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Introduction

The current state of knowledge regarding evolutionary dynamics of marine species is
closely connected with population genetics, that is the study of local variation of gene
frequencies in a structured population. Each time the fitness of individuals depends
on the relative abundance of phenotypes within a population, the field of evolutionary
games is involved, which represents the competitiveness between species in a given
environment. Marine environments encompass some of the most diverse ecosystems on
Earth. One of the most extensively researched aspects of marine population genetics
is the amount of genetic variation preserved in organisms. The forces of evolution that
affect the distribution of alleles in populations are mutation, natural selection, gene flow,
and genetic drift.

Planktonic organisms are microscopic marine photosynthetic individuals with sizes ranging
from a few microns to several hundred microns and accounting for roughly half of all
global primary productivity. They form the base of oceanic food webs and are responsible
for most of the exchange of carbon dioxide between the atmosphere and the ocean [1, 2].
Due to this reason, phytoplankton play an essential role in the natural greenhouse effect.
These tiny organisms are so crucial in the global carbon cycle, and even small changes
in their productivity or in the relative abundance of the thousands of species could have
a substantial influence on climate change [2].

Microorganism populations are carried along the uppermost layer (euphotic zone ∼ 100
m) of the ocean [3]. The euphotic zone is characterized by a low quantity of nutrients
due to consumption by phytoplankton. Periodic events, like upwelling and downwelling
currents, supply nutrients to the upper water column. The aforementioned mechanisms
can trigger the processes of water exchange in the mixed layer of the ocean. The upwelling
current leads to a rise of deep water, where a rich concentration of nutrients resides.
Passively transported microspecies are strongly influenced by the water circulation of
the ocean, in fact, the convergence and the divergence of water masses allow them to
experience the compressible turbulence [4].
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Introduction

Research Questions

In order to sustain our oceanic ecosystem, it is important to consider the physical factors
variance which is tolerable by a population and how the population can keep on prospering
in high Reynolds number fluid environments [5].

The focus of this thesis is to understand the role of compressible turbulence in shaping
the fixation probability of a selective advantage population. This topic, which is relevant
for population dynamics and evolution, has never been studied systematically and it is
crucial to investigate how oceanic circulation may change life evolution.

In this regard, we have developed a new computational approach that merges the accuracy
of considering a continuous space domain with the computational efficiency provided by
a lattice-based model.

Thesis Outline

In chapter 1, the generalities of the genetic and the dynamics of populations are introduced.
A brief overview regarding the population dynamics research field is given, in connection
with the relevant study methodologies and developments performed over the years. The
study is first carried out on well-mixed populations without considering dimensionality,
and then it is applied to spatially extended populations. Beyond a deterministic approach,
a stochastic model, based on Markov processes and concerning the dynamics of population
dynamics under turbulent velocity flows is investigated.

In chapter 2, stochastic models for genetic evolution are accurately discussed. Species
are made up of populations, a set of individuals genetically related. The study of genetic
variation within a population deals with the biological differences affecting reproduction,
feeding strategies, disease resistance, and many other factors. Among the several developed
methods, we first mention the Wright-Fisher model that describes the process of genetic
drift within a finite population size. The Moran model [6] is then examined, a simple
approach that takes into consideration the selection of the organisms and the genetic
drift. The Stepping Stone model [7] is introduced as an extension of the previous method,
obtained by including the migration and reproduction of the individuals.
The aforementioned models share many similarities with the ones used to investigate
non-equilibrium phase transitions (see [8, 9]) and are tailored for lattice rules, and do
not enable straightforward generalization by taking into account an external velocity
advection. In Pigolotti et al. [10] an alternative method has been developed: the agent-based
method, where each individual is advected by the external velocity, and diffusion is
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Thesis Outline

implemented by a stochastic noise whereas death and reproduction processes are performed
using an interaction distance δ. An extra computational cost is required to evaluate the
individual numbers in each virtual δ-deme. This agent-based method has been recently
used in Plummer et al. [11], where the competition between two different species,
distributed in continuous space and under the effect of a compressible flow, is examined.
It has been shown that a turbulent flow can dramatically change outcomes and can reduce
the effect of selective advantage on fixation probabilities [11–13].

The original computational approach for researching the genetics of a large number of
species is presented in the third chapter 3. The proposed procedure is an improvement
of the origin off-lattice model described in detail in reference [4]. The improved method
enables higher computational performance. The method is originally tested in one and
two dimensions and subsequently, a weakly compressible velocity field is applied. This
model sets the stage for the further studies presented in this dissertation.

In chapter 4, we discuss the case in which the population dynamics is within the strong
noise limit. Without any advection and assuming molecular diffusivity for micron-ranged
individual size, the strong noise limit can be achieved depending on nutrient abundances
and sea temperature. Assuming that a strong noise limit is obtained without advection,
the effect of ocean turbulence and the related eddy diffusivity should be taken into
account. The Richardson theory is employed for such a purpose, together with the existing
estimated rate of energy dissipation in the ocean, as discussed in reference [14]. Through
the model introduced in the previous chapter, we investigate how the incompressible
velocity field can modify the advantageous allele dynamics in a controlled case. In fact,
we use a “cellular flow field" since the related computation of the effective diffusivity
Deff is known from references [15], [16], and [17]. In this controlled case, we provide
theoretical predictions comparable with detailed numerical simulations. Once the correctness
of our theoretical framework is established, a discussion is proposed in the conclusion
section, on whether the "strong noise regime" may be relevant or not in oceanic situations.

The evaluation of the effect of stochastic fluctuations on antagonistic population dynamics
and the exploration of the effect of external velocity on the principle of genetic dynamic
is given in chapter 5. Deterministic effects are compared with the agent simulations for
the initial population, with the aim of understanding the role of genetic fluctuations.

Finally, chapter 6 summarizes the key results of the studies mentioned in the preceding
chapters. Thereafter, some possible outlooks are mentioned.

In appendix A the effective motility of a specific microorganism E. coli like is considered.
We discuss the “run-and-tumble” motion of a flagellated E. coli like microswimmer under
confinement. We simulate the flagellated microswimmer (E. coli like) by taking into
account the complete hydrodynamic interaction of the microswimmer with the confining

3
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Introduction

walls as described by the Stokes equations endowed with appropriate boundary conditions
at the interfaces.

4
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1 | Phenomenology and
Theoretical background

There has always been great interest in evolutionary theory, which seeks to understand
what lies at the root of the genetic and dynamic variations within a population. The
genetics of populations is driven by evolutionary forces that determine the genetic
peculiarities of subsequent offsprings, whereas the population dynamics deals mainly
with changes in population size and density for one or more species. The first modeling
approaches have studied population dynamics neglecting the spatial structure. Subsequently,
in order to extend the study to spatially inhomogeneous systems, reaction-diffusion
mechanisms were introduced. Besides the Brownian diffusion, if species dispersal is
biased due to a current flow, an advection term can be added to the previous mechanisms.
Reaction-diffusion models are in themselves deterministic but can be derived as limits of
stochastic processes, by applying the correct coarse-graining procedure.

5
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1. Phenomenology and theoretical background

1.1 Population genetics and dynamics

A population is a group of organisms belonging to the same species, that routinely
interbreed while living in a particular area. Population genetics and population dynamics
are long-standing and wide research areas in biology, mathematical physics, and more
recently in statistical mechanics. Biological systems are dynamic and their mechanisms
span several orders of magnitude in terms of considered space and time domains. These
systems are governed by dynamic microscopic rules that give rise to complex macroscopic
behaviors. Genetic diversity is fundamental to understand the interaction between the
species and the surrounding environment. The individuals constituting a population often
display different phenotypes and present different alleles of a particular gene. Population
genetics is the study of genetic variation and seeks to understand how the frequencies
of alleles and genotypes change over time, within and among populations, driving the
adaptation. Population genetics expresses the heritable traits that enable the survival
and reproduction of an organism in a given environment, it, therefore, explains the
evolutionary factors that are the drivers of adaptation. Evolution is closely linked to
the genetics of populations. In fact, it requires that populations’ allele frequencies change
with time. All the genes and their different alleles constitute the genetic pool. For the
evolutionary process to take place, the allelic frequencies within the genetic pool need
to change. The mechanisms of change are also known under the name of evolutionary
forces and can account for all the genotypic variations. Among them, we can list mutation,
natural selection, gene flow, and genetic drift. A schematic overview of these phenomena
is presented below:

• Mutation: Alteration of genetic makeup so that a new variation of alleles is
produced into a population.

• Natural selection: Principle according to which, each slight variation of alleles, if
useful, is preserved [18].

• Gene flow: Transfer of genetic variation from one population to another, typically
due to the migration of individuals.

• Genetic drift: Random change in the frequency of genes over time.

Population dynamics refers to the changes in the spatial density of species over time.
The size of a population is affected by the per capita growth rate, which is the variation of
the number of individuals, making up a population. Three factors influence the population
dynamics: birth, death, and migration. Birth is the natural ability to add an individual
to the existing population, as a result of reproduction. Death is the natural end of each
organism’s life and decreases the total amount of individuals. Migration refers to the

6
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1.2 Non-spatial populations

number of organisms moving into and out of populations, and it does not change the total
number of considered individuals in the system.

Populations are defined through time and space. The spatial dimension concerns the
distribution of organisms in space, whereas the temporal dimension relates to the variation
of the spatial parameters over time. Spatial and time-based variations are affected by the
system’s biological properties and the occupied environment. The evolving nature of
populations, implies knowledge of individuals’ volume and composition at any given
time and their changing properties, in order to perform a population dynamics study.

1.2 Non-spatial populations

For many decades, population dynamics was studied by means of the zero-dimensional
approximation, in order to simplify the mathematical models of evolutionary processes. In
a non-spatial description, it is assumed that in a given well-mixed population, composed
of two or more species, interactions between any two individuals occur with the same
probability [19]. This characterization, for which competition can occur between all the
microorganisms present in the population, is a strong idealization. The organisms can
also be far from each other, which means that the interaction is based on long-distance
effects and the spatial structure becomes meaningless for the evolutionary dynamics.

1.2.1 Exponential and logistic population growth

The first model of the growth of a population without resource limitations is credited
to Thomas Robert Malthus (1798) [20]. The main assumption of his “Principle of
population” states that the rate of variation of the population dp(t)/dt is proportional to
the population p(t).

dp(t)

dt
= µp(t) (1.1)

The constant of proportionality µ, also known as the Malthusian parameter, is the population
growth rate. µ = b− d is the difference between the birth rate parameter b, and the death
rate parameter d, where b and d are related to the considered species. The solution of the
equation (1.1) results in the exponential Malthus’s law:

p(t) = p(0)eµt. (1.2)

A dramatic growth in population size occurs when the growth rate µ is positive. In
his work, Malthus argued that the growth of the human population cannot present an

7
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1. Phenomenology and theoretical background

exponential trend, otherwise, a shortage of food would occur as a consequence of the
linear growth of good supplies. Indeed, uncontrolled infinite growth is not physical. In
nature, populations cannot increase exponentially for a long time, as they will ultimately
have to cope with limited food resources and available territory. In this regard, in 1836,
Pierre François Verhulst proposed a revised model which would erase the unrealistic
effects of endless growth [21], establishing the basis of the logistic model. In his theory,
Verhulst considers factors affecting the growth rate, as for example the competition
within a population. Competition is an interaction between organisms of the same species
seeking similar resources, including limited food supplies or living space. Competition
in a system with limited food supplies slows down the population growth, and can
even cause saturation of the population size. The difference between the Malthusian
exponential model and the logistic growth model is visually shown in fig. 1.1.

Figure 1.1: Comparison between exponential and logistic growth. The left graph shows an ideal environment
case where the amount of resources is unlimited and populations grow at an exponential rate, resulting in a
J-shaped curve. The logistic growth case is shown in the right graph. In this case the environmental factors
limit the population growth and the population size levels off reaching the carrying capacity, producing a
S-shaped curve.

The logistic population growth is expressed by the following equation:

dp

dt
= µp

(
1− p

K

)
(1.3)

where K is defined as the maximum population abundance, or carrying capacity, for a
given species. It is possible to rewrite the logistic differential equation (1.3) in terms of
normalized population, by setting c = p/K

dc

dt
= µc (1− c) (1.4)

The above equation (1.4) has two stationary solutions: an unstable equilibrium point
at c = 0 and an asymptotically stable equilibrium point for c = 1 corresponding to
the carrying capacity. As the time t becomes larger, any solution will tend towards the

8
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1.2 Non-spatial populations

equilibrium state at c = 1.

1.2.2 Kimura probability of gene fixation

Focusing on the simplest case of Darwinian dynamics for two competing populations,
the pioneering works of Kimura [22], Kimura and Weiss [23], and Kimura and Ohta
[24] provide a clear-cut answer in the well-mixed (zero-dimensional) case, i.e. neglecting
any spatial structure of the population. Let us consider two different genotypes in a
population, with concentrations cA and cB . Their evolution depends on the coexistence
between the agent dynamics and the genetic drift, i.e. the deterministic and the stochastic
contribution. It is not possible to determine a priori which one of the two species will be
the dominant one in presence of turbulence, and a stochastic approach is needed for the
evolution study. Well-adapted individuals with inherited favorable characteristics may
survive and grow faster than others, passing on the genes that make them successful.
Such organisms present a so-called selective advantage.

In absence of advection, Kimura [22], derived a theoretical prediction for the fixation
probability, i.e. the probabilistic understanding of the eventual fate of new advantageous
mutations. The fixation probability of new beneficial mutations plays a crucial role in
the adaptation of populations in challenging environments. For the well-mixed case, the
fixation probability can be expressed as:

Pfix =
1− e−sNf0
1− e−sN . (1.5)

This formula (1.5) describes the fixation probability for a species with advantageous
selection, s, in a population of size N , representing an initial fraction f0 of all organisms.
The space dependency is neglected in eq. (1.5), however, the result can be applied to
spatially extended populations with simple migration patterns, such as diffusion [25]. The
fixation time Tfix for small values of the selective advantage is given by the following
relation [24]

Tfix =
Nf0

µ(1− f0)
log

(
1

f0

)
(1.6)

where 1/µ is the generation time, and it is assumed that no mutation occurs between the
two different alleles.

9
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1. Phenomenology and theoretical background

1.3 Spatially extended populations

The theory described so far applies to systems varying through time only, and a homogeneous
spatial distribution of the organisms is assumed. In a real ecosystem, most biological
populations are inhomogeneously distributed in space and their dispersion rate plays
a decisive role. The use of partial differential equations, known as reaction-diffusion
equations represents a valid method for the quantitative description of spatially
inhomogeneous systems.

1.3.1 The FKPP equation

A particular case of reaction-diffusion equations is the Fisher [26], Kolmogorov, Petrovsky,
and Piscounov [27] equation, better known as FKPP equation1. This equation is a natural
extension of the logistic growth model and enables the description of the spatial propagation
of an advantageous gene in a population c(x, t).

The one-dimension FKPP equation is

∂tc = D∂xxc+ µc(1− c) (1.7)

where D is the diffusion coefficient, µ is the reproduction rate, and 1 is the normalized
carrying capacity of the system. The equation (1.7) describes a deterministic model for
the density c of a population living in a given environment and with limited carrying
capacity. The last term of the equation (1.7) is the non-linear reaction term generally
presented as f(c), it is controlled by the logistic growth dynamics and it has to satisfy
the following conditions: f(0) = f(1) = 0 and f(c) > 0 for all c ∈ [0, 1]. Since
the population has been normalized, the stable state corresponds to the full uniform
population density, at c(x, t) = 1, while the unstable state c(x, t) = 0, corresponds to
the spatially empty system.

1.3.2 Traveling waves

The FKPP equation (1.7) is particularly connected with the study of traveling waves.
Precisely, its two steady solutions are connected through fronts whose motion describes
the propagation from the state of full occupancy into the empty region. The evaluation of
the stability of the stationary states determines the propagation direction of a front. The

1For a mathematical description of the Fisher Kolmogorov equation, which has no general analytical
solution, chapter 13 of the book “Mathematical Biology I” by Murray (2002) [21] can be consulted.

10
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1.3 Spatially extended populations

steady-state c is stable if f ′(c) < 0 and unstable if f ′(c) > 0.
In general, when a function is zero outside an [a, b] interval, the function is said to be
compact in that interval. The function that indicates an interval is a compact support
function. In this case, the initial condition c(x, 0) belonging to a certain interval between
0 and 1, presents a compact support. c(x, 0) is a monotone decreasing function that
terminates at c = 0 when at some finite spatial position x(t). In other words, it means that
the initial condition is sufficiently localized, and individuals are initially concentrated in
a defined region and are absent in the rest of the territory. Traveling waves are defined as
c(x, t) solutions with translational symmetry, and their spatial profile remains constant
while the wave propagates in space. Traveling waves are typically described by the
following form:

c(x, t) = c(x− vt) = c(z) (1.8)

Substituting the ansatz z = x− vt into FKPP equation, we get

Dczz + vcz + µc(1− c) = 0 (1.9)

where the propagation speed v has to be determined. This ordinary differential equation
(1.9) establishes the shape of the front and satisfies the following boundary conditions:

lim
z→−∞

c(z) = 1 and lim
z→+∞

c(z) = 0 (1.10)

It is possible to convert the second-order differential equation (1.9) into first-order equation
by defining c′ = F and DF ′ = −vF − µc(1− c). The introduced definitions lead to the
phase-plane equation

dF

dc
=
−vF − µc(1− c)

DF
(1.11)

whose steady states are (c, F ) = (0, 0) and (c, F ) = (1, 0) respectively. The critical
point (0, 0) is unstable if the velocity of the front approaches the value v ≥ vmin, with
vmin = 2

√
Dµ, for which there is a non-negative propagating wave solution. As a

consequence, a range of front speeds is compatible with the linearized dispersal-reaction
model. The minimum front speed vmin within this range is called the critical speed. A
solution with front propagating at the minimum speed vmin occurs when the population
is confined within some compact region.

1.3.3 Front propagation: pulled and pushed

The analysis of the front speeds can be broken down into two different situations classified
as pulled fronts and pushed fronts. The stable state may propagate into an unstable state
so that the front speed is established by the dynamics of the leading front edge [28].
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1. Phenomenology and theoretical background

For sufficiently sharp initial conditions with compact support, the front converges to the
traveling wave with the minimal velocity v = vmin + O(t−1), although very slowly
(weak velocity selection) [29, 30]. This solution of the classical Fisher equation is
defined as a pulled front. Such fronts are typically pulled along by the growth and spread
of small perturbations around the unstable state, in the leading edge where c� 1. This
velocity can change due to the discreteness of the model. In fact, the presence of a discrete
process in both time and space at the leading edge makes the Fisher wave speed lower if
compared to the deterministic speed. An estimation by Brunet and Derrida [31] of how
the Fisher wave value differs from the continuum wave speed was given:

v ∼
√
Dµ

[
2− π2

(lnN)2

]
. (1.12)

Notice from eq. (1.12) that the convergence to the continuum limit is slow as N →∞.

In the case of the pushed front, the wave speed is determined by the nonlinear growth
in the region behind the leading edge, forcing the front to go faster with regard to the
critical front v > vmin. This effect is called strong velocity selection.

1.4 Stochastic FKPP

Since eq. (1.7) depicts the dynamics as a deterministic process, it does not take into
account the fact that populations are composed of a discrete number of individuals
exhibiting stochastic fluctuations. For spatially extended populations, where the
space-independent ingredients of competing species are mainly the fitness ( the perpetual
increase of growth rate ), the carrying capacity, and the diffusivity, it is convenient to
express the evolutionary dynamics in terms of macroscopic density f(~x, t) which carries
one of the two alleles. In the continuum limit, the equation of the dynamics reads:

dtf = D∆f + µsf(1− f) +

√
2µf(1− f)

NR
η(~x, t). (1.13)

The first term on the r.h.s of eq. (1.13), represents the molecular diffusionD acting on the
population dynamics, the second term is the effect of small advantageous selection s, and
the third term corresponds to genetic fluctuations due to birth and death processes (see
[10] for a detailed derivation of eq. (1.13) where with NR and η(~x, t) are respectively
indicated the density number of individuals and the white noise δ−correlated in space
and time.
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1.5 Advective effects on population dynamics

1.5 Advective effects on population dynamics

Many biological populations composed of microorganisms live and compete in liquid
media, like rivers, lakes, or oceans. These microorganisms need to find a way to thrive
in high Reynolds number fluid environments. The classical spatial model for growth
presented in eq. (1.7) can be generalized to investigate the dynamics of populations under
the effect of an advecting flow, taking into account the transport resulting from the flow
field u(x, t).

∂tc+ ∂x(u c) = D∂xxc+ µc(1− c) (1.14)

where c is the continuous variable describing the concentration of microorganisms, D
is the diffusion coefficient and the last term corresponds to the reaction term, controlled
by the logistic growth with rate µ. The advective velocity and the front propagation are
closely related. The impact of the advection is investigated by assuming that the left part
of the considered unidimensional spatial domain is inhabited whereas the right is empty.
Without velocity field, the front would propagate towards the right direction, admitting
traveling wave solutions with constant speed vF = 2

√
Dµ and front width w on the

order of
√
D/µ [30]. It is now assumed a front propagating from right to left side in

the presence of advection. The flow affects not only the expansion process but can also
have a dramatic impact on the population’s chance of survival in the habitat. The solution
of eq. (1.14) for a one-dimensional homogeneous system, with a constant velocity of
absolute value u, is simply given by a change with the reference frame. In this case,
due to the presence of an adverse flow, the propagation velocity is reduced by u, so that
the front propagates with the velocity v′F = vF − u. On the contrary, the two speeds
sum up when the flow is supporting the growth, producing a front propagating with
increased speed v′F = vF + u. The sign of the reduced propagation velocity determines
the persistence of the species: a negative propagation speed leads to an elimination of the
population, whereas a positive propulsion speed causes the invasion of the empty habitat
[32]. Therefore, on an infinite habitat in an advecting flow, the population can survive only
if u ≤ vF = 2

√
µD. The equation (1.14) can change according to the velocity field and

is not easily analytically interpreted. It is not trivial, for instance, the analysis of the case
where a compressible flow ∂xu 6= 0 is present. In many studies, this equation has been
investigated as a model for describing populations of microorganisms in turbulent flows,
without neglecting inertial effects [5, 13]. The presence of a flow causes the movement of
the individuals from the initial condition and represents also a vehicle for nutrients. The
applicability of the reaction-diffusion-advection model relates to several living species
with geometrical sizes ranging over many order of magnitude. The considered case of
diffusion of passive microorganisms suspended in a liquid is related to the Brownian
diffusion. As a final remark, the FKPP equation expresses the deterministic evolution of
a population but it tends to neglect stochastic fluctuations that are particularly relevant
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1. Phenomenology and theoretical background

for small populations especially at the leading edge of the front.

1.5.1 Turbulent Flows

Most relevant flows in nature are turbulent. Observations of this type of motion are
common in everyday life. The smoke of a cigarette, the mixing of coffee and milk in
a cup, a whirling motion of a torrent, are just some of the countless possible examples.
The turbulent motion is identified as a non-stationary, irregular and apparently, chaotic
motion, characterized by the presence of eddies of different sizes and speeds, which are
constantly changing. From a mathematical point of view, the concept of turbulence is
identified with the chaotic behavior of the solutions of the Navier-Stokes equations.

1.5.2 Navier-Stokes equations

The motion of an incompressible fluid flow is governed by the Navier-Stokes equations:

∇ · v = 0

(1.15)

∂tv + (v · ∇)v = −1
ρ∇p+ ν∇2v

where v is the velocity field, p the pressure of the flow, ρ the density of the fluid, and
ν the kinematic viscosity. The first relation identifies the mass conservation of the
incompressible fluid and the second equation represents how the fluid’s momentum
changes due to pressure and dissipative forces. If an external force acts on our system, it
is possible to define the rate of energy input and energy dissipation in a turbulent flow.
Hereafter we shall denote the scale of magnitude which estimates the ratio of inertial
forces to viscous forces within a fluid which is subject to relative internal movement due
to different fluid velocities.

1.5.3 Reynolds number

To establish whether the motion of a viscous fluid is laminar or turbulent, a dimensionless
quantity called Reynolds number is defined:

Re ≈ LU

ν
(1.16)
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1.5 Advective effects on population dynamics

This parameter depends on the average speed U of the fluid, on the viscosity ν, and
a linear quantity L characteristic of the duct. It has been experimentally demonstrated
that, for a fluid flowing around a sphere, the regime is laminar for Re values below
2 · 105 and turbulent for values above. Therefore, for large Re, the non-linearities of
the Navier-Stokes equations are dominant. This causes the absence of the analytical
solution of the N-S equations and outlines the irregularity of the flow. In this regime, only
statistical models can adequately describe the flow.

1.5.4 Laminar vs turbulent flows

In laminar flows, fluid layers slide in parallel with no eddies, swirls, or currents normal to
the flow itself. Turbulent flows, on the other hand, include vortex structures of different
sizes and speeds that make the flow unpredictable over time even if the motion remains
deterministic. Motion, in fact, is governed by the laws of the deterministic chaos which
implies full knowledge of the behavior of the system starting from its initial conditions.
The deterministic nature of these systems does not make them predictable, every
deterministic solution is unstable and a small uncertainty in the initial condition is enough
to observe similar but different behaviors over time. This behavior is known as chaos. An
example of the laminar and turbulent flows around a sphere is shown in fig. ??.

Laminar flow Turbulent flow

Figure 1.2: Laminar and Turbulent flow patterns over a sphere

As a clarifying example, let us consider two solutions having two slightly different initial
conditions, x(0) and x(0)+E(0). After a few time steps, the two solutions behave totally
differently. We denote by x1(t) the value returned by the initial condition x(0) and by
x2(t) the value obtained from x(0) + E(0). We define E(t) as the absolute value of the
difference between the two tracer particles |x1(t) − x2(t)|. The distance E(t) will be,
shortly thereafter, an apparently random number ranging from 0 and 1. No matter how
small E(0) may be, after a few steps, it is impossible to predict the x trajectory. This
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1. Phenomenology and theoretical background

notion can be expressed by the Lyapunov exponent [33]:

E(t) = E(0) expλLt (1.17)

The sign of the Lyapunov exponent indicates the behavior of the nearby trajectories. A
negative exponent λL < 0 indicates that neighboring trajectories converge to the same
trajectory. In the limit where λL > 0 and E(0) is infinitely small, the motion shows
a strong dependence on the initial condition. When this occurs, the system develops a
chaotic motion. Given the laws that describe the system, if the motion is chaotic, there
is a time limit beyond which a prediction is not possible. The fraction 1/λL, in eq. 1.17,
represents the predictability time of the system. It can be concluded that after that time it
is no longer possible to predict the state of the system starting from the initial condition.
Keeping this in mind, it is remarked that a quasi-periodic motion is not chaotic even if it
never reproduces exactly itself.

1.5.5 Richardson energy cascade

The nature of turbulent flow is highly dissipative. In the Richardson cascade picture,
swirling structures are formed by providing energy from external forces to a fluid system.
These vortices spin-off a cascade of nested smaller vortices. The large eddies are unstable
and break up, transferring their kinetic energy to smaller eddies. These smaller eddies
undergo a similar break-up process and transfer their energy to yet smaller eddies. The
mechanism proceeds until the small-scale structures are small enough for the fluid’s
molecular viscosity to convert their kinetic energy into heat.

v

z

Main flow Turbulent eddies

Typical lengths (m)

Heat

10-4 10-100.1-11-10

Viscous

Figure 1.3: Sketch of Richardson cascade process: Big whorls have little whorls
which feed on their velocity
and little whorls have lesser whorls
and so on to viscosity
- Lewis fry Richardson

Figure 1.3 shows the energy transfer through cascaded whirls, including typical geometries.
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1.6 Stochastic populations model

1.5.6 Kolmogorov’s theory

The description of Richardson’s energy cascade, first quantified by A.N. Kolmogorov
[34], is the most fundamental concept of turbulence theory.

Kolmogorov postulated that for sufficiently high Reynolds number, the small scale eddies
are isotropic. This assumption is very important because it implies that the statistical
analysis of small eddies is independent of any specific geometry. Under this hypothesis,
Kolmogorov statistically described the main features of the smallest turbulence scale
(known as “Kolmogorov microscales”) as follows:

length scale η =

(
ν3

ε

)1/4

(1.18)

dissipative time scale τη =

(
ν

ε

)1/2

(1.19)

velocity scale vη = (ν ε)1/4 (1.20)

where ε is the mean rate of energy dissipation and ν is the kinematic viscosity. An
alternative definition of the dissipative scale is the local Reynolds number of the
Kolmogorov scale

Re =
LU

ν
≈ η vη

ν
= 1 (1.21)

Although the speed of energy dissipation fluctuates in space and time in the turbulence of
fluids, at microscale we tend to use the average values of the fields since they represent the
typical values of the smallest scales in a given flow. The study performed by Kolmogorov
in 1941 forms a theory of the medium field since it assumes the average energy dissipation
rate as the relevant dynamic parameter.

1.6 Stochastic populations model

In this section, we introduce the stochastic analysis that characterizes the evolution of a
population in a heterogeneous system, more accurately than the deterministic model. A
population composed of discrete elements whose growth occurs based on unpredictable
events will be considered. From a qualitative point of view, this approach can modify
macroscopic observables such as the propagation speed.
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1. Phenomenology and theoretical background

Several stochastic models have been developed to explore genetic drift. The considered
intrinsic fluctuations become very relevant when the population size is small. This can
happen in the proximity of an expanding front or when the population size is reduced
due to compressibility-based effects.

1.6.1 Compressible Turbulence

Given a fluid volume, the divergence is defined as the percentage variation of that volume
per unit time. A positive divergence refers to a volumetric dilation while a negative
divergence is connected with a volume contraction. It is therefore intuitive to think that,
since the total mass contained in the volume must remain unchanged, a dilatation causes
a decrease in density whereas a contraction produces an increase in density. Previously
it has been remarked that the divergence of the velocity field is zero for incompressible
fluids by looking at the Navier-Stokes equations eq. (1.15). As a consequence, a fluid is
incompressible when the density is constant. A compressible flow, on the contrary, holds
account of the effect of fluctuations, namely as the relative volume change in response
to a pressure change. Competing organisms can be mixed and compressed by turbulent
movement. When population dynamics is combined with compressible turbulence, the
system can be described in terms of the dimensionless number τη/τg i.e. the ratio between
the biological and the flow time scales. τη ≡ (ν/ε)1/2 is the Kolmogorov dissipative time
scale, with ν the kinematic viscosity and ε the rate of energy dissipation per unit mass,
whereas τg ≡ (1/µ) is the growth time.

Compressible turbulent flows may exhibit weak or strong compressibility. In the weak compressibility
case, the time scale of the turbulent flow is relatively large if compared to the generation
time of the particles, and τη � τg. The effect of the flow is considered almost negligible
and then the particles cannot experience the turbulence.

At the limit where τη � τg, the effect of the fluid flow plays a significant role. This regime
is defined as a strong compressibility regime and results in a system that is completely
governed by turbulence and where only a small number of particles can survive. Strong
compressibility is responsible for the clustering of biological entities [35]. The particles
are transported to the sinks (areas of negative divergence) where they tend to die due to
competition effects. That is why in this regime, the total size of the population is strongly
reduced. Clustering implies a reduction of the biological mass and enhancement of the
effects associated with number fluctuations.
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1.6 Stochastic populations model

1.6.2 Evolutionary dynamics of two species

The evolutionary dynamics of the two species depends on the coexistence between
the replicator dynamics and the genetic drift, with both deterministic and stochastic
contributions. We will start by analyzing the neutral case s = 0, in a one-dimensional
system, for the densities cA = NA/N and cB = NB/N in an advecting field u(~x, t) [12].
The macroscopic equations describing the evolution of the densities are:

∂tcA + ∂x(ucA) = D∆cA + µcA(1− cA − cB) + sµcAcB + (1.22)

+

√
µ
cA
N

(1 + cA + cB)ηA(x, t)

∂tcB + ∂x(ucB) = D∆cB + µcB(1− cA − cB)− sµcAcB + (1.23)

+

√
µ
cB
N

(1 + cA + cB)ηB(x, t)

with ηA(x, t) and ηB(x, t) Gaussian noises, δ-correlated in time and space that must be
interpreted using Ito calculus [7, 36].

The above equations derive from a microscopic equation through the Kramers-Moyal
method, the order of such description is equivalent to the van Kampen inverse system
size expansion [37].

1.6.3 Doering’s probability fixation formula

A rather nontrivial result was obtained by Doering in a remarkable landmark paper [38],
in which he showed that the probability of fixation Pfix for the stochastic FKPP equation,
in one spatial dimension, does not depend on diffusivity D, at the limit of small values
of dispersion and large total population size:

Pfix = 1− exp

[
− sN

∫
dxf(x, t = 0)

]
(1.24)

where f(x, t = 0) is the initial spatial distribution of the fraction of a determined species.
The same outcome seems to hold for the two-dimensional case, with d = 2, according to
the numerical investigations presented by [10, 25].
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1. Phenomenology and theoretical background

1.6.4 Strong noise limit

In spatially extended systems, the populations are mixed by diffusion. The diffusion
scale

√
D/µ may be considered as an "effective deme size". This means that individuals

within a distance smaller than
√
D/µ are mixed very efficiently over a single generation,

and appear decoupled when the distance is larger than
√
D/µ. For the one-dimensional

problem, we have derived the velocity of the front vF from the Fisher equation in absence
of noise. However, this is applicable only at the limit of weak noise, i.e. N

√
D
µ � 1,

that corresponds to having many individuals in an effective deme size. By adding a noise
term to the FKPP equation, Doering, et al. [38] considered the limit N

√
D
µ ≤ 1, where

fluctuations play a decisive role. This limit is characterized by small values of D and N
and is called a strong noise regime (or weak growth limit).

The behavior of the velocity of a stochastic front seems to go according to v ∼ DµN ,
a much smaller quantity than the so-called Fisher velocity vF ∼

√
Dµs observed for

N � 1. We will discuss in chapter 4, how the slowing down of the front propagation and
the segregation effects induced by genetic fluctuations (see [7]) can explain the reason
for which Pfix is independent of D.

The total concentration c is uniform over the domain (c = 1), when a population is
subject to the advection of an incompressible flow velocity field ~v. In this case, the
equation becomes

∂tf + ~v~∇f = D∆f + µsf(1− f) +

√
2µf(1− f)

NR
η(~x, t) (1.25)

where ~v is assumed to be a two-dimensional incompressible flow with div(~v) = 0. Now,
we summarize some of the key findings obtained in chapter 4. Without advection, the
strong noise limit occurs when the following inequality holds:

a2

N0D
� 1

µ
(1.26)

where a ≡ L/n is called the deme size, with NR ≡ N0/a
2 = n2N0/L

2 the population
density. The physical interpretation of eq. (1.26) is rather clear: a2/(N0D) is the diffusive
characteristic time needed for a population of size N0 to spread over a distance of the
order of a, whereas 1/µ is the generation time. Competition in space occurs at a much
slower rate when the inequality in eq. (1.26) is satisfied. Consequently, the characteristic
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1.6 Stochastic populations model

timescale of the system slows down, and the fixation time Tfix is given by

Tfix =
L2

D

f0
1− f0

log

(
1

f0

)
(1.27)

which can be compared to eq. (1.6), with D/L2 replacing µ/N .

In presence of advection, a proper analysis can be performed by considering the effective
(or eddy) diffusivity, Deff , due to the flow, and the related characteristic spatial scale, lu.
BothDeff and lu are not easily computable starting from the knowledge of the advection
field. In a few cases, as discussed in this section, it is possible to obtain an analytical
estimate for both quantities (see [39] for details). In chapter 4, we will provide theoretical
and numerical evidence that there may exist a strong noise scenario for the dynamics if
the following inequality is fulfilled:

l2u
DeffN0

� 1

µ
(1.28)

Moreover, we find that the relation a2/D > l2u/Deff is always valid. When eq. (1.28) is
satisfied, the corresponding estimate of Tfix, for small s, is given by

Tfix =
NT l

2
u

DeffN0

f0
1− f0

log

(
1

f0

)
(1.29)

where NT = n2N0 is the total population size. Note that Tfix, given by eq. (1.29), is
shorter than the one given by eq. (1.27), but still much larger than the fixation time for a
well-mixed population given by eq. (1.6).

1.6.5 Damköhler number

The relation Deff ∼ U0lu holds for the relatively simple case of chaotic flows with U0

being some typical velocity. Then (1.28) can be written as:

Da ≡ µlu
U
� N (1.30)

where Da is called the Damköhler number and represents the ratio between the rate of
growing and the characteristic rate of population spreading (see also [15, 16] for the study
of thin front propagation in steady and unsteady cellular flow and no genetic fluctuations,
i.e. N →∞). For finite Da� N , strong noise effects characterize the dynamics in the

21



1
.

P
H

E
N

O
M

E
N

O
L

O
G

Y

A
N

D

T
H

E
O

R
E

T
IC

A
L

B
A

C
K

G
R

O
U

N
D1

1. Phenomenology and theoretical background

presence of chaotic advection.

In the case of Deff ∼ Ulu, the ratio lu/U is defined as the "eddy turnover time" at
scale lu of the flow. If the flow is characterized by a single spatial scale lu, eq.(1.30)
becomes a condition on the velocity scale U . However, for turbulent flows, the eddy
turnover time increases with l. The system behaves as in the well-mixed case for small
values of l (turbulence increases mixing and no strong noise effects can arise), however,
there may exist a critical scale above which strong noise effects becomes relevant and
the characteristic timescale of the Darwinian dynamics increases.

1.6.6 Heterozygosity

Heterozygosity is a measure of genetic variation within a population [7] and quantifies
the loss of diversity in a population composed of two genotypes. The heterozygosity in
the one-dimensional case can be expressed as

H(x, x′; t) ≡ 〈2f(x, t)[1− f(x′, t)]〉. (1.31)

The heterozygosity is given by the product of the two fractions f(x, t) and (1− f(x′, t))
and defines the probability for two randomly selected individuals to belong to different
species (that is carrying two different alleles) [10]. The heterozygosity becomes zero
when one of the two genotypes fix. In 1970, Crow and Kimura [40] stated that if the
population size is not very small (N � 1), the total heterozygosity decays exponentially
in well-mixed neutral systems:

〈H(t)〉 = H(0) exp

(
− t

2N

)
(1.32)

The relation (1.32) indicates that after 2N generation time the expected heterozygosity
becomes the initial value H(0) divided by the factor e−1. Thus, in a one-dimensional
system, the local diversity H(t) ≡ H(x, x; t) decays according to t−1/2 in the case of
a neutral model without mutation. In two dimensions, this decay is much slower and
behaves as 1/ln(t) [7].

1.7 Interspecies Interactions

An interpretation of the interspecies interaction of microorganisms is fundamental to
provide an understanding of biological diversity. However, classical ecological competitiveness
models ignore populations spatially extended. This type of population is treated as
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1.7 Interspecies Interactions

well-mixed organisms that freely interact with each other. Coexistence in such a setting
is highly limited [41, 42] and biodiversity is significantly diminished. In fact, if the range
of interaction is limited, individuals never compete against the whole population. In
[43], it is shown that this reduced interconnection suppresses the selection. Therefore,
the conventional theory of well-mixed systems overestimates the probability of fixation
of beneficial species. The analysis of species interplay aims to look for models and
constraints which affect the evolution of interactions and the conditions which support
coevolution. Diversity is much greater, in spatially heterogeneous settings, and one of
the substantial insights consists of the manner space can improve the coexistence of the
organisms. In this regard, spatially extended mathematical models, as the reaction-diffusion
equations are considered.

Such an analysis has acquired importance only in recent years, becoming a new focus of
evolutionary research. Typically, every species has a peculiar trait and the interaction of
two species can be described in general terms as mutualism, predator/ prey competition,
and antagonism as shown in fig. 1.4.

Figure 1.4: Representation of the four different competition scenarios of the species. The point in the center
where α1 = α2 = 0 indicates the neutral evolution.

• Mutualism : (+,+), in which both species benefit from the interaction.

• Competition: (+,−), (−,+) in which one species benefits at the expense of
another one.

• Antagonism: (−,−) in which the two species bear a cost of mutual interaction.

The antagonistic interaction can occur in a very wide range of geometrical scales. For
example, the reproduction between a fire-bellied toad (Bombina bombina) and the yellow-
bellied toad (B. variegata), can generate hybrids, which are considered selectively
disadvantaged combinations [44]. Proceeding towards smaller dimensions, we find
populations of micron-scale bacteria poison-secreting. Such antibacterial toxin production
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1. Phenomenology and theoretical background

is widespread in microbial cultures and may have significant effects on the environment
as well as on human health [45–47].

In chapter 5 we model two antagonistic strains in a two-dimensional system. For this
purpose we focus on the dynamics of two species A and B having different growth rates,
µA and µB , respectively. We take a thin layer of individuals at carrying capacity, so that
A-individuals have fraction f and B individuals have a fraction (1−f). In order to model
the antagonistic interaction, we assume that the growth rates depend on the local fraction
of the other species,

µA = µ0A + α(1− f) (1.33)

µB = µ0B + βf

in which the base growth rates are represented by the apex 0 and, where α and β are the
amplitudes of the fraction-dependent contributions for both the strains. To ensure that
the two species have mutually antagonistic interaction, we take α, β ≤ 0. In such a way
they incur a penalty for growth as either species expand next to each other. As we have
seen in [48], the established interactions create a dynamical "tension line" γ between
the two species. It can be shown that the two strains separate faster in their components
for smaller negative values of α and β. According to the work by Lavrentovich we can
define δ = α− β and σ = −(α+ β)/2, and consequently γ ≈ γ(σ), i.e. the line tension
is a monotonically increasing function of σ. Making use of equations (1.22) and (1.23)
we find the two equations describing the evolution of two spatially extended fractions:

∂cA
∂t

+∇(~u(r)cA) = D∆cA + µcA(1− cA − cB) + (1.34)

−µcAcB(σ − δ/2) +

√
µ
cA
N0

(1 + cA + cB)

∂cB
∂t

+∇(~u(r)cB) = D∆cB + µcB(1− cA − cB) + (1.35)

−µcAcB(σ + δ/2) +

√
µ
cB
N0

(1 + cA + cB)

where N0 is the number of individuals per deme.
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1.8 Bacterial motility and diffusion

1.8 Bacterial motility and diffusion

Motility is a non-trivial factor in the fitness and viability of bacteria. Motility determines
the manner in which microorganisms scout the environment, seeking food and avoiding
predation. [4, 10]. For swimming bacteria, the motion is characterized by frequent
tumbling events which allow the microorganism to explore a vast portion of the surrounding
space [49–51].

1.8.1 Run-tumble propulsion

An organism, to keep moving at low Reynolds number, must execute cyclic deformations
that break time-reversal symmetry (or non-reciprocal motion) [49, 52]. In a liquid environment,
evolution has selected a number of different swimming strategies exploiting cilia or
flagella [53–55]. A typical strategy employs rotating flagella driven by a motor embedded
in the cell membrane. The motor is able to switch between clockwise and counter-clockwise
rotation. In the case of Escherichia coli and Salmonella typhimurium, flagella are randomly
distributed on the cell surface. However, when all the motors rotate in the same direction,
the flagella arrange in a single bundle at a pole of the cell [56]. The steady tail rotation
thrusts the microorganisms in the “run” phase, in which the bacterium moves in a smooth
forward motion. The run phase is frequently interrupted by tumbling events. For E. coli,
during the tumbling phase, one of the motors reverses the rotation. Consequently, the
flagellum bundle unwraps, and the microorganism stops and changes its orientation. Then,
as all the motors resume to rotate in the same direction, the flagella aggregate again into a
single bundle and a new run phase starts. The overall motion is named “run-and-tumble”
and it is represented in fig. 1.5.

For run and tumble swimmers, in free space, the trajectory during the run phase is
approximately a straight line. It follows that the increase of the tumbling frequency α
corresponds to a reduction of the effective diffusion coefficient D. Indeed, by assuming
that the run phase is characterized by a typical constant velocity v0 and that tumble
events occur instantaneously, the effective diffusion coefficient scales as D ' l2α, with
l = v0/α the distance covered during a run phase. Hence, D ' v20/α, see e.g.[57].

1.8.2 Bacterial dispersion in microfluidic channels

A completely different phenomenology is observed when flagellated E. coli like
microorganisms move close to a solid wall or to an air-liquid interface. Microswimmers
are attracted towards the boundaries via hydrodynamic interactions [58–62], and in the
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1. Phenomenology and theoretical background

Figure 1.5: E. coli switch the frequency of CCW (run) vs CW (tumble) rotation of their flagella based on
their sensing

case of solid surfaces, may get trapped in stable circular orbits parallel to the wall. This
deterministic motion prevents bacteria to explore the surrounding space. In this condition,
the role of tumbling events is twofold. On one hand, as in free-space, a high tumbling
frequency hampers the bacterium to swim away for long distances, on the other hand,
tumbling favors the escape from the stable circular orbits. An analysis of a simplified
model suggests that the diffusion coefficient reaches a maximum value for a tumbling
frequency α ' τ−1, being τ the characteristic time scale associated with the stable
circular orbit [63].

1.9 Conclusions

This chapter provides an overview of the population dynamics and genetic properties. A
general explanation of the mechanisms that affect genetic diversity over time is given. In
fact, population genetics forms the fundamental basis of evolutionary change, which
is the modification of hereditary characteristics of groups of organisms through the
generations. To determine the evolution of a population, several fundamental processes
such as the influence of the environment and the reciprocal interaction between the
different alleles should be taken into account. To understand the mechanisms at the basis
of the genetic diversity over time, two different approximations are analyzed: non-spatial
and spatial. Firstly a deterministic approach is studied, which although simple is not
realistic. Addressing most of the research questions present in evolutionary biology
requires random effects to be taken into account, and a stochastic approximation results
more appropriate. For the considered case, the resulting evolution does not depend on the
given initial condition but only on the probability to exhibit certain dynamics.
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2 | Numerical methods

The evolution of complex biological systems out of equilibrium is usually studied by
means of stochastic models. Sewall Wright and Ronald Fisher have developed the first
stochastic population model intending to study the genetic drift process [64, 65]. These
models have laid the groundworks for the theory of population genetics, enabling important
follow-up studies and further models still referenced today. The most relevant models are
described in the next section, to create a clear link between the state of the art and the
research choices proposed in this work.

Large portion of this content refers to the review of Korolev et. al [7]
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2. Numerical methods

2.1 Wright-Fisher model

TheWright-Fishermodel describes the process of genetic drift within a finite population.
Consider a population in equilibrium composed of N diploid individuals. Each diploid
individual can contain either the same allele or two different alleles, namely A and
B. According to the deterministic model, the relative frequency of type A is given by
p = i/2N where the index i is related to the number of types A allele at step t. We
consider the case where the allelesA andB are evenly fit. The 2N alleles, composing the
considered population at time t, may give birth to a causal number of offspring making up
the next generation at the time t+1. An allele copy from the initial population is randomly
chosen and a duplicate of that allele is found in the new generation. It is assumed that no
mutations occur. Suppose further that once the new generation is formed, the previous
one is completely replaced. In light of these assumptions, the generations do not overlap,
since N genes die and other N genes are born at each time step (see fig. 2.1).

Figure 2.1: Structure of the Wright-Fisher model. The population is characterized by 2N alleles. The new
generation of 2N allele copies is produced through a binomial sampling of the old generation’s genetic pool.
The sampled offspring alleles may be assembled into a new set of diploids, or else used to calculate a new
generation of binomial sampling.

We are interested in calculating the exact probability that the number of A allele copies,
i remains equal to 2pN after a generation of random sampling. This is given by the
binomial distribution:

pij =

(
2N

j

)
pj(1− p)2N−j , 0 ≤ i, j ≤ 2N (2.1)

where
(
2N
j

)
= 2N !

j!(2N−j)! gives the binomial coefficient. pij indicates the transition
probability within one generation. Equation (2.1) determines the probability for an allele
with i copies in the first generation to be found in j copies in the next generation. After one
step the probability is given by the number of A allele copies j over 2N , p(1) = j/2N .

One would expect that since at the first step the relative fitnesses of the allelesA andB are
the same, also their frequencies should stay constant over the generations p(t+1) = p(t).
What one notices is that allele frequencies increase and decrease over time by chance.
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2.2 Moran model

This mechanism is defined as genetic drift, by which random sampling of descendants
allows the allele frequencies to change their deterministic expectations.

In case the whole population is reproducing, then the variance of the frequency of
the A allele in the next generation t + 1, can be obtained by the variance equation
σ2(∆p) = p(1−p)

2N . In the most likely case where not all the individuals are involved in
the reproductive process, the variance of the change in the gene frequency is given by
the relation: σ2(∆p) = p(1−p)

2Ne
, where Ne represents the effective population size, i.e.

the number of breeding individuals among the idealized population. In particular, the
coefficient Ne is a population genetic metric used to evaluate the effect of genetic drift in
the finite population on allele frequencies. Individuals in the Wright− Fisher model
simultaneously reproduce at every time step. This behavior may lead to an overestimated
genetic drift effect. We now introduce a model where only one individual reproduces at
a time over generations.

2.2 Moran model

The Moran model represents a finite-population stochastic process and describes the
evolution of a population forward in time. This method differs from the previous one
due to the possibility of overlap between different generations, and it is a very effective
approach to model the birth and death events of the individuals.

The description, in the simplest version (without selection or mutation), is the following:
A population consisting of N individuals possibly carrying two alleles A and B is
considered. At every discrete time step, an organism is randomly selected for reproduction
and another one for dying [66], thereby preserving the overall number of individuals. Each
new individual inherits the type of its parent and replaces a randomly chosen individual
(possibly its parent). This sampling procedure results in genetic drift. It is common to
keep track of the population only at discrete points in time when a birth-death event has
occurred. Time is therefore measured by the number of events that occurred rather than
in chronological time.

Let us define the frequency p(t) as the fraction of species A with respect to the total
population of size N , at time t. The expected value of this frequency at time t + 1 and
the variance of 〈p(t+ 1)〉 will be respectively:

〈p(t+ 1)〉 = p(t) (2.2)

〈[p(t+ 1)− 〈p(t+ 1)〉]2〉 = 2p(t)[1−p(t)]
N2 (2.3)
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2. Numerical methods

where angular brackets represent average concerning the individual chosen at random
for reproduction and death. Since, at every time step, only one individual of the entire
population gives birth, the time t is measured as generation time τg/N . The two mentioned
equations (2.2) and (2.3) point out that the frequency f(t) behaves as an unbiased
random walk in the space of allele frequencies, with a frequency-dependent diffusion
coefficient. It is possible to outline that this random walk, in a continuum regime, follows
the Fokker-Planck equation [40, 67]

∂P (t, f)

∂t
=

Dg

2

∂2

∂f2
[f(1− f)P (t, f)] (2.4)

where P (t, f) is the probability density function for f at time t, measured in generations
and Dg = 2

Nτg
is the genetic diffusion constant.

2.3 Stepping stone model

The Stepping StoneModel (SSM) is introduced with a simple but clarifying visual
example shown in fig. 2.2. Two populations px and py are considered, living on a
mainland and an island, respectively. The mainland and the island are represented by
the two cylinders and it is assumed that only the x-population can migrate on the island
(fig. 2.2). The overall population given by the sum of px and py individuals is denoted
by N . The frequency p of y-population living on the island after a time step t is given by
the following relation:

py,t+1 = mpx,t(1−m)py,t (2.5)

where m is the fraction of immigrates and (1−m) is the fraction of individuals already
present on the island (see fig. 2.2).

m

Populationx Populationy

1-m

Figure 2.2: Basic mainland-island example. The two cylinders represent the mainland and the island. Within
them a population of N individuals is present. Only the migration, illustrated by the m parameter, from the
mainland to the island is possible.
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2.3 Stepping stone model

The SSM, introduced by Kimura [23, 68], is a more realistic discrete model for spatial
growth. It considers a one-dimensional domain discretized into an infinite number of
islands, called demes, consisting of many well-mixed populations. Every site is saturated
up to its carrying capacity, and consequently, the local population size N is constant
during the whole dynamics. The island deme can be sub-divided into multiple demes
to create a linear spatial lattice. In sketch fig. 2.3, three sub-demes are considered and
marked by the indices l−1, l, l+ 1 indices, representing adjacent locations on the spatial
lattice. Two different allelic variations of organisms are present in each sub-deme. The
connection between the neighboring populations is given by the migration rate, m. Since
the migration rate is divided between the two closest demes, it corresponds to m

2 .

The number of sub-demes can be extended up to infinite to treat the system with a
continuous approach. The evolutionary state of the system depends on the macroscopic
density of individuals f(x, t)l carrying one of the two alleles, within the l deme, and
is well described by the following stochastic differential equation in the considered
continuum case:

dfl
dt

=
m

2
(fl−1 + fl+1 − 2fl) + sfl(1− fl) +

√
Dgfl(1− fl)Γl (2.6)

where s is the selective advantage, Γl represents a zero-mean white Gaussian noise that
obeys to 〈Γl1(t1)Γl2(t2)〉 = δl1δl2(t1− t2) and it must be interpreted using Ito’s calculus
[7]. Each population presents a stochastic change in allele frequencies at each generation,
that may be due to genetic drift and other local processes.

Nl-1 Nl Nl+1

!
" Nl

!
" Nl-1

!
" Nl+1

!
" Nl

l - 1 l l + 1

Figure 2.3: An infinite one-dimensional stepping stone model. Each population, which consists of N
organisms is connected to only two others and exchange migrants at a rate of m

2
N in each direction each

generation.
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2. Numerical methods

Mutation terms can be added to (2.6) to describe the continuous time and space limit
of the SSM thanks to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation
[26].

2.4 Agent-based stochastic model

The agent-based stochastic model (ABM) or individual-based model, enables the understanding
of the dynamics of a complex system starting from the study of the single agents composing
the system. All organisms are treated as independent individuals interacting with each
other and with the surrounding environment.

In the models introduced so far, the spatial movement of the individuals was mainly due
to the diffusion process. Furthermore, the discrete nature of the individuals living in a
population and the stochastic behavior of the related evolution have been neglected.

Extending population dynamics research beyond a deterministic viewpoint provides
an opportunity to combine the current understanding of microorganism systems with
complementary studies. In this regard, the stochastic continuum dynamics of a population
can be investigated by involving the intrinsic fluctuations in the study approach. Such a
broadening of perspectives opens important routes towards the study of all the organisms
that live in the ocean, all the existing allelic variants, and the underlying chaotic flow.

Due to the presence of the flow and its inhomogeneities, one of the central aspects of the
Stepping Stonemodel, namely, the constant size of the local population in time or in
space [5], is lacking.

The ABM model can catch both the discrete nature of the particles and the stochastic
features of their interactions. The individual-based model coupled with the flow, developed
by Perlekar in 2011 [69], is here described. A spatial one-dimensional mesh of size L
is subdivided into intervals of size δ and n particles are equally distributed within the
intervals. For simplicity, only particles having two different allele variations, called A
and B, are considered. Within each interval, there are NA and NB individuals with allele
variationA andB, respectively. The total number of individuals, inside a deme, is defined
by N = NA +NB . The particles are advected by the flow and diffused by the Brownian
motion according to

xi(t+ ∆t) = xi(t) + u∆t+
√

2D∆tΓi(t) with i=1,2,...n (2.7)

where u is the advecting velocity, ∆t is the time step, and Γ(t) is a normally distributed
random variable with zero mean and unitary variance. Furthermore, the particles inside
the sub-domain δ can reproduce themselves, die or compete with other neighboring
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2.4 Agent-based stochastic model

particles, at a certain rate k. The set of these processes, known also as logistic dynamics
is summarized in table 2.1. All of these processes may possibly happen with the opposite

A+B
k→ B +B

Occurs when two particles, with different alleles, interact with
each other, and one of the two particles changes species, at a rate
k. In order to implement this event, it is necessary to know the
number of particles of one of the two species within the range δ.
If the relation kNB∆t > rt is valid, where rt is a random number
uniformly distributed in [0, 1], then the process occurs.

A
k→ A+A

In this reaction a particle A reproduces itself, giving birth to
another particle of the same type. It occurs if the relation k∆t < rt
is fulfilled.

A+A
k→ A

An interaction between two particles of the same species takes
place, and one of the particles dies at rate k. This occurs if the
relation k(NA − 1)∆t < rt is true.

Table 2.1: Agent-based model logistic dynamics.

species, by modulating, where it is needed, the number of individuals with the right allele
in the relations. In the case of one species only, these mathematical expressions would
refer to Doering’s birth-coagulation reactions [38].

In a recent work of Plummer et al., [11] a one-dimensional agent-based model of two-species
competition is implemented for a well-mixed system, which is coupled to a compressible
flow. The employed birth-death relations that were used are the following:

A→ A+A at rate µ; A→ ∅ at rate γ(NA − 1) + λABNB (2.8)

B → B +B at rate µ; B → ∅ at rate γ(NB − 1) + λBANA (2.9)

The growth rate µ and the death rate γ are the same for both the species in the above
equations (2.8) and (2.9). This means that the well-mixed carrying capacity of each
species is the same. However, the rate of the death process for the competition can vary,
allowing the definition of the selective advantage s as

s = 1− λAB
γ

(2.10)
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2. Numerical methods

Growth rate 𝜇 Death rate 𝛾

A

B

𝝀AB 𝝀BA

Death for competition

Figure 2.4: Visual draft of the processes that take place: reproduction, death, and competition.

Very often, the relation µ → µ(1 + s) can be found, for one of the species, to which
corresponds to faster growth.

2.5 Conclusions

Multiple population models that reflect environmental variables have been analyzed since
cell fitness values depend not only on their cell types but also on their location. A good
approximation of the biological evolution of a mutant with fitness s+ 1 in a population
having fitness 1 is given by the works of Wright-Fisher and Moran for unstructured
genetic populations (dimension d = 0). The evolutionary dynamics is mainly discussed
through the stochastic equation of Fisher Kolmogorov Petrovsky, Piscounov (sFKPP)
with geographically organized populations. The stepping stone model allows a first
stochastic discussion by hypothesizing a well-mixed population where organisms carrying
different alleles migrate across an infinite array of demes. A common feature of the
discussed models is the fixed total population size, which does not change through
subsequent generations. To enable a more generic study, the agent-based method is
introduced, which lays the foundations for the explanation of the method proposed in this
dissertation. It relies on the stepping stone model, inserts rules for the processes of birth
and death, and for the first time takes into account variations in density.
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3 | Discrete Eulerian model
for population genetics and
dynamics under flow

Fluid advection can seriously impact genetic competition among biological species living
in marine surroundings. Both the off-lattice agent-based architecture (see Chapter 2) and
the novel method proposed in the current chapter, based on the density in loco, are used
to define the dynamics of two competing populations under (turbulent) velocity fields in
one and two spatial dimensions.

The proposed algorithm is initially described and tested in one and two dimensions
without flow. A systematic comparison of our approach against known analytical and
numerical results is given. Then the fixation probability of an advantageous species in
the case of two-dimensional weakly compressible flows is investigated.

Part of this chapter is based on the review “A novel, accurate, and efficient model for population dynamics
and genetics in marine environments” by G. Guccione et al. [70]

35



3
.

D
IS

C
R

E
T

E

E
U

L
E

R
IA

N

M
O

D
E

L
F

O
R

P
O

P
U

L
A

T
IO

N

G
E

N
E

T
IC

S
A

N
D

D
Y

N
A

M
IC

S

U
N

D
E

R
F

L
O

W

333

3. Discrete Eulerian model for population genetics and dynamics under flow

3.1 Method description

The proposed computational approach is here described. A one-dimensional (1D) system
with periodic boundary conditions is considered. The system consists of a uniform lattice
of size L, discretized in n intervals of size ∆x = L/n. Each interval i = 1, ....n spans
the region x ∈ [(i − 1)∆x, i∆x]. We denote by N (β)

i the number of individuals in the
interval i, where β = A,B refers, in this case, to the two possible species (for different
realizations, the number of the species may also be greater). At equilibrium and with no
external flow, we can define the density N0 of individuals per mesh point corresponding
to the overall carrying capacity N0L/∆x. With this definition, we can also think of N0

as the average carrying capacity for a mesh site.

At time t, our knowledge is given by the set of numbers N (β)
i for i = 1, ..., n. Our task

is to compute the evolution of the system at time t+ ∆t, where ∆t represents our time
step.

We implement the evolution using four different steps. In step 1, we implement a Markov
chain with next-neighbor hopping and periodic boundary conditions, which is known to
be consistent with the diffusion equation with diffusivity D once the hopping probability
is given by the relation

p ≡ D∆t

∆x2
; (3.1)

with p� 1.

Step 1. Diffusion. For each interval i, we compute the particle positions xa(i) (a =
1, ..., Ni) according to the rule:

xa(i) =

(
i− 1

2

)
∆x+ ∆x

(
η − 1

2

)
(1 + 2p), (3.2)

where η is a random number that is uniformly distributed [0, 1]. In this step, only a small
fraction of the N individuals is spread outside of the initial site i. Note that we do not
assume any knowledge of the previous position of the individuals.

Step 2. Advection. Once step 1 is performed, we can compute the advection and obtain

xa(i, t+ ∆t) = xa(i) + u(xa(i))∆t (3.3)

where u(x, t) is a prescribed advecting field.
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3.1 Method description

Step 3. Relabeling. For each off-mesh particle a, we can now determine the deme index,

j ≡
⌊
xa(i, t+ ∆t)

∆x

⌋
+ 1 (3.4)

and therefore apply the rule
Ñj = Ñj + 1 (3.5)

to increment the deme occupancy number. Note that before implementing eq. (3.2) we
put Ñj = 0 for all demes j = 1, ...., n.
Since from Step 1 to Step 3 we repeat the same operation for both species in the sections,
we ignore the label β for the different species.

Step 4. Birth and death processes. After running step 1 to step 3 for all the intervals,
we apply the last step where we execute the rules for stochastic population dynamics for
each segment j. At this stage, for every j interval, we compute the birth-death process
Ñj times according to the following rules:

Ñ
(A)
j = Ñ

(A)
j + 1 at rate rb(A) (3.6)

Ñ
(A)
j = Ñ

(A)
j − 1 at rate rd(A) (3.7)

rb(A) = µ∆t

rd(A) = µ∆t
Ñ

(A)
j − 1 + Ñ

(B)
j (1− s)

N0

Ñ
(B)
j = Ñ

(B)
j + 1 at rate rb(B) (3.8)

Ñ
(B)
j = Ñ

(B)
j − 1 at rate rd(B) (3.9)

rb(B) = µ∆t

rd(B) = µ∆t
Ñ

(B)
j − 1 + Ñ

(A)
j (1 + s)

N0

where s is the selective advantage, s > 0, or disadvantage, s < 0, of individuals A with
respect to B. Here, rb and rd denote the birth and the death probability, respectively.
Note that for each mesh site, the probability to obtain k new offspring or deaths is
binomial and it approximates a Poisson distribution only when the number of individuals
considered in the specific process is large enough. This is never the case near the edge of
a propagating front and/or near extinction even for a large value of N0.

At the end of step 4, we can put N (α)
j = Ñ

(α)
j and we can start with a new time step.
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3. Discrete Eulerian model for population genetics and dynamics under flow

Let us now briefly comment on our method. The effect of advection does not change
the number of particles, i.e., it is conservative. Thus neglecting, for the time being, the
death-birth process, we obtain the equation for each species,

∂tN(x, t) + ∂x(u(x, t)N(x, t)) = D∆N. (3.10)

The birth-death process is the same one implemented in Ref. [11].

On the other side, ignoring diffusion and advection and neglecting terms of the order of
s/N0 inside the noise term [10], step 4 gives

dNA(t)

dt
= µNA

(
1− NA +NB

N0

)
+ µs

NANB

N0
(3.11)

+

√
NAµ

(
1 +

NA +NB

N0

)
ηA(t)

dNB(t)

dt
= µNB

(
1− NA +NB

N0

)
− µsNANB

N0
(3.12)

+

√
NBµ

(
1 +

NA +NB

N0

)
ηB(t)

where ηA and ηB are independent delta correlated in time Wiener processes. Upon
defining cA = NA/N0 and cB = NB/N0 and introducing the advection and diffusion,
the final equations of motion read:

∂tcA + ∂x(ucA) = D∆cA + µcA(1− cA − cB) (3.13)

+sµcAcB +
√
µ cAN0

(1 + cA + cB)ηA(x, t)

∂tcB + ∂x(ucB) = D∆cB + µcB(1− cA − cB) (3.14)

−sµcAcB +
√
µ cBN0

(1 + cA + cB)ηB(x, t)

Finally, assuming that cT ≡ cA + cB ∼ 1 everywhere and upon denoting f = cA/cT ,
we obtain

∂tf + u(x, t)∂xf = D∆f + sµf(1− f) +

√
2µf(1− f)

N0
η(x, t). (3.15)

We remark that the statistical properties of the system are invariant upon the scaling:
µ→ 1, D → D

µ , t→ tµ, which is equivalent to working in units of generation time.
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3.2 Numerical test in one dimension

3.2 Numerical test in one dimension

In this section, we introduce some numerical tests confined to one-dimensional systems.
Going back to what was discussed in subsections 1.3.1,1.3.2 and 1.3.3, we briefly summarize
below some salient aspects. First, we need to solve the Fisher-Kolmogorov-Petrovsky-
Piscounov (FKPP) equation that describes the space-time evolution of a population in a
reaction-diffusion system. In one space dimension, it reads

∂tc = D∂xxc+ µc(1− c), (3.16)

where c(x, t) is a continuous variable that identifies the concentration of individuals, D
is the diffusion coefficient, and µ is the growth rate. The uniform solutions of eq. (3.16)
are c = 1 and c = 0 for a stable and unstable state, respectively. In 1995, Mueller
and Sowers [71] showed that for µ > 0, the traveling wave solutions to eq. (3.16) are
always characterized by a compact support property. We can set up initial conditions
that depend on c as follows: c(x, 0) → 1 as x → −∞ and c(x, 0) → 0 as x → +∞.
For this kind of boundary conditions, we can find a continuous family c(x, t) of traveling
wave solutions of the form

c(x, t) = c(x− vt), (3.17)

where v is the velocity of the traveling wave and c(x, t) is a function that must satisfy the
following ordinary differential equation

Dc′′ + v c′ + µ c(1− c) = 0, (3.18)

with conditions : c(−∞) = 1 c(∞) = 0.

Around the unstable state, c(x, 0), the velocity of the front approaches the deterministic
continuum minimum value vmin = 2

√
Dµ. At this minimum speed, the fronts are called

“pulled fronts” which are pulled along by the growth and spreading of small perturbations
in the leading edge where c� 1. Small perturbations in traveling waves arise due to the
randomness associated with discrete events in both space and time such as birth and death
processes. Thus we expect that the observed value of the Fisher wave velocity propagation
is lower than the deterministic one. Brunet and Derrida [31] gave an estimation of that
value as

v ∼
√
Dµ

[
2− π2

(lnN)2

]
. (3.19)

From eq. (3.19), one can clearly observe that the convergence to the continuum limit
is extremely slow as N → ∞. Fluctuations have been considered by Doering, et al.
conjecture [38] adding a noise term to the FKPP equation; for the strong noise regime
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3. Discrete Eulerian model for population genetics and dynamics under flow

(or weak growth limit), they found that the speed value goes according to

v ∼ DµN. (3.20)

In fig. 3.1 the normalized Fisher wave speed versus the number of individuals per site
N0 is shown. There are two theoretical estimates, corresponding to the weak and strong
noise limits. The simulations, identified by dots, are consistent with the theoretical lines:
with 10 particles per site, the strong noise regime is found and the Fisher velocity is
about ∼ 0.3 times greater than the theoretical estimates. In this work, simulations are
performed in the weak noise regime, where the velocity of the genetic wave vg is' vmin.

 0
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 1
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F
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Figure 3.1: Algorithm convergence tests: Fisher wave behavior varies with the number of individuals per
site. It is possible to distinguish two theoretical limits: on the left, the strong noise trend, and, on the right,
the weak noise one. We performed simulations for µ = 10 and D = 0.001; the circles indicate the results
of our simulations that are, asymptotically, in very good agreement with the theoretical lines.

The diversity of a population composed of two genotypes in one dimension is measured
by the heterozygosity [7],

H(x, x′; t) ≡ 〈f(x, t)[1− f(x′, t)]〉. (3.21)

This quantity is given by the product of the two fractions f(x, t) and (1 − f(x′, t))
and it defines the probability that two selected individuals, chosen at random, are from
different species (carry different alleles) [10]. For homogeneous conditions, H(x, x′; t)
depends on the r = |x− x′|. The heterozygosity becomes zero when there is the fixation
of one of the two genotypes. Moreover, it is known that in a one-dimensional system,
H(t) ≡ H(x, x; t) decays in time as t−1/2. In fig. 3.2, we have tested this theoretical
prediction using our methods with N0 = 50 on the domain with periodic boundary
conditions discretized on a 512 mesh point: the result very clearly confirms the theoretical
behavior. Next, to further validate the algorithm, we calculate, in the absence of advection,
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3.2 Numerical test in one dimension
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Figure 3.2: Log-log plot of the decay of one-dimensional local heterozygosity, H(t), as a function of time.
The black continuous line shows the theoretical heterozygosity in 1D, t−1/2, and the purple symbols show
our simulations. The error bar is calculated on 500 cases and the variance is smaller than the symbol size.

the fixation probability is given by

Pfix =
1− e−sNf0
1− e−sN . (3.22)

In fig. 3.3, different panels corresponding to a different number of individuals per box
are shown. In our simulations, we focus on small selective advantages, in order to study
more realistic cases. Our results are in good agreement with the theoretical predictions
(continuous black lines, in the figures).
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Figure 3.3: Fixation probability of one species, in a one-dimensional domain, vs different values of the
selective advantage. In each plot, the Kimura formula is reported (black solid line) by fixing N0, the number
of particles per site, and f0, the initial fraction of a species (red dashed line). Our no-flow results for the
fixation probability are illustrated with the solid circles; the lines and the results are in very good agreement
for every case. The length of the domain of size L = 2π is divided into 128 intervals. The values of N0 and
f0 for each graph are (a) N0 = 4, f0 = 0.25; (b) N0 = 10, f0 = 0.1; (c) N0 = 20, f0 = 0.1; (d) N0 = 50,
f0 = 0.1. N in eq. (3.22) is 128N0.
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3. Discrete Eulerian model for population genetics and dynamics under flow

3.3 Numerical test in two dimensions

In this section, we implement the method previously introduced (Sec. II) and validated
for a one-dimensional system on a two-dimensional configuration. Following the same
schematic procedure of the 1D case, we start by estimating the heterozygosity parameter.
It is known that in two spatial dimensions, the local heterozygosity decay in time is
slower compared to 1D: it goes to zero as H(t) ∼ 1/ ln(t) [7, 10]. To check whether our
method is able to exhibit such (slow) decay, we specifically perform a set of numerical
simulations with N0 = 20 on a domain with periodic boundary conditions and 2562

mesh point. In fig. 3.4, such slow logarithmic decay is appreciable. In this figure, we
plot 1/H(t) versus time. Note that starting with well-mixed conditions, H(0) = 1/4.
Therefore, 1/H(t) is 4 at t = 0 and grows in time as ln(t), as shown in the figure. The
loss of the genetic variability given by our simulations (purple triangles) is in agreement
with the theory (black solid line).

 3.5
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10
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10
1

1
/H

(t
)

time

Figure 3.4: Behavior in the log-linear scale of the inverse of the heterozygosity, 1/H(t), as a function of
time in 2D. The symbols, representing the results of our simulation results, are in good agreement with the
black solid line that indicates the theoretical trend, 1

H(t)
∼ ln(t).

The second step, as in the numerical validations in 1D, is to verify Kimura’s formula,
given by eq. (3.22), for the two-dimensional system in the absence of advection. The
formula for the probability of fixation is still valid for higher dimensions and our results
together with the theoretical prediction (solid black line) show an unequivocal agreement
in fig. 3.5.
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3.3 Numerical test in two dimensions
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Figure 3.5: Probability of fixation as a function of the selective advantage in the absence of advection.
Simulations are performed on a 64× 64 lattice with, initially, 10 individuals per box, a diffusion coefficient
of D = 0.01, and an initial fraction of f0 = 0.03 (horizontal red dashed line). Our no-flow results for the
fixation probability are illustrated with the solid circles and the theoretical prediction of Kimura by the solid
black line.
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3. Discrete Eulerian model for population genetics and dynamics under flow

3.4 Weak compressible flow in D=2

Before adding an advecting velocity field to our two-dimensional system, we briefly
discuss the main results achieved by Plummer et al. [11], where a particular configuration
of the velocity field was used, given by

u(x) = u0 sin

(
x− π

2

)
. (3.23)

For small enough u0, the flow field in (3.23) is weakly compressible, i.e., the condition
cA+cB = 1 is valid within a small percentage (up to 4 percent for u0 = 0.05 on a domain
size 2π). We will test whether, as in 1D, the Kimura formula is still valid provided we
define N as effective population size, Neff . For s → 0, it has been shown in [11] that
Neff depends only on the diffusion constant D, u0, and on the maximum number N0

of individuals per site. The crucial point is to recognize that near to the source, one can
define a characteristic scale, ls =

√
D/u0. Any organism that moves significantly farther

than ls from the source is unlikely to be able to return and has, therefore, a negligible
chance of fixation as it is drawn into the sink. It follows (see [11] for details) that Neff

can be estimated as

Neff = B1ρ0

√
D

u0
(3.24)

where B1 is a constant of the order of unity and ρ0 is the density at each point, namely
N0/∆x.

Following [11], one simple way to understand the physical meaning of eq. (3.24) is
to consider the deterministic case, i.e., eq. (3.15) in the limit N0 → ∞, and assume
an initial population f = 1 in a small box ∆ at the location x0, and zero otherwise.
Then, the population, whose spatially averaged initial ratio is f̄0 ≡ 〈f0〉 = ∆/L, where
L = 2π, evolves to an asymptotic value, f∞(x0) = limt→∞ft(x0), which depends on
x0. The ratio f∞(x0)/f̄0 is a function of x0 and shows a Gaussian-like behavior in terms
of x0 − xs, where xs is the position of the source with a variance proportional to ls
and f∞(xs)/f̄0 � 1. This is equivalent to saying that for s = 0, there is a significant
advantage for the offspring occurring near the source and a strong disadvantage for those
occurring downstream. This implies that the effective population size (for small s) is the
one corresponding to the population size close to the source, i.e., at a distance ls from the
source. Following [19], one simple way to understand this result is to consider a simple
toy model on a linear graph where the source is a relative “cold" site (node of the graph)
with respect to the downstream “hot" sites, where “cold" and “hot" refer to the probability
for an offspring to be advected by the external flow using the same language of [19].
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3.4 Weak compressible flow in D=2

The same considerations can be made for the two-dimensional version of the same
problem. For this purpose, we consider the following flow

u(x) = u0 sin

(
x− π

2

)
sin y (3.25)

u(y) = − u0 sin

(
x− π

2

)
cos y

with periodic boundary conditions and a domain of size (2π)2. In fig. 3.6, the final
fraction of the initially localized species f∞(x0, y0)/f̄0 is shown where, now, f̄0 =
∆2/(4π2). Two peaks are clearly visible in correspondence with the sources, representing
the upwelling regions. The asymptotic value of f∞/f̄0 is increasing in the proximity of
the sources while being it is reduced moving away from them.
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Figure 3.6: Shape of the asymptotic fraction, f∞(x,y), normalized by the initial fraction, f̄0. Populations
starting close to the source become increasingly larger.

In fig. 3.7, we show, with a black line, a one-dimensional section (along the y axis) of
the two-dimensional behavior of f∞/f̄0. Since for s = 0 Pfix = f̄0, one can consider
the black line as the increase in Pfix due to the effect of the velocity field near the source.
To validate this interpretation, as well as the quality of our method, we performed a series
of numerical simulations with N0 = 2 at s = 0 using the same initial conditions of
the deterministic simulations. After estimating the fixation probabilities, we compute the
increase of Pfix as a function of the initial position, x0. The results are shown as symbols
in fig. 3.7 where an excellent agreement is visible with the deterministic value of f∞/f̄0.
This result demonstrates that the mechanism described in [11], for small enough s should
be true for the two-dimensional flow considered here. Based on the previous results, we
can generalize eq. (3.24) for the two-dimensional case as follows:

Neff = 2B2
1ρ0

D

u0
(3.26)
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3. Discrete Eulerian model for population genetics and dynamics under flow
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Figure 3.7: Enhancement effect due to the presence of a source. Comparison between numerical simulation
Pfix/f̄0 (symbols) and the deterministic line f∞/f̄0 (solid black line). For this simulation we implement
250 cases with a diffusivity of D = 10−2, two particles per site with a grid base of 64× 64, and a velocity
of u0 = 0.05. The error bar is calculated on 250 cases.

The factor 2 in eq. (3.26) comes from the fact that for our flow field, given by eq. (3.25),
we have two sources and two sinks.

Using a grid resolution of 642, with N0 = 2, we have computed Pfix as a function of s
as reported in fig. 3.8. Two different behaviors can be observed depending on the value
of s. The small s region is very well fitted by the Kimura formula (3.22) with an effective
population size given by eq. (3.26) and with the same value of B1 = 3.5 used in [11].

From fig. 3.8, it is clear that the behavior of Pfix, for large enough s, is controlled
by a different value of the effective population size, hereafter referred to as Ng. In one
dimension, following [11], the effective population size is estimated by considering the
scale δ near to a source in xs where u0δ ∼ B22

√
Dµs, with B2 another constant of the

order of 1: an initial population in x ∈ [xs− δ, xs + δ] can develop a Fisher genetic wave
at speed 2

√
Dµs, which is supported by the velocity field. Only Fisher genetic waves that

start in this interval are able to cross the system; this provides an estimate Ng = 2δ(s)ρ0.
In two dimensions, the same argument gives:

Ng ∼ 4δ2ρ0 = 4

[
2
√
Dµs

u0

]2
ρ0. (3.27)

Using eq. (3.27), we obtain the curve (black) of fig. 3.8, which provides an excellent fit
of the numerical simulations.

Finally, since both Neff of eq. (3.26) and Ng given by eq. (3.27) are proportional to
N = 642N0 for our simulations, we can easily predict that upon increasing N0, the
fixation probability will follow the same master curve if plotted as a function of sN . To
demonstrate this and to validate the quality of our method for large N0, we show, in fig.
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3.4 Weak compressible flow in D=2
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Figure 3.8: Probability of fixation under a 2D velocity field as a function of the selective advantage. The
yellow dashed line represents the Kimura theoretical line in the absence of flow that follows eq. (3.22). The
base grid is 64 × 64 with two individuals per cell, so the total number of individuals is N = 8192. In
addition, the diffusivity parameter is 10−2 and the velocity value is u0 = 0.05. The black continuous line
and the red dot-dashed line are the theoretical predictions and our simulations are illustrated by symbols,
with an error bar of about 5%, both in good agreement.

3.9, Pfix as obtained for the same flow as eq. (3.25) for N0 = 2 and N0 = 10. The
red dot-dashed and black continuous curves obtained using the prescriptions discussed
above for small s and large s, respectively, provide an excellent fit for the numerical
results. Overall, the results discussed in this section extend the ones previously obtained
in [11] and demonstrate the validity of our method for population dynamics advected by
an external compressible velocity field.
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Figure 3.9: Kimura probability of fixation in the presence of the velocity field. Calculations were carried
out with an overall mesh size of 64× 64 and with 10 individuals per cell. The total number of individuals is
N = 40960. The yellow dashed line shows the theoretical Kimura’s trend, while the red dot-dashed and the
black continuous lines represent the numerical prediction. Dots and diamonds represent our simulations for
two different N , 8192 and 40960, respectively, with an error bar of about 5%.
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3. Discrete Eulerian model for population genetics and dynamics under flow

3.5 Conclusions

In the present chapter, we developed a numerical method suitable for accurately and
efficiently investigating the behavior of population dynamics and genetics under flow.
This approach allows for the study of a large number of individuals by, first, implementing
the diffusion and advection processes, particle by particle, and afterward, for each box
composing the 2D lattice, performing the birth and competition steps.
In order to test and validate our method, we considered a one-dimensional system. We
implemented the FKPP equation, analyzing the algorithm convergence.

After that, we applied this method to the heterozygosity and Kimura formula and we
found a very good agreement between the theoretical and simulated results. The method
we propose does not require any dynamic management of particle positions and has no
limitations on the number of individuals for mesh points. Both features imply major
simplifications in computer coding, especially for a large number of individuals and for
parallel computation. It is worth remarking that for a large number of individuals, one can
increase the computational efficiency of our method by directly sampling the binomial
distribution in each mesh point along the lines discussed in [72].

For the 2D system, we retraced the procedural scheme of the one-dimensional system and
we investigated the larger system under an advection field composed of two sinks and two
sources. Our main result was to find, for the 2D system, a net growth of particles born in
the proximity of a source, as compared to the individuals at different initial positions.
An interesting aspect, to follow up on our work, is presented in chapter 5. It is related to
the effect of stochastic fluctuations in antagonist population dynamics and the exploration
of the effect of external velocity on the genetic nucleation theory.
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4 | Strong noise limit
for population dynamics
in incompressible advection

Genetic diversity relates to all the changes at the basis of the evolution process of
populations. In marine environments, several factors like the amount of nutrients, temperature,
etc..., play an important role in determining the dynamics of a population. An important
and yet rather unexplored study is the understanding of the role of the dispersion of the
individuals.

In chapter 1 we have seen how propagating fronts play a key role in population dynamics.
The reaction-diffusion systems can be described by two types of fronts: pulled and pushed.
In particular, pulled waves are powered by high growth rates at the leading edge, where
the number of organisms is low and fluctuations are large. Some biological evolution
models are very sensitive to noise as long as they are characterized by few individuals
and small values of diffusivity.

In this regard, we are interested in understanding if the probability fixation, theorized by
Kimura in the well-mixed case [22], holds also in the strong noise regime.

In the well-mixed environment, the fixation probability and the time spent by the beneficial
organisms to get over all the population can be written as

Pfix =
1− e−sNf0
1− e−sN (4.1)

Tfix =
Nf0

µ(1− f0)
log

(
1

f0

)
(4.2)

where f0 is the initial relative fraction of a population with a small selective advantage s,
N is the total population size and 1/µ is the generation time.
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4. Strong noise limit for population dynamics in incompressible advection

In this chapter, we give a theoretical framework to support previous findings according to
which the fixation probability is independent of the diffusivity acting in the system. We
further investigate the effect of an incompressible two-dimensional flow on the dynamics
of an advantageous allele. In particular, we will study how Pfix and Tfix may change
(see 1.6.4 subsection) in presence of an advecting flow.

Finally, we summarize our results and discuss their relevance in the case of population
dynamics of oceanic phytoplankton subjected to marine turbulence. All the numerical
simulations are based on the method discussed in [70] (see chapter 3).

The contents of this chapter correspond to the manuscript with title "Strong noise limit for population
dynamics in incompressible advection" by Giorgia Guccione et al.
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4.1 Theory

4.1 Theory

We consider two populations, A and B, in a two-dimensional closed system of size
L × L endowed with periodic boundary conditions. Let cA and cB , denote the relative
time/space-dependent concentrations, with cA + cB = 1. The two populations are
advected by an incompressible velocity field. The dynamics of a population is well
described by the continuum stochastic Fisher equation in terms of diffusion D, logistic
growth µ, selective advantage s, and advection ~v. Upon denoting f as the fraction of the
concentration of a species over the total concentration, f ≡ cA/(cA+cB), the discretized
form of the equation governing the dynamics of the two populations is:

∂f

∂t
+ ~v · ~∇f = D∆f + µsf(1− f) +

[
2µ

N0
f(1− f)

]1/2
w(~x, t) (4.3)

where N0 is the total number of organisms per deme and w(~x, t) is a Gaussian random
process δ-correlated both in space and time. Given the deme size a, eq. (4.3) can be
discretized on a regular grid of n points, where n = L/a, with L being the domain
size (see chapter 3 for an extensive explanation). For a two-dimensional case, N =
n × n demes exist in the domain. In the following, we will use the notation fi, with
i = 1, 2, .., N , to indicate the value of f(x, y, t) in the deme i and consequently ~∇fi,
∆fi denoting values of ~∇f and ∆f in the same deme. The divergence of the velocity
field is assumed to be zero. Upon averaging eq. (4.3) in space and by denoting f(m) as
the space average of f(x, y, t), we obtain:

∂f(m)

∂t
= µs〈H〉+

[
2µ

NT
〈H〉

]1/2
w(t) (4.4)

where NT = N0N , H ≡ f(x, y, t)(1 − f(x, y, t)) is the heterozygosity, which is the
measure of genetic variation at a locus, w(t) is a Gaussian random process δ-correlated
in time, and 〈...〉 ≡ 1

L2

∫
......dxdy. In order to obtain the noise variance on the r.h.s. of

eq. (4.4), we define the noise term acting on f(m) as

1

N

∑
i

[
2µ

N0
fi(1− fi)

]1/2
wi ≡

1

N

∑
i

σiwi (4.5)

where σi is equivalent to
[
2µ
N0
fi(1− fi)

]1/2
and wi is a shorthand notation for the noise
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4. Strong noise limit for population dynamics in incompressible advection

acting on deme i. Since 〈wiwj〉 = δij , the variance of the noise term (4.5) is given by

〈
1

N2
Σi,jσiσjwiwj

〉
=

2µ

N0N2
Σifi(1− fi) =

2µ

N0N2
〈H〉. (4.6)

The space averaged 〈H〉 can also be written as

〈H〉 = H(f(m))− 〈(δf)2〉 (4.7)

where H(f(m)) = f(m)(1− f(m)) and δf ≡ f(x, y, t)− f(m). Following the results
discussed in [17, 73] and considering small values of the selective advantage, s, we can
obtain useful insights on the dynamics of the system by looking at the equation for H at
s = 0, namely

∂H

∂t
+ ~v · ~∇H = D∆f − 2Df∆f − 2µ

N0
f(1− f) + .... (4.8)

where the third term on the r.h.s of eq. (4.8) is derived from the application of Itô’s
calculus and the final dots represent all the terms due to noise.

Next, we perform a space averaging. Due to the periodic boundary conditions and to the
incompressibiliy of the velocity field, we can use the identities 〈∆f〉 = 0, 〈~v∇H〉 =
〈div(~vH)〉 = 0 and −〈f∆f〉 = 〈(∇f)2〉. The final result is achieved by: 1) averaging
eq. (4.8) over the noise realizations, which allowed us to neglect the noise; 2) neglecting
the time derivative ∂t〈H〉, which rapidly goes to zero both in one and in two dimensions
(see [7] for details). Then, we get:

D〈(∇f)2〉 =
µ

N0
〈H〉 (4.9)

Let us also remark that eq. (4.9) is formally independent of ~v. Possible effects due to the
velocity advection can be explored through the following steps. The time variable t∗, is
introduced and defined by the relation

D〈(∇f)2〉 ≡ 1

t∗
〈(δf)2〉. (4.10)

Using eq. (4.10) into eq. (4.7) we can compute 〈H〉 as a function of H(f(m)) and we
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4.1 Theory

obtain
〈H〉 = H(f(m))− µt∗

N0
〈H〉. (4.11)

Solving eq. (4.11) for 〈H〉, it turns out

〈H〉 = AH(f(m)) (4.12)

where
A =

1

1 + µt∗
N0

(4.13)

Using eq. (4.12) we can express 〈H〉 as H(f(m)) = f(m)(1 − f(m)). We insert this
latter in eq. (4.4) obtaining:

∂f(m)

∂t
= sAµf(m)(1− f(m)) +

[
2µA

NT
H(f(m))

]1/2
(4.14)

The key quantity to consider from now on is the ratio G ≡ µt∗/N0. For G� 1 and eq.
(4.13), we obtain A ∼ 1 and eq. (4.14) reduces to the case of a well-mixed population
with selective advantage s. On the contrary, for G � 1 we get Aµ ∼ N0/t∗ and the
characteristic time of the system dynamics depends explicitly on both N0 and t∗. This
is the case referred to as strong noise limit where the genetic drift, directly related to
population size (small = more drift, large = less drift), becomes important.

Firstly, we analyzed the case ~v = 0, i.e. the case where t∗ = tD. The effect of random
perturbations, caused by the growth and death processes of a population, within each
single deme implies that the concentration gradients must be of order 1/a.

A reasonable guess on tD may be derived by considering, the two-dimensional stochastic
differential equation

∂tφ = D∆φ+
√
εw(~x, t). (4.15)

Assuming that there exists an "ultraviolet" cutoff kM , it is possible to exactly compute
the ratio 〈(∇φ)2〉/〈(φ)2〉 obtaining:

〈(∇φ)2〉
〈φ2〉 ∼ k2M . (4.16)

(Mathematical details for the kM introduction will be treated in the Appendix). From the

53



4
.

S
T

R
O

N
G

N
O

IS
E

L
IM

IT
F

O
R

P
O

P
U

L
A

T
IO

N

D
Y

N
A

M
IC

S
IN

IN
C

O
M

P
R

E
S

S
IB

L
E

A
D

V
E

C
T

IO
N

4444

4. Strong noise limit for population dynamics in incompressible advection

above insight, using kM ∼ 1/a, we have

t∗(~v = 0) ≡ tD ∼
a2

D
. (4.17)

By means of equations (4.13), (4.14), and (4.17) the following result is obtained:

∂f(m)

∂t
=

µ

1 + µ
NRD

sf(m)(1− f(m)) + (4.18)

+

[
2

NT

µ

1 + µ
NRD

f(m)(1− f(m))

]1/2
where NR = N0/a

2 ≡ NT /L
2 is the population density.

The strong noise limit for eq. (4.18) is expressed by the condition µa2/(N0D) =

µ/(NRD) � 1 which corresponds to a2

N0D
� 1

µ . In the strong noise limit, eq.(4.18)
becomes:

∂f(m)

∂t
= NRDsf(m)(1− f(m)) + (4.19)

+

[
2NRD

NT
f(m)(1− f(m))

]1/2

From eq.s (4.18), (4.19) the fixation probability Pfix for a well-mixed population is
deduced as the one derived from Kimura theory [22] . Through eq. (4.1) is possible to
derive Pfix in the space-dependent dynamics. A simple computation shows that Pfix
is independent of the diffusivity, D. This is a rather remarkable result first predicted
by Doering et. al. [17], for the one-dimensional problem in the strong noise limit, and
observed by [4, 25] in both one and two dimensions. Here we get a clear-cut explanation
for this result.

Thanks to eq.s (4.18), (4.19) we derive that for both cases, strong and weak noise, the
probability of fixation Pfix can be computed by knowing NT and the space average of
the initial population fraction, hereafter denoted by f(m, 0). Using (4.1) we get:

Pfix =
1− e−sNT f(m,0)

1− e−sNT
(4.20)

Next we can rewrite NT f(m, 0) = NR

∫
dxdyf(x, y, 0). Performing the limit L→∞ ,
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4.1 Theory

NT →∞ with NR = const, we obtain

Pfix = 1− e−sNR

∫
dxdyf(x,y,0) (4.21)

which is the generalization, in two dimensions, of the result proved in [17] for the
one-dimensional case only.

In the strong noise limit, taking as a reference eq. (4.19), space average population
f(m) behaves as a well-mixed population of size NT growing (or decaying) with a
characteristic timescale 1/(NRD) and a selective advantage s. Then, the average fixation
time should be on the order NT /(NRD) ∼ L2/D which is the expected timescale for
fixation at ~v = 0, in the continuous limit of eq. (4.3). On the contrary, the average fixation
timescale is on the order of NT and it is independent of the diffusivity D, in the weak
noise limit. In summary, for ~v = 0 our theoretical approach agrees with both theoretical
and numerical findings in both one and two dimensions and supports our estimate given
in eq. (4.17), i.e. t∗ = a2/D.

We now turn our attention to the case ~v 6= 0. In this case, the estimate of t∗, referred to
as tu in the following, computed in terms of the “effective" or “eddy" diffusivity Deff

and the corresponding space scale lu:

t∗(~v 6= 0) ≡ tu ∼
l2u

Deff
(4.22)

In general, it is possible to show that tu < tD. This inequality can be understood through
the following reasoning. Let us define D̃eff as the effective diffusivity acting at the deme
scale a over the time tu, i.e. D̃eff tu = a2. It follows that D̃eff = Deffa

2/l2u and we
expect the advection to be relevant in the dynamics provided D̃eff ≥ D. Then:

D̃eff = Deff
a2

l2u
≥ D → tD ≡

a2

D
≥ l2u
Deff

≡ tu (4.23)

The inequality tu < tD implies that the strong noise limit for ~v 6= 0 may be observed
only if, for ~v = 0, the system is in the strong noise regime.
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4. Strong noise limit for population dynamics in incompressible advection

In presence of an advection velocity field, eq. (4.14) becomes:

∂f(m)

∂t
=

µ

1 + µl2u
N0Deff

sf(m)(1− f(m)) + (4.24)

+

 2

NT

µ

1 + µl2u
N0Deff

f(m)(1− f(m))

1/2

As already noted, to understand whether or not the strong noise limit is achieved, the
relevant quantity we need to analyze is:

Gu ≡
µl2u

N0Deff
(4.25)

For Gu � 1, the system should be considered in the strong noise limit and eq. (4.24)
becomes

∂f(m)

∂t
=

N0Deff

l2u
sf(m)(1− f(m)) + (4.26)

+

[
2

NT

N0Deff

l2u
f(m)(1− f(m))

]1/2

There is no simple analytical way to estimateDeff and lu for a prescribed velocity field ~v.
In some cases, as the one considered in this section, an explicit computation of Deff and
lu can be done ( see [39] and [15] for further details). In general, a characteristic velocity
field u0 such that Deff = u0lu can be introduced. This is, for instance, the case for a
turbulent flow where u0 is the characteristic scale of the turbulent kinetic fluctuations,
on scale lu, and Deff is obtained by the Richardson diffusion [14]. Using Deff = u0lu
the condition Gu � 1 becomes µlu/(N0u0)� 1 which is the same condition given by
Da ≡ µlu

U � N .

Finally, using eq. (4.26) and the inequality tu < tD, for the average fixation time, we get

NT l
2
u

N0Deff
=
NT

N0
tu ≤

NT

N0
tD =

L2

D
(4.27)

For large Gu, the effect of the velocity advection is to speed up the characteristic time
need to reach fixation. This is also another way to understand the inequality tu < tD.

In the next two sections, we provide numerical evidence to support our theoretical
discussions.
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4.2 Numerical approach

4.2 Numerical approach

For our numerical investigations, we consider a two-dimensional domain of size L = 2π
with a deme size a = L/128. The numerical method used in the following study is based
on [70] and revised in chapter 3. The velocity field ~v is given by:

vx = u0sin(k(y − L/2) + (4.28)

+ φ(t))cos(k(x− L/2) + φ(t))

vy = −u0sin(k(x− L/2) + (4.29)

+ φ(t))cos(k(y − L/2) + φ(t))

φ(t) = δsin(ωt) (4.30)

Using the above choice of ~v we can consider three different cases:

• No-flow: u0 = 0

• Non-chaotic flow: u0 > 0 and δ = 0

• Chaotic flow: u0 > 0 and δ = δ0

The No-flow case refers to the “standard" FKPP equations already investigated in many
papers (see for instance [7], [10]). The second case corresponds to a non-chaotic cellular
flow [74]. While the last one corresponds, for a proper choice of δ0, to a chaotic cellular
flow. k = 8 is set for all cases, and for the chaotic flow case we choose δ0 = 2 and
ω = 2 ensuring the occurrence of a chaotic flow condition. Finally, in all our numerical
investigations, we consider f(x, y, 0) = 0.0625 uniformly distributed in the domain. We
study the dynamics of the system as a function of N0, u0, and D.

For cellular flow, we can employ the analytical approach developed in [39] and [15] to
compute Deff as a function of lu ≡ 2π/k and u0. We find that for the non-chaotic flow,
Deff ∼

√
Du0lu, whereas for the chaotic flow, Deff ∼ u0lu.

Based on the theoretical analysis done in the previous section, we are interested in
computing the quantity A defined in eq. (4.12) and, in particular, we are interested in
studying the quantity G ≡ A−1 − 1 for the three different cases. Next, using eq. (4.17),
for ~v = 0 and eq. (4.22) for ~v 6= 0 we obtain:

• GNo-flow ∼ µa2

N0D

• GNon-chaotic flow ∼ µl2u
N0
√
Dluu0
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4. Strong noise limit for population dynamics in incompressible advection
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Figure 4.1: Kimura Fixation probability as a function of the selective advantage, s obtained from a chaotic
flow. Simulations (purple circles) are performed with N0 = 2, diffusion coefficient of D = 10−3 and
u0 = 1. The continuous black line corresponds to the Kimura formula eq. (4.1). The error bar is calculated as√
Pfix(1− Pfix)/m, where m is the number of simulations. For the results shown in the figure m = 500.

• GChaotic flow ∼ µl2u
N0u0lu

By relying on the above expressions of G for the cases of no-flow, non-chaotic flow and
chaotic flow, we predict three different scaling properties to be observed, namely:

I) different scaling laws as a function of D: GNo-flow ∼ D−1, GNon-chaotic flow ∼
D−1/2 and GChaotic flow independent on D

II) same scaling properties for all cases as a function of N0, i.e. N−10

III) diversity in the scaling behavior of GNon-chaotic flow and GChaotic flow as a function of
u0: GNon-chaotic flow ∼ u−1/20 and GChaotic flow ∼ u−10 .

Besides the scaling predictions listed above, our theoretical analysis shows that the
fixation probabilityPfix, eq. (4.3), depends neither onD nor on u0. The fixation probability
is given by Kimura’s formula or equally by the Doering’s relation in the limit L → ∞,
as already shown for u0 = 0 in [10].

In figure 4.1 we support our conclusion by showing Pfix with u0 = 1 and for the chaotic
flow case with D = 10−3 and N0 = 2. The black line in the figure represents the trend
of Kimura’s formula which agrees extremely well with the numerical results, sketched
by the purple solid circles.

Next, we discuss how A can be numerically calculated. Eq. (4.12) has been derived
assuming an average of different realizations. Let us define 〈H〉α the value of 〈H〉 for
the α realization and f(m)α the corresponding value of f(m) for the same realization.
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4.2 Numerical approach
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Figure 4.2: In the panels on the left, two graphs representing the average heterozygosity versus the
heterozygosity of the mean value of f are shown. On the right, the plots of the average heterozygosity
as a function of the average value of f are sketched. The panels on the top differ from the ones on the
bottom because of the presence of the chaotic flow (diamonds). The lower panels are the cases with no flow
(circles purple points). We performed simulations for D = 10−3 and N0 = 2. The error bars are 3 times the
variance computed over 100 realizations.

Both 〈H〉α and f(m)α are functions of time. Then eq. (4.12) states that

¯〈H〉 = AH(f̄(m)) (4.31)

where the .̄. is the average over different realizations, i.e.M−1
∑

α ..., withM the number
of realizations. In figure 4.2 we show the quality of the results we obtain for the cases
no-flow and chaotic flow with D = 10−3, N0 = 2, imposing for the last one u0 = 1. The
left panels show the plot of ¯〈H〉 for u0 = 1 (top) and u0 = 0 (bottom) as function of
the heterozygosity of the mean value of f whereas the right panels show the behavior
of ¯〈H〉 as function of f̄(m) for u0 = 1 (top) and u0 = 0 (bottom). We also computed
the quantity Aα for each realization, i.e. we calculate Aα as the best fit of the relation
〈H〉α = AαH(f(m)α). The error bars in figure 4.2 refer to the three-time variance ofAα.
The same result holds for different values of s and D. From the numerical simulations
we can obtain a measure of A with an accuracy of about 1%.

Next, we consider how the computation of A may eventually depend on s. In figure 4.3
we show ¯〈H〉 as a function of H(f̄m) for the chaotic flow case with D = 10−3 and three
different values of s = 10−4, s = 10−3, and s = 1.6 · 10−3. No difference is observed in
A between the three different cases. Based on the results of figure 4.3, we can reasonably
reach the conclusion that our numerical computation of A is independent of s. From
the knowledge of A, we can extract the value of G = A−1 − 1 for three different cases
no-flow, non-chaotic flow, and chaotic flow.
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4. Strong noise limit for population dynamics in incompressible advection
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Figure 4.3: Average heterozygosity vs heterozygosity of the average value of f for three different values of
the selective advantage, s, under a chaotic flow. Parameters N0 = 2 and D = 10−3.

4.3 Comparison with analytical estimate

As stated in the previous section, we have three different predictions on the scaling
G = A−1 − 1 for the three considered cases with no-flow, non-chaotic flow and chaotic
flow. Prediction I) refers to the behavior of G with respect to the diffusivity D, and we
expect

GNo-flow ∼ 1

D

GNon-chaotic flow ∼ 1√
D

(4.32)

GChaotic flow ∼ const.

As discussed in section 4.1, the scaling ofGNon-chaotic flow andGChaotic flow depends on how
the effective or Eddy diffusivity Deff depends on D. For both the cases with chaotic
and non-chaotic flow, the effective diffusivity can be computed [15]. We obtain for the
non-chaotic case Deff ∼

√
D, whereas for the chaotic case Deff is independent of D.

To check the scaling eq. (4.32) we consider D ∈ [0.0002, 0.016] for all cases and we fix
N0 = 2. The results are shown in figure 4.4 where we plot GNo-flow, GNon-chaotic flow and
GChaotic flow as a function ofD. The two straight lines refer to the scalingD−1 andD−1/2.
For the non-chaotic flow case, the computation performed at u0 = 1 is shown whereas
for the chaotic flow case, it is shown for two different values of u0, namely u0 = 1 and
u0 = 0.2. For a relatively small value ofD the three different scaling behaviors (4.32) are
satisfied. For a relatively large value ofD, the values ofG decrease and approach order 1,
this result is expected since the so-called "weak noise" regime is defined for large enough
values of D, and the spatial effects can be neglected. Besides that, we can observe that
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4.3 Comparison with analytical estimate
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u0=1 chaotic flow

u0=1 non-chaotic flow

u0=0.2 chaotic flow

Figure 4.4: Values ofG as a function of the diffusion parameterD. Circles, triangles, squares, and diamonds
represent our simulations for different velocity cases: no velocity (u0 = 0), non-chaotic velocity field for the
value u0 = 1, and chaotic velocity field for the values u0 = 0.2 and u0 = 1, respectively. The continuous
and dashed lines refer to the linear fit of the simulation results whose slope are −1 in one case and −1/2 in
the other case. The horizontal dot-dashed line shows the constant value achieved for the chaotic flow with
u0 = 1 at very small D. The error bar is estimated from the error of the best fit; it is smaller than the size of
the system, which is why it cannot be seen from the graph.

the GNon-chaotic flow and the GChaotic flow are both smaller than the GNo-flow, independently
of D. This observation agrees with our theoretical discussion reported in section 4.1 and
implies the relation tu < tD.

Next, we consider the behavior ofG as a function ofNT = N0n
2. For all cases we should

observe that G ∼ N−1T . To check this prediction, we consider the two cases no-flow and
chaotic flow and in figure 4.5 we showGNo-flow andGChaotic flow as a function ofNT (note
that GNo-flow has been multiplied by 10 to make the figure more readable). Again, the
behavior of G as a function of NT is rather well satisfied. Combining the results shown
in figures 4.4 and 4.5 we can argue, as already noted in section 4.1, that the continuous
limit of eq. (4.3) can be achieved by sending NT →∞ and by keeping NTD small and
constant. In other words, the continuous limit of eq. (4.3) is achieved by increasing the
domain size at constant density and by vanishing the diffusivity.

The last prediction discussed in section 4.2, applies only to cases no-flow and chaotic
flow and refers to the scaling behavior of G with respect to the velocity u0:

GNon-chaotic flow ∼
1

u
1/2
0

; GChaotic flow ∼
1

u0
(4.33)

In figure 4.6, we show GNon-chaotic flow and GChaotic flow for N0 = 2, D = 10−3 and
u0 ∈ [0.1, 1]. Note that GChaotic flow has been increased by a factor 10 to make the figure
more readable. The scaling (4.33) is well verified in both cases.
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4. Strong noise limit for population dynamics in incompressible advection
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Figure 4.5: Values of G as a function of the number of individuals N0 per deme. The left panel (purple
circles) represents the case of no-velocity while the right panel (yellow diamonds) represents the results in
presence of a chaotic flow with u0 = 1. Both curves follow the slope −1. In both cases we used D = 10−3

and N0 ∈ [4 : 64].
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Figure 4.6: Values ofG as a function of the velocity intensity u0. Diamonds (left panel) point out the results
under chaotic velocity field while triangles (right panel) indicate the findings in the presence of a non-chaotic
velocity field. The two different behaviors are shown: the chaotic results follow the slope −1 (left panel)
whereas the non-chaotic ones follow the slope −1/2 (right panel). The numerical parameters used in the
simulations are N0 = 2 and D = 10−3.
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4.4 Conclusions

The results shown in figures 4.4, 4.5 and 4.6 validate the theoretical analysis performed
in section 4.1. Without any advection field, the timescale of the dynamics is controlled
by the ratio GD = µ/(NRD), where NR = NT /L

2 is the population density and the
diffusivity plays a relevant role only for GD � 1. In presence of advection, the relevant
parameter depends on the effective diffusivity Deff and its corresponding length scale
lu through the combination Gu = µl2u/(N0Deff ) ≤ GD. In general, the functional form
of Deff depends on the flow properties (as shown in figures 4.4 and 4.6). For a large
value of Gu, the timescale of the dynamics is controlled by the effective diffusivity and
by lu. In all cases, the fixation probability depends neither on the diffusivity nor on the
advection, assumed to be incompressible.

4.4 Conclusions

In this chapter, we focus our investigation on the fixation probability between two
populations, one of which has a slight selective advantage. In particular, we consider the
case of two populations whose dynamics is confined in a closed system and, eventually,
advected by a two-dimensional incompressible flow. We also restrict our consideration to
the case of two populations that are initially uniformly distributed in the space, and the one
with the selective advantage presents a space density f(0)� 1. For the well-mixed case,
when both diffusion and/or advection are irrelevant, the fixation probability is given by
the Kimura theory. For the one-dimensional system and without advection, it was shown
that the fixation probability does not depend on the value of diffusivity acting in the
system [38]. This result has been confirmed by Maruyama (1974) [25] and thanks to the
numerical simulations performed by Pigolotti et al., [10] who also argued that Doering’s
findings should be true also for the two-dimensional case, still without advection.

Previous evidence was generalized in several ways. We provided a theoretical analysis
showing that the fixation probability should be independent of the diffusivity and the
effect of the velocity field, if present. We have also shown that, without advection, the
results in [38] are recovered for small diffusivity or equivalently for large system size.
Concerning this latter case, we have argued theoretically and checked numerically that
the dimensionless relevant parameter in the system is the ratio µ/(NRD), where 1/µ is
the generation time for the population growth, NR is the population density and D the
diffusivity. In the strong noise regime, corresponding to µ/(NRD) � 1, the timescale
for the fixation occurrence depends on NR, D and s. Therefore, we expect fixation to
occur on a timescale L2/D. Our analysis has been generalized to take into account the
effect of advection. The relevant dimensionless parameter is µl2u/(N0Deff ), whereN0 is
the number of individuals per deme, Deff is the effective or eddy diffusivity induced by
the flow and lu is the corresponding length scale of the flow. The equivalent of the strong

63



4
.

S
T

R
O

N
G

N
O

IS
E

L
IM

IT
F

O
R

P
O

P
U

L
A

T
IO

N

D
Y

N
A

M
IC

S
IN

IN
C

O
M

P
R

E
S

S
IB

L
E

A
D

V
E

C
T

IO
N

4444

4. Strong noise limit for population dynamics in incompressible advection

noise regime is given by the condition µl2u/(N0Deff ) � 1. In this regime, the fixation
timescale is controlled by the flow dynamics. We remark that the quantity µl2u/(N0Deff )
plays the same role of the Damköler number Da = µlu/u0 for the continuous equation
(with no number fluctuations i.e. with no variation in the number of particles within the
deme) where u0 is the characteristic velocity of the flow field. It is known that, without
number fluctuations, the front speed of a population advected by an incompressible
velocity field depends on the Damköler and the P éclet number u0lu/D [15]. When
the number of fluctuations are taken into account, previous theoretical and numerical
findings for the continuous case are valid, provided that the relation µl2u/(N0Deff )� 1
is met.

Besides the above results, which nicely generalize many previous findings, one can
wonder whether the effect of the advection of an incompressible flow may be relevant
for some realistic cases. In particular, we want to consider the case of phytoplankton
dynamics subject to ocean circulation and turbulence. We assume that, without advection,
the phytoplankton dynamics can be considered to be in the strong noise regime, where
diffusivity effects control the time scale in which the slightly advantageous population
eventually dominates (fixation). This is true, for instance, for population density on the
order of 107 − 109 individuals for m3 with a generation time on the order of 1 day
and size of order 1µm corresponding to diffusivity order 10−13m2/sec. Depending
on the population density, these parameters correspond to µ/(NRD) ∈ [50 : 1000].
Next, we consider the effect of turbulence knowing that the effective diffusivity becomes
scale-dependent and it can be estimated using the Richardson theory and the Kolmogorov
scaling. Let ε be the energy dissipation per unit mass of the turbulent flow, l the scale in
which the effect of the effective viscosity Deff ∼ ε1/3l4/3 and N0 ∼ 1 is considered and
the relevant dimensionless quantity which becomes Gt ≡ µl2/(N0Deff ). An estimate
of ε can be obtained by using the recent analysis performed by [75], where it is shown
that, for l ∼ 10km, the probability distribution of ε is similar to a log-normal distribution
with a most probable value near the surface close to ε ∼ 10−10m2/sec. Through these
approximations, we obtainGu ∼ 10 and the timescale of the fixation occurrence becomes
on the order of 10 days. This estimate is clearly very rough since all the considered
variables show strong and even intermittent fluctuations both in space and in time. At any
rate, the evaluation of Gu illustrates that the advection of a relatively weak compressible
flow, for instance, due to a moderate upwelling, may become an important effect on the
population dynamics located in the upwelling region, as discussed in [11]. This effect
varies depending on the population sizes, densities, characteristics of the population
(motile versus non-motile), and also on different flow characteristics, thus contributing,
directly or indirectly, to the well-known complex dynamics of oceanic biomass.
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4.4 Conclusions

Appendix: Mathematical details for introducing the
cutoff kM

In this appendix, an explanation regarding the introduction of the cutoff kM in the system,
during the step between equation (4.15) and (4.16), is given.

By combining the equation (4.16), namely

〈(∇φ)2〉
〈φ2〉 ∼ k2M (4.34)

with the equation (4.10),

D
〈(∇f)2〉
〈(δf)2〉 =

1

t∗
(4.35)

we get the follow relation:
1

t∗
= Dk2M =

D

a2
. (4.36)

Thus, it is possible to derive the timescale t∗, as

t∗ =
a2

D
. (4.37)

Now, to solve the following equation (4.15)

∂tφ = D∆φ+
√
εw(~x, t) (4.38)

we perform a Fourier transform of (4.38), obtaining

∂tφk = −k2Dφk +
√
εwk (4.39)

by knowing that the Fourier transform of white noise is a constant, the average of φ2 and
(∇φ)2, are respectively:

〈φ2〉 =
∫
kdk〈φ2k〉 (4.40)

〈(∇φ)2〉 =
∫
k2kdk〈φ2k〉 (4.41)

Calculating the average of φ2, we get

〈φ2k〉 =
ε

2k2D
(4.42)
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4. Strong noise limit for population dynamics in incompressible advection

so, we find that

〈φ2〉 =
ε

2D

∫
kdk

k2
=

ε

2D
ln

(
kM
k0

)
(4.43)

and for the gradient, we have

〈(∇φ)2〉 =
ε

2D

∫
k2kdk

k2
=

ε

4D
k2M (4.44)

Making the relationship between 〈φ2〉 and 〈(∇φ)2〉, and by keeping apart the natural
logarithmic term, we obtain the factor kM . This is why it was necessary to introduce the
cutoff.
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5 | Pushed genetic waves

The main regulators of ecological equilibrium and functioning are biodiversity and
species interactions. The biological control exercised by living organisms establishes,
in most cases, an antagonistic interaction. We focus on the dynamics of two competing
species, A and B having fraction f and 1− f , respectively. The growth rates depend on
the local fraction of the species µA = µ0A + εA(1− f) and µB = µ0B + εBf where the
parameters εA, εB ≤ 0. As both types of species evolve next to each other, both strains
incur a growth penalty. By setting µ0A and µ0B equal to 1, the equations governing the
evolution of the two species are

∂cA
∂t +∇(~u(r)cA) = D∆cA + cA(1− cA − cB) + εAcAcB (5.1)
∂cB
∂t +∇(~u(r)cB) = D∆cB + cB(1− cA − cB) + εBcAcB (5.2)

where σ = −(εA + εB)/2 is the antagonist interaction strength and δ = εA − εB is the
selective advantage.

We aim at investigating the properties of eq.s (5.1) and (5.2) by increasing the number
of individuals, in the limit N0 � 1 (continuum limit) and then by comparing the
deterministic outcomes with the agent simulations.
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5. Pushed genetic waves

5.1 Theory

We consider the equations (5.1) and (5.2) in a two dimensional system of size L × L,
with periodic boundary conditions and deme area a2. Upon defining c = cA + cB and
f = cA/c and 1− f = cB/c we get:

∂c

∂t
+∇(~u(r)c) = D∆c+ c(1− c) + (εA + εB)c2f(1− f) (5.3)

The dynamic of the fraction f(x, t) is given by the relation

∂f

∂t
=

1

c

∂cA
∂t
− cA
c2
∂c

∂t
(5.4)

=
1

c
cA(1− c) +

εAcAcB
c

− f

c
c(1− c)− (εA + εB)cf2(1− f) (5.5)

= εAcAcB − (εA + εB)cf2(1− f) (5.6)

= εAcf(1− f)− (εA + εB)cf2(1− f) (5.7)

by imposing εA = −(σ − δ
2) and εB = −(σ + δ

2)

∂f

∂t
= −(σ − δ

2
)f(1− f) + 2σcf2(1− f) (5.8)

= 2σcf2(1− f)− σf(1− f) +
δ

2
f(1− f) (5.9)

We obtain
∂f

∂t
= f(1− f)

[
δ

2
+ σ(2f − 1)

]
c (5.10)

Hereafter, we assume c = 1. The deterministic generalization of the model, flow acting
in the system, is given by

∂f

∂t
+ ~u(r) · ~∇f = D∆f + f(1− f)

[
δ

2
+ σ(2f − 1)

]
(5.11)

We assume that the flow is expressed by the following form:

ux = u0 sin

(
2π

(
x− L

2

))
(5.12)

uy = u0 sin

(
2π

(
y − L

2

))
(5.13)
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5.1 Theory

The stationary solution, without advection, equates to:

D∆f = −dV (f, δ)

df
(5.14)

where dV (f,δ)
df ≡ 2σf(1 − f)(f − 1

2) + δ
2f(1 − f). Eq. (5.14) can be interpreted as

follows: f represents the position of the particle, at time x, that is subjected to a negative
potential −V .

A theoretical framework of the deterministic equations for a radially symmetric f around
the point (L/2, L/2) is developed, in the limit D → 0, σ → 0, and theoretic interface
width w2 ≡ D/σ finite and small. Let f be defined as a radial basis function

f(r, t) = φ(r −R(t)) (5.15)

The equation (5.11) can be rewritten in the radial form obtaining

−∂φ
∂r

dR

dt
= D∆φ+

D

R

∂φ

∂r
− u(r)

∂φ

∂r
− dV

df
(5.16)

By spatially integrating and by multiplying by
(
∂φ
∂r

)
we get

−
〈(

∂φ

∂r

)2
〉
dR

dt
=
D

R

〈(
∂φ

∂r

)2
〉
− u(r)

〈(
∂φ

∂r

)2
〉
−
∫ ∞
0

dV

dφ

∂φ

∂r
dr (5.17)

where

−
∫ ∞
0

dV

dφ

∂φ

∂r
dr =

∫ ∞
0

dV

dφ
dφ = −

[
V (φ(∞))− V (φ(0))

]
= (5.18)

= V (φ(0)) =
σ

2
φ(0)2(1− φ(0))2 − δ

2

[
φ2(0)

2
− φ3(0)

3

]
(5.19)

In the case φ(0) = 1, V (φ(0)) = − δ
12 and

〈(
∂φ
∂r

)2
〉

= 1
6w

The radial equation reads:

− 1

6w

dR

dt
=

1

6w

D

R
− 1

6w
u(r)− δ

12
(5.20)
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5. Pushed genetic waves

by simplifying:
dR(t)

dt
= −D

R
+ u0 sin(2πR) +

δw

2
. (5.21)

The eq. (5.21) is based on the following assumptions: φ(0) = 1, w/R(0)� 1 and c = 1.
The first term on the r.h.s. corresponds to the surface tension effect, the second one is
linked to the velocity field, and the last one is mainly related to the sign of the selective
advantage. This equation tells us whether the blob increases or decreases over time. It
depends on the value of the selective advantage. If δ = 0, all the competing species are
selectively neutral, the blob shrinks, and without velocity field, it goes extinct. In the
case of selective advantage δ > 0, the presence of the velocity field enables the blob
expansion. It is possible to get a critical value of δ from which the blob grows.

Another way to get the same radial equation (5.21) is by defining the following

D
∂2φ

∂r2
+ 2σφ(1− φ)

(
φ− 1

2

)
= 0 (5.22)

where eq.(5.22), can also be rewritten as

φ(r, t) =
1

2

[
1− tanh

(
r −R(t)

2w

)]
(5.23)

Using (5.23) we obtain:
∂φ

∂r
= − 1

w
φ(1− φ) (5.24)

By inserting (5.24) in (5.11), we obtain the radial equation for the well-mixed case with
c = 1:

1

w
φ(1− φ)

dR

dt
= − 1

w
φ(1− φ)

D

R
+
u(R)

w
φ(1− φ) +

δ

2
φ(1− φ) (5.25)

where u(R) = u0 sin(2πR). We notice that φ(1− φ) is strongly localized for small w in
the region r ∼ R(t). This observation allows the approximation of the first term on the
r.h.s. of (5.25) to D/R(t). The final result reads

dR(t)

dt
= −D

R
+ u0 sin(2πR) +

δw

2
(5.26)
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5.2 Deterministic transition and comparison with agent simulations

5.2 Deterministic transition and comparison with agent
simulations

As previously mentioned, our aim is to compare the deterministic prediction against the
agent simulations with finiteN0. The eq. (5.21) can be used to predict the fate of an initial
population of size R(0). In the following we assume R(0) to be fixed and we compute
the critical value of δ above which the initial population reaches fixation in the domain.
The critical value of δ is given by the following relation

δc =
2D

wR(0)
(5.27)

For δ > δc the blob expands whereas for δ < δc it goes extinct. The relation (5.27) is
true under the assumptions valid for eq. (5.21). We will see that the velocity field, when
present, has a not negligible effect on δc.

In the model, it is assumed to host on average N0 individuals per deme. Upon defining
Nbox ≡ (L/a)2, the total number of individuals NT is given by Nbox × N0. Therefore
the continuous limit is achieved by increasing N0.

The set of parameters for the numerical investigations are: the size of the system L =
1 = 128× a, the diffusion D = 0.0009, the interface width w ∼ 0.05 and the interaction
strength σ = 0.36.

The assumptions made on the finite size of the system are analyzed in the following:

• 1. R(0) is known up to a a. The error on R(0) is of the order of a
R(0) , and the

equation for the critical value of δ becomes δc = 2D
w(R(0)−a) .

• 2. The value of φ(0) is not equal to 1, but it is slightly smaller.

• 3. The assumption c = 1 is never true for any finite σ. There is an effect due to
c 6= 1.

Two values of the radius R(0), R(0) = 0.125 and R(0) = 0.21 are considered, so that
the ratio w/R(0) is never small. A reasonable estimate of the error due to the finite
discretization can be obtained by assuming both w and R(0) known with an accuracy of
±a/2. The overall error is therefore (a/w + a/R(0))/2 ∼ 0.1.

Using eq.(5.3) we can argue that a better approximation is given by

c(x, y) =
1

1 + 2σφ(1− φ)
(5.28)
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5. Pushed genetic waves

Thus, at the interface, for σ = 0.36 we get c = 1./1.18, the effect of which is not
negligible in determining δc.

Since c is not constant, we must take care of the effect induced by the neglected term
2∇f ∇cc . This term is found in the steps between the equation (5.3) and the equation
(5.11).

By using eq.s (5.23) and (5.24) we can write:

2D∇φ∇log(c) = −2D∇φ 2σ(1− 2φ)

1 + 2σφ(1− φ)
∇φ (5.29)

=
4Dσ

w
∇φ(1− 2φ)φ(1− φ)

1 + 2σφ(1− φ)

Eq. (5.29) suggests that everything goes as if the system is affected by a self-induced
velocity field Ueff (r) given by

Ueff ≡ −
4Dσ

w

(1− 2φ)φ(1− φ)

1 + 2σφ(1− φ)
(5.30)

So that:
2D∇φ∇log(c) = −Ueff (r)∇φ (5.31)

The "velocity" Ueff is exactly zero at the interface and one may think it has no effect on
the interface dynamics. However, because Ueff represents a sink, it tends to oppose any
increase of the initial radius R(0). Thus, we can expect that the term (5.29) leads to an
increase of the critical value of δ.

Now, looking at the quantitative results, we consider three different no-flow cases. The
first two cases have as initial condition a blob of radius R(0) equal to 0.125 and 0.21,
respectively. The third case takes into account an initial condition having a homogenous
strip in the y direction of size 2R(0), where R(0) corresponds to R(0) = 0.0625.

Figures 5.1 and 5.2 show the cases for bubbles of radius R(0) = 0.125 and radius
R(0) = 0.21 respectively, as initial conditions. Figure 5.3 shows the case of a strip with
initial size 2R(0) with R(0) = 0.0625. The two vertical lines, the red dot-dashed line
and the red continuous line display the critical value of δ at which a transition to φ = 1
is observed: the red dot-dashed line is obtained assuming c = 1 and it is highlighted with
an arrow. The symbols, whose shapes correspond to different values of N0, are fitted by
a black dashed curve and represent the agent simulations.

In the strip case, the effect of surface tension can be considered negligible although for
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5.2 Deterministic transition and comparison with agent simulations

small R(0) we do expect a finite value of δ for the transition to occur.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.25  0.3  0.35  0.4  0.45  0.5

R0=0.125

C=1

P
fi
x

δ

N0=4

N0=10

N0=25

N0=100

Figure 5.1: Critical value of δ to let the transition to φ = 1 occur. The initial state is a blob of radius
R(0) = 0.125. By increasing δ a transition represented by the red continuous vertical line is observed,
whereas the red dot-dashed vertical line, at smaller δ, corresponds to the solution of eq. (5.11) with c = 1.
The symbols refer to the agent simulations with different values of N0 = 4, 10, 25, 100 and are fitted by a
black dashed curve.
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R0=0.21

C=1
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Figure 5.2: Critical value of δ to let the transition to φ = 1 occur. The initial state is a blob of radius
R(0) = 0.21. By increasing δa transition represented by the continuous vertical line is observed, whereas
the red dot-dashed vertical line, at smaller δ, corresponds to the solution of eq. (5.11) with c = 1. The
symbols refer to the agent simulations with different values of N0 = 4, 10 and are fitted by a black dashed
curve.

The obtained no-flow results with agent simulations indicate that the critical value of δ,
for finite N0, is always in between δc(c = 1) and δc(c 6= 1). We observe a rather strong
convergence, sketched by a sharp transition, already with N0 = 10.
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5. Pushed genetic waves
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Figure 5.3: Critical value of δ to let the transition to φ = 1 occur. The initial state is a strip with size 2R(0),
R(0) = 0.0625. By increasing δ a transition represented by the red continuous vertical line is observed,
whereas the red dot-dashed vertical line, at smaller δ, corresponds to the solution of eq. (5.11) with c = 1.
The symbols refer to the agent simulations with different values of N0 = 4, 10, 25 and are fitted by a black
dashed curve.

The heterozygosity is a useful tracer to understand the dynamics of the interface. We
investigate the case of the blob with R(0) = 0.125 (fig. 5.1) by setting δ = 0.38. In
particular, a one-dimensional cut of φ(r, t) at y = L/2 (at the initial position of the
population) is considered and the heterozygosityH(x, t) = φ(1−φ) for y = y0 = 1/2 is
computed. In figure 5.4 the heterozygosity H(x, t), as a function of both space x (y-axis)
and time t (x-axis), is shown. The heterozygosity at its maximumH(x, t) = 0.25 (yellow
color) corresponds to φ = 1/2. The figure illustrates quite clearly the behavior of the
interface over time: at the early stage, the transient behavior shows a weak shrink of the
system followed by an almost linear growth with time. Interestingly none of the interfaces
at φ = 1/2 fluctuates, i.e. the region φ = 1/2 does not perform any random behavior as
one usually observes at the interface between neutral populations. This indicates that the
behavior observed should be close to the one observed in the limit for N0 →∞.
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5.2 Deterministic transition and comparison with agent simulations

R(0)=0.125 δ=0.38 H(x,t)=/Symbol f(x,y0,t)(1-/Symbol f(x,y0,t))

’data/figura_2_3/campo_002’ u ($1*dt):($2/128):(f(h($3,$4)))
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Figure 5.4: Space vs time visualization of the interface dynamics. The cross-section at y ≡ y0 = 1/2
of an initial blob of radius R(0) = 0.125 is considered, (see figure 5.1). The heterozygosity H(x, t) =
φ(x, y0, t)(1− φ(x, y0, t)) whose maximum corresponds to the yellow color H(x, t) = 0.25, is shown.
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5. Pushed genetic waves
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Figure 5.5: Cross-section c(x, y0, t) of the total population size cT (r), for y ≡ y0 = 1/2, by setting time
at t = 18 and selective advantage at δ = 0.41. The ocra-dotted line refers to the deterministic solution of
eq. (5.11) while the purple continuous line corresponds to the agent simulations for N0 = 100.

In figure 5.5, the cross-section c(x, y0, t) of the total population size cT (r) for y ≡ y0 =
1/2, at time t = 18 and selective advantage at δ = 0.41 is shown. By integrating the
equations (5.11) and (5.3) we get the ocra-dotted line while the purple continuous line
displays the agent simulations results obtained for N0 = 100.

Reasonable evidence that emerges is that the region near the centre of the initial population
x = 1/2 is characterized by a lower value of c as expected for the deterministic solution.
The agent simulations forN0 = 100 show quite remarkable fluctuations orderO(N

−1/2
0 )

around an average value close, or just like, the solution of the deterministic case. These
fluctuations, on average, tend to smear the effect of the self-induced velocity field analyzed
in eq.s (5.30), (5.31) which is strongly linked to the functional form of φ(x, y, t) in (5.23).
This may explain why the agent simulations show a transition at a critical value of δ in
between the δc(c = 1) and δc(c 6= 1). Eventually, the convergence to the deterministic
case, if any, may be extremely low since the r.m.s fluctuations on ∇c should be of
order 1/(aN

1/2
0 ) with a the deme size. To summarize the results, there is a rather good

quantitative agreement of the agent simulations with the deterministic dynamics within
the accuracy provided by the present resolution.

5.3 Effect of the source field

We now consider the effect of a weak compressible velocity field acting in the two-
dimensional system, given by the two components (5.12) and (5.13). In the equation
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5.3 Effect of the source field
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Figure 5.6: Critical value of δ to let the transition to φ = 1 occur, with a source advection u0 = 0.02.
The initial state is a blob of radius R0 = 0.125. By increasing δ we observe a transition represented by
the red continuous vertical line. The symbol lines refer to the agent simulations with different values of
N0 = 4, 10, 25.

(5.12) uy = 0 is set. We assume all the parameters equal to the cases discussed in the
figures 5.1-5.3, setting the constant value of the velocity field u0 = 0.02.

Let us denote by δc[R(0), u0] the critical value of δ above which the initial population
grows and reaches fixation. Let also be δc[R(0), 0] ≡ δc(c 6= 1), the critical value of δ
for u0 = 0. Using eq.(5.21) we can predict the value δc[R(0), u0] by the relation:

δc[R(0), u0] = δc(R(0), 0)−
(

2u0 sin(2πR(0)

w

)
(5.32)

Eq. (5.32) is supposed to hold both for the deterministic case (corresponding toN0 =∞)
and for the agent simulations, within an accuracy similar to the ones previously discussed
in the no-velocity cases.

We can easily see that the simulations with agents and the deterministic results converge
ever more by increasing the number of species present in the deme.
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5. Pushed genetic waves
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Figure 5.7: Critical value of δ to let the transition to φ = 1 occur, with a source advection u0 = 0.02.
The initial state is a blob of radius R0 = 0.21. By increasing δ we observe a transition represented by
the red continuous vertical line. The symbol lines refer to the agent simulations with different values of
N0 = 4, 10, 25.
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Figure 5.8: Critical value of δ to let the transition to φ = 1 occur, with a source advection u0 = 0.02. The
initial state is a strip with size 2R(0), R(0) = 0.0625. By increasing δ we observe a transition represented
by the red continuous vertical line. The symbol lines refer to the agent simulations with different values of
N0 = 4, 10, 25.
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5.4 Incompressible flow
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Figure 5.9: Critical value of δ for a transition to φ = 1 with a source advection with u0 = 0.02 (yellow
continuous line). The initial state is a blob of radius R(0) = 0.125 and the velocity field is given by eq.
(5.33) and (5.34). The symbols refer to agent simulations with different values of N0 = 4, 10, 25.

5.4 Incompressible flow

In this section, we now consider the transition in δ for fixed R(0) when the system is
advected by the following incompressible flow:

ux = u0cos

(
2π

(
y − L

2

))
(5.33)

uy = u0cos

(
2π

(
x− L

2

))
(5.34)

In figure 5.9 we show Pfix as a function of δ for R(0) = 0.125 for u0 = 0.02.The
deterministic transition is represented by the continuous yellow line for u0 = 0.02.The
filled symbols refer to the agent simulations.

As we have already observed, for N0 = 10 we already reach a good convergence in
the simulations to measure the transition point which is δc = 0.44 for u0 = 0.02 The
transitions for the agent simulations are rather close to the deterministic one.

5.5 Conclusions

We based our study on the probability of fixation between two populations with an
antagonistic interaction. In particular, the case of two populations whose dynamics is
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5. Pushed genetic waves

confined in a closed two-dimensional structure L×L with periodic boundary conditions
and eventually advected by a weak compressible velocity field is taken into account.

We focus our investigation on two separate scenarios. In the first scenario, the initial
spatial distribution of the fraction f of a species (for example A), at t = 0, is radially
symmetric delimitate aroundL/2, L/2. In the second scenario, f corresponds to a homogeneous
strip in the y direction of size 2R(0). Upon finding the functional form, a framework to
analyze the deterministic equations is developed. The deterministic results obtained for
an initial population are compared with the agent simulations.

We analyzed the dynamics by increasing the number of individuals per deme such that
the solution of eq.s (5.1) and (5.2) approaches the continuum description. The results
obtained by the use of agent-based simulations were compared to those deterministic
with the object to understand the role of number fluctuations in population genetics.

By examining the numerical simulations we observed that the carrying capacity cannot
be set at its maximum c = 1 for any antagonist interaction strength. In the case of
no velocity field, we discover that the critical value of the selective advantage shows a
transition always in between δc(c = 1) and δc(c 6= 1), and eventually convergence to the
deterministic solution but very slowly.

To understand the dynamics at the interface we study the heterozygosity as a tracer. It is
noticed that, after an initial moment of shrinking, the transient behavior shows a linear
growth. Then, by taking a cross-section of the total population with space, it is observed
that the remarkable fluctuations are around an average value close to the deterministic
solution.

On average, these fluctuations can reduce the effect of the effective velocity and in the
long-run they could eventually minimize the differences at the interface.

The case of a weak compressible and incompressible velocity field is then investigated.
As for the case without velocity field, we find net agreement between the deterministic
results and the agent simulations as the number of individuals per deme increases.
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6 | Concluding remarks
and outlook

In this thesis, we have explored the effect that individual dispersion has on a population
genetics under compressible flow conditions.

The proposed computational method enables the analysis in continuous space with an
efficiency comparable with the discrete lattice case. Efficient computation is possible
with an extremely large number of individuals per site, without managing the position of
each individual.

We assume a uniform lattice of spacing ∆x with each site occupied byNj individuals. At
each time step, we redistribute theNj individuals on a domain (1+a)∆xd, where d is the
dimension of our system and a is suitably chosen to introduce a diffusion process. Next,
we advect the Nj individuals in continuous space using the external velocity, if present.
After this step, some of the original Nj individuals have been moved to different regions
of space, i.e., to a different box of size ∆x, changing the number of individuals of the new
box. Once we complete the diffusion and advection for all sites, independently one from
another, we apply the birth-death processes stochastically according to the prescribed
rates. Note that we do not need to remember the exact position in each site from one step
to another, and it is enough to know how many individuals of each species are present at
the prescribed site. In this way, we can efficiently work with an extremely large number
of individuals per site without managing the position of each individual. This is actually
the reason why we can achieve a significant increase in computational performance.

By applying this method in presence of a two-dimensional weakly compressible flow,
we discovered that the dynamics of populations can be strongly influenced especially
when the individuals are sited within a source of the flow. This is an important result for
a two-dimensional system.

The introduced original method has allowed us to analyze specific cases of interest. As a
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Concluding remarks and outlook

preliminary examination we set off on the strong noise regime to figure out if, in such a
case, the probability of fixation remains unaffected by the system’s diffusivity. This has
been validated through a rigorous theoretical analysis and simulation process by means of
the original code. We have also investigated the impact of incompressible flow advection
in a real scenario.

A further approached aspect of population dynamics concerns the antagonistic interaction
between species. This aspect has important repercussions on the microbial evolutionary
dynamics. We considered a spatially extended dynamics on which eventually weak
compressible flows acts. By analyzing different initial population sizes, it turns out that
by increasing the number of individuals, per deme, agent simulations converge to the
deterministic results. This result is found both without a velocity field and when a weak
compressible velocity field is activated.

Below, in the appendix, a study concerning the microorganism’s physical properties in
terms of confinement in relation to the diffusivity parameter is added. The Escherichia
Coli, characterized by a swimming mechanism known as run-and-tumble, has been
considered. The microorganism motion is characterized by an effective diffusivity that
can vary according to the type of confinement. The swimmer is stuck in circular orbits
near stable walls in a weak containment. When the tumbling frequency is equal to the
angular velocity of the stable orbits, optimum diffusivity is observed. The stable circular
orbits vanish in strong confinement, and the diffusion coefficient decreases monotonically
with the tumbling rate. Our findings can be potentially applied to other, both natural
and artificial, chiral swimmers. Indeed, several asymmetric swimmers follow circular
trajectories when moving close to boundaries, see e.g. [76, 77] and, in principle, can
present an optimal tumbling rate that maximizes their diffusivity.
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A | Diffusivity of E. coli-like
microswimmers in confined
geometries: The role of the
tumbling rate

So far, diffusivity has been analyzed as a simple numerical parameter, however, the
diffusivity dependence on the properties of the considered organism should also be taken
into account. The whole can also vary in relation to a strong density gradient, so if the
system is confined and depends on the given confinement, the correlated diffusivity of
the organism varies. In the following section, the effect of confinement on the effective
diffusion of a run-and-tumble E. coli like flagellated microswimmer is analyzed.

The run phase is obtained via a fully resolved swimming problem, i.e. the Stokes equations
for the fluid coupled with the microorganisms rigid body dynamics. Tumbles events and
collisions with the walls are modelled as random reorientation of the microswimmer. For
weak confinement, the swimmer is trapped in circular orbits close to the solid walls. In
this case, optimal diffusivity is observed when the tumbling frequency is comparable with
the angular velocity of the stable orbits. For strong confinement, the stable circular orbits
disappear and the diffusion coefficient monotonically decreases with the tumbling rate.
Our findings can be potentially applied to several natural or artificial chiral microswimmers
that follow circular trajectories close to an interface or in confined geometries.

The following study is not part of the doctoral project. it was developed for the master’s thesis project and
it was published during the first year of PhD.
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A. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate

Figure A.1: Flagellated bacterium model and channel geometry. The flagellated microswimmer is modelled
as a system of two rigid bodies, the head (a prolate ellipsoid) and the tail (an helical tubular structure). The
head and tail axes lie along the same direction and the tail can rotate with respect to the head. The system has
7 degrees of freedom, namely the position ~xj of the junction between the head and the tail, the orientation of
the head with respect to the fixed reference frame and the rotation angle φ of the tail with respect to the head.
In the plane channel geometry, the only relevant degrees of freedom are the distance between the junction
and the wall zj and the angle Θ between ~̂

1e and ~̂x.

A.1 Methods

The microswimmer is composed by two rigid bodies, the head and the tail, see fig. A.1.
The head is a prolate ellipsoid with longitudinal and transverse semi-axis called a1 and
a2 respectively. The swimmer head position is identified by the junction between head
and tail ~xj , that is also taken as the origin of the body reference frame {~e1, ~e2, ~e3} where
the unit vector ~e1 lays along the longer ellipsoid axis. The body translational velocity
is denoted by ~U while ~ΩH is the angular velocity of the head. The tail is modelled as a
helix of wavelength λ, amplitude A and axis ~et = −~e1, being L the axial length of the
tail which has a cross section of radius aT . Following [60], the tail originates from the
head at the junction point ~xj with vanishing small amplitude. Then, the helix amplitude
grows up to A with an exponential law. The tail rotates around ~et with angular velocity
ΩT = φ̇. The microswimmer kinematics is completely defined by six degrees of freedom
as appropriate for a free rigid body, plus the rotation angle of the tail φ(t). An internal
torque of intensity τM , aligned with ~e1, is exchanged between the head and the tail, so
that the tail rotates around its axis and the head balances this motion by counter-rotating.

The hydrodynamics of the bacterium in presence of confinement is described by the
Stokes equations

−∇p+ µ∇2~u = 0 , ∇ · ~u = 0 . (A.1)

For liquid water on a solid surface, the intrinsic slippage is negligible [78, 79]. Hence, the
no-slip boundary condition is appropriate for both the rigid wall and the microswimmer
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A.1 Methods

surfaces. The solution of the Stokes equations is achieved by using the corresponding
boundary integral equation, see e.g. [80]. In this Boundary Element Method (BEM)
approach, the fluid boundaries, i.e. the microswimmer head and tail and the confining
walls, are discretized by means ofN triangles. The discrete form of the boundary integral
equation results in a linear system of 3N equations relating the three velocity components
to the three components of stresses over the N boundary elements. The velocity on
each boundary element of the microswimmer surface depends on ~U , ~ΩH and ΩT , which
represent seven further unknowns. Seven additional equations, namely the free-body
balance equations (3 scalar equations for the forces and 3 for the torques) and the equation
for the internal torque balance close the system, see e.g. [60, 61] for more details. The
complete system (3N + 7 equations) is solved by a parallel Gauss-Jordan algorithm [81]
implemented in an in-house code [61, 82]. A similar approach can be employed also for
squirmers, see e.g. [83].

In principle, the solution of the system allows to set up a simple time marching algorithm
for evaluating the dynamics of the microswimmer. At each time step, given the torque
τM , the system is solved and the swimmer velocities can be employed to update the
microswimmer configuration. Following Shum et al. [60, 84], the system symmetries can
be exploited to set up a more efficient approach. In brief, since the system is invariant
under rotation around the z-axis and translation in x and y directions, it is convenient
to pre-calculate the velocities when the bacteria sits in specific positions in the reduced
space (Θ, zj) with Θ the (pitch) angle between the ~e1 body axis and the bottom wall and
zj the z-coordinate of the junction position ~xj , see figure A.1. The tail rotational velocity
φ̇(t) = ΩT is much larger than the other velocities involved in the problem. This calls
for averaging on the tail rotation φ, thus the swimmer translational velocity ~U and its
angular velocity ~ΩH only depend on Θ and zj . The bacterium trajectory during the run
phase is then calculated integrating the rigid body kinematics equations of the swimmer
head, where ~U and ~ΩH are interpolated from the pre-calculated values on a discrete set
of Θ, zj pairs.

The tumbling phase is achieved by randomly rotating ~e1 by an angleψ to a new orientation
~e′1 which lies on a cone of axis ~e1 and semi-amplitude ψ . The tumbling occurs at a fixed
frequency α. Moreover, a tumbling event is also triggered when the swimmer collides
with the wall. It is worth noting that, in the limit of α→ 0, our model is not expected to
reproduce the swimmer dynamics on long time scales. Indeed, in absence of tumbling
(or for very low tumbling rates α) the swimmer will still deviate from the deterministic
trajectory due to rotational diffusion, see e.g. [85].

We performed simulations where ψ is not constant but is extracted, from each tumbling event, from
a uniform distribution of mean value ψ. The overall behaviour of the diffusivity as a function of the
tumbling rate is the same as the constant ψ case (data not shown).
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A. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate
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Figure A.2: Deterministic microswimmer trajectory for a boundary accumulating case. Panels A and B
report xz and xy projections of the 3D trajectory for two initial conditions. Red (dashed) line: the swimmer
stabilizes on a closed circular orbit. Black (solid) line: the swimmer collides with the wall. The reduced
(Θ, zj) phase space is represented in the panel C. The color refers to the different manifolds. Trajectories
originating from the grey regions (I and II) eventually collide with the wall. Trajectories originating from
green (III) and yellow (IV) regions are attracted to one of the two stable orbits (red points close to the walls).
Channel height, h = 15. Microswimmer geometry; tail length L = 5.31, tail amplitude A = 0.286, tail
wavelength λ = 1.8, tail radius at = 0.05, cell equivalent radius a = 1.0 with a2/a1 = 0.33.

In the following, the equivalent cell radius ā, defined as the radius of a sphere having
the cell volume, is used as a reference length. The reference time unit is set as the time
needed by the flagellum to perform a complete rotation with respect to the swimmer head
in the free space. Unless explicitly indicated, we report our data in dimensionless units
built with these reference length and time scales.

A.2 Weak confinement: Boundary accumulation

Deterministic motion. We start our analysis considering a microswimmer with tail axial
length L = 5.31, tail amplitude A = 0.286 and tail wavelength λ = 1.8, tail radius
at = 0.05, cell equivalent radius a = 1.0 with a2/a1 = 0.33, moving in a channel of
height h = 15. As a first step, we discuss the deterministic dynamics, i.e. no tumbling
events are introduced. The microswimmer is attracted by the walls and two different
behaviors are observed depending on the microswimmer initial condition, namely, i) the
swimmer collides with the channel boundaries or ii) it stabilizes on a circular trajectory
close to one of the two walls. Figure A.2 reports two typical trajectories corresponding
to case i (black solid line) and ii (red dashed line). The xz and xy projection of the
3D trajectory are shown in panel A and B, respectively. When the swimmer achieves
a stable orbit, in agreement with previous findings [58, 61, 86], the bacterium follows
a clock wise (CW) trajectory when observed from the liquid phase. A more synthetic
representation of the microswimmer dynamics is given in terms of the vector field Θ̇, Uz
in the reduced phase space (Θ, zj), see figure A.2C. Asymptotically stable equilibrium
points, corresponding to circular trajectories in the 3D view, are apparent at both walls
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A.2 Weak confinement: Boundary accumulation

(red dots), while an unstable point is present at Θ = 0, zj = h/2 = 7.5 (yellow dot).

In this representation, the white regions (e.g. low zj for Θ > 0) correspond to configurations
where the swimmer body intersects the channel walls. For the sake of clarity, only the
relevant portion of the reduced phase space (Θ, zj) is reported. Regions I and II extend
for Θ < 25◦ and Θ > 25◦, respectively. Indeed, for large negative Θ the deterministic
trajectory of the swimmer always collides with the lower wall, while, for large positive
Θ, the swimmer collides with the upper wall.

Run and Tumble. We then analyzed the run and tumble motion. The tumbling phase
is achieved by randomly rotating ~e1 by an angle ψ at a fixed frequency α. A tumbling
event is also triggered when the swimmer collides with the wall. The dynamics strongly
depends on the tumbling rate α. Indicated as ωs the angular velocity of the circular
motion of the stable deterministic orbit, for α� ωs, the swimmer is trapped on a stable
orbit for a long time before a tumbling event allows it to escape. On the other hand, for
α � ωs, the run phase is too short to appreciate circular arcs. The effective diffusion
D as a function of α is reported in figure A.3A for a tumbling angle ψ = π/3. D has a
maximum for α = α∗ ' 0.5ωs. The trajectory corresponding to the maximum diffusion
is reported in red in figure A.3B,C. It is apparent that, in this case, the swimmer covers
only a small portion of a circle before a tumbling event brings it on another circular
orbit. Blue and green trajectories in figure A.3B,C correspond to the cases α� ωs and
α � ωs, respectively. The existence of an optimal tumbling rate was early proposed
in [63]. Their model indicates that α∗ = ωs in fair agreement with our results.

A similar scenario occours for different tumbling angle ψ. The D(α) plots always show
a single peak even though the optimal tumbling rate α∗ changes with ψ, see figure A.4A.
The data points are roughly fitted by α∗/ωs = 1/ψ, dashed red line. The following simple
geometrical argument, sketched in figure A.4B supports this finding. Let us assume that
the motion occurs on a plane and that the trajectory during the run phases are circular. In
addition, we assume that ~e1 is aligned along the tangent of the trajectory. During each
run phase the microswimmer covers an angle ωs/α. The net displacement after a single
run phase is the chord length l (red dashed line) corresponding to the angle ωs/α. Then,
the swimmer tumbles, i.e., in the present 2D approximation, it rotates of an angle ψ either
to the left or to the right and a second run phase begins. At the end of the second run
phase, the maximum displacement with respect to the initial position occours when the
chord of the second run phase is aligned to the displacement of the first run. This optimal
circumstance is verified only when ψ = ωs/α and only for one half of the tumbling
events. All the other combinations of α and ψ result in smaller displacements.
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A. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate
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Figure A.3: A) Effective diffusion coefficient D as a function of the tumbling rate α for boundary
accumulating microswimmers (same geometry as in figure A.2) for tumbling angle ψ = π/3. The tumbling
rate α is normalized with the frequency ωs corresponding to the stable circular motion observed for the same
microswimmer in absence of tumbling. B,C) Examples of trajectories corresponding to for low tumbling
rate (blue), optimal tumbling rate (red) and high tumbling rate (green).
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Figure A.4: A) Optimal tumbling rate α∗ as a function of the tumbling angle ψ for a boundary accumulating
case (same geometry as in figure A.2). Red dashed line corresponds to the relation α∗/ωs = 1/ψ. B) Sketch
of the geometrical argument discussed in the text. In a 2D model where the swimmer moves along circles
during the run phase, the maximum possible displacement after two consecutive run phases is obtained when
the displacement vectors are aligned (red lines correspond to the chord of the circular trajectories).
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A.3 Strong confinement: Boundary escaping

A.3 Strong confinement: Boundary escaping

In this section, we present the results for a narrow channel of height h = 3.75. Under
strong confinement, the deterministic motion is no longer characterized by stable circular
orbits near the walls. Swimmers that do not collide with the walls, after an initial oscillating
transient, stabilize in a straight trajectory along the channel’s midplane, see figures A.5A
and B. As in the previous section, black solid line refers to a swimmer colliding with the
wall, while an example of asymptotic trajectory is reported by the red dashed line. The
3D trajectory corresponds to the red point located at the center of the (Θ, zj) reduced
space, see figure A.5C. This phenomenology is indicated as boundary escaping [84].
The transition between boundary accumulating and boundary escaping behaviours as the
channel height h is reduced was observed in [84] for different swimmer geometries.

For strong confinement, several regions on the (Θ, zj) reduced space correspond to
configurations where the swimmer body intersects the channel walls and are reported as
white regions in figure A.5C.

The absence of the stable circular orbits has a dramatic effect on the dependence of
the effective diffusion coefficient D on the tumbling rate α. Figure A.6 reports D as
a function of α for different values of the tumbling angle ψ. It is apparent that the
diffusion coefficient D decreases with α. The data are roughly aligned onto a straight
line suggesting that the dependence D(α) can be captured by a power law whose scaling
exponent and prefactor, in principle, depend on the tumbling angle ψ. In the following,
we discuss a simple theoretical model that explain the observed data.

Random flight model. Let us consider a swimmer moving on a plane. During the run
phase, the swimmer covers a segment of length l = vτ , where τ = 1/α is the time
between two consecutive tumbling events and v is the swimmer speed. The displacement
during the i-th run phase is indicated as ~ri, while ~R(Nt) =

∑Nt
i ~ri is the swimmer

displacement at time t after Nt = t/τ tumbles. For uncorrelated tumbling events, 〈~ri ·
~rj〉 = 0. Following [87] the variance of the displacement is

〈~R2(t)〉 = Ntl
2 =

v2

α
t . (A.2)

Consequently, the resulting diffusion coefficient is

D =
v2

4α
. (A.3)

This kind of reasoning can be extended to the case where the tumbles occur with a specific
tumbling angle ψ. Now, the tumbling directions are correlated. More specifically, the
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A. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate

generic displacement vector ~ri always forms an angle ψ with the previous displacement
~ri−1. It follows that 〈~ri〉 = ~ri−1 cosψ. Following [87] the correlation 〈~ri · ~rj〉 can be
calculated in a recursive manner starting from the initial condition 〈~r2j 〉 = l2, namely
〈~ri · ~rj〉 = l2(cosψ)|i−j|.

This result is successively used to compute the variance of the displacement [87]

〈~R2(t)〉 =
v2

α

1 + cosψ

1− cosψ
t . (A.4)

Consequently, the diffusion coefficient D reads

D =
v2

4α

1 + cosψ

1− cosψ
. (A.5)

Equation (A.5) diverges forψ → 0, i.e. tumbling is not effective since the ~e1 is not rotated.
Moreover, eq. (A.5) is valid only in the limit of large Nt. This limit is fully reached in
the simulation data reported in figure A.6, where Nt ranges from 104 (for the lowest α)
to 107 (for the largest α). The prediction of this simplified model well describes the data
shown in figure A.6. In particular, when fitting the diffusion coefficient by a power law
D = c αb, the scaling exponents range from b ' −0.9 for tumbling angle ψ = π/3
to b ' −1.25 for ψ = 5π/6. The prefactor c is in fair agreement with eq. (A.5), see
inset figure A.6, where the actual prefactor (symbols) is compared with the expression
appearing in eq. (A.5) (dotted line).

The model predicts a divergence of the diffusion coefficient for α → 0 as also shown
by our data. It is worth noting that, for actual swimmers, at low α the dynamics will be
dominated by the rotational diffusion of the swimmer body. In this more realistic case, as
showed in [85], it is reasonable to expect that, for α→ 0, D reaches a finite value.

In order to complete the study concerning the effects of confinement on the motion of
the swimmer, we have considered a case of intermediate channel height, h = 7.5. The
corresponding results are shown in figure A.7. Swimmers that do not collide with the
walls are now found to stabilize on oscillating trajectories parallel to the channel midplane,
see figure A.7A. This behaviour was also observed in early studies with similar swimmer
model [84] and a more simplified pusher swimmer model [88]. These 3D trajectories
correspond to a limit cycle in the reduced (Θ, zj) phase space, see figure A.7B. The
point Θ = 0, zj = h/2, yellow dot in figure A.7B, is now an unstable equilibrium point.
Trajectories originating from the inside (region IIIa) or from the outside (region IIIb)
of the limit cycle, converge to the limit cycle after a few oscillations in both zj and Θ.
Hence, also for h = 7.5, a boundary escaping scenario takes place, i.e. the swimmer is not
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A.4 Conclusions
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Figure A.5: Deterministic microswimmer trajectory in a boundary escaping case. Panels A and B report xz
and xy projections of the 3D trajectory for two initial conditions. Red (dashed) line: the swimmer stabilizes
on a trajectory parallel to the channel midplane. Black (solid) line: the swimmer collides with the wall. The
reduced (Θ, zj) phase space is represented in the panel C. The color refers to the different manifolds.
Trajectories originating from the grey regions (I and II) eventually collide with the wall. Trajectories
originating from blue (III) region asymptotically move on a straight line parallel to the channel midplane,
red dot in the Θ, zj phase space. Channel height, h = 3.75. Same swimmer geometry as in figure A.2.
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Figure A.6: Effective diffusion coefficient D as a function of the tumbling rate α for boundary escaping
condition for different tumbling angle ψ. For the sake of clarity,D is normalized with the value obtained for
α = 4.4 ∗ 10−3. The solid line D ∼ α−1 is drawn to guide the eye. The prefactor c is reported in the inset,
the dotted line corresponds to the 2D random flight model prediction, eq. (A.5).

trapped at the wall and it follows an average straight line trajectory that lays on the channel
midplane. Consequently, we expect that the dependence of the diffusion coefficient D as
a function of the tumbling rate α, follows the strong confinement behaviour. Figure A.7C
reports the diffusion coefficient D as a function of α for different values of the tumbling
angle ψ for this intermediate channel height h = 7.5. The behaviour is essentially the
same as discussed for the case of strong confinement, see figure A.6.

A.4 Conclusions

We analyzed the motion of a run-and-tumble E.coli-like swimmer in confined geometries.
The motion is characterized in global terms by addressing the effective diffusion coefficient.
This quantity can have a dramatic effect on the survival probability of a species, as
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A. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate

 0

 1.875

 3.75

 5.625

 7.5

 0  200  400  600  800  1000  1200

A

z

x

converging to limit cycle

 0.001

 0.01

 0.1

 1

 10

10-3 10-2 10-1

C

D
/D

*

α

π/3
π/2

2π/3
5π/6

 0.1

 1

 10

0 π/3 2π/3 π

C

c

ψ

Figure A.7: Channel height h = 7.5. Same swimmer geometry as in figure A.2. Panel A reports the xz
projection of the 3D trajectory that oscillates around the mid-plane. The reduced (Θ, zj) phase space is
shown in panel B. Trajectories originating from the grey regions (I and II) eventually collide with the
wall. Trajectories originating from pink regions (IIIa and IIIb) asymptotically approach the limit cycle that
corresponds to oscillating trajectories such as the one shown in panel A. The panel C reports the effective
diffusion coefficient D as a function of the tumbling rate α for different tumbling angle ψ. D is normalized
with the value obtained for α = 4.4∗10−3. The solid lineD ∼ α−1 is drawn to guide the eye. The prefactor
c is reported in the inset, the dotted line corresponds to the 2D random flight model prediction, eq. (A.5).
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A.4 Conclusions

suggested by Pigolotti and Benzi [89, 90], where it was shown that a small difference
in the diffusion coefficient between two populations can result in a strong selective
advantage towards the fastest species. Our data show that the diffusion coefficient D is
a function of the tumbling rate and strongly depends on the confinement. In free space,
D monotonically decreases with the tumbling rate α, namely, D ∼ v20/α, with v0 the
swimmer speed. The simple argument beyond this well established result is that, during
the run phase, the swimmer moves along a straight line for a distance l = v0/α. At time
t, the mean square distance, after Nt = tα tumbling events is, R2(t) ' Ntl

2 ' (v20/α)t,
hence D ' v20/α. In weak confinement, the diffusion coefficient D shows a maximum
for a specific value of the tumbling rate. Indeed, the hydrodynamic interaction between
the swimmer and the channel walls, results in stable circular orbits close to the solid
surface (boundary accumulation). At low tumbling rate α, the swimmer gets trapped in
the stable orbit for a long time and, consequently, it is not able to explore the surrounding
space, hence, for α→ 0,D → 0. As α increases, the tumbling events allow the swimmer
to frequently escape from the stable orbit and to explore a larger portion of the space. The
maximum of the diffusion coefficient is obtained for α ' ωs, with ωs the angular velocity
along the stable circular orbit. Further increases of α result in a reduction of D. For high
tumbling frequency (i.e. short run phase), the swimmer is never trapped on stable orbits
and the trajectory during each run phase is approximatively a straight line. Hence, the
same argument used for the free space case holds. For stronger confinement, stable orbits
are not present and the hydrodynamic interaction results in the swimmer approximatively
moving along a straight line laying on the channel’s midplane. The scenario is similar to
the free space case, the swimmer is now confined in a plane and the run phases are, as a
first approximation, characterized by an almost straight motion. The diffusion coefficient
monotonically decreases with α in rough agreement with a 1/α scaling.
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Summary

In nature, the expansion of biological organisms is generally traced back to the contribution
of both individual spatial dispersion and growth. In the case of aquatic systems, microbial
processes are influenced by turbulent flows which can have an impact on the microorganisms’
dynamics. This Ph.D. dissertation deals with understanding the incidence of compressible
turbulence on the fixation probability of a particular species having a selective advantage.

The introduction and a review of the state of the art methods are introduced in chapter 1
and chapter 2, respectively.

A new method capable of describing the dynamics of two competing species is proposed
in chapter 3. This technique resulted computationally very efficient for the study of a large
number of individuals composing a population. We investigated the new approach in one
and two dimensions, and in presence of a weakly compressible fluid. It was found that
the compressible fluid can have a significant impact on the dynamics of the organisms.

The proposed method is employed in chapter 4 to investigate the population dynamics
at the limit of "strong noise". We examined the impact of the system diffusivity on the
fixation probability of a beneficial allele. Moreover, an incompressible velocity field has
been considered in order to explore possible related effects on the population dynamics.
It was found that the fixation probability does depend neither on the diffusivity nor on
the advection, with this latter, assumed to be incompressible.

The theoretical study in chapter 5 examines the impact of genetic drift on the dynamics
of two antagonistic species. The effect of a compressible velocity field is also considered.
In order to explain the contribution of random genetic fluctuations, deterministic results
are compared with agent simulations. For all the considered cases, a good agreement
between the theoretical and numerical outcomes is found.
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