

Supplementary Material

Citation for published version (APA):
Khandelwal, D., Schoukens, M., & Tóth, R. (2021). Supplementary Material: On Automated Multi-objective
Identification Using Grammar-based Genetic Programming.

Document status and date:
Published: 01/01/2021

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/282f25ab-010b-42c3-85bb-d770dcf9e71e

1

Supplementary Material: On Automated
Multi-objective Identification Using Grammar-based

Genetic Programming
Dhruv Khandelwal, Maarten Schoukens, and Roland Tóth, Member, IEEE,

Abstract—This document contains the supplementary material
for the contribution On Automated Multi-objective Identification
Using Grammar-based Genetic Programming.

Index Terms—System Identification, Tree Adjoining Grammar,
Genetic Programming

S1. INTRODUCTION

THE supplementary material presented in this document
supports the concepts presented in the paper “On Au-

tomated Multi-objective Identification Using Grammar-based
Genetic Programming”. In particular, this document provides
details required to ensure reproducibility of the ideas and
results discussed in the aforementioned contribution. Hence,
this document should be read in conjunction with the afore-
mentioned contribution. To distinguish the elements of this
document from that of the primary contribution, the letter ‘S’
is pre-fixed to references of sections, figures, algorithms, tables
and equations in this document.

S2. INITIALIZATION

In this Section, we describe the initialization procedure for
the Genetic Programming (GP) based identification method
proposed in Sec. 5.

Recall that a Tree Adjoining Grammar (TAG) G is given by
the tuple 〈N,T, I,A, S〉, where N is the set of non-terminal
labels, T is the set of terminal labels, I is the set of initial
trees, A is the set of auxiliary trees, and S is the label of the
root node. An initial tree η is described by the tuple 〈V,E, r〉,
where V is the set of vertices, E is the set of edges and r is
the root-node. Similarly, an auxiliary tree α is described by
the tuple 〈V,E, r, f〉, where f is the foot-node of the auxiliary
tree. Finally, φ denotes the null set.

The algorithms used for initialization are presented in Alg.
S1, S2 and S3. In the proposed initialization, each derivation
tree ρ0

i in the initial population X(0) is grown upto a depth d
that is randomly chosen from the range [2,mid], where mid

is the maximum tree depth in the initial population, a hyper-
parameter chosen by the user. The tree is initialized with an
initial tree whose root node is labelled with start symbol S

D. Khandelwal, M. Schoukens and R. Tóth are with the Control Systems
Group, Department of Electrical Engineering, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands, e-mail: D.Khandelwal@tue.nl

This research is supported by the Dutch Organization for Scientific Research
(NWO, domain TTW, grant: 13852) which is partly funded by the Ministry
of Economic Affairs of The Netherlands.

Algorithm S1 The initialization scheme

Require: Grammar G = 〈N,T, I,A, S〉, maximum initial
tree-depth mid, population size ns

1: Initialize X(0) ← {}, D(0) ← {}
2: while i ≤ ns do . Iterate through each individual in the

population
3: Select ηi = 〈V,E, r〉 ∈ I randomly, with uniform

distribution, such that l(r) = S
4: ρ0

i ← 〈Vi, Ei, ri〉, where Vi = {ri}, Ei = φ, and
l(ri)← ηi . Initialize the derivation tree

5: δ0
i ← ηi . Initialize the derived tree

6: Πs ← {(νk, ν) | (ν ∈ Λ(δ0
i)) ∧ (l(ν) ∈ N) ∧ (∃η =

〈V ′′, E′′, r′′〉 : l(ν) = l(r′′))} . List
vertices in the derived tree that can be substituted to, and
the corresponding vertex in the derivation tree

7: (ρ0
i , δ

0
i)← SUBSTITUTE(ρ0

i , δ
0
i , ri,Πs, G)

8: l← 1 + |Πs|
9: k ← 1 . A counter for derivation tree vertices

10: νk ← ri
11: Select d ∈ [2,mid] randomly with uniform distribution
12: while dt(ρ

0
i) ≤ d do . Grow derivation tree until

chosen depth d
13: Πa ← {(νk, ν) | (ν ∈ V) ∧ (ν /∈ Λ(δ0

i)) ∧ (∃α =
〈V ′, E′, r′, f ′〉 : l(ν) = l(f ′))} .
List vertices in the derived tree that can be adjoined to,
and the corresponding vertex in the derivation tree

14: (ρ0
i , δ

0
i ,Πa, V)← ADJOIN(ρ0

i , δ
0
i , k + l,Πa, G)

15: k ← k + l
16: Πs ← {(νk, ν) | (ν ∈ Λ(δ0

i))∧(l(ν) ∈ N)∧(∃η =
〈V ′′, E′′, r′′〉 ∈ I : l(ν) = l(r′′))} . List
vertices in the derived tree that can be substituted to, and
the corresponding vertex in the derivation tree

17: (ρ0
i , δ

0
i)← SUBSTITUTE(ρ0

i , δ
0
i , νk,Πs, G)

18: l← 1 + |Πs|
19: ρ0

i ← 〈Vi, Ei, ri〉
20: k ← k + 1

return X(0) = {ρ0
i }
ns
i=1, D

(0) = {δ0
i }
ns
i=1

of grammar G, see Step 3 of Alg. S1. Throughout the initial-
ization process, we maintain lists Πs and Πa to track leaves
and internal vertices in the derived tree that can participate
in a substitution and adjunction operation, respectively. If the
chosen initial tree contains leaves available for substitution

2

(listed in Πs in Step 6), compatible1 initial trees, chosen
randomly with uniform distribution, are substituted in Step 7
of Alg. S1 and in Alg. S2. After any substitution or adjunction
operation, list Πa, consisting of all vertices in the derived tree
that are available for adjunction, is updated. Each vertex listed
in Πs and Πa is also paired with the corresponding node in
the derivation tree that generates the vertex in the derived tree.

After initializing the derivation tree with an initial tree,
along with the corresponding substituted trees, the derivation
tree can be grown iteratively by adjoining auxiliary trees.
In each iteration, a vertex available for adjunction is chosen
randomly, with uniform distribution, from list Πa (see Step
13 in Alg. S1). Subsequently, a compatible auxiliary tree is
chosen randomly with uniform distribution and adjoined to the
individual at the chosen location, see Step 14 in Alg. S1 and
Alg. S3. Again, if required, suitable initial trees substituted to
the newly adjoined tree in Steps 16 and 17 in Alg. S1. This
process is repeated until the derivation tree has reached the
required depth.

Algorithm S2 Substitute

Require: Derivation tree ρji = 〈V,E, r〉, derived tree δji ,
vertex νk ∈ V , list of vertex pairs available for substitution
Πs, grammar G

1: l← 1
2: while Πs 6= φ do
3: Select any pair (νρ, νδ) ∈ Πs

4: Select η = 〈V ′, E′, r′〉 ∈ I such that l(νδ) = l(r′)
5: V ← V ∪ {νk+l} with l(νk+l) = η . Update the

derivation tree
6: E ← E ∪ {e} where e = 〈νρ, νk+l〉 and g(e) =
pG(νρ, ρ

j
i)

7: δji ← δji [νδ, η] . Update the derived tree
8: l← l + 1
9: Πs ← Πs \ {(νρ, νδ)}

10: return ρji , δ
j
i

Algorithm S3 Adjoin

Require: Derivation tree ρji = 〈V,E, r〉, derived tree δji ,
index k for next vertex position in derivation tree, list
of vertices pair available for adjunction Πs, grammar G

1: Select a pair (νρ, νδ) ∈ Πa randomly with uniform
distribution . Select a vertex that can be adjoined to

2: Select α = 〈V ′, E′, r′, f ′〉 ∈ A such that l(νδ) = l(f ′).
In case of multiple compatible auxiliary trees, select one
randomly with uniform distribution.

3: V ← V ∪ {νk} with l(νk) = α . Update the derivation
tree

4: E ← E ∪ {e} where e = 〈νρ, νk〉 and g(e) = pG(νρ, ρ
j
i)

5: δji ← δji Jνδ, αK . Update the derived tree
6: Πa ← Πa \ {(νρ, νδ)} . Update the list of vertices

available for adjunction
7: return ρji , δ

j
i ,Πa, V

′

1See [1] for conditions under which a substitution operation is well-defined.

Variation
operator

Hyper-
parameter

Operator
types Illustration

Crossover pc sub-tree Fig. S1

Mutation pm

node insertion Fig. S2

branch insertion Fig. S3

node deletion Fig. S4a

branch deletion Fig. S4b

TABLE SI: List of variation operators and their corresponding
types.

S3. VARIATION OPERATORS

In this Section, we describe the crossover and mutation op-
erators employed in the proposed identification methodology.
An overview of the operators used are listed in Tab. SI.

A. Crossover

In each iteration of the proposed method (see Alg. 1 of the
paper), crossover and mutation operators are used to propose a
new population. In the proposed algorithm, variation operators
are performed on the derivation tree representation of each
candidate solution. Recall that one of the main motivations
for using TAG is to ensure that any model generated using a
given TAG belongs the desired model set. In order to maintain
this property during the evolutionary search, the crossover and
mutation operators must be modified. The variation operators
used in the proposed method are based on those used in [2],
where the authors proposed crossover and mutation operators
that ensure the resulting model structures also belong to the
desired model set encoded in the TAG.

We employ a standard sub-tree crossover operator with ad-
ditional constraints that ensure validity of the newly proposed
adjunction operators. The crossover operator is applied to a
pair of individuals in the population with probability pc. Let
ρ1 and ρ2 be two derivation trees selected for crossover and
denote the corresponding derived trees as δ1 and δ2. The
crossover operation consists of the following steps:

1) Select a vertex ν1 in derivation tree ρ1 randomly2 and
let ν′1 denote the parent of vertex ν1. The label of vertex
ν1 denotes the auxiliary tree α1 that is to be adjoined, in
the derived tree representation δ1, to the auxiliary tree3

α′1 = 〈V1, E1, r1, f1〉 represented by the label of the
parent vertex ν′1.

2) Select a vertex ν2 and its parent vertex as ν′2 in deriva-
tion tree ρ2 with corresponding auxiliary trees α2 and
α′2 = 〈V2, E2, r2, f2〉, respectively, such that the follow-
ing conditions are satisfied

∃ ν3 ∈ V1 : α′1Jν3, α2K is defined, (S1a)

∃ ν4 ∈ V2 : α′2Jν4, α1K is defined. (S1b)

2The vertex may be selected randomly with uniform distribution, however
it is a convention to bias the random selection towards internal vertices, i.e.,
vertices that are not leaves. See [3].

3Note that the parent node label may correspond to an initial tree rather
than auxiliary tree. For convenience, we assume that the parent node is an
auxiliary tree, however the steps described here also apply for the case when
the parent is an initial tree.

3

expr1

op

x

expr2

𝑞−1 expr2

𝑦

op

×

expr0

aff

𝜉

expr0

op

expr1 +

expr2

𝑞−1 expr2

𝑦

op

×

expr0

opexpr1

+

𝑢

expr2op

×𝑐

op

×

par

𝑐

par

expr0

op

+expr1

𝑞−1 expr2op

× 𝜉

expr1

op

xexpr2

𝑞−1 expr2op

× 𝜉

expr2

op

×

𝑞−1

𝑐

op

×

par expr2

expr0

aff

𝜉

expr1

expr2

𝑞−1 expr2

𝑦

op

×

𝑐

op

×

par

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

op

×

𝑞−1 expr2

op

×

𝑞−1

expr0

aff

𝜉

expr1

expr2

𝑞−1 expr2

𝑦

op

×

𝑐

op

×

par

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

op

x

expr2

𝑞−1 expr2

𝑦

op

×

𝛼5

𝛼2

𝜂1

0

1

𝛼1

0

𝛼6

0

𝛼7

1

𝛼3

1

𝛼7

𝛼7

𝜂1

0

0

𝛼2

1.3

0
𝛼3

𝛼5

1

𝜂1

0

𝛼2
0

𝛼3

𝛼2

𝜂1

0

𝛼1

0

𝛼6

0

𝛼7

1

𝛼3

1

𝛼7

𝛼7

0

1.3

𝝆𝟏 (Derivation tree) 𝝆𝟐

𝜹𝟐
𝜹𝟏: (Derived tree)

𝝂𝟏

𝝂𝟐

Sub-tree crossover

expr0

aff

𝜉

expr0

opexpr1

+

expr0

opexpr1

+

𝑢

expr2op

×

𝑐

op

×

par

𝑐

par

expr0

op

+expr1

𝑞−1 expr2op

× 𝜉

expr1

op

xexpr2

𝑞−1 expr2op

× 𝜉

expr2

op

×

𝑞−1

𝑐

op

×

par expr2 expr2

op

×

𝑞−1 expr2

op

×

𝑞−1 expr2

𝑞−1 expr2

𝑦

op

×

Fig. S1: The crossover operator illustrated on two individuals generated using GN. The illustration depicts the two derivation
trees ρ1, ρ2, the corresponding derived trees δ1, δ2 and vertices ν1, ν2 chosen for crossover. The coloured sections in the
derivation trees and derived trees track the changes made in each individual.

In case of multiple possibilities, select one pair of vertices
(ν3, ν4) randomly with uniform distribution. If there does
not exist a pair (ν3, ν4) that satisfy (S1) for the chosen
vertex ν1 in derivation tree ρi, select another vertex ν1

randomly and without replacement and repeat item 2.
3) Swap the sub-tree rooted at ν1 in ρ1 with the sub-tree

rooted at ν2 in ρ2, and label the newly formed edges
with the corresponding Gorn addresses

g(〈ν′1, ν2〉) = pG(ν3, α
′
1), (S2a)

g(〈ν′2, ν1〉) = pG(ν4, α
′
2). (S2b)

If the conditions in (S1) are not satisfied for any vertex ν1

in ρ1, then crossover cannot be performed for the two chosen
individuals.

In Fig. S1 we illustrate the crossover operator on two
individuals generated by TAG GN. The models corresponding
to the original individuals are the following.

y(k) = c1y
2(k − 1) + c2u(k) + c3ξ(k − 1)ξ(k − 2) + ξ(k),

(S3)
y(k) = c1y(k − 2) + c2ξ(k − 1) + ξ(k). (S4)

Subsequent to the crossover operator, the models correspond-
ing to the new individuals are the following

y(k) = c1y(k − 3) + c2u(k) + c3ξ(k − 1)ξ(k − 2) + ξ(k),
(S5)

y(k) = c1y
2(k − 1) + c2ξ(k − 1) + ξ(k). (S6)

Remark S1. Observe that, as illustrated in Fig. S1, the stan-
dard sub-tree crossover operator acting on the derivation tree
representation is able to exchange components of the model
expression (exponents and delays in the given example) that
would not be possible for the same operator in the standard
expression tree encoding used in GP. In fact, in an expression
tree encoding of the model, exchange of delays or exponents
would be achieved through a two-point crossover operation.
This highlights an interplay between the representation of the
model and the range of mapping achieved by the variation
operator. In [4], the authors argue that this interplay deter-
mines, in part, the effectiveness of an Evolutionary Algorithm
(EA) in finding the optimal solution.

B. Mutation

In addition to the crossover operator, we also use the
mutation operator to add variations to the proposed population.
The mutation operator is applied to an individual in the
population with a probability of pm. The mutation operator

4

expr0

aff

𝜉

expr1

expr2

𝑞−1 expr2

𝑦

op

×

𝑐

op

×

par

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

op

×

𝑞−1 expr2

op

×

𝑞−1

𝛼7

𝛼7

𝜂1

0

0

𝛼2

1.3

0
𝛼3

Node insertion mutation

𝝆 (derivation tree)
𝜹 (derived tree)

𝝂

𝛼7

𝛼4

𝜂1

0

1

𝛼2

1

0
𝛼3

𝛼7

1

expr1

expr1

op

×

expr0

aff

𝜉

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

𝑞−1 expr2

𝑦

op

×

expr2

op

×

𝑞−1 expr2

op

×

𝑞−1 𝑐

op

×

par

expr2

𝑢

𝝂′

𝝂𝒎

Fig. S2: The node insertion mutation operator illustrated on
an individual generated using GN. The illustration depicts
the derivation tree ρ, the corresponding derived trees δ and
vertex ν chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the
individual. The new auxiliary tree (shaded in green) introduced
into the individual is αm = α4.

used in the proposed algorithm are of two types - insertion and
deletion. Furthermore, there are two variations for each type
of mutation operator - node or branch mutation. See overview
in Tab. SI. For any chosen individual selected for mutation,
the type of mutation operator used is determined randomly
with uniform distribution4.

The two variations of insertion mutation operator are
described below.

1) Let the derivation tree of the individual selected for
insertion mutation be denoted by ρ1. Select a vertex ν
in the derivation tree randomly with uniform distribution
on all vertices except the root node, and denote the parent
node of ν as ν′. Denote the auxiliary trees3 corresponding
to vertices ν and ν′ in the derived tree representation as
α and α′ = 〈V ′, E′, r′, f ′〉, respectively. If node-type
insertion is selected, go to Step 2, else if branch-type
insertion is selected, go to Step 3.

2) For node-type insertion operator:
a) select an auxiliary tree αm = 〈V,E, r, f〉 ∈ A that

4Note that deletion operator cannot be used if the chosen derivation tree
has tree depth less than 2. Similarly, insertion operator cannot be used if the
derivation tree has depth equal to md.

expr0

aff

𝜉

expr1

expr2

𝑞−1 expr2

𝑦

op

×

𝑐

op

×

par

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

op

×

𝑞−1 expr2

op

×

𝑞−1

𝛼7

𝛼7

𝜂1

0

0

𝛼2

1.3

0
𝛼3

Branch insertion mutation

𝝆 (derivation tree)

𝜹 (derived tree)

𝝂

𝝂𝒎

𝛼7

𝛼7

𝜂1

0

0

𝛼2

1.3

0
𝛼3

𝛼7

1.3
expr0

aff

𝜉

expr1

expr2

𝑞−1 expr2

𝑦

op

×

𝑐

op

×

par

expr0

op

+

expr1

expr2

𝑞−1 expr2

𝜉

op

×

𝑐

op

×

par

expr0

op

+

expr2

op

×

𝑞−1 expr2

op

×

𝑞−1

𝑞−1 op

×

expr2

Fig. S3: The branch insertion mutation operator illustrated
on an individual generated using GN. The illustration depicts
the derivation tree ρ, the corresponding derived trees δ and
vertex ν chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the
individual. The new auxiliary tree (shaded in green) introduced
into the individual is αm = α7.

satisfies the following conditions

∃ ν1 ∈ V ′ : α′Jν1, αmK is defined, (S7a)

∃ ν2 ∈ V : αmJν2, αK is defined. (S7b)

For multiple choices of vertices pair (ν1, ν2), select
one randomly with uniform distribution. If there exists
no pair of vertices that satisfy the conditions in (S7),
repeat Step 1 to choose a new vertex ν for mutation
(without replacement).

b) In ρ1, delete edge 〈ν′, ν〉 and insert a new ver-
tex νm with label l(νm) = αm. Make new edges
〈ν′, νm〉 and 〈νm, ν〉 with the corresponding edge
labels g(〈ν′, νm〉) = pG(ν1, α

′) and g(〈νm, ν〉) =
pG(ν2, αm).

3) For branch-type insertion operator:
a) Select an auxiliary tree αm = 〈V,E, r, f〉 ∈ A that

satisfies

∃ ν1 ∈ V : αJν1, αmK is defined. (S8)

5

expr1

op

x

expr2

𝑞−1 expr2

𝑦

op

×

expr0

aff

𝜉

expr0

op

expr1 +

expr2

𝑞−1 expr2

𝑦

op

×

expr0

opexpr1

+

𝑢

expr2op

×𝑐

op

×

par

𝑐

par

expr0

op

+expr1

𝑞−1 expr2op

× 𝜉

expr1

op

xexpr2

𝑞−1 expr2op

× 𝜉

expr2

op

×

𝑞−1

𝑐

op

×

par expr2

𝛼5

𝛼2

𝜂1
0

1

𝛼1
0

𝛼6

0

𝛼7

1

𝛼3

1

Node deletion mutation

𝝆 (derivation
tree)

𝜹 (derived
tree)

𝝂

expr1

op

x

expr2

𝑞−1 expr2

𝑦

op

×

expr0

aff

𝜉

expr0

op

expr1 +

expr2

𝑞−1 expr2

𝑦

op

×

expr0

opexpr1

+

𝑢

expr2op

×𝑐

op

×

par

𝑐

par

expr0

op

+

expr1

𝑞−1op

×

expr2

op

×

𝑞−1

𝑐

op

×

par expr2

expr2

𝜉

𝛼5

𝛼2

𝜂1
0

1

𝛼1
0

𝛼7

0

1.3

𝛼3

𝝂𝟏
′′

𝝂′

(a) The node deletion mutation operator illustrated on an individual
generated using GN. The illustration depicts the derivation tree ρ, the
corresponding derived trees δ and vertex ν chosen for mutation. The
coloured sections in the derivation trees and derived trees track the
changes made in the individual.

expr1

op

x

expr2

𝑞−1 expr2

𝑦

op

×

expr0

aff

𝜉

expr0

op

expr1 +

expr2

𝑞−1 expr2

𝑦

op

×

expr0

opexpr1

+

𝑢

expr2op

×𝑐

op

×

par

𝑐

par

expr0

op

+expr1

𝑞−1 expr2op

× 𝜉

expr1

op

xexpr2

𝑞−1 expr2op

× 𝜉

expr2

op

×

𝑞−1

𝑐

op

×

par expr2

𝛼5

𝛼2

𝜂1
0

1

𝛼1
0

𝛼6

0

𝛼7

1

𝛼3

1

Sub-tree deletion mutation

𝝆 (derivation tree)

𝜹 (derived tree)

𝝂

𝛼5

𝛼2

𝜂1
0

1

𝛼1
0

0 𝛼3
expr1

op

x

expr2

𝑞−1 expr2

𝑦

op

×

expr0

aff

𝜉

expr0

op

expr1 +

expr2

𝑞−1 expr2

𝑦

op

×

expr0

opexpr1

+

𝑢

expr2op

×𝑐

op

×

par

𝑐

par

expr0

op

+

expr1

op

×

𝑞−1𝑐

op

×

par

expr2

𝜉

expr2

(b) The branch deletion mutation operator illustrated on an individual
generated using GN. The illustration depicts the derivation tree ρ, the
corresponding derived trees δ and vertex ν chosen for mutation. The
coloured sections in the derivation trees and derived trees track the
changes made in the individual.

Fig. S4: Illustration of the node and sub-tree deletion mutation operators.

In the case of multiple choices for the pair (ν1, αm),
select one pair randomly with uniform distribution. If
there exists no pair (ν1, αm) that satisfies the condi-
tions in (S8), repeat Step 1 to choose a new vertex ν
for mutation (without replacement).

b) In ρ1, insert a new vertex νm with label l(νm) = αm.
Make new edge 〈ν, νm〉 with edge label g(〈ν, νm〉) =
pG(ν1, α).

The two variations of the insertion mutation operator are
illustrated in Fig. S2 and S3. In both examples, the model
corresponding to the parent individual ρ is

y(k) = c1y(k − 3) + c2ξ(k − 1) + ξ(k). (S9)

The model obtained as a result of node insertion mutation in
Fig. S3 is

y(k) = c1u(k − 2)y(k − 1) + c2ξ(k − 1) + ξ(k). (S10)

In this example, the node insertion mutation introduces an
input term u(k) in the model expression, and moves the two
delay-type auxiliary trees from the existing output term y(k−
3) to the newly introduced input-term.

The branch-insertion mutation operation in Fig. S3 results
in the following model

y(k) = c1y(k − 3) + c2ξ(k − 2) + ξ(k). (S11)

In this example, the mutation operator simply introduces a
delay-type auxiliary tree to the existing noise-term ξ(k − 1).

The two variations of the deletion operator are described
below.

1) Let ρ be the derivation tree chosen for the deletion op-
eration. Select a vertex ν in the derivation tree randomly
with uniform distribution on all vertices except the root
node. Denote the parent node of ν as ν′ and the auxiliary
tree3 generated by ν′ in the derived tree representation as
α′ = 〈V ′, E′, r′, f ′〉. If the chosen variation of deletion
operation is node-type, go to Step 2, else if the chosen
variation is sub-tree type, go to Step 3.

2) For node-type deletion operator:
a) Let the chosen vertex ν have n children vertices
ν′′1 , . . . , ν

′′
n . Let the auxiliary trees generated by the

children vertices be α′′1 , . . . , α
′′
n. The chosen vertex ν

can be deleted if the auxiliary trees α′′1 , . . . , α
′′
n can be

adjoined to the auxiliary tree α′. This can be formalized
as the following condition

∃ {ν1, . . . , νn} ⊂ V ′ : α′J′ν1, α
′′
1K . . . Jνn, α′′nK

is defined. (S12)

If there exist many choices for subset {ν1, . . . , νn} ⊂
V ′ that satisfy (S12), select one randomly with uniform
distribution. If there exists none, then vertex ν cannot
be deleted. In that case, go to Step 1 to select another
vertex ν in ρ without replacement.

b) Delete vertex ν and edges connected to
〈ν, ν′′1 〉, . . . , 〈ν, ν′′n〉. Make new edges 〈ν′, ν′′1 〉,
. . . , 〈ν′, ν′′n〉 with labels g(〈ν′, ν′′1 〉) = pG(ν1, α

′),
. . . , g(〈ν′, ν′′n〉) = pG(νn, α

′).
3) For sub-tree deletion operator:

a) Select a vertex ν in derivation tree ρ randomly with
uniform distribution on all vertices except the root

6

Algorithm S4 Non-dominated sorting [5]

Require: Candidate solutions M(j) = {M j
i (θji)}

ns
i=1

1: Initialize l← 1
2: while M(j) 6= φ do
3: F (j)

l ← φ . Rank l solution front
4: for each M j

i (θji) ∈M(j) do
5: F (j)

l ← F (j)
l ∪ {M

j
i (θji)} . Include the

individual temporarily in the solution front
6: for each M j

q (θjq) ∈ Fl ∧M j
q (θjq) 6= M j

i (θji) do
7: if M j

i (θji) ≺J M j
q (θjq) then .

If the newly added model dominates any other model in
the solution front

8: F (j)
l ← F (j)

l \ {M j
q (θjq)} . remove the

dominated model
9: else if M j

q (θjq) ≺J M
j
i (θji) then . If

the newly added model is dominated by any other model
in the solution front

10: F (j)
l ← F (j)

l \ {M
j
i (θji)} . Remove the

newly added model
11: M(j) ←M(j) \ F (j)

l . Remove all rank l models
from the set of models yet to be sorted

12: l← l + 1

13: return F (j)
1 , . . . ,F (j)

l−1

node.
b) Delete the sub-tree rooted at ν.

The two operations of deletion are illustrated in Fig. S4a
and S4b. The model corresponding to the parent individual in
both examples is

y(k) = c1u(k)+c2y
2(k−1)+c3ξ(k−1)ξ(k−2)+ξ(k). (S13)

The result of the node deletion operator in Fig. S4a is

y(k) = c1u(k) + c2y
2(k − 1) + c3ξ(k − 2) + ξ(k). (S14)

In this example, the mutation operator deletes one of the
noise factors ξ(k − 2) and adjoins the delay-type tree to the
other noise term ξ(k−1) in the model expression. The model
obtained due to branch deletion operator in Fig. S3 is

y(k) = c1u(k) + c2y
2(k − 1) + c3ξ(k − 1) + ξ(k). (S15)

In this example, the sub-tree corresponding to ξ(k − 2) is
completely deleted.

S4. SELECTION AND ARCHIVING

In the proposed algorithm, we employ the Pareto-based
sorting and selection algorithm proposed in [5]. The selection
mechanism relies on two ordering relations - Pareto-based
ordering and crowding distance-based ordering. In the first
step, the individuals of a population are sorted based on Pareto-
dominance relationships. Computation of the solution fronts
in a population can be performed using the Pareto-dominance
based sorting algorithm presented in Alg. S4.

In the second step, the individuals of a population with the
same rank are sorted based on crowding-distance relationships.
Crowding distance is a measure of the density of solutions

Algorithm S5 Crowding-distance based sorting [5]

Require: Solution front F = {Mi(θi)}ni=1, number of per-
formance measures nobj

1: Initialize l← 1
2: for each Mi(θi) ∈ F do
3: Initialize d(Mi(θi)← 0) . Initialize the crowding

distance of each model as 0
4: while l ≤ nobj do
5: I = (i1, . . . , in)← ORDERING(F , l) . Compute the

ordering of model indices that sorts the models based on
performance measure Jl

6: d(Mi1(θi1))←∞ . Set crowding distance on
models on the ends of the frontier as infinite

7: d(Min(θin))←∞
8: for each i ∈ {i2, . . . , in−1} do
9: d(Mi(θi))← d(Mi(θi)) + (Jl(Mi+1, θi+1,DN)−
Jl(Mi−1, θi−1,DN)) .
Compute the crowding distance of each individual as the
sum of distances between the closest neighbours

10: l← l + 1

11: F ←SORT(F , {d(Mi(θi))}ni=1) . Sort the solution front
based on crowding distance of the individuals

12: return F

surrounding a given candidate model. In [5], the authors
estimate the crowding distance of a model by measuring the
largest cuboid that includes the given model in objective space
such that no other model in the rank group is included in the
cuboid. The crowding-based sorting algorithm is described in
Alg. S5.

S5. PARAMETER ESTIMATION FOR TAG GN

In Sec. 5, we developed a methodology to solve the multi-
criteria system identification problem in (3). The proposed
methodology is fairly general and can be used to identify
model structure automatically from measured data for an
arbitrary TAG and arbitrary user performance measures. Due
to the generality of the proposed methodology, global op-
timization techniques such as Particle swarm optimization
(PSO) and Covariance matrix adaptation evolutionary strate-
gies (CMA-ES) must be used to optimize model parameters for
the different performance measures. However, for particular
choices of TAG and performance measures, it is possible
to use specialized parameter estimation algorithms that are
computationally efficient.

In this Section, we restrict our scope to TAG GN that gen-
erates models that belong to the polynomial Non-linear Auto-
Regressive Moving-Average models with eXogenous inputs
(P-NARMAX) class. Furthermore, for continuous objective
functions in Jcont we consider the one-step-ahead prediction
error and the simulation error. Under these restrictions, we
discuss parameter estimation techniques for the two chosen
performance measures.

7

A. Prediction Error Minimization

Any model structure M proposed by the GP algorithm using
TAG GN can be written as

y(k) =

p∑
i=1

(
ci

nu∏
j=0

ubi,j (k − j)
nξ∏
l=1

ξdi,l(k − l)

ny∏
m=1

yai,m(k −m)

)
+ ξ(k). (S16)

The one-step-ahead predicted output at time instant k, denoted
by ŷ(k | k − 1), of a P-NARMAX model is given by the
conditional expectation

ŷ(k | k − 1) := Eξ[y(k) | Dk−1, um(k)], (S17)

where, Eξ[·] is the expectation operator with respect to the
probability distribution of noise ξ. For a P-NARMAX model
in the form of (S16), the one-step-ahead predictor can be
formulated as the following non-linear filter

ŷ(k | k − 1) =

p∑
i=1

(
ci

nu∏
j=0

ubi,jm (k − j)
nξ∏
l=1

ε
di,l
p (k − l)

ny∏
m=1

yai,mm (k −m)

)
. (S18)

where εp(k) is the one-step-ahead prediction error defined as

εp(k) := ym(k)− ŷ(k | k − 1). (S19)

Hence, if the initial conditions of the one-step-ahead predictor
in (S18) are known, the predicted output {ŷ(k | k−1)}Ni=nl+1,
where nl := max{nu, ny, nξ}, can be computed recursively.
If the initial conditions must be estimated and if the predictor
model (S18) is asymptotically stable, then any transient errors
introduced will asymptotically reduce to 0.

The sum-of-squares of the one-step-ahead prediction error
for a given model M(θ) can be computed as

J1(M, θ,DN) =
1

N − nl

N∑
k=nl+1

(ym(k)− ŷ(k | k − 1))
2
.

(S20)
In the literature, several methods have been proposed to

estimate model parameters in (S18) for the squared prediction
error cost function J1. For an overview, see [6, Chap. 3]. In this
section, we introduce an iterative least squares based estimator
to estimate model parameters in (S18) for objective function
J1, see [7] or [6, Chap. 3].

Let θp = (c1, . . . , cp)
> be the parameter vector for the

predictor model (S18). The predictor (S18) can be written in
matrix form as

Ŷ = φpθp (S21)

where Ŷ = (ŷ(nl|nl − 1), . . . , ŷ(Nest|Nest − 1))> is
the vector of one-step-ahead predicted outputs, φp =
(ϕp,1, . . . , ϕp,Nest

)> is the regression matrix with kth row
being

ϕp,k =
(nu∏
j=0

um(k − j)b1,j
nξ∏
l=1

εp(k− l)d1,l
ny∏
m=1

ym(k −m)a1,m

, . . . ,

nu∏
j=0

um(k − j)bp,j
nξ∏
l=1

εp(k − l)dp,l
ny∏
m=1

ym(k −m)ap,m
)
.

(S22)

The regression matrix φp is a function of the unknown
prediction error εp. Hence, to estimate the model parameters
in (S16), we use an identification procedure that iteratively
estimates model parameters θp and prediction error εp.

Reformulate the predictor model in (S18) as

ŷ(k | k−1) = fuy(um(k − 1), . . . , um(k − nu), ym(k − 1), . . . ,

ym(k − ny)) + fuyξ(um(k − 1), . . . , um(k − nu),
ym(k − 1), . . . , ym(k − ny), εp(k − 1), . . . , εp(k − nξ)), (S23)

where fuy is the part of the model expression without any
noise terms and fuyξ is the part of the model with noise terms.
In order to obtain an initial estimate of the prediction error
sequence, we estimate model parameters for the underlying
polynomial Non-linear Auto-Regressive models with eXoge-
nous inputs (P-NARX) predictor model that can be computed
by ignoring fuyξ in (S23). The P-NARX predictor model can
also be written in matrix form

Ŷ = φuyθuy, (S24)

where the definitions of φuy and θuy is similar to the P-
NARMAX case. The minimizer of J1 for the predictor model
in (S24) can be computed as the least squares estimate θ̂uy of
θuy , and is computed as

θ̂uy =
(
φ>uyφuy

)−1
φ>uyŶ . (S25)

Using the estimate θ̂uy , the initial estimate of the prediction
error ε̂(0)

p can be computed as

ε̂(0)
p (k) = ym(k)− ŷ(k|k − 1),

= ym(k)− ϕuy,kθ̂uy, (S26)

where ϕuy,k is the kth row of the regressor matrix.
The initial estimate of prediction error ε̂(0)

p can be used
to begin the iterative estimation procedure. Let h be the
iteration index. In each iteration, the parameter estimate θ̂(h)

p

can be computed as the linear least squares estimate for the
predictor model in (S21) where the prediction error terms in
the regressor matrix ψp is replaced by the estimate ε̂

(h−1)
p .

Based on the new parameter estimate, the prediction error
estimate can be updated as

ε̂(h)
p (k) = ym(k)− ŷ(k|k − 1),

= ym(k)− ϕp,kθ̂
(h)
p . (S27)

The iterations are stopped when the prediction error (or param-
eter) estimates converge within some user-specified tolerance
level ε:

Nest∑
k=1

(
ε̂(h)

p (k)− ε̂(h−1)
p (k)

)2

< ε. (S28)

8

The final estimate θ̂p minimizes the cost function J1 for
the grammar GN. The estimate can be computed efficiently
using a sequence of least squares estimators, and typically
converges in a small number of iterations (typically less than
10 iterations, see [6]). If the lower-level of the original bi-level
problem in (2) is simplified as in (3), then θ̂p is one of the
parameter estimates in the feasible set of the parameter space.

B. Simulation Error Minimization

1) The simulation model: A simulation model of (S16) can
be defined as the conditional expectation of the output y(k)
with respect to the distribution of the noise, i.e.,

ys(k) := Eξ[y(k)]. (S29)

The simulation response ys(k) in (S29) represents the deter-
ministic response of model (S16). By comparing (S29) and
(S17), we observe that the simulation response can also be
interpreted as an infinite-step-ahead prediction model. This
effectively negates the auto-regressive components of a pre-
diction model.

The sum-of-squares of the simulation error εs(k) :=
ym(k)− ys(k) for a given model M(θ) can be computed as

J2(M, θ,DN) =
1

N − nl

N∑
k=nl+1

(ym(k)− ys(k))
2
. (S30)

For a given stochastic model in the form of (S16), the
computation of simulated output as per (S29) is not trivial. In
[8], the authors demonstrated that, in general, the simulation
model of a finite-order P-NARMAX model may be given by an
Non-linear Infinite Impulse Response (NIIR) model, thereby
necessitating a approximation. The authors in [8] proposed
the so-called l−approximation simulation model for a P-
NARMAX model, where l is a parameter that determines the
accuracy of the simulation model approximation. For brevity,
we reproduce only the main result of [8] here, interested read-
ers are referred to [8] for more details. Under the assumption
that ξ is independent of u and that ξ(k) ∼ N (0, 1), the
l−approximate simulation model of (S16) is given by

ys,l(k) =
∑
i∈Pe

(
ci

nu+l∏
j=0

ubi,j (k − j)
ny∏
r=1

y
ai,r
s,l (k − l − r)

nξ+l∏
q=1

(di,q − 1)!!

)
, (S31)

where Pe := {i ∈ [1, p] | di,q is even ∀q ∈ [1, nξ]} and (n −
1)!! := n!

n
2 !2

n
2

.
In comparison with prediction error minimization,

simulation-error-based estimation of P-NARMAX models is
a far more challenging non-convex optimization problem.
While the predictor model in (S18) is formulated in terms
of known past measured input and output, the simulation
model in (S31) is formulated in terms of the unknown
past simulation output. This leads to complex non-linear
dependencies between the parameters to be estimated and
the simulation output. In the following, we present an

optimization method based on Multi-Step Prediction (MSP)
[9] to solve the non-convex simulation error minimization
problem for the class of P-NARMAX models. Unlike [9], the
MSP algorithm presented in this section is applicable to the
entire class of P-NARMAX models due to the l−approximate
simulation concept introduced in [8].

2) The MSP algorithm: The basic concept of the MSP
algorithm is as follows. Let the l−approximate simulation
model be parameterized by parameter vector θs,l. Define, for
some τ ∈ Z>0, such that τ ≥ l, the τ -step-ahead predictor of
the l−approximate simulation model (S31), as follows

ŷ(k|k − τ) = f̂τ

(
Um

nu+τ
0 (k), Ym

ny+τ
τ+1 (k)

)
, (S32)

where, ŷ(k|k − τ) is the τ -step-ahead prediction, f̂τ is
the τ -set-ahead predictor (computational aspects will be dis-
cussed in the sequel), Um

nu+τ
0 (k) = {um(k − i)}nu+τ

i=0 and
Ym

ny+τ
τ+1 (k) = {ym(k − i)}ny+τ

i=τ+1 are the set of past measured
inputs and outputs, respectively.

Remark S2. The predictor (S32) is the τ -step-ahead predictor
of the l-approximate simulation response in (S31) and should
not be confused with the predictor of the P-NARMAX model
in (S16).

The predictor (S32) allows us to approximate
l−approximate simulation (S31) using measured data.
As τ → ∞, the τ -step-ahead prediction output approximates
arbitrarily well the l−approximate simulation response ys(l),
i.e.,

lim
τ→∞

ŷ(k|k − τ) = ys,l(k). (S33)

Hence, in the MSP algorithm, the simulation model parameters
θs,l is approximated by a sequence of parameter estimates
(θ̂s,l)τ for τ = l, l + 1, ...∞, that optimize the cost function

(θ̂s,l)
∗
τ = arg min Jτ (θs,l), (S34)

where Jτ (θs,l) is the 2-norm of the squared τ -step-ahead
prediction error cost function. In practice, a stopping criteria
based on convergence of parameter estimates or maximum
number of iterations is used.

Remark S3. In principle, the prediction model (S32) can
be computed by recursively replacing the output terms model
expression in (S31), and re-formulating the subsequent model
as a non-linear filter in terms of measured inputs and outputs.
However, since the prediction model in (S32) is polynomial,
performing multiple recursive substitutions of the output terms
may result in polynomial growth of the order and the length
of the model, making it infeasible to compute for large values
of τ . A feasible approach for computing the τ -step-ahead
predictor is discussed in the following subsection.

Remark S4. The role of parameter τ in the MSP algorithm
is similar to the role of parameter l in the l−approximation
method for computing the simulation model. The crucial
difference between the two is that the l−approximation scheme
determines the accuracy of a simulation model, while parame-
ter τ ultimately determines the accuracy of a prediction model.

9

In the following, we discuss the computational structure of
the MSP algorithm. For τ = l, the predictor model of (S31)
can be written in matrix form as

Ŷl(θs,l) = φlθs,l, (S35)

where Ŷl = (ŷ(l + 1|1), . . . , ŷ(Nest|Nest − l))> is the
vector of l-step-ahead predicted outputs, φl = (ϕl(l +
1), . . . , ϕl(Nest))

> is the regression matrix. Rows ϕl(k) con-
sist of monomials in um and ym and can be derived from
(S31). Computation of φτ is discussed in detail in the follow-
ing section. Similarly, the matrix-form of (S32) for τ > l can
be computed by recursively substituting output terms in (S32),
and can be written as

Ŷτ (θs,l) = φτϑτ (θs,l), (S36)

where ϑτ (θs,l) is the non-linear parameterization (due to the
recursive substitutions of the output terms) of the τ -step-
ahead predictor model with respect to (w.r.t) l−approximate
simulation model parameters θs,l, and φτ is the corresponding
regressor matrix.

For a given τ , the optimization problem (S34) can written
as

(θ̂s,l)
∗
τ = arg min

1

Nest − τ
(Ym(τ)− Ŷτ (θs,l))

>

(Ym(τ)− Ŷτ (θs,l)), (S37)

where Ym(τ) = (ym(τ + 1), . . . , ym(Nest))
> is a vector

of measured outputs of the estimation dataset Dest. Gauss-
Newton method is used to solve the non-linear least squares
problem in (S37).

The MSP algorithm consists of two loops - the outer loop
iterates over prediction time-horizon τ , while the inner loop
corresponds to Gauss-Newton iterations required for solving
the optimization problem in (S37) for a fixed time horizon
τ . Denote the parameter estimate for the ith Gauss-Newton
iteration corresponding to time horizon τ as (θ̂s,l)

i

τ . The
algorithm is initialized with the linear least squares estimate
(θ̂s,l)

∗
l (see (S35)). Set τ = l+ 1 and (θ̂s,l)

0

τ = (θ̂s,l)
∗
τ−1. For

each time horizon τ , the Jacobian is given by

∇θs,lJτ (θs,l) =
2

Nest − τ

(
Ŷτ (θs,l)

> − Ym(τ)>
)

Ψτ (θs,l):=︷ ︸︸ ︷
∇θs,l Ŷτ (θs,l)

=
2

Nest − τ

(
Ŷτ (θs,l)

> − Ym(τ)>
)

Ψτ (θs,l).

(S38)

The computation of Ψτ is discussed in the following subsec-
tion. The Gauss-Newton iterations for a given time-horizon τ
is given by

(θ̂s,l)
i+1

τ = (θ̂s,l)
i

τ +
(

Ψτ ((θ̂s,l)
i

τ)>Ψτ ((θ̂s,l)
i

τ)
)−1

Ψτ ((θ̂s,l)
i

τ)>
(
Ym(τ)− Ŷτ ((θ̂s,l)

i

τ)
)

(S39)

The Gauss-Newton method is said to have converged when

|Jτ ((θ̂s,l)
i

τ)− Jτ ((θ̂s,l)
i−1

τ)| ≤ εs, (S40)

where εs is a user-specified tolerance threshold. Alternatively,
the Gauss-Newton algorithm terminates after reaching a max-
imum number of iterations (to be specified by the user). The
converged parameter estimate for time horizon τ is denoted by
(θ̂s,l)

∗
τ . After convergence of the inner loop, set τ = τ+1 and

initialize (θ̂s,l)
0

τ = (θ̂s,l)
∗
τ−1, and repeat the Gauss-Newton

method. The outer loop is terminated when the following
criterion is satisfied

|Jτ ((θ̂s,l)
∗
τ)− Jτ ((θ̂s,l)

∗
τ−1)| ≤ εs, (S41)

or when the outer loop exceeds the maximum number of
iterations. The final parameter estimate is denoted as θs,l

∗.
3) Computation of the MSP output and its Jacobian:

Computation of the multi-step-ahead prediction model in (S32)
for large time-horizons may be infeasible since the model
expression may grow polynomially in length and degree due
to the numerous recursive substitutions. In order to circumvent
this problem, the authors in [10] proposed an iterative scheme
to compute the multi-step-ahead prediction output Ŷτ (θs,l) and
its Jacobian Ψτ (θs,l). In this approach, for a given parameter
vector θ̂s,l, the τ -step-ahead prediction output Ŷτ (θ̂s,l) and
Jacobian Ψτ (θ̂s,l) are computed recursively based on Ŷl(θ̂s,l),
Ŷl+1(θ̂s,l), . . . , Ŷτ−1(θ̂s,l).

For a given parameter vector θ̂s,l, the l-step-ahead predicted
output is given by the linear-in-the-parameters formulation

ŷ(k|k − l) = ϕl(k)>θ̂s,l. (S42)

where ϕl(k), (k > l) are the rows of matrix φl and contain
monomials in um and ym. Hence, Ŷl(θ̂s,l) can be computed
as a matrix inner-product. Based on the Ŷl(θ̂s,l), the (l + 1)-
step-ahead prediction output can be expressed as

ŷ(k|k − l − 1) = ϕl+1(k, θ̂s,l)
>θ̂s,l, (S43)

where ϕl+1(k, θ̂s,l), (k > l+1) contains monomials in um(k),
. . . , um(k − nu − l − 1), ym(k − l − 1), . . . , ym(k − l − ny),
and ŷ(k− l|k− l−1), and can be computed from ϕl(k) using
the following substitution

ϕl+1(k, θ̂s,l) = ϕl(k)|∀j<(l+1):ym(k−j)=ŷ(k−j|k−l−1). (S44)

Observe that, although the (l + 1)-step-ahead prediction
ŷ(k|k − l − 1) depends non-linearly on θ̂s,l, the non-linear
dependency is hidden in the regressor ϕl+1(k), which can be
computed if ϕl(k) is known. Hence, using Ŷl(θ̂s,l), predicted
outputs Ŷl+1(θ̂s,l) can be computed as a matrix inner-product.

This concept can be generalized to compute the τ -step-
ahead prediction output ŷ(k|k − τ) iteratively, through the
following sequence of matrix inner-products

ŷ(k|k − l) = ϕl(k)>θ̂s,l,

ŷ(k|k − l − 1) = ϕl+1(k, θ̂s,l)
>θ̂s,l,

...

ŷ(k|k − τ) = ϕτ (k, θ̂s,l)
>θ̂s,l, (S45)

where ϕτ (k, θ̂s,l) is derived from ϕl(k), . . . , ϕl(k, θ̂s,l) by
performing the following substitution

ϕτ (k) = ϕl(k)|∀j<τ :ym(k−j)=ŷ(k−j|k−τ). (S46)

10

α1: expr0

expr0* opexpr1

+
par

expr3

op

×

u

c

expr2

α2: expr0

expr0* opexpr1

+

q
-1 expr3

y

op

×

par

expr3

op

×c

expr2

α3: expr0

expr0* op

+

expr1

q
-1 expr3

ξ

op

×

par

expr3

op

×c

expr2

α4: expr1

expr1* op

x

expr2

u

expr3

α5: expr1

expr1* op

xexpr3

q
-1 expr3

y

op

×

expr2

α6: expr1

expr1* op

x
expr3

q
-1 expr3op

× ξ

expr2

α7: expr3

expr3*op

×

q
-1

α8: expr2
NA

expr2*op

×

preop↓

η1: expr0

aff

ξ

η2: preop

sin

η3: preop

cos

η4: preop

abs

Fig. S5: Initial trees {ηi}4i=1 and auxiliary trees {αj}8j=1 of the of the over-arching TAG GAT
5.

The variable substitution in (S46) replaces measured output
terms ym(k − j) in ϕl(k) that lie within the prediction horizon
k− (τ + 1), . . . , k with predicted output terms ŷ(k− j|k− τ).
This implies that the vector ϕτ (k) consists of monomials in
um(k), . . . , um(k − nu − l), ym(k − τ), . . . , ym(k − l − ny),
and ŷ(k− l−1|k− τ), . . . , ŷ(k− τ +1|k− τ). In this manner,
performing numerous recursive symbolic substitutions in the
non-linear model to compute (S32) can be avoided.

For a given θ̂s,l, the Jacobian of the predicted outputs can
also be computed iteratively, as follows. Let Ψτ,k denote the
Jacobian of the predicted output ŷ(k|k − τ), i.e.,

Ψτ,k = ∇θs,l ŷ(k|k − τ). (S47)

Since the derivatives of measured inputs um and outputs ym

with respect to θs,l is 0, we can compute the Jacobian of the
l-step-ahead predicted as

Ψl,k = ϕl(k)>. (S48)

For τ > l, we get

Ψl+1,k = ϕl+1(k, θ̂s,l)
> + θ̂>s,l∇θs,lϕl+1(k, θs,l)

∣∣
θs,l=θ̂s,l

,

...

Ψτ,k = ϕτ (k, θ̂s,l)
> + θ̂>s,l∇θs,lϕτ (k, θs,l)

∣∣
θs,l=θ̂s,l

. (S49)

Recall that ϕτ,θ̂s,l(k) consists of monomials in
um(k), . . . , um(k − nu − l), ym(k − τ), . . . , ym(k − l − ny),
and ŷ(k − l− 1|k − τ), . . . , ŷ(k − τ + 1|k − τ). Hence, Ψτ,k

can be computed iteratively since for all j ∈ [l + 1, τ − 1],
we have ∇θs,l ŷ(k − j|k − τ) = Ψτ−j,k−j .

S6. SIMULATION RESULTS

The initial and auxiliary trees of TAG GAT used in the
paper are illustrated in Fig. S5. The proposed TAG extends
beyond the class of P-NARMAX by including sin, cos and abs
functions of the input, output and noise terms. Note that the
trigonometric and absolute-value non-linearities are introduced

without scaling of their arguments, thereby retaining the linear-
in-the-parameters structure of the models.

For the simulation example considered in the paper, we
collect the results obtained from the Monte-Carlo (MC) simu-
lations of the proposed method with various rates of crossover
and mutation. In Fig. S6 – S10, we illustrate the results
obtained for the different values of mutation rate pm. In Fig.
S11 – S14, we illustrate the results obtained for the different
values of crossover rate pm. For a discussion on these Figures,
see Sec. 7.3 of the paper.

REFERENCES

[1] D. Khandelwal, M. Schoukens, and R. Tóth, “A tree adjoining grammar
representation for models of stochastic dynamical systems,” 2020.

[2] N. X. Hoai and R. McKay, “A framework for tree adjunct grammar
guided genetic programming,” in Proceedings of the Post-graduate
ADFA Conference on Computer Science (PACCS’01), 2001, pp. 93–99.

[3] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[4] D. Ashlock, C. McGuinness, and W. Ashlock, “Representation in
evolutionary computation,” in IEEE World Congress on Computational
Intelligence. Springer, 2012, pp. 77–97.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[6] S. A. Billings, Nonlinear system identification: NARMAX methods in
the time, frequency, and spatio-temporal domains. John Wiley & Sons,
2013.

[7] S. Billings and W. Voon, “Least squares parameter estimation algo-
rithms for non-linear systems,” International Journal of Systems Science,
vol. 15, no. 6, pp. 601–615, 1984.

[8] D. Khandelwal, M. Schoukens, and R. Tóth, “On the simulation of
polynomial narmax models,” in 2018 IEEE Conference on Decision and
Control (CDC). IEEE, 2018, pp. 1445–1450.

[9] M. Farina and L. Piroddi, “Simulation error minimization identification
based on multi-stage prediction,” International Journal of Adaptive
Control and Signal Processing, vol. 25, no. 5, pp. 389–406, 2011.

[10] ——, “Identification of polynomial input/output recursive models with
simulation error minimisation methods,” International Journal of Sys-
tems Science, vol. 43, no. 2, pp. 319–333, 2012.

5The superscript NA in auxiliary tree α8 refers to a null adjunction
constraint on the root node, which prohibits the adjunction of any auxiliary
tree at that location. See [11] for details.

11

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
mean squared error (MSE) pre-
diction and simulation error eval-
uated on Dtest over the 10 runs.

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S6: MC simulation results for the academic example with pm = 1 and pc = 0.8.

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs (1 outlier not in image).

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20

0.1

1

10

100

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.1

1

10

100

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S7: MC simulation results for the academic example with pm = 0.6 and pc = 0.8.

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs (2 outliers not in image).

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S8: MC simulation results for the academic example with pm = 0.4 and pc = 0.8.

12

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs.

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S9: MC simulation results for the academic example with pm = 0.2 and pc = 0.8.

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs (7 instances not in image).

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15

0.1

1

10

100

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.1

1

10

100

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S10: MC simulation results for the academic example with pm = 0 and pc = 0.8.

T
im
e
[s
]

20 40 60 80 100 120 140

100
200
300
400
500
600

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs (8 instances not in image).

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

2 4 6 8

0.1

1

10

100

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

2 4 6 8

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.1

1

10

100

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S11: MC simulation results for the academic example with pm = 0.8 and pc = 1.

13

T
im
e
[s
]

20 40 60 80 100 120 140

20
40
60
80
100
120
140

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs.

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S12: MC simulation results for the academic example with pm = 0.8 and pc = 0.6.

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs.

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20 25

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20 25

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S13: MC simulation results for the academic example with pm = 0.8 and pc = 0.4.

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs.

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S14: MC simulation results for the academic example with pm = 0.8 and pc = 0.2.

14

T
im
e
[s
]

20 40 60 80 100 120 140

50

100

150

200

250

Iterations

(a) Average time taken per gen-
eration for each GP run (light
blue) and mean over the 10 runs
(black).

M
SE

Simulation Prediction
0.05

0.06

0.07

0.08

0.09

0.10

(b) Distribution of the minimum
MSE prediction and simulation
error evaluated on Dtest over the
10 runs (1 outlier not in image).

M
SE
P
re
di
ct
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(c) Evolution of minimum predic-
tion error w.r.t GP iterations.

M
SE
sim
ul
at
io
n

20 40 60 80 100 120 140

0.10

0.50
1

5
10

Iterations

(d) Evolution of minimum simu-
lation error w.r.t GP iterations.

M
SE
P
re
di
ct
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(e) Pareto front - prediction error
vs parametric complexity.

M
SE
Si
m
ul
at
io
n

5 10 15 20

0.10

0.50
1

5
10

of model parameters

(f) Pareto front - simulation error
vs parametric complexity.

M
SE
P
re
di
ct
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(g) Pareto front - prediction error
vs dynamic complexity.

M
SE
Si
m
ul
at
io
n

LTI Poly. NL Trig. NL

0.10

0.50
1

5
10

Dynamic complexity

(h) Pareto front - simulation error
vs dynamic complexity.

Fig. S15: MC simulation results for the academic example with pm = 0.8 and pc = 0.

[11] A. K. Joshi and Y. Schabes, “Tree-adjoining grammars,” in Handbook
of formal languages. Springer, 1997, pp. 69–123.

	Introduction
	Initialization
	Variation operators
	Crossover
	Mutation

	Selection and Archiving
	Parameter Estimation for TAG GN
	Prediction Error Minimization
	Simulation Error Minimization
	The simulation model
	The MSP algorithm
	Computation of the MSP output and its Jacobian

	Simulation Results
	References

