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Quality of real-time functional magnetic resonance imaging:
novel software, sequences, and signals.

Breaking down the complexities of the human mind in order to understand and
develop treatments for mental health conditions is an ongoing challenge in neu-
roscience research and global healthcare. If we are to make a practical difference
in our understanding of these complexities, and ideally in the lives of those who
are impacted daily, we have to rigorously and critically question the validity of
our own research. It is therefore imperative that we ensure the quality of our own
scientific measures, methods, and inferences.

Real-time functional magnetic resonance imaging (fMRI) is an advanced method
that shows promise in allowing us to probe and explore the human mind in a
virtual, real-time and non-invasive manner. Functional MRI involves the time-
dependent imaging of the oxygen concentration in cerebral blood vessels, which
approximates the amount of energy consumed by the neurons in our brain to sup-
port its function, hence functional MRI. With real-time fMRI, these images of our
brain activity are acquired, processed, and visualised while a person is inside the
MRI scanner, essentially providing a window into the human mind as we think,
feel, process information, and make decisions. But how well do we understand
this technology and its practical implications, especially for healthcare?

As a research field, real-time fMRI is undergoing rapid development to support
applications like brain computer interfaces, neuroimaging-based interventions for
neuropsychological or -psychiatric patients, adaptive experimental paradigms,
and neurofeedback training, the latter two being of increased interest in neurosci-
entific and healthcare research. Adaptive experimental paradigms allow the study
of mental health conditions under more naturalistic circumstances by allowing
experimental stimuli to adapt to a patient’s measured brain activity in real-time,
while neurofeedback allows brain activity to be fed back to the patient in the MRI
scanner such that they can train themselves to exert control over it. Both have
great potential to improve our understanding and treatment of the human mind,
but they also require state-of-the-art methodology to mitigate the detrimental
effects of known fMRI artefacts - such as magnetic interference, head movement,
or physiological noise signals - on the data quality and derivative measures. The
importance of quality control is emphasised even more due to the real-time nature
of the technology, which does not allow time for the data to be processed offline.
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It is therefore pertinent to ask: can we trust the measures derived from real-time
fMRI and the inferences we draw from them? And if this technology is to play an
increasingly important role in mental healthcare, what can and should we do to
improve the quality of real-time fMRI?

While the vast majority of real-time fMRI literature focuses on applications
(often clinical), there is a stark lack of studies exploring and quantifying the qual-
ity of the real-time data, the effects of real-time processing methods, the validity
of the employed methods and practices, and potential improvements to the afore-
mentioned. That is the overarching goal of this thesis.

We approach the research topic in three parts: (I) Understanding real-time fMRI
data quality, in which we present the complexities of the neuronal signal, noise
sources, artefacts, and confounding factors, and develop a comprehensive under-
standing of real-time fMRI data quality; (II) Hardware and software for real-time
fMRI analysis and quality control, where we develop, describe and share innovative
hardware and software solutions for improving the quality and reproducibility
of the real-time fMRI signal; and (III) Real-time multi-echo fMRI, where we ex-
plore novel data acquisition and signal processing methods that lead to sensitivity
improvements for real-time fMRI.

In Chapter 2, a comprehensive understanding of the real-time fMRI signal,
noise sources, artefacts, confounding factors, and ultimately data quality form the
necessary backdrop against which we investigate ways to improve it. We iden-
tify real-time multi-echo fMRI acquisition and analysis as a promising research
direction and the core focus of the third theme of this thesis.

Chapter 3 follows by presenting a methods review of real-time fMRI signal
quality in 128 recent fMRI neurofeedback studies. The literature review addressed
questions regarding the employed denoising methods, quality control mecha-
nisms, and reporting practices that promote or hinder computational reproducibil-
ity in this representative sample of studies. This work found that: (1) methods
reporting in fMRI neurofeedback can and should improve in order to allow meth-
ods reproducibility, and to help delineating the sources of variance in and effects
of the real-time fMRI signal; (2) there is a need for tools and best practices for
calculating, reporting and interpreting real-time fMRI quality measures; (3) the
influence of real-time processing steps on the quality of the fMRI data and neu-
rofeedback signal are not well studied/understood; (4) there is much room for
developing new and improved real-time fMRI sequences, denoising methods and
pipelines. Based on these findings, we generated and published a best practices
checklist for implementation and reporting of signal processing steps employed
in real-time fMRI neurofeedback studies.

The focus then shifts to improving infrastructure, tools and methods to support
real-time quality control of fMRI data. To be able to acquire, transfer and process
fMRI data in real-time, we developed and demonstrated the validity of a technical
setup using a 3T Philips scanner and MATLAB/SPM12 software (Chapter 4).
With the knowledge and experience gained during this process, we developed an
open source software toolbox for real-time quality control of fMRI data, covered in
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Chapter 5. Apart from improving the quality of fMRI data as they are acquired, this
tool can help with time and money savings (by flagging and stopping problematic
scans in real-time) and can improve reporting practices on the validity of research
data. Additionally, it was created with the intention of being a shared, community-
based effort for contributing to best practices in real-time fMRI quality.

As part of the third theme of this thesis, and to address the remaining shortcom-
ings highlighted in the methods review, we developed novel acquisition and pro-
cessing methods to improve the sensitivity of the blood oxygen level-dependent
(BOLD) fMRI signal in real-time. Multi-echo fMRI acquires multiple images along
the magnetic decay curve (as opposed to the more ubiquitous single-echo se-
quences), allows quantification of magnetic decay parameters, and has been shown
to improve signal-to-noise ratio and denoising efforts in conventional fMRI stud-
ies. However, comprehensive details of its implementation and effects in real-time
fMRI have previously not been demonstrated. In Chapter 7, we started by col-
lecting, curating and openly publishing a resting state and task-based multi-echo
fMRI dataset to support novel methods development in the field of real-time fMRI.
Further, in Chapter 8, we developed new real-time multi-echo combination and
decay parameter mapping methods, and demonstrated its use in this and other
fMRI datasets. We found that real-time combination of multi-echo data using a
newly developed, per-volume, T2*FIT-weighting scheme could increase the tem-
poral signal-to-noise ratio beyond the capability of existing combination methods,
and that per-volume estimates of T2*FIT could lead to increased effect sizes of
activity in task-based data.

To promote the reproducibility of this work and to assist further improvements
of the developed real-time processing methods, we have made all of the developed
methods and pipelines publicly available as part of a general MATLAB/Octave-
based toolbox for real-time and offline fMRI preprocessing and quality control
(Chapter 6).
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Kwaliteit van real-time functionele magnetische resonantiebeeldvorming:
nieuwe software, sequenties en signalen.

Het ontrafelen van de complexiteit van de menselijke geest om behandelingen
voor geestelijke gezondheidsproblemen te begrijpen en te ontwikkelen, is een
voortdurende uitdaging in neurowetenschappelijk onderzoek en de wereldwijde
gezondheidszorg. Als we een praktisch verschil willen maken in ons begrip van
deze complexiteiten, en idealiter in het leven van degenen die er dagelijks mee
te maken hebben, moeten we de validiteit van ons eigen onderzoek rigoureus
en kritisch in twijfel trekken. Het is daarom absoluut noodzakelijk dat we de
kwaliteit van onze eigen wetenschappelijke metingen, methoden en conclusies
waarborgen.

Real-time functionele magnetische resonantiebeeldvorming (fMRI) is een gea-
vanceerde methode die veelbelovend is omdat het ons in staat stelt om de men-
selijke geest op een virtuele, real-time en niet-invasieve manier te onderzoeken
en te verkennen. Functionele MRI is de tijdsafhankelijke beeldvorming van de
zuurstofconcentratie in cerebrale bloedvaten, wat bij benadering overeenkomt
met de hoeveelheid energie die door de neuronen in onze hersenen wordt ver-
bruikt om hun functie te ondersteunen, vandaar de term functionele MRI. Met
real-time fMRI worden deze beelden van onze hersenactiviteit verkregen, ver-
werkt en gevisualiseerd terwijl een persoon in de MRI-scanner ligt, wat ons als
het ware een soort kijk geeft op de menselijke geest terwijl we denken, voelen,
informatie verwerken en beslissingen nemen. Maar hoe goed begrijpen we deze
technologie en de praktische implicaties ervan, vooral voor de gezondheidszorg?

Als onderzoeksgebied maakt real-time fMRI een snelle ontwikkeling door
ter ondersteuning van toepassingen zoals brein-computer interfaces, op neu-
roimaging gebaseerde interventies voor neuropsychologische of -psychiatrische
patiënten, adaptieve experimentele paradigma’s, en neurofeedback training, waar-
bij de laatste twee van toenemend belang zijn in neurowetenschappelijk onder-
zoek en onderzoek in de gezondheidszorg. Adaptieve experimentele paradigma’s
maken het mogelijk psychische aandoeningen onder meer naturalistische omstan-
digheden te bestuderen doordat experimentele stimuli zich in real time kunnen
aanpassen aan de gemeten hersenactiviteit van een patiënt, terwijl neurofeedback
het mogelijk maakt hersenactiviteit terug te koppelen naar de patiënt in de MRI-
scanner, zodat deze zichzelf kan trainen om er controle over uit te oefenen. Beide
hebben een groot potentieel om ons begrip en onze behandeling van de menselijke
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geest te verbeteren, maar ze vereisen ook een geavanceerde methodologie om de
nadelige effecten van bekende fMRI-artefacten - zoals magnetische interferentie,
hoofdbeweging of fysiologische ruissignalen - op de kwaliteit van de gegevens
en de afgeleide maten te beperken. Het belang van kwaliteitscontrole wordt nog
meer benadrukt door het real-time karakter van de technologie, waardoor er geen
tijd is om de gegevens offline te verwerken. Het is daarom van belang om de
volgende kwesties aan te kaarten: kunnen we de metingen die worden afgeleid
uit real-time fMRI en de conclusies die we daaruit trekken, vertrouwen? En als
deze technologie een steeds belangrijkere rol gaat spelen in de geestelijke gezond-
heidszorg, wat kunnen en moeten we dan doen om de kwaliteit van real-time
fMRI te verbeteren?

Terwijl de overgrote meerderheid van de real-time fMRI literatuur zich richt
op toepassingen (vaak klinisch), is er een schrijnend gebrek aan studies die de
kwaliteit van de real-time data, de effecten van real-time verwerkingsmethoden,
de validiteit van de gebruikte methoden en praktijken, en potentiële verbeteringen
van het hiervoor genoemde onderzoeken en kwantificeren. Dat is het overkoepe-
lende doel van dit proefschrift.

We benaderen het onderzoeksonderwerp in drie delen: (I) Inzicht in real-time
fMRI data kwaliteit, waarin we de complexiteit van het neuronale signaal, ruis-
bronnen, artefacten en verstorende factoren behandelen, en een uitgebreid begrip
van real-time fMRI data kwaliteit creëeren; (II) Hardware en software voor real-
time fMRI analyse en kwaliteitscontrole, waarin we innovatieve hardware- en
softwareoplossingen voor het verbeteren van de kwaliteit en reproduceerbaarheid
van het real-time fMRI signaal ontwikkelen, beschrijven en delen; en (III) Real-
time multi-echo fMRI, waarin we nieuwe data-acquisitie en signaalverwerkings-
methoden verkennen die leiden tot gevoeligheidsverbeteringen voor real-time
fMRI.

In Hoofdstuk 2 vormen een uitgebreid begrip van het real-time fMRI-signaal,
ruisbronnen, artefacten, verstorende factoren, en uiteindelijk de kwaliteit van de
gegevens de noodzakelijke achtergrond waartegen we manieren onderzoeken
die deze zullen verbeteren. We identificeren real-time multi-echo fMRI acquisitie
en analyse als een veelbelovende onderzoeksrichting en de focus van het derde
thema van dit proefschrift.

In Hoofdstuk 3 wordt een overzicht gegeven van de methoden die zijn gebruikt
om de kwaliteit van real-time fMRI-signalen in 128 recente fMRI neurofeedback
studies te beoordelen. Het literatuuronderzoek richtte zich op vragen met betrek-
king tot de gebruikte ruisverminderingsmethoden, manieren voor kwaliteitscon-
trole en de wijze van rapporteren die de computationele reproduceerbaarheid
bevorderen of belemmeren in deze representatieve steekproef van studies. Uit dit
onderzoek bleek dat: (1) de rapportage van methoden over fMRI-neurofeedback
verbeterd kan en moet worden om reproduceerbaarheid van methoden mogelijk
te maken en om de bronnen van variantie in en de effecten van het real-time
fMRI-signaal helpen af te bakenen; (2) er behoefte is aan hulpmiddelen en beste
praktijken voor het berekenen, rapporteren en interpreteren van real-time fMRI-

vi



kwaliteitsmetingen; (3) de invloed van verschillende real-time verwerkingsstap-
pen op de kwaliteit van de fMRI data en het neurofeedback signaal niet goed zijn
onderzocht/begrepen; (4) er veel ruimte is voor het ontwikkelen van nieuwe en
verbeterde real-time fMRI sequenties, ruisverminderingsmethoden en pipelines.
Op basis van deze bevindingen hebben we een beste praktijken checklist voor de
implementatie en rapportage van signaalverwerkingsstappen in real-time fMRI
neurofeedback studies opgesteld en gepubliceerd.

De focus verschuift vervolgens naar het verbeteren van infrastructuur, hulp-
middelen en methoden om real-time kwaliteitscontrole van fMRI-gegevens te
ondersteunen. Om fMRI data in real-time te kunnen verzamelen, overdragen en
verwerken, hebben we een technische opstelling ontwikkeld en gedemonstreerd
met behulp van een 3T Philips scanner en MATLAB/SPM12 software (Hoofdstuk
4). Met de kennis en ervaring die zijn opgedaan tijdens dit proces, ontwikkelden
we een open source software toolbox voor real-time kwaliteitscontrole van fMRI
data, zoals wordt behandeld in Hoofdstuk 5. Naast het verbeteren van de kwaliteit
van fMRI data die tegelijkertijd worden verkregen, kan deze tool helpen bij het
besparen van tijd en geld (door problematische scans in real-time te markeren en
te stoppen) en kan het de rapportage over de validiteit van onderzoeksgegevens
verbeteren. Bovendien werd het ontwikkeld met de intentie om een gedeelde,
gemeenschapsgerichte inzet te zijn die bijdraagt aan beste praktijken in real-time
fMRI-kwaliteit.

Als onderdeel van het derde thema van dit proefschrift, en om de overige
tekortkomingen aan te pakken die in de methodologie review naar voren kwa-
men, hebben we nieuwe acquisitie- en verwerkingsmethoden ontwikkeld om de
gevoeligheid van het bloedzuurstofniveau-afhankelijke (BOLD) fMRI-signaal in
real-time te verbeteren. Multi-echo fMRI acquireert meerdere beelden langs de
magnetische verval curve (in tegenstelling tot de meer overal aanwezige single-
echo sequenties), maakt kwantificering van magnetische verval parameters mo-
gelijk, en heeft aangetoond dat het in staat is om de signaal-ruisverhouding en
ruisverbeteringsdoeleindes in conventionele fMRI-studies te verbeteren. Echter,
uitgebreide details van de implementatie en de effecten in real-time fMRI zijn
nog niet eerder aangetoond. In hoofdstuk 7 zijn we begonnen met het verzame-
len, samenstellen en openlijk publiceren van een rusttoestand en taak-gebaseerde
multi-echo fMRI dataset ter ondersteuning van de ontwikkeling van nieuwe me-
thoden op het gebied van real-time fMRI. Verder hebben we in Hoofdstuk 8
nieuwe real-time multi-echo combinatie en vervalparameter mapping methoden
ontwikkeld, en het gebruik ervan gedemonstreerd in deze en andere fMRI da-
tasets. We ontdekten dat real-time combinatie van multi-echo data met behulp
van een nieuw ontwikkeld, per volume, T2*FIT-gewogen schema de temporele
signaal-ruisverhouding kon verhogen, nog meer dan de mogelijkheden van be-
staande combinatiemethoden, en dat per-volume schattingen van T2*FIT konden
leiden tot verhoogde effectgroottes van activiteit in taak-gebaseerde data.

Om de reproduceerbaarheid van dit werk te bevorderen en om verdere ver-
beteringen van de ontwikkelde real-time verwerkingsmethoden te ondersteunen,
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hebben we alle bovengenoemde methoden en pipelines openbaar beschikbaar ge-
steld als onderdeel van een algemene MATLAB/Octave-gebaseerde toolbox voor
real-time en offline fMRI beeldvoorbewerking en kwaliteitscontrole (Hoofdstuk
6).
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1.1 Background
Humans want to read minds - that is no secret. We have been obsessed with
the possibility of mind reading, and of understanding consciousness, since times
untold. It is written in our legends, in our cultural history, we sing about it, philoso-
phers muse about it, scientists study it, we write dystopian novels about it, we
even attempt it (inadvertently or purposefully?) in our daily lives. I wonder why he
is frowning at me, he must think I did something wrong. . . She must be so frustrated after
what happened, I wish I could understand what she’s going through. . . They did what??
What were they thinking? Or to move from the mundane to the purpose-driven: if
we could completely understand the human mind, its building blocks, and the
intricacies of how they fit together to yield a functioning, awe-inspiring mecha-
nism, imagine what we could achieve with that knowledge. Would we be able
to measure consciousness or its levels of function empirically? Would we be able
to quantify how a functioning mind differs from one with so-called dysfunction?
Could we unpack that systematically, to see which levers we can pull to set a
course of corrective action, if so desired? Could we make inroads into addressing
some of the most challenging mental conditions of our time, such as depression,
Alzheimer’s disease, developmental disorders, schizophrenia and many more that
are affecting the lives and livelihoods of too many?

As it stands, we do not have to do too much imagining. For just as long as we
have been obsessed with mind reading and consciousness, we have also developed
theories, conducted experiments, and created technologies to generate and test
viable answers. From ancient spiritualism to Descarte, from behaviourism to
neurons, from dissecting the nervous system of a frog to the magnetic resonance
imaging of a human brain, we have steadily and very concretely added to the
body of knowledge of the mind. During the past century this has culminated in
the exponential growth of technology-assisted discoveries and inventions that are
now synonymous with neuroscience. What was thought of as dystopian a century
ago, is common practice today, and will be seen as outdated and even naive a few
decades from now. Such is the nature of what we call scientific progress. And the
technologies, methods and practices that we develop are paving the way.

But what of the unintended consequences? Are the technologies we build and
the methods we develop particularly appropriate to answer such fundamental,

1



C
hapter1

1 . I N T R O D U C T I O N

sometimes ill-posed, questions? How sure are we that we aren’t fooling ourselves,
that the elusive object of our study is not in fact playing tricks on, well, itself?
And in our rush to improve our models, to build better measurement systems,
to make more accurate inferences, and to answer deeper questions, what are we
prioritising? Could we be choosing competition over democratisation of ideas,
novelty over robustness, quantity over quality, and rationalised conclusions over
embracing the complexity of the unknown? As scientists we walk this tightrope
every day, balancing our dreams to uncover the unknown with the possibility and
responsibility of improving the lives of those whose minds prevent it. So what
suffices as our balancing pole?

Transparency in science has this potential. By opening up our data, our meth-
ods, and our practices, we allow diverse ideas to enter the pool of knowledge
generation. And by sharing these ideas openly, we allow others to error-check our
work, to reuse it, and to extend it. Scientists should be no strangers to this iterative
process, yet we cannot be complacent in driving it forward to its full potential.
If we sincerely want to answer some of life’s most profound questions with the
high quality, rigourous, robust, and reproducible effort that it requires, we cannot
shy away from holding up the magnifying glass to our own work, to our own
practices, and to the technologies whose praises we sing.

This thesis documents a single thread along this global tapestry of scientific
inquiry: of dreams, to ideation, to technology, to structured and constructive doubt,
and ultimately to building shared knowledge on which to iterate. It starts with
the question of reading the mind, particularly: how can we explore the human
brain in order to understand and treat it? One advanced technology that has
allowed us a glimpse into the mind is real-time functional magnetic resonance
imaging, where we exploit the magnetic properties of the atoms we consist of
by putting them into a large magnet, and watching the scene unfold. Modern
day scanners have the ability to image the anatomical properties of our brains at
submillimeter accuracy, as well as record brain activity over time as we conduct
mental tasks or lie still in the scanner. While anatomical images are ideal for
identifying tumours, blood clots and other visible anomalies, functional brain
images tell us all about how we process information, how brain regions specialise
for certain tasks, and how our brain forms a dynamic functional network. The
real-time aspect allows us to do all of this while a person is lying in the scanner,
essentially providing a direct window into the mind as we think, feel, process
and decide. It has inspired scientists to design novel methods for studying and
treating the human brain. Adaptive experiments, for example, are designed to
dynamically update the stimuli or tasks presented to the person in the scanner
based on their changing brain activity, allowing the study environment to adapt
to our mental processes. Another is neurofeedback, where people can learn to self-
regulate their brain function by receiving visual feedback of their brain activity
at that very moment. The act of self-regulation may lead to changes in mental or
physical behaviours, and has been studied as a treatment option in neurological
and psychiatric conditions.
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So what, one might wonder, are the drawbacks of real-time functional magnetic
resonance imaging (or for short, real-time fMRI)? Since it allows us to peer into
the human mind, can we say that we have the tools to understand it? Can we now
break it down into its building blocks and start rebuilding the minds that require
care? As with many advanced technologies, the inner workings of real-time fMRI
rest on many levels of intricate details, each with its own complexities. From the
physical properties of atoms, to the micro- and macroscopic movement of oxygen
and blood through the brain, to the magnetic properties of the scanner, and the
eventual context within which the technology is applied: the devil could be in
any of these details. A useful example is the underlying assumptions of fMRI,
which measures brain activity through the proxy of oxygen concentration in blood
vessels in the brain. It is known that physiological factors like respiration, heart
rate and blood flow, and not only neuronal activity, influence the concentration of
blood oxygen in the brain. This can bias both our measurement and our interpre-
tation of said measurement. Are we perhaps adapting the experimental stimuli, or
providing neurofeedback, purely based on a higher breathing rate of the person in
the scanner, and not based on their changing brain activity? Or could the person’s
head be moving slightly each time they receive an updated instruction, which
is known to lead to synchronised fluctuations in brain image intensity, that we
then misinterpret as brain activity? Importantly, are we acquiring enough data
and using state-of-the-art methods to ascertain that these confounding factors are
indeed accounted for? Or, by not accounting for these drawbacks, are we draw-
ing incorrect conclusions from our experiments that could ultimately lead to the
technology being considered beneficial to patients when in fact it is not? Or the
reverse?

Thus, what of the quality of our technology, our measurements, our methods,
and of our inferences? What should we be investigating as possible confound-
ing factors when measuring and interpreting brain activity? Can we quantify
these, ideally in real-time, in order to capture and discard bad quality data as
they are acquired? Can we develop new MRI sequences that already provide an
improved quality fMRI signal upon acquisition, with higher sensitivity to brain
activity changes? And could we improve our existing real-time signal processing
methods, and develop novel ones, so as to extract an increasingly truer version
of brain activity? By posing these questions, and developing robust methods and
experiments to answer them, we approach our work through a necessary critical
lense, systematically breaking down the ultimate challenge of understanding the
human mind into smaller, manageable pieces.

What follows - having identified the dream, the technology, and the structured
approach to self-critical inquiry and improvement - is to prioritise transparency. If
we develop new signal processing methods for improving the quality of measured
brain activity in real-time, can we describe them in such a way that others can
understand, reuse and improve on them? And can we openly share the software
implementation of said methods, providing an inclusive platform for all to learn
from and contribute to? If we collect a novel dataset using a newly developed
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sequence, can we make this dataset available to the fMRI community for future
research while simultaneously prioritising the personal data privacy of study
participants?

By making each quantifiable step of our research as transparent and accessible
as is practically and ethically possible, we take part in the global process of iterative
progress. If our ultimate goal is to understand the human mind and to use our
understanding for the betterment of humankind, all of humankind should be able
to weigh in, and all of humankind should be able to contribute to and benefit from
the outcomes.

1.2 Problem statement, research questions and contributions
With the previous thread as backdrop, we now focus on the core problem state-
ment, the research questions and the contributions of this thesis to the quality of
real-time fMRI.

1.2.1 Problem statement
Data quality has received little attention in the field of real-time fMRI, while
the drawbacks of fMRI and the effects of not accounting for them, on the other
hand, are well known. This discrepancy is substantiated by a notable absence of
methods for improving real-time fMRI data quality and of practices for methods
reporting in the literature. This absence prevents a thorough, community-wide,
understanding of real-time fMRI data quality and aspects that might influence, or
better yet, improve it. Consequently, adoption of improved methods lags behind
in practice, since a lack of understanding and validation hinders implementation
at the level of hardware and software tools. Multi-echo fMRI is a core example: its
benefits for conventional fMRI are documented, but it is hardly used in real-time
applications. In order to validate its possible benefits for improving the quality of
real-time fMRI, it requires a thorough understanding, new methods development
for real-time use cases, toolset implementations, novel datasets, and validation
experiments.

1.2.2 Research questions
The research questions identified in response to this problem statement are sum-
marised according to three main parts:

Part I: Understanding real-time fMRI data quality
A comprehensive understanding of the blood oxygen level-dependent (BOLD)
signal, real-time fMRI, noise sources, artefacts, confounding factors, and ultimately
data quality should form the necessary backdrop against which we investigate
ways to improve it.

RQI.1: Can we provide a comprehensive review of existing methods for improving
the quality of real-time fMRI?
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RQI.2: What does an improved understanding reveal about the state of real-time
quality control methodology and reporting? Do proven signal processing methods
exist for removing noise sources that are not of interest? Are there standardised
quality control measures and ways to report them?

RQI.3: If our understanding, denoising methodology and reporting practices are
lacking, which measures can be introduced to improve the research community’s
understanding and implementation of improved data quality?

Part II: Hardware and software for real-time fMRI analysis and quality control
Real-time fMRI data quality can benefit greatly from standardised quality control
measures, agreed practices for reporting them, improved acquisition and process-
ing methods for increasing BOLD sensitivity, and community-driven tool and
practice development to underlie all of the aforementioned. Additionally, these
implementations are all necessary in order to test and validate novel methods
such as real-time multi-echo fMRI.

RQII.1: Can we implement the infrastructure on the scanner level to allow the
transfer and processing of (multi-echo) fMRI in real-time?

RQII.2: Can we implement real-time quality control methods on a software level
to provide the research community with a tool for methods standardisation and
quality control and improvement?

RQII.3: Can we develop and implement novel algorithms for processing multi-
echo fMRI data in real-time, allowing validation experiments to be conducted?

Part III: Real-time multi-echo fMRI
Assuming a thorough understanding of the possible benefits of multi-echo fMRI
for conventional and real-time data quality, and assuming successful implementa-
tion of the required real-time scanning infrastructure and software tools to support
it, the development and validation of real-time multi-echo fMRI methods remain
to be tested.

RQIII.1: As a starting point, can we design and collect a novel, real-time multi-
echo dataset that will allow the exploration and development of improved signal
processing methods? Can we annotate and structure such datasets so as to ensure
interoperability with standard tools and pipelines? And can we share this data
publicly while still prioritising research ethics and the personal data privacy of
data participants?

RQIII.2: Given that no comparable literature exists, can we explore and report
possible BOLD sensitivity improvements with real-time multi-echo fMRI? How
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do newly developed methods perform against current state of the art or conven-
tional offline multi-echo fMRI methods?

RQIII.3: Can we consequently derive preferred multi-echo methods for improving
real-time fMRI data quality and develop these into publicly available pipelines
for community use and contribution?

1.2.3 Contributions
This work contributes to the improvement of real-time fMRI data quality along
the three presented themes.

Part I: Understanding real-time fMRI data quality
Acknowledging the noisy nature of functional magnetic resonance imaging and
its drawbacks, Part I of this thesis presents existing and recently developed meth-
ods that improve our ability to gain useful insights from noisy real-time data.
This contribution takes the form of a thorough description of the core concepts
relating to real-time multi-echo fMRI and data quality, as well as a comprehensive
review of denoising methods and tools in real-time fMRI literature. In particular,
it highlights the relatively underexplored nature of denoising methodology in the
field of real-time compared to offline fMRI analysis, presents a comprehensive
checklist for inclusion and reporting of real-time denoising steps, and identifies
real-time multi-echo fMRI as a promising tool to improve sensitivity of the blood
oxygen level-dependent (BOLD) signal.

Part II: Hardware and software for real-time fMRI analysis and quality control
With the background knowledge in place, Part II then covers the chronologically
stacked development of tools for improving the quality of real-time fMRI. The
first contribution details the practical setup of real-time fMRI acquisition, transfer,
processing and display, including a newly developed graphical user interface to
facilitate these aspects. Additionally, this thesis facilitates community standardisa-
tion via the development of an open software tool for calculating, displaying and
reporting real-time data quality measures. The final software contribution pro-
vides novel functionality to process multi-echo fMRI data in real-time, in the form
of open and automated software pipelines, thus laying the practical foundation
for carrying out multi-echo experiments and validation tests in real-time.

Part III: Real-time multi-echo fMRI
The thesis then covers comprehensive efforts to consolidate advancements in real-
time multi-echo acquisition and analysis into practically useful contributions. Part
III contributes both a novel real-time multi-echo dataset that is annotated and
made available publicly, and the first comprehensive exploration of the effects
of multi-echo fMRI combination and rapid T2*-mapping on offline and real-time
BOLD sensitivity. Findings show clear benefits of multi-echo for real-time use
cases, especially in terms of increased functional contrast in task-related regions
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of interest, and brain-wide increased signal-to-noise ratio.

1.3 Thesis outline
To form the basis of our understanding, Chapter 2 provides technical backgrounds
of each of the core concepts covered in this thesis: functional MRI, real-time fMRI,
BOLD sensitivity and confounds, acquisition and denoising methods for BOLD
improvements, and finally multi-echo fMRI and its application in real-time use
cases.

Next, understanding the current state of the art with regards to methods and
quality control in real-time fMRI is an essential step. Chapter 3 covers a com-
prehensive review of recent studies in the field of real-time fMRI neurofeedback,
investigating their use of real-time denoising methods (or lack thereof), and their
implementation of quality control standards. This work finds that: (1) methods
reporting in fMRI neurofeedback can and should improve in order to allow meth-
ods reproducibility, and to help delineating the sources of variance in and effects
of the real-time fMRI signal; (2) there is a need for tools and best practices for
calculating, reporting and interpreting real-time fMRI quality measures; (3) the
influence of real-time processing steps on the quality of the fMRI data and neu-
rofeedback signal are not well studied/understood; (4) there is much room for
developing new and improved real-time fMRI sequences, denoising methods and
pipelines.

Chapter 4 then focuses on infrastructure, tools and methods to support real-
time fMRI quality control, without which further experimentation and method-
ological validation would not be possible. This chapter covers the development
and validation of a technical setup using a 3T Philips scanner and MATLAB/SPM12,
allowing fMRI to be acquired, transferred and processed in real-time.

Shifting from infrastructure to software, Chapter 5 and Chapter 6 describe
two open source software toolboxes developed over the course of this project.
One tool (Chapter 5) assists researchers in calculating and visualising multiple
real-time image quality metrics that improve the quality of fMRI data as they
are acquired, can help with time and money savings (by flagging and stopping
problematic scans in real-time) and can improve reporting practices on the validity
of research data. A second tool (Chapter 6) provides functionality to process multi-
echo fMRI data in real-time, functionality which is lacking in the wider ecosystem
of open neuroimage analysis tools. Both of these software tools lay the practical
and algorithmic groundwork for what follows.

Then we turn our focus to sequences and signals. Building on top of the ad-
vancements of real-time processing and benefits of multi-echo fMRI, Chapter 7
and Chapter 8 present extensive work to collect multi-echo fMRI data, develop
novel real-time multi-echo fMRI methods, and validate these new approaches.
Chapter 7 presents a collected, curated and openly published resting state and
task-based multi-echo fMRI dataset to support novel methods development in
the field of real-time fMRI. Chapter 8 presents novel real-time multi-echo combi-
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nation and T2*-mapping methods, highlighting their effects on real-time BOLD
sensitivity and the benefits for real-time data quality.

Throughout the course of these chapters, we provide complementary informa-
tion on how all methods and results have been made accessible to the research
community and transparent to the general public. All developments and findings
are then placed into context and discussed in Chapter 9. We summarise the con-
tributions that this project has made to the field of real-time fMRI, and provide
insight into how future developments could benefit from these contributions.
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Abstract
Real-time functional magnetic resonance imaging (fMRI) is a tool that assists re-
searchers in understanding the intricacies of the human mind as we think, feel
and process information. To improve our inferences based on real-time fMRI
data, the quality and sensitivity of this approximate measure of brain activity is
paramount. However, there is a notable absence of methods for improving real-
time fMRI data quality and of practices for methods reporting in the literature.
This absence prevents a thorough, community-wide, understanding of real-time
fMRI data quality and aspects that might influence, or better yet, improve it. A
comprehensive understanding of the blood oxygen level-dependent (BOLD) sig-
nal, of real-time fMRI, of its noise sources, artefacts, and confounding factors, and
ultimately of data quality should form the necessary backdrop against which we
investigate ways to improve it. This chapter reviews the core concepts we need
to yield this understanding: the mechanisms of real-time functional MRI, BOLD
signal sensitivity and confounds, acquisition and denoising methods for BOLD
improvements in real-time, and finally multi-echo fMRI and its application in real-
time use cases. We show from reviewed sources that multi-echo fMRI is promising
for improving real-time BOLD sensitivity due to its ability to separate BOLD and
non-BOLD effects and to provide optimal brain-wide T2*-weighting.
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2.1 Functional magnetic resonance imaging of the human brain
During rest or when performing a mental task, the neurons in our brains need
to metabolise oxygen in order to generate energy to support their function. Oxy-
gen molecules are transported to where they are required through a vast array of
cerebral arteries and capillaries by a paramagnetic protein known as hemoglobin.
During this process, physiological changes in the brain such as metabolic rate,
blood flow, and blood volume all influence relative local concentrations of oxy-
genated and deoxygenated blood, which subsequently give rise to local magnetic
susceptibility gradients. Using functional magnetic resonance imaging (fMRI), and
T2*-weighted acquisition sequences in particular, we can capture these brain-wide,
physiologically induced, magnetic perturbations over time and at millimeter-level
spatial resolution. Since the inception of fMRI into brain research around 1990, this
blood oxygen level-dependent (or BOLD) signal has been characterised as a proxy
for brain activity, which allowed researchers to study its relation to fundamen-
tal brain function in typical and disease-stricken human brains. Importantly, our
ability to infer accurate information about neuronal processes is influenced by the
sensitivity with which we can capture these BOLD changes and by how we subse-
quently delineate its sources of variance. This requires a thorough understanding
of the BOLD signal, its constituents, and their influences on sensitivity.

The MRI scanner is a large permanent magnet that has a base magnetic field
strength which causes the protons in water molecules in our blood and brain tissue
to become magnetised in the scanner. These protons are also referred to as ”spins”,
since they rotate at an atomic level around an axis positioned along the magnetic
field. To acquire a single fMRI image of a human brain, a short transverse radio
frequency pulse is applied while the person is lying longitudinally inside the
scanner. The resulting transverse magnetic field disturbs the base magnetisation
of the spins, essentially turning their direction sideways, which then requires time
once the transverse pulse is removed for the spins to revert to their equilibrium
magnetisation state. This process is called relaxation or decay. Decay relates to
how the spins dissipate their energy with regards to the main magnetic field
(called T1, or spin-lattice, decay), but also with regards to other local spins (called
T2, or spin-spin, decay). In a human brain there are tissue differences on micro-
and macroscopic level that cause magnetic field inhomogeneities which in turn
influence the local spin-spin decay rate. This leads to an observed or effective T2
decay rate, termed T2* decay. Different tissue types have different proton densities
and contain different levels of local field inhomogeneities, thus leading to varying
decay rates across the brain and across tissue types. Taking a snapshot of the
tissue magnetisation at a given time point after transverse excitation allows us
to capture differences in decay rates, which we then translate into differences in
image contrasts at distinct spatial positions on an MRI image. Additionally, taking
repeated snapshots over time, each time after a repeated transverse excitation,
allows us to capture time-dependent changes in decay rates such as those relating
to changes in oxygenated and deoxygenated blood, i.e. the T2*-weighted BOLD
signal. That is the core principle behind T2*-weighted imaging, further explained
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Figure 2.1 — Diagram of a transverse excitation pulse, followed by mono-exponential T2*-decay
of the magnetised tissue, and lastly acquisition of a single functional MRI volume at echo time TE

by the depiction in Figure 2.1.

2.2 Real-time fMRI
Most functional, T2*-weighted imaging datasets are acquired as a single time
series, also called a functional run, that consists of tens or hundreds of three-
dimensional T2*-weighted images, termed volumes. These runs, whether it is
acquired during a resting state or task-based experiment, are typically prepro-
cessed, denoised and analysed some time after the acquisition session, i.e. offline.
However, online analysis of each fMRI volume as it is acquired from the person
lying in the scanner is also possible, as depicted in Figure 2.2. This advancement of
acquiring and analysing data in a matter of seconds has made real-time fMRI a vi-
able tool for real-time data quality monitoring, functional activation mapping and
adaptive experimentation since its development by Cox, Jesmanowicz, and Hyde,
1995. Since then, the ensuing two decades saw a substantial increase of research
interest and activity in this field. Advancements in MRI technology, computational
algorithms, and computer processing power have also allowed increasingly faster
processing of functional images and have given researchers and clinicians access
to data in real-time that would otherwise only be available hours, days or weeks
after scanning.

Applications of real-time fMRI include real-time data quality assurance and
patient compliance checking (Voyvodic, 1999), pre-experimental and pre-surgical
functional localisation and intraoperative guidance (see for example Hirsch et al.,
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Figure 2.2 — A depiction of a full fMRI run consisting of N volumes each acquired at a specific
repetition time, with offline processing indicated as the processing of all acquired data after the run
has finished. Real-time processing involves processing each volume as it is acquired, together with
all previously acquired volumes.

2000, and Binder, 2011), real-time functional activity mapping (as is available in
the software accompanying all major MRI vendors), brain computer interfaces (e.g.
Sorger et al., 2012), brain state decoding (LaConte, 2011), real-time neurofeedback
training (Sitaram et al., 2017), and even as an interactive teaching tool (Weiskopf
et al., 2007b).

From the perspective of understanding and treating mental health conditions,
learned brain activity regulation through neurofeedback training has been used in
neuropsychological and -psychiatric disorders and other subject groups to test for
behavioural and symptomatic correlates. If successful and robust, such findings
would make non-invasive real-time fMRI a viable alternative to more invasive
treatment modalities like pharmaceuticals, surgery or deep brain stimulation.
Several studies have reported significantly beneficial behavioural, symptomatic
or experiential changes after fMRI neurofeedback training in a variety of clinical
or other populations, including major depressive disorder (Linden et al., 2012),
tinnitus (Emmert et al., 2017), attention deficit and hyperactivity disorder (Alegria
et al., 2017), (Spetter et al., 2017), and nicotine cravings (Canterberry et al., 2013).

However, with this rapid expansion of real-time fMRI applications, especially
in clinical settings, similar attention has not been given to the fundamentals of
BOLD sensitivity and the implementation of steps to improve it in real-time. There
are core differences between offline and real-time analysis that make real-time data
quality an essential step for online experiments. For one, real-time fMRI analysis
does not have access to the same full dataset that allows advanced statistical
analysis to be conducted offline. In real-time processing the algorithm can only
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access each data point acquired up to a specific point in time, resulting in less
statistical power to draw valid real-time inferences from and less data with which
to calculate useful metrics of brain function or artefacts. Additionally, real-time
analysis typically expects each acquired volume to be processed by the time the
following volume in the time series is acquired, which leaves seconds for the real-
time code to execute. Conversely, available offline processing time is essentially
limitless.

Consequently, real-time denoising and analysis algorithms typically include
simplistic versions of offline fMRI processing steps, even when taking advance-
ments in computational power into account. As a result of these restrictions and
simplifications, the real-time BOLD signal might still contain confounding fluctu-
ations or artefacts that would otherwise have been removed with offline analysis,
lowering its quality and casting doubt on the implementation and results of real-
time fMRI applications. The exploration of acquisition and analysis methods that
aim to improve real-time data quality can therefore be seen as an important and
necessary investigative route, and it is the core focus of this thesis.

2.3 BOLD sensitivity and confounds
A variety of aspects influence the sensitivity with which we can capture BOLD
signal changes: at the levels of the magnet, the T2*-weighted sequence and the
person being scanned. By controlling or correcting for these influences, we can
diminish their effect on the measured BOLD fluctuations and improve our ability
to relate BOLD changes to neuronal changes, thus increasing BOLD sensitivity
and improving our inferences.

To understand this, let us focus first on the drawbacks of T2*-weighted se-
quences. Conventionally, a single-echo fMRI image is acquired (i.e. a single snap-
shot is taken after transverse excitation) at one echo time specifically selected to
optimise BOLD sensitivity. This optimum is typically achieved at an echo time
close to the average baseline T2*-value (Menon et al., 1993), which at 3T is around
TE = 30 ms for the cortex. This brain-wide optimisation leads to suboptimal
location-specific BOLD sensitivity since the single echo time is selected to opti-
mise BOLD contrast for an average T2*-value, while it is known that T2* varies
across tissue types and brain regions (Peters et al., 2007). This can result, amongst
others, in spatial variability in the detection of task-related activation patterns or
in resting state metrics such as functional connectivity.

Furthermore, while T2*-weighted imaging specifically exploits decay differ-
ences due to local magnetic susceptibility gradients on a microscopic level, this
can be detrimental at a larger spatial scale. For example, macroscopic magnetic
susceptibility effects in areas with air/tissue boundaries result in more severe
image defects such as signal dropout and image distortion, leading to a loss of
potentially valuable brain activity information. Signal dropout is known to be
more pronounced in the inferior frontal, the medial temporal and the inferior
temporal lobes (Devlin et al., 2000).
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Lastly, even if region-specific BOLD sensitivity is optimised and signal dropout
is diminished, the BOLD signal results from a complex interplay of blood flow,
blood volume and magnetic susceptibility effects that can be influenced strongly
by system- and participant-level noise sources. Scanner instabilities, field inhomo-
geneities, head movement, respiration, cardiac activity, and blood pulsatility can
all confound the BOLD signal and diminish our ability to relate BOLD changes to
neuronal activity.

The implications of not correcting sufficiently for (or ignoring) such noise
sources, confounds and artefacts have also been studied widely. Head motion, for
example, is well known to diminish the signal-to-noise ratio of fMRI and 3D vol-
ume realignment is a standard correction step implemented in fMRI preprocessing
to account for this. Even so, head motion has still been shown to result in false
activity patterns when coupled to the timing of the task paradigm (Hajnal et al.,
1994), to cause simultaneous decreases in long-distance correlations and increases
in short-distance correlations within functional connectivity networks (Power
et al., 2012), and to cause problems in interpretations of functional connectivity
measures across groups (Van Dijk, Sabuncu, and Buckner, 2012). Another source
of variability is caused by our assumptions about the hemodynamic response
of brain tissue. A typical step in fMRI analysis is to model the hemodynamic
response by convolving the task design with a standard hemodynamic response
function that is assumed to be constant, while it is known that this varies spatially
across the brain and across individuals, especially with age. Rangaprakash et al.
(2018) found that hemodynamic response function variability, if not accounted for,
could lead to identification of false functional connectivity measures. Yet more
noise sources include respiratory and cardiac cycles that influence blood flow and
oxygen concentration and can result in global brain signal fluctuations that are
not necessarily related to neuronal activity. These have been shown to lead to
incorrect attribution of signal to brain activity if regional BOLD fluctuations are
considered in isolation (Noll and Schneider, 1994), i.e. without regard to possibly
confounding global signal correlations.

Given these aspects, it remains a continuous challenge to increase BOLD sen-
sitivity and thus requires continuous and persistent efforts to find innovative
solutions or mitigators. This is especially true for real-time fMRI analysis, where
similar efforts to investigate denoising methods and the behaviour of the BOLD
signal in their absence is sorely lacking.

2.4 Acquisition and denoising methods for BOLD improve-
ments

Improvements to BOLD sensitivity can be approached via hardware, acquisition
sequences, data processing and training or interventions. With hardware changes
being the most expensive and cumbersome to implement, researchers often focus
on more pragmatic options. Intervention methods are mostly implemented prior
to or during an fMRI session and aim to minimise artefacts or prevent them from

16



C
ha

pt
er

2

2.5. Multi-echo fMRI

adding noise to the data. This includes physical intervention such as the use of
bite bars, foam pads or restraints to minimise motion (Green et al., 1994), training
subjects to minimise movement and breathing fluctuations, or using end-tidal
forcing systems to help subjects maintain stable breathing rates (Wise et al., 2004).

By far the most widely reported methods for improving BOLD sensitivity
involve offline data processing, or ”cleaning”. Such methods typically take the
form of model-based or model-free methods. Typical examples of model-based
denoising or artefact removal steps include: slice-time correction, 3D motion cor-
rection, frequency band filtering, spatial smoothing, distortion correction, outlier
removal/scrubbing (Siegel et al., 2014) , regression of movement parameter resid-
uals (Friston et al., 1996), global signal regression (Power et al., 2017), and physio-
logical noise regression (Glover, Li, and Ress, 2000; Birn et al., 2006). Model-free
methods mainly include the identification and removal of artefacts through the
use of region-based principal component analysis (PCA; Behzadi et al., 2007), and
spatial independent component analysis (ICA; Perlbarg et al., 2007; Griffanti et al.,
2014). Real-time fMRI denoising pipelines often prioritise processing time over
gains in BOLD sensitivity resulting from all of the mentioned offline processing
steps. As a result, real-time implemented steps typically only include those that
are seen as essential, such as: 3D motion correction, frequency filtering, temporal
filtering, and some forms of signal modeling and regression.

We can also improve BOLD sensitivity by adapting various parameters of
the MRI acquisition sequence with which we acquire T2*-weighted images. Such
examples include ways to address B0 field inhomogeneities (Gelderen et al., 2007;
Balteau, Hutton, and Weiskopf, 2010; Bollmann et al., 2017), implementing se-
quences to reduce susceptibility-induced artefacts (Glover and Law, 2001; De-
ichmann et al., 2002; Weiskopf et al., 2006), increasing BOLD sensitivity through
parameter optimisations or alternative acquisition sequences (Posse et al., 1999;
Mathiak et al., 2002; Triantafyllou et al., 2005; Bodurka et al., 2007), and optimis-
ing for imaging of specific regions (Bellgowan et al., 2006; Weiskopf et al., 2007a;
Morawetz et al., 2008).

An acquisition (and accompanying analysis) method that has received increas-
ing attention over the past decade due to its proven benefits for BOLD sensitivity
in offline use cases, and one which we explore in-depth in this thesis, is multi-echo
fMRI.

2.5 Multi-echo fMRI
Fundamentally, multi-echo fMRI allows improved brain-wide BOLD sensitivity
by sampling multiple T2*-weighted images at distinct echo times following a
single transverse excitation pulse, i.e. once per repetition time (TR), as depicted in
Figure 2.3. This theoretically allows the optimum BOLD contrast to be achieved
for a range of baseline T2*-values, as opposed to standard single echo fMRI which
optimises its single snapshot for an average grey matter T2*-value.

In offline analysis, echo combination is a critical step that has been imple-
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Figure 2.3 — A depiction of three echo images acquired at distinct echo times (TE1, TE2, TE3)
per volume, i.e. within a single repetition time (TR). Transverse pulses are repeated per volume,
leading to a multi-echo fMRI time series with amount of volumes = N and run time = Trun.

mented since the inception of multi-echo fMRI. It uses (weighted) summation
or averaging to combine all the echoes following a single excitation, which gen-
erally increases temporal signal-to-noise ratio and decreases signal drop-out in
highly affected regions, and has been reported to improve activation extent for
task-analysis (Poser et al., 2006). Data driven methods such as multi-echo inde-
pendent component analysis (MEICA) introduced by Kundu et al. (2012), have
shown promise in separating BOLD and non-BOLD effects for time series denois-
ing purposes. Several studies have shown benefits of MEICA-based denoising for
both resting state (e.g. Olafsson et al., 2015; Dipasquale et al., 2017) and task-based
fMRI data (e.g. Lombardo et al., 2016; Gonzalez-Castillo et al., 2016).

With access to multiple data samples along the decay curve, multi-echo also
allows quantification of relaxation parameters T2* (the decay time constant) or
R2* (its inverse, decay rate), and S0 (initial net magnetisation). This form of quan-
titative T2*-mapping, such as described by Weiskopf et al. (2013), is a known
technique that uses a gradient-echo echo planar imaging (EPI) sequence to ac-
quire multiple closely spaced echoes, followed by a data fitting procedure that
yields a static, baseline T2*-map. In the context of functional MRI, temporal or per-
volume T2*-mapping adds the benefit of quantifying T2* and S0 changes (from
baseline) during stimulated neuronal activation. This estimation and separation
enables us to distinguish fluctuations in local T2* relaxation effects, that are largely
(although not completely) influenced by neuronal activity, from other fluctuating
magnetisation factors such as hardware instabilities, subject head motion, or in-
flow effects that are not of interest, thus improving BOLD sensitivity. Importantly,
the ability to quantify and separate T2* and S0 changes per volume (see Figure
2.4) makes multi-echo analysis, and the benefits that it holds, a promising option
in real-time analysis.
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Figure 2.4 — The rapid mapping of T2*FIT and S0FIT parameters (bottom row) per volume of a
full multi-echo fMRI time series (top row). For each volume (and within the span of a single TR for
real-time use cases) the decay parameters are calculated via log-linear regression of the three echoes
to the mono-exponential decay equation. This allows tracking the per-volume fluctuations of T2*,
yielding potential improvements in real-time BOLD sensitivity.

Initial implementations of multi-echo fMRI sequences had to manage trade-
offs with spatial resolution, temporal resolution and an adequate field of view
due to earlier hardware or software restrictions and the strain on resources caused
by acquiring extra echoes. As such, multi-echo images often had lower spatial
resolution, longer repetition times and smaller brain coverage compared to con-
ventional single-echo images, and were not prone to wide implementation in
real-time use cases. However, with technological advancements over the past
decade such as increased processing power incorporated into scanner hardware,
faster image reconstruction algorithms, image acceleration methods, and paral-
lel imaging techniques, whole-brain multi-echo fMRI has become as feasible as
standard single-echo acquisition at comparable spatial and temporal scales.

2.6 Real-time multi-echo fMRI
Real-time use cases of multi-echo data have also been reported in literature. Posse
et al. (1998) developed a single-shot, multi-echo spectroscopic imaging sequence
that quantified region-specific T2* changes during olfactory and visual tasks, and
which reported a larger functional contrast (up to 20% increase in the visual
cortex) compared to standard EPI data. Several developments followed course,
including measuring single-event related brain activity (Posse et al., 2000), whole
brain T2*-mapping at 1.5T using a linear combination of echoes (Hagberg et al.,
2002), later with added gradient compensation (Posse et al., 2003b), and a multi-
echo EPI sequence at 3T with real-time distortion correction (Weiskopf et al.,
2005). Rapid T2*-mapping has also been a useful tool in studying the interplay
between cerebral blood flow, blood volume and blood oxygenation, particularly in
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combination with contrast agents (see, for example: Scheffler et al., 1999; Schulte
et al., 2001; Pears et al., 2003). In real-time fMRI neurofeedback, some examples of
multi-echo use are reported specifically for improving signal gains in regions such
as the amygdala, including Posse et al. (2003b) which uses T2*-weighted echo
summation and Marxen et al. (2016), which uses scalar TE-dependent weights
pre-selected to yield an average T2*-value of 30ms in the amygdala.

Apart from the mentioned examples, multi-echo developments and their bene-
fits for real-time data quality remain underexplored. Consequently, the exploration
of real-time multi-echo fMRI acquisition and analysis methods forms a core part
of this thesis.
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time fMRI neurofeedback: a
methods review

Abstract
Neurofeedback training using real-time functional magnetic resonance imaging
(rtfMRI-NF) allows subjects voluntary control of localised and distributed brain
activity. It has sparked increased interest as a promising non-invasive treatment
option in neuropsychiatric and neurocognitive disorders, although its efficacy and
clinical significance are yet to be determined. In this work, we present the first ex-
tensive review of acquisition, processing and quality control methods available to
improve the quality of the neurofeedback signal. Furthermore, we investigate the
state of denoising and quality control practices in 128 recently published rtfMRI-
NF studies. We found: (i) that less than a third of the studies reported implement-
ing standard real-time fMRI denoising steps; (ii) significant room for improvement
with regards to methods reporting; and (iii) the need for methodological studies
quantifying and comparing the contribution of denoising steps to the neurofeed-
back signal quality. Advances in rtfMRI-NF research depend on reproducibility of
methods and results. Notably, a systematic effort is needed to build up evidence
that disentangles the various mechanisms influencing neurofeedback effects. To
this end, we recommend that future rtfMRI-NF studies: (i) report implementa-
tion of a set of standard real-time fMRI denoising steps according to a proposed
COBIDAS-style checklist (Appendix B; https://osf.io/kjwhf/); (ii) ensure
the quality of the neurofeedback signal by calculating and reporting community-
informed quality metrics and applying offline control checks; and (iii) strive to
adopt transparent principles in the form of methods and data sharing and support
of open-source rtfMRI-NF software.

This chapter has been peer reviewed and published as: Heunis, S., Lamerichs, R., Zinger, S.,
Caballero-Gaudes, C., Jansen, J.F.A., Aldenkamp, B., Breeuwer, M., 2020. Quality and denoising in
real-time functional magnetic resonance imaging neurofeedback: A methods review. Hum Brain Mapp
hbm.25010. https://doi.org/10.1002/hbm.25010
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3.1 Introduction
Real-time fMRI: Real-time functional magnetic resonance imaging (rtfMRI) in-
volves the dynamic processing, analysis and visualisation of a subject’s changing
blood oxygen level-dependent (BOLD) signal and related information while the
subject is inside the MRI scanner. It was initially proposed and developed by Cox,
Jesmanowicz, and Hyde (1995) as a tool for real-time data quality monitoring,
functional activation mapping and interactive experimental design. Since its in-
ception this technology has expanded to include a variety of software tools that
allow pre-experimental and pre-surgical functional localisation (Hirsch et al., 2000;
Binder, 2011), real-time functional activity mapping (as is available in the software
accompanying MRI systems from all major vendors), brain computer interfacing
(e.g. Sorger et al., 2012), brain state decoding (LaConte, 2011), real-time neuro-
feedback (Sitaram et al., 2017), and interactive demonstrations for educational
purposes (Weiskopf et al., 2007b).

3.1.1 BOLD self-regulation through neurofeedback
Neurofeedback training as an application of real-time fMRI (rtfMRI-NF) has
gained much interest in the past decade due to its ability to help subjects achieve
learned regulation of regional brain activation, as was initially demonstrated by
Yoo and Jolesz (2002) in a motor task experiment. Interested readers are referred to
Sitaram et al. (2017) for a recent review of rtfMRI-NF functionality, technology and
applications. Shortly, by feeding a representation of quantified brain activity back
to the subject in the scanner in near-real-time, and asking subjects to increase or
decrease the presented metric by adopting one of several possible training strate-
gies (or none at all), subjects have been able to regulate their own BOLD signal.
This is evidenced by increased activation levels and cluster sizes in the areas of
interest measured over multiple training sessions (see for example deCharms,
2007).

3.1.2 Clinical applications
In further steps, learned brain activity regulation through neurofeedback train-
ing has been used in neuropsychological and psychiatric disorders to test for
behavioural correlates, aiming to investigate non-invasive rtfMRI-NF as an alter-
native to more invasive treatment modalities like pharmacological interventions,
surgery or deep brain stimulation. Several studies have reported significantly ben-
eficial behavioural, symptomatic or experiential changes after rtfMRI-NF training
in a variety of clinical or other populations, including major depressive disorder
(Linden et al., 2012), tinnitus (Emmert et al., 2017), attention deficit and hyper-
activity disorder (Alegria et al., 2017), obesity (Spetter et al., 2017), and nicotine
cravings (Canterberry et al., 2013).
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3.1.3 Criticism and open questions
In order for rtfMRI-NF to show proven clinical utility and efficacy, reproducibil-
ity of methods, of results and of inferences are imperative1 (Goodman, Fanelli,
and Ioannidis, 2016; Munafò et al., 2017). Evidence for widespread and clini-
cally significant effects of rtfMRI-NF training has however been called into ques-
tion by recognising a lack of replication studies (Sulzer et al., 2013a), of blinded
placebo-controlled study designs (Thibault et al., 2018) and of reproducible meth-
ods (Stoeckel et al., 2014). As an example, deCharms et al. (2005) showed in a pilot
study that 8 out of 12 chronic pain patients (total N=36 subjects) could learn to
regulate the BOLD response in the rostral anterior cingulate cortex, leading to
significant changes in pain perception in this group.

However, their subsequent study assessing adverse events associated with
repeated fMRI scanning (Hawkinson et al., 2012) found no significant changes
with regards to baseline in adverse event reporting in pain patients undergoing
multiple rtfMRI neurofeedback sessions (69 out of total N=114 patients). This ap-
parent inability to replicate pilot findings in a larger sample size, which featured
as a prominent discussion at the first Swiss rtfMRI Neurofeedback Conference
(Decharms, 2012), suggests the need to re-evaluate current small-sample posi-
tive findings and incentivise the publication of null results, so as to counteract
publication bias in neurofeedback literature.

Ongoing debate in the field still focuses on important and unanswered ques-
tions and challenges, many previously highlighted by Sulzer et al. (2013a). For
example: how is neurofeedback learning and its success quantified, and is this
quantification consistent enough to allow generalisation across studies? How do
outcomes of active neurofeedback training perform compared to that of alterna-
tive and conventional treatment methods, and compared to outcomes of sham
neurofeedback? Are perceived clinical benefits specific to certain populations, in-
dividual learning strategies, feedback calculation, feedback display, study design,
data analysis, or other sources of variance? Widespread evidence to support spe-
cific, robust and reproducible findings for these research questions is still lacking,
which should be seen as an incentive to improve methods reproducibility and to
conduct large-scale replication studies investigating specific effects of rtfMRI-NF.

3.1.4 Methods reproducibility and quality
Central to several aspects influencing the reproducibility of both methods and
results in rtfMRI-NF is the concept of quality, which pertains to real-time fMRI
data, to the neurofeedback signal and to methods reporting. Take the assump-
tion that the neurofeedback signal calculated from the real-time fMRI data aims
to represent brain activity relating to the subject’s ongoing cognitive processes
(Koush et al., 2012). It is well-known that the resting state or task-induced BOLD

1To prevent ambiguous interpretations of the more general terms ”reproducibility”, ”replicability”
and ”repeatability”, in this work we adhere to the definitions for methods-, results- and inferential
reproducibility in the biomedical sciences proposed by Goodman, Fanelli, and Ioannidis (2016)
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signal contains several scanner-, sequence-, subject- or experiment-related nui-
sance signals and artefacts (Murphy, Birn, and Bandettini, 2013; Power et al., 2014;
Caballero-Gaudes and Reynolds, 2017; Liu, 2016). If such confounding factors are
not sufficiently accounted for during acquisition or minimised through real-time
processing, the feedback signal will remain confounded and will thus not suffi-
ciently reflect brain activity of interest. This may lead to sham learning or to a
nuisance signal being trained instead of the subject’s BOLD response (LaConte,
2011; Koush et al., 2012), which affects reproducibility of results and inferences.
Similarly, doubts about the quality of the feedback signal can exist due to the as yet
unknown influences of feedback presentation (e.g. the widely used thermometer
display versus a more naturalistic display or virtual environment) and feedback
signal calculation (e.g. temporal smoothing parameters, signal scaling, and the
way in which percentage signal change is calculated). Few studies in this field
have meticulously investigated such detail. This, added to the lack of methods
standardisation and best practices for methods reporting, hinders reproducibility
and generalisability.

3.1.5 Research goal
The mentioned open questions, methodological uncertainties and lack of stan-
dardisation should guide efforts to move towards improved reproducibility in the
field of fMRI neurofeedback. Specifically, a systematic effort is needed to build up
evidence that disentangles neurofeedback training outcomes from placebo effects,
that clarifies the efficacy of neurofeedback compared to existing treatments, and
that demonstrates the specificity of neurofeedback effects while accounting for
other sources of variance.

To support this effort, this work reviews the methods currently available to
the researcher to improve the data quality and signal-to-noise ratio (SNR) of the
rtfMRI-NF signal and of real-time fMRI data and studies in general. Specifically,
we investigate three research questions:

1. What are challenges to effective denoising and improving quality in rtfMRI-
NF?

2. Which steps have recent rtfMRI-NF studies taken to improve data quality
and SNR?

3. Which methods for denoising data and improving data quality and SNR are
available to the researcher studying rtfMRI-NF?

To preface addressing these questions, a background on the BOLD signal
and its confounds and on the details of the calculated neurofeedback signal is
provided. Although both acquisition and processing methods are covered in this
work, focus is given to the latter. We conclude with a general discussion and future
recommendations based on the reviewed literature.
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3.2 Background
3.2.1 The BOLD signal, noise, artefacts and correction methods
A. The noisy BOLD signal
The T2*-weighted BOLD signal typically acquired using standard gradient-echo
echo-planar imaging (EPI) in fMRI represents hemodynamic and metabolic re-
sponses, through a neurovascular coupling, to alterations in neuronal activity
(Ogawa et al., 1998). It results from a complex interaction between neural metabolism,
blood oxygen concentration (specifically the local concentration of paramagnetic
deoxyhemoglobin), cerebral blood flow (CBF) and cerebral blood volume (CBV)
(Logothetis, 2003).

Given its dependence on neuronal metabolism, cerebral blood flow/volume
and the inherent properties of MRI (and the EPI sequence in particular), it should
be no surprise that the BOLD signal has several confounds and remains difficult
to isolate as a proxy for true neuronal activity (Diedrichsen and Shadmehr, 2005).
fMRI is typically plagued by a variety of noise fluctuations and artefacts originat-
ing either from the subject, from the experimental conditions, from the inherent
properties of the acquisition sequence, or from the scanner and its (interfering)
environment.

B. Denoising the BOLD signal
Much research effort has been given to ridding fMRI of noise. These efforts can
be divided into two main categories: acquisition and data processing. Acquisition
methods typically entail pulse sequence alterations or MRI parameter choices that
improve the BOLD sensitivity, increase SNR, or preempt and minimise the effects
of artefacts that may occur during scanning. Data processing methods to remove
noise have been widely reported and typically take the form of model-based
or model-free methods. Examples of model-based denoising or artefact removal
steps in fMRI preprocessing pipelines include: slice-time correction, 3D volume
realignment, frequency band filtering, spatial smoothing, distortion correction,
outlier removal/scrubbing (Siegel et al., 2014), regression of movement parameter
residuals (Friston et al., 1996), global signal regression (Power et al., 2017), and
physiological noise regression (Glover, Li, and Ress, 2000; Birn et al., 2006). Model-
free methods mainly include the identification and removal of artefacts through
the use of spatial independent component analysis (ICA; Perlbarg et al., 2007;
Griffanti et al., 2014). For a thorough understanding of fMRI noise and denoising
methods, readers are referred to in-depth reviews by Murphy, Birn, and Bandettini
(2013), Power et al. (2014), Caballero-Gaudes and Reynolds (2017), Liu (2016),
Kundu et al. (2017) and Power et al. (2018).

C. In the absence of noise correction
Studies have investigated the implications of not correcting sufficiently for (or ig-
noring) fMRI noise, confounds and artefacts. Head motion, for example, has been
shown to result in false activity patterns when coupled to the timing of the task
paradigm (Hajnal et al., 1994), to cause simultaneous decreases in long-distance
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correlations and increases in short-distance correlations within functional connec-
tivity networks (Power et al., 2012), and to cause problems in interpretations of
functional connectivity measures across groups (Van Dijk, Sabuncu, and Buck-
ner, 2012). The hemodynamic response function (HRF) is known to vary spatially
across the brain, as well as between subjects and between studies (Huettel and Mc-
Carthy, 2001; Handwerker et al., 2012), but the time-to-peak in standard task-fMRI
experiments is typically assumed to be 4-6s brain-wide. Gitelman et al. (2003) in-
vestigated this assumption and showed the importance of deconvolution prior to
modeling psychophysiologic interactions when considering functional/effective
connectivity measures across the brain. HRF variability was further explored in
a recent study by Rangaprakash et al. (2018) which found that, if not accounted
for, it could lead to identification of false functional connectivity measures. Noise
sources resulting in global signal fluctuations (e.g. respiratory cycles) can also lead
to incorrect attribution of signal to brain activity if regional BOLD fluctuations are
considered in isolation (Noll and Schneider, 1994), i.e. without regard to possibly
confounding global signal correlations.

Noise sources remain problematic whether fMRI data are considered in real-
time or offline. It is therefore important when considering real-time fMRI to ad-
dress these known noise fluctuations and artefacts so as to increase the BOLD
SNR, and to consider the implications of not correcting for these nuisances.

3.2.2 Real-time fMRI
The vast majority of real-time fMRI implementations use single echo echo-planar
imaging (EPI) as the preferred acquisition method, likely due to its prevalence in
conventional functional imaging. Acquired slices are reconstructed on the MRI
scanner hardware, and upon completion each functional image volume is typically
exported and shared on a local network from where it is accessible by the real-time
fMRI application software. Figure 3.1 illustrates a standard real-time fMRI setup,
including components of a neurofeedback application.

A. Time frame definitions
The ’real-time’ time frame is loosely defined to be the interval between two suc-
cessive functional image scans, i.e. the repetition time (TR), indicating that the
concept ’real-time’ varies according to the application. Ideally, all required re-
construction, export and processing steps for each functional image should be
completed sufficiently prior to or by the time the next image in the session is
acquired, thus allowing the presentation of up-to-date image information to the
researcher and/or subject. Given the nature of the HRF, real-time fMRI not only
includes a delay of one TR typically used for data processing (reported to be 1-3s
in standard rtfMRI-NF applications), but also a substantial delay due to the indi-
rect measurement of neuronal activity ( 4-6s). As such, typical implementations
of real-time fMRI often only allow a representation of brain activity about 5s or
more after such changes occurred on a neuronal level, leading to the term ’near-
real-time’. This definition is distinct from the same term used by some studies
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Figure 3.1 — A typical real-time fMRI technical setup, showing detailed components of a neuro-
feedback application. DecNef, decoded neurofeedback; FCNef, functional connectivity neurofeedback;
RT, real-time; PSCNef, percentage signal change neurofeedback.

to refer to a real-time fMRI processing stream that delivers brain activity and
other information within minutes after completing the functional scan session
(e.g. Voyvodic, 1999). These time frame definitions assume a streamlined infras-
tructure for real-time fMRI volume reconstruction and export with negligible
latency issues, which in reality will vary and could result in potentially serious
synchronisation challenges.

Note that neurofeedback presentation does not have to be synchronised with
image acquisition and can be updated continuously or intermittently depending
on the fMRI acquisition rate, software implementation and experimental design.
Differences between continuous and intermittent feedback can also influence the
selection of online preprocessing and analysis strategies, as well as training goals
and assumptions about the involved cognitive and neural processes. For such con-
siderations, evidence from studies including Johnson et al. (2012), Oblak, Lewis-
Peacock, and Sulzer (2017), Emmert et al. (2017), and Hellrung et al. (2018b) could
be useful when selecting between feedback types. Real-time processing steps: The
data processing steps necessary to derive a near-real-time representation of brain
activity vary according to the application and implemented toolset, but typically
follow the course of conventional task-based or resting state fMRI analysis, where
data are first preprocessed to remove artefacts or noise fluctuations and then anal-
ysed with model-based or model-free statistical methods to extract information
of interest. Real-time fMRI neurofeedback preprocessing typically consists of 3D
volume realignment, spatial smoothing, linear or polynomial trend removal and
temporal filtering, while few applications report the use of slice-timing correction,
physiological noise correction methods or real-time distortion correction. These
reported preprocessing steps are delineated further in Section 3.4 in this chapter.
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Figure 3.2 — A representation of the three most commonly used real-time general linear model
(GLM) algorithms, indicating the differences in how data available for each iteration are incorporated
into the algorithms. A cumulative GLM (cGLM) uses all available data at each iteration to calculate
the parameter estimates per iteration. A windowed GLM (wGLM) uses a window size of the most
recent w (=3 in this example) volumes to calculate parameter estimates for a specific iteration. An
incremental GLM (iGLM) incorporates volume data for each new iteration into an existing state.
PE, parameter estimate; t, time; vol = volume.

Univariate statistical analysis methods implemented in real-time include recur-
sive correlation between voxel time-series and a reference vector (Cox, Jesmanow-
icz, and Hyde, 1995), t-tests (Voyvodic, 1999), multiple linear regression (Smyser
et al., 2001), and general linear model (GLM; Bagarinao et al., 2003). Multivariate
methods applied to real-time fMRI are less common, with the real-time imple-
mentation of a support vector machine classifier (SVM; LaConte, Peltier, and Hu,
2007) being the first example, and sparse logistic regression (Shibata et al., 2011)
and sparse multinomial or linear regression (Shibata et al., 2016) being used for
recent real-time pattern decoding.

B. Algorithmic adaptations
To decrease the required per-volume processing time, algorithms generally make
use of sliding window (Gembris et al., 2000) or incremental approaches (Bagari-
nao et al., 2003) when analysing time-series data (see Figure 3.2). While time-
windowed algorithms allow more sensitivity to temporal brain activity fluctua-
tions by only analysing a recent subset of the acquired data, they are characterised
by a decrease in statistical power (Weiskopf et al., 2007a), the converse being the
case for incremental or cumulative algorithms that analyse all acquired data. A
distinction is made here between incremental methods that use the data in each
new iteration to update a growing statistical model so as to avoid recomputation
(e.g. the incremental GLM developed by Bagarinao et al., 2003, that incrementally
estimates and updates the coefficients of a GLM), and cumulative methods that
repeat the operation during each iteration on all data acquired up to that iteration.
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C. Computational advances
In general, real-time fMRI preprocessing and statistical analysis pipelines are sim-
plified and/or optimised versions of their standard offline counterparts because
priority is given to fast algorithms (those that converge in as few as possible
iterations) and to the inclusion of the minimum sufficient steps to achieve an ac-
ceptable level of data quality, so as to decrease per-volume processing time. This
trade off between maintaining a high level of method accuracy and minimising
the required per-volume processing time has initially been a large constraint to
expanding the complexity of real-time fMRI processing steps, but has become
increasingly easier to manage with advances in modern computing technology
and algorithm development. The use of parallel computing using clusters (e.g.
Bagarinao et al., 2003), multiple processing cores (e.g. Koush et al., 2017a), and
parallel cloud computing (Wang et al., 2016; Cohen et al., 2017), as well as the
use of graphical processing units (GPUs; Eklund, Andersson, and Knutsson, 2012;
Scheinost et al., 2013; Misaki et al., 2015), allow substantial decreases in required
per-volume processing times and could accordingly afford real-time fMRI tools a
comparative level of complexity and accuracy as that of their offline counterparts.
New research avenues become possible like whole-brain real-time fMRI (Misaki
et al., 2015), full correlation matrix analysis (Wang et al., 2016), and complex pro-
cessing for more effective noise removal (Misaki et al., 2015). With such computing
power advancements, research outputs become more dependent on how the re-
searcher selects MRI sequence parameters and signal processing steps, and less
so on per-volume time restrictions. This shift enables increases in real-time BOLD
quality.

3.2.3 Real-time fMRI Neurofeedback
The rtfMRI-NF signal presented to the subject varies per study, but has been based
on measures derived through three main computing methods: (1) BOLD activity
percentage signal change typically in a single or differential region of interest
(PSCNef), (2) functional connectivity between BOLD activity in multiple ROIs
(FCNef), and (3) multivariate (or multivoxel) pattern analysis (MVPA), typically
within a single ROI (DecNef).

A. Percentage signal change neurofeedback
The majority of volunteer and patient rtfMRI-NF studies have used a single or
multiple ROI approach to calculate the feedback signal, specifically using the
percentage signal change (PSCNef) of the spatially averaged signal obtained from
all voxels within the defined ROI(s), as illustrated in Figure 3.3. Various regions
of interest have been selected for different reasons, with the insula, amygdala,
and the cingulate, auditory, visual and motor cortices often forming the basis for
neurofeedback (Thibault et al., 2018). Regions of interest are most often acquired
using a subject-based functional localiser run before neurofeedback commences
(Weiskopf et al., 2007a), although template based or anatomical ROIs have also
been used. Several important factors need to be accounted for when using single
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Figure 3.3 — A linear neurofeedback signal (right) calculated as the average percentage signal
change within the anterior cingulate cortex. Examples of other regions of interest are also displayed
(left).

ROIs as the feedback target. This includes increased signal dropout resulting
from EPI imaging of lower or mid-brain regions (e.g. the limbic system or medial
temporal region) due to increased magnetic susceptibility gradients near air/tissue
borders, leading to lower BOLD SNR.

B. Functional connectivity neurofeedback
FCNef (Watanabe et al., 2017) was introduced to target applicable brain networks
and their correlation rather than isolated activity in specific ROIs (Ruiz, Birbaumer,
and Sitaram, 2013), and it has shown promise as an alternative to PSCNef. The
principle is explained in Figure 3.4, where the average signal from different ROIs
(in this case the motor and parietal cortices) are correlated across a moving time
window to calculate the feedback signal. Various connectivity measures can be
used as a basis for the neurofeedback signal, including Pearson’s Correlation
(Zilverstand et al., 2014) and Dynamic Causal Modeling (Koush et al., 2013). When
using FCNef, care has to be taken to prevent global signal fluctuations from biasing
the calculated connectivity measure (and thus the feedback signal), based on
concerns raised by Power et al. (2012) and Van Dijk, Sabuncu, and Buckner (2012)
that were highlighted earlier.

C. Decoded neurofeedback
Real-time fMRI multivoxel pattern analysis (also known as brain state decoding,
decoded neurofeedback or DecNef, Watanabe et al., 2017) applies multivariate
techniques to fMRI data, first by constructing a decoder using pre-neurofeedback
session data with known task-modulation or states, which is then used in real-time
to decode each acquired volume for similarity to the target brain state pattern (see
Figure 3.5). Support vector machine (SVM) algorithms for real-time classification

30



C
ha

pt
er

3

3.2. Background

Figure 3.4 — A linear neurofeedback signal (right) calculated as the functional connectivity (e.g.
windowed Pearson’s correlation) level between the motor and parietal cortex ROIs.

Figure 3.5 — A linear neurofeedback signal (right) decoded as a representation of the similarity
between voxel intensities in the trained pattern (resembling some known brain state) and the real-
time brain voxel pattern.

have been incorporated into several rtfMRI-NF toolboxes (AFNI - LaConte, Peltier,
and Hu, 2007; Turbo-BrainVoyager - Sorger et al., 2010; FRIEND - Basilio et al.,
2015). In addition, sparse logistic, sparse multinomial and sparse linear regression
algorithms have been often used as decoders, depending on both the software
implementation and the nature of the required neurofeedback signal (e.g. binary
or linear). For further detail, LaConte (2011) and Watanabe et al. (2017) provide
reviews of methodology and studies, respectively, using real-time fMRI DecNef.

For more examples of studies using these neurofeedback methods, readers are
referred to Watanabe et al. (2017) and Thibault et al. (2018). Watanabe et al. (2017)
explored advances in FCNef and DecNef based real-time fMRI, providing a list
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of 9 studies using these methods, explaining concepts and listing new challenges
and possible solutions in the realm of FCNef and DecNef methods. Thibault et al.
(2018) conducted a critical systematic review of 99 rtfMRI-NF studies (mostly
PSCNef) to evaluate the effectiveness of reported experimental protocols to train
subjects to self-regulate their BOLD signal.

Apart from the feedback type and target region, several aspects of rtfMRI-NF
can influence the ability of subjects to learn self-regulation of the neurofeedback
signal (Kadosh and Staunton, 2019). Experiments need to take account of the ad-
vantages or disadvantages of, amongst others, the regularity of neurofeedback
presentation (continuous vs intermittent), external rewards for learning outcomes,
simultaneous visual display of task and feedback information, instructions given
to subjects on learning strategy, variability in individual learning strategy of sub-
jects, real-time data quality measures, and the use of control groups and blinding
in order to reach the full potential of a rigorously designed and reproducible
rtfMRI-NF experiment. Importantly, studies need to clarify these decisions (based
on available evidence, pilot results, or sound reasoning) and report their choices
transparently, in aid of the effort to delineate the multiple mechanisms and influ-
ences leading to neurofeedback learning and accompanying behavioural effects.

3.3 Quality in real-time fMRI neurofeedback
Quality is an umbrella term that is applicable to real-time fMRI data, to the neu-
rofeedback signal and to the methods reporting process. Generally, fMRI data
quality is a measure of how well the acquired BOLD data reflects the signal of
interest, i.e. neural activity, and it is influenced by variability in multiple factors
including the subject, the experimental design and acquisition (spatial resolution,
image contrast, field strength, etc). If fMRI data quality is high, the implication is
that signals that are not of interest (i.e. noise) are either absent from or not biasing
our interpretation of the processed data, and there is lower possibility of making
false inferences. This improves results and inferential reproducibility, and thus
scientific progress. As an extension of fMRI data, high quality of the real-time
fMRI neurofeedback signal implies that a signal closely reflective of brain activity
(and not of noise or artefacts) is fed back to the subject in real-time. Quality in
methods reporting implies that a published study contains enough information
about the applicable experimental-, acquisition- and data processing steps that
would allow different researchers to reproduce the methods. Here, high quality
has a direct and beneficial influence on methods reproducibility.

When aiming to improve quality in real-time fMRI neurofeedback it is there-
fore advised to (1) separate the effects of noise (measurement-, system-, or subject-
based) from true BOLD fluctuations, (2) quantify and report the quality of real-
time fMRI data and the calculated neurofeedback signal, and (3) accurately and
sufficiently report the use of applicable real-time fMRI denoising methods.
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3.3.1 Measuring, comparing and reporting rtfMRI data quality
Traditionally, apart from expert visual inspection of fMRI datasets to identify low
quality volumes / sessions / subjects / sites (as evidenced by visible artefacts in
fMRI images like excessive motion, RF interference, or ghosting), the temporal
signal-to-noise ratio (tSNR) has been an important quantitative measure of fMRI
data quality and the ability of an experiment to find effects of interest (Parrish
et al., 2000; Welvaert and Rosseel, 2013; Murphy, Bodurka, and Bandettini, 2007).
tSNR gives an indication of the per-voxel signal fluctuations rated against the
background noise fluctuations, with an example equation being:

tSNR =
S̄

σ
(3.1)

Here, S̄ and σ refer to the (per-voxel) mean and standard deviation of the fMRI
time series, respectively. A variation of tSNR is the temporal contrast-to-noise ratio
(tCNR; Geissler et al., 2007), which investigates the difference between functional
contrast conditions (e.g. task activity vs. baseline activity) rather than considering
signal fluctuations at all times. As such, tCNR could be defined as (Koush et al.,
2012):

tCNR =
S̄contrast

σall
=

S̄condition − S̄baseline√
σ2

=

(
∆S

S̄
∗ tSNR

)
(3.2)

The part of Equation 3.2 in brackets provides a common definition of CNR
(Krüger and Glover, 2001), where ∆S is the signal change due to an experimental
condition. Equation 3.2 thus assumes that S̄condition = ∆S and that S̄baseline = 0

A simple fMRI quality inspection approach could be to compare the tSNR
or tCNR values calculated before and after denoising to see if the change brings
about a data quality increase. It should be noted that, depending on how noise
and signal sources are defined spatially and on the type of condition and baseline
choices, tSNR and tCNR values could vary and are not automatically standard-
ised. Importantly, there is little consensus on a standard definition of tSNR and
tCNR (Welvaert and Rosseel, 2013), which could hinder comparability between
different sites and studies. Additionally, a single metric is unlikely to provide a
full quantitative view of the quality of a complex signal such as fMRI, and further
measures could be insightful.

A. Quality tools and methods
Historically, AFNI’s real-time fMRI module (Cox, Jesmanowicz, and Hyde, 1995)
supported the ability to display motion parameters to the subject in order the
suppress head motion (Yang et al., 2005) and to feed back a display of variability
in areas affected by physiological noise (e.g. ventricles) in order to reduce the
standard deviation of the fMRI signal (Bodurka, Gonzales-Castillo, and Bandettini,
2009). These parameters can inherently also serve as real-time quality indicators.
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More recent real-time quality tools include Framewise Integrated Real-time
fMRI Monitoring (FIRMM; (Dosenbach et al., 2017)), which focuses on real-time
motion tracking and related quality metrics, and rtQC, a recently presented open-
source collaborative framework for quality control methods in real-time (Hellrung
et al., 2017; Heunis et al., 2019b). rtQC currently focuses on highlighting quality
issues between the offline and real-time variants of fMRI data as well as real-time
visualisation of quality control metrics, including a real-time display of a grayplot
(a 2D representation of voxel intensity fluctuations over time; Power, 2017).

B. Quality reporting practices
In further rtfMRI-NF literature, studies employing data quality checks focus on
pre- and post-real-time application of quality control processes. Stoeckel et al.
(2014) propose the calculation and use of tSNR and the concordance correlation
coefficient on pilot data to determine, respectively, whether the rtfMRI-NF signal
is detectable and reproducible between runs. They also proposed a list of seven
high-level guidelines to help optimise real-time fMRI neurofeedback for thera-
peutic discovery and development: (i) the rtfMRI signal is accurate and reliable,
(ii) rtfMRI neurofeedback leads to learning, (iii) the training protocol is optimised
for rtfMRI-based neurofeedback and learning, (iv) there is an appropriate test
of training success, (v) rtfMRI neurofeedback leads to behavioral change, (vi) an
appropriate rtfMRI neurofeedback-based clinical trial design is in place, and (vii)
sharing resources and using common standards. Sorger et al. (2018) provided a list
of five criteria used for selection of custom feedback ROIs per subject: including
(i) robust and typical hemodynamic response shown in ROI, (ii) high tSNR and
tCNR, (iii) ample evidence for the ROI’s involvement in the selected activation
strategy, (iv) insensitivity to susceptibility artefacts, and (v) the ROI should consist
of 10-15 neighbouring voxels spanning three fMRI slices. As post-real-time quality
control, Koush et al. (2012) report the use of four quality metrics to evaluate their
real-time denoising algorithms (tSNR, event-related tSNR, tCNR and statistical
t-values), while Zilverstand et al. (2017) used mean displacement and tSNR to in-
vestigate offline data quality differences between control and test groups. Thibault
et al. (2018) suggested a list of best practices for rtfMRI-NF studies spanning the
whole process from study design to outcome measurement, including sugges-
tions for: (i) study pre-registration, (ii) sample size justification, (iii) inclusion of
control neurofeedback measures, (iv) inclusion of control groups, (v) collection
and reporting of the BOLD neurofeedback signal, (vi) collection and reporting of
behavioural data, and (vii) outcome measure definitions and reporting.

In this work, we propose both wider adoption of such best practices in rtfMRI-
NF, as well as more granular specification of data quality measurement and re-
porting concerning the processing steps that could influence the quality of the
signal being regulated.
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3.3.2 Data quality challenges in rtfMRI-NF
Real-time fMRI is plagued by the same noise fluctuations and artefacts present
in conventional task-based and resting state fMRI with the main difference being
the required real-time removal of these confounds per volume, versus offline
otherwise. This has to be achieved with an altered technical setup compared to
the conventional approach. This time-constrained and technically novel scenario
brings about a range of challenges, discussed subsequently.

A. Inseparability of data measures and subject regulation effects
A major challenge in assessing neurofeedback signal quality is the inherent me-
diation of the real-time signal by the process of neurofeedback training. This
mediation effect, and in fact neurofeedback learnability itself, is highly variable
within and between subjects and unlikely to be estimated or predicted accurately.
This is known from neurofeedback based on electroencephalography (EEG), is re-
ferred to as the inefficacy problem (Alkoby et al., 2018), and appears to generalise
across neuroimaging modalities. An estimated 15-30% of subjects are unable to
learn control over brain computer interfaces (BCIs; Vidaurre and Blankertz, 2010),
while in a review of psychological factors influencing neurofeedback learning
outcomes, Kadosh and Staunton (2019) found attention, among other factors, to be
crucial for neurofeedback learning success. The inability to reliably separate the
rtfMRI signal into BOLD regulation effects versus noise (or noise-absent signal)
makes standard quantitative measures like tSNR ill-suited to granularly assess the
quality of the neurofeedback signal. Alternative measures or procedures become
necessary, an example being the framework for offline evaluation and optimisa-
tion of real-time neurofeedback algorithms recently put forward by Ramot and
Gonzalez-Castillo (2019).

Decreased statistical power
In offline fMRI denoising, data for the whole session is available and there is
effectively no time limit on the processing, which respectively allows improved
statistical power for noise detection and the execution of complex algorithms to
model and remove noise fluctuations. Conversely, in rtfMRI-NF the statistical
power is decreased, specifically in a moving window approach or during the start
of a cumulative approach due to the small amount of data samples available.
Additionally, the available calculation time in real-time is limited to the span
of a single TR (in the standard case of continuous feedback), albeit mostly with
fewer data to process. This means that rtfMRI algorithms can less likely detect
true BOLD effects (or noise effects) as they occur, resulting in diminishing quality
control of the rtfMRI-NF signal.

B. Lack of readily available peripheral measurements
Most scanner setups require custom modifications to hardware and/or software
in order for extra physiological information to be transferred in real-time. For ex-
ample, to our knowledge few reports exist of physiological data (respiration and
heart rate) being transferred and incorporated into a rtfMRI-NF software pipeline
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to remove physiological noise in real-time (e.g. Bodurka, Gonzales-Castillo, and
Bandettini, 2009; Misaki et al., 2015; Hamilton et al., 2016). Addressing this chal-
lenge (technologically and algorithmically) could potentially be of substantial
benefit to the quality of the neurofeedback signal, as it would diminish the possi-
bility of subjects being trained on physiological nuisance signals (e.g. respiration
effects) and would thus increase the contingency of the signal on actual brain
activity.

C. Difficulty of real-time visual quality control
The neurofeedback signal is calculated and fed back to the subject immediately
after the relevant preprocessing and analysis has been completed within a single
TR, i.e. there is no time for an expert to inspect the volume, to assess its quality, and
to perform conditional denoising steps, as opposed to offline fMRI quality control.
However, this challenge provides an opportunity for rtfMRI-NF to improve com-
putational/methods reproducibility, because a potential solution would be to have
automated data quality inspection and control per volume. An example would be
calculating framewise displacement (FD; Jenkinson et al., 2002; Power et al., 2012)
per volume using real-time volume realignment (or head motion) parameters and
automatically classifying the volume as a motion outlier or not based on some
predetermined FD threshold. These outliers, in turn, could be added to a real-time
motion outlier regressor in a cumulative or incremental GLM, to achieve real-time
scrubbing, the results of which could be inspected and compared to offline coun-
terparts after the rtfMRI experiment. Such functionality is currently available in
rtQC (Heunis et al., 2019b).

D. Differences in quality between real-time and offline fMRI
Differences can occur in fMRI data that are reconstructed and transferred in real-
time compared to offline exported data, including changes to spatial, image ori-
entation, image intensity and temporal information. Whereas per-volume recon-
struction and export timing (and related latency and jitter) are not critical for
conventional fMRI analysis, they can cause substantial delays in real-time pro-
cessing and feedback presentation. However, specific details such as the tools
and software versions used for data export and the real-time latencies are rarely
reported, which complicates reproducibility of methods. Additionally, differences
in voxel intensity scaling, image orientation and image header information have
been reported (Hellrung et al., 2017). Such issues, if known about at all, are hardly
reported by rtfMRI-NF studies, even though it could lead to potential differences
of interpretation when analysing online vs. offline data. Most rtfMRI-NF studies
process data offline in order to show the effects of neurofeedback training over
time, often looking at the t-statistic and clustering of significantly activated voxels
in a region of interest. If this analysis is carried out on different datasets because
of online-offline quality control issues, conclusions could vary.

Several methods, applied during acquisition and data processing phases as
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well as offline, have been reported to decrease the detrimental effects of known
fMRI noise and artefacts on the quality and SNR of the real-time BOLD signal.
The next section investigates a set of 128 rtfMRI-NF studies to determine the
prevalence of a variety of preprocessing steps in real-time fMRI pipelines, while
the section thereafter focuses on the methods that address, at least in part, some
of the mentioned challenges.

3.4 Denoising in real-time fMRI neurofeedback studies
A recent critical systematic review by Thibault et al. (2018) assessed 99 rtfMRI-NF
studies in order to evaluate the effectiveness of reported experimental protocols
to train subjects to self-regulate their BOLD signal and to induce behavioural
improvements. The list featured a prominent set of the most recent rtfMRI-NF
studies spanning a variety of patient groups and feedback signal types, and also
included all 12 studies used by Emmert et al. (2016) in one of the only rtfMRI-NF
meta-analyses conducted to investigate the mechanism of brain regulation result-
ing from neurofeedback. Apart from its main findings, the review by Thibault et al.
(2018) showed that 62 out of 99 studies did not report any account being taken of
respiratory confounds, that 19 studies subtracted activity in a background region
to account for so-called global effects, and that 9 studies regressed out respiration-
related noise signals in real-time. Respiration is known to be a source of global
BOLD fluctuations and its removal is seen as a recommendable preprocessing
step in conventional resting state fMRI processing (Bright and Murphy, 2013).

To facilitate further meta-analyses and systematic reviews, studies should not
only ensure a high level of data quality (in terms of the real-time BOLD and neuro-
feedback signals) but also have to consistently and comprehensively report their
use of acquisition and processing methods. A further search of rtfMRI-NF liter-
ature (including methods reviews) showed that rtfMRI-NF processing method-
ology has been covered in some detail (e.g. Weiskopf et al., 2004a; Bagarinao,
Nakai, and Tanaka, 2006; Caria, Sitaram, and Birbaumer, 2012), but that real-time
fMRI denoising methods have not received similar attention on a more granular
level. To quantify the extent to which rtfMRI-NF studies report correcting for
commonly known fMRI noise sources and artefacts, we investigated whether 128
recent studies2 reported the use of a standard list of real-time preprocessing steps.
We conducted a Web of Science search across All Databases on 9 April 2019 us-
ing the same search terms and selection criteria as provided by Thibault et al.
(2018), and found another 29 studies in addition to the original 99. The list of
preprocessing steps was selected based on established practices in conventional
task-based and resting state fMRI (Poldrack, Mumford, and Nichols, 2011), as well
as through identifying steps specific to rtfMRI-NF during the process of reviewing
the 128 studies and further literature. The full text of each article, including supple-
mentary material, were searched and coded for the following key terms: averag*,

2Available at: http://bit.ly/rtfmri-nf-zotero-library
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Figure 3.6 — A list of real-time pre-processing and denoising steps used in 128 recent rtfMRI
neurofeedback studies. (All bars are indicated as YES/red and DNR/blue while the breakdown for
the bar ‘Differential ROI’ is 27 YES, 100 ‘DNR’ and 1 ‘No’, Marins et al., 2015). DNR, did not
report.

band, cutoff, difference, differential, drift, filter, frequency, heart, high, linear, low, motion,
movement, nuisance, outlier, parameter, pass, physiol*, respir*, retroicor, scale, scrub, slice,
smooth, spike, trend. All study DOIs and coded preprocessing steps are available as
part of the accompanying Supplementary Material (JSON file, Tab Delimited Text
files and Notes). Data and code necessary to reproduce Figure 3.6 and Figure 3.7
are available on Github3, which also links to an interactive environment allowing
exploration and visualisation of the study data.

Figure 3.6 shows the list of preprocessing and denoising steps and the amount
of studies that report employing these methods. Importantly, we classified studies
as Did Not Report (DNR) if no mention of the particular method was made in the
article or supplementary material, and if we could not confidently infer its use
from studying the particular article’s content. A possible exception to this rule is
volume realignment, which could reasonably be expected to be used in almost
all recent rtfMRI-NF studies. Figure 3.6 shows that 24 out of 128 studies did not
report applying volume realignment, and through investigating toolbox use (for
a full distribution see Figure 3.7E) it was found that the majority of these used
Turbo-BrainVoyager (TBV; Brain Innovation, Maastricht, The Netherlands), which
does allow including this as a standard real-time preprocessing step. Similar dis-
crepancies could be expected in the classification of studies as DNR for any of

3https://github.com/jsheunis/quality-and-denoising-in-rtfmri-nf
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Figure 3.7 — Bar graphs showing a breakdown of methods used for specific pre-processing and/or
denoising steps in the 128 studies compiled in this work (red). The last two bar graphs (blue) indicate
a breakdown of other features of the studies. (a) Spatial smoothing (4,5,6,7,8,9,12MM = FWHM size
of Gaussian smoothing kernel). (b) Temporal smoothing through time point averaging (2,3,4,5,6PT
= number of time points used). (c) Drift removal (EMA = exponential moving average filter; IGLM
= incremental general linear model; BAND, HIGH = filter types). (d) Respiratory noise removal
(ROID = differential region of interest; RT = real-time; OTHER = other methods including averaged
compartment signal regression, e.g. white matter and/or ventricle signals). (e) Frequency filtering
in addition to drift removal (BAND, HIGH, LOW = filter types). (f) Outlier removal (KALM
= modified Kalman filter implemented in OpenNFT). (g) rtfMRI-NF software toolboxes (TBV =
Turbo-BrainVoyager). (h) Magnet field strengths. DNR, did not report; N, no; Y, yes, but no further
detail reported.
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the other denoising steps, although such discrepancies are expected to decline
with the reported use of more non-standard or novel techniques (e.g. real-time
physiological noise regression). To account further for possible discrepancies in
the reporting of assumed default processing steps, we recoded the dataset such
that studies that used mature and widely used software packages reflected default
options where particular steps were not reported. The motivation for this step,
the resulting figures, and accompanying limitations can be viewed in the Supple-
mentary Notes. These findings highlight the importance of correctly reporting
rtfMRI-NF denoising methods, so as to promote methods reproducibility.

Further results in Figure 3.6 show that volume realignment is the only step
reported to be used by over half of the studies, while less than half report im-
plementing linear drift removal and less than a third report the use of spatial
smoothing, temporal smoothing and outlier removal. A special case of real-time
denoising is correction for physiological noise, where multiple approaches have
been used (Figure 3.7E). An often-used method is differential feedback (Weiskopf
et al., 2004a), based on the assumption that global effects caused by respiration
will be cancelled out when subtracting the averaged signal in a task-unrelated
ROI from the main ROI used for neurofeedback. This also assumes that global
respiration effects in both areas are identical. Still, two thirds of the studies do not
report any correction for physiological noise (either in real-time or offline), while
six studies use modeled physiological noise regression or data driven methods to
remove noise fluctuations possibly caused by subject physiology (Thibault et al.,
2018, reported nine due to a mischaracterisation of offline physiological noise
regression as real-time regression in some cases). Additionally, it was also found
that while several studies reported the use of optimised acquisition sequences to
reduce susceptibility-induced image distortion (e.g. the spiral-in/out sequence
by Glover and Law, 2001), only one study from the 128 reported incorporating
post-acquisition distortion correction into their real-time algorithm (Marxen et al.,
2016).

Finally, Thibault et al. (2018) noted a lack of both preregistration of rtfMRI-NF
study designs and registered report type publications, as well as a lack of adoption
of general open science principles. Although open source software solutions like
AFNI’s real-time plugin (Cox, Jesmanowicz, and Hyde, 1995), BART (Hellrung et
al., 2015), FRIEND (Basilio et al., 2015) and OpenNFT (Koush et al., 2017a) counter
some of these concerns, we find additionally that minimal evidence exists for
open data and methods sharing. Specifically, apart from a large dataset on default-
mode-network neurofeedback shared publicly by McDonald et al. (2017), a useful
single-subject dataset for testing OpenNFT functionality and general methods
development (Koush et al., 2017b), and further useful supplementary data shared
in some cases (e.g. Zilverstand et al., 2017), we found no other publicly available
rtfMRI-NF datasets related to the investigated studies.
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3.5 Methods to improve signal quality and denoising
This section addresses the third research question of this review: which methods
for denoising data and improving data quality and SNR are available to the researcher
studying rtfMRI-NF? We consider acquisition methods and processing methods,
focusing on the latter, and investigate current rtfMRI-NF algorithms and their
capabilities with regards to the reported noise mitigation or denoising methods.
Some offline methods for neurofeedback signal quality checking, although not
strictly real-time, are also considered.

3.5.1 Acquisition methods
As with conventional fMRI, it is recommended that researchers take the necessary
precautions to mitigate the introduction of any unwanted noise sources into the
data. This includes the possibility of using physical interventions - e.g. individ-
ualised head restraints4, bite bars, foam pads or end-tidal forcing systems - to
counter head motion or respiratory rate variation artefacts, respectively, but also
extends to tweaking pulse sequence parameters or implementing alternative se-
quences to increase BOLD sensitivity. Several pulse sequences, hardware changes
and other acquisition steps are highlighted in the next section.

EPI, acceleration and high field imaging
The gradient echo EPI sequence still remains the most widely used technique for
real-time fMRI, as it allows fast acquisition of volumes covering the whole brain.
The main disadvantages of the EPI sequence are that it is sensitive to susceptibility
effects and machine instabilities, although all major vendors offer techniques that
compensate (partly) for these scanner effects.

The EPI sequence also allows for the acquisition of multiple echoes. The ba-
sic advantage of multi-echo over standard single-echo EPI is that it allows more
data to fit an assumed mono-exponential decay curve, which can yield voxel-wise
estimations of S0 (initial signal intensity, i.e. magnetisation) and T2* (transverse
relaxation time, Posse et al., 1998). Increased BOLD sensitivity results when these
spatially varying T2*-values are combined so as to leverage optimal BOLD con-
trast at each voxel, as opposed to assuming a single T2* for all grey matter voxels
as per single-echo EPI processing. Posse et al. (1999) incorporated this advantage
into their ”TurboPEPSI” imaging technique for spectroscopic imaging, and later
adapted it into the FIRE software toolbox for use in real-time fMRI (Posse et al.,
2000), using linear echo summation. Further improvements led to the develop-
ment of a method, using TurboPEPSI, for quantitative T2*-mapping as well as
compensation of susceptibility related signal losses in multiple brain regions at
different echo times (Posse et al., 2003b). Later, Weiskopf et al. (2005) implemented
a real-time multi-echo EPI acquisition sequence that corrected for dynamic distor-
tions along the phase-encoding direction without the need for additional reference
scans (as per standard static B0 field correction techniques).

4https://caseforge.co/

41

https://caseforge.co/


C
hapter3

3 . Q U A L I T Y A N D D E N O I S I N G I N R E A L - T I M E F M R I N E U R O F E E D B A C K

The EPI sequence can also be combined with various accelerations techniques.
The introduction of parallel imaging techniques, e.g. SENSE and GRAPPA, has
contributed significantly to improved spatial resolution in fMRI, and has become
standard in recent imaging applications. Also, advancements in acquisition speed
using multi-band or 3D EPI techniques can improve temporal resolution as well as
real-time SNR characteristics, e.g. as demonstrated by the multi-slab echo volumar
imaging techniques of Posse et al. (2012) implemented in real-time. It should be
noted, however, that the possible improvement in temporal resolution resulting
from multi-band sequences must be balanced with the possible increase in image
reconstruction time required if implemented on default scanner hardware.

Lastly, imaging at higher field strengths can improve SNR and BOLD sen-
sitivity (Triantafyllou et al., 2005), both of which is beneficial to real-time fMRI
neurofeedback. High field imaging at 7T could be particularly useful to over-
come the lower SNR provided by 1.5T and 3T imaging in sub-cortical regions,
as demonstrated by Sladky et al. (2013) for the amygdala, and by Hahn et al.
(2013) for the insula. However, an important consideration for neurofeedback at
7T is that physiological noise increases with field strength and may dominate the
BOLD signal of interest (Krüger and Glover, 2001), necessitating an appropriate
denoising procedure. If accurately accounted for, however, the increased BOLD
sensitivity at 7T could improve the quality of the neurofeedback signal, which
would allow closer examination of the hypothesised coupling between learning
effects and the neurofeedback signal. rtfMRI-NF at 7T has been implemented
(e.g. Hollmann et al., 2008; Andersson et al., 2011) and compared to rtfMRI-NF at
3T (Gröne et al., 2015). The latter study found slightly greater increases in post-
neurofeedback ROI activation in the 3T subject group compared to the 7T group.
The difference was ascribed to a decrease in tSNR in the 7T group compared to
the 3T group, due to several contributing factors including shimming conditions,
B1-field inhomogeneities, phase-encoding polarity and physiological noise.

Alternative sequences and shimming
Alternative sequences or shimming practices have also been used to minimise
the real-time image distortion or dropout artefacts related to local susceptibility
gradients or other causes. A sequence developed by Glover and Law (2001) fol-
lows a spiral in/out readout trajectory of k-space that reduces signal dropout and
increases BOLD contrast. Spiral-in has the advantage that it allows for higher
temporal resolution, while spiral-out allows for short echo times which could also
be an advantage in multi-echo denoising applications (e.g. when regressing the
short echo signal out of the acquired data to remove proximal S0 effects;Bright
and Murphy, 2013). Spiral in/out acquisition has been implemented by a num-
ber of rtfMRI-NF studies (Hamilton et al., 2010; Greer et al., 2014; Hamilton et
al., 2016). Real-time shimming to account for geometric distortion has also been
implemented. Here, Ward, Riederer, and Jack (2002) implemented a sequence to
detect and correct for linear shim changes in real-time, while Gelderen et al. (2007)
used a reference B0 scan and chest motion data to apply respiration-compensating
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B0 shims in real-time.

Prospective motion correction and motion feedback
In addition to various MRI acquisition methods, prospective motion correction is
another step that could increase SNR of the rtfMRI BOLD signal during the ac-
quisition phase. Image-based motion detection (Thesen et al., 2000), field cameras
(Dietrich et al., 2016) or external optical tracking methods (Zaitsev et al., 2006)
have been used to estimate rigid body transformations and subsequently update
pulse sequence parameters in real-time, such that the imaging volume essentially
”follows” the subject’s movement (Maclaren et al., 2012). Another method to cur-
tail subject head motion is to feed back the head motion parameters (HMPs),
derived from real-time head motion correction algorithms, to the subject. This
in itself is a form of biofeedback training, and has been shown to reduce subject
motion during scanning. In the case of Yang et al. (2005), head motion parame-
ters resulting from real-time motion correction of functional image volumes were
presented to subjects in the form of a composite ’head motion index’, similar to
framewise displacement. Greene et al. (2018) used FD as the feedback measure
in their implementation using FIRMM software. Importantly, the implications of
feeding back several measures to the subject and displaying them together with
task instructions have to be properly understood and weighed before deciding on
its use.

Adaptive paradigms
Adaptive paradigms provide interventions at a variety of stages in the acquisi-
tion and processing pipeline and allow selective data acquisition or presentation
based on subject-specific measures and a predefined set of criteria. For example,
Wilms et al. (2010) developed a system where real-time eye-tracking data could
be used to generate gaze-contingent stimuli during fMRI experiments, while Hell-
rung et al. (2015) created an integrated, open-source framework for adaptive
paradigm design, which also allows the dynamically updated design (based on a
gaze direction-contingent assessment in their pilot experiment) to be transferred to
the real-time GLM for adaptive processing. Such interventions could improve data
quality and SNR by earmarking the volumes during which the subject adhered to
selected quality control criteria.

Peripheral data collection
Lastly, the collection of peripheral subject data (e.g. heart rate, respiration rate,
motion/eye tracking) for denoising purposes is strongly recommended. While it
may not always be possible to correct for physiological noise or motion in real-
time using these measures (given technical constraints or other reasons, see the
following section) they should at least be used offline to calculate and comment
on correlations with BOLD fluctuations, task design or other subject-related or
experimental confounders.
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3.5.2 Processing methods
As previously mentioned, real-time denoising methods tend to follow the course
of standard offline fMRI preprocessing, although reports on the use of individual
steps vary. Section 3.4 provided a list of real-time preprocessing or denoising steps
employed by recent rtfMRI-NF studies, with Figures 3.6 and 3.7 indicating their
relative usage. These methods are presented next together with other techniques
identified through further literature search.

To aid the reader’s understanding and guide future use of these methods,
Table A.1 in Appendix A summarises the most often reported real-time process-
ing methods. In addition, Table A.1 provides context for analogous methods in
conventional fMRI analysis, how the real-time methods differ from their offline
counterparts, and recommendations for deciding on implementation. Table A.1
focuses on processing methods since there would mostly be no differences be-
tween acquisition methods implemented to improve data quality for real-time
versus conventional fMRI. It should be noted, however, that some artefacts like
electromagnetic spikes or shimming errors could be of greater importance for
real-time analysis compared to conventional fMRI analysis, since they could pos-
sibly be compensated for offline. This possibility does not exist for neurofeedback
applications, hence extra care should be taken at the acquisition stage to try and
avoid such artefacts. Table A.1 also lists possible approaches to this challenge
using real-time processing methods.

Distortion correction
Geometric distortion effects, if addressed, are mostly accounted for using spe-
cialised acquisition methods as presented in the previous section, although cor-
rection through real-time processing is possible. An example is the point spread
function (PSF) mapping approach developed by Zaitsev, Hennig, and Speck (2004)
that is used in combination with parallel imaging techniques to allow fast and
fully automated distortion correction of EPI. Note that this was implemented
on scanner infrastructure and not as part of an external real-time fMRI software
toolbox, and that it requires a reference PSF map scan. This method was used in
a rtfMRI-NF study at 3T with multi-echo EPI by Marxen et al. (2016). Another
example is the dynamic, multi-echo distortion correction sequence implemented
by Weiskopf et al. (2005), also implemented on scanner infrastructure.

Slice timing correction
Slice timing correction interpolates the data of different 2D slices acquired at
slightly different time points along the hemodynamic response, such that the re-
sulting 3D image represents brain activity sampled at the same time point (Sladky
et al., 2011). It has been suggested that event-related analysis in fMRI is relatively
robust to possible slice timing problems in sequences with a TR 2 s (Poldrack,
Mumford, and Nichols, 2011). With dynamic causal modeling (DCM), whose ini-
tial formulations assumed a single time point sampling of all 2D slices in an fMRI
volume, Kiebel et al. (2007) showed with simulations that exclusion of slice tim-
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ing correction leads to larger deviations from the true connectivity parameters.
They showed further that this problem is easily overcome by including infor-
mation about temporal sampling in the dynamic causal model (explicitly as an
extra model level). While Koush et al. (2017a) do not include slice-timing correc-
tion in their pipeline, they specifically mention selecting a short repetition time
(1100 ms) to limit the effects of slice-timing differences in their implementation of
DCM-based neurofeedback.

Although some rtfMRI-NF toolboxes allow real-time slice timing correction
through plugin or additionally developed functionality (e.g. OpenNFT, Turbo-
BrainVoyager), few rtfMRI-NF studies report its use (Harmelech et al., 2013; Harm-
elech, Friedman, and Malach, 2015), which might be explained by reporting dis-
crepancies or by the generally short TR used in typical neurofeedback studies. To
our knowledge, no studies have been conducted to determine its usefulness in
rtfMRI-NF.

3D volume realignment
As one of the major noise sources in fMRI, head motion received much attention
during initial algorithm development in real-time fMRI. Cox and Jesmanowicz
(1999) developed a fast method for 3D image registration in real-time that was
incorporated into AFNI’s real-time fMRI module (Cox, Jesmanowicz, and Hyde,
1995), while Mathiak and Posse (2001) developed the EMOTIONAL FIRE algo-
rithm to perform 3D rigid body realignment as part of the FIRE rtfMRI package
(Gembris et al., 2000). Most other rtfMRI-NF toolboxes or custom software imple-
mentations allow some form of 3D volume realignment, e.g. OpenNFT (Koush et
al., 2017a) which uses a faster version of SPM12’s spm realign routine5, or FRIEND
(Basilio et al., 2015) that incorporates FSL’s MCFLIRT algorithm6.

Regression of the six head motion parameter time courses (and their framewise
derivatives and/or squares derived by Volterra expansion) is a typical step used
in conventional fMRI preprocessing to correct for residual motion effects (Friston
et al., 1996). This can be implemented in the incremental or cumulative GLMs
typically used in real-time fMRI, and some studies have reported its use (Hamilton
et al., 2016; Harmelech et al., 2013; Harmelech, Friedman, and Malach, 2015; Kim
et al., 2015; Yamashita et al., 2017).

Spatial smoothing
Spatial smoothing of fMRI volumes with a Gaussian kernel is typically recom-
mended to increase the SNR for detection of signals with a spatial extent larger
than a few voxels (Poldrack, Mumford, and Nichols, 2011). Given that the neu-
rofeedback signal is typically derived (per volume) from averaging the signal
intensity over multiple voxels within an ROI, a basic form of spatial smoothing is
inherently applied. It could be argued that this negates the need for an extra spa-

5See SPM: www.fil.ion.ucl.ac.uk/spm
6See FSL: https://fsl.fmrib.ox.ac.uk/fsl
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tial smoothing step in the real-time fMRI processing pipeline, but further research
is necessary to determine this argument’s validity. Numerous rtfMRI-NF studies
report spatially smoothing their fMRI data before calculating the neurofeedback
signal, while in some cases it might be explicitly excluded, e.g. neurofeedback
based on MPVA of voxels within an ROI, or for small regions of interest like the
amygdala imaged at high field strengths (Sladky et al., 2018).

Linear detrending / drift removal
Correcting for signal drift is a relatively standard step in real-time fMRI and could
form part of the real-time GLM procedure, where a linear term and/or basis set
of low frequency drift terms are included as regressors, acting as a high-pass fil-
ter. An inherent correction for baseline drift is also executed in some percentage
signal change neurofeedback paradigms during feedback signal calculation, due
to the cumulative global mean being subtracted from the averaged ROI BOLD
signal (e.g. deCharms et al., 2005; Garrison et al., 2013). Most major rtfMRI-NF
toolboxes allow some form of low-frequency drift correction. In a recent study,
Kopel et al. (2019) compared the performance of commonly used online detrend-
ing algorithms with regards to their ability to eliminate drift components and
artefacts without distorting the signal of interest. They found performance to be
similar for exponential moving average (EMA), incremental general linear model
(iGLM) and sliding window iGLM (iGLMwindow), although the latter option was
proposed for future studies.

Temporal filtering or averaging
Further filtering of real-time fMRI data is possible, for example with the exponen-
tial moving average filter employed by Koush et al. (2012) to remove both high
frequency noise and low frequency drift from the BOLD signal, or by including
regressors relating to a specific frequency pass-band in the real-time GLM. Aver-
aging of timepoints before calculating the neurofeedback signal, using a moving
window approach, is another step implemented in several rtfMRI-NF studies (e.g.
Young et al., 2014).

Outlier or spike removal
Removal or replacement of outlier volumes or data based on some quality criteria
(whether defined visually or according to data calculations) is a method employed
in conventional fMRI analysis to improve SNR (Power et al., 2014). Similar steps
have been taken in real-time fMRI, for example in the BioImage Suite and custom
MATLAB implementation of Garrison et al. (2013), where a volume is classified
as an outlier and replaced by the previous volume if mean activation in the ROI
differed by more than 10% from the previous measurement. Koush et al. (2012)
implemented an adapted Kalman filter, by applying nonlinear modifications, that
define outliers by their irregular statistical properties in order to achieve spike
detection and high frequency filtering. This algorithm has been incorporated into
the open-source OpenNFT toolbox as part of its standard real-time processing
pipeline (Koush et al., 2017a). Additionally, the Kalman filter requires only the
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current datapoint and previous state information, as opposed to all previous data
points (or a subset thereof), and therefore does not add much latency to the real-
time pipeline. Lastly, outlier rejection based on a standardised voxel intensity
threshold has also been reported by McCaig et al. (2011), in which they exclude
voxels with a standardised intensity of z<2.0 from the real-time ROI analysis in
order to reduce noise associated with out-of-brain voxels and signal dropout.

Accounting for global effects through differential feedback
Feedback on the difference signal between ROIs has been motivated as a way
to cancel out global effects like global intensity changes caused by respiration-
induced artefacts (Weiskopf et al., 2004a; Weiskopf et al., 2004b; deCharms et al.,
2004). In addition to the main ROI selected for neurofeedback, a reference or back-
ground ROI is typically defined as a task-unrelated axial slice or 3D ROI, in which
the average signal is calculated and subtracted from the main ROI. Alternatively,
defining the reference ROI as another task-related region allows subjects to at-
tempt more specific bidirectional control of brain activity due to general regulation
effects being cancelled out, for example using both the supplementary motor area
and the parahippocampal place area as ROIs for PSCNef (Weiskopf et al., 2004b).
These points have motivated several studies to opt for differential feedback over
standard (non-differential) feedback, although a limitation would be that global
effects may in fact vary substantially across the brain and that differential feed-
back might actually decrease SNR if activation related information is contained
within the reference ROI (Marins et al., 2015). To our knowledge, no experiments
have been conducted and published that investigate the relationship between
differential feedback and SNR of the feedback signal, thus further research would
benefit this area.

Physiological noise correction (respiration and heart rate)
Denoising physiological confounds has been approached in a variety of ways in
rtfMRI-NF, even though most studies do not report any correction for physiologi-
cal noise. In those that do, differential feedback is most often used as a potential
correction method for global effects caused by respiration (although accompanied
by previously mentioned caveats). Filtering can also remove some physiology-
induced variance, with the modified Kalman filter by Koush et al. (2012) being a
special case where high-frequency spikes resulting from changes in head position
or breathing can be filtered out with no prior assumption about the specific noise
model. Another option to remove physiology-related variance is to regress the
spatial-averaged time course of compartments like white matter or the ventricles
from the signal of interest, i.e. a real-time version of tissue-based nuisance regres-
sion as conventionally used in offline analyses. Spetter et al. (2017) calculated
partial correlation of areas of interest with white matter and used these results to
regress out any unwanted fluctuations before the neurofeedback signal was cal-
culated, and Yamashita et al. (2017) included averaged signals from white matter,
grey matter and CSF as nuisance signals in their real-time regression analysis.
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Model-based approaches follow the work done by Glover, Li, and Ress (2000),
Birn et al. (2006) and Chang, Cunningham, and Glover (2009) on retrospective
image correction (RETROICOR), respiratory volume per time (RVT) and heart
rate variability (HRV), respectively, where concurrent recordings of the subject’s
breathing and heart rate are used to create nuisance regressors used in subsequent
real-time linear modeling. With physiological signal monitoring built into AFNI’s
real-time plugin (Bodurka, Gonzales-Castillo, and Bandettini, 2009), Misaki et al.
(2015) implemented the first real-time RETROICOR and RVT physiological regres-
sion as an extension, using a GPU to denoise over 100k voxels (i.e. whole brain
data) in under 300ms per volume. Hamilton et al. (2016) reported including two
physiological noise regressors in their real-time regression analysis implemented
in custom C/C++ and MATLAB, with no further detail provided.

Time synchronisation of peripheral recordings and fMRI data is a legitimate
challenge to model-based correction of breathing and heart rate variability arte-
facts in real-time, unless the challenge is avoided altogether by using advanced
processing power and full recalculation of all available data for every iteration,
as was done by Misaki et al. (2015). Some global time-stamping solutions have
been implemented to allow synchronisation of concurrent physiology and fMRI
recordings (Smyser et al. (2001); Voyvodic (2011); Hellrung et al. (2015)). This
typically requires a custom-programmed software package dedicated to manag-
ing time-synchronisation of multiple concurrent inputs and outputs, for example
the CIGAL software (Voyvodic, 1999) which could run modules in parallel for
the main stimulus event, a button-press hardware input, an analog data input
for physiological recordings, the scanner trigger, eye-tracker recordings of eye
position and pupil diameter, and more.

Lastly, we found no examples of studies investigating and comparing the effi-
cacy of different real-time physiological noise removal strategies or their effect on
the neurofeedback signal in rtfMRI-NF, although regarding offline correction, it
has been suggested that motion or physiological fluctuations do not drive neuro-
feedback learning effects (Hellrung et al., 2018a).

Other real-time processing methods
Global signal regression, although a controversial denoising step in offline fMRI
processing (Murphy and Fox, 2017), can be used in real-time to remove global
fluctuations common to large areas of the brain and hypothesised to be of non-
neuronal origin. This would typically involve including the cumulative global
mean signal in the real-time GLM and regressing that out of the averaged ROI
BOLD signal of interest, similar to CSF and white matter compartment regression.

Independent component analysis (ICA) has been a very effective tool in finding
nuisance networks in resting state fMRI, which can be regressed out of the fMRI
time series for effective denoising. Esposito et al. (2003) were the first to imple-
ment a real-time ICA algorithm using a sliding-window approach on a limited
amount of axial brain slices, as a plugin to Turbo-BrainVoyager. Although this
was used to generate quasi-stationary activation maps and accompanying time
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courses, this demonstration sufficed to highlight the possibility of generating the
spatiotemporal characteristics of nuisance signals for real-time denoising. This
functionality, however, has not extended towards wider exploration or adoption.

Voxel efficiency scaling was proposed and implemented by Hinds et al. (2011)
in their software toolbox Murfi as a way to avoid the undesired noise weighting
resulting from standard direct averaging of all voxels within the neurofeedback
region of interest. Rather, a z-score weighted average of the ROI voxels were used
for neurofeedback signal calculation, which they found to result in increased SNR
of the neurofeedback signal compared to a post-hoc calculation method as well as
the standard direct averaging method.

Lastly, multi-echo EPI processing methods in real-time have also shown promise
in increasing the SNR of the real-time BOLD signal, specifically in areas of the
brain where the local T2* is not close to the standard EPI echo time of 30 ms
selected for optimal BOLD contrast at 3T. The multi-echo acquisition methods
reviewed earlier are typically accompanied by echo summation schemes that allow
real-time increases in BOLD sensitivity. Posse et al. (2003a) implemented a fixed,
linear, TE-weighted summation of echo signals, a processing scheme later also
used by Marxen et al. (2016) in their neurofeedback study of the amygdala. After
multi-echo image acquisition and real-time distortion correction of all echo images,
Weiskopf et al. (2005) used a BOLD sensitivity curve for weighted combination.
Several other combination schemes are possible (e.g. Poser et al. (2006)), and in
related work we have investigated the comparative performance of various real-
time combination schemes in terms of tSNR distributions (Heunis et al., 2019a).
Further work is necessary to determine their comparative efficacy in terms of
extended quality metrics important to rtfMRI-NF.

Further quality control of the feedback signal
Some methods do not consist of efforts to denoise the real-time BOLD signal of
specific nuisance fluctuations, but rather to improve the quality of data acquisition
or feedback presentation in real-time. Offline methods are also used as post-hoc
data quality checks.

Temporally averaging and scaling the feedback signal are often used to prevent
abrupt changes to the signal presented to the subject in real-time. For example,
Garrison et al. (2013) used a sliding window of 5 volumes for temporal smoothing
of the mean ROI activation intended for neurofeedback. OpenNFT (Koush et al.,
2017a) uses a dynamic range, defined by the average of the 5% highest and lowest
acquired activity time points, to scale the dynamic feedback signal.

Lastly, several quality control methods have been proposed to determine
whether respiration or heart rate fluctuations may have had any significant effect
on the neurofeedback signal calculation that could bias the data. These should be
separated from real-time denoising algorithms which aim to remove the noise/arte-
fact before the feedback signal is calculated and displayed to the subject. For
example, Sorger et al. (2018) collect real-time cardiac and respiratory traces and
analyse them after the neurofeedback session to investigate possible correlations
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with the task design or other BOLD fluctuations. Physiological traces can also
be incorporated into offline physiological denoising (e.g. RETROICOR) when
assessing the BOLD signal for neurofeedback-induced changes over time (e.g.
Sulzer et al., 2013b). In a 7T study investigating the influences of motion, heart
rate, heart rate variability, and respiratory volume on amygdala self-regulation
learning effects, Hellrung et al. (2018a) found that neither physiological fluctua-
tions nor motion artefacts were driving factors in learning success. Even so, they
did find notable differences in physiological measures between rest and regula-
tion conditions within participants, and recommended the clear reporting of these
measures alongside offline physiological noise correction.

3.6 Reporting practices revisited
Apart from summarising the processing methods used in 128 recent rtfMRI-NF
studies, Figures 3.6 and 3.7 in Section 3.4 highlighted the likelihood that many of
the studies’ implemented methods remain unreported.

This challenge is not limited to the field of real-time fMRI neurofeedback and
has indeed been described more generally for MRI, including efforts to address
it. Nichols et al. (2017) aimed at understanding and improving good practice
and reporting standards by creating the COBIDAS guidelines for conducting and
reporting all aspects of MRI-based neuroimaging studies. Related approaches
exist in fMRI neurofeedback research, e.g. in the form of the TIDieR checklist
(Randell et al., 2018) for describing studies in standard terms of ”diagnostic groups,
dose/duration, targeted areas/signals, and psychological strategies and learning
models”. The CRED-nf checklist (Ros et al., 2020) is another laudable example
that proposes a standardised checklist that outlines best practices for experimental
design and reporting of neurofeedback studies.

Using our improved understanding of real-time fMRI neurofeedback process-
ing methods from Section 3.5, as well as building on the existing work to improve
reporting practices, we have created a COBIDAS-inspired template to aid re-
searchers in reporting the methods used when calculating their feedback signals.
This template checklist should act as a guideline, and we acknowledge that this is
not an exhaustive list but one that could mature over time with community input.
It was compiled in the vein of the COBIDAS best practice effort and would best
be interpreted as an addition to the COBIDAS reporting guidelines for real-time
fMRI. This template is displayed in Table B.1 in Appendix B, and an online version
is also available7.

3.7 Discussion, recommendations and future perspective
In this work, our goal was to shed light on the status of data quality challenges,
denoising practices and methods reporting in the field of real-time fMRI neuro-
feedback. Prior studies in conventional fMRI have shown the implications of not

7https://osf.io/kjwhf/
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sufficiently removing noise signals or not accounting for confounding effects (e.g.
Gitelman et al., 2003; Van Dijk, Sabuncu, and Buckner, 2012; Power et al., 2012;
Rangaprakash et al., 2018). We aimed to investigate this in the domain of real-time
fMRI neurofeedback and present our findings such that researchers can be thor-
oughly informed about the quality of their neurofeedback signal of interest. The
aim is to assist researchers in designing rtfMRI-NF studies that avoid (as far as
possible) sham learning and, subsequently, incorrect inferences, and improves (as
much as possible) the methods reproducibility of their work through transparent
reporting.

3.7.1 Existing denoising methods: acquisition and processing
Literature showed that methods development during the past two decades has
delivered multiple acquisition and processing methods to the researcher conduct-
ing a rtfMRI-NF study, implemented in the form of custom sequences and tools
including Turbo-BrainVoyager, AFNI, OpenNFT, FRIEND and BART. For acquisi-
tion real-time shimming, spiral-in/out and multi-echo EPI (including multi-band)
approaches show promise in reducing susceptibility induced geometric distortion
and increasing BOLD sensitivity, and are recommended for future implementa-
tion.

From a processing perspective, real-time denoising pipelines showed high sim-
ilarity to offline counterparts, although some tradeoffs are made because of the
time limitation and the iterative nature of real-time processing. The effects of inclu-
sion or exclusion of specific denoising steps in the real-time pipeline on the quality
of the neurofeedback signal were found to be unexplored except for a single study
(Kopel et al., 2019). Table A.1 summarised the available real-time processing meth-
ods and made conservative recommendations based on the available evidence,
mostly commenting that methods should be piloted to determine their validity
for each specific study. At a minimum, 3D volume realignment, drift removal, and
signal scaling could be applied, while time-point smoothing, frequency filtering,
and simple nuisance regression using an iGLM could be considered, provided that
these methods are first piloted and their effects understood. Researchers are ad-
vised against implementing a real-time iGLM with too many nuisance regressors
to avoid overfitting, regressor collinearity and noisy parameter estimates.

It remains difficult to make further empirically supported recommendations
for specific denoising pipelines, apart from such general recommendations that
are mostly based on evidence from conventional fMRI. This highlights the need
for new methodological studies to quantify denoising step effects and compare
pipelines. Collection of peripheral physiological data (e.g. heart rate, respiration
rate, eye movements) is always recommended when possible, either to be used for
real-time denoising or otherwise to rule out as confounds during offline analysis.

3.7.2 Quality control in real-time fMRI neurofeedback
Quality control and best practices in rtfMRI-NF is markedly unexplored and un-
reported compared to conventional fMRI, where initiatives like MRIQC (Esteban
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et al., 2017), QAP (Project, 2014), COBIDAS (Nichols et al., 2017) support improved
quality control and methods reproducibility. Although some studies report the
use of best practices and data quality metrics to assess their neurofeedback signal
(Koush et al., 2012; Stoeckel et al., 2014; Sorger et al., 2018; Zilverstand et al., 2017),
it is unreported in the majority of the literature. Furthermore, other potential data
quality issues like differences between offline and real-time acquired data, or ge-
ometric distortion unaccounted for during acquisition or real-time processing,
could further skew the data, yet they remain unreported. It is our perspective that
a concerted effort is necessary to establish a practical set of rtfMRI-NF quality
metrics and methods that allow their calculation, visualisation, comparison and
reporting. This could expand on the work proposed by Stoeckel et al. (2014) and
Thibault et al. (2018).

3.7.3 Methods reporting and best practice adoption
Figure 3.6 showed that less than a third of the studies reported implementing
slice timing correction, spatial smoothing, regression of head motion parameters,
temporal averaging or filtering, outlier or spike removal, using a differential ROI
to account for global effects, and further physiological noise correction. While this
in itself is not necessarily indicative of insufficient data quality (recall the general
absence of empirical evidence for methods recommendations), this low percentage
of studies could still raise concern about the general quality of the real-time fMRI
neurofeedback signal. Furthermore, it does indicate a problem with how methods
are typically reported, which is an effective hindrance to methods reproducibility.

Ultimately, we should aim for future studies to have the required methodolog-
ical rigour that allows delineation of the various mechanisms that could drive
neurofeedback effects. This creates the imperative that we report accurately and
transparently on acquisition, processing and any other steps taken to remove
noise fluctuations from and improve the quality of real-time fMRI and the neu-
rofeedback signal. As a starting point, studies could include a checklist reporting
the implementation of the real-time processing steps listed in this work, as sum-
marised in Appendix B. An online version of this COBIDAS-inspired checklist is
also available8.

3.7.4 Future perspective
Moving towards a scenario where the hypothesised usefulness of rtfMRI-NF
in a clinical environment can be investigated and demonstrated transparently
will require studies with reproducible methods and results. In light of this, we
echo the recommendations made by Thibault et al. (2018) regarding reproducible
science. Where possible, rtfMRI-NF studies with a clear hypothesis should be pre-
registered or follow a registered report submission process. Additionally, the con-
tinued use and development of open source software solutions based on widely
used neuroimage processing tools, like OpenNFT (SPM), FRIEND (FSL) or AFNI’s

8https://osf.io/kjwhf/
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real-time plugin, are recommended together with data sharing on platforms like
OpenNeuro9. In this way, both published data and methods can be queried by
multiple researchers, paving the way for reproducible methods, results and infer-
ences.

9https://openneuro.org/
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Real-Time fMRI Analysis

Abstract
Real-time functional magnetic resonance imaging (rtfMRI) allows visualisation of
ongoing brain activity of the subject in the scanner. Denoising algorithms aim to
rid acquired data of confounding effects, enhancing the blood oxygenation level-
dependent (BOLD) signal. Further image processing and analysis methods, like
general linear models (GLM) or multivariate analysis, then present application-
specific information to the researcher. These processes are typically applied to
regions of interest but, increasingly, rtfMRI techniques extract and classify whole
brain functional networks and dynamics as correlates for brain states or behaviour,
particularly in neuropsychiatric and neurocognitive disorders.

In this chapter, we present Neu3CA-RT: a MATLAB-based rtfMRI analysis
framework aiming to advance scientific knowledge on real-time cognitive brain
activity and to promote its translation into clinical practice. Design considerations
are listed based on reviewing existing rtfMRI approaches. The toolbox integrates
established SPM preprocessing routines, real-time GLM mapping of fMRI data to
a basis set of spatial brain networks, correlation of activity with 50 behavioural
profiles from the BrainMap database, and an intuitive user interface. The toolbox
is demonstrated in a task-based experiment where a subject executes visual, audi-
tory and motor tasks inside a scanner. In three out of four experiments, resulting
behavioural profiles agreed with the expected brain state.

The experience gained and algorithms generated through the process of de-
veloping this tool also allows further signal processing advancements such as
real-time fMRI quality control, which is elaborated on in Chapter 5. This work
also forms the baseline for the transfer and processing of multi-echo fMRI data in
real-time, discussed in Chapters 6 and 7.

This chapter has been peer reviewed and published as: Heunis, S., Besseling, R.,
Lamerichs, R., de Louw, A., Breeuwer, M., Aldenkamp, B., Bergmans, J., 2018. Neu3CA-RT:
A framework for real-time fMRI analysis. Psychiatry Research: Neuroimaging 282, 90–102.
https://doi.org/10.1016/j.pscychresns.2018.09.008
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4.1 Introduction
Real-time functional magnetic resonance imaging (rtfMRI) involves the online
measurement of a subject’s neural activity, indirectly, through the measurement
of the blood oxygenation level-dependent (BOLD) signal. After preprocessing
and analysing these data within the repetition time (TR) the researcher has access
to these dynamic results while the subject is inside the scanner. This stands in
contrast to conventional fMRI, where image processing is applied after the full
set of fMRI scans has been acquired. Since the first published implementation
of rtfMRI in 1995 (Cox, Jesmanowicz, and Hyde, 1995) the ensuing two decades
saw a substantial increase of research interest and activity in this field. Advance-
ments in medical imaging technology (reviewed by Cohen, 2001, Weiskopf et
al., 2007b), computational algorithms (reviewed by Cohen, 2001, Weiskopf et al.,
2007b, deCharms, 2007) and computer processing power allow increasingly faster
and more advanced acquisition and processing of functional images and give
researchers and clinicians access to data and results in real-time that would other-
wise only be available hours, days or weeks after scanning (Weiskopf, 2012).

The application of rtfMRI, initially proposed as a tool to monitor data qual-
ity, to easily develop new task and stimulus protocols, and for use in interactive
neurological experiments (Cox, Jesmanowicz, and Hyde, 1995), has expanded
to include: real-time data quality assurance and patient compliance checking
(Voyvodic, 1999), pre-experimental or pre-surgical functional localisation and in-
traoperative guidance (see for example Hirsch et al., 2000; Binder, 2011), neu-
rofeedback studies and treatment (see Weiskopf, 2012; Christopher deCharms,
2008, Sulzer et al., 2013a, Sitaram et al., 2017, for extensive reviews), and teach-
ing (Weiskopf et al., 2007b). Increasingly, applied rtfMRI is viewed as a useful
diagnostic and treatment (navigation) tool in psychoradiology, a growing field de-
scribed as the use of radiologic approaches for diagnosis, treatment planning and
monitoring of patients with major neuropsychiatric disorders (Lui et al., 2016).

Apart from the basic real-time processing capabilities integrated into the hard-
ware of all major MRI vendors, several proprietary, custom in-house and open-
source rtfMRI solution sets or toolboxes have been developed at various locations
worldwide. These include FIRE (Gembris et al., 2000) and TurboFIRE (Gao and
Posse, 2003), scanSTAT (Cohen, 2001), AFNI’s1 real-time plugin (Cox, 1996), Turbo-
BrainVoyager (Brain Innovation, Maastricht, the Netherlands; Goebel, 2012), STAR
(Magland, Tjoa, and Childress, 2011), FRIEND (Sato et al., 2013), the FieldTrip tool-
box’s rtfMRI extension2 (Oostenveld et al., 2011), BART (Hellrung et al., 2015) and
more recently OpenNFT (Koush et al., 2017a). While these toolboxes allow a wide
range of rtfMRI processing and neurofeedback signal calculation capabilities, most
clinical studies reporting the use of rtfMRI (in particular most neurofeedback stud-
ies) have focused on analysing, visualising and feeding back activation changes
for particular ROIs in the brain that are associated with the disorder or condi-

1See: https://afni.nimh.nih.gov/
2See: http://www.fieldtriptoolbox.org/development/realtime/fmri
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tion being studied (see for example Alegria et al., 2017; Young et al., 2017; Ruiz,
Birbaumer, and Sitaram, 2013; Subramanian et al., 2011; Nicholson et al., 2017).
In most neuropsychiatric conditions, however, an array of complex brain func-
tions such as cognition are affected, processes that are increasingly regarded as
being mediated by synchronous activity across multiple brain regions (Mišić and
Sporns, 2016). To improve learning effects in neurofeedback training experiments
conducted in subjects with these conditions, the operant conditioning model re-
quires feedback to be contingent on the brain mechanism believed to underlie the
condition (Weiskopf et al., 2004a). Thus, it is hypothesised that a feedback signal
calculated based on a model that reflects a richer understanding of the underlying
neural mechanism could be an improved approach over ROI-based methods in
cases where complex brain function is involved. To enable further development
and testing of this hypothesis, rtfMRI toolsets and neurofeedback studies should
expand to include a particular focus on the analysis of dynamic and spatially
distributed brain activity, in addition to ROI-based approaches.

The dynamics and spatial distribution of functional brain networks at rest
have been widely investigated and reported. Resting state networks tend to show
separable spatial patterns with distinct temporal characteristics during rest- or
task-based experimental paradigms (Beckmann et al., 2005). Differences in resting
state network characteristics between subjects with neuropsychiatric disorders
and healthy subjects have also been studied and used as the basis for potential
biomarkers (see e.g. Whitfield-Gabrieli and Nieto-Castanon, 2012, for a review
focusing on the default mode network). Recently, Karahanoğlu and Van De Ville
(2015) applied temporal deconvolution and clustering techniques to resting state
fMRI time series to yield spatially and temporally overlapping co-activation pat-
terns. These iCAPs form dynamically assembling building-blocks for resting state
networks, and each pattern has been associated with a consistent behavioural
profile using the Brainmap database3 (Laird, Lancaster, and Fox, 2005). These as-
pects, that is the spatially distributed and dynamic nature of the iCAPs patterns as
well as their relation to behavioural brain state interpretations, suggest that they
could be useful as targets for neurofeedback calculation in rtfMRI neurofeedback
experiments relating to neuropsychiatric conditions.

In this article we introduce Neu3CA-RT, a MATLAB-based framework for
rtfMRI analysis developed at the Neu3CA research group4 at the Eindhoven Uni-
versity of Technology. Based on design considerations obtained from reviewing
previous and current state of the art rtfMRI solutions and methodologies, we
describe the experimental setup and image (pre)processing steps central to the
framework. We present an exploratory rtfMRI analysis implementation, which
is based on a dynamic spatial general linear model (GLM) fit of Karahanoğlu
and Van de Ville’s innovation-driven coactivation patterns (iCAPs) (Karahanoğlu
and Van De Ville, 2015) to real-time fMRI data and the subsequent mapping to

3Available at: http://www.brainmap.org/
4http://neu3ca.org/background/neu3ca/
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behavioural brain states. The method is demonstrated by subjecting a healthy
control to several known behavioural paradigms and comparing the data-driven
network analysis and behavioural interpretation to the expected brain state(s). We
conclude by discussing the results and future work.

4.1.1 Design considerations for a rtfMRI toolbox
Several aspects of existing rtfMRI toolsets influence their performance and area
of application. These include the particular technical infrastructure and imaging
parameters, pre-real-time processing, pre-processing, image analysis, program
execution time and software design. When assessing the performance of real-time
toolsets, specific attention should be given to latency, i.e. the total delay of the real-
time processing chain between image acquisition and availability of the analysis
results, and the achievable throughput, i.e. the quantified output per time period
(in our case, analysed images per second or, similarly, TR).

Particulars of how rtfMRI aspects have been implemented in existing toolsets,
especially artefact correction and ROI and whole-brain processing algorithms,
have been reviewed extensively elsewhere (Weiskopf et al., 2007a; LaConte, 2011;
Caria, Sitaram, and Birbaumer, 2012). For the purpose of this work, important de-
sign considerations (and, where applicable, their influence on latency and through-
put) are described in this section.

A. rtfMRI technical setup
The specifics of the MRI scanner, processing hardware and the accompanying
rtfMRI software package are considered. In principle, rtfMRI should be achiev-
able with any modern MRI scanner that has online image reconstruction and
network communication capabilities, although custom development is typically
necessary to facilitate transporting or sharing image data between scanner hard-
ware and the device used for real-time processing, whether this is the scanner
console or a network location. Dedicated development has also been done to inte-
grate rtfMRI processing directly into scanner hardware 1995 (Cox, Jesmanowicz,
and Hyde, 1995; Cohen, 2001; LaConte, Peltier, and Hu, 2007). Ideally, all major
MRI vendor hardware should be able to export acquired images in real-time to
a network location, from which the preferably vendor-agnostic rtfMRI software
package would then collect and process the data. Both the Turbo-BrainVoyager
and OpenNFT toolboxes employ such a server-client setup and are compatible
with scanners from multiple MRI vendors. Neu3CA-RT has been implemented
similarly, facilitated by real-time data transfer software developed in collaboration
with Philips.

The technical setup extends from the scanner to external hardware and soft-
ware. Firstly, rtfMRI packages need to be easily understood and easily adaptable
to facilitate widespread use. As reported by Koush et al. (2017a), interpreted lan-
guages like MATLAB (MathWorks, Natick, Massachusetts, United States) and
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Python5 allow intuitive understanding and easier sharing of code and continued
collaborative tool development by a wide-ranging and large user base. This is
strengthened further by the existence of SPM 6, FSL 7 and AFNI 8, three of the most
widely used platform-independent and freely available fMRI analysis libraries
that can readily be incorporated into interpreted language programs. When op-
timising for widespread use and whenever possible, rtfMRI toolboxes should
exploit these libraries and frameworks. While acknowledging that commercial
tools like MATLAB provide barriers to unconditional dissemination of software
tools and knowledge, our familiarity with the programming environment and its
widespread use in research and educational institutions led to the initial version
of Neu3CA-RT being based in MATLAB and using SPM12.

Secondly, the central or graphical processing unit (CPU or GPU) of a desig-
nated image processing computer needs to have enough power so as to minimise
real-time latency while managing a trade-off between processing speed and all
factors restricting increased processing power (these might include cost, logistical
impediments and site-specific restrictions). To facilitate ease of implementation,
a personal computer (PC) with 16GB RAM and a 4-core GHz-range processor is
recommended for a rtfMRI setup like Neu3CA-RT. Increased processing power
could be warranted if the resulting latency is too high for the desired through-
put, while more complicated pipelining and parallelisation of real-time processes
could be considered (either at application-level, computationally on a single PC
or at hardware level on multiple machines) if throughput needs to be increased.

B. rtfMRI image quality considerations
Echo-planar imaging (EPI) is widely used in fMRI imaging sequences and pro-
vides a sound, although not exclusive, basis for rtfMRI. The use of multi-echo
imaging sequences in real-time (Posse et al., 1999; Weiskopf et al., 2005) has been
reported to remove image distortion artefacts and increase BOLD contrast sensi-
tivity through weighted combination of multi-echo images. More recently, Kundu
et al. (2012) implemented an independent component analysis algorithm (ME-
ICA) on full multi-echo EPI datasets to yield significant gains in BOLD CNR.
Importantly, imaging parameters like the field-of-view (FOV), voxel resolution,
voxel matrix size, repetition time (TR) and echo time (TE) have to be refined so
as to manage the tradeoff between increased spatial resolution, increased BOLD
sensitivity, and shortened TR, while keeping the specific application in mind. In-
creased spatial resolution is beneficial when requiring rtfMRI output that is highly
spatially localised, but this in turn requires more acquisition and processing time
and thus increases latency. Similarly, a short TR (in reviewed literature, typically
in the order of 2 s for ROI-based acquisition and real-time processing) is beneficial
for more frequent real-time data visibility and neurofeedback, but simultaneously

5https://www.python.org/
6www.fil.ion.ucl.ac.uk/spm
7https://fsl.fmrib.ox.ac.uk/fsl
8https://afni.nimh.nih.gov/
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compromises spatial resolution and constrains the amount of available dynamic
calculation time, essentially requiring the real-time latency to be less than 2 s if
the throughput is to be one analysed image per TR and no pipelining is used.

Selection of a short TR is further motivated by the need to identify distributed
changes in BOLD signal response (from a predefined baseline) as soon as they
occur. In a task paradigm the general haemodynamic response function charac-
teristics are well established: an initial post-stimulus delay of 1–2 s and a peak at
4–6 s, reaching a plateau if the stimulus is sustained (Bandettini et al., 1992). For
a controlled task time course with an expected response, less incentive exists for
shortening the TR, but for the comparatively unknown dynamics of resting state
fMRI data this is not the case. Here, more frequent sampling enables a real-time
description of dynamic data, which is especially useful if this description needs
to be acted on in real-time.

Real-time denoising or preprocessing is required to provide further image qual-
ity improvements. Previously implemented algorithms include those for image
distortion correction, prospective or retrospective 3D motion correction, temporal
filtering and spatial smoothing (reviewed by Weiskopf et al., 2007a). Prospec-
tive motion correction typically incorporates real-time data from optical motion
tracking systems, such as described by Zaitsev et al. (2006), or is implemented to
estimate and apply a 3D transformation during reconstruction of each EPI image.
Other confounders of real-time BOLD activation are artefacts resulting from sub-
ject physiology like heartbeat and respiration, as well as EPI artefacts resulting
from gradient coil heating and other scanner instability effects. Technical setup
allowing, physiological data should be sent dynamically to the applicable rtfMRI
toolbox for continuous monitoring (for example Voyvodic, 1999) and correction
(for example Smyser et al., 2001).

In general, any imaging parameters or preprocessing approaches (such as those
described here) that fundamentally improve the signal-to-noise-ratio (SNR) are
important to improve spatiotemporal resolution and hence to reduce latency for a
specified spatial resolution. However such approaches should themselves have
limited latency to ensure that there is a net improvement in overall latency.

With the aim of acquiring and describing distributed BOLD activity in spe-
cific (sub)networks of the brain, the imaging parameters for current Neu3CA-RT
experiments were selected to favour increased spatial resolution (1.75 × 1.75 × 3
mm per voxel, see Data Acquisition in the Materials and Methods section) over a
short TR, resulting in a TR of 3 s which can be considered standard in a task-based
paradigm.

C. rtfMRI image analysis considerations
Reviewed literature shows a wide variety of mass univariate and multivariate
analysis algorithms being implemented in rtfMRI. Historically, statistical methods
like t-tests, correlation analysis (Voyvodic, 1999), GLMs and multiple regression
(for example Bagarinao et al., 2003) formed the basis of analysing single ROI
activation or identifying artefacts in real-time. Thus researchers and clinicians
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are able to view, for example, real-time ROI activation maps or real-time subject
motion estimations.

In clinical applications, multiple rtfMRI studies have reported benefits of spe-
cific ROI-based neurofeedback as a treatment option in neurological and psychi-
atric conditions, such as ADHD, depression, schizophrenia, Parkinson’s disease
and PTSD (see Sitaram et al., 2017, for a review). For studying cognition-related as-
pects related to whole-brain networks, however, the methodological focus should
include analysing spatially distributed and temporally dynamic brain activity.
Accordingly, an increasing amount of rtfMRI algorithms using functional connec-
tivity and multivariate pattern analysis (MVPA, also referred to as multi-voxel
pattern analysis) have been published and made available in rtfMRI toolsets,
including: windowed correlation (Zilverstand et al., 2014); dynamic causal mod-
elling (Koush et al., 2013); spatial GLMs; independent component analysis (ICA)
(Esposito et al., 2003); support vector machines (SVMs) (LaConte, Peltier, and
Hu, 2007); and neural networks (reviewed by LaConte, 2011). Reviewed literature
shows that, in the case of machine learning algorithms, the focus is increasingly
on quantifying intuitive and interpretable brain states through classification, as
opposed to quantifying the lower-level BOLD activation level of specific ROIs and
using that for biomarker development or neurofeedback.

In the current version of our Neu3CA-RT framework, we implemented an
exploratory functional network-based fMRI analysis pipeline that aims to quan-
tify the real-time brain state of the subject by mapping dynamic and spatially
distributed brain activity onto known co-activation patterns that relate to cer-
tain behavioural profiles. In a recent study, Karahanoğlu and Van De Ville (2015)
developed the iCAP model of functional brain networks, which is based on a
spatio-temporal regularisation of resting state fMRI data from healthy volunteers.
It decomposes fMRI data into a set of 13 generic co-activation patterns (see Figure
2 of Karahanoğlu and Van De Ville, 2015) that can be used as spatially and tem-
porally minimally overlapping building blocks to describe a variety of dynamic
brain network states. These iCAPs have in turn been associated with the set of 50
behavioural domains as defined by the Brainmap database9 (Laird, Lancaster, and
Fox, 2005), a vast online repository of activation maps from fMRI studies (in the
order of 3000 papers, 70000 subjects, 15000 experiments and 122000 reported brain
locations). This allows for the interpretation of observed networks in terms of
constituents of interpretable behavioural categories Action, Cognition, Emotion,
Introception and Perception (see Figure 6 of Karahanoğlu and Van De Ville, 2015).
The implementation in the current version of our Neu3CA-RT framework thus
allows for a real-time (every 3 s) mapping of dynamic whole-brain activity to the
13 innovation-driven co-activation patterns through a spatial GLM (i.e. calculating
how well the dynamic brain activity pattern can be explained by known ”building
block” patterns) and the subsequent association to behavioural profiles through
correlation (i.e. how the subject’s dynamic brain activity pattern, as explained

9http://www.brainmap.org/
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by the iCAP networks, relates to known behavioural states. This analysis adds
real-time throughput steps of voxel masking, executing two GLM calculations,
and calculating correlation coefficients to the Neu3CA-RT pipeline. These steps
add minimal latency to the real-time process, in the order of 0.3 s (see Results
section).

In exploring the use of whole-brain activity patterns in real-time, we aim to
provide a framework that allows the rtfMRI neurofeedback signal to be calcu-
lated from a more representative data sample, which could lead to improved
neurofeedback learning effects. Additionally, the access to real-time brain state
interpretations in terms of behavioural profiles allows a more intuitive look at
dynamically changing brain activity.

D. rtfMRI program execution considerations
The statement by Cox, Jesmanowicz, and Hyde (1995) that dynamically increasing
calculation time in rtfMRI applications is unacceptable remains valid, although
improvements in computer processing power can be a mitigating factor. Where
possible, new rtfMRI developments should aim to avoid cumulative algorithms
(processing larger amounts of data for every iteration) that could lead to problem-
atic increases in calculation time, while taking experiment-specific constraints in
terms of TR and number of acquired volumes into account. This applies to all pre-
processing and image analysis steps applied to fMRI data during the course of a
single TR. Sliding-window approaches (Gembris et al., 2000), recursive algorithms
(Cox, Jesmanowicz, and Hyde, 1995) and approximations can be implemented to
contain the required calculation time.

To minimise real-time program latency, a rtfMRI processing pipeline can be
constructed such that real-time processing occurs in the native functional stereo-
tactic space. This removes the real-time preprocessing step of normalisation to
a standard space, but necessitates the pre-real-time mapping of standard space
model components (if applicable) to the native functional space. This might add
time (to the order of 10–20 min) to the overall experiment, but could easily be
incorporated into the functional localiser pipeline that is part of a typical neuro-
feedback experiment. It was thus selected as the desired method for Neu3CA-RT.

Furthermore, standard software programming best practices should be imple-
mented to ensure efficient code execution (for example, in MATLAB, vectorisation
and preallocation of memory). Ultimately, if the desired throughput is to be 1 anal-
ysed image per TR, all real-time preprocessing and image analysis steps should
result in a total dynamic calculation time less than the selected TR, and with an
increasing need to shorten the TR for resting state real-time applications, future
rtfMRI toolbox developments should optimise algorithms for speed.
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Figure 4.1 — The experimental setup of Neu3CA-RT.

4.2 Methods
4.2.1 Experimental setup
Neu3CA-RT was developed and tested using a Philips Achieva MRI scanner (3T)
interfaced with an external PC (16GB RAM, 3.2 GHz single core processor) run-
ning Windows 7 and MATLAB. The program retrieves data from a user-specified
location on the processing PC, which could in principle be served by NIfTI data10

from any network-enabled MRI scanner (provided the ability for real-time fMRI
data transfer and conversion to NIfTI format), thus allowing implementations
with other MRI vendors. The experimental setup is shown in Figure 4.1.

4.2.2 Data Acquisition
As a preliminary step to real-time image acquisition and processing, both an
anatomical and a functional image are acquired. These images are used in the
pre-real-time processing steps described shortly. Anatomical data are recorded
using a three dimensional T1-weighted gradient echo sequence (T1 TFE) with
scanning parameters: TR=8.2 ms, TE=3.75 ms, flip angle 8°, FOV 240 × 240 × 180
mm, resolution 1x1x1 mm3, total scan time=6:02 min.

Functional whole brain data are recorded using a gradient echo EPI sequence
with scanning parameters: TR=3000 ms; TE=30 ms; 45 transverse slices with a

10For detailed information, see: https://nifti.nimh.nih.gov/
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slice thickness of 3 mm (no gap); in plane resolution=1.75 × 1.75 mm; voxel matrix
size 128 × 128 × 45; flip angle=90°; total scan time=8 min.

4.2.3 Data transfer
An integral part of the technical rtfMRI setup is having access to functional scans
for processing as soon as they are acquired. This is achieved by real-time TCP/IP
data transfer from the MRI scanner to an external processing PC through the
Philips scanner’s eXTernal Control (XTC) interface and the XTC-datadumper ap-
plication installed on the processing PC (Smink J et al., 2011). These packages
were implemented with support from the vendor. The XTC interface allows recon-
structed image data to be retrieved from the scanner, which the XTC-datadumper
then receives and converts to Philips PAR/REC files (one pair per functional im-
age) before storing it in a pre-specified location on the processing PC, ready for
import by the rtfMRI toolbox.

4.2.4 Image processing
All image processing is done in MATLAB using a combination of adapted SPM12
routines and self-developed scripts. The pre-real-time and real-time processing
pipelines are illustrated in Figure 4.2 and Figure 4.3.

4.2.5 Pre-real-time processing
To minimise real-time program execution time, the full pipeline is constructed such
that real-time processing occurs in the native functional stereotactic space. Prior
to real-time processing, the initial structural image is coregistered to the initial
functional image using SPM12’s coregister functionality. The coregistered struc-
tural image is then segmented into grey matter, white matter and cerebrospinal
fluid (CSF) tissue classes using SPM12’s unified segmentation procedure. This
segmentation process also implicitly normalises the coregistered structural im-
age to the standard MNI space (Montreal Neurological Institute; Collins et al.,
1994), generating forward and inverse transformations. The inverse transforma-
tion is subsequently applied to the 13 iCAPs networks/images to transform them
from MNI to the native functional space. Finally, the tissue probability maps and
native-space iCAPs images are all resliced to the native functional space grid, thus
allowing for direct comparison of voxels.

4.2.6 Real-time processing
For every functional dynamic (i.e. once every TR), the XTC-datadumper sends
a PAR/REC file pair to a prespecified location on the external PC. These files
are converted to NIfTI format using a modified version of r2agui11. Once con-
verted, the dynamic functional NIfTI image is realigned to the first functional
image (which can be user-specified as the initial pre-real-time functional image,

11See: http://r2agui.sourceforge.net/
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Figure 4.2 — The pre-real-time processing pipeline.

or the first image in the real-time series) using a least squares approach and a
6 parameter rigid body transformation. The algorithms for the motion correc-
tion steps were adapted from the spm realign rt and spm reslice rt routines of the
OpenNFT codebase12, which were originally adapted from SPM12 to minimise
execution time. A binary mask derived from the grey matter tissue class image is
then applied to the realigned functional image. From this point onward, standard
matrix calculations are done from in MATLAB on matrix data retrieved from each
dynamic NIfTI image.

To determine how the iCAPs model of network-building-blocks fits the dy-
namic fMRI data, a spatial GLM containing the iCAPs spatial maps is subsequently
applied, with the 13 most frequently occurring iCAP images (as the desired model)
and the mean functional image (derived from the full 4D fMRI dataset) as the
spatial design matrix regressors. As the model aims to describe spatial activity
differences in terms of distinct co-activation patterns, the image mean is included

12https://github.com/OpenNFT/OpenNFT
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Figure 4.3 — The real-time processing pipeline.

so as to describe the majority of the observed signal in the dynamic functional
image. This allows the 13 iCAP regressors to describe any additional up- or down-
regulated activity across grey matter. Beta values resulting from the spatial GLM
are corrected for drift and for realignment residuals by applying a temporal GLM
with the 6 realignment movement parameters and linear and quadratic drift terms
as regressors.

The GLM steps generate a list of iCAP network weights (beta values) that
indicate in which relative proportion the iCAP network building blocks best
describe the current fMRI activity with respect to the image mean. To convert
these weights into interpretable information, they are correlated (using Pearson’s
linear correlation) with the 50 behavioural profiles from the BrainMap database
that fall into 5 behavioural categories: Action, Cognition, Emotion, Introception
and Perception. These profiles can then be used as a means to interpret the real-
time brain state of the subject.
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In summary, once a dynamic image has been realigned and masked, the real-
time processing entails mapping the current spatial activity pattern to a set of iCAP
building blocks, yielding a set of beta weights that are subsequently detrended
and then correlated with the 50 BrainMap behavioural profiles. This translates
spatial patterns into possible brain states experienced by the subject in the scanner.

4.2.7 Experimental task design
With a set of 13 iCAPs beta-weights and a correlated set of 50 behavioural cor-
relation coefficients being generated for each functional dynamic image, a full
functional imaging run essentially contains a time series of BrainMap-database-
interpreted behavioural activity fluctuations. To demonstrate our dynamic fMRI
network modelling approach, i.e. to map real-time distributed brain activity to
underlying iCAP patterns and subsequently to a behavioural interpretation, exper-
iments were done with a single healthy, right-handed, male volunteer. Conditions
of known block task paradigms were chosen such that the calculated behavioural
activity time series could be compared with the variation in brain state expected
to be induced by the stimulus or task. Controlled task paradigms included vi-
sual stimulus (watching movie clips of underwater sea life), auditory stimulus
(listening to Bach) and motor task execution (finger tapping), each with a box-car
design. In addition, auditory data from SPM’s so-called Mother of All Experiments
(MoAE, released as part of the SPM user manual) were also analysed off-line. Ex-
perimental task paradigms for both the visual stimulus and motor task were: 16
interleaved rest and task periods of 30 s each (starting with rest), totalling an ex-
periment run-time of 8 min. The paradigm for the auditory stimulus experiment
was: 5 task periods of 60 s each, interleaved with rest periods of 30 s each (starting
with rest), totalling an experiment run-time of 8 min. For the MoAE auditory data,
the paradigm was: 14 interleaved rest and task periods of 42 s each (7 periods
each, starting with rest), totalling an experiment run-time of 9 min 48 s.

4.2.8 Results Analysis
For each experiment, the behavioural time series resulting from Neu3CA-RT pro-
cessing was correlated with the expected (haemodynamic response function -
HRF - convolved) task time course to generate a set of Pearson’s linear correlation
coefficients (R) and corresponding p-values. Bonferroni correction was applied
for multiple comparisons (i.e. 50 behavioural profiles); consequently, correlations
with a corrected p-value below 0.001 were deemed significant. Correlations with
a corrected p-value above 0.001 and below 0.002 (i.e. 0.1/50) were regarded as
displaying a trend towards significance.

To investigate how well the iCAPs model described the real-time fMRI data
fluctuations, the dynamic estimation error was calculated and the sum of squared
estimation errors (SSE) for each experimental run was compared to the sum of
squared fMRI signal (SSS) for the run. While the SSE gives an indication of the
model error that can be compared between runs (by subtracting the model fit,
i.e. the matrix product of the design matrix and the estimated beta weights, from
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Figure 4.4 — A screenshot of the Neu3CA-RT graphical user interface.

the data and calculating the square of the residual), the SSE to SSS ratio gives an
indication of how large the error is compared to the actual signal (i.e. the real-time
fMRI data).

4.3 Results
4.3.1 Technical results
All pre-real-time and real-time processing functionality was combined into a MAT-
LAB graphical user interface (GUI), known as Neu3CA-RT (displayed in Figure
4.4), a video demonstration of which can be accessed on the Neu3CA website13

and for which the basic functionality is available on Github14. The GUI allows for
the specification of relevant file locations (particularly the location where real-time
images are stored), the selection of pre-real-time acquired images, controlling the
MRI scanner via a START/STOP command, display of real-time acquired and
processed data (functional activity, task paradigm, iCAP weights and behavioural
profile correlation values), as well as offline (re)processing of real-time acquired
data.

Regarding timing considerations, the calculation time was logged in real-time
for all processing steps of each dynamic. This included real-time file format con-
version (~0.4 s), image realignment (~0.55 s), spatial GLM calculations (~0.08 s),
temporal GLM calculations (~2.7 × 10−4 s) and correlations and visualisations

13http://neu3ca.org/project/rtfMRINF/
14https://github.com/jsheunis/Neu3CA-RT
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Figure 4.5 — Neu3CA-RT’s real-time latency. Real-time latency (green, totalling less than 2 s)
is indicated on a scale with all processing steps (vertical axis). The time scale has been selectively
adapted for ease of reading. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

(~0.2 s), totalling ~1.5 s on average. These averaged values were calculated for the
three experiments with TR=3 s. For the MoAE-SPM data, which had a consider-
ably lower in-plane resolution with a 64 × 64 matrix size, the image realignment
duration was ~0.3 s and the total real-time latency amounted to less than 1 s on
average.

4.3.2 Throughput and latency
After image acquisition and pre-real-time processing steps, the current through-
put of Neu3CA-RT amounts to 1 analysed fMRI image per TR (3 s). Pre-real-time
steps include, as described, anatomical and functional image acquisition, coregis-
tration, segmentation, mapping of the iCAPs framework to the functional space
and reslicing all relevant images to the functional space resolution. During a sin-
gle real-time dynamic, the throughput includes file format conversion, functional
image realignment, masking, spatial and temporal GLM calculations, correlation
calculations and visualisations. In Neu3CA-RT’s current experimental setup, the
actual time required for initial image acquisition and pre-real-time processing
is about 6 min and 10 min respectively. These are indicated together with the
real-time latency in Figure 4.5.

4.3.3 Experimental results
Experimental results are shown in Figure 4.6 for all four experiments (auditory,
visual, motor and auditory-MoAE), with the 50 BrainMap behavioural profiles
located on the vertical axes and Pearson’s linear correlation coefficient defining
the unit for the horizontal axes. The correlation results are colour coded according

71



C
hapter4

4 . N E U 3 C A - RT: A F R A M E W O R K F O R R E A L - T I M E F M R I A N A LY S I S

Table 4.1 — Top four positive correlations between HRF-convolved task time course and be-
havioural profiles for multiple task paradigms

Task Paradigm Behavioural profile R-value p-value

Visual stimulus

1. Vision (other) 0.3927 0.0028 x 10−4

2. Vision (shape) 0.3669 0.0183 x 10−4

3. Hunger 0.3215 0.3384 x 10−4

4. Vision (colour) 0.3212 0.3485 x 10−4

Auditory stimulus

1. Anger 0.4103 0.0071 x 10−5

2. Audition 0.3977 0.0192 x 10−5

3. Music 0.3876 0.0410 x 10−5

4. Somesthesis (pain) 0.3618 0.2583 x 10−5

Motor task execution

1. Execution (speech) 0.2690 0.0006
2. Language (other) 0.2677 0.0006
3. Somesthesis (other) 0.2530 0.0012
4. Execution (other) 0.2202 0.0051

Auditory (MoAE-SPM)

1. Audition 0.4056 0.0001
2. Anger 0.3757 0.0004
3. Music 0.3415 0.0015
4. Language (phon.) 0.3236 0.0027

to their corresponding corrected p-values: blue shows p >0.002, cyan shows 0.001
<p <0.002), and green indicates significant correlation (p <0.001).

For improved interpretation, the top four positively correlated behavioural
profiles from each experiment are displayed in Table 4.1, together with their R-
and corrected p-values.

Additionally, to investigate how well the iCAPs model described the real-time
fMRI data, the sum of squared estimation errors for each experimental run was
compared to the sum of squared fMRI signal for the run. The results are shown in
Figure 4.7, which indicates the median (red line), 25th percentile (lower bound of
blue box), 75th percentile (upper bound of blue box), upper and lower adjacent
values (upper and lower black lines) and outlier values (red markers) for each of
the four experimental runs. In all four cases, the sum of squared error to sum of
squared signal ratio is between 0.9:1 and 1:1.

4.4 Discussion
4.4.1 Technical aspects
The importance of minimising rtfMRI calculation times has been stressed. Re-
garding Neu3CA-RT’s latency performance, averages of real-time processing step
calculation times indicated that image realignment had the longest duration: about
0.55 s of the available 3 s (i.e. 1 TR). In contrast, the data analysis and visualisation
steps total about 0.28 s, although it must be added that the current visualisation
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Figure 4.6 — Correlation results (colour-coded for p-values) for behavioural time series datasets
(resulting from real-time processing) for different experimental task paradigms. (a) Visual stimulus,
(b) Auditory stimulus, (c) Motor task execution and (d) Auditory stimulus (SPM’s ”Mother of
All Experiments”). Colour code: Blue shows p >0.002, cyan shows 0.001 <p <0.002, and green
indicates significant correlation (p <0.001). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Figure 4.7 — Sum of squared errors (SSE) divided by sum of squared signal (SSS). SSE/SSS
(on the vertical axis, lowest value at 0.88 for easier comparability) is shown for each of the four
experimental runs (on the horizontal axis).

options of Neu3CA-RT are not complex or resource-intensive. Considering the
likely future increase of real-time processing steps (e.g. additional denoising steps
and analysis algorithms, e.g. functional connectivity or MVPA methods) while
keeping the throughput constant, steps should be taken to optimise for speed.
It should be noted that the incorporated SPM realignment routine has several
parameters (including estimation quality, interpolation techniques and reslicing
options) that can be optimised for calculation speed, however the tradeoff in data
quality will have to be investigated.

The real-time latency could be decreased further if no processing time is re-
quired for conversion of PAR/REC files to NIfTI by the external PC, i.e. if the
vendor-supplied software exported functional images already converted to the
standard NIfTI or DICOM format. However, if this conversion is handled by the
vendor (either as part of the online reconstruction process or by peripheral soft-
ware responsible for transporting the data) it should necessarily have a shorter
execution time than the current conversion latency.

Another option worth investigating towards decreasing latency is the func-
tional masking. Calculation time increases with the number of voxels being pro-
cessed, which could be of concern given that we focus on whole-brain analysis (as
opposed to ROIs with limited voxels, assuming comparable spatial resolution) and
given that increased spatial resolution could lead to improved spatial localisation.
For our own experiments, the grey matter voxels of interest amounted to about
100k out of a possible 740k. Different masking methods should be investigated to
minimise this number while maintaining enough multivariate data for accurate
network analysis. Similarly, lower in-plane matrix sizes could be considered (as
evidenced by the lower latency for the SPM-MoAE data vs the experimental data)

74



C
ha

pt
er

4

4.4. Discussion

if high spatial resolution is not particularly important for the specific analysis.
Considering overall experiment duration, Figure 4.5 and the Data Acquisition

section indicated that the typical experiment lasted about 25 min, with the initial
image acquisition time being 7 min (taking time between scans into account), the
pre-real-time processing time being 10 min, and the real-time latency being ~1.5 s
per dynamic and 8 min in total. This is within the clinically acceptable total scan
duration of 30 min to 1 h. Even so, processing steps will need to be addressed for
improved data quality. More denoising steps or denoising steps with increased
efficiency could lead to a latency increase, which should be restricted as far as
possible. Apart from the discussed options, more promising additional time savers
would be to optimise the program structure, algorithm selection and processing
equipment for decreased latency of all processing steps. In this regard, apart from
optimising MATLAB code for speed by incorporating accepted best practices,
no further in-depth consideration was given to improving program execution in
the current implementation of Neu3CA-RT. Future work should also investigate
the use of graphical processing units (GPUs), parallel computing architectures
or multi-platform shared memory multiprocessing programming APIs towards
decreasing real-time latency.

Finally, concerning the software infrastructure, as displayed in Figure 4.1 and
described previously, vendor specific software is necessary (on the scanner itself
and on the external processing PC) for real-time transfer of functional images.
However, Neu3CA-RT was created with the requirement of a server-client in-
frastructure, allowing future integration with scanners from vendors other than
Philips. In the case that scanners from other vendors output data in a proprietary
file format (i.e. not NIfTI), conversion plugins will be necessary to serve data in a
compatible format.

4.4.2 Data quality
The model estimation error investigation showed a significant difference between
the actual rtfMRI data and the data described by the iCAPs model: in the order of
90%–100%, which means the error and the signal are almost equal in size. This is
an undesirable outcome for a model attempting to describe as large a percentage
as possible of the measured signal fluctuations. Several factors could influence
this error, including: insufficient noise regressors or confounding regressors in the
spatial GLM (for example, real-time physiological data were unavailable and thus
not corrected for in the current Neu3CA-RT implementation); not accounting for
other possible artefacts like EPI signal dropout or scanner induced distortion; pro-
cessing fMRI data at suboptimal BOLD contrast; and incorrect model definition. If
it can be established that said artefacts have significant detrimental effects on the
quality of these experimental rtfMRI data, they should first be corrected for before
further analysis iterations can shed light on the remaining error and the resulting
performance of the iCAPs model. Thus, although realignment residuals and signal
drift were already corrected for in the current implementation, improved noise
modelling and removal techniques should be investigated. Because masks were
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calculated in the functional space for grey matter, white matter and CSF, the latter
two could be used to generate averaged noise compartment signals to be used as
extra regressors in the denoising GLM.

Whether improved preprocessing steps result in an improved fit of the iCAPs
model to the experimental data or not, or if completely different models or analysis
techniques are applied in future, accurate preprocessing for improved data quality
remains of utmost importance.

4.4.3 Network-based analysis
In the real-time fMRI analysis method explored in this work, a brain-wide multi-
voxel approach was used to characterise modulation of distributed brain activity
during a known task paradigm as a set of innovation-driven co-activation pattern
fluctuations, which were in interpretable as correlated behavioural profile fluctua-
tions. The main aim was to develop a toolbox that allows the analysis of whole-
brain networks as the basis for eventually calculating a neurofeedback signal, as
networks are hypothesised to contain richer information about the underlying
condition being studied (as compared to ROI-based analysis). Measures of brain
network fluctuation and interaction could thus serve as contingent neurofeedback
signals with the aim of increasing training effects in rtfMRI neurofeedback studies.

Our proof-of-concept network-based analysis consisted of fitting a model of
temporally and spatially overlapping co-activation patterns, regarded as building-
blocks of standard resting state networks (Karahanoğlu and Van De Ville, 2015),
to real-time denoised fMRI data using a spatial GLM. For each time point in a
functional time series, the beta weights resulting from the GLM were transformed
to correlation values with 50 behavioural profiles from the BrainMap database,
essentially yielding a real-time behavioural interpretation of the subject’s brain
state. These behavioural time series were then correlated with their respective
experimental task designs to find specific behavioural profiles that correlated with
the task or stimulus time series. This was compared against expected behaviours
given the task or stimulus.

The results indicated expected effects in three out of the four experiments,
where the most significant positive correlation between a BrainMap behavioural
profile time course and the experimental task design was shown for an expected
brain state. 4.1 summarised this result: for a visual stimulus, Vision had the most
significant correlation; for an auditory stimulus (MoAE-SPM data), Audition; and
for a motor task, Execution (speech). It should be noted that the Execution (speech)
profile might detract from the results’ accuracy, as Execution (other) seems like
a more logical expectation, although it is known that speech involves complex
articular movement and that the sensorimotor and language networks involve
common anatomy (Besseling et al., 2013). Unexpected results in the top four
positively correlated behavioural profiles are also noted for each experiment: for
the visual experiment, Hunger is unexpected; and for both auditory experiments,
Anger is unexpected. This occurrence of unexpected effects was not limited to
within-behavioural-category profiles, as is demonstrated by the Hunger profile
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(from the category, Introception) being significantly correlated with the visual
experiment task design. The fact that more significant effects (and trends towards
such effects) were found than were expected indicates a lack of specificity of the
analysis method. Furthermore, the observed correlation values in all experiments
were relatively low, reaching a maximum of 0.4103 for behavioural profile Anger
in the auditory stimulus experiments.

For the experiments under consideration, the investigation was limited to
task-positive correlations in a single subject in an attempt to identify significant
up-regulated behaviour for a given task paradigm. This design decision, how-
ever, posited no claims as to the importance of significant and simultaneous task-
negative correlations, nor to simultaneous but unexpected up-regulations, nor to
the relative correlation values. An example of strong negative correlation between
behavioural profiles and the task design was found in all language profiles for
both the visual and auditory experiment. Further investigation, with an increase in
statistical power, is required into the dynamics of simultaneous and opposing be-
havioural profile fluctuations to shed light on this observation, specifically given
the known spatially distributed and dynamic nature of human brain networks.

Furthermore, the iCAPs and BrainMap behavioural profile model used in
this study was selected as an exploratory method based on their hypothesised
usefulness as targets for neurofeedback in neuropsychiatric conditions, given the
spatially distributed and dynamic nature of the patterns and the intuitive relation
to brain state interpretations. This, however, does not preclude the use of other
network-based analysis methods in Neu3CA-RT. With some updates to the code,
it is possible to use the framework with different network models hypothesised
to underlie whichever whole-brain mechanism is being studied and used for
neurofeedback training.

4.4.4 Future work
Although the current implementation of Neu3CA-RT serves as a successful proof
of concept of a network analysis driven rtfMRI framework, the discussion items
indicate that further development and testing is required, especially with regards
to improving technical implementation, network analysis and data quality.

Regarding Neu3CA-RT’s technical implementation and software design, aside
from adding improved artefact monitoring and visualisation options to the tool-
box, particular attention will be given to: minimising the latency of each step
in the real-time processing pipeline; minimising the latency added by the MAT-
LAB GUI infrastructure (either by using a compiled version of MATLAB or a
different programming framework); investigating increased processing power
and parallelisation options; and updating the GUI for intuitive user experience.

To improve the network analysis presented in this study, the first aim should
be to use a better understanding of the behavioural profile dynamics to propose
an efficient model that increases the specificity of the results, an aspect that the
Neu3CA-RT framework currently lacks. With increased specificity, more complete
and intuitive interpretations can be made from the results about the dynamic brain
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state of the subject and hence about the validity of the iCAPs/BrainMap network
analysis model in a rtfMRI framework. In future, network analysis need not be
limited to the iCAPs model and should be expanded to include other network
models as well as MVPA, data-driven and/or machine learning methods known
in literature to yield improved results.

Envisaged steps to investigate and improve data quality include: adding real-
time white matter and CSF nuisance regressors to the denoising GLM; correcting
for physiological noise in real-time (heart beat and breathing); correcting for scan-
ner induced artefacts in real-time; improving software options to display subject
movement and other noise in real-time (i.e. quality checking); and optimising
BOLD contrast and sensitivity with the use of real-time multi-echo EPI acquisition
and processing.

Finally, while this work reported the development and explorative use of a
real-time fMRI analysis tool based on whole-brain networks, the ultimate goal
of Neu3CA-RT is for it to be used as a tool in rtfMRI neurofeedback training
experiments. In this regard, several data processing steps should be added to
the real-time pipeline, including neurofeedback signal calculation, scaling and
presentation. Once future developments with regards to rtfMRI data denoising
and quality improvements have been accomplished, a neurofeedback experiment
could investigate the effects of neurofeedback-driven modulation of one or a set
of the behavioural profiles, as these profiles provide a simple representation of
complex network-based and dynamic brain activity.
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for real-time fMRI quality control

Abstract
While recent literature shows an increase in the availability and use of standard-
ised quality control metrics for conventional functional magnetic resonance imag-
ing (fMRI) studies, a comparative lack exists for real-time fMRI use cases. In an
effort to explore real-time fMRI quality metrics and to facilitate a community ef-
fort of standardisation and practice adoption, we introduce the newly developed
rtQC: an open source, MATLAB and SPM12-based toolbox for real-time quality
control. The user-friendly graphical user interface allows three domains of quality
control: Pre-QC, Online-QC and Post-QC. Pre-QC provides functionality to select
defaults, template images, and regions of interest, and ensures the consistency
of real-time volume acquisitions. Online-QC includes real-time computation and
monitoring of quality metrics including framewise displacement, motion outliers,
global Z-score, temporal signal-to-noise ratio and real-time carpet plots. Post-QC
triggers established quality control pipelines and provides summary data and
visualisations. rtQC’s functionality is demonstrated and validated using two open
fMRI datasets.

By formalising and validating algorithms for real-time quality metrics that
have until recently only been available as offline measures, and by making these
algorithms available publicly, rtQC facilitates real-time quality control as a stan-
dard practice in fMRI research. The real-time algorithms developed for rtQC also
lay the foundation for the algorithms used in further developments of real-time
multi-echo fMRI analysis as well as automated quality control pipelines, which are
elaborated on in Chapter 6 of this thesis. Extensive validation of these and further
algorithms are then demonstrated in Chapter 8, using the real-time multi-echo
fMRI dataset that was collected and curated for this purpose (Chapter 7).

rtQC is available publicly at https://github.com/rtQC-group/rtQC,
which includes installation and usage instructions, as well as sample use cases

This chapter and the related software have been presented at an international conference as:
Heunis, S., Hellrung, L., Meer, V.D., Bergert, S., Sladky, R., Pamplona, G.S.P., Scharnowski, F., Koush,
Y., Mehler, D., Falcon, C., Gispert, J.D., Molinuevo, J.L., Skouras, S., 2019. rtQC: an open-source toolbox
for real-time fMRI quality control. Proceedings of the 2019 annual meeting of the Organization for
Human Brain Mapping. Rome, Italy. https://doi.org/10.5281/zenodo.3239084
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5.1 Introduction
It is well-known that the resting state and task-based blood oxygen level-dependent
(BOLD) signal acquired with functional magnetic resonance imaging (fMRI) con-
tains several scanner-, sequence-, subject- or experiment-related nuisance signals
and artefacts (Murphy, Birn, and Bandettini, 2013; Power et al., 2014; Caballero-
Gaudes and Reynolds, 2017; Liu, 2016). If such confounding factors are not suffi-
ciently accounted for during acquisition or minimised through real-time or offline
processing, resulting fMRI measures can bias our inferences and our consequent
conclusions about brain function. Conversely, if such issues are isolated during
acquisition, even to the extent that bad quality data can be flagged and discarded
as they are acquired, this can lead to both cost/time savings as well as decreased
bias in the data and its derivative measures. Quality control (QC) should there-
fore be an integral part of the fMRI acquisition and analysis procedures. However,
standardised fMRI data quality control and reporting has not received widespread
attention as an adopted experimental practice nor in reported literature, perhaps
until the recent advent of interoperable data structures and automated workflows
that gave rise to open tools such as fmriprep1 (Esteban et al., 2019), MRIQC2

(Esteban et al., 2017) and PCP-QAP (Project, 2014). While this advances our abil-
ity to calculate and report standardised quality measures, offline quality control
presents only one dimension to the quality control process, and only after acqui-
sition. Standardisation of methods and tools to report quality control measures
in real-time, i.e. as the data are acquired, would be another particularly useful
dimension.

Existing tools have previously introduced novel ways of minimising quality
issues and reporting quality metrics in real-time. Originally, AFNI’s real-time
fMRI module (Cox, Jesmanowicz, and Hyde, 1995) supported the ability to dis-
play motion parameters to the subject in order the suppress head motion (Yang
et al., 2005) and to feed back a display of variability in areas affected by physio-
logical noise (e.g. ventricles) in order to reduce the standard deviation of the fMRI
signal (Bodurka, Gonzales-Castillo, and Bandettini, 2009). More recent real-time
quality tools include Framewise Integrated Real-time fMRI Monitoring (FIRMM;
Dosenbach et al., 2017), which focuses on real-time motion tracking and related
quality metrics, and Turbo-BrainVoyager (Lührs and Goebel, 2019) which added
functionality for inspecting read/processing times, motion parameters, and re-
gion of interests overlaid on functional or anatomical data. In recent work we
reviewed the quality and denoising practices in 128 real-time fMRI neurofeedback
studies, and found a variety of examples for offline and real-time quality control.
Stoeckel et al. (2014), for example, proposed the calculation and use of tSNR and
the concordance correlation coefficient on pilot data to determine, respectively,
whether the fMRI neurofeedback signal is detectable and reproducible between
runs. And Sorger et al. (2018) suggested a list of five criteria used for selection

1https://fmriprep.org/
2https://mriqc.readthedocs.io/
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of custom feedback regions per subject, including that the ROI should consist of
10-15 neighbouring voxels spanning three axial slices.

In an effort to explore real-time fMRI quality metrics extensively and to fa-
cilitate a community effort of standardisation and quality practice adoption, we
introduce rtQC: an open source, MATLAB and SPM12-based toolbox for real-
time quality control. While rtQC originated previously as a set of scripts and
guidelines for post-hoc identification of quality issues between offline and real-
time exported versions of the same data (Hellrung et al., 2017), this new work
documents the results of a major refactoring process. The new version of rtQC
consists of a graphical user interface that is capable of accessing, preprocessing
and denoising fMRI data in real-time, calculating real-time quality control metrics,
providing real-time visualisations of the acquired data and quality metrics, and
highlighting quality issues between the offline and real-time variants of fMRI
data. Additionally, performance improvement recommendations from Chapter 4
(heunis˙neu3ca-rt:˙2018) have been considered to minimise per-volume process-
ing time. The ability of rtQC to calculate quality metrics in real-time makes it
practical for data collectors to identify data quality issues as they occur (versus
hours, days or weeks after data collection), leading to time and cost savings.

5.2 Overview
The version of rtQC that was developed as part of this thesis takes the form
of a graphical user interface that allows three levels of data entry, processing,
and visualisation (depicted in Fig. 1): Pre-QC, Online-QC and Post-QC. Pre-QC
defines anatomical data, regions of interest, template information, and ensures the
consistency of real-time versus offline volume acquisitions. Online-QC includes
real-time monitoring of quality metrics, including temporal signal-to-noise ratio
(tSNR), Z-score, region-based signals, and a real-time carpet plot which displays
per-voxel signal intensity fluctuations over time. Post-QC provides summary
quality control data and visualisation, with the further potential of triggering
established quality control software pipelines. rtQC can operate on both pre-
acquired datasets or incoming volumes in real-time.

5.3 Core features
5.3.1 Focus on functional MRI
rtQC has a core focus on subject-specific, single-echo functional MRI. A principled
step in this regard is to process all functional data in subject-specific functional
space, i.e. without transformation of the acquired data to a standard stereotactic
space (such as the MNI152 or Talairach spaces) which is typically done for conven-
tional fMRI studies. This saves per-volume processing time, which is particularly
useful for real-time use cases, and limits the amount of data transformations and
interpolations so as to keep the image data as similar as possible to the raw ac-
quired data.
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Figure 5.1 — Overview of the architecture of rtQC.

Figure 5.2 — The ”Online QC” tab of the rtQC graphical user interface.

5.3.2 Graphical user interface
The user-friendly toolbox was created as a MATLAB graphical user interface (GUI)
that allows data setup, preprocessing, real-time processing, visualisation of quality
metrics and offline pipelines. For real-time use, the GUI enables the user to easily
start, pause and resume processing at any moment, as shown in the snapshot of
the GUI in Fig. 2.
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5.3.3 Pre-QC, Online-QC and Post-QC
rtQC provides the required functionality to set up fMRI data prior to online (or
simulated online) experiments (Pre-QC), to process and visualise quality metrics
for these data in real-time (Online-QC), and to view summary information and
trigger further pipelines after all data have been collected (Post-QC).

In the Pre-QC tab, users are expected to upload a pre-acquired T1-weighted
image and a template functional volume of the subject. This is then followed by
minimal preprocessing in preparation for online quality control, which includes:

• Coregistration of the T1-weighted anatomical image to the template func-
tional image using SPM12’s coregister/estimate functionality.

• Segmenting the coregistered T1-weighted image using tissue probability
maps and SPM12’s unified segmentation algorithm (Ashburner and Fris-
ton, 2005), yielding subject-specific probability maps for gray matter, white
matter, CSF, soft tissue, bone and air in the subject functional space.

• Resampling the coregistered T1-weighted image and all tissue segmenta-
tions to the subject functional resolution using SPM12’s coregister/write
functionality.

• Generating binary masks for gray matter, white matter, CSF, and the whole
brain (a combination - logical OR after thresholding - of the previous three
masks).

Pre-QC also allows the comparison of data that were acquired offline versus
in real-time, since these can result in differences (e.g. due to altered image re-
constructions or file format conversions) that would otherwise go unnoticed. A
mutual information check can be performed on two images, with a high-valued
result indicating a close match and a low-valued result suggesting that further
inspection and appropriate corrective measures should be performed.

Online-QC includes all controls for running an online quality control proce-
dure and plots for visualising the output. Before the calculation and display of all
quality metrics, functional MRI data are preprocessed per-volume, which includes
3D volume realignment using a 6 degree of freedom transformation, and linear
detrending.

Post-QC functionality is similar to Online-QC in the sense that quality control
and visualisation is executed for the same dataset. However, this is done offline
during the Post-QC step and calculated metrics will therefore resemble standard-
ised values that can be compared across datasets. Additionally, Post-QC includes
the calculation and display of metrics that are only possible using a full functional
dataset, such as visualisations of time series mean, standard deviation, and tSNR.

5.3.4 Calculation and visualisation of standardised quality control metrics
The Online-QC functionality calculates and displays several metrics per volume:
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Functional volume visualisation, which can be viewed along each axis (coro-
nal, axial, sagittal) and any slice in order to detect visual quality issues as the
data are acquired. This can be set to view a functional volume or the cumulative
temporal signal-to-noise ratio.

Framewise displacement (FD), which is an estimation of linear, volume-to-
volume head movement in milliliters (Power et al., 2012). For each acquired vol-
ume, framewise displacement can be used to classify motion-outliers based on a
predefined threshold (typically 0.2 to 0.5 mm) and to consequently store ascan-
nulling regressor for both online or offline denoising.

Global Z-score, reflecting the number of standard deviations that the global
intensity of an incoming volume deviates from the temporal mean. Z-score peaks
can indicate movement or scanner artifacts, and will typically reflect the same
peaks seen in framewise displacement.

Temporal signal-to-noise ratio (tSNR), indicating overall data quality and the
ability to detect small signal changes (Parrish et al., 2000; Welvaert and Rosseel,
2013). It is computed within the whole brain mask and, if prespecified, within
ROIs as the ratio of the temporal mean over temporal standard deviation. These
entities are calculated cumulatively per-volume, using all volumes up to and in-
cluding the volume being processed at any given moment.

Carpet plot (or grayplot), providing a compact display of image intensity fluc-
tuations in terms of percentage signal change (PSC) across all voxels in time. This
serves to visualise sudden intensity changes and slow (task-related or breathing-
related) fluctuations (Power, 2017).

Summary values, which are text displays of the listed measures and their
means as they are updated per-volume. These values include: the number of
volumes that have been processed; the umber of volumes that have passed the
quality control threshold for which the default is a framewise displacement value
of maximum 0.25 mm; the total and mean framewise displacement; and the tem-
poral signal-to-noise ratio of the whole brain, grey matter, white matter and cere-
brospinal fluid.

5.4 Installation, requirements, usage and support
rtQC can be installed from its GitHub repository3, and requires MATLAB 2016b
or later to run. Its only dependency is SPM12 (r77714; Friston et al., 2007). Both
rtQC and SPM12 have to be available locally and added to the MATLAB path to

3https://github.com/rtQC-group/rtQC
4https://github.com/spm/spm12/releases/tag/r7771

84

https://github.com/rtQC-group/rtQC
https://github.com/spm/spm12/releases/tag/r7771


C
ha

pt
er

5

5.5. Discussion

allow the use of the graphical user interface.
Further installation and usage instructions are provided in the README file

located in the project’s GitHub repository5. Specific instructions for all of the core
featuresare also provided in the graphical user interface as the user progresses
through the Pre-QC, Online-QC and Post-QC steps.

The use of rtQC is demonstrated and validated in a pilot using two existing and
publicly available datasets: one resting state dataset (subject 05120) from the UCLA
site of the Autism Brain Imaging Data Exchange consortium (ABIDE; Di Martino
et al., 2014), and one task-based dataset made available together with OpenNFT
(Koush et al., 2017b). The outputs of rtQC during and after being run on these
data, all deemed to be accurate compared to offline metrics, can be reproduced
using the ”Demo” functionality embedded in the rtQC GUI.

Support is provided via the project’s GitHub repository, where issues can be
logged when users experience problems, want to report bugs or feature requests,
or want to start contributing to the toolbox.

5.5 Discussion
The rtQC toolbox, available as open-source software, offers important function-
ality for real-time fMRI quality control to clinicians and technicians alike. The
user-friendly GUI implementation facilitates quick and effective assessment of
acquisitions in order to exclude bad datasets and shed light on irregularities in
the data. It offers a platform for standardisation of real-time quality metrics, in-
cluding real-time framewise displacement (FD), temporal signal-to-noise ratio
(tSNR), voxel-based and spatially averaged Z-scores, region-based signals, and
real-time 2D representations of voxel intensity fluctuations over time. As such, it
is intended as a community tool to promote the use and continued development
of best practice.

Suggestions for additional features include real-time DVARS, global signal,
global signal correlation, and more metrics and visualisations from widely used
community tools such as fmriprep (Esteban et al., 2019) and MRIQC (Esteban
et al., 2017). Additionally, improvements to code structure and documentation
will make the tool more accessible and will encourage further use.

5https://github.com/rtQC-group/rtQC/blob/master/README.md
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analysis with SPM12

Abstract
Features in functional magnetic resonance imaging (fMRI) analysis like standard-
ised data manipulation, interoperability, workflow automation, and reproducible
analysis pipelines have experienced increased development growth in the Python
ecosystem, but are lacking in MATLAB-based functional neuroimaging projects,
even though MATLAB use is still predominant. Similar restrictions hold for the
introduction of new methods for improving the quality of fMRI and its derivative
measures, with multi-echo fMRI and its application in real-time use cases being
a core example. While Python toolboxes exist to make multi-echo processing
pipelines available to the research community, similar advancements are not seen
elsewhere, effectively excluding MATLAB users from access to state-of-the-art
methods for increased quality in real-time fMRI. To address these drawbacks,
we developed fMRwhy: a MATLAB- and SPM12-based toolbox with a variety of
helper functions and BIDS-compatible workflows to assist researchers with their
reproducible fMRI analysis journey.

fMRwhy’s goal is to make open workflow developments and novel methods
available to fMRI researchers using SPM12 and MATLAB. This new function-
ality includes a focus on functional MRI, BIDS-compatibility, automated fMRI
data quality reporting workflows, support for reproducible SPM12-based script-
ing, and importantly for this thesis, support for real-time and multi-echo fMRI
analysis. This chapter presents an overview of fMRwhy and details its core func-
tionality, particularly detailing the implementation and usage of quality control
and reporting pipelines and multi-echo analysis pipelines. For comprehensive
information about the software’s installation and usage, readers are referred to
the software documentation and API (https://fmrwhy.readthedocs.io/)
and the project code base (https://github.com/jsheunis/fMRwhy), both
of which were created and curated alongside fMRwhy. With this toolbox and the
accompanying resources, the practical groundwork is laid to allow the detailed
exploration and validation of new real-time multi-echo fMRI methods, which is
the focus of Chapters 7 and 8 in this thesis.
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6.1 Introduction
Recent developments in open source neuroimaging software have given researchers
unprecedented and widespread access to state of the art methods for functional
magnetic resonance imaging (fMRI) analysis. Examples include community main-
tained data structure standards (such as the Brain Imaging Data Structure; Gor-
golewski et al., 2016 ), software pipelining tools (for example nipype; Gorgolewski
et al., 2011), automated preprocessing and quality reporting workflows (such as
fmriprep and MRIQC, respectively; Esteban et al., 2019; Esteban et al., 2017), and
packages for analysing new fMRI acquisition types (such as tedana for multi-echo
fMRI; DuPre et al., 2020). Data standards like BIDS allow for interoperability and
the consequent generation of automated workflows (fmriprep, MRIQC), which
can be constructed using pipelining tools that ensure methods reproducibility
(nipype) and can interface with a wide range of neuroimaging tools. New acqui-
sition or analysis packages that have built-in compatibility with these tools and
standards then provide users with easier and quicker access to advancements in
the field of fMRI.

A common aspect of these examples is the open source Python programming
language, possibly reflecting similar implementation and usage trends seen in
the wider software development and data science fields. Another driver behind
widespread adoption could be that open source programming languages and ac-
companying development frameworks allow increased community participation
by lowering entry cost. Ideally, the lower cost and community adoption allowed
by open source tools would be integral to the improvement of inclusivity in the
field of neuroimaging research. However, it cannot be the exclusive platform for
future developments. Several established neuroimaging analysis packages and
software tools use or are based on proprietary software such as MATLAB, in-
cluding SPM12 (Friston et al., 2007), Anatomy Toolbox (Eickhoff et al., 2005), and
qMRlab (Karakuzu et al., 2020), while still having open source code and wide user
bases. Poldrack, Gorgolewski, and Varoquaux (2019) showed that the MATLAB
and SPM12 user base in neuroimaging research maintains a substantially higher
proportion than all current alternatives. Moving continued support and develop-
ments away from these tools on the basis of a strict idealisation of open source
software would result in a significant number of users being excluded from access
to the aforementioned advancements and from the fMRI community.

A more inclusive solution would be to build tools that extend advancements
like interoperability, workflow generation, quality reporting practices, and new
analysis methods across programming languages and development platforms.
An example is the bids-matlab package1 that aims to make a BIDS dataset easier
to interact with for those scripting in MATLAB, similar to the pyBIDS Python
package (Yarkoni et al., 2019). Another is qMRLab, a MATLAB-based and Octave-
compatible toolbox for quantitative MRI analysis that makes methods for data
fitting, simulation and protocol optimisation more transparent and accessible

1https://github.com/bids-standard/bids-matlab
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across vendors and to non-specialist users. More work is needed to bring new and
continued developments in the open source space into existing MATLAB tools
and frameworks, such that users of these tools can gain equal access to the same
state of the art advancements.

Here, we present fMRwhy as an option to address, in part, the mentioned
challenges, specifically those relating to reproducible scripting, automated quality
control, and multi-echo fMRI analysis. By developing fMRwhy as an open toolbox,
we have made several novel contributions that, to the best of our knowledge, have
previously been lacking in MATLAB-based neuroimaging projects and can now
form an inclusive basis for community use. These new developments include: (1)
built-in compatibility with standard neuroimaging data structures such as BIDS;
(2) modularised wrapper-functions for SPM12 processes that allow the creation
of reproducible analysis scripts; (3) an automated software pipeline for quality
control and metrics reporting of fMRI data; and (4) modularised functionality for
the processing of real-time and offline multi-echo fMRI data. The accompanying
open code base2 and comprehensive API documentation3, contribute strongly to
the accessibility and reuse of fMRwhy.

6.2 Overview
Development of fMRwhy started over the course of this work as a new collection
of MATLAB- and SPM12-based scripts created to reproduce useful quality control
measures and interesting visualisations as reported in journal articles, such as
calculating the temporal signal-to-noise ratio of an fMRI time series or creating
a carpet plot (Power, 2017) from fMRI data. The core idea behind this was: if the
results of our research are supported by useful processing and quality control
methods, why not implement these in a reproducible and extensible way so that
the greater community can benefit from and contribute to it? This evolved over
time into a modular set of SPM12 batch process wrapper functions that simplified
the process of creating reproducible fMRI preprocessing and quality reporting
scripts. With the goal of allowing automated quality reporting workflows, partial
BIDS-compatibility was added using bids-matlab as a dependency. Additionally,
work inspired by the benefits of multi-echo fMRI analysis and its possible utility
in real-time use cases led to added functionality in those domains.

At the time of writing this overview, fMRwhy has several core features, depicted
in Figure 6.1, including: a focus on standard functional MRI, BIDS-compatibility,
automated fMRI data quality reporting workflows, support for real-time and
multi-echo fMRI analysis, and support for reproducible SPM12-based scripting.
Importantly, while fMRwhy aims to make these features and future developments
available to a wider community of MATLAB users under an open license, it is not
(nor is it intended to be) a fully-fledged fMRI analysis package. It would not suffice

2https://github.com/jsheunis/fMRwhy
3https://fmrwhy.readthedocs.io/
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Figure 6.1 — A depiction of the core features of the fMRwhy software package.

nor should it be used as a replacement tool for the likes of SPM12, FSL, fmriprep,
AFNI, or their constituent functionality. It is better positioned as an auxiliary tool
for MATLAB and SPM12 users who work with BIDS-formatted fMRI datasets
and who want to: 1) generate automatic, user-friendly quality reports, 2) build
reproducible SPM12-based processing pipelines, 3) preprocess multi-echo fMRI
data, 4) build/test real-time analysis pipelines, or 5) use auxiliary tools for fMRI
visualisation and image manipulation.

6.3 Core features
6.3.1 Focus on functional MRI
fMRwhy was created with a core focus on subject-specific functional MRI and
basic structural (i.e. T1-weighted) preprocessing applications. A principled step
in this regard is to process all functional data in subject-specific functional space,
and only to apply transformations into standard space if required for calculating
group-summary measures or based on user preferences.

6.3.2 BIDS compatibility
fMRwhy aims to stay compatible with the Brain Imaging Data Structure, at least
in terms of the functionality and data-types that it supports. This includes under-
standing the structure of a BIDS-compliant fMRI dataset, such as the number and
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names of subjects, sessions, tasks, runs, and more. This compatibility allows auto-
mated workflows to be run for a BIDS-compliant dataset, such as visual quality
control and reporting. Additionally, fMRwhy outputs relevant derivative data in a
BIDS-compliant fashion.

6.3.3 Visual fMRI quality control
This is currently the core functionality of fMRwhy. fmrwhy workflow qc is an auto-
mated, BIDS-compatible quality checking and reporting workflow that generates
subject-specific fMRI quality reports in interactive HTML format, easily view-
able in a browser application. It can run on a multi-subject fMRI dataset with
T1-weighted and BOLD data, and will automatically derive the structure of the
data (tasks, sessions, runs, etc) in order to process all BOLD data correctly. Default
settings and user preferences are provided as input to this function in the form of
a settings file, requiring users to specify a number of parameters prior to running
the workflow.

The workflow entails minimal preprocessing of T1-weighted and functional
MRI data, and generating quality metrics in both cases.

For anatomical MRI:

• Coregistered T1-weighted segmentations (grey matter, white matter, CSF,
and a whole-brain mask) are overlaid onto the subject functional space, for
visual inspection of the registration and segmentation quality.

• Coregistered anatomical regions of interest (if specified) are mapped from
MN152 space and overlaid onto the subject functional space, for visual in-
spection.

For functional MRI:

• A summary table provides values for all runs per subject for mean framewise
displacement (FD), total FD, FD outliers, and mean tSNR in all tissue com-
partments. This allows quick inspection per subject, but is better understood
when referenced to the whole dataset.

• Several image montages are generated per run, including the time series
mean, the standard deviation and the tSNR map. The time series mean gives
a quick view of the general quality of the time series and can indicate spike
or interference artefacts. The standard deviation map shows areas with high
signal fluctuation that can often be related to movement (e.g. close to the
eyes). The tSNR maps are useful for investigating general signal quality, to
indicate signal dropout and comparing signal quality across regions.

• A carpet (time series) plot is generated per run, which displays voxel inten-
sity in percentage signal change from the mean over time. The vertical axis
(voxels) is either grouped per tissue type (compartment ordered) or ordered
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from top to bottom according to the voxel’s time series correlation strength
to the global signal. Signal traces above the carpet plot are also shown, in-
cluding tissue compartment signals, respiration, heart rate, and framewise
displacement. These plots are useful quality checking tools as they make it
easy to visualise wide scale signal fluctuations across voxels, which can then
be related visually to changes in physiological signals or subject movement.

• If cardiac and respiratory recordings are available, images generated by
the dependency TAPAS PhysIO during basic preprocessing are included to
check the quality of these recordings. Images include a plot of the temporal
lag between derived heart beats within thresholds for outliers, and a plot
showing the breathing belt amplitude distribution that can be inspected for
unexpected shapes.

After the calculation of these QC metrics and visualisations, a browser-based
HTML report is generated per subject, which can be used to interactively explore
the data quality of all fMRI runs. Excerpt images from the report can be viewed in
Fig. 6.2 and a full report example can be viewed online4.

Further planned development for the quality reporting workflow includes
added quality metrics and associated visualisations (such as DVARS, ghost-to-
signal ratio and more), as well as group-level quality plots and summary reports.

6.3.4 Multi-echo fMRI preprocessing
Multi-echo fMRI has known benefits for improving fMRI signal recovery, increas-
ing the temporal signal-to-noise ratio, and separating BOLD and non-BOLD fluc-
tuations, with the Python package tedana being a leading open source implemen-
tation allowing wide use and community contributions. However, similar support
does not currently exist in MATLAB, which is why fMRwhy aims to make multi-
echo processing methods accessible to researchers using SPM12 and MATLAB.

Multi-echo analysis support currently includes:

• Estimating 3D realignment parameters from the time series of a single echo
and applying these to the time series of the other echoes in the same run.

• Estimating baseline T2* and S0 parameter maps from the time series mean
of a multi-echo run, using log-linear regression and assuming a mono-
exponential decay model.

• Estimating per-volume T2*FIT and S0FIT parameter maps for (simulated)
real-time use.

• Combining multi-echo time series using various echo combination schemes:

4https://jsheunis.github.io/fmrwhy_sample_QCreport.html
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6.3. Core features

Figure 6.2 — Excerpt images from the quality report generated by the fmrwhy workflow qc
pipeline. This includes overlays to check anatomical registration and segmentation (top row), tempo-
ral signal-to-noise-ratio slice montages (second row), carpet plots of voxel intensity and other time
series fluctuations over time (third row) and a summary table of functional data quality metrics per
run (bottom row).
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– tSNR-weighted

– T2*-weighted

– TE-weighted

– Scalar-weighted

– T2*FIT-weighted

Planned future developments for multi-echo support include automated com-
parison of multi-echo combined data (using various combination schemes) with
single-echo data, as well as a standardised multi-echo report similar to the de-
scribed quality report.

6.3.5 Real-time fMRI preprocessing
Several real-time processing functions were ported and adapted into fMRwhy
from the open sourced code base of OpenNFT (Koush et al., 2017a), mainly as a
means to support the development of real-time multi-echo fMRI analysis scripts.
These new developments for real-time multi-echo analysis includes the following
functionality:

• Per-volume image preprocessing functions to support 3D volume realign-
ment and spatial smoothing.

• Real-time estimation of T2*FIT and S0FIT as previously explained

• Real-time combination of multi-echo data using various combination schemes

• Real-time calculation of region-based signals

• Cumulative GLM-denoising functionality, including,

• Kalman filtering

• Signal scaling

A pilot real-time workflow allows testing of new or altered real-time denoising
or other preprocessing steps. Future work includes expanding this workflow to
generate comparison metrics and visualisations for real-time signals and 3D time
series, both in real-time and offline.

6.3.6 Accessible and extensible SPM12 batch processing
In an attempt to assist users in moving from click-through graphical user interfaces
to building reproducible SPM12-based analysis scripts, fMRwhy has several wrap-
per functions for SPM12 batch processes and other functionality. This includes
standard SPM12 preprocessing functions such as coregistration, segmentation,
slice timing correction, realignment, reslicing, smoothing, and normalisation, as
well as subject-level statistical analysis and thresholding. In conjunction with the
utilities, these wrappers allow the modular use of functions to build custom yet
reproducible processing pipelines, and to extend these pipelines with ease.
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6.3.7 Utilities for (pre)processing, visualisation and file I/O
A variety of utility functions are also available to assist with preprocessing, im-
age calculation, visualisation, and file input/output (I/O) tasks. These are all
documented as part of the API.

6.4 Installation, requirements, usage and support
Detailed information about fMRwhy’s features, installation process, usage instruc-
tions, and API is available via the documentation5.

fMRwhy can be installed from its GitHub repository6 and requires MATLAB
2016b or later to run. It has the following dependencies:

• SPM12 (r77717; Friston et al., 2007)

• Anatomy Toolbox (v3.0; Eickhoff et al., 2005)

• bids-matlab (v.0.0.18)

• dicm2nii (v0.2 from a forked repository9)

• TAPAS PhysIO (v3.2.010; Kasper et al., 2017)

• Raincloud plots (v1.111; Allen et al., 2019)

fMRwhy and all dependencies have to be available locally and added to the
MATLAB path.

Usage instructions for all of the core features are described in detail in the
project documentation, and a fully documented API is available for further un-
derstanding. Scripted examples are available for (amongst others) running QC
workflows, processing multi-echo data, and using utility and visualisation func-
tions.

Further support is provided via the project’s GitHub repository, where issues
can be logged when users experience problems with fMRwhy, want to report bugs
or feature requests, or want to start contributing to the toolbox.

6.5 Discussion
fMRwhy is a MATLAB- and SPM12-based toolbox with helper functions and BIDS-
compatible workflows to assist researchers with their reproducible fMRI analysis

5https://fmrwhy.readthedocs.io/
6https://github.com/jsheunis/fMRwhy
7https://github.com/spm/spm12/releases/tag/r7771
8https://github.com/jsheunis/bids-matlab/releases/tag/fv0.0.1
9https://github.com/jsheunis/dicm2nii/releases/tag/v0.2

10https://github.com/translationalneuromodeling/tapas/releases/tag/v3.2.
0

11https://github.com/RainCloudPlots/RainCloudPlots/releases/tag/v1.1
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journey. It makes aspects such as standardised data manipulation, interoperabil-
ity, workflow automation, and reproducible analysis pipelines more accessible to
researchers working on MATLAB-based neuroimaging projects. Novel features
of the tool include modularised functionality for the processing of real-time and
offline multi-echo fMRI data as well as full-length automated pipelines for quality
control and reporting. Additional strong features of fMRwhy that contribute to
its accessibility and reuse are its comprehensive and open code base12 and API
documentation13. Next steps for the fMRwhy toolbox should focus on uptake, ac-
cessibility and community contribution, without which its impact and usefulness
will be difficult to quantify. To further this cause, established software engineering
and project maintenance principles should be implemented, such as: comprehen-
sive and automated documentation, automated testing, continuous integration,
avenues for issue logging and resolution, open contribution guidelines, and open
communication platforms.

12https://github.com/jsheunis/fMRwhy
13https://fmrwhy.readthedocs.io/
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Part III: Real-time multi-echo fMRI
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rt-me-fMRI: A task and resting
state dataset for real-time, multi-
echo fMRI methods develop-
ment and validation

Abstract
A multi-echo fMRI dataset (N=28 healthy participants) with four task-based and
two resting state runs was collected, curated and made available to the commu-
nity. Its main purpose is to advance the development of methods for real-time
multi-echo functional magnetic resonance imaging (rt-me-fMRI) analysis with ap-
plications in neurofeedback, real-time quality control, and adaptive paradigms,
although the variety of experimental task paradigms supports a multitude of use
cases. Tasks include finger tapping, emotional face and shape matching, imag-
ined finger tapping and imagined emotion processing. This work provides a
detailed description of the full dataset; methods to collect, prepare, standardise
and preprocess it; quality control measures; and data validation measures. A
web-based application is provided as a supplementary tool with which to in-
teractively explore, visualise and understand the data and its derivative mea-
sures: https://rt-me-fmri.herokuapp.com/. The dataset itself can be ac-
cessed via a data use agreement on DataverseNL at https://dataverse.nl/
dataverse/rt-me-fmri. Supporting information and code for reproducibility
can be accessed at https://github.com/jsheunis/rt-me-fMRI.

This chapter is currently undergoing peer review and a preprint has been published
as: Heunis, S., Breeuwer, M., Gaudes, C.C., Hellrung, L., Huijbers, W., Jansen, J.F., Lamerichs,
R., Zinger, S., Aldenkamp, A.P., 2020. rt-me-fMRI: A task and resting state dataset for
real-time, multi-echo fMRI methods development and validation. bioRxiv 2020.12.07.414490.
https://doi.org/10.1101/2020.12.07.414490
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7.1 Background and summary
Real-time functional magnetic resonance imaging (fMRI) is a brain imaging method
where functional brain signals are acquired, processed, and used during an ongo-
ing scanning session. Applications include real-time data quality control (Dosen-
bach et al., 2017), adaptive experimental paradigms (Hellrung et al., 2015), and
neurofeedback (Sitaram et al., 2017). Neurofeedback is a cognitive training method
where the real-time feedback signal is presented back to the participant to allow
self-regulation of their blood oxygen level-dependent (BOLD) signal, prompting
researchers to investigate it as an intervention for patients with neurological or
psychiatric conditions. Work by Ros et al. (2020) and Haugg et al. (2020) show
an absence of standardisation in experimental design and outcome reporting re-
stricts the synthesis of evidence to determine the efficacy of fMRI neurofeedback.
Further, it remains a major challenge to delineate the sources of variance in the
brain and in neurofeedback signals and their eventual effects on neurofeedback
training outcomes. Similar challenges exist for separating BOLD and non-BOLD
variations and their influences on data quality, and subsequently on all real-time
fMRI applications.

In recent work (see Chapter 3; Heunis et al., 2020c) we investigated the avail-
able acquisition and processing methods for improving real-time fMRI signal
quality, and identified an absence of methodological denoising studies and a need
for community-driven quality control standards. Here, we aim to advance this
process by curating a multi-echo fMRI dataset (rt-me-fMRI). It builds on known
benefits of multi-echo fMRI for increasing BOLD sensitivity both in resting state
and task fMRI (Olafsson et al., 2015; Gonzalez-Castillo et al., 2016; Kundu et al.,
2017; Dipasquale et al., 2017; Moia et al., 2020). Potential benefits of multi-echo
fMRI in the real-time context have been reported before (Posse et al., 2000; Posse
et al., 2003a; Weiskopf et al., 2005; Marxen et al., 2016), but real-time multi-echo
processing methods remain underexplored. By releasing the rt-me-fMRI dataset,
we aim to facilitate a community effort to advance the development of methods
and standards in this domain.

The rt-me-fMRI dataset includes multi-echo resting state and task-based fMRI
data from 28 healthy participants. Figure 7.1 provides an overview, including
the task types: finger tapping, emotion processing, imagined finger tapping, and
imagined emotion. Several factors influenced the experimental and acquisition
protocols:

Multi-echo fMRI
To facilitate the development of real-time multi-echo methods, all functional ac-
quisitions have multiple echoes. The first resting state run allows calculation of
quantitative multi-echo parameters such as baseline T2* or S0 maps, which can in
turn be used for echo combination during subsequent runs.
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7.1. Background and summary

Figure 7.1 — A depiction of the rt-me-fMRI dataset collected for 28 healthy participants. Acquired
data include anatomical MRI, resting state and task-based multi-echo fMRI, task responses and
physiology data. The bottom row indicates the order and type of acquired MRI scans. Colour-coding
separates the anatomical scan from functional set 1 and from functional set 2. Functional set 1
includes resting state, fingerTapping and emotionProcessing acquisitions, while functional set 2
includes resting state, fingerTappingImagined, and emotionProcessingImagined acquisitions.

Task and resting state
The motor cortex, amygdala, and visual system were selected as representative
regions based on frequency of studies in fMRI and neurofeedback literature
(Thibault et al., 2018), and tasks were selected to elicit appropriate BOLD re-
sponses. The fingerTappingImagined and emotionProcessing tasks respectively allow
investigations into mental imagery and visual shape/face processing. Since these
structures are located at distinct anatomical regions that experience different levels
of noise (e.g. the amygdala suffers from more severe image dropout and physi-
ological noise; Boubela et al., 2015), this allows investigation of spatially distinct
effects of real-time denoising. Resting state scans allow comparison of the effects
of processing steps in the absence and presence of a task.

Template data
In real-time fMRI applications, anatomical and functional scans are typically ac-
quired before the main session to generate registration, segmentation, and locali-
sation templates. This assists real-time realignment and extraction of region-based
signals, and minimises per-volume processing time.
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No neurofeedback
To keep the setup applicable to a range of real-time scenarios without introducing
additional confounds, no neurofeedback was provided. Instead, to approximate
similar mental states, the second functional set of scans were structured as imag-
ined versions of the first functional set. This is a common approach in neurofeed-
back training: amygdala neurofeedback participants have been asked to think
about an emotional event in their past (e.g.Young et al., 2014; Misaki et al., 2018),
while motor cortex neurofeedback participants have been asked to think about
performing physical exercises (e.g. Subramanian et al., 2011).

Physiology data
To facilitate the development and exploration of real-time physiological denoising
methods and their relation to multi-echo-derived data, cardiac and respiratory
signals were acquired.

The rt-me-fMRI is available in BIDS format via the DataverseNL repository1,
while a browser-based environment2 allows interactive exploration of the data
quality and derivatives.

7.2 Methods
7.2.1 Ethics and data privacy
The data described here was collected as part of a study for which ethics approval
was granted by two ethics review boards. To confirm that the study protocol is
in accordance with the Dutch national law on medical-scientific research con-
ducted on human participants (see WMO3), the medical ethical review board at
the Máxima Medisch Centrum (Veldhoven, NL) granted ethics approval. Sec-
ondly, the local ethics review board at Kempenhaeghe Epilepsy Center (Heeze,
NL; where the data was collected) approved the study protocol.

All participants provided informed and written consent to participate in the
study and for their maximally de-identified data (also referred to as limited data)
to be shared publicly under specific conditions (see GDPR considerations in the
following paragraph). Participants were provided with an electronic version of
a ”Participant Information Letter” which contained, in addition to standard in-
formation about the study protocol, clear information about their personal data
privacy and the risks and benefits involved in sharing maximally de-identified
versions of their data. They were asked to read it thoroughly and to discuss it with
friends and family if they wished to do so. They were granted an opportunity to
discuss any questions or concerns about their voluntary participation in the study
with the lead researcher, both via email and in person. If they decided to continue

1https://dataverse.nl/dataverse/rt-me-fmri
2https://rt-me-fmri.herokuapp.com/
3https://wetten.overheid.nl/BWBR0009408/2020-01-01
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with participation, participants signed the consent form and were provided with
an electronic copy.

The dataset was collected, processed and shared in accordance with the Euro-
pean Union’s General Data Protection Regulation (GDPR) as approved by Data
Protection Officers (DPOs) at Kempenhaeghe Epilepsy Center (Heeze, NL) and
the Eindhoven University of Technology. Of particular note is the procedure that
was followed to enable sharing of the dataset under specific conditions that allow
personal data privacy to be prioritised while adhering to FAIR data standards
(”findable, accessible, interoperable, reusable”; see Wilkinson et al., 2016), with
this being the first documented implementation. It followed from the collaborative
effort of the Open Brain Consent Working Group (Bannier et al., 2017), a group
of researchers, data experts, and legal practitioners that aim to provide globally
standardised templates for informed consent and data privacy statements that
allow for brain research data to be shared while prioritising personal data privacy.
Steps to accomplish this include following best practices to de-identify brain im-
ages (e.g. removing personally identifiable information from image filenames and
metadata and removing facial features from T1-weighted images), converting the
data to BIDS format, employing a Data Use Agreement, and keeping participants
fully informed about each of these steps and the associated risks and benefits. The
Data Use Agreement can be accessed in this manuscript’s GitHub repository4.

7.2.2 Participants
The rt-me-fMRI dataset consists of MRI and physiology data from 28 healthy, right-
handed (self-report) adults recruited from the local student population: 20 male, 8
female; age = 24.9 ± 4.7 (mean ± standard deviation). During recruiting, possible
participants were excluded if they reported prior or current (at the time of the
study) indications of neurological or psychiatric conditions, or any other stan-
dard contraindications for MRI scanning. 31 participants were initially recruited
for the dataset, but three were excluded because of technical and administrative
challenges. All anatomical scans were inspected by a trained radiologist and no
incidental findings were reported.

7.2.3 Experimental protocol
A. Preparation and instructions
A single experimenter interacted with all participants. Data for each participant
was collected during a single scanning session of approximately 1 hour, preceded
by a 30 min onboarding procedure and followed by a 15 min offboarding proce-
dure. Onboarding included a tour of the scanner and related equipment, detailed
instructions for the participant to follow during each scan, and time for additional
questions.

To minimise participant motion during scans so as to improve spatial and
temporal image quality, participants were asked to remain as still as possible

4https://github.com/jsheunis/rt-me-fMRI
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inside the scanner. Additionally, a length of tape was fixed across the participants’
foreheads to the stationary part of the head coil. This provided tactile feedback
which has been demonstrated as a simple and effective way to reduce head motion
during fMRI scanning (Krause et al., 2019).

Lights in the scanner room were dimmed during the experiment. Participants
viewed instructions projected on a screen at the back of the scanner bore via a
head coil-mounted mirror. For resting state functional scans, participants were
instructed to keep their eyes open and fixate on the cross on the screen.

B. Experimental design
All functional scans have 210 volumes and exactly the same sequence parameters.
All task scans follow a block design with 10 volumes (i.e. 20 s) per block, and with
blocks alternating between control and task conditions. All task designs start and
end with a control condition. These block design aspects are depicted in Figure 7.2
for all task runs. Take note that the depictions do not necessarily agree with the
exact stimuli as seen by the participants, as the depictions are purely illustrative.

For the fingerTapping task, participants were instructed to execute finger tap-
ping with their right hand by steadily tapping the tip of the thumb to the tip
of each other finger in succession, reversing the tapping order until the end of
the task block is reached. For the fingerTappingImagined task, participants were
instructed to imagine doing exactly the same as in the actual finger tapping task,
but without actually moving their right fingers. For the control condition during
the fingerTappingImagined task, participants were asked to count backwards in
multitudes of 7.

The emotionProcessing task was an adapted ”Hariri” task from the emotion
processing task used in the Human Connectome Project (Van Essen et al., 2012;
Hariri et al., 2002; Manuck et al., 2007). Materials were implemented to suit the
paradigm for this rt-me-fMRI dataset. During each 20 s task block, participants
were presented with a task cue (3 s duration), followed by a trial with three pictures
of faces where the participant had to select one of the bottom figures (left or right)
that resembled the top one, by pressing a left or right button (2 s duration). The
inter-trial interval was 1 s duration (see Figure 7.3). Each 20 s block had 6 trials.
The same design timing was used for the control condition blocks, i.e. matching
shapes, as for the trial condition blocks depicted in Figure 7.3. Participants used an
MRI-compatible button box with their right hand to complete the task. Participants
were asked to press the left button with their right index finger if selecting the
bottom left image (shape or face) on the screen, and to conversely press the right
button with their right middle finger if selecting the bottom right image.

For the emotionProcessingImagined task, participants were instructed prior to
the scanning session to identify an emotional event in their past that involved a
person or people, and to think about this event and also try to mentally experience
the identified emotion during the task blocks. For the control condition during this
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7.2. Methods

Figure 7.2 — Depictions of the experimental designs for all tasks. Subfigures include: (A) fin-
gerTapping - right hand finger tapping, (B) emotionProcessing - matching shapes and faces, (C)
fingerTappingImagined - imagined finger tapping, and (D) emotionProcessingImagined - emotional
memory recollection. All designs follow a block paradigm with 10 volumes (i.e. 20 s) per block, and
with blocks alternating between control and task conditions. All task designs start and end with a
control condition. Color code: functional set 1 = Green; functional set 2 = Red. FT = finger tapping.
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Figure 7.3 — The task timing for the emotionProcessing task. Times are provided for the cue, trials
and inter-trial interval during a single block (20 s) of the face matching condition. The same design
timing was used for the control condition blocks.

mental emotion task, participants were asked to count backwards in multitudes
of 9.

Participants were interviewed after the scanning session about their experi-
ences during the MRI acquisition and the tasks. None reported detrimental issues
with regards to their ability to focus on the task or with task-switching.

Tasks and instructions were programmed and presented to the participants
using E-Prime Studio version 2.0.10.248. The programmed E-prime files used for
each task (”.es2” format), as well as all presented images for trials, conditions,
cues and instructions (.jpg format), can be accessed in the supplementary code
repository5. The exact timing information for the presented material (for all func-
tional runs) and the button presses (for emotionProcessing), as well as the actual
button press responses, were exported from E-prime (in .dat and .txt format) at
the end of each session6.

7.2.4 MRI acquisition parameters
MRI data was acquired on a 3 Tesla Philips Achieva scanner (software version
5.1.7) and using a Philips 32-channel head coil.

A. Anatomical MRI
A single T1-weighted anatomical image was acquired using a 3D gradient echo
sequence (T1 TFE) with scanning parameters: TR = 8.2 ms; TE = 3.75 ms; flip angle

5https://github.com/jsheunis/rt-me-fMRI
6For the majority of participants, the presentation timing for the emotionProcessing task was delayed

by tens of milliseconds for each trial (planned versus actual timing). This resulted in the full task
presentation running on for about 5 s after the scan acquisition stopped. This is not deemed a problem,
mainly since the exact presentation time was captured and is available in the BIDS dataset. However,
users should take note not to use the planned timing parameters as that would ignore the delay that
occurred.
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= 8°; field of view = 240×240×180 mm3; resolution = 1×1×1 mm3; total scan time
= 6:02 min.

B. Functional MRI
All six functional MRI scans were acquired using a multi-echo, echo-planar imag-
ing sequence with scanning parameters: TR = 2000 ms; TE = 14, 28, 42 ms (3
echoes); number of volumes = 210 (excluding 5 dummy volumes discarded by
the scanner); total scan time = 7:00 min (excluding 5 dummy volumes); flip angle
= 90°; field of view = 224×224×119 mm3; resolution = 3.5×3.5×3.5 mm3; in-plane
matrix size = 64×64; number of slices = 34; slice thickness = 3.5 mm; interslice gap
= 0 mm; slice orientation = oblique; slice order/direction = sequential/ascend-
ing; phase-encoding direction = A/P; SENSE acceleration factor = 2.5; parts of
the cerebellum and brainstem were excluded for some participants to ensure full
motor cortex and amygdala coverage.

The echo times, spatial resolution, and SENSE factor were tuned with the aim
of improving spatial resolution and coverage while limiting the TR at maximum
2000 ms, including a maximum number of echoes, and keeping the SENSE factor
low to prevent SENSE artefacts.

7.2.5 Physiology data acquisition parameters
Breathing fluctuations were recorded with the use of a pressure-based breathing
belt strapped around the participant’s upper abdomen. Heart rate was recorded
using a pulse oximeter fixed to the participant’s left index finger. Both of these
recording devices were wired directly to the scanner, sampled at 500 Hz, synchro-
nised internally to the start/stop pulses of each functional scan, and data were
written to Philips’s standard ”scanphyslog” log file type.

7.2.6 Standardisation: Brain Imaging Data Structure
To adhere to FAIR data principles, the full dataset was curated into the stan-
dardised and community-maintained Brain Imaging Data Structure (BIDS; Gor-
golewski et al., 2016). This involved the use of several software packages and
custom scripts to assist in file format conversion and data structuring. A Jupyter
notebook containing Python code and descriptions for each of the steps in this
section can be accessed at the project’s code repository7.

A. MRI data
Anatomical and functional MRI data were converted from the Philips PAR/REC
format to BIDS using the Python package bidsify (v0.38) This package has dcm2niix
(v1.0.201904109) as a dependency to convert the PAR/REC files to NIfTI. It also
structures the data into the directory system specified by the BIDS standard.

7https://github.com/jsheunis/rt-me-fMRI
8https://github.com/NILAB-UvA/bidsify
9https://github.com/rordenlab/dcm2niix/releases/tag/v1.0.20190410
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Anatomical files were additionally de-identified using pydeface (v2.0.010; Omer
Faruk Gulban et al., 2019), which removes facial features from the T1w NIfTI im-
age. Further anonymisation steps included removing time and date stamps and
any identifiable information related to the acquisition location or system from the
files output from bidsify.

Since PAR/REC files do not contain slice timing information, the converted
NIfTI files did not contain it either. Slice timing information was calculated using
available parameters and added with a script to the BIDS-specific JSON sidecar
files.

B. Physiology data
Heart rate and breathing traces were converted from the Philips ”scanphyslog”
format to BIDS format using the Python package scanphyslog2bids (v0.111).

C. Task presentation and response data
Presentation timing, button presses and button press response timing information
were all converted to the BIDS format using a combination of custom Python
scripts and the convert-eprime package (v0.0.112; Salo, 2020).

7.2.7 Preprocessing
Raw data was preprocessed using the open source MATLAB-based and Octave-
compatible fMRwhy toolbox (see Section 7.4 for details). The basic anatomical and
functional preprocessing pipeline applied to all data is depicted in Figure 7.4.

As a first step, the T1-weighted anatomical image was coregistered to the
template functional image (task-rest run-1 echo-2, volume 1) using SPM12’s coreg-
ister/estimate functionality, which maximises normalised mutual information to
generate a 12 degree-of-freedom transformation matrix. Before resampling to the
functional resolution, this coregistered T1-weighted image was segmented using
tissue probability maps and SPM12’s unified segmentation algorithm (Ashburner
and Friston, 2005). This yielded subject-specific probability maps for gray matter,
white matter, CSF, soft tissue, bone and air in the subject functional space. All of
these probability maps were then resampled (using coregister/write) to the subject
functional resolution. Masks were generated for gray matter, white matter, CSF,
and the whole brain (a combination - logical OR after thresholding - of the pre-
vious three masks). These were overlaid on the coregistered and resampled T1w
image, to allow visual inspection of segmentation and registration quality.

Anatomical regions of interest were then taken from the cytoarchitecture-based
atlases in the SPM Anatomy Toolbox (Eickhoff et al., 2005). For the motor cortex,
regions 4a and 4p were used. For the amygdala, regions LB, IF, SF, MF, VTM, and

10https://github.com/poldracklab/pydeface/releases/tag/2.0.0
11https://github.com/lukassnoek/scanphyslog2bids
12https://github.com/tsalo/convert-eprime/releases/tag/0.0.1
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7.2. Methods

Figure 7.4 — A diagram depicting the preprocessing steps conducted on the rt-me-fMRI dataset
in chronological order. Steps include: (1) defining a functional template image from the first resting
state run; (2) mapping the anatomical image and atlas-based regions of interest to the functional
template space; (3) estimating realignment parameters from the template echo time series, running
slice timing correction, applying realignment parameters to all echo time series, and applying
spatial smoothing, and (4) generating quality control metrics and visualisations for anatomical and
functional data.

CM were used. For the fusiform gyrus, regions FG1, FG2, FG3, and FG4 were used.
Regions of interest were transformed from MNI152 space to the subject functional
space using SPM12 normalise/write, as well as the inverse transformation field
that was saved as part of the segmentation procedure. The regions of interest
for this study include the left motor cortex (for the motor processing tasks), the
bilateral amygdala (for the emotion processing tasks) and the fusiform gyrus
(for the emotionProcessing task). These ROIs are overlaid on the coregistered and
resampled T1-weighted image, to allow visual inspection of normalisation quality.

Functional data were preprocessed, starting with estimating realignment pa-
rameters for each functional time series using SPM12’s realign/estimate, which
performs a 6 degree-of-freedom rigid body transformation that minimises the
sum of squared differences between each volume and the template volume. Re-
alignment parameters were estimated for the second-echo time series of each run.
Then, slice timing correction was done with SPM12, which corrects for differences
in image acquisition time between slices. Each echo time series of all functional
runs were slice time corrected. 3D volume realignment followed, which applied
spatial transformation matrices derived from the previously estimated realign-
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ment parameters to all echo time series of all functional runs. Both raw time series
and slice time corrected time series were realigned. Lastly, all echo time series of
all functional runs were spatially smoothed using a Gaussian kernel filter with
FWHM = 7 mm (i.e. double the voxel size). Smoothing was performed on raw,
slice time corrected and realigned time series data.

Next, several signal time series were calculated or extracted for use as possi-
ble GLM regressors in functional task analysis, or for quality control. From the
realignment parameters (3 translation and 3 rotation parameters per volume), a
Volterra expansion yielded derivatives, squares and squares of derivatives (Friston
et al., 1996). Framewise displacement (FD; Power et al., 2012) was also calculated
from the realignment parameters, and volumes were marked as outliers based
on different thresholds of, respectively, 0.2 mm and 0.5 mm. RETROICOR regres-
sors (Glover, Li, and Ress, 2000) were generated from the cardiac and respiratory
signals using the TAPAS PhysIO toolbox, which yielded 6 cardiac regressors, 8
respiratory regressors, 4 interaction regressors, and additionally a cardiac rate
regressor (CR; the cardiac rate time series convolved with the cardiac response
function; Chang, Cunningham, and Glover, 2009) and a respiratory volume per
time regressor (RVT; respiratory volume per time convolved with the respiratory
response function; Birn et al., 2006; Birn et al., 2008). From the slice time corrected
and realigned time series data (of all functional runs), signals were extracted per
voxel and spatially averaged within the previously generated tissue masks to
yield tissue compartment signals for gray matter, white matter, cerebrospinal fluid
(CSF) and the whole brain.

The last set of preprocessing steps included calculation of image quality met-
rics and visualisations, using the BIDS-compatible fmrwhy workflow qc pipeline
from the fMRwhy toolbox. Operations on functional time series data were all done
on detrended (linear and quadratic trends) realigned data, except where other-
wise specified. Temporal signal-to-noise ratio (tSNR) maps were calculated for
all runs by dividing the voxel-wise time series mean by the voxel-wise standard
deviation of the time series. Tissue compartment averages were then extracted
from these tSNR maps. Percentage difference maps (from the time series mean)
were calculated per volume for use in carpet plots (or gray plots).

7.3 Dataset validation
7.3.1 BIDS validation
The full dataset was validated for BIDS compatibility with the use of the web-
based ”BIDS validator” tool (v1.5.413). A log of the BIDS validator output can be
found in the project’s code repository14.

13https://bids-standard.github.io/bids-validator/
14https://github.com/jsheunis/rt-me-fMRI
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7.3.2 COBIDAS reporting
Data acquisition and experimental protocol parameters for this study were re-
ported according to the community-formulated COBIDAS guidelines (Nichols
et al., 2017). A modular version of this information is available in the project’s
GitHub repository.

7.3.3 Data quality assessment
Image and data quality of this dataset was assessed using the fMRwhy toolbox.
This allowed quality to be assessed for raw and minimally (pre)processed ver-
sions of the data, and also for interim steps on which the validity of eventual study
outcomes might depend. A BIDS-compatible workflow in the fMRwhy toolbox,
fmrwhy workflow qc, runs initial preprocessing and quality control of the raw data
and outputs a quality report per subject, which includes metrics and visualisations
for anatomical and functional MRI data and for peripheral data.

For anatomical MRI:
- Coregistered T1w segmentations (gray matter, white matter, CSF, and a whole

brain mask) were overlaid onto the subject functional space, for visual inspection
of the registration and segmentation quality.

- Coregistered anatomical regions of interest (in this case the left motor cortex,
bilateral amygdalae and bilateral fusiform gyri) were overlaid onto the subject
functional space, for visual inspection.

For functional MRI (all runs):
- A summary table provides values for all runs per subject for mean framewise

displacement (FD), total FD, FD outliers, and mean tSNR in all tissue compart-
ments. This allows quick inspection per participant, but is better understood when
referenced to the whole dataset.

- Several image montages were generated per run, including the time series
mean, the standard deviation and the tSNR map. The time series mean gives
a quick view of the general quality of the time series and can indicate spike or
interference artefacts. The standard deviation map shows areas with high signal
fluctuation that can often be related to movement (e.g. close to the eyes). The tSNR
maps are useful for investigating general signal quality, to indicate signal dropout
and comparing signal quality across regions.

- A carpet (time series) plot was generated per run, which displays voxel
intensity in percentage signal change from the mean over time. The vertical axis
(voxels) is either grouped per tissue type (compartment ordered) or ordered from
top to bottom according to the voxel’s time series correlation strength to the
global signal. Signal traces above the carpet plot are also shown, including tissue
compartment signals, respiration, heart rate, and framewise displacement. These
plots are useful quality checking tools as they make it easy to visualise wide scale
signal fluctuations across voxels, which can then be related visually to changes in
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physiological signals or subject movement.
- Checking the quality of the recorded cardiac and respiratory traces is made

possible with images generated by TAPAS PhysIO during the process of calculat-
ing RETROICOR, CR and RVT regressors. Images include a plot of the temporal
lag between derived heart beats within thresholds for outliers, and a plot showing
the breathing belt amplitude distribution that can be inspected for unexpected
shapes.

All functional quality metrics of the full dataset, generated by the fmrwhy work-
flow qc workflow, are summarised in Table C.1 15 in Appendix C. This includes,
per run, mean framewise displacement, total framewise displacement, framewise
displacement outliers (based on a conservative 0.2 mm threshold, and a liberal 0.5
mm threshold), z-score, and mean tSNR in all tissue compartments (grey matter,
white matter, cerebrospinal fluid, whole brain). This allows possible data users
to inspect the quality measures and to set personalised thresholds and exclusion
criteria.

Figure 7.5 displays summarised quality metrics for the rt-me-fMRI dataset,
and examples of single-subject quality images. Individual quality reports can be
downloaded together with the dataset.

7.3.4 Task validation
The slice timing corrected, 3D realigned and spatially smoothed Echo 2 time series
of all task runs underwent individual- and group-level statistical analysis using a
general linear model with SPM12. Task regressors included the main ”ON” blocks
for the fingerTapping, fingerTappingImagined, and emotionProcessingImagined tasks,
and both the separate ”SHAPES” and ”FACES” trials for the emotionProcessing task.
Regressors not-of-interest for all runs included six realignment parameter time
series and their derivatives, the CSF compartment time series, and RETROICOR
regressors (both cardiac and respiratory to the 2nd order, excluding interaction
regressors, selected based on common implementation procedures in literature).
Additional steps executed by SPM12 before beta parameter estimation include
high-pass filtering using a cosine basis set and AR(1) autoregressive filtering of
the data and GLM design matrix.

Contrasts were then applied to the single task-related beta maps for the fin-
gerTapping, fingerTappingImagined, and emotionProcessingImagined tasks, and to
the FACES, SHAPES, and FACES¿SHAPES beta maps for the emotionProcessing
task. Statistical thresholding, consisting of familywise error rate control with p
<0.05 and a voxel extent threshold of 0, was then applied on a per-subject basis
to identify task-related clusters of activity. Unthresholded subject-level contrast
maps were normalised to MNI152 space and then fed into a group-level one-sided

15Online version: https://github.com/jsheunis/rt-me-fMRI/blob/master/data/
sub-all_task-all_desc-allQCmetrics.tsv

112

https://github.com/jsheunis/rt-me-fMRI/blob/master/data/sub-all_task-all_desc-allQCmetrics.tsv
https://github.com/jsheunis/rt-me-fMRI/blob/master/data/sub-all_task-all_desc-allQCmetrics.tsv


C
ha

pt
er

7

7.3. Dataset validation

Figure 7.5 — Representative quality checking information for the rt-mf-fMRI dataset. Sub-figures
include group level summary plots (A and B) and examples of subject level quality metric figures (C
and D): (A) Vertical distribution (violin) plots of framewise displacement per subject, covering all
functional runs. sub-010, sub-020 and sub-021 show comparatively high means and more outliers.
(B) Vertical distribution (violin) plots of mean grey matter temporal signal-to-noise ratio (tSNR)
per functional run, covering all subjects. Head movement results in higher signal fluctuations and
hence lower tSNR, which is exemplified in the circled high mover data points: sub-021 (blue) and
sub-010 (green); (C) An axial slice montage of temporal signal signal-to-noise ratio. (D) A time
series ”carpet plot” showing the global, white matter, CSF, respiration, and cardiac signals, as well
as the calculated framewise displacement time series; (B) an axial slice montage of temporal signal
signal-to-noise ratio.

113



C
hapter7

7 . R T - M E - F M R I : A D ATA S E T F O R R E A L - T I M E , M U LT I - E C H O F M R I

Table 7.1 — Neurosynth-decoded terms

Task 10 highest correlated decoded terms
fingerTapping motor, premotor, finger, premotor cortex,

movements, movement, hand, supplemen-
tary, execution, finger movements

emotionProcessing face, fusiform, faces, fusiform face,
fusiform gyrus, face ffa, ffa, occipital,
inferior occipital, visual

fingerTappingImagined theory mind, medial prefrontal, social,
mind, mind tom, mental states, tom, pri-
mary, primary motor, junction

emotionProcessingImagined medial, medial prefrontal, autobiographi-
cal, social, default, posterior cingulate, the-
ory mind, mind, default mode, autobio-
graphical memory

t-test, for which the t-statistic maps were subsequently thresholded at p <0.001
and an extent threshold of 20 voxels. Unthresholded individual- and group-level
t-statistic maps can be accessed as a NeuroVault collection16.

Figure 7.6 shows the resulting thresholded group t-statistic maps for all four
task runs. Figure 7.6A clearly shows activity clusters in the left motor cortex
and right cerebellum, as expected for a finger tapping task as well as a negative
activation pattern in the default mode network. Figure 7.6C shows activation in
the visual cortex commensurate with a face/shape matching task, specifically in
the left and right fusiform gyri. Additional clusters are found in the amygdalae
and hippocampi, as expected for an emotion processing task. For both imagined
tasks, similar but weaker activation clusters are found in the expected regions
(respectively the motor cortex in Figure 7.6B, and amygdalae in Figure 7.6D) but
both wide scale activation patterns are consistent with mental tasks including
imagery and memory recollection. Additionally, Figure 7.6B and Figure 7.6D
show negative activation patterns in the dorsal attention network. The activation
results in Figure 7.6 are further evidenced by the resulting highest correlated terms
when decoding the unthresholded group t-statistic images with the web-based
Neurosynth tool17 (Yarkoni et al., 2011). Table 7.1 shows the resulting terms18.

16https://neurovault.org/collections/XWDGUJHD/
17www.neurosynth.org
18Task names of the rt-me-fMRI dataset were selected based on the desired activation response for

the given use cases, e.g. emotionProcessing to elicit a response in regions involving emotion processing,
with the knowledge that the tasks might yield varied responses and have varied use cases. This can
lead to the activation analysis and Neurosynth decoding process yielding patterns and terms that do
not necessarily reflect the task name, e.g. activation of the fusiform face area and related terms (”face”,
”fusiform”, ”occipital”) for the emotionProcessing task.
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Figure 7.6 — Group-level t-statistic maps for all tasks of the rt-me-fMRI dataset. Subfigures
include: (A) fingerTapping, (B) fingerTappingImagined, (C) emotionProcessing, and (D) emotion-
ProcessingImagined (p<0.001, voxel extent=20). Images were generated with bspmview. Figure
7.6A clearly shows activity clusters in the left motor cortex and right cerebellum, as expected for
a finger tapping task. Figure 7.6C shows activation in the visual cortex commensurate with a
face/shape matching task, specifically in the left and right fusiform gyri. For both imagined tasks,
similar but weaker activation clusters are found in the expected regions (respectively the motor
cortex in Figure 7.6B, and amygdalae in Figure 7.6D) but both wide scale activation patterns are
consistent with mental tasks including imagery and memory recollection.
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Figure 7.7 — Axial slice montages of temporal signal-to-noise ratios (tSNR) in single and
multi-echo combined time series. Time series include: the 2nd echo time series (top row) and two
combined time series (middle row = T2*-combined; bottom row = tSNR-combined). Blue and
magenta arrows indicate areas of signal dropout and recovery (including, respectively, the medial
temporal and inferior temporal lobes, and the inferior frontal lobe). Light green arrows indicate areas
with substantial increases in tSNR (in the lateral cortex and towards the anterior cortex as the slices
increase in a superior direction). Combined multi-echo time series result in both substantially higher
tSNR and signal recovery compared to Echo 2.

7.3.5 Multi-echo data validation
A core contribution of this rt-me-fMRI dataset lies in the multi-echo acquisition.
Multi-echo fMRI samples multiple T2*-weighted images at a range of echo times
along the decay curve following a single transverse magnetic excitation, which
theoretically allows the optimum BOLD contrast to be optimised for a range of
baseline tissue T2* values. Subsequently, echo combination through weighted
summation or averaging is a typical processing step that generally increases tem-
poral signal-to-noise ratio and contrast-to-noise ratio and decreases signal drop-
out in regions with high susceptibility artefacts and signal dropouts (Menon et al.,
1993; Posse et al., 1999; Posse et al., 2012). Echoes can be combined using a variety
of weights, including baseline voxelwise tSNR and T2* maps.

Figure 7.7 and Figure 7.8 illustrate that such combination procedures improve
tSNR and signal dropout, hence validating the use of multi-echo fMRI for im-
proved quality data. Representative signal recovery is demonstrated in the tSNR
maps of Figure 7.7 for a single run of a single subject, particularly by the blue
and magenta arrows showing areas of signal dropout in the Echo 2 time series
(including, respectively, the medial temporal and inferior temporal lobes, and the
orbitofrontal lobe) and subsequent recovery in the combined time series. The light
green arrows indicate substantial increases in tSNR in areas close to the bilateral
temporal-occipital junction and towards the occipital lobe as the slices increase
in a superior direction. Figure 7.8 shows distribution plots of the mean grey mat-
ter tSNR for the single (2nd) echo and two combined echo (tSNR-combined and
T2*-combined) time series, covering all functional runs and all subjects. The two
combined echo time series clearly have improved tSNR values, increasing by 30%
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Figure 7.8 — Vertical distribution (violin) plots of mean grey matter temporal signal-to-noise
ratios (tSNR) in single and multi-echo combined time series. Distributions are shown for three time
series: Echo 2, tSNR-combined and T2*-combined. A single distribution plot covers all subjects
and all runs excluding rest run-1. The two combined echo time series show clear increases in mean
tSNR values.

from 85 (2nd echo) to 112 (tSNR-combined).
Further benefits of multi-echo over conventional single-echo fMRI exist (see

for example Olafsson et al., 2015; Dipasquale et al., 2017; Lombardo et al., 2016;
Gonzalez-Castillo et al., 2016; Moia et al., 2020; Caballero-Gaudes et al., 2019), but
such analyses are beyond the scope of this validation step and can be explored
further with this publicly available dataset. In complementary work using this
dataset we evaluate the use of several combination and T2*-mapping procedures
for both offline and real-time BOLD sensitivity (see Chapter 8; Heunis et al., 2020a).

7.3.6 Data inclusion/exclusion
To be a possible participant in this study, individuals had to be healthy, right-
handed volunteers with no prior or current (at the time of the study) indications
of neurological or psychiatric conditions. They also had to report the absence of
any other standard contraindications for MRI scanning. 32 participants were ini-
tially recruited for the study, and the datasets of three participants were excluded
due technical and one due to administrative challenges. No further datasets were
excluded, even in cases of more than average or severe motion (e.g. sub-010 and
sub-021), since it was decided that such data could still be useful for future meth-
ods development or related insights. Table C.1 (also available in the project’s
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GitHub repository19) provides a list of all functional quality metrics for all partici-
pants and runs, which allows possible data users to inspect the quality measures
and to set personalised thresholds and exclusion criteria.

7.4 Data and Software Availability
7.4.1 Data
The rt-me-fMRI dataset is available in BIDS format via the Dutch research data
repository DataverseNL20. This repository includes the raw BIDS data, descriptive
metadata, and derivative data including quality reports.

Apart from the dataset README file, all core files are available in one of
3 formats: NIfTI, TSV and JSON. Functional and anatomical data are stored as
uncompressed NIfTI files (with the ”.nii” extension), which contain image and
header data and can be handled/viewed by all major neuroimaging analysis
packages and programming languages. Tabular data such as participants, task
events, response timing and physiology data are stored in tab-separated value text
files (with the extension ”.tsv”, or if compressed ”.tsv.gz”) and can be handled by
text or spreadsheet reading/editing software on all major operating systems, or
alternatively by all major software programming languages. Metadata about the
dataset, tasks, events and more are stored as key-value pairs in text-based JSON
files (with the extension ”.json”) that can be handled/viewed using all major
software programming languages.

All data files are organised according to the BIDS convention for dataset par-
ticipants, MRI data type (anatomical or functional), and derivatives, as depicted
in Figure 7.9.

Each participant directory contains two subdirectories: ”anat” and ”func”,
respectively containing all anatomical and functional images and metadata. Dif-
ferent data types can be distinguished based on BIDS identifiers, e.g. ” bold” for
functional and ” T1w” for anatomical MRI data. The full list of data acquisitions
with their data types, descriptions, and formats are provided in Table 7.2. Note
that for functional data, each resting state and task run consists of three separate
image files, one per echo (i.e. ” echo-1 bold.nii”, ” echo-2 bold.nii”, and ” echo-
3 bold.nii”). JSON sidecar files accompany all BOLD and physiology data files on
the participant level, while the accompanying JSON sidecar files for the four types
of task event files are on the dataset level. Other files on the dataset level include
the README, the dataset description (JSON) and the participant list (TSV).

19https://github.com/jsheunis/rt-me-fMRI
20https://dataverse.nl/dataverse/rt-me-fmri
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Figure 7.9 — A diagram showing the content of the rt-me-fMRI dataset. The top level direc-
tory includes metadata about the dataset, participants and task events, as well as a directory per
participant and lastly a derivatives directory. The expansion of ”sub-001” (top right) shows sub-
directories ”anat” and ”func”, each with neuroimages and metadata related to anatomical and
functional scans, respectively. The expansion of the ”derivatives” directory (bottom right) shows
subdirectories ”fmrwhy-dash” and ”fmrwhy-qc”. The former contains all derivative data required
to run the interactive browser-based application accompanying this dataset. The latter includes a
quality report per participant in HTML format.
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Table 7.2 — rt-me-fMRI core dataset acquisitions, types, descriptions and formats.

Acquisition BIDS
identifier
(exten-
sion)

Data Type Description Acquired
Data For-
mat(s)

BIDS
For-
mat

T1-weighted T1w
(.nii)

Anatomical
MRI

Standard high-
resolution

NIfTI NIfTI

Resting data:
task-rest run-1 bold

(.nii)
Functional
MRI

Resting state PAR/REC,
DICOM

NIfTI

Task data:
fingerTapping bold

(.nii)
Functional
MRI

Right-hand fin-
ger tapping

PAR/REC,
DICOM

NIfTI

Task data:
emotionProcessing bold

(.nii)
Functional
MRI

Matching shape
and faces

PAR/REC,
DICOM

NIfTI

Resting data:
rest run-2 bold

(.nii)
Functional
MRI

Resting state PAR/REC,
DICOM

NIfTI

Task data:
fingerTapping-
Imagined

bold
(.nii)

Functional
MRI

Mental motor
task - imagined
finger tapping

PAR/REC,
DICOM

NIfTI

Task data:
emotionProcessing-
Imagined

bold
(.nii)

Functional
MRI

Mental emotion
task - emo-
tional memory
recollection

PAR/REC,
DICOM

NIfTI

Task responses and
timing

events
(.tsv.gz)

Peripheral
measure

Stimulus and
response timing
for all tasks, i.e.
x4

Eprime ’dat’
and ’txt’
files

TSV

Physiology data physio
(.tsv.gz)

Peripheral
measure

Cardiac and res-
piratory traces
for all runs, i.e.
x6

Philips
scanphys-
log.log

TSV

n/a n/a Metadata JSON sidecar
files for all files
of type bold
and physio

Philips
scanphys-
log.log

JSON

7.4.2 Software
An interactive environment21 was created alongside this study to allow users
to interactively explore summaries of the data derivatives and quality control
aspects.

All software scripts and self-developed tools used to prepare, preprocess and
quality check the data are openly available at the project’s code repository 22. This
includes instructions to download, extract, and understand the data; the data
preparation script; the preprocessing script; the quality reporting script; and the
script to reproduce the figures for this manuscript.

21https://rt-me-fmri.herokuapp.com/
22https://github.com/jsheunis/rt-me-fMRI
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Dependent software and toolboxes/packages used for these preparation, pre-
processing and quality reporting steps include:

• Python 3.7+

• bidsify (v0.323)

• scanphyslog2bids (v0.124).

• dcm2niix (v1.0.2019041025)

• pydeface (v2.0.026; Omer Faruk Gulban et al., 2019)

• convert-eprime (v0.0.127; Salo, 2020)

• MATLAB R2016b or later (9.1.0.441655; The MathWorks Inc)

• fMRwhy (v.0.0.128)

• SPM12 (r777129; Friston et al., 2007)

• Anatomy Toolbox (v3.0; Eickhoff et al., 2005)

• bids-matlab (v.0.0.130)

• dicm2nii (v0.2 from a forked repository31)

• TAPAS PhysIO (v3.2.032; Kasper et al., 2017)

• Raincloud plots (v1.133; Allen et al., 2019)

• bspmview (v2018091834; Spunt, 2016)

23https://github.com/NILAB-UvA/bidsify
24https://github.com/lukassnoek/scanphyslog2bids
25https://github.com/rordenlab/dcm2niix/releases/tag/v1.0.20190410
26https://github.com/poldracklab/pydeface/releases/tag/2.0.0
27https://github.com/tsalo/convert-eprime/releases/tag/0.0.1
28https://github.com/jsheunis/fMRwhy
29https://github.com/spm/spm12/releases/tag/r7771
30https://github.com/jsheunis/bids-matlab/releases/tag/fv0.0.1
31https://github.com/jsheunis/dicm2nii/releases/tag/v0.2
32https://github.com/translationalneuromodeling/tapas/releases/tag/v3.2.

0
33https://github.com/RainCloudPlots/RainCloudPlots/releases/tag/v1.1
34https://github.com/spunt/bspmview/tree/20161108
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The effects of multi-echo fMRI
combination and rapid T2*-
mapping on offline and real-
time BOLD sensitivity

Abstract
A variety of strategies are used to combine multi-echo functional magnetic res-
onance imaging (fMRI) data, yet recent literature lacks a systematic comparison
of the available options. Here we compare six different approaches derived from
multi-echo data and evaluate their influences on BOLD sensitivity for offline and
in particular real-time use cases: a single-echo time series (based on Echo 2), the
real-time T2*-mapped time series (T2*FIT) and four combined time series (T2*-
weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed
T2*FIT-weighted). We compare the influences of these six multi-echo derived
time series on BOLD sensitivity using a healthy participant dataset (N=28) with
four task-based fMRI runs and two resting state runs. We show that the T2*FIT-
weighted combination yields the largest increase in temporal signal-to-noise ratio
across task and resting state runs. We demonstrate additionally for all tasks that
the T2*FIT time series consistently yields the largest offline effect size measures
and real-time region-of-interest based functional contrasts and temporal contrast-
to-noise ratios. These improvements show the promising utility of multi-echo
fMRI for studies employing real-time paradigms, while further work is advised
to mitigate the decreased tSNR of the T2*FIT time series. We recommend the use
and continued exploration of T2*FIT for offline task-based and real-time region-
based fMRI analysis. Supporting information includes: a data repository (https:
//dataverse.nl/dataverse/rt-me-fmri), an interactive web-based appli-
cation to explore the data (https://rt-me-fmri.herokuapp.com/), and fur-
ther materials and code for reproducibility (https://github.com/jsheunis/
rt-me-fMRI).

This chapter is currently undergoing peer review and a preprint has been published as: Heunis,
S., Breeuwer, M., Caballero-Gaudes, C., Hellrung, L., Huijbers, W., Jansen, J.F., Lamerichs, R., Zinger, S.,
Aldenkamp, A.P., 2020. The effects of multi-echo fMRI combination and rapid T2*-mapping on offline
and real-time BOLD sensitivity. bioRxiv 2020.12.08.416768. https://doi.org/10.1101/2020.12.08.416768
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8.1 Introduction
In functional magnetic resonance imaging (fMRI), T2*-weighted MRI sequences
use the blood oxygen level-dependent (BOLD) signal as a proxy for neuronal
activity. Our ability to infer accurate information about neuronal processes is
influenced by the sensitivity with which we can capture these BOLD changes and
subsequently delineate its sources of variance. Improved sensitivity is particularly
important for real-time use cases, such as adaptive experimental paradigms, real-
time quality control, or fMRI neurofeedback, where BOLD changes are quantified
and used as they are acquired without the benefit of a full dataset or the requisite
amount of post-processing time. It is well known that optimum sensitivity of
single-echo fMRI is achieved at an echo time (TE) close to the apparent tissue T2*-
value at baseline (Menon et al., 1993), which also underlies an inherent drawback
of T2*-weighted sequences. Location-specific BOLD sensitivity is suboptimal since
T2* varies across tissue types and brain regions (Peters et al., 2007), which can
result in spatial variability in the detection of task-related activation patterns.
Furthermore, magnetic susceptibility gradients on a macroscopic level result in
image defects such as signal dropout and distortion, which is pronounced in
the ventromedial prefrontal, orbitofrontal, the medial temporal and the inferior
temporal lobes (Devlin et al., 2000). Additionally, the complex interplay of blood
flow, blood volume and magnetic susceptibility effects can be influenced strongly
by system- and participant-level noise sources, thus confounding the BOLD signal.

An advancement that has shown promise in making inroads into these draw-
backs is multi-echo fMRI. Several studies have shown benefits of offline denoising
based on multi-echo independent component analysis (MEICA; Kundu et al.,
2012) for both resting state (e.g. Olafsson et al., 2015; Dipasquale et al., 2017) and
task-based fMRI data (e.g., Lombardo et al., 2016; Gonzalez-Castillo et al., 2016;
Moia et al., 2020). Echo combination via weighted summation is a critical step in
multi-echo post-processing that has been reported to increase temporal signal-
to-noise ratio, decrease signal drop-out, and improve activation extent for task-
analysis (Poser et al., 2006). Posse et al. (1999) proposed several echo combination
schemes, including simple echo summation (i.e. equal weights) and weighting
echoes by their relative expected BOLD contrast contribution (i.e. T2*), which
would require a numerical or fitted estimation of T2*. Other possible weighting
schemes include optimised scalar weights, TE-weighted combination, and tSNR-
weighted combination (also termed the PAID method) proposed by Poser et al.
(2006). A theoretical framework for optimising multi-echo combination has also
been proposed by Gowland and Bowtell (2007). However, the relative benefits of
all available combination schemes remain unclear.

With access to multiple data samples along the decay curve, multi-echo allows
quantification of the effective transverse relaxation parameter T2* (decay time)
or R2* (its inverse, decay rate), and S0 (initial net magnetisation). This form of
quantitative T2*-mapping (such as described by Weiskopf et al., 2013) acquires
multiple closely spaced echoes followed by a data fitting procedure that yields a
static, baseline T2*-map. In the context of functional imaging, however, tempo-
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ral or per-volume T2*-mapping is also feasible, with the core benefit being the
separation and quantification of T2* and S0 changes (from baseline) during stimu-
lated neuronal activation. Such real-time use cases of multi-echo data have been
reported, starting with Posse et al. (1998) who developed a single-shot, multi-echo
spectroscopic imaging sequence that quantified region-specific T2* changes dur-
ing olfactory and visual tasks, and which reported a larger functional contrast
(up to 20% increase in the visual cortex) compared to standard EPI data. Several
developments followed, including measuring single-event related brain activity
(Posse et al., 2000), whole brain T2*-mapping at 1.5T using a linear combination
of echoes (Hagberg et al., 2002), later with added gradient compensation (Posse
et al., 2003a), and a multi-echo EPI sequence at 3T with real-time distortion cor-
rection (Weiskopf et al., 2005). Rapid T2*-mapping has also been a useful tool
in studying the interplay between cerebral blood flow, blood volume and blood
oxygenation, particularly in combination with contrast agents (see, for example:
Scheffler et al., 1999; Schulte et al., 2001; Pears et al., 2003). In real-time fMRI neuro-
feedback, some examples of multi-echo use are reported specifically for improving
signal gains in regions such as the amygdala, including Posse et al. (2003a) which
uses T2*-weighted echo summation and Marxen et al. (2016), which uses scalar
TE-dependent weights pre-selected to yield an average T2*-value of 30ms in the
amygdala.

Although methodological studies have reported the benefits of multi-echo
fMRI combination, a comprehensive evaluation of its practical benefits is lacking.
Specifically, a variety of combination methods exist that can lead to both offline
and real-time improvements in BOLD sensitivity, but there has been no systematic
comparison between such methods. Additionally, per-volume T2*-mapping forms
a necessary step in established multi-echo-based methods, but recent literature
has not explored its value for task fMRI analysis. Consequently, this study has two
main goals: (1) to explore the differences in BOLD sensitivity, both offline and per-
volume, between time series of standard single echo EPI, per-volume estimated
T2*FIT, and multi-echo-combined time series (including tSNR-weighted, T2*, TE-
weighted, and T2*FIT-weighted); and (2) to explore the T2*FIT time series as an
alternative to single-echo or multi-echo-combined time series for offline and real-
time fMRI analysis. We investigate these aims for whole brain data in separate
task paradigms, eliciting responses to motor and emotion processing tasks and
mental versions thereof, and during resting state. To quantify differences, we
employ several metrics such as tSNR, task activity effect size, region-of-interest
based temporal percentage signal change (tPSC), functional contrast, and temporal
contrast-to-noise ratio (tCNR).

8.2 Multi-echo fMRI relaxation and combination
Multi-echo fMRI sequences acquire a slice or multiple slices of a functional image
at discrete echo times (TE) after a single transverse excitation pulse of the scanner.
All slices of a whole brain image are acquired within the standard repetition time
(TR) which then yields multiple echoes per volume. The relaxation of the fMRI
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Figure 8.1 — A representation of mono-exponential signal decay showing diminishing image
intensity along three echoes. The second echo is sampled at the optimum echo time equal to average
grey matter T2*, standard for single echo fMRI. The equation for the red, mono-exponential decay
curve is provided (Equation 8.1).

signal in a given voxel after transverse excitation, assuming a mono-exponential
decay model, is given as:

S (t) = S0 · e
−t
T2∗ + ε = S0 · e−t·R2∗ + ε (8.1)

with S(t) being the time-decaying fMRI signal, S0 being the tissue magnetisa-
tion directly after transverse excitation, and T2* being the local tissue transverse
relaxation (i.e. decay time) constant (the inverse of the decay rate, R2*). Per-voxel
estimates of S0 and T2* (depicted in Figure 8.1) can be derived using a log-linear
regression estimation and the available echo times (t1 to tN, where pinv is the
pseudo-inverse log the natural logarithm):

[
log (S0)

R2∗

]
= pinv




1− t1
1− t2
...
1− tN


 ∗


log (S (t1))

log (S (t2))
...
log (S (tN))

 (8.2)

The mathematics of all widely used multi-echo combination schemes are based
on the underlying concepts of data weighting, summation and averaging. In Ap-
pendix D, we provide a background of these concepts along with explanatory
Equations D.1 through D.6. Importantly, the multi-echo combination schemes pre-
sented here use the convention of weighted summation with normalised weights.
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This implies that (1) all weights are normalised such that their sum equals 1, then
(2) each normalised weight is multiplied by its corresponding data point, then (3)
these products are summed to produce the weighted summation.

Simple echo summation
Simple echo summation assumes equal weights for all echoes (totalling N), which
is calculated for an individual echo n as:

wSUM
n =

1

N
(8.3)

tSNR-weighted combination
The PAID method put forward by Poser et al. (2006) uses the voxel-based tSNR
measured at each echo (tSNRn) as the weights:

wtSNR
n =

tSNRn · TEn∑N
i=1 tSNRi · TEi

(8.4)

TE-weighted combination
Purely using each echo’s echo time, TEn, as the weight for that echo has also been
suggested (Posse et al., 1999). In this case, the same scalar value is used as the
weighting factor for all voxels of a specific echo:

wTE
n =

TEn∑N
i=1 TEi

(8.5)

Similarly, a range of scalar values can be used as echo-dependent weighting fac-
tors, usually optimised according to study-specific criteria. For example, Marxen
et al. (2016) selected scalar weights in order to yield an average T2* value of 30
ms in their region of interest (the amygdala). In such a case, the predefined scalar
weights SW1, SW2, . . ., SWN can be normalised as:

wSW
n =

SWn∑N
i=1 SWi

(8.6)

T2*-weighted combination
The T2*-weighted combination scheme used by Posse et al. (1999) and termed
”optimal combination” by Kundu et al. (2012), calculates the individual echo
weights wn per voxel as:

wT2∗

n =
TEn · exp (−TEn/T2∗)∑N
i=1 TEi · exp (−TEi/T2∗)

(8.7)
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T2*FIT-weighted combination
Finally, as proposed in the introduction, real-time T2*-mapping is made possible
when using multi-echo fMRI. Here, the per-volume estimation of T2* at each voxel,
termed T2*FIT(t), can also be used as the weighting factor in a per-volume echo
combination scheme:

wT2∗FIT
n (t) =

TEn · exp (−TEn/T2∗FIT(t))∑N
i=1 TEi · exp (−TEi/T2∗FIT(t))

(8.8)

The per-volume nature of this echo combination scheme makes it ideal for
use in both offline and real-time applications, when an a priori T2*-map is not
available or not preferred. To the best of our knowledge, this T2*FIT-weighted
combination approach has not been described previously in the literature

In the methods and results presented in this work, we compare metrics de-
rived from standard single echo fMRI analysis to metrics derived from analysing
T2*-weighted, tSNR-weighted, TE-weighted, T2*FIT-weighted, and the T2*FIT
parameter time series, in both offline and per-volume scenarios.

8.3 Methods
8.3.1 Participants
MRI and physiology data were collected from N=28 participants (male=20; fe-
male=8; age = 24.9 ± 4.6 mean + standard deviation). The study was approved by
the local ethics review board and all participants gave written consent for their
data to be collected, processed and shared in accordance with a GDPR-compliant
procedure.

8.3.2 Experimental design
A total of seven MRI acquisitions were collected during a single scanning session
per participant. These acquisitions include, in order of acquisition:

1. A T1-weighted anatomical scan

2. rest run-1: the first resting state run, eyes fixated on a white cross

3. fingerTapping: a right hand finger tapping functional task

4. emotionProcessing: a matching-shapes-and-faces functional task

5. rest run-2: the second resting state run, eyes fixated on a white cross

6. fingerTappingImagined: an imagined finger tapping functional task

7. emotionProcessingImagined: a functional task to recall an emotional memory

All four task paradigms followed an ON/OFF boxcar design, starting with
the OFF condition, with both conditions lasting 10 volumes (= 20 s at TR = 2
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s). The control (i.e. OFF) condition for the fingerTapping task was to focus on a
small white cross on a black screen; for the emotionProcessing task the control
condition was the shape-matching block; and for the fingerTappingImagined and
emotionProcessingImagined tasks the control conditions were counting backwards,
respectively, in multitudes of 7 and 9.

8.3.3 MRI protocol
MRI data were acquired on a 3 Tesla Philips Achieva scanner (software version
5.1.7) and using a Philips 32-channel head coil. A single T1-weighted anatomical
image was acquired using a 3D gradient echo sequence (T1 TFE) with scanning
parameters: TR = 8.2 ms; TE = 3.75 ms; flip angle = 8°; field of view = 240×240×180
mm; resolution = 1×1×1 mm; total scan time = 6:02 min.

All six functional MRI scans were acquired using a multi-echo, echo-planar
imaging sequence with scanning parameters: TR = 2000 ms; TE = 14,28,42 ms (3
echoes); number of volumes = 210 (excluding 5 dummy volumes discarded by the
scanner); total scan time = 7:00 min (excluding 5 dummy volumes); flip angle=90°;
field of view = 224×224×119 mm; resolution = 3.5×3.5×3.5 mm; in-plane matrix
size = 64×64; number of slices = 34; slice thickness = 3.5 mm; interslice gap = 0 mm;
slice orientation = oblique; slice order/direction = sequential/ascending; phase-
encoding direction = A/P; SENSE acceleration factor = 2.5. Parts of the cerebellum
and brainstem were excluded for some participants to ensure full coverage of
the cortex and subcortical areas of interest. Echo times, spatial resolution, and
the SENSE factor were tuned with the aim of improving spatial resolution and
coverage while limiting the TR to maximum 2000 ms, including a maximum
number of echoes, and keeping the SENSE factor low to prevent SENSE artefacts.

In addition, cardiac and respiratory fluctuations were recorded during the
functional scans, respectively using a pulse oximeter fixed to the participant’s left
index finger, and a pressure-based breathing belt strapped around the participant’s
upper abdomen. These were sampled at 500 Hz.

8.3.4 Data analysis
Data analysis consists of anatomical and functional preprocessing, definition and
calculation of echo combination weights, multi-echo combination, time-series
processing and calculation of comparison metrics. All analyses are done on an
individual basis (i.e. participant-specific), unless otherwise stated, to describe the
effects and facilitate the use of these methods in real-time fMRI use cases.

All processing steps were done using the open source MATLAB-based and
Octave-compatible fMRwhy toolbox (v0.0.11), which has conditional dependencies:

• SPM12 (r77712; Friston et al., 2007)

1https://github.com/jsheunis/fMRwhy
2https://github.com/spm/spm12/releases/tag/r7771
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Figure 8.2 — The analysis pipeline applied to the rt-me-fMRI dataset. Prior tSNR and T2* maps
are derived from the first resting state run. For all other functional runs (top row), six steps are
executed per volume after minimal preprocessing in order to yield resulting multi-echo-derived
time series for comparison: (1) the 2nd echo time series is extracted without processing, (2) the
prior tSNR-weighted combination, (3) the TE-weighted combination, (4) the baseline T2*-weighted
combination, (5) the T2*FIT-weighted combination, and (6) T2*FIT time series. Following this, each
of the six time series then undergoes offline and simulated real-time processing pipelines. The offline
pipeline includes (in order): tSNR calculation, spatial smoothing, participant-level task analysis,
calculation of percentage signal change effect sizes, and statistical thresholding of the participant-
level contrast maps. The simulated real-time pipeline is run per volume for each time series and
includes (in order): spatial smoothing, spatial averaging of the appropriate region-of-interest signals,
and cumulative denoising (including detrending using linear and quadratic regressors).
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• Anatomy Toolbox (v3.0; Eickhoff et al., 2005)

• bids-matlab (v.0.0.13)

• dicm2nii (v0.2 from a forked repository4)

• TAPAS PhysIO (v3.2.05; Kasper et al., 2017)

• Raincloud plots (v1.16; Allen et al., 2019)

All data analysis scripts can be accessed online for reproducibility or reuse
with attribution7.

A. Preprocessing
The basic anatomical and functional preprocessing pipeline applied to all data is
described in detail in the data article, and in included:

1. Defining a functional template from Echo 2 of the first volume of the first
resting state run. Echo 2 is selected in order to apply the same pipeline and
allow a fair comparison of multi-echo to single-echo data, since for the latter
only a single time series similar to Echo 2 would be available.

2. Mapping prior data to the subject functional space, including:

a) Coregistration of the anatomical image and atlas-based regions of in-
terest (available in MNI152 space; Eickhoff et al., 2005) to the functional
template space, and resampling these to the functional resolution.

b) Tissue-based segmentation of the coregistered anatomical image (after
coregistration but before downsampling) and subsequent definition of
binary maps for grey matter, white matter, cerebrospinal fluid (CSF)
and the whole brain.

3. Basic functional preprocessing steps, including: estimating realignment pa-
rameters from the Echo 2 time series, running slice timing correction on all
echo time series, applying realignment parameters to all echo time series,
and applying spatial smoothing (7 mm isotropic, i.e. twice the voxel width)
to all echo time series.

4. Generating data quality control metrics and visualisations to allow inspec-
tion of the quality of anatomical and functional data and their derivatives.

3https://github.com/jsheunis/bids-matlab/releases/tag/fv0.0.1
4https://github.com/jsheunis/dicm2nii/releases/tag/v0.2
5https://github.com/translationalneuromodeling/tapas/releases/tag/v3.2.

0
6https://github.com/RainCloudPlots/RainCloudPlots/releases/tag/v1.1
7https://github.com/jsheunis/rt-me-fMRI
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Two aspects of the preprocessing and analyses pipelines are worth highlight-
ing in the context of this study. Firstly, while an important focus for this work is
its application and utility in real-time scenarios, all processing was done offline,
either on the full dataset or on a per-volume (i.e. simulated real-time) basis. This
was viable since the study did not include any neurofeedback or real-time adap-
tive paradigms that would have required real-time computation and interaction.
Secondly, in order to use a standardised pipeline (across multiple runs of multi-
echo and single-echo data) that can compute derivative measures that are aligned
across analyses and therefore comparable on a per-voxel basis, we followed the
concept of ”minimally processed” data as described by (DuPre et al., 2020). This
means that minimal steps including slice timing correction and 3D volume re-
alignment are applied to multi-echo data before decay parameter estimation or
multi-echo combination.

B. Data quality control
The fMRwhy toolbox has a BIDS-compatible data quality pipeline for functional
and anatomical MRI, fmrwhy workflow qc, that can be run automatically for a full
BIDS-compliant dataset. After running minimal preprocessing steps it generates a
subject-specific HTML-report with quality control metrics and visualisations to
allow inspection of the data and its derivatives. Individual reports can be accessed
in the derivatives directory of the shared BIDS-compliant dataset of this study
(see Chapter 7 for details; Heunis et al., 2020b). Additionally, a web-application
named rt-me-fMRI is provided along with this work8. It can be used interactively
to explore various summaries of data quality metrics, including distributions of
framewise displacement (FD) and tSNR, and physiology recordings, as well as
the results of this study.

None of the participant datasets were excluded after inspection of the included
quality metrics, even in cases of more than average or severe motion (specifically
sub-010, sub-020, and sub-021), since such data could still be useful for data qual-
ity related insights or for future denoising methods validation. In addition, for
all participant data the alignments of the anatomical mask, the derived tissue
segmentation masks, and the EPI data were visualised, inspected and the overlap
was found acceptable.

C. Multi-echo combination
Existing weighting parameters or parameter maps are required to allow both of-
fline and per-volume combination of multi-echo data. Of the previously reported
options for weighting schemes given in Section 8.2, the simplest option used in
this study is the echo time (Equation 8.5) derived from the functional MRI proto-
col, which yields a TE-weighted combination. Other prior weighting parameters
are calculated using the first resting state functional scan. For each minimally
preprocessed echo time series of the resting state run, the time series mean and

8https://rt-me-fmri.herokuapp.com/
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standard deviation are calculated. The mean divided by the standard deviation
yields the temporal signal-to-noise ratio (tSNR), per echo, that is used as another
weighting parameter (Equation 8.4) described as the PAID method by Poser et al.
(2006). Additionally, the mean images from the three echo time series are used to
derive the per-voxel estimates of S0 and T2* assuming a mono-exponential decay
model and using a log-linear regression estimation (Equation 8.2). This baseline
T2* map can be used for T2*-weighted combination (Equation 8.7), described as
optimal combination by Kundu et al. (2012). Lastly, the same log-linear regression
that is applied to the time series mean images can also be applied to a single
volume of any multi-echo data. This implies that the three echo images of any vol-
ume can be used as data points to estimate per-volume and per-voxel parameter
maps, S0FIT(t) and T2*FIT(t), which in turn can be used for per-volume multi-echo
combination (Equation 8.8), hereinafter referred to as T2*FIT-combination.

Multi-echo combination schemes are applied to all functional data excluding
the first resting state run, from which prior baseline weight maps are derived. In
sum, six time series are computed per functional run (as described in Figure 8.2):
Echo 2, tSNR-combined, TE-combined, T2*-combined, T2*FIT-combined, and the
T2*FIT time series.

D. Time series processing
After computing the six time series per functional run (excluding the first resting
state run), each resulting time series is processed as summarised in the bottom
row of Figure 8.2).

First, the tSNR of each time series is calculated prior to any further process-
ing. Then, each time series is spatially smoothed using a Gaussian kernel with
FWHM at 7 mm (i.e. double the voxel size). This is followed by participant-level
GLM-based analysis of the four task runs. Task regressors included the main ”ON”
blocks for the fingerTapping, fingerTappingImagined and emotionProcessingImagined
tasks, and both the separate ”SHAPES” and ”FACES” trials for the emotionPro-
cessing task. Regressors not-of-interest for all runs included six realignment pa-
rameter time series and their derivatives, the CSF compartment time series, and
RETROICOR regressors (both cardiac and respiratory to the 2nd order, excluding
interaction regressors). Additional steps executed by SPM12 before beta parameter
estimation include high-pass filtering using a cosine basis set and AR(1) autore-
gressive filtering of the data and GLM design matrix. Contrasts are applied to
the task-related beta maps for the fingerTapping, fingerTappingImagined and emo-
tionProcessingImagined tasks, and to the FACES, SHAPES, and FACES¿SHAPES
beta maps for the emotionProcessing task. In order to yield a standard measure of
effect size, the parameter estimates or contrast maps are then used to calculate
percentage signal change (PSC) using the method described by Pernet (2014) and
given by:

PSC =
β̂condition ∗ SF ∗ 100

β̂constant

(8.9)
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where condition and constant are parameter estimates corresponding to the rele-
vant GLM regressors that are scaled with regards to the actual BOLD magnitude.
To account for this the scaling factor, SF, is determined as the maximum value
of a reference trial taken at the resolution of the super-sampled design matrix
Xss (where supersampling is typically done before convolution with the hemo-
dynamic response function):

SF = max(TrialXss) (8.10)

Statistical thresholding was applied to identify task-related regions of activity by
controlling the voxel-wise familywise error rate (FWE), with pFWE ¡ 0.05, and a
voxel extent threshold of 0.

E. Real-time analysis
Minimally processed time series are also analysed per-volume (using data ac-
quired up to each volume in time) in order to explore multi-echo related BOLD
sensitivity changes for real-time applications. Real-time analysis typically involves
minimal processing (including 3D realignment), spatially averaging the signal
within given ROIs, and additional per-volume denoising steps on the averaged
signal. Here, we run a per-volume denoising process adapted from OpenNFT
(Koush et al., 2017a) on all task time series. This process is depicted in the bottom
row of Figure 8.2 and includes, in order: 1) Spatial smoothing using a Gaussian
kernel with FWHM at 7 mm, 2) Spatial averaging of voxel signals with defined
ROIs, and 3) Cumulative GLM-based detrending of the ROI signals, including
linear and quadratic trend regressors. This then yields per-volume minimally de-
noised ROI-signals from which percentage signal change or another calculation
can be used as the basis for the neurofeedback or real-time ROI signal.

F. Comparison metrics
To explore the differences between various multi-echo combinations and standard
single echo data, and to investigate the usefulness of the former over the latter,
we employ several comparison metrics:

• Temporal signal-to-noise ratio (tSNR) calculated as the voxel-wise time
series mean divided by voxel-wise time series standard deviation. tSNR is an
indicator of the amount of signal available from which to extract potentially
useful BOLD fluctuations. Additionally, tSNR maps can be a robust visual
indicator of increases or decreases in signal dropout.

• Percentage signal change (PSC) of task-based contrast maps resulting from
participant-level GLM analysis. PSC represents a standardised measure of
effect size (which beta or contrast values are not) and is an indicator of the
BOLD sensitivity of the data based on GLM analysis.

• T-statistic values related to the task based contrast maps resulting from
participant-level GLM analysis.
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• Temporal percentage signal change (tPSC) of the single echo, combined-
echo and derived time series data of the task runs. This is calculated per
voxel on minimally processed task data as the per-volume signal’s percent-
age signal change from the time series mean (or, for real-time scenarios,
from the mean of the preceding baseline ”OFF” block or the cumulative
mean). These are then spatially averaged within the regions listed shortly to
yield ROI-based time series. These time courses are similar to what would
be calculated in real-time as the ROI-based neurofeedback signal, and their
amplitudes can be an indicator of BOLD sensitivity.

• Functional contrast of the ROI-based tPSC signals. To calculate the func-
tional contrast in ROIs, the average tPSC in volumes classified as being part
of ”OFF” condition blocks are subtracted from the average signal in vol-
umes classified as being part of each ”ON” condition block. Visually, this
corresponds to the average amplitude difference between conditions in the
tPSC signal. The functional contrast is an indicator of the BOLD sensitivity
of a signal based on both minimally processed and denoised data.

• Temporal contrast-to-noise ratio (tCNR) of the single echo, combined-echo
and derived time series data of the task runs. To calculate the tCNR, the
functional contrast in an ROI is divided by the time series standard deviation
of the tPSC signal in the same ROI. This is related to both the tSNR and
BOLD sensitivity. Where tPSC consists of time courses, tCNR provides a
single summary value per voxel or region.

Extracting and spatially averaging voxel time series from specific regions is a
common approach to exploring patterns of task-based activity in fMRI (Poldrack,
2007). This can be done both offline on a full dataset, and in real-time on the data
as they are acquired. In this work, we explore and compare the above-mentioned
metrics on both whole-brain and region-specific levels. Regions include:

• Grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) com-
partments. This allows quantifying, for example, whether combined multi-
echo data changes a given metric similarly or differently across tissue types.

• A binary map of the voxels surviving voxel-wise pFWE ¡ 0.05 statistical
thresholding (FWE). These maps vary spatially per time series of a given
task run and they represent the functionally most responsive voxels based on
the underlying data but assuming shared criteria (i.e. statistical threshold).

• A binary map resulting from a logical OR of the FWE-thresholded maps of all
six time series of a given task run (FWE-OR). This allows the comparison of
metrics in a region that includes the voxels that are judged to be significantly
active in any time series, thus removing time series-specific spatial bias.

• Atlas-based anatomical regions of interest (Atlas-based ROI), derived from
templates in MNI152 space (Eickhoff et al., 2005) that have been mapped
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to individual anatomical scans and coregistered and resampled to the in-
dividual functional space. This allows quantification of the above metrics
within an a priori defined ROI, thus excluding spatial bias introduced by
statistical thresholding. The Atlas-based ROIs include the left motor cor-
tex (for right-hand finger tapping), and the bilateral amygdala (for emotion
processing).

The focus of this work is on exploring, quantifying and describing differences
and on generating data that allows deriving clear hypotheses for future confirma-
tory follow-up. While null hypothesis significance testing is used where necessary
in task-based analysis, overall differences in the above-mentioned comparison
metrics are not significance tested and are rather described in terms of means and
percentage change from a reference.

8.4 Results
A web-application named rt-me-fMRI is provided alongside this work9:. This
browser-based application can be used interactively to explore the summary and
participant-specific results presented here, and is intended to serve as supplemen-
tary material to this work.

8.4.1 Multi-echo decay
To illustrate signal decay and dropout as a function of echo time, a simple plot of
the inferior slices of a single subject is given in Figure 8.3. Signal decay can be seen
clearly as the signal intensity diminishes from Echo 1 to Echo 3 (top to bottom)
in all displayed slices. Signal dropout from Echo 1 through Echo 3 is particularly
evident in the areas of the orbitofrontal and ventromedial prefrontal cortices, and
the inferior and anterior temporal lobe (magenta arrows; slices 8, 10, 12) and the
cerebellum (light blue arrows; slices 2, 4, 6).

8.4.2 Signal intensity, dropout, and temporal signal-to-noise ratio
We can visually inspect the effect on signal intensity and dropout when combining
multi-echo data or deriving time series from it. Figure 8.4A shows the mean of
each of the six time series: Echo 2, tSNR-weighted combination, TE-weighted com-
bination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT.

It is evident that most echo combination schemes, with the exception of TE-
weighted combination, recover some signal lost due to dropout in the orbitofrontal
and ventromedial prefrontal regions (magenta arrows; slices 8, 10) and inferior
and anterior temporal regions (light blue arrows; slices 6, 8). This signal recovery
is further demonstrated in the tSNR maps provided in Figure 8.4B, particularly
by the magenta arrows showing areas of signal dropout in Echo 2 and subsequent
recovery in combined and derived time series tSNR maps. Even the T2*FIT, for

9https://rt-me-fmri.herokuapp.com/
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8.4. Results

Figure 8.3 — Signal decay along the three echoes (top to bottom) of a single volume. Signal decay
is displayed across a selection of slices (horizontal axis). Signal dropout is clearly evident in the
orbitofrontal and ventromedial prefrontal cortices and inferior and anterior temporal lobes (magenta
arrows; slices 8, 10, 12) and the cerebellum (light blue arrows; slices 2, 4, 6).

which the tSNR is evidently much lower than all other time series including Echo
2, recovers some of the signal that is lost due to low BOLD sensitivity in the
affected areas, although signal loss is also more evident (slice 10). Additionally,
tSNR in areas close to the bilateral temporal-occipital junction and towards the
occipital lobe (Figure 8.4B, green arrows) appears to increase substantially for all
combined time series vs. Echo 2. This is more pronounced in the T2*FIT-weighted
compared to the T2*-weighted and tSNR-weighted combinations, and less so in
the TE-weighted combination.

To provide a more quantified view than these visualisations of signal intensity
(Figure 8.4A) and tSNR (Figure 8.4B), distribution plots were created for grey
matter tSNR values, both for the whole group and for subjects individually. These
are accessible in the supplementary web-application, which shows (for exam-
ple) for for sub-001 task-rest run-2 a mean tSNR increase for all combined time
series compared to Echo 2, with the T2*FIT-weighted combination showing the
largest increase (36.14%) and the T2*FIT time series showing a substantial de-
crease (-55.89%). This generalises to the whole group (see Figure 8.5A), i.e. a mean
tSNR increase for all combined time series compared to Echo 2, with the T2*FIT-
weighted combination showing the largest increase (a comparable 36.95%). This
increase in the tSNR of T2*FIT-weighted combination replicates results that we
previously reported on a different dataset (Heunis et al., 2019a). This relationship
also repeats for different regions, as can be seen for the left motor cortex (Figure
8.5B) and the bilateral amygdala (Figure 8.5C).

Note, however, that the mean tSNR values increase differentially based on
the region. For the T2*FIT-weighted combination, for example, whole brain data
show a mean tSNR increase of 36.95%; the left motor cortex shows a mean tSNR
increase of 31.63%; and the bilateral amygdala shows a mean tSNR increase of
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Figure 8.4 — Signal intensity (Figure 8.4A) and Temporal signal-to-noise ratio (Figure 8.4B)
shown in mean images for the time series in rows from top to bottom: Echo 2, tSNR-weighted
combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination,
and T2*FIT. Scaling for Figure 8.4A is given both for the T2*FIT signal (0-130 ms) and for all
the other signals (0-3000 a.u.). All echo combination schemes, with the exception of TE-weighted
combination, recover some signal lost due to dropout in the orbitofrontal and ventromedial prefrontal
regions (magenta arrows; slices 8, 10) and inferior and anterior temporal regions (light blue arrows;
slices 6, 8). Slight signal recovery in T2*FIT is visible in the orbitofrontal and ventromedial prefrontal
regions (slice 6) although signal loss is more evident in slice 10. In Figure 8.4B, all time series apart
from T2*FIT show increases in tSNR (from Echo 2) in areas close to the bilateral temporal-occipital
junction and towards the occipital lobe (green arrows; slice 18), which is more pronounced in the
T2*FIT-weighted compared to the T2*-weighted and tSNR-weighted combinations, and less so in
the TE-weighted combination.
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Figure 8.5 — Distribution / ridge plots of mean grey matter temporal signal-to-noise ratio (tSNR)
over all participants and all runs. Plots are shown for (A) the whole brain, (B) the left motor cortex,
and (C) the bilateral amygdala, each displaying a distribution for the six time series from left to
right: Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted combination,
T2*FIT-weighted combination, and T2*FIT. In all regions, the mean T2*FIT tSNR decreases from
Echo 2 while the tSNR of all other time series increase, with the T2*FIT-weighted combination
showing the largest increase in all regions. Notably, tSNR increases for all the combined echo time
series are more substantial in the amygdala (C) than the other regions (A, B).
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53.35%. Other combined time series show percentage increases following the same
pattern, i.e. a larger tSNR increase for the amygdala than for the whole brain or
motor cortex. This could be explained by the baseline T2*-values in the motor
cortex and the whole brain being closer to the time Echo 2 (28 ms) than the T2*-
values in the amygdala, i.e. that the T2*-weighting of Echo 2 in those regions
is already closer to optimal than the weighting of Echo 2 in the amygdala. This
suggests that the amygdala and similarly affected areas with T2*-values that are
different from the average have more to gain from the multi-echo combination
process.

Another noteworthy aspect is the low signal intensity and low tSNR of the
T2*FIT time series. The low signal intensity is explained by the fact that T2*FIT
values correspond to quantified units (ms) that are expected to be in a certain range
( 0 to 120 ms for the human brain at 3T; Peters et al., 2007), while the intensity of
the standard single and combined echo images are in analogue units determined
by MRI hardware and software. The low tSNR of the T2*FIT time series could
be explained by an increase in time series standard deviation resulting from the
log-linear fitting procedure on noisy data and only using the three echoes to fit
the mono-exponential decay model per volume. This increase in time series noise
becomes evident when investigating T-statistic values related to task-analysis, and
temporal percentage signal change.

Distributions of grey matter tSNR values are useful for inspecting differences
in signal increases and dropout recovery between single-echo, multi-echo com-
bined, and derived timeseries, and enable identifying new voxels or regions with
adequate signal for task (or other) analysis. However, tSNR does not provide a
direct measure of task sensitivity, i.e. it does not directly tell us whether newly re-
covered signal/regions would be usefully related to the underlying task. For that
reason, further measures derived from task analyses like the effect sizes, T-statistic
values, and contrast to noise ratios are important to explore.

8.4.3 Effect sizes and T-statistics
Figure 8.6 shows distribution plots (over all subjects) of the mean PSC values
within the respective FWE-OR clusters for all task runs: fingerTapping (Figure
8.6A), fingerTappingImagined (Figure 8.6B), emotionProcessing (Figure 8.6C), and
emotionProcessingImagined (Figure 8.6D). It is evident from Figure 8.6A through
8.6D that the effect sizes show a substantial increase for the T2*FIT time series
(from Echo 2) in all tasks (respectively 87.91%, 67.86%, 13.51%, and 43.28%), while
displaying a similar or decreased mean effect size for all combined times series.
Data in the supplementary browser-based application also shows that this in-
crease for T2*FIT is more pronounced when looking at the effect sizes within
their respective FWE regions (i.e. different activated voxels for each multi-echo
derived time series, although mostly overlapping), which one should be wary of
overinterpreting given the inherent circularity of re-analysing data in voxels that
previously passed a significance threshold using the same data. On the other hand,
this result is less pronounced for the time series effect sizes within their respective
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Figure 8.6 — Distribution plots of mean percentage signal change (PSC) values in the FWE-
OR region for each of the four task runs. Plots from top to bottom are: (A) fingerTapping, (B)
fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessingImagined. PSC values
are shown for all six time series, from left to right: Echo 2, tSNR-weighted combination, TE-weighted
combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. For all tasks,
the T2*FIT time series effect sizes show mean increases above the effect sizes of the Echo 2 time
series, while all multi-echo combined time series effect sizes show similar or decreased means.

atlas-based regions of interest, mainly resulting in a longer tailed distribution of
mean PSC values for the T2*FIT time series. In some participants the mean PSC
values of the T2*FIT time series even show a slight decrease. These decreases in
PSC disappear when looking at peak effect sizes, as opposed to mean effect sizes,
in all regions of interest. Further differences can be inspected in depth using the
supplementary browser-based application.

To accompany these effect size values, Figure 8.7 shows distribution plots
(over all subjects) of the mean T-statistic values in the respective FWE-OR regions
for all task runs: fingerTapping (Figure 8.7A), fingerTappingImagined (Figure 8.7B),
emotionProcessing (Figure 8.7C), and emotionProcessingImagined (Figure 8.7D). For
all tasks, it is evident that resulting T-values for the combined echo time series are
very similar in size and distribution to that of the Echo 2 time series, while T-values
for the T2*FIT time series are notably lower. The low mean T-values of T2*FIT
are due to the noise captured when estimating T2* per-volume using only three
data points, where noisy data would increase standard deviation and decrease
the resulting T-values. This is substantiated by the large decrease in tSNR we saw
for the T2*FIT time series compared to that of the Echo 2 time series in Figures 8.4
and Figure 8.5. Additionally, the TE-combined time series show slightly higher
T-values for all tasks compared to other combined time series. However, this slight
increase does not persist when analysing other regions (e.g. FWE or atlas-based)
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Figure 8.7 — Distribution plots of mean statistical T-values in the FWE-OR region for each of
the four task runs. Plots from top to bottom are: (A) fingerTapping, (B) fingerTappingImagined, (C)
emotionProcessing, and (D) emotionProcessingImagined. T-values are shown for all six time series,
from left to right: Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted
combination, T2*FIT-weighted combination, and T2*FIT. For all tasks, T-values of the combined
echo time series are very similar in size and distribution shape to that of the Echo 2 time series, while
T-values for the T2*FIT time series are notably lower.

as can be viewed with the supplementary browser-based application.

8.4.4 Temporal percentage signal change and functional contrast
Temporal percentage signal change is useful to inspect the per-volume fluctu-
ations of signal in task-related regions. This can be done for both offline and
real-time scenarios but is particularly important for the latter in applications like
region-based neurofeedback. tPSC in the offline scenario is calculated per volume
from minimally processed data, yielding a per-voxel tPSC time series that can be
depicted in a carpet plot for quality inspection or used for ROI analyses. tPSC for
real-time scenarios is calculated from real-time minimally denoised ROI-averaged
signal (with regards to the mean of the preceding baseline ”OFF” block or with
regards to the cumulative total or baseline mean) yielding the real-time ROI-signal
typically used in region-based neurofeedback.

Here we focus on exploring tPSC and functional contrast for the real-time
scenario. While offline tPSC is useful for post-hoc inspection of signal quality
and task activity, it reflects similar data already presented above in the PSC and
T-statistic distributions. Additionally, offline tPSC does not accurately reflect the
effects seen for real-time scenarios where per-volume calculations can only use
information available up to the most recently acquired volume. For that purpose,
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Figure 8.8 — Distributions of functional contrasts calculated from real-time temporal percentage
signal change of the fingerTapping and emotionProcessing tasks. Contrast distributions are shown
for both tasks within the FWE-OR region (A and C) and within the atlas-based region (B and
D). Signals are colour coded for Echo 2, tSNR-weighted combination, TE-weighted combination,
T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. Similar to the offline tPSC
case, the functional contrast (in both tasks) for the T2*FIT time series is greater than the contrasts for
all other time series, in both regions, although this is less pronounced for the emotionProcessing task
than for the fingerTapping task. Notably, functional contrast for the real-time T2*FIT time series
is substantially increased compared to its offline counterpart (see supplementary web-application).
Functional contrast is presented as differences in percentage signal change (y-axes).

minimally processed data are cumulatively detrended and real-time tPSC is then
calculated with regards to a cumulative baseline mean.

Figure 8.8 shows functional contrast for all subjects calculated from real-time
tPSC signals for the fingerTapping and emotionProcessing tasks, in the FWE-OR and
atlas-based regions (the corresponding offline metrics can be inspected in detail
in the supplementary web-application). The T2*FIT signal clearly has a larger
functional contrast (higher tPSC during task blocks and lower tPSC during resting
blocks) than all other signals, for which the functional contrasts are very similar.
For example, the minimum percentage increase of T2*FIT functional contrast over
Echo 2 functional contrast is 260.61% (from 0.33 to 1.19) in the FWE-OR region of
the emotionProcessing task. Taking supplementary data into account, there is also
an increased functional contrast for the real-time T2*FIT time series compared to
its offline counterpart.

A caveat here is that the T2*FIT time series has the lowest tSNR of all time
series, as noted in Figure 8.5. In real-time scenarios, this could diminish the benefit
of the high functional contrast in that the improved sensitivity to detect brain
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activity in an ROI would not necessarily be temporally stable. To take this into
account, the functional contrasts are divided by the standard deviation of the tPSC
time series to yield the temporal contrast-to-noise ratio (tCNR). This is shown
for the FWE-OR regions in the fingerTapping and emotionProcessing tasks in Figure
8.9 below, along with examples of single-participant real-time tPSC signals for
the same tasks and regions. These plots highlight both functional contrast and
volume-to-volume fluctuations.

Notably, the distributions in Figures 8.9A and B show a substantial increase
in tCNR for the T2*FIT time series versus Echo 2 (97.78% for fingerTapping and
172.31% for emotionProcessing), while the distributions of all other multi-echo com-
bined time series are very similar in shape and size to Echo 2. These promising
results suggest that the decreased voxel-wise tSNR of the T2*FIT time series is less
detrimental on the level of the ROI-averaged signal. Offline tCNR calculations
(accessible in the supplementary web-application) however show very similar
tSNR distributions for all time series including T2*FIT and Echo 2. On the level
of individual ROI-averaged signals, Figures 8.9C and D show tPSC signals in the
FWE-OR regions, with higher amplitude differences for the T2*FIT time series
compared to all other time series, echoing the increased functional contrast seen
for the group in Figure 8.8. While a slight increase in volume-to-volume fluctu-
ations relative to the signal amplitude is also visible, this does not substantially
affect tCNR measures.

Another note regarding the tPSC signals shown in Figures 8.9C and D is that
these visualisations reflect temporally smoothed data, using a moving 3-point
average. In real-time analysis it is common to apply a windowed averaging filter
to the ROI time series in order to increase the tSNR, which improves the contrast
and stability of the neurofeedback signal. This also improves our ability to classify
individual volumes as a detected or undetected event of activity in cases where
binary decision making is an important step for the specific real-time application.
In the case of Figure 8.9 it highlights the functional contrast improvement of
the T2*FIT time series. Note that the tCNR calculations that yielded the data of
Figure 8.8 were executed on temporally unsmoothed data. The supplementary
web-application can be used to change views of the tPSC time series between
temporally smoothed and unsmoothed visualisations.

8.5 Discussion
In this work we presented a comprehensive exploration and evaluation of exist-
ing and novel multi-echo combination and T2*-mapping methods for both real-
time and offline BOLD sensitivity improvements. A resting state and task-based
healthy participant dataset was collected, curated and made available to the com-
munity for future investigations. In this dataset, we investigated five time series
derived from multi-echo data and their differences from a single echo time series
(Echo 2): tSNR-weighted combination, TE-weighted combination, T2*-weighted
combination, T2*FIT-weighted combination, and the T2*FIT time series. These
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Figure 8.9 — Distributions of mean functional contrast-to-noise ratio (calculated from real-time
temporal percentage signal change) of the (A) fingerTapping and (B) emotionProcessing tasks within
the FWE-OR region. Subplots (C) and (D) show individual subject tPSC time series for the same
tasks as mentioned, respectively, for (A) and (B). Signals are colour coded for Echo 2, tSNR-weighted
combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination,
and T2*FIT. Since tCNR is computed from tPSC time series, the tCNR values computed from
(C) and (D) represent a single data point per time series in subplots (A) and (B). The time series
visualisations in (C) and (D) reflect temporally smoothed data, using a moving 3-point average.
Transient fluctuations for the first two volumes in (C) and (D), ascribed to differences in calculating
real-time tPSC (using the cumulative baseline mean) versus offline tPSC (using a full time series
mean) were zeroed across all six time series in order to remove their biasing effects on tCNR
calculations. 145
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differences were explored in terms of: temporal signal-to-noise ratio, percentage
signal change as task-based effect size measure, offline and real-time temporal
percentage signal change in regions of interest, functional contrast in ROIs, and
temporal contrast-to-noise ratio in ROIs.

8.5.1 Results
Our results, across 28 participants, are summarised as follows. Dropout recovery
is more pronounced (in orbitofrontal, ventromedial prefrontal regions as well as
inferior and anterior temporal regions) for the T2*-weighted, tSNR-weighted, and
T2*FIT-weighted combinations than for the TE-weighted combination. All multi-
echo combined time series yield increases in tSNR compared to Echo 2, with the
newly-proposed T2*FIT-weighted combination resulting in the largest increase
in mean tSNR. For the T2*FIT-weighted combination, increases in mean tSNR
are larger for the amygdala than for the left motor cortex or the whole brain. In
contrast, the T2*FIT time series results in a substantial mean decrease in tSNR
from Echo 2. Alternatively, the T2*FIT time series yields the largest effect size
measures across all investigated functional tasks and regions, whereas the effect
size measures derived from combined echo time series tend to decrease slightly
from those of Echo 2, for all functional tasks. Based on temporal percentage signal
change calculated offline from minimally processed data, the T2*FIT time series
yields the highest functional contrast for all tasks. Similarly, based on temporal
percentage signal change calculated in simulated real-time from cumulatively
denoised data, the T2*FIT time series also yields the highest functional contrast
for all tasks, although this increase is substantially more than the increase seen
for its offline counterpart. For real-time scenarios, the temporal contrast-to-noise
ratio of the T2*FIT time series is notably higher than all other time series, which
are very similar in size and distribution.

The fact that multi-echo combined time series yields increased tSNR compared
to single echo data has been widely demonstrated in previous research, and has
been repeated here for all combined time series with respect to Echo 2. Addi-
tionally, we show that the novel T2*FIT-weighted combination yields the largest
increase, replicating our previous results from a different dataset (Heunis et al.,
2019a). In the amygdala, a mean increase in tSNR of 53.35% was calculated across
participants, while the mean increases for the left motor cortex and the whole
brain were respectively 31.63% and 36.95%. These differences suggest that multi-
echo combination, and in particular T2*FIT-weighted combination, could prove
more useful in terms of tSNR for areas traditionally suffering from suboptimal
BOLD sensitivity due to their lower local baseline T2*-values. On the other hand,
improving tSNR in individual regions could also benefit whole-brain methods
where spatially distributed ROIs or networks are used as the neurofeedback sub-
strate (e.g. connectivity-based neurofeedback employed by Megumi et al., 2015, or
default mode network-based neurofeedback employed by McDonald et al., 2017),
since this would decrease spatial variability in BOLD effects and could lead to
more accurate brain-wide estimates of interest. Note that we did not explore the
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approach of averaging the echoes (i.e. simple summation) as for instance origi-
nally proposed in Posse et al. (2000), but this approach has proven reduced BOLD
sensitivity than the rest of combination approaches investigated here.

While not novel, an important aspect demonstrated here was the decrease in
tSNR for the T2*FIT time series, reported before by others including Kundu et al.
(2017). Importantly, the fitting procedure used to estimate per-volume T2*- and
S0-values (assuming a mono-exponential decay curve) yields noisy results that
influence the amplitude of the signal fluctuations with respect to the mean, thus
increasing the standard deviation and decreasing tSNR. The pitfalls of assuming
mono-exponential (as opposed to multi-compartment) decay and using a fitting
procedure with few data points (three in this case) have been described before
(Whittall, MacKay, and Li, 1999) and remain applicable here. Future work should
aim to exploit technical advances such as simultaneous multi-slice imaging to
increase the number of echoes acquired per volume, while investigating more
robust models of T2*-decay.

While tSNR is a useful quantifier of relative spatial signal increases and dropout
recovery, it does not directly measure or represent BOLD sensitivity. To investigate
how multi-echo derived data could improve our ability to link BOLD changes to
neuronal effects, we employed statistical task-analysis to yield effect size measures
to show the benefits of rapid T2*-mapping over single echo fMRI. For all tasks,
the T2*FIT time series consistently yielded the largest standardised effect size
measures in terms of percentage signal change calculated offline from contrast
maps after participant-level GLM analysis, while the effect sizes for multi-echo
combined data decreased slightly. This phenomenon of decreased effect sizes has
been reported before for both optimally combined as well as MEICA-denoised
data by Gonzalez-Castillo et al. (2016). This was reported for five subjects perform-
ing an auditory task in a 20 s ON/OFF block paradigm similar to the one in this
work. Gonzalez-Castillo et al. (2016) calculated per-volume T2*-maps (i.e. T2*FIT
time series) using the same log-linear fitting approach but with only two echoes
(TE = 31.7 ms and 49.5 ms), also in accordance with Beissner et al. (2010), and
found that the activation extent, effect sizes and T-statistic values all decreased for
the T2* time series compared to the original single echo time series. In contrast,
we observe that the effect sizes calculated from the T2*FIT time series increase,
while the related T-statistic values decrease (indirectly preempted by the decrease
in tSNR). This difference in the change of the effect size with respect to Echo 2
might be explained by the use of three echoes in our calculation of the T2*FIT
time series, instead of two echoes, that could result in reduced accuracy of the
T2* estimates. This hypothesis can, in fact, be tested using the current rt-me-fMRI
dataset, although that is considered beyond the scope of this work.

The T2*FIT time series also consistently yielded the largest functional contrasts
in terms of differences in task vs. baseline amplitudes in tPSC signals calculated
from offline and real-time data. As an example, we observe an 87.91% increase in
mean PSC (T2*FIT compared to Echo 2) for the FWE-OR region of the fingerTapping
task, and increases in functional contrast for the same task and region of 100%
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and 293%, respectively for offline and real-time scenarios. Interestingly, functional
contrast for the real-time calculated tPSC signal showed an increase above the
functional contrast calculated from offline data. The main mathematical difference
in real-time vs offline approaches that this could be ascribed to is the cumulative
calculation vs offline calculation, especially as regards the mean (cumulative base-
line mean vs full time series mean). Beyond the functional contrast, the temporal
contrast-to-noise ratio of the real-time tPSC signals were calculated to control for
relative signal fluctuations, especially considering the low tSNR of T2*FIT. Even
so, the T2*FIT time series consistently yielded the largest tCNR increase above
Echo 2 for all tasks (e.g. 97.78% for the fingerTapping task), suggesting its benefits
for improving BOLD sensitivity in real-time use cases.

This apparent contradiction of low tSNR versus high offline PSC and high
real-time tCNR is worth exploring. Theoretically, we should expect an increase in
BOLD sensitivity when analysing quantified T2* fluctuations versus fluctuations
in single echo image intensity, since the separation of T2* and S0 should remove
(to a considerable extent) system-level, inflow, and subject-motion effects from the
T2*-signal. What is left in the form of voxel-based T2*FIT-values would then the-
oretically be more indicative of local neuronal activity than information derived
from single echo data, assuming noise from the fitting procedure and other con-
founding factors do not attenuate this contrast substantially. Kundu et al. (2017)
suggested that, even given a noisy fitting procedure, direct T2* and S0 fitting can
be valid for separating low-frequency BOLD changes, while not ideal for higher
frequency modulations that could alias with fitting error variations. In the task
and ROI signal analyses presented here, as well as in the intended offline and real-
time use cases of the presented methods, ON/OFF block paradigms generate slow
BOLD changes where volume-to-volume fluctuations are averaged out to generate
summary measures. This could explain, in part, the absence of detrimental effects
resulting from the low tSNR. We also note that several levels of spatial smoothing
applied to the real-time use case (whole volume spatial smoothing, followed by
in-ROI voxel averaging) are bound to increase the tSNR of the ROI signal from
which the tCNR is calculated. This likely counteracts the low tSNR of the T2*FIT
time series that conversely attenuates T-values in the offline use case. Addition-
ally, acquisition parameters can have important influences on signal noise and
parameter fitting error. Large voxel sizes (in this case 3.5 mm isotropic) are known
to increase SNR and can be a contributing factor to the promising result reported
in this work.

In terms of practical applicability to real-time fMRI research, we have shown
the usefulness of multi-echo for real-time use cases in a 28-person dataset with
several functional task designs. We demonstrate that real-time T2*FIT-weighted
combination yields brain wide mean tSNR increases and improves signal recovery
in regions affected by dropout, compared to single echo and other combined multi-
echo time series. We show additionally that the real-time T2*FIT time series yields
large functional contrast and tCNR increases compared to single echo or com-
bined multi-echo time series. These improvements could benefit both real-time

148



C
ha

pt
er

8

8.5. Discussion

brain wide connectivity measures and real-time region-based signals, respectively,
showing the possible utility for studies on adaptive paradigms and neurofeed-
back.

Lastly, we have shown that real-time multi-echo processing, specifically rapid
T2*-mapping and subsequent multi-echo combination is technically viable and
practically supported. The software tools generated through this work (and shared
with the community) support several per-volume or real-time multi-echo process-
ing operations, including real-time 3D realignment of multi-echo data, real-time
estimation of multi-echo decay parameters, real-time multi-echo combination us-
ing several weighting schemes, and multiple standard real-time preprocessing
steps. It provides a practical toolkit for exploring real-time multi-echo fMRI data
and for comparing the effects of acquisition and processing settings on BOLD
sensitivity in individuals. Additionally, the interactive browser application allows
easy access to the results10, while the provision of supporting material and code11

allows the presented results to be reproduced and allows replication attempts to
be conducted on future datasets.

8.5.2 Limitations and future work
It remains important to consider caveats before further implementations and in
order to direct future work. To start, we note that the rt-me-fMRI dataset does
not include field maps and consequently no field map-based distortion correction
steps were applied. To counter this absence, the alignments of the anatomical
mask, as well as the derived tissue segmentation masks, and the EPI data were
visualised, inspected and the overlap was found acceptable.

As regards the acquisition of a resting-state run from which to estimate T2*
before the start of a real-time session, future work could look into other acquisition
types to improve the quality of prior T2*-maps. For example, sequences like multi-
echo GRE or ME-MP2RAGE (Metere et al., 2017; Sun et al., 2020), or multi-echo
EPI sequences with a longer TR and more echoes, can all yield a more accurate T2*
estimation. Further changes to the acquisition strategy of the real-time runs may
also benefit future applications. We mentioned voxel sizes above, but other aspects
like increases in the number of receive coils, improvements in the implementation
of acceleration techniques such as GRAPPA or SENSE, and field strength increases
can all lead to lower levels of volume-to-volume noise and subsequent parameter
estimations.

Regarding the exploration of tSNR improvements in multi-echo-derived data
versus single-echo data, we note that these improvements can stem from different
sources. For example, tSNR increases due to multi-echo weighting can originate
from signal recovery (i.e. the mean signal owing to the first echo) or decrease
of noise fluctuations due to the averaging. Additionally, tSNR changes could be
different across brain regions and tissue types (for instance from grey versus white

10https://rt-me-fmri.herokuapp.com/
11https://github.com/jsheunis/rt-me-fMRI
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matter or CSF). Further work to delineate the exact origin of spatial variations of
such tSNR improvements will allow future applications to gain use-case-specific
benefits. Such investigations should also look closely at changes accompanying
different acquisition strategies highlighted above.

In the described preprocessing pipeline, probabilistic cytoarchitectonic maps
in MNI152 space (from Eickhoff et al., 2005) were co-registered to the subject
functional space to create subject-specific regions of interest. It should be men-
tioned that these are less subject-specific than alternatives derived from individual
anatomical features (such as those generated by the freesurfer software package),
which points to an option for future improvement. Furthermore we note as did
Clare et al. (2001), that the selection of the region of interest within which to
investigate activation effects, functional contrast, tSNR and more, can increase
the variability of results and subsequent inferences. This issue was evaluated
here considering three different ways of delineating the region of interest: FWE,
FWE-OR, and atlas-based, and we observed attenuation of effect sizes, T-values
and functional contrast as regions become less spatially matched to participants’
functional activation localisation. This is particularly important for the real-time
neurofeedback context, where a predefined subject-specific region of interest is
often required to enable real-time region-based signal extraction. This concern
about variability in the performance due to ROI definition extends to the imple-
mentation of real-time denoising steps as well, as noted in our previous work on
denoising steps in neurofeedback studies (see Chapter 3; Heunis et al. (2020c)). In
the current study, we intentionally implemented a minimal real-time processing
pipeline to avoid confounding the results.

As summarised in the results discussion above, standardised effect sizes re-
sulting from task analysis of all multi-echo combined time series were very similar
in size and distribution, and on average much lower than that of the T2*FIT time
series. This phenomenon could benefit from follow-up confirmatory analyses in
a future study. Another claim that could be usefully extended into a follow-up
investigation is the decision to include all participants in the study irrespective
of the amount of motion in their data. As an example, some multi-echo combina-
tion schemes may be more or less robust to head motion, and the inclusion of all
subjects would allow investigating such variations in higher versus lower motion
subjects. Lastly, a key next step for extending the investigation of multi-echo use
in offline task analysis is to examine activation clusters in more detail. This work
looked at PSC and T-values in specific regions, but an important question to test
would be whether multi-echo combined or derived times series yield activation
clusters in new or unexpected brain regions, or how they affect existing activation
clusters in terms of effect size and extent. The supplementary web-application can
also be seen as an evolving resource where other useful metrics, results and visu-
alisations can be added in future. Examples of such additions include pairwise
percentage differences in comparison metrics between the different multi-echo
combined and derived time series and Echo 2; investigations into new or vary-
ing activation clusters resulting from multi-echo time series; or any other aspects
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covered here as future work.
While the presented benefits of multi-echo fMRI for real-time experiments are

promising, further work is necessary to quantify the effects of a full multi-echo
and real-time denoising pipeline on BOLD sensitivity and data quality. Taking
into consideration the caveats discussed here, we advise researchers planning real-
time fMRI studies to design and conduct effective pilot studies and to evaluate
the effects robustly before deciding on the optimal multi-echo implementation
settings.
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What started in the introduction as an abstract exploration of mind reading and
the promises that it might hold, ended up as a multitude of pages of informa-
tion constituting the topics of this thesis: real-time functional magnetic resonance
imaging, neurofeedback, scanner hardware setup, quality control metrics, open
source software developments, newly acquired datasets, novel acquisition and
processing methods, and ultimately increased sensitivity in real-time brain imag-
ing. So did we achieve what we set out to do? What did we learn in the process?
What has this contributed to our field? And where do we go from here? In this
final chapter, these questions will guide our discussion.

To provide fresh context for this discussion, let us first revisit the background
and problem statement of this thesis. Breaking down the complexities of the
human mind in order to understand and develop treatments for neurological or
psychiatric conditions is an ongoing challenge in neuroscience research and global
healthcare. If we are going to make a practical difference in our understanding
of these complexities, and ideally in the lives of those who suffer from mental
health conditions, we have to rigorously and critically question and ensure the
quality of our own scientific measures, methods, and inferences. Real-time func-
tional magnetic resonance imaging is an advanced method that shows promise
in allowing us to probe and explore the human mind in a virtual, real-time and
non-invasive manner. But how well do we understand this technology and its
practical implications? Can we trust its measures and the inferences we draw from
them? What can and should we do to improve the quality of real-time fMRI?

Data quality has received little attention in the field of real-time fMRI, while the
drawbacks of fMRI and the effects of not accounting for them, on the other hand,
are well known. This discrepancy is substantiated by a notable absence of methods
for improving real-time fMRI data quality and an absence of practices for methods
reporting in the literature. This absence prevents a thorough, community-wide,
understanding of real-time fMRI data quality and aspects that might influence, or
better yet, improve it. Consequently, adoption of improved methods lags behind
in practice, since a lack of understanding and validation hinders implementation
at the level of hardware and software tools. Multi-echo fMRI is a core example: its
benefits for conventional fMRI are documented, but it is hardly used in real-time
applications. In order to validate its possible benefits for improving the quality of
real-time fMRI, it requires a thorough understanding, new methods development
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for real-time use cases, toolset implementations, novel datasets, and validation
experiments.

With this as background, we now discuss the findings and contributions of
this work in line with the three high-level themes and their respective research
questions.

9.1 Understanding real-time fMRI data quality

RQI.1: Can we provide a comprehensive review of existing methods for improving the
quality of real-time fMRI?

RQI.2: What does an improved understanding reveal about the state of real-time qual-
ity control methodology and reporting? Do proven signal processing methods exist for
removing noise sources that are not of interest? Are there standardised quality control
measures and ways to report them?

RQI.3: If our understanding, denoising methodology and reporting practices are lack-
ing, which measures can be introduced to improve the research community’s understand-
ing and implementation of improved data quality?

Chapter 2 provided a comprehensive background for understanding the chal-
lenges to real-time fMRI related to BOLD sensitivity. The drawbacks of conven-
tional single-echo functional MRI sequences were explained, including acquisition
aspects such as signal dropout and suboptimal brain-wide T2*-weighting, as well
as subject related aspects such as movement, respiration and cardiac activity. Real-
time fMRI is well-positioned to provide practical interventions for improving
BOLD sensitivity, i.e. for mitigating the effects of the aforementioned drawbacks
such that neuronal activity is more likely linked to the BOLD signal, and to lead to
time savings, cost savings, and a general improvement in the quality of functional
MRI data. Real-time multi-echo fMRI, in particular, showed promise due to the
ability of multi-echo fMRI to separate BOLD and non-BOLD effects and to provide
optimal brain-wide T2*-weighting. However, in order to achieve a level of confi-
dence in real-time fMRI and its ability to improve data quality, its methods needed
to be thoroughly understood. Which steps do researchers employ when denoising
the fMRI signal in real-time, and how are these reported? Do we have a set of
evaluated and established quality control metrics that can serve the fMRI com-
munity and improve through iterative contributions? And can such metrics and
their reporting help us to improve the computational reproducibility and eventual
assessment of replicability of studies employing real-time fMRI methods?

Chapter 3 investigated these questions in a methods review of 128 real-time
fMRI neurofeedback studies. Our results showed high variability in the reporting
of preprocessing methods that are considered to be standard in real-time fMRI,
with less than a third of the studies reporting steps like spatial smoothing and
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temporal smoothing, and less than half reporting the use of drift removal. Such
variable reporting standards not only hinders computational reproducibility, but
also casts doubt on what exactly is contained in the real-time fMRI signal and on
our consequent ability to assess interventions such as neurofeedback adequately.
Attempting to mitigate the effects of this problem, i.e. to improve our ability to
delineate the sources of variance in the real-time BOLD signal, our work resulted
in a COBIDAS-style checklist (see Appendix B1) for researchers to report the
implementation of a set of standard real-time fMRI denoising and quality control
steps. As with the original COBIDAS checklist (Nichols et al., 2017), this list not
only allows thorough reporting of most current real-time denoising and quality
control methods so as to ensure methods reproducibility, it is also a valuable
resource for researchers to learn about current state of the art. Additionally, the
set of quality control measures can form the basis of a common set of standards
for the methods community to implement and contribute to.

Chapter 3 went on to identify a need for methodological studies quantifying
and comparing the contribution of denoising steps to the neurofeedback signal
quality, and more generally that there is room for developing new and improved
real-time fMRI sequences and denoising methods. Suggestions were also made
for researchers to strive to adopt transparent practices in the form of methods and
data sharing and to support open-source real-time fMRI software projects, as few
examples of such practices were found in literature.

A core focus for this thesis was consequently determined both by real-time
multi-echo fMRI showing potential as a means of improving real-time BOLD
sensitivity, and by the methods review indicating a need for novel sequences and
analysis methods to achieve the same. To allow a comprehensive exploration of
the usefulness of multi-echo fMRI for improving real-time data quality, however,
the hardware and software requirements first had to be fulfilled.

9.2 Hardware and software for real-time fMRI analysis and qual-
ity control

RQII.1: Can we implement the infrastructure on the scanner level to allow the transfer
and processing of (multi-echo) fMRI in real-time?

RQII.2: Can we implement real-time quality control methods on a software level to
provide the research community with a tool for methods standardisation and quality con-
trol and improvement?

RQII.3: Can we develop and implement novel algorithms for processing multi-echo
fMRI data in real-time, allowing validation experiments to be conducted?

1Available online at: https://osf.io/kjwhf/
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Chapter 4 demonstrated that, as a first step, it is achievable to set up the techni-
cal scanner and software infrastructure to acquire, transfer, process and visualise
whole-brain fMRI data in real-time. The Neu3CA-RT framework was built using
a Philips 3T Achieva scanner and MATLAB and SPM12-based software with the
aim of advancing scientific knowledge on real-time cognitive brain activity and
to promote its translation into clinical practice. This framework allowed a full
processing cycle to be applied for each acquired single-echo volume (every 3 s
in the demonstrated cases), which included processing steps such as: file type
conversion to NIfTI format, 3D volume realignment, trend removal, spatial GLM
analysis, mapping GLM beta parameters to the BrainMap behavioural space, and
displaying results in a graphical user interface.

Of course, demonstrating viability does not equate to demonstrating state of
the art, which is why Chapter 4 noted several shortcomings of the implemented
framework. First and foremost, this included the processor implementation and
programming language, which were not optimised for processing speed. While the
use of MATLAB on a single (multi-core) processor benefits the developer in terms
of prototyping capability and ease of use, converting to a parallelised or GPU
framework and using lower level compiled programming languages, or at least
optimising the performance of MATLAB code, will benefit the application greatly
in terms of processing speed. More processing time would allow for the inclusion
of additional per-volume preprocessing steps, addressing further concerns such as
low data quality due to insufficient denoising. Faster processing would also allow
the framework to be used for applications requiring increased brain coverage,
higher spatial resolution, higher temporal resolution (i.e. lower repetition time),
and high-demand visualisation options.

While the framework implemented a spatial GLM approach to real-time analy-
sis, any of a multitude existing or future methods are possible. Functional connec-
tivity (through causal modeling or correlative approaches), network analysis, sig-
nal decomposition, and multivariate pattern analysis are all popular approaches
used in offline computational neuroimaging, and porting such methods into a
real-time framework should be considered inevitable. Improving the performance
of the Neu3CA-RT framework, while ideally retaining the ease of prototyping,
would allow these methods to be implemented for real-time applications.

While the framework described in Chapter 4 was not yet tested with multi-echo
data, the proof of concept served as a useful starting point for further develop-
ments, especially for prototyping real-time quality control approaches. Chapter
5 described the successful demonstration of rtQC, a MATLAB and SPM12-based
open-source toolbox for real-time fMRI quality control, with a focus on highlight-
ing quality issues between the offline and real-time variants of fMRI data as well as
real-time visualisation of quality control metrics. Implemented metrics included a
real-time display of framewise displacement (FD), temporal signal-to-noise ratio
(tSNR), voxel-based and spatially averaged Z-score, region-based signals, and a
real-time 2D representation of voxel intensity fluctuations over time. Additionally,
per-volume motion-outliers were classified and visualised in real-time using the
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per-volume framewise displacement value and a predefined threshold. Based
on the performance improvement recommendations from Chapter 4 that were
mentioned here, rtQC’s implementation included updated real-time volume re-
alignment and spatial smoothing algorithms to speed up processing time.

Apart from being useful as a software toolbox that can identify data quality
issues as they are acquired, rtQC is also intended as a community tool to promote
the use and continued development of best practices for real-time fMRI quality
control. It provides the functionality for calculating the most widely used quality
metrics, while providing the open-source code and prototyping capability for
developers to add more community-driven features. Suggestions for additional
features include real-time DVARS, global signal, global signal correlation, and
more metrics and visualisations from widely used community tools such as fm-
riprep (Esteban et al., 2019) and MRIQC (Esteban et al., 2017). Additionally, the
same suggestions relating to performance drawbacks mentioned for Neu3CA-RT
apply to rtQC, and improvements to code structure and documentation will make
the tool more accessible and will encourage further use. These suggestions were
taken into account with the development of fMRwhy.

As the third contribution to hardware and software tools for fMRI analysis
and quality control, Chapter 6 covered what should be viewed as the culmination
of the offline and real-time fMRI analysis experience gained over the course of
this project. fMRwhy is positioned as a MATLAB- and SPM12-based toolbox with
a variety of helper functions and BIDS-compatible workflows to assist researchers
with their reproducible fMRI analysis journey. We noted in Chapter 6 that aspects
such as standardised data manipulation, interoperability, workflow automation,
and reproducible analysis pipelines are lacking in MATLAB-based compared to
Python-based neuroimaging projects. fMRwhy’s goal was to make such develop-
ments available to fMRI researchers using SPM12 and MATLAB. More specific
to the applications in this thesis, it contains both modularised functionality for
the processing of real-time and offline multi-echo fMRI data as well as full-length
automated pipelines for quality control and reporting, both of which contributed
substantially to the novel developments described in Chapters 7 and 8 (discussed
shortly). Additional strong features of fMRwhy that contribute to its accessibility
and reuse are its comprehensive and open code base2 and API documentation3.

It should be noted that fMRwhy is not, nor is it intended to be, a fully-fledged
fMRI analysis package. Chapter 6 noted that it would not suffice as a replacement
tool for the likes of SPM12, FSL, fmriprep, AFNI, or their constituent functionality.
It is better positioned as an auxiliary tool for MATLAB and SPM12 users who work
with BIDS-formatted fMRI datasets and who want to: 1) generate automatic, user-
friendly quality reports, 2) build reproducible SPM12-based processing pipelines,
3) preprocess multi-echo fMRI data, 4) build/test real-time analysis pipelines, or
5) use auxiliary tools for fMRI visualisation and image manipulation. The project

2https://github.com/jsheunis/fMRwhy
3https://fmrwhy.readthedocs.io/
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is also an ongoing effort, with community contributions encouraged to improve
documentation and function modularity, and to develop and add new quality
control and multi-echo analysis steps.

In summary, Chapters 4, 5 and 6 documented the staged development of open
and accessible tools for real-time analysis, quality control and multi-echo pro-
cessing. Each chapter highlighted shortcomings of the relevant tool that were
addressed in part by the subsequent chapters, and each tool was developed using
the cumulative experience gained over time, resulting in a toolset that provides
an open code base for real-time, multi-echo fMRI analysis and quality control.

9.3 Real-time multi-echo fMRI

RQIII.1: As a starting point, can we design and collect a novel, real-time multi-echo
dataset that will allow the exploration and development of improved signal processing
methods? Can we annotate and structure such datasets so as to ensure interoperability
with standard tools and pipelines? And can we share this data publicly while still priori-
tising research ethics and the personal data privacy of data participants?

RQIII.2: Given that no comparable literature exists, can we explore and report possible
BOLD sensitivity improvements with real-time multi-echo fMRI? How do newly devel-
oped methods perform against current state of the art or conventional offline multi-echo
fMRI methods?

RQIII.3: Can we consequently derive preferred multi-echo methods for improving real-
time fMRI data quality and develop these into publicly available pipelines for community
use and contribution?

The last part of the thesis focused on the promising research avenue: multi-
echo fMRI for improving BOLD sensitivity in real-time and offline scenarios.
Chapters 2 and 3 presented ample evidence for the benefits of multi-echo over
single-echo T2*-weighted data, and its relatively unexplored nature in real-time
use cases prompted its focus for this thesis on the quality of real-time fMRI.

The first step was to design an appropriate experiment to capture multi-echo
data for a representative set of task-based and resting state use-cases, so as to allow
the development and exploration of real-time, multi-echo processing methods for
general real-time applications. Chapter 7 described how this was achieved in the
form of rt-me-fMRI4, a multi-echo fMRI dataset (28 healthy participants) with four
task-based and two resting state runs as well as cardiac and respiratory data that
were collected, curated using the BIDS standard, and made available to the com-
munity. A very strong element of this open dataset is the comprehensive descrip-
tion of methods used to collect and curate it, including details about: experimental

4Available online at: https://dataverse.nl/dataverse/rt-me-fmri
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design, acquisition parameters, raw data preparation and standardisation, data
preprocessing, quality control measures, and data validation measures. Further
valuable resources accompanying the rt-me-fMRI dataset include a web-based
application5 that allows interactive exploration and visualisation of the data and
its derivative measures, and supporting information and code for reproducibility
and reuse6. These resources provide fMRI researchers with the necessary support
not only to reproduce the derivative data, but to help advance the development of
methods for real-time multi-echo fMRI analysis. Additionally, the variety of func-
tional activation paradigms (finger tapping, emotional face and shape matching,
imagined finger tapping and imagined emotion processing) supports a multitude
of use cases covering regions across the whole brain.

Thoughtful consideration was given to the privacy of data participants during
the process of curating, processing and sharing the rt-me-fMRI dataset. In the
interest of transparency and reproducibility of scientific results, data sharing is a
desirable outcome; on the other hand, personal data privacy of individuals should
not be compromised by sharing identifiable information. In the European Union
in particular, where the strict General Data Protection Regulation (GDPR) is in
effect to govern personal data privacy, extreme care should be taken to ensure that
data sharing practices remain GDPR compliant. Consequently, an approved work-
flow was followed to minimise the risk to data participants, including: following
best practices to de-identify brain images (e.g. removing personally identifiable
information from image filenames and metadata and removing facial features
from T1-weighted images), converting the data to BIDS format, employing a Data
Use Agreement7, and keeping participants fully informed about each of these
steps and the associated risks and benefits. The procedural knowledge gained
throughout this process was contributed in turn to the collaborative and open-
source Open Brain Consent project (Bannier et al., 2017), thus making it accessible
to and reusable by the fMRI community.

The first use of the rt-me-fMRI dataset was covered in Chapter 8, which rep-
resents the culmination of all knowledge and findings presented in this thesis:
the first comprehensive evaluation of the effects of multi-echo fMRI combina-
tion and rapid T2*-mapping on offline and real-time BOLD sensitivity. Citing a
lack of recent systematic comparisons of existing multi-echo combination strate-
gies, Chapter 8 compared six different approaches derived from multi-echo data:
a single-echo time series (based on Echo 2), the real-time T2*-mapped time se-
ries (T2*FIT) and four combined time series (T2*-weighted, tSNR-weighted, TE-
weighted, and a new combination scheme termed T2*FIT-weighted). The results
showed that the T2*FIT-weighted combination yielded the largest increase in tem-
poral signal-to-noise ratio across task and resting state runs, and results demon-

5https://rt-me-fmri.herokuapp.com/
6https://github.com/jsheunis/rt-me-fMRI
7Available online at: https://github.com/jsheunis/rt-me-fMRI/blob/master/DUA.

md
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strated additionally for all tasks that the T2*FIT time series consistently yielded
the largest offline effect size measures and real-time functional contrasts. These
findings support the theoretical backdrop, in that increases in BOLD sensitivity
should be expected when analysing quantified T2* fluctuations versus fluctua-
tions in single echo image intensity. This is because the separation of T2*- and
S0 should remove system-level, inflow, and subject-motion effects from the T2*-
signal to a considerable extent, and what is left in the form of T2*FIT-values would
then be more indicative of local neuronal activity than information derived from
single echo data. As a caveat, this assumes that noise from the mono-exponential
fitting procedure and other confounding factors do not attenuate this contrast
substantially, which is a valid concern given the reported decrease in tSNR of the
T2*FIT time series.

Even with the mentioned drawbacks, Chapter 8’s encouraging findings demon-
strated the promises of multi-echo fMRI for real-time use cases, which led to the
recommended use and suggested continued exploration of T2*FIT, i.e. rapid T2*
mapping, for offline and real-time fMRI analysis. Along with these findings, fur-
ther outputs of the real-time multi-echo study were the newly developed open-
source processing algorithms for multi-echo fMRI, which to our knowledge were
the first to be made available for MATLAB users. These include MATLAB and
SPM12-based algorithms for offline and real-time realignment of multi-echo data
to a preselected template volume or echo, as well as methods for multi-echo param-
eter estimation (T2* and S0) and all previously mentioned multi-echo combination
strategies. All newly developed processing and software methods form part of
the fMRwhy software tool, while all results of the multi-echo methods study were
included in the interactive web-based application8 to allow exploration and visu-
alisation. As with Chapter 7, supporting information and code for reproducibility
and reuse were made available9.

9.4 Conclusions, limitations and future work
The results discussed in this chapter showed that we addressed the core research
questions of our three high-level themes. To summarise, we:

Part I

Developed a comprehensive understanding of real-time fMRI signal quality, iden-
tified the shortcomings of real-time denoising pipeline implementation and re-
porting, identified the need to develop novel sequences and methods to improve
BOLD sensitivity in real-time, and identified the potential of real-time multi-echo
analysis.

8https://rt-me-fmri.herokuapp.com/
9https://github.com/jsheunis/rt-me-fMRI
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9.4. Conclusions, limitations and future work

Part II

Developed a set of three open-source software tools and one real-time hardware
integration to advance the use of real-time fMRI quality control standards and to
enable real-time multi-echo analysis and automated quality control reporting.

Part III

Collected, curated and shared a multi-echo fMRI dataset, developed and shared
the required real-time multi-echo processing algorithms, demonstrated the supe-
riority of multi-echo combination for real-time BOLD sensitivity increases, and
recommended the continued use and exploration of rapid T2* mapping for real-
time use cases.

So did we achieve what we set out to do? In short, and as was just described in
detail, yes. How well do we understand this technology and its practical implications?
Before this attempt at consolidating literature and practice and generating new
knowledge on the quality of real-time fMRI, little other efforts have been reported.
Now, after considering the information provided in Chapters 2 and 3, we have
formed a comprehensive understanding of the topic. Can we trust real-time fMRI
measures and the inferences we draw from them? Not at face value and not without
carefully considering the knowledge curated and recommendations made in this
thesis. What can and should we do to improve the quality of real-time fMRI? Succinctly:
(1) carefully consider and report the inclusion or exclusion of each processing
step in the real-time analysis pipeline; (2) draw from community-contributed
standards and methods for real-time quality control and use a tool to calculate
and report these measures together with study results; (3) opt for the use of multi-
echo fMRI if a sequence is available and all other experimental parameters are
satisfied; (4) contribute to the continued exploration, development and testing of
rapid T2*-mapping using real-time multi-echo fMRI; (5) prioritise transparency
and reproducibility whenever possible such that the data, methods and software
can be shared together with a study’s results; and (6) always run pilot studies first.

So then, where do we go from here? While various specific limitations and rec-
ommendations were already covered in each respective results section in this
chapter, here we focus on general limitations and future work. It is evident that
this thesis made substantial contributions of practical value, but the jury is still out
on the uptake of said contributions. How useful is the COBIDAS-style checklist
to report the implementation of a set of standard real-time fMRI denoising and
quality control steps? Does rtQC and its quality metrics and visualisations help
researchers to save time and money and to improve the quality of their data? Are
researchers opting for real-time multi-echo over single-echo fMRI acquisition and
processing? Without the use of such methods and participation by the community,
and the inevitable feedback that such interactions will generate, the impact of
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such contributions are difficult to quantify in the short term. In this regard, open
development frameworks (such as GitHub or GitLab) will have to be used to track
contributions and downloads as a proxy for uptake, aside from more conventional
metrics such as publication citations.

In addition to focusing on uptake, care should be taken to improve the ac-
cessibility, ease of use, and potential for community-contributed growth of the
developed software tools and methods. These aspects can flourish when sup-
ported by established software engineering and project maintenance principles
such as comprehensive and automated documentation, automated testing, con-
tinuous integration, avenues for issue logging and resolution, open contribution
guidelines, and open communication platforms. If such procedures are imple-
mented and maintained, ongoing development of features that reflect the interests
of the community would be easy to prioritise. This would inherently accommo-
date further exploration of methods that were left unexplored in this thesis, such
as the use and usefulness of cardiac and respiratory data together with real-time
multi-echo processing; or a comparison of the effects of including/excluding a
variety of standard preprocessing steps on real-time BOLD sensitivity; or contin-
ued exploration of multi-echo combination and rapid T2*-mapping for real-time
use cases of functional connectivity, network measures, and multivariate pattern
analysis.

Whatever the future use case, the contributions made in this thesis resulted in
an open real-time multi-echo fMRI dataset and open software tools with which to
process this data in a myriad of ways. The transparent and reproducible ground-
work has been laid to allow the use of novel data, sequences, software and signals
to further our understanding of the human mind, and what is left is but for the
interested researcher to accept the invitation and start exploring. Perhaps in that
way, together, we can systematically conquer this ultimate challenge, piece by
piece, and build up the theory and evidence we need to improve global mental
health.
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A Real-time fMRI processing
methods

A.1 Context
Chapter 3 provided a comprehensive review of methods reported in real-time
fMRI neurofeedback literature and used in studies to improve the quality of the
real-time signal. To aid the reader’s understanding and guide future use of these
methods, Table A.1 in this Appendix summarises the most often reported real-
time processing methods. In addition, Table A.1 provides context for analogous
methods in conventional fMRI analysis, how the real-time methods differ from
their offline counterparts, and recommendations for deciding on implementation.

A.2 Real-time fMRI processing methods
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Table A.1 — A summary of real-time fMRI processing methods

Conventional method Real-time method Differences / notes Reporting suggestions
0. Example processing step
Standard method(s) used in conventional of-
fline fMRI processing

Methods most often used or reported in real-
time fMRI and neurofeedback signal process-
ing

Main distinctions between offline and online/real-
time methods, with additional notes

Recommendations on the use of the reported real-time methods, whether
to implement them or not, and additional relevant information

1. Slice timing correction
Various interpolation methods Various interpolation methods No algorithmic differences, as both are done on

a per-volume basis
Generally recommended for TR ≥ 2s

2. 3D volume realignment
6 degree of freedom rigid body transfor-
mation of whole brain data

6 degree of freedom rigid body transfor-
mation of whole brain data • No algorithmic differences, as both are done

on a per-volume basis
• Template EPI for real-time = previously col-

lected EPI volume
• Template EPI for offline = first volume of

time-series or mean EPI

Always recommended

3. Spatial smoothing
3D Gaussian smoothing kernel with a
specified FWHM, applied to whole or
masked brain data

3.1) 3D Gaussian smoothing kernel with
a specified FWHM, applied to whole or
masked brain data

No algorithmic differences, as both are done on
a per-volume basis • Typically recommended to increase SNR for all except MVPA-

based neurofeedback methods or when using small ROIs (e.g.
amygdala)

• Recommended kernel size depends on acquisition parame-
ters amongst multiple other factors

3.2) Averaging voxel values within a pre-
specified ROI

Kernel-based smoothing versus basic averag-
ing

Typically recommended to allow calculation of a 1D neurofeed-
back signal from 3D data

4. Drift removal and frequency filtering

• Various algorithms for (mostly) high-
pass filtering, e.g. a cosine basis
set as GLM regressors (SPM) or
a Gaussian-weighted running line
smoother (FSL). Typically applied to
whole or masked brain data.

• Low-pass, band-pass or other types of
filtering typically applied as part of
GLM.

4.1) Incremental GLM (iGLM) with fil-
tering regressors e.g. a cosine basis set
and/or a linear trend regressor

• GLM applied to full offline data versus real-
time iGLM

• Whole brain offline drift removal (filtering)
versus drift removal from 1D neurofeedback
signal in real-time

• Drift removal is always recommended
• Piloting suggested to determine the method best suited for

the data
• Kopel et al. (2019) recommend a sliding window iGLM algo-

rithm with standard cosine basis set
• PSC calculation is always with reference to a baseline. Thus,

inherent drift removal through baseline subtraction is recom-
mended; if not a global mean, then least ROI-based; if not cu-
mulative, then at least based on the preceding baseline (non-
regulation) block.

4.2) Exponential moving average (EMA)
filter • No algorithmic differences if applied as dig-

ital filter that takes only history into account
• Whole brain offline drift removal (filtering)

versus filtering of 1D neurofeedback signal
in real-time

Continued on next page
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Table A.1 – continued from previous page
Conventional method Real-time method Differences / notes Reporting suggestions

4.3) Inherent baseline drift removal
through subtraction of cumulative global
mean from ROI signal during PSC calcu-
lation

Mostly limited to real-time application because
of PSC calculation for neurofeedback. See re-
lated: global signal regression in 6 below.

5. Temporal filtering or averaging
Typically, this is an implicit result of fil-
tering as described above

5.1) Moving window time-point averag-
ing of 1D neurofeedback signal

Standard offline filtering versus online 1D sig-
nal time-point averaging (comparable to EMA
filter)

• No algorithmic differences if applied as digital filter that takes
only history into account

• Whole brain offline drift removal (filtering) versus filtering of
1D neurofeedback signal in real-time

An AR(1) filter is typically, and explic-
itly, applied to address autocorrelation in
fMRI time-series data

5.2) AR(1) filtering in real-time has been
reported but seldom implemented.

No algorithmic differences if applied as digital
filter per time-point that takes only history into
account

Piloting suggested to determine if AR(1) filtering is useful in ad-
dition to and/or influenced by other standard temporal smooth-
ing and filtering steps

6. Nuisance regression (excluding physiological noise removal)
Various 1D data traces are often included
as nuisance regressors in offline GLM
(typically applied to whole or masked
brain data) including:
• Head movement parameters (HMPs)
• Volterra expansion of HMPs
• Tissue compartment signal averages

(CSF, WM, GM)
• Global signal

Incremental GLM (iGLM) with minimal
filtering regressors e.g.:
• Head movement parameters (HMPs)
• Tissue compartment signal averages

(CSF, WM, GM, global)

• GLM applied to full offline data versus real-
time iGLM

• Whole brain offline nuisance regression, ver-
sus nuisance regression from 1D neurofeed-
back signal in real-time

• Piloting suggested to determine which nuisance regressors
are best suited for the data

• Over specification of design matrix (i.e. too many regressors)
is not recommended, as iGLM parameter estimates will be
noisy and will take considerable time to stabilise (see Misaki
et al., 2015)

• Global signal regression is controversial in offline and real-
time fMRI analysis and should be piloted and well justified

7. Outlier or spike removal
”Scrubbing” low quality EPI volumes (re-
moving, replacing, averaging) based on a
variety of quality metrics, e.g.:
• Framewise displacement
• DVARS
• Standard deviation
• Z-score
• Other
Could be incorporated as an additional
scan-nulling regressor in offline GLM

7.1) Possibility to do real-time scan-
nulling as part of iGLM, e,g, through real-
time outlier detection based on a prede-
fined framewise displacement threshold

• GLM applied to full offline data versus real-
time iGLM

• Whole brain offline nuisance regression, ver-
sus nuisance regression from 1D neurofeed-
back signal in real-time

• Detection thresholds set based on statistical
properties of full dataset or group data, ver-
sus requirement for predefined threshold for
real-time detection

• Piloting suggested to determine if outlier removal is useful,
and whether other existing filtering methods (e.g. iGLM re-
gressors, EMA, temporal smoothing) could suffice

• Careful thought should be given to predefined detection
threshold if real-time outlier detection and scan-nulling is
considered

• Kalman filter parameters should be piloted, and defaults
should not be accepted as best for the data

7.2) Kalman filter that detects and re-
jects outliers based on irregular statistical
properties (Koush et al., 2012)

• Standard high/low/band-pass filtering is
typically used offline on whole brain data.

• Adaptive Kalman filter introduced for real-
time and implemented on 1D neurofeed-
back signal

Continued on next page

167



AppendixA

A
.

R
E

A
L

-T
IM

E
FM

R
I

P
R

O
C

E
S

S
IN

G
M

E
T

H
O

D
S

Table A.1 – continued from previous page
Conventional method Real-time method Differences / notes Reporting suggestions

8. Physiological noise removal
Physiological noise is typically modelled
using concurrent recordings of respira-
tion and heart rate, e.g. RETROICOR,
RVT, HRV. These are then used as nui-
sance regressors in the offline GLM ap-
plied to whole brain data.

8.1) Incremental GLM (iGLM) with addi-
tional filtering regressors e.g.:
• RETROICOR set
• Tissue compartment signal averages

(CSF, WM, GM, global)

• GLM applied to full offline data versus real-
time iGLM

• Whole brain offline nuisance regression, ver-
sus nuisance regression from 1D neurofeed-
back signal in real-time

• Piloting suggested to determine which nuisance regressors
are best suited for the data

• Over specification of design matrix (i.e. too many regressors)
is not recommended, as iGLM parameter estimates will be
noisy and will take considerable time to stabilise (see Misaki
et al., 2015)

• Given the additional technical challenge of processing physi-
ology traces in real-time, RETROICOR nuisance regression is
not recommended unless pilot data or new evidence suggest
otherwise

8.2) Differential ROI to (potentially) cor-
rect for global effects caused by respira-
tion

• An analogous step to real-time differential
ROI does not exist for standard offline anal-
ysis

• Differential ROI calculations are based on
1D ROI-averaged signals

• Piloting suggested to determine whether this is suited for the
data

• Care should be taken to ensure that task-relevant information
is not subtracted from the

• More evidence is to be gathered before this could be consid-
ered a recommended real-time processing step, or not

8.3) High frequency filtering or adaptive
Kalman filtering • Standard high/low/band-pass filtering is

typically used offline on whole brain data.
• Adaptive Kalman filter introduced for real-

time and implemented on 1D neurofeed-
back signal

Kalman filter parameters should be piloted, and defaults should
not be accepted as best for the data

9. Signal scaling
Global, proportional, and/or grand
mean scaling steps are often applied to
whole brain time-series data (e.g. prior
to 1st level analysis in SPM and FSL),
which typically allows the validity of
analyses between runs and subjects

Signal scaling is most often done on the
ROI-averaged 1D neurofeedback signal,
taking historical time-series values into
account. Scaling methods include:
• Temporal smoothing, as described

above in 5.
• Using a dynamically updated range

based on prior time-series data

Whole brain intensity scaling to allow com-
parisons across runs/subjects versus scaling
the 1D neurofeedback signal to prevent abrupt
changes to the display seen by the subject

• Real-time signal scaling for visual quality of the neurofeed-
back signal is recommended.

• The specific scaling method should be determined through
piloting

10. Model free denoising methods
Continued on next page
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Table A.1 – continued from previous page
Conventional method Real-time method Differences / notes Reporting suggestions

Principal and/or independent compo-
nent analysis is often applied to whole
brain time-series data in order to extract
statistically independent spatial compo-
nents. These components can be classi-
fied as noise sources and subsequently
regressed from the whole brain time-
series data. Examples include:
• MELODIC ICA
• ICA-AROMA
• aCompCorr
• Using a dynamically updated range

based on prior time-series data

Model free methods are generally not
reported in real-time fMRI analysis, al-
though examples exist (Esposito et al.,
2003).

ICA is generally time-consuming and requires
(without some form of regularisation) full
datasets in order to generate useful noise com-
ponents. This is a technical challenge for real-
time implementation.

ICA-based methods for real-time denoising are generally not rec-
ommended unless new algorithms are developed with accompa-
nying evidence that suggests otherwise

11. Offline quality checking
This offline step serves to report features
of the data that can be (often visually)
inspected and compared to thresholds
in order to assess the overall quality of
spatial and time-series aspects of whole
brain datasets. Useful tools and metrics
include:
• MRIQC
• QAP
• Framewise displacement
• DVARS
• Timeseries plots

For real-time fMRI, offline quality check-
ing steps are not standardised and hardly
reported. A minority of studies investi-
gate possible correlations between phys-
iology or motion traces and the neuro-
feedback regulation paradigm.

There would essentially be no difference be-
tween standard tools and metrics for offline
quality control of full datasets and post-hoc
real-time datasets, as long as it is done on data
as exported from the scanner in a standard way,
since real-time exported data might contain dif-
ferences.

Offline data quality checking and reporting is always recom-
mended, especially with regards to sources of variance that could
not sufficiently be corrected for in real-time but could still skew
the neurofeedback learning outcomes. Examples include:
• Reporting correlations between head movement parameters

and the neurofeedback regulation paradigm
• Reporting correlations between physiology traces (and de-

rived RETROICOR regressors) and the neurofeedback regu-
lation paradigm

• Implementing physiological noise correction in post-hoc anal-
yses
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B
COBIDAS-inspired reporting
template for processing and
quality control steps in real-time
fMRI

B.1 Background
Evidence presented in this thesis suggests a lack of accurate reporting of methods
used to calculate the real-time fMRI neurofeedback (rtfMRI-NF) signal. This hin-
ders methods reproducibility and raises concern about the quality of the rtfMRI-
NF signal in general. In the field of MRI research, similar concerns have been
approached by proposing best practice guidelines for the reporting and sharing of
methods and data, with the COBIDAS initiative being the prime example (Nichols
et al., 2017). Initial steps have been taken in rtfMRI-NF research to guide over-
all study method reporting (Ros et al., 2020), although this has not extended to
detailed steps in real-time processing of fMRI data.

B.2 Content
Table B.1 in this appendix contains a list of reporting suggestions to improve meth-
ods reproducibility in rtfMRI-NF studies, focusing on the real-time processing
steps implemented to calculate the neurofeedback signal. Table D.3 (Preprocess-
ing Reporting) of the COBIDAS guidelines was taken as the initial template for
the suggestions presented here , with changes made and additional categories
added to reflect the different requirements and algorithms for real-time processing.
The additional/updated categories are based on a review of commonly imple-
mented and available real-time processing steps (Heunis et al., 2019) and is not
fully exhaustive.

B.3 Goal
These suggestions are provided as guidelines to improve methods reporting and
reproducibility. The intention is not to prescribe their use. We acknowledge that
the included categories might not exhaustively reflect all possible rtfMRI-NF pro-
cessing options, and encourage community input to expand and improve the
content. Ideally, these suggestions would be used in addition to the guidelines
provided in Appendix D of the COBIDAS report, and not as a replacement.
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Table B.1 — Categories and reporting suggestions for real-time fMRI neurofeedback processing
steps

Category Reporting suggestions
General (items ap-
ply to all categories) • Report the space in which each real-time processing is performed (i.e.

native volume, native surface, MNI volume, template surface, native
structural, other)

• Report whether real-time processing steps are executed on the whole
brain, within a region of interest (ROI), or on the calculated neurofeed-
back signal

• Report the order in which real-time preprocessing steps were imple-
mented

• Provide reasoning if steps were not implemented.
• For custom implementations, specify details.

Software (items ap-
ply to all categories
where software use
is reported)

• Software used for real-time processing (e.g. Turbo BrainVoyager, AFNI,
SPM + MATLAB, OpenNFT, BART, FRIEND, BioImage Suite, Other,
Custom)

• Software used for offline processing (with clear distinction from real-
time processing)

• Indicate when default settings for the implemented software were used.
• For each software used, be sure to include version number, revision

number, URL and Research Resource Identifier
• For custom software/scripts, provide dependencies and link to code if

possible.

Slice time correction
• YES/NO
• Name of software/method
• Whether performed after or before motion correction
• Reference slice
• Interpolation type and order (e.g., 3rd order spline or sinc)

Motion correction
• YES/NO
• Name of software/method
• Use of non-rigid registration, and if so the type of transformation
• Use of real-time motion susceptibility correction (fieldmap-based un-

warping), as well as the particular software/method
• Reference scan (e.g. a template volume from the pre-real-time scans or

the first volume of the real-time session)
• Image similarity metric (e.g. normalised correlation, mutual informa-

tion, etc.)
• Interpolation type (e.g., spline, sinc), and whether image transforma-

tions are combined to allow a single interpolation
• Use of any slice-to-volume registration methods, or integrated with

slice time correction
• Explanation of software and hardware used in the case of prospective

motion correction

Continued on next page
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B.3. Goal

Table B.1 – continued from previous page
Category Reporting suggestions

Function-structure
(inter-subjective)
coregistration

• YES/NO
• Name of software/method
• Type of transformation (rigid, nonlinear) if nonlinear, type of transfor-

mation
• Cost function (e.g., correlation ratio, mutual information, boundary-

based registration, etc.)
• Interpolation method (e.g., spline, linear)
• Distinguish between coregistration applied pre-real-time (e.g. to sup-

port real-time operations like tissue masking) and coregistration done
in real-time.

(Gradient) distor-
tion correction • YES/NO

• Specify if implemented as part of real-time acquisition sequence on (as
opposed to as a real-time processing step)

Spatial smoothing
• YES/NO
• Name of software/method
• Size and type of smoothing kernel
• Filtering approach, e.g., fixed kernel or iterative smoothing until fixed

FWHM

Nuisance regression
• YES/NO
• Specify software and GLM algorithm type (e.g. cumulative, windowed,

incremental) with applicable parameters (e.g. window length)
• If head motion parameters are included, report the expansion basis and

order (e.g. 1st temporal derivatives Volterra kernel expansion)
• If tissue signals are included, report the tissue type (e.g. whole brain,

gray matter, white matter, ventricles), the tissue definition (e.g. a priori
seed, automatic segmentation, spatial regression), and signal definition
(e.g., mean of voxels, first singular vector, etc.)

• Report any other included regressors and how they are calculated

Detrending / drift
removal • YES/NO

• Name of software/method (e.g. nuisance regression using a real-time
GLM with linear and/or cosine basis set regressors; exponential mov-
ing average filter; custom filter)

• If nuisance regression is used, specify the order of regressors and/or
cutoff frequency

• If nuisance regression is used, specify GLM type (cumulative, win-
dowed, incremental) with applicable parameters (e.g. window length)

Continued on next page
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Table B.1 – continued from previous page
Category Reporting suggestions

Physiological noise
removal • YES/NO

• Name of software/method
• If differential regions of interest are used (e.g. to cancel global effects of

respiration) specify ROI definition and how the difference is calculated
per time step.

• If respiratory and heart rate information are included in real-time
nuisance regression with a GLM, report the modeling choices (e.g.
RETROICOR; cardiac and/or respiratory response functions; partial
correlation to compartment signals) and number of computed regres-
sors

• If RETROICOR-based nuisance regression is used, specify the soft-
ware/method for computing the regressors and specify how subject
physiology traces are accessed in real-time

• Distinguish clearly between real-time physiological noise correction
and offline correction and quality checking.

High frequency fil-
tering • YES/NO

• Name of software/method (e.g. modified low-pass Kalman filter as
implemented in OpenNFT to remove high frequency spikes related to
subject physiology)

Volume censoring
(a.k.a ”scrubbing”
or ”despiking”)

• YES/NO
• Name of software/method
• Criteria for censoring (e.g. real-time framewise displacement threshold,

DVARS threshold, percentage BOLD change threshold, or standardised
voxel intensity threshold)

• Use of censoring (e.g. temporal censoring regressor in real-time GLM)
or interpolation; if interpolation, method used (e.g., spline, spectral
estimation)

Serial correlations
• YES/NO
• Name of software/method (e.g. a first-order autoregressive model

AR(1) as implemented in OpenNFT)

Temporal averaging
• YES/NO
• Name of software/method (e.g. a 5-point moving windowed average

applied to the neurofeedback signal)

Continued on next page
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Table B.1 – continued from previous page
Category Reporting suggestions

Intensity normalisa-
tion / scaling • YES/NO

• Name of software/method
• Scaling factor description (e.g. z-score normalisation per voxel using

the past n volumes; whole-brain intensity scaling to a mean image
intensity of constant k; voxel efficiency scaling to avoid undesired noise
weighting in direct averaging of all voxels within the neurofeedback
ROI; scaling of the neurofeedback signal to prevent sudden changes in
visual feedback display)

• Where applicable, provide equations for the scaling of each time step
of the volume/ROI/signal

Real-time data qual-
ity control • YES/NO

• Name of method (e.g. head motion parameter or physiology trace feed-
back to subject; real-time display of quality control measures like tSNR
to researcher; adaptive acquisition and processing paradigms)

• Name of software (e.g. AFNI, FIRMM, rtQC, BART, other, custom)
• Where applicable, provide equations and code for calculating the dis-

played or monitored parameters

Offline data quality
control • YES/NO

• Name of method/software to check similarity between real-time and
offline exported versions of the neurofeedback session data

• Name of method/software to calculate general image quality metrics
on neurofeedback session data

• Report if offline physiological noise correction was applied in the as-
sessment of subject-specific neurofeedback training effects

• Report if motion parameters or other physiological signals were used
post-hoc to test as confounds for differences between neurofeedback
training groups, or to test for similarities with the task or other fluctua-
tions
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C Functional quality metrics for
the rt-me-fMRI dataset

C.1 Context
This section contains a table with all functional quality metrics of the full rt-
me-fMRI dataset described in Chapter 7. These metrics were generated by the
fmrwhy workflow qc workflow of the fMRwhy software toolbox (see Chapter 6).
Metrics include, per functional run:

• Participant number

• Run name

• Mean framewise displacement

• Total framewise displacement

• Framewise displacement outliers (based on a conservative 0.2 mm thresh-
old)

• Framewise displacement outliers (based on a liberal 0.5 mm threshold)

• Mean statistical Z-score

• Temporal signal-to-noise ratio (grey matter)

• Temporal signal-to-noise ratio (white matter)

• Temporal signal-to-noise ratio (cerebrospinal fluid)

• Temporal signal-to-noise ratio (whole brain)

These metrics, summarised in Table C.1 1 allow possible data users to inspect
the quality of the data and to set personalised thresholds for inclusion or exclusion
criteria.

1Online version: https://github.com/jsheunis/rt-me-fMRI/blob/master/data/
sub-all_task-all_desc-allQCmetrics.tsv
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Table C.1 — The functional quality metrics of all participants and all runs of the rt-me-fMRI dataset

Participant Task Mean
FD

Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-001 rest run-1 0.16 33.22 43 0 0.79 80.44 100.63 32.44 75.13
sub-001 fingerTapping 0.14 29.71 22 0 0.76 87.75 108.04 36.51 81.85
sub-001 emotionProcessing 0.13 27.44 21 0 0.76 89.16 110.19 37.87 83.45
sub-001 rest run-2 0.16 34.48 43 0 0.77 84.82 106.57 34.35 79.50
sub-001 fingerTappingImagined 0.13 27.39 11 0 0.76 91.05 111.39 38.54 84.88
sub-001 emotionProcessingImagined 0.15 31.08 27 0 0.76 87.59 107.41 36.92 81.58
sub-002 rest run-1 0.11 22.87 10 1 0.78 76.38 92.39 33.51 71.81
sub-002 fingerTapping 0.11 23.87 21 2 0.76 82.25 101.00 36.08 77.73
sub-002 emotionProcessing 0.11 22.63 16 2 0.76 85.42 102.62 37.93 80.28
sub-002 rest run-2 0.14 28.81 25 3 0.76 69.03 89.23 29.09 66.25
sub-002 fingerTappingImagined 0.08 16.72 1 0 0.75 94.48 106.71 44.50 87.50
sub-002 emotionProcessingImagined 0.11 23.60 5 0 0.74 86.57 104.55 39.12 81.75
sub-003 rest run-1 0.12 24.25 17 1 0.78 72.33 84.46 30.61 66.46
sub-003 fingerTapping 0.10 21.59 5 0 0.76 80.22 92.25 35.40 73.70
sub-003 emotionProcessing 0.10 20.93 5 1 0.76 84.57 94.64 38.21 77.23
sub-003 rest run-2 0.10 21.87 11 0 0.76 78.09 91.01 34.34 72.01
sub-003 fingerTappingImagined 0.11 22.22 12 0 0.76 82.35 93.56 36.90 75.43
sub-003 emotionProcessingImagined 0.12 24.48 17 0 0.75 78.17 91.77 34.78 72.52
sub-004 rest run-1 0.12 25.55 14 0 0.79 85.52 95.45 37.87 77.93
sub-004 fingerTapping 0.16 34.36 50 2 0.77 75.93 91.25 31.88 70.68
sub-004 emotionProcessing 0.11 23.21 12 0 0.77 95.86 104.04 44.13 86.99
sub-004 rest run-2 0.16 34.19 33 9 0.76 76.09 91.37 31.40 70.67
sub-004 fingerTappingImagined 0.20 41.47 63 9 0.74 68.81 84.76 28.63 64.63
sub-004 emotionProcessingImagined 0.17 36.46 61 5 0.75 78.05 95.85 33.24 73.38
sub-005 rest run-1 0.11 24.07 5 0 0.79 94.52 103.95 47.41 85.02
sub-005 fingerTapping 0.13 26.68 11 0 0.77 93.85 105.03 46.54 84.76
sub-005 emotionProcessing 0.12 24.56 4 0 0.76 96.66 104.13 49.79 86.89
sub-005 rest run-2 0.12 25.91 2 0 0.76 97.48 107.72 49.40 88.16

Continued on next page
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Table C.1 – continued from previous page
Participant Task Mean

FD
Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-005 fingerTappingImagined 0.13 27.07 7 0 0.75 95.41 105.97 48.04 86.35
sub-005 emotionProcessingImagined 0.12 24.94 1 0 0.75 98.20 108.69 50.01 88.92
sub-006 rest run-1 0.12 25.31 16 0 0.78 93.73 112.36 38.60 85.41
sub-006 fingerTapping 0.11 23.32 9 0 0.76 100.25 119.62 42.44 91.57
sub-006 emotionProcessing 0.12 24.22 11 0 0.76 107.57 124.96 46.44 97.79
sub-006 rest run-2 0.12 25.22 10 0 0.76 97.07 120.83 40.86 90.05
sub-006 fingerTappingImagined 0.11 22.47 6 0 0.75 107.99 126.49 47.62 98.67
sub-006 emotionProcessingImagined 0.10 21.21 5 0 0.75 105.49 126.43 46.48 97.10
sub-007 rest run-1 0.21 44.13 103 1 0.78 78.38 96.65 31.69 71.08
sub-007 fingerTapping 0.18 38.35 79 0 0.78 84.86 103.12 34.50 76.59
sub-007 emotionProcessing 0.16 33.22 48 0 0.78 90.42 105.06 37.73 80.55
sub-007 rest run-2 0.25 52.80 134 8 0.77 75.35 95.11 30.23 68.87
sub-007 fingerTappingImagined 0.16 33.80 48 2 0.77 85.67 102.32 35.11 76.91
sub-007 emotionProcessingImagined 0.22 46.50 98 6 0.76 77.88 97.67 30.83 70.96
sub-010 rest run-1 0.29 59.87 130 23 0.77 47.88 68.61 16.79 47.73
sub-010 fingerTapping 0.23 49.18 94 12 0.76 50.43 71.74 17.81 50.22
sub-010 emotionProcessing 0.32 66.89 114 30 0.75 42.24 63.07 14.09 42.76
sub-010 rest run-2 0.27 57.14 125 15 0.76 50.64 72.99 17.39 50.53
sub-010 fingerTappingImagined 0.16 34.37 46 2 0.76 67.20 88.96 24.26 65.14
sub-010 emotionProcessingImagined 0.41 85.75 157 51 0.75 42.73 62.08 14.24 42.81
sub-011 rest run-1 0.14 29.63 30 0 0.78 93.33 106.14 45.41 84.64
sub-011 fingerTapping 0.11 22.48 22 1 0.78 88.59 102.76 42.00 80.60
sub-011 emotionProcessing 0.11 22.82 14 0 0.74 90.91 105.69 44.24 83.24
sub-011 rest run-2 0.19 39.50 86 0 0.73 87.09 104.50 39.71 79.96
sub-011 fingerTappingImagined 0.13 27.33 27 4 0.72 76.02 96.44 34.51 71.18
sub-011 emotionProcessingImagined 0.14 29.54 35 2 0.72 73.76 90.59 33.73 68.38
sub-012 rest run-1 0.18 37.65 61 1 0.78 75.35 98.17 31.39 71.67
sub-012 fingerTapping 0.15 31.77 36 1 0.75 87.19 109.33 37.85 82.20
sub-012 emotionProcessing 0.15 30.57 30 0 0.76 80.84 100.99 34.42 75.79

Continued on next page
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Table C.1 – continued from previous page
Participant Task Mean

FD
Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-012 rest run-2 0.19 40.67 80 3 0.75 75.29 101.28 30.61 72.51
sub-012 fingerTappingImagined 0.14 29.51 27 1 0.74 85.11 108.04 37.02 80.65
sub-012 emotionProcessingImagined 0.15 30.55 31 0 0.75 90.43 113.47 39.44 85.31
sub-013 rest run-1 0.10 20.34 0 0 0.79 89.42 102.42 41.08 82.22
sub-013 fingerTapping 0.14 28.90 30 0 0.77 82.76 99.79 36.49 77.19
sub-013 emotionProcessing 0.09 19.68 1 0 0.76 92.82 107.64 43.68 86.09
sub-013 rest run-2 0.20 41.03 95 4 0.76 77.49 96.17 33.51 72.97
sub-013 fingerTappingImagined 0.10 20.64 5 0 0.76 92.02 108.66 42.92 85.82
sub-013 emotionProcessingImagined 0.10 20.90 4 0 0.76 85.26 100.50 38.39 79.10
sub-015 rest run-1 0.12 25.61 26 2 0.78 92.19 105.30 54.47 86.24
sub-015 fingerTapping 0.11 23.38 13 0 0.77 98.69 110.52 59.78 92.13
sub-015 emotionProcessing 0.12 24.22 20 0 0.75 105.84 117.28 66.27 99.02
sub-015 rest run-2 0.11 23.81 12 0 0.75 93.94 110.76 55.67 88.97
sub-015 fingerTappingImagined 0.10 21.86 12 0 0.75 103.37 112.57 63.54 95.86
sub-015 emotionProcessingImagined 0.11 22.70 14 0 0.75 104.76 114.48 63.68 97.08
sub-016 rest run-1 0.10 20.98 4 0 0.78 85.82 102.10 39.66 79.19
sub-016 fingerTapping 0.10 21.34 6 0 0.76 92.80 107.62 42.65 84.87
sub-016 emotionProcessing 0.11 22.09 9 2 0.77 83.36 99.55 37.79 76.85
sub-016 rest run-2 0.13 26.97 18 2 0.75 81.69 101.65 35.71 76.18
sub-016 fingerTappingImagined 0.15 32.46 38 9 0.75 75.76 95.55 33.16 71.00
sub-016 emotionProcessingImagined 0.12 24.92 23 1 0.76 81.76 100.42 36.85 76.11
sub-017 rest run-1 0.12 26.01 12 0 0.79 83.66 101.42 35.93 80.78
sub-017 fingerTapping 0.14 29.54 32 0 0.77 82.38 101.38 33.83 79.72
sub-017 emotionProcessing 0.14 29.47 35 1 0.78 85.87 101.94 35.40 82.03
sub-017 rest run-2 0.15 30.81 19 0 0.76 88.96 107.24 38.41 85.76
sub-017 fingerTappingImagined 0.11 22.94 11 1 0.76 88.30 104.85 36.85 84.41
sub-017 emotionProcessingImagined 0.14 29.70 33 1 0.77 77.79 98.84 31.78 76.16
sub-018 rest run-1 0.16 32.76 43 1 0.78 89.73 112.21 33.45 82.89
sub-018 fingerTapping 0.14 28.96 34 0 0.76 90.88 116.42 35.54 85.03

Continued on next page

180



Appendix C

C
.1.

C
ontext

Table C.1 – continued from previous page
Participant Task Mean

FD
Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-018 emotionProcessing 0.14 28.52 33 0 0.76 97.42 120.34 38.90 90.33
sub-018 rest run-2 0.14 29.91 35 0 0.76 89.93 117.11 33.93 84.46
sub-018 fingerTappingImagined 0.14 29.66 34 1 0.76 88.84 116.80 33.47 83.70
sub-018 emotionProcessingImagined 0.13 26.32 18 0 0.76 96.10 123.47 38.42 90.33
sub-019 rest run-1 0.16 32.60 49 0 0.78 83.76 100.30 35.27 78.06
sub-019 fingerTapping 0.14 29.43 37 0 0.76 85.72 103.31 36.44 80.20
sub-019 emotionProcessing 0.12 25.98 15 0 0.77 86.71 103.48 37.18 80.84
sub-019 rest run-2 0.13 28.22 29 0 0.75 90.07 110.72 39.48 85.13
sub-019 fingerTappingImagined 0.12 25.46 14 0 0.75 89.78 110.24 38.91 84.72
sub-019 emotionProcessingImagined 0.13 26.98 14 0 0.75 90.71 110.22 39.57 85.37
sub-020 rest run-1 0.16 34.40 48 0 0.78 89.09 113.76 40.69 84.30
sub-020 fingerTapping 0.17 35.13 33 3 0.75 86.87 112.56 39.55 82.58
sub-020 emotionProcessing 0.14 29.71 37 0 0.75 97.28 119.35 45.62 91.16
sub-020 rest run-2 0.20 42.42 74 4 0.75 78.71 107.12 35.58 76.02
sub-020 fingerTappingImagined 0.16 34.10 37 6 0.74 91.78 117.27 43.05 87.29
sub-020 emotionProcessingImagined 0.16 32.76 46 1 0.74 86.58 112.45 40.94 82.88
sub-021 rest run-1 0.26 54.95 88 21 0.77 62.24 90.37 22.33 61.71
sub-021 fingerTapping 0.31 65.41 95 21 0.75 59.72 89.72 21.56 60.12
sub-021 emotionProcessing 0.21 43.20 70 11 0.75 75.80 105.27 29.27 74.36
sub-021 rest run-2 0.34 71.86 109 33 0.74 57.64 86.26 20.41 57.91
sub-021 fingerTappingImagined 0.33 70.20 118 29 0.73 67.11 97.52 24.20 66.73
sub-021 emotionProcessingImagined 0.53 112.02 163 59 0.74 48.30 75.13 16.67 49.25
sub-022 rest run-1 0.12 25.73 7 0 0.79 93.13 106.96 37.22 85.35
sub-022 fingerTapping 0.16 32.82 37 0 0.75 90.15 108.32 36.02 84.09
sub-022 emotionProcessing 0.16 32.96 46 1 0.75 89.98 108.16 35.25 83.71
sub-022 rest run-2 0.12 26.13 14 0 0.75 94.70 113.06 38.33 88.15
sub-022 fingerTappingImagined 0.14 29.06 15 0 0.74 97.16 113.93 39.22 89.86
sub-022 emotionProcessingImagined 0.13 27.48 24 3 0.74 91.83 110.84 36.04 85.56
sub-023 rest run-1 0.12 24.98 6 0 0.79 92.33 109.22 44.55 85.78
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Table C.1 – continued from previous page
Participant Task Mean

FD
Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-023 fingerTapping 0.12 24.70 11 0 0.76 91.37 109.24 43.27 85.02
sub-023 emotionProcessing 0.10 20.64 4 0 0.77 97.34 113.45 47.32 90.08
sub-023 rest run-2 0.16 33.59 47 4 0.76 82.11 101.72 37.96 77.28
sub-023 fingerTappingImagined 0.10 21.64 3 0 0.76 91.93 110.46 44.26 85.88
sub-023 emotionProcessingImagined 0.12 24.48 10 0 0.75 93.30 110.09 45.39 86.82
sub-024 rest run-1 0.12 25.34 7 0 0.78 78.13 98.94 37.07 73.74
sub-024 fingerTapping 0.14 29.07 24 0 0.76 81.63 106.54 38.15 77.77
sub-024 emotionProcessing 0.13 27.59 19 0 0.76 83.22 106.07 39.63 78.83
sub-024 rest run-2 0.15 30.59 37 0 0.76 81.40 107.04 37.76 77.77
sub-024 fingerTappingImagined 0.13 28.10 19 0 0.76 83.85 107.91 39.65 79.65
sub-024 emotionProcessingImagined 0.17 35.27 55 2 0.76 75.41 102.32 34.85 72.86
sub-025 rest run-1 0.09 19.74 3 0 0.79 90.56 108.54 38.12 83.40
sub-025 fingerTapping 0.11 24.10 12 0 0.76 85.02 107.82 34.71 79.86
sub-025 emotionProcessing 0.09 18.63 6 0 0.76 96.09 111.92 41.52 87.92
sub-025 rest run-2 0.12 24.43 11 0 0.76 82.12 104.68 33.59 77.26
sub-025 fingerTappingImagined 0.11 23.12 11 0 0.76 87.24 108.15 36.46 81.43
sub-025 emotionProcessingImagined 0.10 21.80 4 0 0.76 83.22 105.71 34.60 78.36
sub-026 rest run-1 0.14 30.09 28 0 0.78 94.62 104.59 47.91 84.66
sub-026 fingerTapping 0.17 35.42 50 1 0.77 85.15 100.39 40.49 77.19
sub-026 emotionProcessing 0.16 34.22 35 3 0.76 94.40 108.29 46.18 85.17
sub-026 rest run-2 0.21 43.14 79 7 0.75 91.40 108.31 44.58 83.41
sub-026 fingerTappingImagined 0.15 31.35 30 1 0.76 98.43 111.74 49.41 88.88
sub-026 emotionProcessingImagined 0.17 34.76 51 2 0.75 98.81 111.99 49.29 89.07
sub-027 rest run-1 0.22 46.36 108 3 0.78 74.42 93.82 31.40 70.39
sub-027 fingerTapping 0.20 41.02 80 3 0.76 76.77 99.19 32.99 73.68
sub-027 emotionProcessing 0.14 30.10 38 1 0.76 87.27 109.28 39.78 83.24
sub-027 rest run-2 0.14 29.73 26 4 0.76 76.54 100.37 33.26 74.01
sub-027 fingerTappingImagined 0.11 22.81 11 1 0.75 88.02 110.49 40.56 84.14
sub-027 emotionProcessingImagined 0.11 22.28 14 0 0.74 86.20 109.22 39.47 82.69
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Table C.1 – continued from previous page
Participant Task Mean

FD
Total
FD

FD
outliers
0.2mm

FD
outliers
0.5mm

Mean
Z-score

tSNR
(GM)

tSNR
(WM)

tSNR
(CSF)

tSNR
(brain)

sub-029 rest run-1 0.10 21.12 5 0 0.78 86.45 96.73 43.01 79.05
sub-029 fingerTapping 0.12 25.29 19 1 0.76 80.51 94.45 38.72 74.55
sub-029 emotionProcessing 0.19 39.14 84 2 0.75 76.97 91.56 35.33 71.25
sub-029 rest run-2 0.14 29.65 42 0 0.75 79.48 94.54 36.74 73.62
sub-029 fingerTappingImagined 0.12 24.57 17 1 0.75 79.92 91.89 36.87 73.10
sub-029 emotionProcessingImagined 0.12 25.40 18 1 0.75 85.17 98.06 41.06 78.39
sub-030 rest run-1 0.13 26.91 14 0 0.77 96.53 112.29 44.63 85.74
sub-030 fingerTapping 0.13 27.33 23 0 0.77 94.84 110.70 44.63 84.55
sub-030 emotionProcessing 0.11 22.61 4 0 0.76 100.91 115.16 49.60 90.15
sub-030 rest run-2 0.13 26.89 27 0 0.76 91.91 110.12 43.89 82.79
sub-030 fingerTappingImagined 0.11 23.48 9 0 0.76 97.18 113.41 46.31 86.82
sub-030 emotionProcessingImagined 0.11 22.36 9 0 0.76 95.78 111.85 46.37 85.78
sub-031 rest run-1 0.13 26.66 8 0 0.78 81.66 97.36 34.63 76.59
sub-031 fingerTapping 0.17 35.50 41 4 0.78 71.22 91.19 29.47 68.33
sub-031 emotionProcessing 0.12 24.50 10 1 0.77 79.66 95.78 33.89 74.95
sub-031 rest run-2 0.13 27.10 24 0 0.77 79.46 96.99 34.09 75.20
sub-031 fingerTappingImagined 0.12 24.61 11 2 0.76 83.37 99.12 36.47 78.37
sub-031 emotionProcessingImagined 0.16 33.89 41 6 0.76 69.40 89.08 28.20 66.56
sub-032 rest run-1 0.10 20.19 10 0 0.78 90.83 111.03 43.26 84.50
sub-032 fingerTapping 0.09 17.93 3 0 0.77 93.72 112.87 45.61 87.20
sub-032 emotionProcessing 0.10 20.03 13 1 0.76 95.59 113.67 46.82 88.65
sub-032 rest run-2 0.10 20.56 2 0 0.76 88.71 112.12 42.16 83.60
sub-032 fingerTappingImagined 0.11 22.53 13 6 0.76 90.07 112.71 41.23 84.23
sub-032 emotionProcessingImagined 0.13 27.30 23 8 0.75 86.88 110.35 39.13 81.51
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D
Mathematical background on
weighting, summation and aver-
aging

D.1 Context
Multi-echo fMRI combination via weighted summation is a critical step in multi-
echo post-processing that has been reported to increase temporal signal-to-noise
ratio, decrease signal drop-out, and improve activation extent for task-analysis.
The mathematics of all widely used multi-echo combination schemes are based
on the underlying concepts of data weighting, summation and averaging. In this
section we provide the basic mathematical equations to describe the underlying
assumptions for echo combination schemes.

D.2 Weighting, summation and averaging
Say we have a dataset {x1, x2, . . . , xn}with elements xi, and the dataset has cor-
responding weights {w1, w2, . . . , wn}with elements wi.
The notation for the dataset summation is given by:

n∑
i=i

xi = x1 + x2 + · · ·+ xn−1 + xn (D.1)

The weighted summation is calculated as the summation of the dataset after multi-
plying each element with its corresponding weight, thus:

n∑
i=i

xiwi = x1w1 + x2w2 + · · ·+ xn−1wn−1 + xnwn (D.2)

The weighted average or mean of the dataset is calculated by dividing the weighted
summation by the sum of weights:

x̄w =

∑n
i=1 wixi∑n
i=1 wi

=
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
(D.3)

A special case occurs when the weights are normalised (indicated by w′i) such that
the sum of weights is equal to 1. Weights are normalised by dividing each weight
element by the sum of weights, i.e.:
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w′i =
wi∑n
j=1 wj

(D.4)

And hence:

n∑
i=1

w′i = 1 (D.5)

Calculating the weighted average of the dataset using normalised weights, we then get:

x̄w′ =

∑n
i=1 w

′
ixi∑n

i=1 w
′
i

=

n∑
i=1

w′ixi (D.6)

since the denominator, the sum of weights, is equal to 1.
It therefore follows that the weighted average of a dataset using ordinary non-
normalised weights is equal to the weighted summation of the dataset when using
normalised weights.
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ADHD Attention Deficit and Hyperactivity Disorder

API Application Programming Interface

AR Autoregressive

BCI Brain-Computer Interface

BIDS Brain Imaging Data Structure

BOLD Blood Oxygen Level-Dependent

CBF Cerebral Blood Flow

CBV Cerebral Blood Volume

cGLM Cumulative General Linear Model

CNR Contrast-to-Noise Ratio

COBIDAS Committee on Best Practice in Data Analysis and Sharing

CPU Central Processing Unit

CR Cardiac Rate

CSF Cerebrospinal Fluid

DCM Dynamic Causal Modeling

DecNef Decoded Neurofeedback

DNR Did/do Not Report

DOI Digital Object Identifier

DUA Data Use Agreement

DVARS Differential Variance Root-Mean-Squared

EEG Electroencephalography

EMA Exponential Moving Average

EPI Echo Planar Imaging

EU European Union

FAIR Findable, Accessible, Interoperable, Reusable

FCNef Functional Connectivity Neurofeedback

FD Framewise Displacement

fMRI Functional Magnetic Resonance Imaging

FOV Field Of View

FT Finger Tapping

FWE Familywise Error
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FWHM Full Width at Half Maximum

GDPR General Data Protection Regulation

GLM General Linear Model

GM Grey Matter

GPU Graphical Processing Unit

GUI Graphical User Interface

HMP Head Motion/Movement Parameter

HRF Haemodynamic Response Function

HRV Heart Rate Variability

HTML Hypertext Markup Language

ICA Independent Component Analysis

iCAPS Innovation-driven Coactivation Pattern

iGLM Incremental General Linear Model

JSON JavaScript Object Notation

LDA Linear Discriminant Analysis

ME Multi-echo

ME-fMRI Multi-Echo Functional Magnetic Resonance Imaging

MNI Montreal Neurological Institute

MoAE Mother of All Experiments

MRI Magnetic Resonance Imaging

MVPA Multivariate Pattern Analysis

NF Neurofeedback

PAID Parallel-acquired Inhomogeneity-desensitized

PC Personal Computer

PCA Principal Component Analysis

PNG Portable Network Graphics

PSC Percentage Signal Change

PSCNef Percentage Signal Change Neurofeedback

PSF Point Spread Function

PTSD Post-traumatic Stress Disorder

QA Quality Assurance
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QC Quality Control

RAM Random Access Memory

RETROICOR Retrospective Image Correction

ROI Region Of Interest

RT Real-time

rt-me-fMRI Real-time Multi-Echo Functional Magnetic Resonance Imaging

rtfMRI Real-time Functional Magnetic Resonance Imaging

rtfMRI-NF Real-time Functional Magnetic Resonance Imaging Neurofeedback

rtQC Real-time Quality Control

RVM Relevance Vector Machine

RVT Respiratory Volumer per Time

SE-fMRI Multi-Echo Functional Magnetic Resonance Imaging

SNR Signal-to-Noise Ratio

SPM Statistical Parametric Mapping

SSE Sum of Squared Errors

SSS Sum of Squared Signal

SVM Support Vector Machine

SW Scalar Weight

TBV Turbo-BrainVoyager

tCNR Temporal Contrast-to-Noise Ratio

TE Echo Time

tPSC Temporal Percentage Signal Change

TR Repetition Time

tSNR Temporal Signal-to-Noise Ratio

TSV Tab-separated Value

WM White Matter
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