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Abstract

In-vivo classification of benign and pre-malignant
polyps is a laborious task that requires histophatology con-
firmation. In an effort to improve the quality of clinical di-
agnosis, medical experts have come up with visual mod-
els with only limited success. In this paper, a classifica-
tion approach is proposed to differentiate between polyp
malignancy, using features extracted from the Global Av-
erage Pooling (GAP) layer of a pre-trained Convolutional
Neural Network (CNNs) . Two recently developed endo-
scopic modalities are used to improve the pipeline predic-
tion: Blue Laser Imaging (BLI) and Linked Color Imaging
(LCI). Furthermore, a new strategy of per-class data aug-
mentation is adopted to tackle the differences of unbalanced
class distribution. The results are compared with a more
general approach, showing how artificial examples can im-
prove results on highly unbalanced problems. For the same
reason, the combined features for each patient are extracted
and trained using several machine learning classifiers with-
out CNNs. Moreover to speed up computation, a recent
GPU based Support Vector Machine (SVM) scheme is em-
ployed to substantially decrease the overload during train-
ing time. The presented methodology shows the feasibility
of using the LCI and BLI techniques for automatic polyp
malignancy classification and facilitates future advances to
limit the need for time-consuming and costly histopatholog-
ical assessment.

Keywords— Polyp classification, Blue Laser Imaging,
BLI, Linked Color Imaging, LCI, CNN, Data Augmentation,
SVM, GPU Support Vector Machine.

1. Introduction

Colorectal cancer (CRC) is the second most diagnosed
cancer in women and the third in men worldwide, with more
than half of its incidence rates arising in developed coun-
tries [3]. An early diagnosis of CRC can prevent spreading
throughout the colon and avoid further complications. In
the initial stages of the cancer, abnormal colorectal tissue or
polyp can be classified in three different groups, hyperplas-
tic polyps (HPs), adenomas (ADs) and sessile serrated ade-
nomas (SSAs). HPs are considered benigns polyps, whilst
ADs and SSAs are identified as pre-maligannt polyps, ca-
pable of developing to CRC when kept untreatead [8]. Vi-
sual differentiation of benign and pre-malignant polyps is
an on-going challenge in a clinical endoscopy routine, of-
ten dictated by the expertise of the clinician. White light
endoscopy (WLE) is the most common technique to assess
lesions in the intestinal tract, but it falls behind when en-
hancing the visualization of vessels and the mucosa. Com-
pared to WLE, chromoendoscopy techniques [6] are capa-
ble of achieving high visual contrast results, but they require
the injection of chemical dyes into the body. Similar visual
effects can be achieved with the use of in-vivo optical filters,
like Narrrow-Band Imaging (NBI) [2] [20]. Alternatively,
LED-based techniques like Blue Laser Imaging (BLI) and
Linked Color Imaging (LCI) [13] exploit the absorption
rate of the hemoglobin in the range of the blue-violet light
to achieve comparable enhanced results. The advance on
less invasive modalities could potentially avoid the use of
chemical stains, while still providing the same amount of
visual information. The increasing need for early diagno-
sis of CRC introduces the need of in-vivo differentiation
of benign and pre-malignant polyps. Computer aided diag-



Figure 1: Pipeline of the proposed method. An ROI covering the polyp is selected from a full-size image. After an initial
preprocessing, the proposed data augmentation pipeline is applied. Then, the features from the last layer of Resnet50 are ex-
tracted and used to train several classifiers. Finally, LOPOCV is used to evaluate those classifiers and predict the malignancy
of the test images.

nosis (CAD) systems offer a side-opinion to help on clini-
cal decisions, and potentially prevent costly resections and
hystopathological analysis. In the past years, CAD systems
have taken advantage of machine learning methods and vi-
sual descriptors or features to automatically classify sev-
eral pathologies in the gastrointestinal tract [10]. Previous
studies on polyp classification extracted local features from
blood vessels using NBI images [4] [19] [5], while others
achieved similar results by combining chromoendoscopy,
WLE and NBI [17]. In recent years Convolutional Neu-
ral Networks (CNNs) have proven to be strong feature ex-
tractors for a wide variety of domains, including medical
image analysis [18]. In the study of Zhang et al. [23] sev-
eral features of a CNN from non-medical databases were
used to detect and classify colorectal polyps in three dif-
ferent classes (This approach is further referred to as CNN
features). Similar work was achieved by Murata et al. [12],
where CNN features were combined with multiple SVMs
and a voting system to classify polyps in between benign
and pre-malignant using dye imaging, WLE and NBI.

In this work, a pipeline for polyp malignancy classi-
fication is designed, using residual CNN features from a
Resnet50 architecture [7]. The scheme uses features ob-
tained from a prospectively acquired dataset of polyps.
Several machine learning classifiers are used to learn the
CNN features. The different models are then evaluated us-
ing Leave-One Patient-Out Cross-Validation (LOPOCV).
Moreover, an upsampling approach for image augmenta-
tion is adopted to tackle the unbalancing between benign
and pre-malignant classes. In Sec. 2 the dataset and the
proposed method are explained. In Sec. 3 several classifiers
are compared and the results are presented. Finally in Sec. 4
the findings are discussed as well as future approaches.

2. Methods

2.1. Data description

The data collection was carried out in a prospective
fashion, according to a pre-defined image acquisition pro-
tocol, in the Catharina (Ziekenhuis) Hospital Eindhoven
(CZE). A total of 115 patients were included in this study.
After histopathology examination, 95 patients were found
with pre-malignant polyps and 20 with definitively benign
polyps. For each patient, a single image of the polyp was
acquired at different time steps with three different modal-
ities, WLE, BLI and LCI. All collected data was fully
anonymized prior to the study.

Figure 2: (Top) Example of a pre-malignant polyp from the
CZE dataset. (Bottom) Example of a benign polyp. From
left to right, a visualization of the three image acquisition
modalities used in the study; White Light Endoscopy, Blue
Light Imaging and Linked Color Imaging, respectively.

2.2. Feature extraction with Resnet50

Residual networks have claimed its prominence since its
major breakthrough after obtaining the first place in both
Imagenet [15] and COCO competitions [11] in 2015. The



introduction of the residual blocks presented a new ap-
proach for feature transfer by defining a refinement module
between successive layers, which has led to an improve-
ment in many image recognition tasks [7]. Furthermore,
the Global Average Pooling (GAP) contained in the last
layer of the architecture allows for a substantial reduction
on the number of features, compared to conventional se-
quential models like AlexNet [9] or VGG [16], being an ex-
cellent choice as feature extractor. Therefore, in this work
a pre-trained Resnet50 with Imagenet weights was selected
as the most desirable architecture in terms of performance
and computational cost.

2.3. Preprocessing

In order to achieve optimal classification, a manual se-
lection of the ROI was drawn for each polyp. The cropped
region ensured a coverage of the polyp area as well as its
surrounding texture. Successively, the dataset was normal-
ized by the mean and standard deviation of the pre-trained
Imagenet weights. As final step, each input image was re-
quired to be resized by 224× 224 color pixels.

Data augmentation was used in this work to enhance the
model ability to classify a polyp between benign and pre-
malignant. Previous work showcased the increased perfor-
mance of a classifier when using different degrees of data
augmentation [22]. A similar approach was reviewed by
Asperty and Mastronardo in [1], where data augmentation
was applied to increase the classification results of several
gastrointestinal tasks. In this work, a pipeline of chained
augmentations was adopted to increase the number of train-
ing examples. For each image a combination of flipping,
shifting, ± 90◦rotation and zoom were applied. Each com-
bination was permutable and the number of operations per
combination was chosen randomly for each image. The
degrees of rotation were imposed to uniquely be -90◦or
+90◦to avoid interpolation artifacts. For each image a total
of 12 combinations were empirically found as a minimum
for obtaining the best possible results.

2.4. Training

The dataset used in this study was highly unbalanced, the
ratio was found to be about one benign image per four pre-
malignant images. Unbalancing between data points can
lead to low-confidence intervals for the minority class, more
often than not caused by the predominance of the higher
class, inaccurately measuring both sensitivity and speci-
ficity. In order tackle this problem, a balancing scheme was
applied. Other studies that focused on polyp classification
did perform a down-sampling strategy [12] [23] to match
the highest class with the lowest. In this work a different
approach was adopted using per-class data augmentation.
To analyze the methodology and compare the differences
between class differentiation, two artificial datasets were

generated. On the one hand, the unbalanced dataset was
created by applying the same number of augmentation for
each class, increasing the number of training examples, but
not the ratio-difference between benign and pre-malignant.
On the other hand, the balanced dataset was generated by
applying an increased number of augmentation for the class
with smallest number of samples, ensuring a similar amount
of artificial images when compared to the largest class.

As mentioned in Section 2.2, features extracted from
residual modules benefit from the refinement of previous
layers, hence the GAP layer of the Resnet50 architecture
was chosen as best feature extractor. For each augmented
and original image, the feature vector was computed. The
output dimensions of the feature layer was 1 × 1 × 2048.
For each training example, the total feature vector had the
final dimensions of N×2048, where N denotes the number
of training examples.

To analyze the extracted features, Naives-Bayes, k-
Nearest Neighbor, Random Forest and Support Vector Ma-
chine were implemented using the scikit-learn python-
package [14]. For each classifier, a grid search was used
to select the best combination of parameters. The high
amount of features to be processed, both for the unbalanced
and balanced dataset, required a large computational task,
hence the library thunder-svm [21] in combination with the
dedicated GPU, were used to substantially reduce the train-
ing and testing time of the SVM, thereby working towards
a real-time application.

3. Evaluation and Results

Leave-One Patient-Out Cross-Validation (LOPOCV)
was employed for validation of the proposed approach.
Each patient contained three images with the three different
modalities, WLE, BLI and LCI. To ensure unbiased results,
the following protocol was applied.

1. Select one patient as test subject and obtain the features
from the original images for the WLE, BLI and LCI
modalities.

2. Select the remaining 114 patients as training subjects
and obtain the features from the augmented images for
the WLE, BLI and LCI modalities.

3. Use the features of Step 2 to train the classifier.

4. Use the features of Step 1 to test the classifier.

5. Repeat Step 1 to 4 for all the patients on the dataset.

6. Compute the posterior probabilities for each classifier.

7. Select the optimal cut-off value for the classifier.

8. Compute the final predictions for each polyp image.



Accuracy Sensitivity Specificity FPR FNR AUC
Unbalanced
Naives Bayes 79.71% 84.56% 56.67% 43.33% 15.44% 0.71
k-Nearest Neighbor 75.65% 75.44% 76.67% 23.33% 24.56 % 0.81
Random Forest 75.65% 75.79% 75.00% 25.00 % 24.21% 0.84
Support Vector Machine 81.45% 81.40% 81.67% 18.33% 18.60% 0.90
Balanced
Naives Bayes 78.55% 85.26% 46.67% 53.33 % 14.74% 0.67
k-Nearest Neighbor 74.49% 74.39% 75.00% 25.00% 25.61% 0.83
Random Forest 78.55% 78.60% 78.33% 21.67 % 21.40% 0.85
Support Vector Machine 81.45% 81.05% 83.33% 16.67 % 18.95% 0.89

Table 1: Leave One Out results for polyp malignancy classification using features from GAP-Resnet50.

For each classifier, the accuracy and the area under the
curve (AUC) were computed. Moreover, sensitivity, de-
fined as the rate of correct pre-malignant polyps classified
as such, and specificity, defined as the correct rate of benign
polyps classified as benign were calculated as well. Fur-
thermore, the misclassification rates defined as false posi-
tive rate (FPR) and false negative rate (FNR) respectively,
were also computed.
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Figure 3: ROC curve for the balanced dataset.

The results of LOPOCV for each classifier are presented
in Table 1. The best results were achieved using the SVM
classifier, for both the unbalanced and balanced dataset. The
unbalancing between classes conditioned the selection of
a high cut-off value to achieve optimal specificity results.
The per-class data augmentation strategy achieved small
improvements in specificity values, increasing the correct
amount of classified benign polyps at the cost of a slight
decrease on sensitivity. The observed ROC curve shown

in Fig. 3 and the AUC values derived from it, suggest that
the proposed models are powerful enough to discriminate
between the two different classes, but they still may suf-
fer from deviations towards the higher class, probably ex-
plained from the limited amount of data used in the study.
Nevertheless, the reported results show promising feasibil-
ity for classifying polyp malignancy, when several modali-
ties are combined to achieve an improved prediction of the
final class.

4. Conclusions

This paper, has presented an algorithm for polyp malig-
nancy classification. The proposed method is able to clas-
sify a polyp between benign and pre-malignant from White
Light Endoscopy, and from two recently developed acqui-
sition modalities, Blue Laser Imaging and Linked Color
Imaging. Furthermore, an alternative approach to adjust a
highly unbalanced dataset is presented, based on separately
augmenting the inferior class over the most dominant class,
showing that the use of per-class data augmentation can
substantially improve results. The last layer of a pre-trained
Resnet50 with Imagenet is used as feature extractor. Sev-
eral machine learning classifiers have been evaluated on the
CZE dataset. Despite the prominent results, the current pro-
cessing chain suffers from manual ROI selection. To allevi-
ate this, the use of full-sized images can provide more infor-
mation towards an end-to-end CNN, decreasing the rate of
miss-classification. Moreover, the use of a bigger and more
balanced dataset can significantly improve the already feasi-
ble results. Overall, the proposed CAD system can provide
support to endoscopists with in-vivo polyp classification,
possibly avoiding unnecessary resections of benign polyps
and avoiding expensive histopathological assessment.



5. Acknowledgment

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram under the Marie Sklodowska-Curie grant agreement
No. 721766. We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research

References
[1] A. Asperti and C. Mastronardo. The effectiveness of data

augmentation for detection of gastrointestinal diseases from
endoscopical images. CoRR, abs/1712.03689, 2017. 3

[2] J. E. East, T. Guenther, R. H. Kennedy, and B. P. Saunders.
Narrow band imaging avoids potential chromoendoscopy
risks. Gut, 56(8):1168–1169, 2007. 1

[3] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers,
M. Rebelo, D. M. Parkin, D. Forman, and F. Bray. Cancer
incidence and mortality worldwide: Sources, methods and
major patterns in GLOBOCAN 2012. International Journal
of Cancer, 136(5):E359–E386, 2015. 1

[4] S. Gross, T. Stehle, A. Behrens, R. Auer, T. Aach, R. Wino-
grad, C. Trautwein, and J. Tischendorf. A comparison of
blood vessel features and local binary patterns for colorectal
polyp classification. SPIE Medical Imaging, 7260:72602Q–
72602Q–8, 2009. 2

[5] S. Gross, C. Trautwein, A. Behrens, R. Winograd, S. Palm,
H. H. Lutz, R. Schirin-Sokhan, H. Hecker, T. Aach, and
J. J. W. Tischendorf. Computer-based classification of small
colorectal polyps by using narrow-band imaging with opti-
cal magnification. Gastrointestinal Endoscopy, 74(6):1354–
1359, 2011. 2

[6] O. Har-Noy, L. Katz, T. Avni, R. Battat, T. Bessissow, D. E.
Yung, T. Engel, A. Koulaouzidis, R. Eliakim, S. Ben-Horin,
and U. Kopylov. Chromoendoscopy, narrow-band imaging
or white light endoscopy for neoplasia detection in inflam-
matory bowel diseases. Digestive Diseases and Sciences,
62(11):2982–2990, Nov 2017. 1

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. Arxiv.Org, 7(3):171–180, 2015. 2, 3

[8] J. R. Jass. Classification of colorectal cancer based on cor-
relation of clinical, morphological and molecular features.
Histopathology, 50(1):113–130, 2007. 1

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks.
Advances In Neural Information Processing Systems, pages
1–9, 2012. 3

[10] M. Liedlgruber and A. Uhl. Computer-aided decision sup-
port systems for endoscopy in the gastrointestinal tract: A
review. IEEE Reviews in Biomedical Engineering, 4:73–88,
2011. 2

[11] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014. 2

[12] M. Murata, H. Usami, Y. Iwahori, and W. Aili. Polyp Clas-
sification Using Multiple CNN-SVM Classifiers from Endo-
scope Images. The Ninth International Conferences on Per-
vasive Patterns and Applications, (c):109–112, 2017. 2, 3

[13] H. Nishida, S. Ozawa, K. Shimomura, S. Abe, K. Yoshida,
E. Ohashi, and T. Mishima. Development of a New En-
doscope platform. Technical Report 62-2017, Fujifilm Re-
search & Development, 2016. 1

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011. 3

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 2

[16] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. International
Conference on Learning Representations (ICRL), pages 1–
14, 2015. 3

[17] T. Tamaki, J. Yoshimuta, M. Kawakami, B. Raytchev,
K. Kaneda, S. Yoshida, Y. Takemura, K. Onji, R. Miyaki,
and S. Tanaka. Computer-aided colorectal tumor classifica-
tion in NBI endoscopy: Using local features. Medical Image
Analysis, 17(1):78–100, 2013. 2

[18] T. Tamaki, J. Yoshimuta, M. Kawakami, B. Raytchev,
K. Kaneda, S. Yoshida, Y. Takemura, K. Onji, R. Miyaki,
and S. Tanaka. Computer-aided colorectal tumor classifica-
tion in NBI endoscopy: Using CNN features. 2016. 2

[19] J. J. W. Tischendorf, S. Gross, R. Winograd, H. Hecker,
R. Auer, A. Behrens, C. Trautwein, T. Aach, and T. Stehle.
Computer-aided classification of colorectal polyps based on
vascular patterns: A pilot study. Endoscopy, 42(3):203–207,
2010. 2

[20] I. Viovan, M. Tanu, O. Pascu, L. Ciobanu, and A. Tanu. The
role of narrow band imaging in colorectal polyp detection.
Bosnian Journal of Basic Medical Sciences, 17(2):152–158,
2017. 1

[21] Z. Wen, J. Shi, B. He, Q. Li, and J. Chen. ThunderSVM: A
fast SVM library on GPUs and CPUs. To appear in arxiv,
2018. 3

[22] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell.
Understanding Data Augmentation for Classification: When
to Warp? 2016 International Conference on Digital Im-
age Computing: Techniques and Applications, DICTA 2016,
2016. 3

[23] R. Zhang, Y. Zheng, W. C. T. Mak, R. Yu, S. H. Wong,
J. Lau, and C. Poon. Automatic Detection and Classification
of Colorectal Polyps by Transferring Low-level CNN Fea-
tures from Non-Medical Domain. IEEE Journal of Biomed-
ical and Health Informatics, 21(1):1–1, 2016. 2, 3


