3. We expect that the ReaxFF parameters in
this work can be readily expanded to cover a broader range of
perovskite compositions as well as their interactions with
contact layers in devices, allowing for the study of reactive
processes in realistic compositions relevant to the large-scale
application of perovskite optoelectronics.
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