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Summary

Massive multiple-input-multiple-output (MIMO) technology plays a crucial role in the
fifth-generation (5G) of cellular communication systems. One of the key properties ex-
ploited in massive MIMO systems is favorable propagation (FP). FP is defined as mutual
orthogonality among the channel vectors of users. It has been shown in the literature that
line-of-sight (LOS) environments and independent and identically distributed Rayleigh
fading exhibit FP. However, in LOS environments, there is a nonnegligible probability
that the channel vectors of a small number of users become correlated, which makes
the environment non-favorable. Correlated users lead to a reduction in the achievable
sum-rates of known linear precoders, e.g., conjugate beamforming (CB) or zero-forcing
(ZF) and nonlinear precoders, e.g., Tomlinson-Harashima Precoding (THP). In two LOS
scenarios, which are identified as important for future 5G systems, “open exhibition”
and “crowded auditorium”, a large number of users are physically co-located, and thus,
many users may have correlated channel vectors. Dealing with these correlated scenar-
ios in LOS environments is of great importance for future 5G and beyond systems. In
this thesis, we study three different strategies to deal with correlated scenarios for time-
division-duplexing single-cell LOS massive MIMO.

In the first strategy, we focus on using low-complexity precoders. We propose a
low-complexity linear precoder and a low-complexity hybrid linear and nonlinear pre-
coder (HLNP). The idea of the reduced-complexity linear precoder is to switch between
two known linear precoders, i.e., CB and ZF, based on the channel condition. The pro-
posed linear precoder has the sum-rate performance better than both CB and ZF, and
has a complexity lower than ZF. The idea of the low-complexity HLNP is to use nonlin-
ear precoding for a limited number of users and to use linear precoding for the rest of
the users. By employing the proposed HLNP, the complexity of nonlinear precoding in
massive MIMO systems is reduced, while a close to nonlinear precoding performance is
achieved. We propose a grouping method to divide the users into two groups. For the
first group a proposed modified THP is employed and for the second group linear pre-
coding is used. The proposed HLNP offers a tunable trade-off between computational
complexity and performance by varying the number of users in the first group.

In the second strategy, we propose to employ a uniform linear array (ULA) at the BS
with optimized inter-element spacing. For a given ULA with an arbitrary inter-element
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spacing, we derive the probability that the correlation among the channel vectors of two
users being above a threshold. The inter-element spacing of the proposed ULA is the one
for which the derived probability is minimized. The proposed ULA is optimized and has
the best outage performance for the case when there are only two users. For more users,
we present simulation results to show the effectiveness of the proposed array compared
to the conventional half-wavelength ULA with a known linear precoder, i.e., ZF.

In the third strategy, we investigate dropping algorithms to drop and reschedule some
of the correlated users. It has been shown in the literature that by dropping some users
with a spatial correlation higher than a predefined threshold, one can improve the cu-
mulative distribution function of the effective signal to noise ratio (SNR) of the users
considerably. However, in the literature, the threshold on the spatial correlation has been
found throughout simulations. We derive a threshold for the spatial correlation for a
specific channel, and show that we can use it for general cases with a small loss in per-
formance. Particularly, we derive the thresholds for two known linear precoders, i.e.,
CB and ZF, and for a known non-linear precoder, i.e., THP. We further propose a neural
network based dropping algorithm that achieves better sum-rate performance compared
to the previous correlation-based dropping algorithms. Finally, we propose an iterative
filter-based dropping algorithm (IFDA), which achieves near-optimal performance with
limited complexity. In contrast to the previous algorithms in the literature, our proposed
IFDA does not require a predefined threshold for the spatial correlation of the users and
does not require any preprocessing.
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CHAPTER 1

Introduction

1.1 Background

Information and communication technologies (ICTs) have transformed societies, cul-
tures, and economies over the past four decades. ICTs have improved quality of life
and contributed to economic growth and innovation. From early 2020 and the rise of
the Covid-19 pandemic, ICTs have helped individuals and companies to deal with social
distancing and working remotely.

Cellular networks have evolved significantly since the first-generation (1G) of mo-
bile communication systems in the early 1980s. Mobile systems in 1G were analog
and capable of providing only voice calls. Nowadays, mobile systems are digital and
mainly provide data rather than voice. The fifth-generation (5G) of mobile commu-
nication systems known as New Radio (NR) was standardized by the third-generation
partnership project (3GPP) in 2017 and 2018 [17]. To date, there have been more than
seventy five 5G commercial launches across the world [18]. A wide range of use cases
have emerged in 5G, e.g., augmented and virtual reality (AR/VR) and video streaming,
autonomous vehicle control, and factory automation [19]. 5G targets three main use
case families with different connectivity requirements, i.e., enhanced mobile broadband
(eMBB), ultra-reliable low-latency communication (URLLC) and machine-type com-
munication (MTC) [20], which are illustrated in Fig. 1.1. Mobile broadband is related
to human-centric use cases, e.g., mobile phones and mobile personal computers/tablets.
In contrast, MTC and URLLC are related to machine-centric use cases, e.g., low-cost
sensors and autonomous vehicles [21]. Typical requirements of each family of 5G use
cases are shown in Fig. 1.1.

By the end of 2025, the number of mobile subscriptions is forecast to be 8.9 bil-
lion (2.8 billion are 5G, see Fig. 1.2) of which 88% are for eMBB [18]. To address the
throughput requirements of eMBB, new wireless technologies are required for 5G NR.
The new wireless technologies should be scalable for serving more and more users with
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Figure 1.1: The main families of 5G use cases [21]

a higher throughput [22]. Many wireless standards cannot meet this requirement, since
they do not have enough bandwidth. One approach to analyze the throughput require-
ments of eMBB is by studying the area throughput [23]. The area throughput is defined
as the number of information bits per unit time that can be delivered to a given area,
measured in bits/s/km?. To increase the area throughput one can increase the cell density
(the number of cells per square kilometer), spectral efficiency (SE), or bandwidth. Typi-
cally, increasing cell density is quite costly and entails high deployment and maintenance
costs [23].

To increase SE, multiple-input-multiple-output (MIMO) technology can be used.
MIMO technology has been used in 4G [24] and 5G NR [17,25]. MIMO technology
provides spatial multiplexing by transmitting multiple data streams at the same time-
frequency resource to a single user (SU) or multiple users (MU), where each data stream
can be beamformed. Beamforming in transmitting mode is the ability to direct energy
toward a specific receiver, which increases the received signal level of the user, and con-
sequently, increases its throughput. In SU-MIMO, multiple data streams are transmitted
from a multi-antenna base station (BS) to a single user with multiple antennas. In MU-
MIMO, multiple data streams are simultaneously transmitted from the BS to multiple
single-antenna or multiple-antenna users. The MU-MIMO with a large number of active
elements at the BS (much larger than the number of users) is often referred to as massive
MIMO [26] also known as large-scale antenna systems. Massive MIMO plays a criti-
cal role in the evolution of 4G to 5G [27]. The world’s first commercially available 5G
NR, i.e., AIR6468 is unveiled in 2016 with 64 transmit and 64 receive antennas support-
ing massive MIMO. Furthermore, there are emerging massive MIMO technologies for
beyond 5G, e.g., cell-free massive MIMO and holographic massive MIMO [28].
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One of the key properties of the radio channel that is exploited in massive MIMO
systems is favorable propagation (FP). FP is defined as the mutual orthogonality of the
channel vectors of users. By increasing the number of antennas at the BS of a massive
MIMO system, the channel vectors of the users become mutually orthogonal, which leads
to FP. The mutual orthogonality of the users implies that the inter-user interference is re-
moved and linear processing becomes optimal. Adding more antennas in massive MIMO
systems is always beneficial for increased throughput, reduced radiated power, uniformly
good service everywhere in the cell, and more simplicity in signal processing [29]. To
achieve these improvements, time-division duplex (TDD) operation is employed in mas-
sive MIMO systems for which channel reciprocity holds. By using channel reciprocity,
the estimated uplink channel is used for the transmitter over the downlink channel, which
limits the channel state information (CSI) overhead. These properties make massive
MIMO systems a scalable technology that can come up with higher throughput require-
ment for larger networks [29].

Another solution to address the throughput requirement of eMBB is to increase the
bandwidth by exploiting the spectrum that is currently unused. In 5G NR, two fre-
quency ranges are used: “sub 6GHz” and “millimeter-wave” [30]. By implementing
massive MIMO in the millimeter-wave band, one can increase the throughput by using
more bandwidth available in millimeter-wave band. However, there are challenges in
millimeter-wave communication bands because the channel model is different from sub
6GHz. In millimeter-wave there is lower diffraction, higher scattering, higher penetra-
tion loss, high sensitivity to blockage and strong differences between line-of-sight (LOS)
and non-LOS propagation conditions [31]. An overview of techniques for dealing with
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Figure 1.3: A ULA serves two users when the channel vectors of the users are a) orthogonal and b)
correlated. The correlation occurs when the beam intended for a user is overlapped with the beam
of the other user.

challenges in millimeter-wave MIMO systems has been given in [31]. Despite these chal-
lenges, millimeter-wave found its way in 5G NR, e.g., millimeter-wave Verizon is in the
second year of delivering 5G services in the US using the millimeter-wave spectrum [18].

There are challenges in particular 5G use cases. Providing connectivity for the end-
user even in very crowded places such as stadiums, shopping malls, open-air festivals,
other public events that attract lots of people, unexpected traffic jams and crowded public
transportation [32], is of great importance. For instance, consider a BS with a uniform
linear array (ULA) that serves two users with a LOS path to the BS in two different
scenarios (see Fig. 1.3). The BS creates one beam for each user. In the first scenario
(Fig. 1.3a), the users are far apart, and the created beams do not overlap. In this case, the
channel vectors from the ULA to the users are orthogonal, leading to a FP environment.
In the second scenario (Fig. 1.3b), the users are closely located. The created beams
overlap, which means the channel vectors of the users are correlated. A high correlation
of the channel vectors leads to a reduction in data throughput.

To alleviate the loss in the data throughput of downlink channel in the correlated sce-
narios, different strategies can be employed. One strategy is to employ a more advanced
signal processing technique at the BS to increase the data throughput. For instance, non-
linear precoding technique can be employed instead of linear precoding to increase the
data throughput with the cost of high computational complexity. To trade-off complexity
and data throughput, hybrid linear and nonlinear precoding is suggested in the literature.
The other alternative is to use an optimized antenna array at the BS instead of conven-
tional half-wavelength antenna array. In this case, the propagation environment changes
such that the downlink throughput increases for the optimized antenna arrays compared
to conventional BS antenna array. Furthermore, one can use a dropping algorithm to
drop some of the correlated users to avoid the correlated scenarios, and increase the data
throughput. These three strategies are the main subjects of this thesis.
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1.2 Scope of the Thesis

In this thesis, we study the following three research questions (RQs) to address dealing
with correlated scenarios in TDD single-cell LOS massive MIMO systems.

« RQ1:
What are the precoding techniques that trade-off complexity vs. performance for
LOS massive MIMO systems while improving the performance of linear precod-
ing?

* RQ2:
What is the inter-element spacing for the ULA at the BS that has the optimal out-
age performance, i.e., minimizes the probability of occurrence of the correlated
scenarios?

« RQ3:
What are the dropping algorithms that can achieve near-optimal performance with
feasible computational complexity?

Each research question in this thesis deals with the problem of correlated scenarios
from a different perspective. In this thesis, we use three different strategies (see Fig. 1.4)
to address the research questions. Nevertheless, the goal of all these strategies is to
find ways to improve the achievable sum-rate of linear precoders at the BS of a mas-
sive MIMO system with half-wavelength inter-element spacing. The first strategy (S1)
is to use a low-complexity precoder, the second strategy (S2) is to design a ULA with an
optimized inter-element spacing, and the third strategy (S3) is to employ a dropping al-
gorithm. We further elaborate on each research question and each strategy by presenting
our contributions in the thesis as follows. A summary of our contributions is depicted in
Fig. 1.4.

1.2.1 RQ1, S1 (Low-Complexity Precoders)

[C1] “A reduced-complexity linear precoding strategy for massive MIMO base sta-
tions”

A linear precoder is proposed based on switching between two known linear precoders,
i.e., conjugate beamforming (CB) and zero-forcing (ZF) for LOS propagation environ-
ments. The proposed idea is to predict and use the precoder, which results in the highest
sum-rate for a given channel. The achievable sum-rate of the proposed precoder is higher
than both CB and ZF, while its computational complexity is lower than that of ZF. Thus,
in correlated scenarios, the proposed precoder is a better candidate than CB and ZF. For
the proposed precoder, simulations are required in advance to find the regimes where CB
or ZF results in a higher sum-rate.

[J1] “A low-complexity hybrid linear and nonlinear precoder for line-of-sight mas-
sive MIMO with max-min power control”
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Dealing with
correlated scenarios

S1: Low-complexity : y : : : :
I J S2: ULA design (53. Dropping algorlthms)

[42]: [J3], [J4]:
[c1], [J1]: Design a ULA with Propose a modified
Propose two low-complexity optimized inter-element threshold-based dropping
precoders spacing algorithms
[J5], [J6]:

»| Propose two non-threshold

based dropping algorithms

Figure 1.4: The summary of the thesis: the strategy used to address each research question, and
the contributions for each strategy.

To alleviate the loss in the sum-rate of linear precoders, nonlinear precoders can be used.
However, nonlinear precoding entails a high computational complexity. To reduce the
complexity of nonlinear precoders, we propose a hybrid linear and nonlinear precoder
with max-min power control based on the proposed modified Tomlinson-Harashima pre-
coding (THP) method. We propose a grouping scheme where users are divided into two
groups. For the first group, the proposed modified THP is used, while for the second
group, linear precoding is employed. In the end, the precoded vectors of the two groups
are combined. The proposed precoder offers a tunable trade-off between computational
complexity and performance by varying the number of users in the first group. Besides,
we show that in LOS massive MIMO, it is more probable that there are only one or two
correlated pairs of users.

1.2.2 RQ2,S2 (ULA Design)

[J2] Uniform Linear Arrays with Optimized Inter-Element Spacing for LOS Mas-
sive MIMO

We propose a ULA with an optimized inter-element spacing at the BS to reduce the
occurrence of correlated scenarios at the cost of increasing the aperture size at the BS.
For a given ULA with an arbitrary inter-element spacing, we derive the probability that
the correlation among the channel vectors of two users is above a threshold. The inter-
element spacing of the proposed ULA is the one for which the derived probability is
minimized. The proposed ULA has the best outage performance when there are only
two users. For more users, we present simulation results to show the effectiveness of the
proposed array compared to the conventional half-wavelength ULA with a known linear
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precoder, i.e., ZF.

1.2.3 RQ3, S3 (Dropping Algorithms)

[J3] “An improved dropping algorithm for line-of-sight massive MIMO with max-
min power control”

[J4] “An improved dropping algorithm for line-of-sight massive MIMO with Tomlinson-
Harashima Precoding”

In [J3]-[J4], we study the use of a simple dropping algorithm for LOS massive MIMO
as previously proposed in [33]. It is shown in [33] that by dropping some users with a
spatial correlation higher than a predefined threshold, one can considerably improve the
cumulative distribution function (CDF) of the effective signal to noise ratio (SNR) of
the users. However, the threshold on the spatial correlation has been found throughout
simulations [33]. We derive a threshold for the spatial correlation for a channel with only
two users, and show that we can use it for general cases when there are more users with a
small loss in performance. Particularly, in [J3] and [J4], we derive the thresholds for two
known linear precoders, i.e., CB and ZF, and for a known non-linear precoder, i.e., THP.
In these works, we focus on max-min power control at the BS, which is used to provide
uniformly good service for the users [34]. In addition, in [4], we derive the threshold for
equal received power control.

[J5] “DropNet: An improved dropping algorithm based on neural networks for
line-of-sight massive MIMO”

[J6] “A near-optimal dropping algorithm for line-of-sight massive MIMO with max-
min power control”

By using an exhaustive search for the dropping problem, we can find the set of users
that shall be dropped such that the achievable sum-rate with max-min power control is
maximized for the remaining users. By employing the dropping algorithm of [33] with
the derived thresholds in [J3, J4] instead of the exhaustive search, the performance is
suboptimal in general. We have proposed two dropping algorithms in [J5] and [J6] that
do not rely on a predefined threshold and achieve a better performance compared to the
dropping algorithm of [33] with the thresholds in [J3, J4].

In [J5], we propose a dropping algorithm based on neural networks (DropNet) to find the
users that shall be dropped. By employing DropNet, we can reduce the complexity of the
exhaustive search and achieve a better sum-rate performance compared to the previous
correlation-based dropping algorithms. We train the neural network in DropNet using a
large number of channel realizations, where the input features are the spatial correlation
and the norm of the channel vectors of the users. The results show that by employing
DropNet, we can trade-off complexity and performance.

In [J6], we propose an iterative filter-based dropping algorithm (IFDA), which achieves
near-optimal performance. At each iteration, the user with the highest filter norm is
dropped. By comparing the sum-rate of all the iterations, the best set of dropped users is
found. In contrast to previous algorithms in the literature, our proposed IFDA does not
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require a predefined threshold for the spatial correlation of the users or any preprocess-
ing. Compared to an exhaustive search, the complexity of IFDA is reduced significantly.
Simulations results are given in [J6] to show the effectiveness of the proposed IFDA with
ZF and THP.

1.3 Organization of Thesis

This thesis is divided into two parts. In the first part (Part I), a background and some
general information are given about the topic. The second part (Part II) comprises the
included papers. The rest of Part I is organized as follows. In Chapter 2, the princi-
ples of LOS massive MIMO systems are reviewed. A review of precoding strategies is
presented in Chapter 3. In Chapter 4, we elaborate on the proposed strategies. In Part
II, the included papers are presented in Chapter 5 to Chapter 11. In Chapters 5 and 6,
the proposed low-complexity precoders are presented ([C1] and [J1]). In Chapter 7,
the proposed ULA with optimized inter-element spacing is given ([J2]). Chapter 8 and
Chapter 9 improve the previously proposed dropping algorithm of [33] for known linear
and nonlinear precoders ([J3] and [J4]). Chapter 10 uses neural networks to improve the
dropping algorithm and provides a complexity-performance trade-off ([J5]). Chapter 11
presents a near-optimal dropping algorithm for two known precoders ([J6]). Finally, the
conclusion of the thesis is presented in Chapter 12.

1.4 Notation

The following notation is used throughout the thesis. Lowercase, bold lowercase and
bold uppercase letters denote scalars, column vectors, and matrices, respectively. The
symbols | - |, || - ||, Z and C denote the absolute value, [?-norm, the set of integers,
and the set of complex numbers, respectively. The superscripts 7 and * denote un-
conjugated transpose and conjugated transpose, respectively. A diagonal matrix with
diagonal entries taken from the vector p is denoted by diag(p), I x denotes the identity
matrix of size K x K, tr(-) denotes the trace operation, and det(-) denotes the determinant
operation. The symbol CN (u, NoI ) denotes a vector of complex Gaussian random
variables with mean g and covariance matrix of NoI x. The imaginary unit is denoted
by 7. The operator ® denotes the Kronecker product.




CHAPTER 2
Line-Of-Sight Massive MIMO

In this chapter, we present the basics of LOS TDD massive MIMO systems, which is
the system under study in Part II of the thesis. We assume that the BS uses the same
time-frequency resource to serve single-antenna users. We further assume that the com-
munication system operates over a frequency-flat channel, and the hardware components
are assumed to be ideal. In the following, first, the LOS propagation environment is re-
viewed. Then, a review of Shannon capacity is presented. Afterward, single-cell TDD
massive MIMO systems are introduced.

2.1 Line-of-Sight Environments

The free-space LOS channel model for ULAs and uniform planar arrays (UPAs) is pre-
sented as follows. Assume a BS equipped with a ULA of M antennas located on the
z-axis (see Fig. 2.1). Besides, assume that the user ¢ is in the x-y plane, where R; is the
distance from the user to the first element of the array, and ¢; is the azimuth angle of the
user. The channel vector from the BS antennas to the user ¢ is modeled as (see [35, Sec.
7.2.2] for more details)

hi = (hilvhi27 "~7hiM)T

— \/Ee—JQT"Ri (1’ 6]27776 COS(%)7 eJQT”% COS(¢¢)7 . eJQTW(M—lﬁ COS(¢1:))T , 2D
where 3; is the large-scale fading for user i, A is the wavelength and ¢ is the inter-element
spacing (typically A/2).

A UPA with M = N, x N, elements is shown in Fig. 2.2. The UPA is located on the
x-y plane with z = 0, which serves a user at the spherical coordinate (R;, 6;, ¢;). The
channel vector for user ¢ in this case is found by (see [36, eq. (5)])

h‘i = (hi17 hi23 ceey hZM)T = \/Eie_]%’rRiUm(qsh 91) ® vy(¢i7 91)7 (22)
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Figure 2.1: Illustration of a ULA with M = 4 elements located on x-axis with inter-element
spacing of J. The distance between the first element of the array and the user is R;.
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Figure 2.2: Tllustration of a UPA with N, = 4 and N, = 3 serving a user at (R;, 0;, ¢; ).

where 6; is the polar angle of user ¢ as in the spherical coordinates and v (¢;, ;) and

vy (i, 0;) are

v, (65, 0:) = (1’ I ZE05In(0:) cos(94) o328 5in(0:) cos(di) 6327”(Nm—1)5$in(0,;)cos(gbi))T7
(2.3)

v, (61,0;) = (1’ I EOSIn(0:)sin(60) o120 5in(0:) sin(9) eng(Nyfl)Esin(Gi)sin(¢i))T.
2.4)

By using transmit beamforming, the BS antenna array can direct energy toward a
specific direction that a user is located. An array with a narrower beamwidth has a
better ability to direct energy toward a user, which means the array is more capable of
distinguishing two different users. In Fig. 2.3, a ULA with M = 4 (Fig. 2.3a) and a ULA
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Figure 2.3: A ULA with a) M = 4 and b) M = 8 antennas, both with half-wavelength spacing.
The array with M = 8 has a narrower beamwidth, and therefore, has a better ability to direct the
energy twoard the user.

with M = 8 antennas (Fig. 2.3b) both with half-wavelength spacing are serving a user.
The array with more number of antennas has a larger aperture size, and therefore, has a
narrower beamwidth.

We use the spatial correlation to compare the ability of an array to distinguish two
different users. The normalized spatial correlation of the channel vectors of user ¢ and j
is found by

ol = | Tt 2.5)
ol=|———"—1. .
([P I[P
By replacing (2.1) in (2.5), |p;;| is found for a ULA with M elements
1 |sin (7M 24
il = 57 7.( 2 ) , (2.6)
sin (wa)

where 1) = cos(¢;) — cos(¢;). For a UPA with N, x N, antennas, |p;;| is found by
replacing (2.2) in (2.5) as

1

sin (WNzglﬁ)
|Pz‘j| = N.N
zVy

sin (’/T%I{)

Q2.7)

sin (wNygg)
sin (’/T%C) ’

where x = sin(6;) cos(¢;) — sin(6;) cos(¢;) and ¢ = sin(6;) sin(¢;) — sin(d;) sin(¢;).
For a ULA (UPA) with inter-element spacing ¢, |p| is a function of ¢;, ¢; (¢, ¢,
and 6;,6,) and 6/X (see (2.6) and (2.7)). Let assume user ¢ and user j are uniformly
distributed in the field-of-view. In this case, for a given normalized inter-element spacing
of the array 6/, |p| is a random variable with a certain probability distribution function
(PDF). By optimizing the parameter § /) the desired PDF for |p| can be achieved.
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2.2 Shannon Capacity

Before Shannon, it was believed that the only way to achieve reliable communication
over a noisy channel, i.e., to make the error probability as small as desired, was to de-
crease the communication rate [35]. Shannon showed that one can achieve reliable com-
munication below a maximum rate, which he called the capacity of the channel. He
showed it is impossible to communicate at a rate above the channel capacity with a van-
ishing error probability. We review the AWGN channel capacity in the sequel, which can
be used as a building block to study the capacity of wireless channels [35, Ch. 5].

2.2.1 AWGN Channel

Consider the following continuous memoryless real-valued AWGN channel at a given
time instance

y=x+n, (2.8)
where y € R is the output, z € R is the input and n € R is the AWGN noise with
variance o2, i.e., N (0, 02), which is independent and identically distributed over time.
Typically, there is an average power constraint for the input z, i.e., E[|z|?] < P. The
channel capacity of the AWGN channel is found by maximizing the mutual information
between the input and output of the channel over all the possible input distributions.
Mathematically

= I(z;y), (2.9)

max

p(z):E[|z|?]<P
where p(z) is the PDF of x and I(x;y) is the mutual information between x and y. The
mutual information between random variables x and y can be stated as the reduction
in the amount of uncertainty of y from the observation of x. This is mathematically
expressed as

I(wy) = H(y) - Hylo), 2.10)
where H () is the entropy function. The capacity of the AWGN channel is achieved by
choosing z to have Gaussian distribution, i.e., N'(0, P), which results in [37, Ch. 9.1]

1
CawoN = 3 log,(1 + P/o?) bits per real dimension. (2.11)

We further find the capacity of a continuous-time passband AWGN channel with a
bandwidth of W (see [35, Fig. 2.7]), input power constraint of P, and the AWGN with
power spectral density of Ny/2. After passband-baseband conversion and sampling at
rate 1/W (see [35, Ch. 2]), the discrete-time baseband-equivalent AWGN channel over
W complex samples (2W real samples) per seconds is found ((2.8) with z,y,n € C).
For an interval of (0,7"), the input energy per real sample is (PT)/(2WT) = P/(2W),
and the noise variance per real sample is (NoWT')/(2WT) = Ny /2. Then, using (2.11),
the capacity is (see [35, Ch. 5.2.1] for further details)

1 P P .
cC(W)=2Ww (2 log, (1 + WN0>) = Wlog, <1 + VVNO) bits/s.  (2.12)
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The spectral efficiency in bits/s/Hz is then found by
C =log, (1 +SNR) bits/s/Hz, (2.13)

where SNR = P/(W Np).

2.2.2 Wireless Channel

The results of the AWGN channel (see (2.11)) are used to derive the capacity of different
wireless channels [35, Ch. 5]. In this thesis, to derive the capacity of wireless systems,
we assume a narrowband channel, where the channel is assumed to be constant, and the
coding is implicitly performed over many random realization of the symbols and noise.
Consider the following complex single-input-single-output (SISO) system

y=hz+n, (2.14)

where the channel h € C is the channel. The spectral efficiency of (2.14) assuming the
receiver has perfect knowledge of the channel, is found by

CSISO = 10g2 (1 + SNR) bitS/S/HZ7 (215)

with SNR = P|h|?/(W Np). The results of (2.15) can be generalized to MIMO systems
(see [35, Ch. 5] for more details).

2.3 TDD Massive MIMO Systems

In TDD systems, the uplink and downlink transmissions are at the same frequency spec-
trum in different time slots. A general TDD frame structure is shown in Fig. 2.4. The K
users transmit uplink data together with pilot data to the BS. The pilot data are training
signals that are known to the BS. Typically, the pilots are orthogonal sequences of length
Tp = K [29]. Then, the BS uses the pilot symbols to estimate the frequency response of
the propagation channel. The acquired CSI is valid for a limited amount of time where
the users do not move more than a fraction of a wavelength. Using the acquired CSI, the
BS decodes the users’ uplink data. Then, the BS uses the acquired CSI to preprocess the
downlink data.

In TDD systems, channel reciprocity is exploited. Channel reciprocity implies that
mathematically the uplink and downlink channels are identical. Consequently, TDD
systems only need uplink pilot data, in contrast to FDD systems, where both uplink and
downlink pilots are required. In practice, due to non-reciprocal components in the radio,
calibration techniques are required to be able to use channel reciprocity [38].
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Figure 2.4: A general frame structure for TDD msasive MIMO systems.

2.3.1 Favorable Propagation

Favorable propagation (FP) is defined as the mutual orthogonality of the channel vectors
of the users [39]. For a massive MIMO system with M antennas and K users, in FP,
pi; = 0,5 #14,4,j = 1,2,..., K. FP is one of the key properties exploited in massive
MIMO systems [33]. It is shown in [33] that both LOS environments and i.i.d. Rayleigh
fading exhibit FP. For LOS environments, the expected |p;;| decreases at least as fast as
log(M)/M [33]. However, there is a nonnegligible probability that the channel vectors
of a small number of users become correlated [39]. To minimize this probability for a
given antenna array at the BS, one needs to tune M and K (see the Appendix in Chapter 6
for more details).

2.3.2 Uplink Channel

A general architecture for massive MIMO in uplink is shown in Fig. 2.5. Each user
performs baseband processing and uses digital-to-analog converters (DACs) to convert
digital signals to analog signals. Then, by employing RF chains and antennas, the base-
band signal is upconverted, and is transmitted through the propagation channel. At the
BS, the received signals at the antennas are downconverted using the RF chains, and are
converted to baseband using analog-to-digital converters (ADCs). Then, the BS performs
baseband combining to detect each users’ signals.

In uplink, the users transmit pilot symbols and data symbols to the BS. The pilot
symbols are known to the BS, which are used at the BS to estimate the uplink channel.
The memoryless discrete-time baseband signal received at the BS at a specific time in a
given coherence interval is modeled by [35, Ch. 8]

y=H% +n, (2.16)

where y € CM*1 is the vector of received signals of BS antennas, H” € CM*K js the
uplink channel matrix for the given coherence interval, © = (z1, x, ..., vx)? € CK*1
is the transmitted signal of the users and n € CM*! is the AWGN at the BS antennas,
which is CA/(0, 021 ). For LOS environments we use the models described in Sec. 2.1
to find the elements of H. For i.i.d. Rayleigh fading, each element of H is CA(0, 1).
Typically, it is assumed that the transmit power for each user is limited, i.e., E[|x;|?] =
Py,i=1,2,..., K. Assuming a perfect channel state information at the BS, the uplink
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Figure 2.5: Massive MIMO architecture for uplink. Left: two single-antenna users transmit radio
signals to the BS. Right: the BS performs baseband combining to estimate each user’s signal.

capacity of (2.16) is found by [35, Ch. 8.2.1]
R
CuL = log, det <I M+ %HH H> bits/s/Hz. (2.17)
0

To achieve the uplink capacity, successive interference cancellation (SIC) technique is
required at the BS with MMSE filters [35, Ch. 8]. Besides, to achieve the capacity,
the input distribution has to be i.i.d. Gaussian with CN (0, PyL). In practice, the input
signaling is not Gaussian and has a signaling set, e.g., quadrature amplitude modulation
(QAM) constellation. In this case, the maximum likelihood detection (optimal detector)
problems can be seen as a lattice decoding or closest point problem [40,41, Ch. 4.5].
Sphere decoding is known to solve the lattice decoding problem more efficiently than the
brute-force maximum likelihood detector [40], however, its computational complexity is
still high [41, Ch. 4.5.1]. Instead, linear equalization, e.g., zero-forcing or maximum
ratio combining, are used in massive MIMO systems.

2.3.3 Channel Estimation

To estimate the uplink channel, each user transmits a sequence of symbols of length 7,
with transmit power B, to the BS. It is typically assumed that the pilot sequence of users
S, € CX*™ are mutually orthogonal, i.e., S, Sf = 7P, 1 k. Furthermore, the length of

a pilot sequence has to meet 7, > K [29]. The received sequence of users Y € CMx
at the BS is

Y = H¥S, + N, (2.18)
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where N € CM*7» is the corresponding AWGN noise sequence. Typically, the BS
estimates the channel as follows

1
Py

1
TPy

H= (YSIHH = H + (NSHH. (2.19)
To further improve the channel estimate, one can use linear MMSE (LMMSE) estimate
of the channel for which further statistical information of the channel is required, e.g.,
the distribution of the channel (see [42, Sec 3.2] or [43, Sec. 3.1] for further details)

In this thesis, perfect channel state information is assumed for LOS environments for
the following reasons. First, the channel estimation for LOS environments is easier than
i.i.d. Rayleigh because for LOS only the angle of arrival and a complex amplitude have
to be estimated [33]. Moreover, the nature of LOS environments prohibits an ergodic
analysis of the channel estimation error [33].

2.3.4 Downlink Channel

A general architecture for massive MIMO in downlink is shown in Fig. 2.6. The BS per-
forms baseband precoding to compensate the effects of the propagation channel. Then,
DACSs and RF chains are used to transmit generated radio signals intended for the users.
Each user, downcovert the received radio signals from the antennas, and uses the ADCs
to find the baseband signal, and decodes its symbols. Typically, in massive MIMO, it is
assumed that each user has access to a side-information, e.g., a statistics of the channel
matrix, to decode its symbols.

The discrete-time baseband signal received by the users at a specific time in a given
coherence interval is modeled by

y=Hx+n, (2.20)

where y € CE>1 is the vector of received signals of users, i.e., ¥y = (y1,%2, ..., yx) 7,
H e CE*M jg the downlink channel matrix for the given coherence interval, x € CMx1
is the transmitted vector from the BS and n € CX*! is the AWGN noise at the users’
receivers. Typically, the transmit power at the BS has the following constraint

E[|z|? < Ppi, 2.21)

where Pp is the average available transmit power at the BS.

The capacity of the multi-user downlink channel in (2.20) is studied in [44—46].
When the BS has perfect CSI, the capacity of the downlink channel in 2.20 is found
by [44]

P
CpL = sup log,det (IM + DLHHdiag(d)H> bits/s/Hz, (2.22)
d:1Td<1 No

where 1 isa M x 1 vector with elements of 1, and d = (dy, da, ..., dx )T with d; > 0. To
achieve the downlink capacity in (2.22), dirty paper coding (DPC) technique is used [47].
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Figure 2.6: Massive MIMO architecture for downlink. Left: the BS performs baseband precoding
to generate appropriate radio signals. By employing an appropriate precoding, the BS can generate
two separate beams for the users. Right: each user performs baseband decoding to decode its
symbols.

The computational complexity of DPC is not affordable for massive MIMO systems
because it grows exponentially with the size of the syst