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Chapter 1
Introduction

Load balancing algorithms (LBAs) play a critical role in distributing service
requests or jobs (e.g. compute jobs, data base lookups, file transfers) among
servers or distributed resources in parallel-processing systems. The analysis and
design of LBAs has attracted strong attention in recent years, mainly spurred
by crucial scalability challenges arising in cloud networks and data centers with
massive numbers of servers.

1.1 Brief taxonomy of load balancing algorithms

In this section we discuss several common load balancing algorithms. We focus
on the most basic load balancing scenario which consists of N identical parallel
servers and a single dispatcher where jobs arrive according to a Poisson pro-
cess of rate λ(N ) = λN . Arriving jobs cannot be queued at the dispatcher, and
must immediately be forwarded to one of the servers. Jobs are assumed to have
unit-mean exponentially distributed service requirements, and the service disci-
pline at each server is oblivious to the actual service requirements, for example
first-come-first-served (FCFS). This construction is commonly referred to as the
supermarket model.

The celebrated Join-the-Shortest-Queue (JSQ) policy has several strong
stochastic optimality properties in the supermarket model. In particular, the JSQ
policy achieves the minimum mean overall delay among all non-anticipating
policies that do not have any advance knowledge of the service requirements
[EVW80; Win77]. Scaling results for the JSQ scheme showing its merits in
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asymptotic regimes where the load approaches one as N grows large may be
found in [EG18; GW19]. In order to implement the JSQ policy however, the
dispatcher requires instantaneous knowledge of all the queue lengths, which
may involve a prohibitive communication burden when the number of servers N
is large.

JSQ(d) policies. The poor scalability of the JSQ policy has motivated con-
sideration of JSQ(d) policies, where an incoming job is assigned to a server
with the shortest queue among d ≥ 2 servers selected uniformly at random.
This involves an exchange of d messages per job irrespective of the number of
servers N . Results in [Mit01; VDK96] indicate that even sampling as few as
d = 2 servers yields significant performance enhancements over purely random
assignment (d = 1) as N grows large, which is commonly referred to as the
power-of-two or power-of-choice effect. These results also extend to heteroge-
neous servers, non-Markovian service requirements and loss systems [BLP10;
BLP12; MKMG15; XDLS15].

The diversity parameter d thus induces a fundamental trade-off between the
amount of communication overhead and the delay performance. Specifically,
a random assignment policy does not entail any communication burden, but
the mean waiting time remains constant as N grows large for any fixed λ > 0.
In contrast, a nominal implementation of the JSQ policy (without maintaining
state information at the dispatcher) involves N messages per job, but the mean
waiting time vanishes as N grows large for any fixed λ< 1.

Although JSQ(d) policies with d ≥ 2 yield major performance improvements
over purely random assignment while reducing the communication burden by a
factor O(N) compared to the JSQ policy, the mean waiting time does not vanish
in the limit. Specifically, when jobs arrive at rate λN , the queue length distri-
bution at each individual server exhibits super-exponential decay for any fixed
λ< 1 as N grows large. Hence, no fixed value of d will provide asymptotically
optimal delay performance. This is evidenced by results in [GTZ16] indicating
that in the absence of any memory at the dispatcher the communication over-
head per job must increase with N in order for any scheme to achieve a zero
mean waiting time in the limit. The only exception arises in case of batch ar-
rivals when the value of d and the batch size grow large in a specific proportion,
as can be deduced from the arguments in [YSK15].

Now suppose that the number of servers sampled becomes a function of N :
d(N ). In order to achieve zero mean waiting time in the limit, it is sufficient
that d(N ) →∞ as N →∞, so d(N ) could for example grow logarithmically with
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N [LY18; MBLW16a; WW20]. While only d(N ) ¿ N servers are sampled, the
amount of communication overhead in terms of d(N ) must still grow with N .
This may be explained from the fact that a large number of servers need to be
sampled for each incoming job to ensure that at least one of them is found idle
with high probability.

Dispatcher-driven versus server-driven algorithms. JSQ(d) policies are
dispatcher-driven algorithms, in the sense that the dispatcher takes the initiative
to collect state information from the various servers. In the above description
we implicitly assumed that the dispatcher gathers queue length information to
assign arriving jobs, but does not store it.

The performance of dispatcher-driven policies can be further improved by
attaching memory to the dispatcher [AD20], which allows JSQ(d) with fixed d
schemes to be asymptotically optimal just like JSQ, for sufficiently small load. A
further performance analysis of JSQ(d) with memory is conducted in [HV20].
Memory also seems necessary in systems with multiple dispatchers and we will
touch upon this shortly.

In contrast, in server-driven algorithms the various servers take the initiative
to provide state information to the dispatcher, which may then be stored in
memory and used to assign arriving jobs in the future. This can greatly reduce
the communication overhead, while providing excellent performance.

JIQ policy. A key example of a server-driven algorithm is the so-called Join-
the-Idle-Queue (JIQ) scheme [BB08; Lu+11] which has gained huge popular-
ity recently and can be implemented through a simple token-based mechanism.
Specifically, idle servers send tokens to the dispatcher to advertise their avail-
ability. When a job arrives and the dispatcher has tokens available, it assigns the
job to one of the corresponding servers (and the token is discarded). When no
tokens are available at the time of a job arrival, the job may either be discarded
or forwarded to a randomly selected server. Note that a server only issues a
token when a job completion leaves its queue empty, thus generating at most
one message per job.

Remarkably, the JIQ scheme has the ability of the full JSQ policy to drive
the queueing delay to zero as N → ∞, even for generally distributed service
requirements [FS17; Sto15]. Thus, the use of memory allows the JIQ scheme
to achieve asymptotically optimal delay performance with low communication
overhead. In particular, ensuring that jobs are assigned to idle servers whenever
available is sufficient to achieve asymptotic optimality, and using any additional
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queue length information yields no meaningful performance benefits on the
fluid level (we refer to Section 1.3 for a further introduction of fluid limits). An
analysis of the JIQ scheme on the diffusion scale can be found in [MBLW16b].

Somewhat similar to the JIQ scheme is the Persistent-Idle scheme, which
routes jobs to the server that has last been idle [AKMOV20]. This is specifically
of interest in systems with heterogeneous servers.

Multiple-dispatcher scenarios. So far we have focused on a basic scenario
with a single dispatcher, but it is not uncommon for systems to have multiple
dispatchers. While the presence of multiple dispatchers does not affect some
LBAs (for example dispatcher-driven without memory, such as JSQ(d) policies),
it does matter for the JIQ scheme which uses memory at the dispatcher.

Early papers that consider scenarios with the JIQ scheme and multiple dis-
patchers almost exclusively assume that the loads at the various dispatchers are
strictly equal [Lu+11; Mit16; Sto17]. In these cases the fluid limit, for suitable
initial states, is the same as for a single dispatcher, and in particular the fixed
point is the same, hence, the JIQ scheme continues to achieve asymptotically
optimal delay performance with minimal communication overhead. The results
in [Sto17] in fact show that the JIQ scheme remains asymptotically optimal
even when the servers are heterogeneous, while it is readily seen that JSQ(d)
policies cannot even be maximally stable in that case for any fixed value of d .
In Chapter 2 we will analyze a scenario with multiple dispatchers that have
different loads.

In the above setup the number of dispatchers is assumed to remain fixed as
the number of servers grows large. Further natural scenarios would be for the
number of dispatchers to scale with the number of servers, or servers may issue
their availability tokens to the dispatchers already before they are idle, which
appears beneficial at very high load [Mit16].

Alternative options to deal with heterogeneous loads could be to have idle
servers issue copies of their availability tokens to multiple dispatchers [Lu+11].
[VKO20; ZSW20] consider schemes in which every dispatcher keeps local esti-
mates of the queue lengths. Also related are [BCM19; Com19], in which the
token-based implementation of the JIQ scheme is used to handle compatibility
constraints between dispatchers and servers.

The literature on load balancing algorithms has ballooned in recent years.
We refer to [BBLM18b] for a more comprehensive survey discussing related job
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assignment mechanisms, further model extensions and alternative asymptotic
regimes (e.g. heavy-traffic and non-degenerate slowdown scalings).

1.2 Scalability

As mentioned earlier, implementation overhead (e.g. communication or mem-
ory usage involved in obtaining or storing state information) has emerged as
a key concern in the design of LBAs, due to the immense size of cloud net-
works and data centers [Gan+14; MSY12; Pat+13]. Indeed, the fundamental
challenge in load balancing is to achieve scalability: providing good delay per-
formance, while only requiring low implementation overhead in large-scale de-
ployments. The seminal paper [GTZ16] approached this challenge by imposing
the natural performance criterion that the probability of non-zero delay van-
ishes as the number of servers grows large. It was shown that this can only be
achieved with constant communication overhead per job when sufficient mem-
ory is available at the dispatcher.

Hyper-scalable load balancing. While many schemes may achieve this van-
ishing wait with one message per job (for example JIQ, relying on server-
initiated updates), even that one message may still be prohibitive. This typically
plays a role when jobs do not involve big computational tasks, but small data
packets which require little processing, e.g. in ‘Internet of Things’ cloud envi-
ronments. In such situations the sheer message exchange in providing queue
length information may be disproportionate to the actual amount of processing
required.

In this manuscript we introduce and analyze novel scalable LBAs which
strike an optimal trade-off between performance and communication overhead.
Specifically, LBAs are called ‘hyper-scalable’ when they can be implemented
with a communication overhead of one or fewer messages per job, and prefer-
ably many fewer. The maximum permissible communication overhead of these
schemes is usually well below the minimum requirement for vanishing delay in
a many-server regime.

There are several ways to implement this hyper-scalable notion in algorithms
[ZSW20]. One might think of simply adapting JIQ or JSQ(d) by not sending
some of the messages, in order to have less than one message per job. In this
manuscript, we will explore a different method: communication between server
and dispatcher will be (more) decoupled from the arrival process and from job



6 Introduction

completions. Instead, a timer governs the communication process. When the
timer ticks, information will be shared between server(s) and dispatcher.

The above-described notion is used in novel hyper-scalable schemes which
we introduce in Chapters 3–5. In Chapter 3, the timer is completely indepen-
dent from the system state. In Chapter 4, the timer starts when a server reaches
a specific state, but the duration of the timer is fixed. In Chapter 5, the lack
of a message from the server when the timer ticks, is used to update the local
memory of the dispatcher.

Comparison with other schemes. The communication overhead of the
hyper-scalable schemes in Chapters 3–5 can be described in terms of the update
frequency per server, say δ. When the arrival rate per server equals λ < 1, the
number of messages per job equals δ/λ, or δN per time unit, which can be
easily tuned by varying the value of δ.

The JSQ(d) scheme, when implemented in a dispatcher-driven manner, re-
quires d message exchanges per job, which amounts to λd N messages per time
unit. When servers actively update their queue lengths to the dispatcher in the
JSQ scheme or their idleness in the server-driven JIQ scheme, one needs less
communication. In this case, any departing job needs to trigger the server to
send an update to the dispatcher. This server-driven implementation requires
one message per job or λN per time unit. Note that when queue lengths are
large, not even all departing jobs need to trigger the server to send an update for
the JIQ scheme, which reduces the communication per job slightly. In conclu-
sion, the tunable communication overhead of δ/λ per job of the hyper-scalable
algorithms are comparable with server-driven JSQ, JIQ and JSQ(d) schemes.

1.3 Mathematical techniques

We briefly discuss the main mathematical techniques that will be used in this
manuscript, by illustrating how these techniques are used when analyzing the
JIQ scheme. While the analyses in further chapters are more involved, they are
in fact still based on the fundamental concepts presented here.

We consider the load balancing scenario as described in Section 1.1. When
a job arrives at the dispatcher, the job will be immediately forwarded to one
of the idle servers, if there are any. We consider two scenarios, referred to as
blocking and queueing, depending on whether jobs are discarded or forwarded
to a randomly selected server in the absence of any idle servers.
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Markov process and state description. Because both the inter-arrival times
and the service times are independent and exponentially distributed and thus
memoryless, the evolution of the system occupancy can be modeled by a Markov
process. A straightforward state description keeps track of the number of jobs
in queue for each of the N servers. However, we do not keep track of the queue
length of every individual server, but only of the number (or fraction) of servers
that have i = 0,1, . . . jobs in queue. This is sufficient to retain a Markovian state
description since all the decisions in the JIQ scheme only discriminate between
servers based on their current state and not their identity.

The state of this Markov process is given by Y = (Y0,Y1, . . .), with Yi ≥ 0 rep-
resenting the number of servers with i jobs in queue and

∑
i Yi = N . There are

three possible transitions:
Transition (a). When there are idle servers available, i.e. Y0 > 0, the system

transitions from state Y to Y ′ with Y ′
0 = Y0−1 and Y ′

1 = Y1+1 at rate λN because
of job arrivals.

Transition (b). Additionally, when there are no idle servers available (Y0 = 0)
in the queueing scenario, the system transitions from state Y to Y (i ) with Y (i )

i =
Yi −1 and Y (i )

i+1 = Yi+1 +1 at rate λYi for all i ≥ 1 because of job arrivals.
Transition (c). Furthermore, the system transitions from state Y to Y (i ) with

Y (i )
i = Yi −1 and Y (i )

i−1 = Yi +1 at rate Yi for all i ≥ 1 because of service completions.

1.3.1 Queueing networks

In this subsection we consider the blocking scenario, so that the state of the sys-
tem may be described by the vector (Y0,Y1), in which Y0 stands for the number
of idle servers and Y1 stands for the number of servers with one job in queue.
The idle servers receive jobs at rate λN (Transition (a)), and every busy server
processes the job in queue at rate one (Transition (c)). Note that no servers
have two or more jobs in queue as jobs are discarded when no idle server are
available (and we assume that this condition holds for the initial state too).

The above-described system dynamics can be represented in terms of a
closed product-form queueing network with a fixed population of size N , in
which the servers act as customers traversing various nodes. Specifically, the
queueing network consists of two nodes: a single-server node and an infinite-
server node, and each server is in one of the two nodes. Servers in the single-
server node move to the other node one by one at rate λN (Transition (a)).
All servers in the infinite-server node move to the single-server node at rate
one (Transition (c)). Translated back to the load balancing viewpoint: when a
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server is at the single-server node, it is idle; a server at the infinite-server node
is busy.

According to [BD11; Kel11], the equilibrium distribution of the closed net-
work has the product-form

π(Y0,Y1) =G−1
(

1

λN

)Y0 1

Y1!

with G = ∑N
a=0

( 1
λN

)a 1
(N−a)! . This distribution may also be verified by checking

that it is indeed a solution of the balance equations and that it sums to one.
Note that the JIQ scheme in the blocking scenario may in fact also be de-

scribed in terms of a birth-death process, but the framework of closed queueing
networks is more general and allows us to analyze more intricate systems. The
main reason for these types of systems to have a product-form equilibrium dis-
tribution is that servers cannot be busy and receive jobs simultaneously. Exten-
sions of JIQ fall into this category as will be seen in Chapter 2, but also LBAs
in which servers idle when they are about to receive jobs are candidates for
product-form equilibrium distributions, as will be shown in Chapter 4.

1.3.2 Fluid limits

We examine so-called fluid limits where the evolution of suitably scaled state
variables is considered as N →∞, and converges to a deterministic process gov-
erned by a set of differential equations. The fluid limits provide insight in the
network dynamics on a macroscopic scale, and yield asymptotically exact ap-
proximations for several performance measures of interest, in particular block-
ing probabilities and waiting times.

We analyze the number of servers in specific states as a function of time.
The vector of state variables at time t is given by Y N (t ) = (Y N

0 (t ),Y N
1 (t ), . . .) as

before, in which the N in superscript illustrates the dependency on the total
number of servers. We consider the scaled quantities y N (t ) = (y N

0 (t ), y N
1 (t ), . . .)

with y N
i (t ) = Y N

i (t )/N , where y N
i (t ) denotes the fraction of servers that have

i = 0,1, . . . jobs in queue; y N (t ) is the fluid-scaled state of the N -th system. If the
stochastic process {y N (t )}t≥0 converges to a limit {y(t )}t≥0 in some appropriate
sense as N →∞, then the latter is called a fluid limit. Fluid limits have a cer-
tain commonality with laws of large numbers, and quite often turn out to be
deterministic processes, which can be described in terms of a set of differential
equations.
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Proving a fluid limit requires showing convergence of a sequence of stochas-
tic processes, and typically involves fairly advanced probabilistic machinery. In
Markovian settings, a common proof technique relies on martingale represen-
tations of the process {Y N (t )}t≥0 in terms of Poisson processes, see for instance
[HK94; PTW07]. However, in many situations, fluid limits have a relatively
simple and insightful form, and can be derived heuristically, which will be how
fluid limits will be used in this manuscript.

We illustrate this heuristic derivation for the JIQ scheme in the queueing
scenario. We define λ1(t ) to be the aggregate rate at which jobs are forwarded
to idle servers at time t (Transition (a)), which equals λ when y0(t ) > 0, and
min{λ, y1(t )} when y0(t ) = 0, since servers that become idle at rate y1(t ) may im-
mediately be used to forward jobs to, but the maximum rate is trivially bounded
by the arrival rate λ. Consequently, λ−λ1(t ) is the aggregate rate at which jobs
are forwarded to randomly selected servers (Transition (b)). Every individual
server receives jobs at this rate, which makes the total rate that servers with i
jobs in queue receive jobs equal to [λ−λ1(t )]yi (t ). Finally, service completions
make servers with i jobs transition to having i −1 jobs at rate yi (t ) (Transition
(c)).

We obtain

dy0(t )

dt
=−λ1(t )+ y1(t ),

dy1(t )

dt
=λ1(t )− [λ−λ1(t )]y1(t )+ y2(t )− y1(t ),

dyi (t )

dt
= [λ−λ1(t )]yi−1(t )− [λ−λ1(t )]yi (t )+ yi+1(t )− yi (t ), i ≥ 2,

with λ1(t ) =λ−max
{
λ− y1(t ),0

}
1
{

y0(t ) = 0
}

whenever y is differentiable at t .
By setting the derivatives to zero we obtain y∗

0 = 1−λ, y∗
1 = λ and y∗

i = 0
for i ≥ 2 as a fixed point assuming λ ≤ 1. This fixed point corresponds to the
scenario in which a fraction λ of the servers is busy with one job and a fraction
of 1−λ is idle.

In this manuscript, we are typically interested in the question when y∗
i = 0

for all i ≥ 2. We will demonstrate that this property holds in several cases and
we will refer to it as ‘zero queueing in the limit’ or simply as vanishing queueing,
because in this scenario a fraction one of all queues has zero or one jobs, so that
the number of jobs waiting in queue is negligible on fluid scale. We will also
refer to this scenario as ‘vanishing queueing delay’ or simply vanishing wait, by
viewing the fixed point as a stationary distribution for a scaled system.
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However, the translation between these two would involve showing that the
many-server limit (N →∞) and stationary limit (t →∞) can be interchanged.
While this is generally the case, it is typically difficult to prove, as it would
require showing global asymptotic stability of the fluid limit using ad-hoc argu-
ments, and for this reason this will not be explicitly pursued in this manuscript.
Note that for statements about the average queue length, one would also need
convergence in expectation. We refer to related work that outlines some of the
necessary arguments [BBLM18a; Cec18; Muk18]. We use extensive simulation
experiments however to illustrate that the results do in fact seem to hold in the
stationary limit, even in systems with a moderately large number of servers.

Fluid limits will be used in Chapters 2 and 3 to investigate the behavior of
the different schemes in many-server regimes.

1.3.3 Stochastic simulation

As alluded above, discrete-event simulations are used in all upcoming chapters
to validate and illustrate results.

During the simulation for the JIQ scheme in the queueing scenario, a list is
maintained that contains all idle servers. The simulation revolves around two
types of ‘events’, the arrival events and the departure events. All future events
are kept track of in the so-called future event set, in chronological order. In
every step of the simulation, the first event in the future event set is selected
and the implications of this event are applied to the system. The arrival event
has only one property, the time at which it takes place. The departure event has
two properties; the time at which it takes place and the job that will depart at
this time.

When an arrival event is selected, a new job is created and a random server
is selected (and removed) from the list of idle servers if non-empty, the job
is added into the queue of the server and a departure event is scheduled for
this specific job. If the list of idle servers is empty, a random server will be
selected and the job is added to the queue of this server. The time at which
this event takes place equals the current time plus a random sample from the
service time distribution. Afterwards, an additional arrival event is scheduled
and the time of this event equals the current time plus a random sample from
the inter-arrival time distribution, in order to mimic the Poisson arrival process.
When a departure event is selected, the corresponding job is removed from the
queue and the corresponding server is added to the list of idle servers if the
queue is empty or a departure event is scheduled for the first job in queue if the
queue is non-empty.
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The systems that we analyze in this manuscript are much more complicated
than the JIQ scheme, and they often lead to more actions that need to be exe-
cuted when a new event is selected, or even to the introduction of more event
types. In hyper-scalable algorithms, a new update event may be added, which
corresponds to a server sending its queue length to the dispatcher.

The simulations are programmed in Java in an object-oriented manner, and
the results of the simulations are processed and visualized in Wolfram Mathe-
matica.

1.4 Main contributions

We will now summarize the main contributions of this manuscript. We first
discuss an extension of the JIQ scheme for multiple dispatcher, after which we
turn to novel algorithms for the single-dispatcher case.

Load balancing with multiple dispatchers

In Chapter 2, we leverage product-form representations and fluid limits to estab-
lish that the blocking and wait no longer vanish when dispatchers have different
loads, even for an arbitrarily low overall load. Remarkably, it is the least-loaded
dispatcher that throttles tokens and leaves idle servers stranded, thus acting as
bottleneck. We introduce two enhancements of the ordinary JIQ scheme where
tokens are either distributed non-uniformly or occasionally exchanged among
the various dispatchers. We prove that these extensions can achieve zero block-
ing and wait in the many-server limit, for any subcritical overall load and arbi-
trarily skewed load profiles. Extensive simulation experiments demonstrate that
the asymptotic results are highly accurate, even for moderately sized systems.

This chapter is based on [BBL17].

Hyper-scalable load balancing with scheduled updates

In Chapter 3 we introduce and analyze a novel class of load balancing schemes
where the various servers provide occasional queue updates to guide the load
assignment. We show in Chapter 3 that the proposed schemes outperform
JSQ(d) strategies with comparable communication overhead per job. The pro-
posed schemes are particularly geared towards the sparse feedback regime with
less than one message per job, where they outperform corresponding sparsified
JIQ versions.
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We investigate fluid limits for synchronous updates as well as asynchronous
exponential update intervals. The fixed point of the fluid limit is identified
in the latter case, and used to derive the queue length distribution. We also
demonstrate that in the ultra-low feedback regime the mean stationary waiting
time tends to a constant in the synchronous case, but grows without bound in
the asynchronous case.

This chapter is based on [BBL19].

Optimal hyper-scalable load balancing with a strict queue limit

As discussed earlier, the trade-off between delay performance and implementa-
tion overhead has primarily been studied so far from the angle of the amount of
overhead required to achieve asymptotically optimal performance, particularly
vanishing delay in large-scale systems. In contrast, in Chapter 4, we focus on
an arbitrarily sparse communication budget, possibly well below the minimum
requirement for vanishing delay. Furthermore, jobs may only be admitted when
a specific limit on the queue position of the job can be guaranteed.

The centerpiece of our analysis is a universal upper bound for the achievable
throughput of any dispatcher-driven algorithm for a given communication bud-
get and queue limit. We also propose a specific hyper-scalable scheme which
can operate at any given message rate and enforce any given queue limit, while
allowing the server states to be captured via a closed product-form network,
in which servers act as customers traversing various nodes. The product-form
distribution is leveraged to prove that the bound is tight and that the proposed
hyper-scalable scheme is throughput-optimal in a many-server regime given the
communication and queue limit constraints.

This chapter is based on [BBL20].

Load balancing with negative acknowledgments

Observe that in order for the waiting probability to vanish, the dispatcher must
have (near-)certainty that a server is idle when assigning a job to that server.
Thus, the dispatcher must have some kind of idleness certificate. Unless the
dispatcher has access to the job sizes, as in [Ans19], or if the service require-
ments have bounded support, this suggests that one message per job is not only
asymptotically sufficient, but also necessary in order for the queueing delay to
vanish.

In Chapter 5 we introduce a scheme that allows for vanishing wait, while
actually using strictly less than one message per job on average. This scheme
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exploits the crucial insight that an idle state need not be explicitly signaled by
using a message, but can also be implicitly inferred by the dispatcher when not
receiving a message from a server at a pre-arranged time instant. This paradigm
is somewhat similar in spirit to negative acknowledgments in end-to-end trans-
port protocols, but to the best of our knowledge has not been adopted in a load
balancing context so far.

This chapter is based on [BZB20].

Schematic overview of the thesis

We conclude the introduction with a schematic overview of the properties of the
proposed schemes and the techniques used to analyze them.

Chapter 2; Chapter 3; Chapter 4; Chapter 5;
Multiple Hyper-sc. Opt. h.-s. Negative

dispatchers load bal. load bal. acks.
Dispatcher-driven X X

Server-driven X X X
Multiple dispatchers X

Hyper-scalable X X X
Queueing networks X X

Fluid limits X X
Stochastic coupling X X

Stochastic sim. X X X X
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Chapter 2
Load balancing with multiple
dispatchers

Based on:

[BBL17] M. van der Boor, S. C. Borst, and J. S. H. van Leeuwaarden. “Load
balancing in large-scale systems with multiple dispatchers”. In:
Proc. INFOCOM ’17. 2017

2.1 Introduction

In this chapter we examine the performance of the JIQ scheme (see Section 1.1)
in systems with multiple dispatchers with heterogeneous loads. We distinguish
two scenarios, referred to as blocking and queueing, depending on whether jobs
are discarded or forwarded to a randomly selected server in the absence of any
tokens at the dispatcher.

We use queueing networks with exact product-form distributions (see Sec-
tion 1.3.1) and fluid-limit techniques (see Section 1.3.2) to establish that the
blocking and wait no longer vanish for asymmetric dispatcher loads as the to-
tal number of servers grows large. In fact, even for an arbitrarily small de-
gree of skewness and low overall load, the blocking and wait are strictly pos-
itive in the limit. This contrasts with the observation that the JIQ scheme re-
mains asymptotically optimal in scenarios with multiple homogeneous dispatch-
ers even when the servers are heterogeneous, as mentioned in Section 1.1. We
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show that, surprisingly, it is the least-loaded dispatcher that acts as a bottleneck
and throttles the flow of tokens. The accumulation of tokens at the least-loaded
dispatcher hampers the visibility of idle servers to the heavier-loaded dispatch-
ers, and leaves idle servers stranded while jobs queue up at other servers.

In order to counter the above-described performance degradation for asym-
metric dispatcher loads, we introduce two extensions to the basic JIQ scheme.
In the first mechanism tokens are not uniformly distributed among dispatchers,
but for example in proportion to the respective loads. We prove that this en-
hancement achieves zero blocking and wait in a many-server regime, for any
subcritical overall load and arbitrarily skewed load patterns. In the second ap-
proach, tokens are continuously exchanged among the various dispatchers at
some exponential rate. We establish that for any load profile with subcritical
overall load there exists a finite token exchange rate for which the blocking and
wait vanish in the many-server limit. Extensive simulation experiments (see
Section 1.3.3) are conducted to corroborate these results, indicating that they
apply even in moderately sized systems.

Organization of the chapter. The remainder of this chapter is organized as
follows. In Section 2.2 we present a detailed model description, specify the
two proposed enhancements and state the main results. In Section 2.3 we de-
scribe how the blocking scenario can be represented in terms of a closed Jack-
son network, and leverage the associated product-form distribution to obtain an
insightful formula for the blocking probability. We then turn to a fluid-limit ap-
proach in Section 2.4 to analyze the two proposed enhancements in the blocking
scenario. A similar analysis is adopted in Section 2.5 in the queueing scenario
to obtain results for the basic model and the enhanced variants. Finally, in Sec-
tion 2.6 we make some concluding remarks and briefly discuss future research
directions.

2.2 Model description and key results

We consider a system with N parallel identical servers and a fixed set of R (not
depending on N) dispatchers, as depicted in Figure 2.1. Jobs arrive at dis-
patcher r as a Poisson process of rate αrλN , with αr > 0, r = 1, . . . ,R,

∑R
r=1αr = 1,

and λ denoting the job arrival rate per server. For conciseness, we denote
α = (α1, . . . ,αR ), and without loss of generality we assume that the dispatch-
ers are indexed such that α1 ≥ α2 ≥ ·· · ≥ αR . The job processing requirements
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are independent and exponentially distributed with unit mean at each of the
servers.

1 2 R

α1λN α2λN αRλN

1 2 i N

1

Figure 2.1: Schematic view of the model with R dispatchers and N servers.

When a server becomes idle, it sends a token to one of the dispatchers se-
lected uniformly at random, advertising its availability. When a job arrives at a
dispatcher which has tokens available, one of the tokens is selected, and the job
is immediately forwarded to the corresponding server.

We distinguish two scenarios referred to as the blocking and queueing sce-
nario, respectively, which differ in case a job arrives at a dispatcher without
available tokens. In the blocking scenario, the incoming job is blocked and in-
stantly discarded. In the queueing scenario, the arriving job is forwarded to one
of the servers selected uniformly at random. If the selected server happens to
be idle, then the outstanding token at one of the other dispatchers is revoked.

In the queueing scenario we assume λ < 1, which is not only necessary but
also sufficient for stability. It is not difficult to show that the joint queue length
process is stochastically majorized by a case where each job is sent to a uni-
formly at random selected server. In the latter case, the system decomposes
into N independent M/M/1 queues, each of which has load λ< 1 and is stable.

We will use a different notation than we introduced in Section 1.3.2, since
we will have to track at which dispatcher the token of a server is present. Denote
by X0(t ) the number of busy servers and by Xr (t ) the number of tokens held by
dispatcher r at time t , r = 1, . . . ,R. Note that

∑R
r=0 Xr (t ) = N for all t , because
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either a server is busy or it has an outstanding token at one of the dispatchers.
Also, denote by Yi (t ) the number of servers with i jobs (including a possible job
being processed) at time t , i ≥ 0, so that X0(t ) ≡∑∞

i=1 Yi (t ).
In the blocking scenario, no server can have more than one job, i.e., Yi (t ) = 0

for all i ≥ 2 and X0(t ) = Y1(t ). Because of the symmetry among the servers, the
state of the system can be described by the vector X (t ) = (X0(t ), X1(t ), . . . , XR (t )),
and {X (t )}t≥0 evolves as a Markov process, with state space S := {n ∈ NR+1 :∑R

i=0 ni = N }. Likewise, in the queueing scenario, the state of the system can be
described by the vector U (t ) = (Y (t ), X1(t ), . . . , XR (t )) with Y (t ) = (Yi (t ))i≥0, and
{U (t )}t≥0 also evolves as a Markov process.

Denote by B(R, N ,λ,α) the steady-state blocking probability of an arbitrary
job in the blocking scenario. Also, denote by W (R, N ,λ,α) a random variable
with the steady-state waiting-time distribution of an arbitrary job in the queue-
ing scenario, for which we will use the fixed point of the fluid limit without proof
(see Section 1.3.2). We include R, N , λ and α in the notation in order to reflect
the dependence of both performance metrics on these system parameters. How-
ever, we will occasionally suppress (some of) the arguments for brevity when
these are fixed or otherwise clear from the context.

In Section 2.3 we will prove the following theorem for the blocking scenario.

Theorem 2.1 (Least-loaded dispatcher determines blocking). As N →∞,

B(R, N ,λ,α) → max{1−RαR ,1−1/λ}.

Theorem 2.1 shows that in the many-server limit the system performance in
terms of blocking is either determined by the relative load of the least-loaded
dispatcher, or by the aggregate load. This may be informally explained as fol-
lows. Let x̄0 be the expected fraction of busy servers in steady state, so that
each dispatcher receives tokens on average at a rate x̄0N /R. We distinguish
two cases, depending on whether a positive fraction of the tokens reside at the
least-loaded dispatcher R in the limit or not. If there is a positive fraction, then
the job arrival rate αRλN at dispatcher R must equal the rate x̄0N /R at which
it receives tokens, i.e., x̄0/R = αRλ. Otherwise, the job arrival rate αRλN at
dispatcher R must be no less than the rate x̄0N /R at which it receives tokens,
i.e., x̄0/R ≤ αRλ. Since dispatcher R is the least-loaded, it then follows that
x̄0/R ≤αrλ for all r = 1, . . . ,R, which means that the job arrival rate at all the dis-
patchers is higher than the rate at which tokens are received. Thus the fraction
of tokens at each dispatcher is zero in the limit, i.e., the fraction of idle servers
is zero, implying x̄0 = 1. Combining the two cases, and observing that x̄0 ≤ 1,
we conclude that x̄0 = min{RαRλ,1}. Because of Little’s law, x̄0 is related to the
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Figure 2.2: Blocking probability B(2, N ,λ, (α1,1−α1)) obtained by (2.2), for R = 2 dis-
patchers and N = 105 servers as function of λ and α1.

blocking probability B as x̄0 = λ(1−B). This yields 1−B = min{RαRλ,1/λ}, or
equivalently, B = max{1−RαR ,1−1/λ} as stated in Theorem Theorem 2.1.

The above explanation also reveals that in the limit dispatcher R (or the
set of least-loaded dispatchers in case of ties) inevitably ends up with all the
available tokens, if any. The accumulation of tokens hampers the visibility of
idle servers to the heavier-loaded dispatchers, and leaves idle servers stranded
while jobs queue up at other servers.

Figure 2.2 illustrates Theorem 2.1 for R = 2 dispatchers and N = 105 servers,
and clearly reflects the two separate regions in which the blocking probability
depends on either αR or λ. The line represents the cross-over curve RαR = 2α2 =
2(1−α1) = 1/λ.

In Section 2.5 we will establish the following theorem for the queueing sce-
nario.

Theorem 2.2 (Mean waiting time). For λ< 1 and N →∞,



20 Load balancing with multiple dispatchers

E[W (R, N ,λ,α)] → λ2(R,λ,α)

1−λ2(R,λ,α)
,

where

λ2(R,λ,α) = 1− 1−λ∑r∗
i=1αi

1−λr∗/R

with

r∗ = sup
{
r
∣∣αr > 1

R

1−λ∑r
i=1αi

1−λr /R

}
and the convention that r∗ = 0 if α1 = . . . =αR = 1/R.

λ2 can be interpreted as the rate at which jobs are forwarded to randomly se-
lected servers. Furthermore, dispatchers 1, . . . ,r∗ receive tokens at a lower rate
than the incoming jobs, and in particular λ∗

2 = 0 if and only if r∗ = 0. When
R = 2, Theorem 2.2 simplifies to

E[W (2, N ,λ, (1−α2,α2))] → λ(1−2α2)

2−2λ(1−α2)
.

When the arrival rates at all dispatchers are strictly equal, i.e., αr = 1/R for
all r = 1, . . . ,R, Theorems 2.1 and 2.2 indicate that the stationary blocking prob-
ability and the mean waiting time asymptotically vanish in a regime where the
total number of servers N grows large, which is in agreement with the results
in [Sto17]. However, when the arrival rates at the various dispatchers are not
perfectly equal, so that αR < 1/R, the blocking probability and mean wait are
strictly positive in the limit, even for arbitrarily low overall load and an arbi-
trarily small degree of skewness in the arrival rates. Thus, the basic JIQ scheme
fails to achieve asymptotically optimal performance when the dispatcher loads
are not strictly equal.

In order to counter the above-described performance degradation for asym-
metric dispatcher loads, we propose two enhancements.

Enhancement 2.1 (Non-uniform token allotment). When a server becomes idle,
it sends a token to dispatcher r with probability βr .

Enhancement 2.2 (Token exchange mechanism). Any token is transferred to a
uniformly randomly selected dispatcher at rate ν.
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Note that the token exchange mechanism only creates a constant communi-
cation overhead per job as long as the rate ν does not depend on the number of
servers N , and thus preserves the scalability of the basic JIQ scheme.

The above enhancements can achieve asymptotically optimal performance
for suitable values of the βr parameters and the exchange rate ν, as stated in
the next proposition.

Theorem 2.3 (Vanishing blocking and waiting). For any λ < 1, the stationary
blocking probability in the blocking scenario and the mean waiting time in the
queueing scenario asymptotically vanish as N →∞, upon using Enhancement 2.1
with βr =αr for r = 1, . . . ,R or Enhancement 2.2 with ν≥ λ

1−λ (α1R −1).

The minimum value of ν required in the blocking scenario may be intuitively
understood as follows. Zero blocking means that a fraction λ of the servers
must be busy, and thus a fraction 1−λ of the tokens reside with the various
dispatchers, while the heaviest loaded dispatcher 1 receives enough tokens for
all incoming jobs: α1λ≤λ/R+ν(1−λ)/R which is satisfied by the given minimum
value of ν.

A similar reasoning applies to the queueing scenario, although in that case
the number of servers with exactly one job no longer equals the number of busy
servers, and a different approach is needed.

In order to establish Theorems 2.2 and 2.3, we examine in Sections 2.4
and 2.5 the fluid limits for the blocking and queueing scenarios, respectively.
Rigorous proofs to establish weak convergence to the fluid limit are omitted,
but can be constructed along similar lines as in [HK94; PTW07]. Simulation
experiments will be conducted to verify the accuracy of the fluid-limit approxi-
mations, and show an excellent match, even in systems with a small number of
servers.

2.3 Jackson network representation

In this section we describe how the blocking scenario can be represented in
terms of a closed Jackson network. We leverage the associated product-form
distribution to express the asymptotic blocking probability as a function of the
aggregate load and the minimum load across all dispatchers, proving Theo-
rem 2.1.

We view the system dynamics in the blocking scenario in terms of the pro-
cess {X (t )}t≥0 as a fixed total population of N tokens that circulate through a
network of R +1 stations. Specifically, the tokens can reside either at station 0,
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meaning that the corresponding server is busy, or at some station r = 1, . . . ,R,
indicating that the corresponding server is idle and has an outstanding token
with dispatcher r .

Let si (k) denote the service rate at station i when there are k tokens present.
Then s0(k) = k and sr (k) = 1 for r = 1, . . . ,R. The service times are exponentially
distributed at all stations, but station 0 is an infinite-server node with mean
service time µ−1

0 = 1, while station r is a single-server node with mean service
time µ−1

r = (αrλN )−1, r = 1, . . . ,R. The routing probabilities pi j of tokens moving
from station i to station j are given by pr 0 = 1 for r = 1, . . . ,R and p0r = 1/R for
r = 1, . . . ,R. With γi denoting the throughput of tokens at station i , the traffic
equations

γi =
R∑

j=0
γ j p j i , i = 0, . . . ,R

uniquely determine the relative values of the throughputs, i.e., the throughputs
up to a common scaling factor.

Let π(n) := limt→∞P {X (t ) = n} be the stationary probability that the process
{X (t )}t≥0 resides in state n ∈ S. The theory of closed Jackson networks [Kel11]
implies

π(n0,n1, . . . ,nR ) =G−1
R∏

i=0

(γi /µi )ni∏ni
m=1 si (m)

, (2.1)

with G a normalization constant.
The blocking probability can then be expressed by summing the probabilities

π(n) over all the states with nr = 0 where no tokens are available at dispatcher r ,
and weighting these with the fractions αr , r = 1, . . . ,R:

B(R, N ,λ,α) =
R∑

r=1
αr

∑
n∈{n|nr =0}

π(n). (2.2)

Despite this rather complicated expression, Theorem 2.1 provides a compact
characterization of the blocking probability in the many-server limit N →∞, as
will be proved in the following parts.

Remark. While we assumed exponentially distributed service times, the infinite-
server node is symmetric and thus the product-form solution in (2.2) as well as
Theorem 2.1 still hold for phase-type distributions [Kel11].
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2.3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 uses stochastic coupling, for which we define a ‘better’
system S+ and a ‘worse’ system S−. Both systems are amenable to analysis
and have an identical blocking probability in the many-server limit N →∞, as
will be stated in propositions. Via coupling it follows that BS+ ≤ BS ≤ BS− and
lim

N→∞
BS+ = lim

N→∞
BS− = max{1−RαR ,1−1/λ}, so that

lim
N→∞

B(R, N ,λ,α) = max{1−RαR ,1−1/λ}.

First we will analyze the ‘better’ and the ‘worse’ system. Afterwards, we will
focus on the coupling arguments.

Inhomogeneous blocking scenario with two dispatchers

The better system merges the first R − 1 dispatchers into one superdispatcher,
which results in two dispatchers with arrival rates (1−αR )λN and αRλN , re-
spectively. However, in contrast to the original blocking scenario, when a job
is completed and leaves a server idle, a token is not sent to either dispatcher
with equal probability. Instead, tokens are sent to the superdispatcher with
probability R−1

R .
First a description of the blocking probability will be deduced. Consider the

blocking scenario with two dispatchers and N servers. Say that a token is sent
to dispatcher i with probability βi . Without loss of generality, assume α1

2β1
≥ α2

2β2
.

Since we obtain a closed Jackson network (see (2.1)), we have the stationary
distribution

π(n0,n1,n2) =G−1 (λN )n1

( α1
2β1

λN )n1

(λN )n2

( α2
2β2

λN )n2

(2λN )n0

n0!
(2.3)

in which G is the normalization constant.
With γ1 = α1

2β1
and γ2 = α2

2β2
, we write (2.3) as

π(n0,n1,n2) =G−1 (2λN )n0

γ
n1
1 γ

n2
2 n0!

(2.4)

with

G =
N∑

n0=0

N−n0∑
n1=0

(2γ2λN )n0

γN
2 n0!

(
γ2

γ1

)n1

. (2.5)
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We assume that γ1 6= γ2, so that γ2/γ1 6= 1. When γ1 = γ2, the blocking prob-
ability does not depend on αi or βi . In that case, we obtain a symmetric system
for R = 2 and refer to the analysis of the symmetric blocking scenario.

We rewrite (2.5) as

G =
N∑

n=0

(2γ2λN )n

γN
2 n!

1−
(
γ2
γ1

)N−n+1

1− γ2
γ1

= 1

γN
2

1

γ1 −γ2

[
γ1

N∑
n=0

(2γ2λN )n

n!
−γ2

(
γ2

γ1

)N (2γ2λN )n

n!

]
.

(2.6)

Using (2.4) and (2.6) in (2.2) gives the blocking probability

B(2, N ,λ,α1,α2,β1,β2) =α1

N∑
n=0

π(n,0, N −n)+α2

N∑
n=0

π(n, N −n,0)

=G−1

[
α1

N∑
n=0

(
2γ2λN

)n

γN
2 n!

+α2

N∑
n=0

(
2γ1λN

)n

γN
1 n!

]

= (γ1 −γ2)

α1
∑N

n=0
(2γ2λN)n

n! +α2

(
γ2
γ1

)N ∑N
n=0

(2γ1λN)n

n!

γ1
∑N

n=0
(2γ2λN )n

n! −γ2

(
γ2
γ1

)N ∑N
n=0

(2γ1λN )n

n!

 .

(2.7)

We establish the following result for the blocking scenario with R = 2 en-
hanced with non-uniform token allotment.

Proposition 2.1 (Limiting blocking probability for R = 2). Consider a system
with 2 dispatchers, dispatcher r receives a fraction αr of the jobs, and a token is
sent to dispatcher r with probability βr . The following expression holds for the
blocking probability for large systems.

lim
N→∞

B(2, N ,λ,α1,α2,β1,β2) = max

{
β1

(
α1

β1
− α2

β2

)
,1−1/λ

}
.

We visualize Proposition 2.1 in Figure 2.3. We see that the blocking probabil-
ity increases with λ. Furthermore, the smallest blocking probability is obtained
for α1 =β1.

We apply Proposition 2.1 with α1 = (1−αR ), α2 =αR , β1 = R−1
R and β2 = 1/R

to obtain a blocking probability equal to the probability in Theorem 2.1.
The proof of Proposition 2.1 is given in Section 2.A.
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Symmetric blocking scenario with R dispatchers

The worse system thins the incoming rates of jobs at the dispatchers, so that
some jobs are blocked, irrespective of whether or not the dispatcher has any
tokens available. This thinning process is defined as follows: a job arriving at
dispatcher r is blocked with probability

αr −αR

αr
+ max{0,αR −1/(Rλ)}

αr
.

This thinning process is designed in such a way that the system with admitted
jobs behaves as a system with total arrival rate λ ≤ 1 in which all arrival rates
are equal (α1 = . . . = αR), for which the blocking probability can be computed
explicitly.

The stationary distribution of the system is given by

π(n0,n1, . . . ,nR ) =G−1
1

(λN )n1

(α1λN )n1
· · · (λN )nR

(αRλN )nR

(RλN )n0

n0!
=G−1

2
(λN )n0

n0!

in which G1 and G2 are normalization constants. Notice that since n1+ . . .+nR =
N −n0, π does not depend on the locations of individual tokens in terms of the

Figure 2.3: The blocking probability as in Proposition 2.1 for α1 = 0.8.
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values of n1, . . . ,nR . For a given n0, we have N −n0 tokens that can be at any
of the R dispatchers. These tokens can be distributed in

(N−n0+R−1
R−1

)
ways, and

hence

G =
N∑

n=0

(
N +R −1−n

R −1

)
(λN )n

n!
.

We compute the probability that dispatcher 1 has no tokens, which implies that
an arriving job would be blocked. If we assume that n0 servers are busy, then
N −n0 tokens are at dispatchers 2,3, . . . ,R. There are a total of

(N+R−2−n
R−2

)
states

for which that is the case. Therefore, the probability that there are no tokens
available at dispatcher 1 is

B(R, N ,λ) =
∑N

n=0

(N+R−2−n
R−2

) (λN )n

n!∑N
n=0

(N+R−1−n
R−1

) (λN )n

n!

. (2.8)

Note that this derivation is also valid for R = 1, using the convention
(−1
−1

) = 1.
The expression in (2.8) gives the blocking probability at one of the dispatchers.
Since dispatchers are indistinguishable, (2.8) also is the blocking probability of
the entire system.

Proposition 2.2 (Vanishing blocking probability in symmetric systems). Con-
sider a system with R equal dispatchers. For λ≤ 1,

lim
N→∞

B(R, N ,λ) = 0.

The proof of Proposition 2.2 is given in Section 2.B.
Proposition 2.2 tells us that the system after thinning has a limiting blocking

probability of 0, so that in the limit, jobs are only blocked due to the thinning
itself. The total blocking probability is

∑
r
αr

(
αr −αR

αr
+ max

{
0,αR − 1

Rλ

}
αr

)
= 1−RαR +max{0,RαR −1/λ}

= max{1−RαR ,1−1/λ},

which is equal to the blocking probability in Theorem 2.1.

Stochastic coupling

With coupling, one can show that the blocking probability of the ‘better system’
is lower and of the ‘worse system’ is higher, which completes the proof. Specifi-
cally, when the arrival moments, the service times and the token-allotment are
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coupled, the number of tokens used at each dispatcher by time t is always lower
in the worse system and higher in the better system. Intuitively, the tokens at
dispatchers 1 to R −1 are consolidated in the better system. If there is at least
one token amongst these dispatchers, any job arriving at any of the dispatchers
can make use of a token. In the original system, a job is blocked when the token
amongst the first R − 1 dispatchers, is not present at the dispatchers at which
a job arrives. The worse system performs obviously worse, since blocking jobs
beforehand has no benefits for the acceptance of jobs.

We will now discuss the details of the coupling proof. Consider system S
with N servers, R dispatchers and general arrival rates.

Better system. S+ represents the system with only two dispatchers. We will
add + in superscript to a variable/function, to indicate that this variable/func-
tion is a property of system S+, instead of system S. We will assume that both
systems have all N servers busy at time 0. We will couple the systems so that
the i th arrival at dispatcher r occurs at the same time in both systems. Also, the
i th service time in both systems is of equal length. Finally, after the j th service
completion, a token is sent to the same dispatcher in both systems. When a
token is sent to dispatcher r 6= R in S, the token is sent to superdispatcher 1 in
S+.

We introduce the functions

• Tr (t ); the cumulative number of tokens that have been used at time t at
dispatcher r ,

• Nr (n); the number of tokens that are sent to dispatcher r out of the first n
tokens sent,

• ξr (t ); the number of tokens at dispatcher r at time t .

These functions are indexed by r , where r can indicate one of the dispatchers
1, . . . ,R, or a collection of dispatchers. If the index r refers to a collection of
dispatchers, we simply sum all dispatchers in this collection. We introduce the
collections A = {1, . . . ,R −1} and X = {1, . . .R} and the following additional func-
tions:

• S(t ); the number of service completions by time t ,

• µ(n); the service time of the n’th job that starts its service,

• t (n); the time at which a token is used for the n’th time,
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• s(n); the time at which a service is completed for the n’th time.

We define Tr (0) = S(0) = 0. We now claim that

(TA(t ),TR (t )) ≤st
(
T +

1 (t ),T +
R (t )

) ∀t ≥ 0, (2.9)

in which we define X ≤st Y as P {X ≤ k} ≥P {Y ≤ k} for all k. Assuming an equal
initial state, the claim is true for t = 0. Next, we use mathematical induction
and assume that the claim is true for some t > 0. We will show that after any
possible event (arrival or service completion), the inequality still holds. First,
we establish the following relations:

(a) ξA(t ) = NA(S(t ))−TA(t ),

(b) ξR (t ) = NR (S(t ))−TR (t ),

(c) t (n) = inf{t |TX (t ) ≥ n},

(d) s(n) = inf
{

t
∣∣∑∞

i=1 1
{

t (i )+µ(i ) ≤ t
}≥ n

}
,

(e) S(t ) =∑∞
i=1 1{s(i ) ≤ t }.

Relations (a) and (b) shows that the number of tokens is the number of arrived
tokens minus the number of tokens sent. Relation (c) shows that the time at
which the nth token is used is the first time at which n tokens are used. Relation
(d) requires more thought. First, ti +µi is the time at which the job which used
the i th token, has completed its service. Then,

∑∞
i=1 1

{
t (i )+µ(i ) ≤ t

}
counts the

number of service completions before time t . The first time that this number
reaches n, is s(n). Finally, in Relation (e), we check for all jobs if they have
finished service before time t , and count the number of those jobs to get the
number of service completions by time t .

With these relations, we can show that (2.9) holds at all times. First, note
that (2.9) implies that t (n) ≤ t+(n) and s(n) ≤ s+(n) for all n (Relations (c) and
(d)), so that S(t ) ≤ S+(t ) (Relation (e)) and Nr (S(t )) ≤ Nr (S+(t )), where r can
indicate a single dispatcher or any collection of dispatchers. Trivially, when
TA(t ) < T +

1 (t ), an arrival at any dispatcher 1, . . .R −1 will not influence the equa-
tion with ≤. Vice versa, after an arrival at dispatcher R when TR (t ) < T +

R (t ), the
equation will still hold with ≤. Also, a service completion will not change the
number of tokens used. So, we have to consider two possible events:

E1 Arrival at dispatcher 1, . . . ,R −1 when TA(t ) = T +
1 (t ) and TR (t ) ≤ T +

R (t ).

E2 Arrival at dispatcher R when TA(t ) ≤ T +
1 (t ) and TR (t ) = T +

R (t ).
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In event E1, we have, since Nr (S(t )) ≤ Nr (S+(t )) and TA(t ) = T +
1 (t ), that ξA(t ) ≤

ξ+1 (t ) (Relation (a)). When ξ+1 (t ) = 0, there are no tokens in both systems, so no
job will be accepted in either system. When ξ+1 (t ) > 0, the job in system S+ will
definitely be accepted (but not necessarily in system S), so that we still have
TA(t ) ≤ T +

1 (t ) after the arrival. Similarly, in event E2, ξR (t ) ≤ ξ+R (t ) (Relation
(b)). After the arrival, we still have TR (t ) ≤ T +

R (t ). With this reasoning, we have
proven that (2.9) is true for all t . Since the number of accepted jobs at time t is
TA(t )+TR (t ), more jobs have been accepted in system S+, which proves that the
blocking probability of system S+ is smaller.

Worse system. We can show using coupling that the blocking probability of
S− is greater than the blocking probability of S. We will use the superscript −
to denote a variable of the worse system. We will only provide a sketch of the
proof as it is similar to the previous coupling. The counterpart of (2.9) will now
be

T −
r (t ) ≤ Tr (t ) for all 1 ≤ r ≤ R.

This yields ξ−r (t ) ≤ ξr (t ) if T −
r (t ) = Tr (t ). All jobs accepted in system S− will also

be accepted in S, because there are at least as many tokens at the dispatcher
in system S. So, after any event, T −

r (t ) ≤ Tr (t ) will still be true. Finally, that
means that the number of accepted jobs is less in system S−, so that the blocking
probability is larger.

2.4 Fluid limit in the blocking scenario

We now turn to the fluid-limit analysis and start with the blocking scenario. The
concept of fluid limits was introduced in Section 1.3.2. We consider a sequence
of systems indexed by the total number of servers N . Denote by xN

0 (t ) = 1
N X N

0 (t )
the fraction of busy servers and by xN

r (t ) = 1
N X N

r (t ) the normalized number of
tokens held by dispatcher r in the N -th system at time t . Further define xN (t ) =
(xN

0 (t ), xN
1 (t ) . . . , xN

R (t )) and assume that xN (0) → x∞ as N →∞, with
∑R

i=0 x∞
i = 1.

Then any weak limit x(t ) of the sequence {xN (t )}t≥0 as N →∞ is called a fluid
limit.

The fluid limit x(t ) in the blocking scenario with Enhancements 2.1 and 2.2
in place satisfies the set of differential equations

dx0(t )

dt
=

R∑
r=1

zr (t )−x0(t ), (2.10)
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dxr (t )

dt
=βr x0(t )+ν

(
1−x0(t )

R
−xr (t )

)
− zr (t ), (2.11)

with

zr (t ) =αrλ−
[
αrλ−βr x0(t )−ν1−x0(t )

R

]+
1 {xr (t ) = 0} , (2.12)

where [·]+ = max{·,0} and initial condition x(0) = x∞.
The above set of fluid-limit equations may be interpreted as follows. The

term zr (t ) represents the (scaled) rate at which dispatcher r uses tokens and
forwards incoming jobs to idle servers at time t . (2.12) reflects that the lat-
ter rate equals the job arrival rate αrλ, unless the fraction of tokens held by
dispatcher r is zero (xr (t ) = 0), and the rate βr x0(t )+ν(1− x0(t ))/R at which it
receives tokens from idle servers or through the exchange mechanism is less
than the job arrival rate. (2.10) states that the rate of change in the fraction
of busy servers is the difference between the aggregate rate

∑R
r=1 zr (t ) at which

the various dispatchers use tokens and forward jobs to idle servers, and the
rate x0(t ) at which jobs are completed and busy servers become idle. (2.11)
captures that the rate of change of the fraction of tokens held by dispatcher r is
the balance of the rate βr x0(t )+ν(1− x0(t ))/R at which it receives tokens from
idle servers or through the exchange mechanism, and the rate zr (t )+νxr (t ) at
which it uses tokens and forwards jobs to idle servers or releases tokens through
the exchange mechanism.

Figure 2.4 shows the exact and simulated fluid-limit trajectories. We observe
that the simulation results closely match the fluid-limit dynamics. We further
note that in the long run only dispatcher 2 with the lower arrival rate holds a
strictly positive fraction of the tokens, corroborating Theorem 1.

2.4.1 Derivation of fluid-limit equations

Similarly to [HK94; PTW07], (2.10)–(2.12) can be derived by describing the
system with N servers in terms of elementary stochastic processes and random
variables. Let A1

y , . . . , AR
y and Sy be independent Poisson processes with rate y

and define random variables Φn , which are 1, . . . ,R with probability 1/R. We
obtain the following system description.



2.4 Fluid limit in the blocking scenario 31

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.4: Exact and simulated fluid-limit trajectories xi (t ) for R = 2 dispatchers, λ= 0.9
and α1 = 0.8. Averaged sample paths for N = 100 servers are represented by dashed lines,
and closely match the fluid-limit dynamics.

X N
0 (t ) = X N

0 (0)+
R∑

r=1
Ar
αrλN

(∫ t

0
1{X N

r (s) > 0}ds

)
−S1

(∫ t

0
X N

0 (s)ds

)
, (2.13)

X N
r (t ) = X N

r (0)+
S1

(∫ t
0 X N

0 (s)ds
)∑

n=1
1{Φn = r }− Ar

αrλN

(∫ t

0
1{X N

r (s) > 0}ds

)
(2.14)

for 1 ≤ r ≤ R. Dividing (2.13) and (2.14) by N gives:

M̄ N
0 (t ) = M̄ N

0 (0)+ 1

N

R∑
r=1

Ar
αrλN

(∫ t

0
1{X N

r (s) > 0}ds

)
− 1

N
S1

(
N

∫ t

0
M̄ N

0 (s)ds

)
,

(2.15)

M̄ N
r (t ) = M̄ N

r (0)+ 1

N

S1

(∫ t
0 X N

0 (s)ds
)∑

n=1
1{Φn = r }− 1

N
Ar
αrλN

(∫ t

0
1{X N

r (s) > 0}ds

)
(2.16)

for 1 ≤ r ≤ R.
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We will rewrite these expressions, by observing that some terms converge
to simpler functions as N → ∞. We state Lemmas 2.1 and 2.2, in which the
convergence is almost sure.

Lemma 2.1.

1

N

S1

(∫ t
0 X N

0 (s)ds
)∑

n=1
1{Φn = r }− 1

R
S1

(∫ t

0
X N

0 (s)ds

)→ 0 as N →∞. (2.17)

Lemma 2.2.

1

n

[
Ar

xn(t )−xnt
]→ 0 and

1

n

[
Ar

x (nt )−xnt
]→ 0 as n →∞.

We omit formal proofs but provide intuition. We recognize a marked point
process in Lemma 2.1, in which P {Φn = r } = 1/R. We view the first term as a
binomially distributed random variable, so that the second term is its mean.
Since S1(

∫ t
0 X N

0 (s)ds) →∞, we apply the central limit theorem. We have that the
left-hand side of (2.17) multiplied by

p
N converges to a normally distributed

random variable. This shows that the left-hand side as in (2.17) converges to 0.
Similarly in Lemma 2.2, we view Ar

xn(t ) and Ar
x (nt ) as a Poisson random

variable with mean xnt , from which we subtract its mean. The central limit
theorem gives that both expressions multiplied by

p
n converge to a normally

distributed random variable, so that the expressions themselves converge to 0.
Applying Lemmas 2.1 and 2.2 to (2.15) and (2.16) gives (for large N)

M̄ N
0 (t ) = M̄ N

0 (0)+
R∑

r=1
αrλ

∫ t

0
1{X N

r (s) > 0}ds −
∫ t

0
M̄ N

0 (s)ds,

M̄ N
r (t ) = M̄ N

r (0)+ 1

R

∫ t

0
M̄ N

0 (s)ds −αrλ

∫ t

0
1{X N

r (s) > 0}ds for 1 ≤ r ≤ R.

(2.18)

Finally, we find an alternate expression for F (t ) := ∫ t
0 1{X N

r (s) > 0}ds, which
stands for the amount of time that there was a positive number of tokens at
dispatcher r between times 0 and t . We analyze the derivative of F (t ) denoted
by f (t ) = 1{X N

r (t ) > 0} and express it in terms of M̄i (t ). We first note that if
M̄r (t ) > 0, then surely Xr (t ) > 0 so that f (t ) = 1. Vice versa however, X N

r (t ) = a
(constant) means that as N →∞, M̄r (t ) = 0. We therefore carefully analyze f (t )
in case M̄ N

r (t ) = 0.
We introduce the vector LN (t ), for which we have LN

i (t ) = 1
t

∫ t
0 1{X N

r (s) = i }ds

for i = 0,1, . . . N . Intuitively, LN
i (t ) is the fraction of time that dispatcher r has
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i tokens in a system with N servers. To simplify notation, we fix time t . We
will consider LN (t ) where N → ∞; we define the limiting probability π(i ) :=
limN→∞ LN

i (t ). Since LN (t ) has length N +1, π(i ) exists for all natural numbers
i , as well as for 0 and for ∞. We still have

∑
i πi (t ) = 1. In some cases we find

that there exist values of i such that π(i ) > 0, in other cases π(i ) = 0 for every
single value of i . Note that the latter property is a well-known property of many
measures, for example the Lebesgue measure.

We will now establish an expression for π(·) in a heuristic manner. We can
compute π(·) by defining an M/M/1 queue with arrival rate X N

0 (t )/R and de-
parture rate αrλN . Since the rates are scaled by N , for large N the system will
be in equilibrium at any time t > 0. For equilibrium probabilities, the system
is equivalent to a system with rates M̄ N

0 (t )/R and αrλ. When M̄ N
0 (t )/R ≥ αrλ,

we find that the queue length is a random walk with transition probabilities
pi ,i+1 > pi ,i−1, so that state 0 is a transient state (or null-recurrent for equal-
ity). In this case we will find that π(0) = 0. When M̄ N

0 (t )/R ≤ αrλ, state 0 is a
recurrent state, with equilibrium probability

1− M̄ N
0 (t )/R

αrλ
.

Since we are interested in the fraction of time that the number of tokens is
strictly greater than 0, we consider

1−π(0) = min

{
1,

M̄ N
0 (t )/R

αrλ

}
.

These observations lead to the assertion that for large N

f (t ) =1{X N
r (t ) > 0} =

min

{
1,

M̄ N
0 (t )/R
αrλ

}
M̄r (t ) = 0,

1 M̄r (t ) > 0.
(2.19)

We substitute (2.19) in (2.18) and omit the parameter N , since all substitutions
rely on large N . We then arrive at

M̄0(t ) = M̄0(0)+
R∑

r=1
tαrλ f (t )−

∫ t

0
M̄0(s)ds,

M̄r (t ) = M̄r (0)+ 1

R

∫ t

0
M̄0(s)ds − tαrλ f (t ) for 1 ≤ r ≤ R.

Taking derivatives with respect to t gives the set of ODEs as described in (2.10)–
(2.12).
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2.4.2 Fixed-point analysis

In order to determine the fixed point(s) x∗, we set dxi (t )/dt = 0 for all i =
0,1, . . . ,R, and obtain

x∗
0 =

R∑
r=1

z∗
r , (2.20)

z∗
r =βr x∗

0 +ν
(

1−x∗
0

R
−x∗

r

)
, (2.21)

and

z∗
r =αrλ−

[
αrλ−βr x∗

0 −ν1−x∗
0

R

]+
1

{
x∗

r = 0
}

. (2.22)

Without proof, we assume that the many-server (N → ∞) and stationary
(t → ∞) limits commute, so that x∗

0 is also the limit of the mean fraction of
busy servers in stationarity (see Section 1.3.2). Without proof we couple the
fixed point of the fluid limit with the stationary blocking probability. Because of
Little’s law, the limit B of the blocking probability satisfies

x∗
0 =λ(1−B). (2.23)

This in particular implies that x∗
0 =λ leads to B = 0: vanishing blocking.

Basic JIQ scheme. We first consider the basic JIQ scheme, i.e., βr = 1/R for
all r = 1, . . . ,R and ν= 0. (2.21) and (2.22) yield

x∗
0

R
= z∗

r =αrλ−
[
αrλ−

x∗
0

R

]+
1

{
x∗

r = 0
}

,

or equivalently,

αrλ−
x∗

0

R
=

[
αrλ−

x∗
0

R

]+
1

{
x∗

r = 0
}

. (2.24)

Now let I = {r :αr =αR } be the index set of the least-loaded dispatchers. (2.24)
forces x∗

r = 0 for all r ∉I .
We now distinguish two cases, depending on whether or not x∗

r = 0 for all
r ∈I as well. If that is the case, then we must have x∗

0 = 1, and αRλ≥ x∗
0 /R, i.e.,
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λ ≥ 1/(RαR ). Otherwise, we must have αRλ = x∗
0 /R, i.e., x∗

0 = RαRλ, so x∗
0 ≤ 1

forces λ≤ 1/(RαR ).
In conclusion, we have x∗

0 = min{RαRλ,1}. When λ≥ 1/(RαR ) so that x∗
0 = 1,

it must be the case that x∗
r = 0 for all r = 1, . . . ,R. When λ < 1/(RαR ) so that

x∗
0 < 1, any vector x∗ with x∗

r = 0 for all r ∉ I and
∑

r∈I x∗
r = 1− x∗

0 is a fixed
point. In particular, for equal dispatcher loads, i.e., αr = 1/R for all r = 1, . . . ,R,
so that I = {1, . . . ,R}, we have x∗

r = 0 for all r = 1, . . . ,R when λ ≥ 1, while any
vector x∗ with

∑R
r=1 x∗

r = 1−λ is a fixed point when λ< 1.
We use (2.23) to find B = 1− 1

λ min{RαRλ,1} = max{1−RαR ,1− 1/λ}, which
agrees with Theorem 2.1.

In Table 2.1 we compare the fluid-limit approximations for the blocking
probability with the exact formula from the Jackson network representation
and simulation results for various numbers of servers. Table 2.1 shows that the

Table 2.1: Blocking probabilities for λ= 0.9 and α1 = 0.8 or α1 = 0.6.

λ= 0.9,α1 = 0.8 λ= 0.9,α1 = 0.6
N Jackson simulation Jackson simulation

10 0.6021 0.6032 0.3201 0.3205
20 0.6000 0.6006 0.2545 0.2552
50 0.6000 0.6004 0.2092 0.2095

100 0.6000 0.6007 0.2006 0.2010
fluid (N =∞) 0.6000 - 0.2000 -

Jackson network analysis agrees with the simulation results. Furthermore, the
more symmetric the loads, the lower the blocking probability, which is consis-
tent with Theorem 2.1. Also, the fluid-limit approximation is highly accurate,
even for a fairly small number of servers.

2.4.3 Enhancements

We now examine the behavior of the system for Enhancements 2.1 and 2.2,
and show that they can achieve asymptotically zero blocking for any λ≤ 1 and
suitable parameter values as identified in Theorem 2.3. In light of (2.23) it
suffices to show that x∗

0 =λ for both enhancements.
Consider Enhancement 2.1; βr =αr and ν= 0. (2.21) and (2.22) give λ−x∗

0 =
[λ−x∗

0 ]+1{x∗
r = 0} for all r (this shows x∗

0 ≤λ). Assume that x∗
0 <λ. Then, x∗

r = 0
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for all r , which results in x∗
0 = 1, since

∑R
i=0 x∗

i = 1. This contradicts x∗
0 ≤ λ < 1,

so that x∗
0 =λ.

Notice that any point for which x∗
0 = λ and for which

∑R
i=0 x∗

i = 1, results in
z∗

r = αrλ which is in accordance with (2.20)–(2.22), and therefore is a fixed
point.

We next consider Enhancement 2.2 with βr = 1/R and ν≥ λ
1−λ (Rα1 −1). We

use (2.20) and (2.22) twice, first they give x∗
0 ≤λ, so that x∗

0 =λ−ε for some ε≥
0. Second, z∗

r =αrλ if the term in brackets in (2.22) is non-positive. Otherwise,

z∗
r ≥αrλ−

[
αrλ−

x∗
0

R
−ν1−x∗

0

R

]
≥αrλ−αrλ+ λ−ε

R
+ λ

1−λ (Rα1 −1)
1−λ

R
+ν ε

R

≥αrλ− ε

R
(1−ν),

which by (2.20) gives λ−ε= x∗
0 =∑R

r=1 z∗
r ≥λ−ε(1−ν), so that x∗

0 =λ.

Figure 2.5 displays the blocking probability as N →∞ for the system with
both enhancements. Since α1 = 0.7, we have that β1 = 0.7 is optimal. The block-
ing probability decreases as β1 approaches α1 and as ν increases. For ν > 0, it
suffices to choose β1 close to α1, which implies that it is not necessary to know
the exact loads, for the enhancements to be effective.

2.5 Fluid limit in the queueing scenario

We now proceed to the queueing scenario (with λ < 1 for stability). As before,
we consider a sequence of systems indexed by the total number of servers N . De-
note by y N

i (t ) = 1
N Y N

i (t ) the fraction of servers with i jobs and by xN
r (t ) = 1

N X N
r (t )

the normalized number of tokens held by dispatcher r in the N -th system at
time t , r = 1, . . . ,R. Further define uN (t ) = (y N (t ), xN

1 (t ) . . . , xN
R (t )), with y N (t ) =

(y N
i (t ))i≥0, and assume that uN (0) → u∞ as N →∞, with

∑∞
i=1 y∞

i +∑R
r=1 x∞

r = 1.
Then any weak limit u(t ) of the sequence {uN (t )}t≥0 as N →∞ is called a fluid
limit.

The fluid limit u(t ) in the queueing scenario with Enhancements 2.1 and 2.2
in place obeys the set of differential equations

dy0(t )

dt
= y1(t )−λ1(t )−λ2(t )y0(t ), (2.25)
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Figure 2.5: Blocking probability B in the limit for R = 2, λ= 0.9 and α1 = 0.7, for different
values of β1 and ν.

dyi (t )

dt
=λ1(t )1 {i = 1}+λ2(t )yi−1(t )

+ yi+1(t )− yi (t )−λ2(t )yi (t ) for all i ≥ 1,
(2.26)

dxr (t )

dt
=βr y1(t )+ν

(
y0(t )

R
−xr (t )

)
− zr (t )−λ2(t )xr (t ), (2.27)

with

zr (t ) =αrλ−
[
αrλ−βr y1(t )−ν y0(t )

R

]+
1 {xr (t ) = 0} ,

λ1(t ) =
R∑

r=1
zr (t ), λ2(t ) =λ−λ1(t ), (2.28)

and initial condition u(0) = u∞.
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The above set of fluid-limit equations may be interpreted as follows. Simi-
larly as in the blocking scenario, the term zr (t ) represents the (scaled) rate at
which dispatcher r uses tokens and forwards incoming jobs to idle servers at
time t . Accordingly, λ1(t ) is the aggregate rate at which dispatchers use tokens
to forward jobs to (guaranteed) idle servers at time t , while λ2(t ) is the aggre-
gate rate at which jobs are forwarded to randomly selected servers (which may
or may not be idle). (2.25) reflects that the rate of change in the fraction of
idle servers is the difference between the aggregate rate y0(t ) at which jobs are
completed by servers with one job, and the rate λ1(t ) at which dispatchers use
tokens to forward jobs to idle servers plus the rate λ2(t )y0(t ) at which jobs are
forward to randomly selected servers that happen to be idle. (2.26) states that
the rate of change in the fraction of servers with i jobs is the balance of the
rate λ2(t )yi−1(t ) at which jobs are forwarded to randomly selected servers with
i −1 jobs plus the aggregate rate yi+1(t ) at which jobs are completed by servers
with i +1 jobs, and the rate λ2(t )yi (t ) at which jobs are forwarded to randomly
selected servers with i jobs plus the aggregate rate yi (t ) at which jobs are com-
pleted by servers with i jobs. In case i = 1, the rate at which dispatchers use
tokens to forward jobs to idle servers should be included as additional positive
term.

(2.27) is similar to (2.11), where the additional fourth term captures the
rate at which tokens are revoked when jobs are forwarded to randomly selected
servers that happen to be idle.

2.5.1 Fixed-point analysis

In order to determine the fixed point(s) u∗, we set dyi (t )/dt = 0 for all i ≥ 0, and
dxr (t )/dt = 0 for all r = 1, . . . ,R. We obtain

y∗
1 =λ∗

1 +λ∗
2 y∗

0 , (1+λ∗
2 )y∗

i =λ∗
2 y∗

i−1 + y∗
i+1 for all i ≥ 2. (2.29)

Solving (2.29) gives

y∗
0 = 1−λ, y∗

k =λ(1−λ∗
2 )

(
λ∗

2

)k−1 for all k ≥ 1.

Thus the mean number of jobs at a server is
∞∑

k=1
k y∗

k =
∞∑

k=1
kλ(1−λ∗

2 )
(
λ∗

2

)k−1 = λ

1−λ∗
2

.

As for the blocking scenario, we use the fixed point of the fluid limit without
proof as indication or the stationary waiting time in the queueing scenario.
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Little’s law then gives

∞∑
k=1

k y∗
k =λ(E[W ]+1), (2.30)

where the left-hand side represents the mean number of jobs at a server in the
many-server limit. We use (2.30) to obtain

E[W ] =
∑∞

k=1 k y∗
k

λ
−1 = λ∗

2

1−λ∗
2

, (2.31)

which shows vanishing wait in case λ∗
2 = 0.

We also obtain the following equations for the fixed point:

z∗
r =βrλ(1−λ∗

2 )−λ∗
2 x∗

r +ν
(

1−λ
R

−x∗
r

)
, (2.32)

z∗
r =αrλ−

[
αrλ−βrλ(1−λ∗

2 )−ν1−λ
R

]+
1

{
x∗

r = 0
}

, (2.33)

and

λ∗
1 =

R∑
r=1

z∗
r . (2.34)

We define

q∗
r = z∗

r

∣∣∣
x∗

r =0
=βrλ(1−λ∗

2 )+ν1−λ
R

. (2.35)

(2.32) implies z∗
r ≤ q∗

r and (2.33) leads to z∗
r ≤ αrλ, x∗

r = 0 ⇒ z∗
r = q∗

r and
x∗

r > 0 ⇒ z∗
r =αrλ, yielding z∗

r = min{q∗
r ,αrλ} and thus

λ∗
1 =

R∑
r=1

min{q∗
r ,αrλ}. (2.36)

Basic JIQ scheme. In case βr = 1/R and ν= 0, (2.36) can be rewritten to

λ∗
2 =

R∑
r=1

[
αrλ−

λ(1−λ∗
2 )

R

]+
, (2.37)
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and by further calculations, since αr is decreasing in r , to the expression for λ∗
2

in Theorem 2.2.
In Table 2.2 we compare the fluid-limit approximations for the mean-waiting

time with simulation figures for various numbers of servers. Table 2.2 shows
that the fluid-limit analysis agrees with the simulation results, although the
number of servers needs to be larger and simulations need to be longer than
in the blocking scenario for extremely high accuracy to be observed. Similarly
to Table 2.1, the more symmetric the loads, the better the performance and the
lower the mean waiting time, which is in line with Theorem 2.2.

Table 2.2: Mean waiting time for λ= 0.9 and α1 = 0.8 or α1 = 0.6.

λ= 0.9,α1 = 0.8 λ= 0.9,α1 = 0.6
N simulation simulation

10 2.5824 2.1234
20 1.7349 1.1386
50 1.1704 0.5001

100 1.0173 0.2981
200 0.9764 0.2207
500 0.9631 0.1983

1000 0.9599 0.1962
fluid (N =∞) 0.9643 0.1957

2.5.2 Enhancements

We examine the behavior of the system for Enhancements 2.1 and 2.2 and show
that they can achieve asymptotically zero waiting for any λ < 1 and suitable
parameter values as identified in Theorem 2.3. In view of (2.31) it suffices to
show that λ∗

2 = 0 for both enhancements. We first consider Enhancement 2.1 in
which αr = βr for all r and ν = 0. (2.35) gives q∗

r −αrλ = −βrλλ
∗
2 ≤ 0 for all r

and q∗
r =βrλ(1−λ+λ∗

1 ). We obtain

λ∗
1 =

R∑
r=1

q∗
r =λ(1−λ+λ∗

1 ),

which has a unique solution λ∗
1 =λ, so that λ∗

2 = 0.
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Figure 2.6: Mean waiting time E[W ] in the limit for R = 2, λ = 0.9 and α1 = 0.7, for
different values of β1 and ν.

Next, we turn to Enhancement 2.2 where ν ≥ λ
1−λ (Rα1 −1) and βr = 1/R. If

the term in brackets in (2.33) is non-positive, z∗
r =αrλ. Otherwise,

z∗
r ≥αrλ−

[
αrλ−

λ(1−λ∗
2 )

R
−ν1−λ

R

]
≥αrλ−αrλ+

λ−λλ∗
2

R
+ λ

R
(Rα1 −1) ≥αrλ−

λλ∗
2

R
,

which by (2.34) gives λ−λ∗
2 =λ∗

1 ≥λ−λλ∗
2 , and since λ< 1, we obtain λ∗

2 = 0.

Figure 2.6 displays the mean waiting time as N →∞ for the system with both
enhancements. Similarly to Figure 2.5, we can greatly improve the performance
by tuning β and ν. Again α1 = 0.7, so that β1 = 0.7 is the best choice. The mean
waiting time decreases as β1 approaches α1, or as the rate ν increases. Exact
knowledge of the arrival rates is not required, and a rough approximation of β1

and a small value of ν are sufficient for the mean waiting time to vanish.
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2.6 Conclusion

We examined the performance of the JIQ scheme in large-scale systems with
several possibly heterogeneous dispatchers. We used product-form representa-
tions and fluid limits to show that the basic JIQ scheme fails to deliver zero
blocking and wait for any asymmetric dispatcher loads, even for arbitrarily low
overall load. Remarkably, it is the least-loaded dispatcher that throttles tokens
and leaves idle servers stranded, thus acting as bottleneck.

In order to counter the performance degradation for asymmetric dispatcher
loads, we introduced two extensions of the basic JIQ scheme where tokens are
either distributed non-uniformly or occasionally exchanged among the various
dispatchers. We proved that these extensions can achieve zero blocking and
wait in the many-server limit, for any subcritical overall load and arbitrarily
skewed load profiles. Extensive simulation experiments corroborated these re-
sults, indicating that they apply even in moderately sized systems.

It is worth emphasizing that the proposed enhancements involve no or con-
stant additional communication overhead per job, and hence retain the scala-
bility of the basic JIQ scheme. The algorithms do rely on suitable parameter
settings, and it would be of interest to develop learning techniques for that.

While we allowed the dispatchers to be heterogeneous, we assumed all the
servers to be statistically identical, and the service requirements to be expo-
nentially distributed. As noted earlier, Theorem 2.1 in fact holds for non-
exponential service requirement distributions as well. It could be interesting to
extend Theorems 2.2 and 2.3 to possibly non-exponential service requirement
distributions.

2.A Proof of Proposition 2.1

We write (2.7) as

B(2, N ,λ,α1,α2,β1,β2) = (γ1 −γ2)
1+ α2

α1

γ1
γ2

Z (N ,λ,γ1,γ2)
γ1
α1

− γ1
α1

Z (N ,λ,γ1,γ2)
(2.38)

with

Z (N ,λ,γ1,γ2) = γ2

γ1

∑N
n=0

(
γ2
γ1

)N−n (2γ2λN)n

n!∑N
n=0

(2γ2λN)n

n!

. (2.39)
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Lemma 2.3. Assume γ1 > γ2.

(a) For 2γ2λ≤ 1, lim
N→∞

Z (N ,λ,γ1,γ2) = 0.

(b) For 2γ2λ> 1,

lim
N→∞

Z (N ,λ,γ1,γ2) = γ2

γ1

2γ2λ−1

2γ2λ− γ2
γ1

.

To prove Lemma 2.3 we first state several auxiliary results.

Lemma 2.4. For k ≥ 0 and η> 0,

T (N ) := (N −k)!

Nη(N −η−k)!
→ 1 as N →∞.

Proof. Note that T (N ) = N−k
N · N−k−1

N · . . . · N−η−k+1
N and hence(

N −η−k

N

)η
≤ T (N ) ≤ 1.

Since N−η−k
N → 1, we have

(
N−η−k

N

)η→ 1, which shows that T (N ) → 1.

Lemma 2.5. For x ≤ 1 and k ≥ 0,

(xN )N−k

(N−k)!∑N
n=0

(xN )n

n!

→ 0 as N →∞.

Proof. First assume x < 1. Let ε > 0 and define ε̄ := b1/εc. Fix N̄ such that
N̄−k−ε̄

N̄
> x. Note that such an N̄ exists because x < 1 and N̄−k−ε̄

N̄
tends to 1 for

large N̄ . For N > N̄ , we find xN
N−k−ε̄ < 1. For all i ≤ ε̄,

(xN )N−k−i

(N −k − i )!
<

(xN )N−k−i

(N−k−i )!
xN

N−k−ε̄
≤

(xN )N−k−i

(N−k−i )!
xN

N−k−i

= (xN )N−k−i−1

(N −k − i −1)!
,

which leads to

(xN )N−k

(N −k)!
< (xN )N−k−1

(N −k −1)!
< (xN )N−k−2

(N −k −2)!
< . . . < (xN )N−k−ε̄−1

(N −k − ε̄−1)!
.
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We find
N∑

n=0

(xN )n

n!
>

N−k∑
n=N−k−ε̄−1

(xN )n

n!
> (ε̄+1)

(xN )N−k

(N −k)!

so that for all N > N̄ ,

(xN )N−k

(N−k)!∑N
n=0

(xN )n

n!

<
(xN )N−k

(N−k)!

(ε̄+1) (xN )N−k

(N−k)!

= 1

ε̄+1
< ε.

Next consider x = 1. Let ε > 0 be given. Fix ε̂ = b1/εc+1. Fix N̄ so that for all
N > N̄ ,

(N −k)!

N n(N −n −k)!
> 1− 1

ε̂+1
,

for n = 0, . . . , ε̂ using Lemma 2.4. Then we find

N N−k

(N−k)!∑N
n=0

N n

n!

≤
N N−k

(N−k)!∑N−k
n=N−k−ε̂

N n

n!

=
N N−k

(N−k)!

N N−k

(N−k)!

(
1+ N−k

N + N−k
N

N−k−1
N + . . .

)
=

N N−k

(N−k)!

N N−k

(N−k)!

(∑ε̂
n=0

(N−k)!
N n (N−k−n)!

) = 1∑ε̂
n=0

(N−k)!
N n (N−k−n)!

< 1

(ε̂+1)(1− 1
ε̂+1 )

= 1

ε̂
< ε.

We now use Lemmas 2.4 and 2.5 to prove Lemma 2.3(i).

Proof of Lemma 2.3(i). Denote x = 2γ2λ ≤ 1 and A = γ2
γ1

< 1. Let ε > 0 be given.

Fix k∗ such that Ak∗ < ε/2. Lemma 2.5 gives an N̄ such that

(xN )N−k

(N−k)!∑N
n=0

(xN )n

n!

< ε

2k∗ ,

for all N > N̄ and k = 0, . . . ,k∗−1 (we can use Lemma 2.5 for all k and choose
the maximum over all values of N̄). Then, complete the proof by observing that

Z (N ,λ,γ1,γ2) = A

∑N
n=0 AN−n (xN )n

n!∑N
n=0

(xN )n

n!

≤ A

(
k∗ ε

2k∗ +
∑N−k∗

n=0 AN−n (xN )n

n!∑N
n=0

(xN )n

n!

)

≤ ε

2
+ Ak∗

∑N−k∗
n=0 AN−n−k∗ (xN )n

n!∑N
n=0

(xN )n

n!

< ε

2
+ Ak∗ < ε

2
+ ε

2
< ε
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for all N > N̄ .

Next assume x > 1. We need the following supporting result.

Lemma 2.6. For 0 ≤ A ≤ 1 and x > 1,

Y (N ) :=
∑N

n=0 AN−n (xN )n

n!
(xN )N

N !

N→∞→ 1

1− A
x

for all 0 ≤ A ≤ 1.

Proof. For ε> 0, choose k∗ such that(
A

x

)k∗+1

<
(
1− A

x

)
ε

2
.

We use Lemma 2.4 with k = 0 to find N̄ such that for all N > N̄ ,

N !

N n(N −n)!
> 1− ε

2

(
1− A

x

)
for all n ≤ k∗. Then we obtain for all N > N̄ ,

Y (N ) =
N∑

n=0

(
A

x

)n N !

N n(N −n)!
≥

k∗∑
n=0

(
A

x

)n (
1− ε

2

(
1− A

x

))

=
(
1− ε

2

(
1− A

x

))
1− ( A

x

)k∗+1

1− A
x

= 1

1− A
x

− ε

2

1− A
x

1− A
x

−
( A

x

)k∗+1

1− A
x

+ ε

2

(
1− A

x

) ( A
x

)k∗+1

1− A
x

> 1

1− A
x

− ε

2
− ε

2
= 1

1− A
x

−ε.

Since for all n,

N !

N n(N −n)!
≤ 1,

this gives

N∑
n=0

(
A

x

)n N !

N n(N −n)!
≤

N∑
n=0

(
A

x

)n

→ 1

1− A
x

as N →∞.

We have shown that in the limit
1

1− A
x

−ε≤ Y (N ) ≤ 1

1− A
x

,

which gives the desired result.



46 Load balancing with multiple dispatchers

Proof of Lemma 2.3(ii). We apply Lemma 2.6 to both the numerator and de-
nominator of Z (N ,λ,γ1,γ2) (in the denominator we use A = 1) to prove (ii) of
Lemma 2.3.

We will now apply Lemma 2.3 to (2.38) to find

lim
N→∞

B(2, N ,λ,α1,α2,β1,β2) =
{

2β1

(
α1

2β1
− α2

2β2

)
if 2γ2λ≤ 1,

1−1/λ if 2γ2λ> 1,
(2.40)

which after using α1 +α2 = 1 and β1 +β2 = 1 gives Proposition 2.1.

2.B Proof of Proposition 2.2

We first derive the following supporting result.

Proposition 2.3 (Recursive formula for the blocking probability).

B(R +1, N ,λ) = R

N +R −λN (1−B(R, N ,λ))
. (2.41)

The proof of Proposition 2.3 is straightforward but mathematically involved.

Proof. We use the Pochhammer symbol (a)n = a(a+1)(a+2)·. . .·(a+n−1) = (a+n−1)!
(a−1)!

and rewrite the blocking probability as

B(R+1, N ,λ) = R

∑N
n=0(N −n +1)R−1

(λN )n

n!∑N
n=0(N −n +1)R

(λN )n

n!

= R

∑N
n=0(N −n +1)R−1

(λN )n

n!∑N
n=0(N −n +R)(N −n +1)R−1

(λN )n

n!

.

Then

R

B(R +1, N ,λ)
=

∑N
n=0(N −n +R)(N −n +1)R−1

(λN )n

n!∑N
n=0(N −n +1)R−1

(λN )n

n!

= N +R −
∑N

n=0 n(N −n +1)R−1
(λN )n

n!∑N
n=0(N −n +1)R−1

(λN )n

n!

. (2.42)

We next rewrite the numerator in (2.42) as

N∑
n=0

n(N −n +1)R−1
(λN )n

n!
=λN

N∑
n=0

(N −n)R−1
(λN )n

n!
. (2.43)
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Substituting (2.43) in (2.42) yields

R

B(R +1, N ,λ)
= N +R −λN

∑N
n=0(N −n)R−1

(λN )n

(n)!∑N
n=0(N −n +1)R−1

(λN )n

n!

= N +R −λN

∑N
n=0(N −n)R−1

(λN )n

(n)! −∑N
n=0(N −n +1)R−1

(λN )n

n!∑N
n=0(N −n +1)R−1

(λN )n

n!

−λN

= N +R +λN

∑N
n=0(R −1)(N −n +1)R−2

(λN )n

(n)!∑N
n=0(N −n +1)R−1

(λN )n

n!

−λN

= N +R −λN (1−B(R, N ,λ)),

which gives Proposition 2.3.

Remark. Equation (2.41) in Proposition 2.3 can be rewritten to

(N +R −1)
1F1(−N ,1−N −R,λN )

1F1(−N ,2−N −R,λN )

= N +R −1−λN

(
1−

(
R −2

N +R −2

)
1F1(−N ,3−N −R,λN )

1F1(−N ,2−N −R,λN )

)
,

in which

1F1(a,b, z) =
∞∑

n=0

a(n)zn

b(n)n!

is Kummer’s function. After substituting a := −N , b := 2− N −R and z := λN ,
and multiplying with the function in the denominator, one can use (13.3.2) of
[DLMF] to obtain Proposition 2.3 [Tem16].

Proof. First assume that λ< 1. Using Proposition 2.3 and B(R, N ,λ) ≥ 0 gives

B(R+1, N ,λ) = R

R +N (1−λ)+λN B(R, N ,λ)
≤ R

R +N (1−λ)
→ 0 as N →∞.

For λ= 1, we have B(R+1, N ,λ) = R
R+N B(R,N ,λ) . We use mathematical induction to

prove that for each R there exist M1 and M2 so that M1 ≤
p

N B(R, N ,1) ≤ M2 for
large enough N . The induction basis follows from [Jag74] since

p
N B(1, N ,1) →p

2/π . Next, we assume that M1 ≤
p

N B(R, N ,1) ≤ M2. Then,

R
p

N

R +p
N M2

≤
p

N B(R +1, N ,1) ≤ R
p

N

R +p
N M1

,



48 Load balancing with multiple dispatchers

so that the statement also holds for R+1 for large enough N . Since
p

N B(R, N ,1)
is bounded between two constants, we know that B(R, N ,1) → 0 which proves
Proposition 2.2.

Remark. We use Proposition 2.3 to gain some insights in the case R = 2. We
obtain

B(2, N ,λ) = R

N +R −λN (1−Be (N ,λN ))
,

in which

Be (N ,λN ) = B(1, N ,λ) =
(λN )N

N !∑N
n=0

(λN )n

n!

is the Erlang-B formula for the blocking probability in a standard M/M/N/N
system with arrival rate λN and unit mean service times. We see that knowledge
of the basic Erlang-B formula immediately translates into results for the blocking
scenario for R = 2. For instance, for ρ < 1, Be (N ,ρN ) → 0 as N →∞ [Jag74], so
that for all λ< 1,

B(2, N ,λ) ≈ 1

1+N (1−λ)
→ 0 as N →∞.

This approximation is good for small λ and large N . When λ is close to 1, the
approximation becomes accurate only for really large N . In that case, more pre-
cise asymptotic expansions may give better approximations; see [Jag74; JLZ08;
LT09]. For example, we can use that

p
N Be (N , N ) →p

2/π to obtain

B(2, N ,1) ≈ 1

1+p
2N /π

,

which gives B(2, N ,1) → 0 and
p

N B(2, N ,1) →p
π/2 as N →∞.



Chapter 3
Hyper-scalable load balancing
with scheduled updates

Based on:

[BBL19] M. van der Boor, S. C. Borst, and J. S. H. van Leeuwaarden.
“Hyper-Scalable JSQ with Sparse Feedback”. In: Proceedings of
the ACM on Measurement and Analysis of Computing Systems 3.1
(2019)

3.1 Introduction

We introduce and analyze a novel class of hyper-scalable LBAs (load balancing
algorithms) that leverage memory at the (single) dispatcher, in order to counter
the scalability challenges as mentioned in Section 1.2. The basic scheme is as
follows:

Algorithm 3.1 (Basic hyper-scalable scheme). The dispatcher forwards incoming
jobs to the server with the lowest queue estimate. The dispatcher maintains an esti-
mate for every server and increments these estimates for every job that is assigned.
Status updates of servers occur at rate δ per server, and update the estimate that
the dispatcher has at its disposal to the actual queue length.

We introduce four hyper-scalable schemes that obey the rules of Algorithm
3.1 but differ in when the status updates are sent. When the updates sent by the
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servers to the dispatcher are synchronized, we denote the scheme by SUJSQ(δ)
(Synchronized-Updates JSQ). Similarly we introduce AUJSQ(δ) (Asynchronous-
Updates JSQ), which is used when the updates are asynchronous. We add an
exp-tag whenever the time between two updates is exponentially distributed
(with parameter δ and mean 1/δ) and a det-tag when the time between
the updates is constant (1/δ). This gives rise to four schemes; SUJSQdet(δ),
SUJSQexp(δ), AUJSQdet(δ) and AUJSQexp(δ).

We show that the four schemes can achieve a vanishing waiting time in the
many-server limit with just one message per job if the load is low enough. The
proposed schemes are particularly geared however towards the sparse feedback
regime with less than one message per job, where they outperform correspond-
ing sparsified JIQ versions. With fluid limits (see Section 1.3.2) we demonstrate
that in the ultra-low feedback regime the mean stationary waiting time tends
to a constant in the synchronized case, but grows without bound in the asyn-
chronous case. A more detailed overview of our key findings is presented in the
next section.

Organization of the chapter. In Section 3.2 we discuss our key findings and
contributions for the hyper-scalable schemes, obtained through fluid-limit anal-
ysis and extensive simulations, and we introduce some useful notation and
preliminaries. We turn to a comprehensive analysis of the synchronized and
asynchronous cases through the lens of fluid limits in Sections 3.3 and 3.4,
respectively. In Section 3.5 we conclude with some summarizing remarks, a
comparison with the related work [AD20] and topics for further research.

3.2 Model description and key results

The precise model we consider consists of N parallel identical servers and one
dispatcher. Jobs arrive at the dispatcher as a Poisson process of rate λN , where
λ denotes the job arrival rate per server. Every job is dispatched to one of the
servers, after which it joins the queue of the server if the server is busy, or
will start its service when the server is idle. The job processing requirements
are independent and exponentially distributed with unit mean at each of the
servers. We consider several load balancing algorithms for the dispatching of
jobs to servers, including the hyper-scalable schemes SUJSQdet(δ), SUJSQexp(δ),
AUJSQdet(δ) and AUJSQexp(δ). In the simulation experiments we will also briefly
consider SUJSQdet,idle(δ), which is similar to SUJSQdet(δ), except that only idle
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servers send notifications. We now present the results from simulation studies
and the fluid-limit and fixed-point analysis in Sections 3.3 and 3.4.

3.2.1 Large-system performance

We investigate fluid limits in order to explore the performance of the hyper-
scalable algorithms in the many-server limit N →∞. We analyze their behavior
and fixed points, and use these to derive results for the system in stationarity as
function of the update frequency δ.

Asymptotically optimal feedback regime. Using fluid-limit analysis, we prove
that the proposed schemes can achieve a vanishing waiting time in the many-
server limit when the update frequency δ exceeds λ/(1−λ). In case servers only
report zero queue lengths and suppress updates for non-zero queues, the update
frequency required for a vanishing waiting time can in fact be lowered to just λ,
matching the one message per job involved in the JIQ scheme.

Sparse feedback regime. Figure 3.1 displays results from extensive simula-
tions and shows the mean waiting time as function of the number of messages
per job. This number is proportional to the update frequency δ, and equals δ/λ
for the four hyper-scalable schemes. We also show results for JIQ(p), a sparsi-
fied version of JIQ, where a token is sent to the dispatcher with probability p
whenever a server becomes idle. Random refers to the scheme where every job
is assigned to a server selected uniformly at random, and Round-Robin assigns
the i -th arriving job to server 1+ i mod N .

Figure 3.1 further shows that the schemes SUJSQdet(δ) and SUJSQexp(δ) out-
perform JIQ(p) in the sparse feedback regime when δ < 0.5. Also observe that
SUJSQdet,idle(δ), the scheme in which only idle servers send reports, achieves a
near-zero waiting time with just one message per job, just like the JIQ scheme,
and outperforms JIQ(p) across most of the relevant domain δ < 0.5. However,
as δ ↓ 0 the waiting time grows without bound, since estimates will grow large
due to lack of updates, which causes servers that are reported idle in the latest
update to receive many jobs in succession.

Ultra-low feedback regime. We examine the performance in the ultra-low
feedback regime where the update frequency δ goes to zero, and in particular
establish a somewhat counter-intuitive dichotomy. When all status updates are
synchronized, the behavior of each of the individual queues approaches that of
a single-server queue with a near-deterministic arrival process and exponential
service times, with the mean stationary waiting time tending to a finite constant.
In contrast, for asynchronous updates, the individual queues experience saw-
tooth behavior with oscillations and waiting times that grow without bound.
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Figure 3.1: Mean waiting times for different schemes (with various parameters) for
λ = 0.7 and N = 200 obtained via a discrete-event simulation. For each of the schemes,
the parameter δ, d or p is varied and the communication in terms of messages per job
and the waiting times of jobs are tracked in the simulation.

3.2.2 Synchronize or not?

In case of synchronized updates, the dispatcher will update the queue lengths of
the servers simultaneously. Thus, just after an update moment, the dispatcher
has a perfect view of the status of all servers and it will dispatch jobs optimally.
After a while, the estimates will start to deviate from the actual queue lengths,
so that the scheme no longer makes (close to) optimal decisions. With asyn-
chronous updates servers send updates at independent times, which means that
some of the estimates may be very accurate, while others may differ significantly
from the actual queue lengths.

Round-Robin resemblance. We find that both SUJSQdet(δ) and SUJSQexp(δ)
resemble Round-Robin as the update frequency δ approaches zero, and are the
clear winners in the ultra-low feedback regime, which is crucial from a scala-
bility perspective (see Figure 3.1). To understand the resemblance with Round-
Robin, notice that the initial queue lengths after an update will be small com-
pared to the number of arrivals until the next update. Thus soon after the
update the dispatcher will essentially start forwarding jobs in a (probabilistic)
Round-Robin manner. Specifically, most servers will have equal queue estimates
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at certain points in time, and they will each receive one job every λ time units,
but in a random order. This pattern repeats itself and resembles Round-Robin,
where the difference of received jobs among servers can be at most one.

Dichotomy. In Figure 3.1 we also see that while AUJSQdet(δ) outperforms the
synchronized variants for large values of the update frequency δ, it produces a
mean waiting time that grows without bound as δ approaches zero. The lat-
ter issue also occurs for AUJSQexp(δ) and render the asynchronous versions far
inferior in the ultra-low feedback regime compared to both synchronized vari-
ants. To understand this remarkable dichotomy, notice that queue estimates
must inevitably grow to increasingly large values of the order λ/δ and signif-
icantly diverge from the true queue lengths as the update frequency becomes
small, both in the synchronized and asynchronous versions. However, in the
synchronized variants the queue estimates will all be lowered and updated to
the true queue lengths simultaneously, prompting the dispatcher to evenly dis-
tribute incoming jobs over time. In contrast, in the asynchronous versions, a
server will be the only one with a low queue estimate right after an update,
and almost immediately be assigned a huge pile of jobs to bring its queue es-
timate at par, resulting in oscillatory effects. This somewhat counter-intuitive
dichotomy reveals that the synchronized variants behave benignly in the pres-
ence of outdated information, while the asynchronous versions are adversely
impacted.

3.2.3 Notation and preliminaries

In this subsection we introduce some useful notation and preliminaries in prepa-
ration for the fluid-limit analysis in Sections 3.3 and 3.4. Recall that all the
servers are identical and the dispatcher only distinguishes among servers based
on their queue estimates and does not take their identities into account when
forwarding jobs. Hence we do not need to keep track of the state of each indi-
vidual server, but only count the number of servers that reside in a particular
state. Specifically, we will denote by Yi , j (t ) the number of servers with queue
length i (including a possible job being served) and queue estimate j ≥ i at the
dispatcher at time t . Further denote by Vi =∑∞

l=i Yi l and W j =∑ j
k=0 Yk j the total

number of servers with queue length i and queue estimate j , respectively, when
the system is in state Y .

In order to analyze fluid limits in a regime where the number of servers N
grows large, we will consider a sequence of systems indexed by N , and attach
a superscript N to the associated state variables. We specifically introduce the
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fluid-scaled state variables y N
i , j (t ) = Y N

i , j (t )/N , representing the fraction of servers
in the N -th system with true queue length i and queue estimate j ≥ i at the
dispatcher at time t , and assume that the sequence of initial states is such that
y N (0) → y∞. Any (weak) limit {y(t )}t≥0 of the sequence ({y N (t )}t≥0)N≥1 as N →∞
will be called a fluid limit (also see Section 1.3.2).

Let m(Y ) = min{ j : W j > 0} be the minimum queue estimate among all servers
when the system is in state Y . When a job arrives and the system is in state Y ,
it is dispatched to one of the Wm(Y ) servers with queue estimate m(Y ) selected
uniformly at random, so it joins a server with queue length i ≤ m(Y ) with prob-
ability Yi ,m(Y )/Wm(Y ). Because of the Poisson arrival process, transitions from a
state Y to a state Y ′ with Y ′

i , j = Yi , j −1 and Y ′
i+1, j+1 = Yi+1, j+1 +1 thus occur at

rate λN pi , j (Y ), with pi , j (Y ) = 1{
j = m(Y )

}
Yi , j /W j , i = 0, . . . , j . Due to the unit-

exponential processing requirements, transitions from a state Y to a state Y ′
with Y ′

i , j = Yi , j − 1 and Y ′
i−1, j = Yi−1, j + 1 occur at rate Yi , j , i = 1, . . . , j . For no-

tational compactness, we further omit the dependence of Y for m(Y ), pi , j (Y )
and qi , j (Y ) and instead write m(t ), pi , j (t ) and qi , j (t ) as they only depend on t
though y(t ).

In order to specify the transitions due to the updates, we need to distinguish
between the synchronized and the asynchronous case.

Synchronized updates

Whenever a synchronized update occurs and the system is in state Y , a transi-
tion occurs to state Y ′ with Y ′

i i =Vi and Y ′
i j = 0 for i = 0, . . . , j −1. Note that these

transitions only occur in a Markovian fashion when the update intervals are
exponentially distributed. When the update intervals are non-exponentially dis-
tributed, {Y (t )}t≥0 is not a Markov process, but the evolution between successive
updates is still Markovian.

Asynchronous updates

When the system is in state Y and a server with queue length i and queue
estimate j > i sends an update to the dispatcher, a transition occurs to a state Y ′
with Y ′

i , j = Yi , j − 1 and Y ′
i ,i = Yi ,i + 1. Note that these transitions only occur in

a Markovian fashion when the update intervals are exponentially distributed.
When the update intervals are non-exponentially distributed, {Y (t )}t≥0 is not a
Markov process, and in order to obtain a Markovian state description, the state



3.3 Synchronized updates 55

variables Yi j would in fact need to be augmented with continuous variables
keeping track of the most recent update moments for the various servers.

3.3 Synchronized updates

In this section we examine the fluid limit for synchronized updates. In Sec-
tion 3.3.1 we provide a description of the fluid-limit trajectory, along with an
intuitive interpretation, numerical illustration and comparison with simulation.
In Section 3.3.2 the fluid-limit analysis will be used to derive a finite upper
bound for the queue length on fluid scale for any given update frequency δ> 0
(Proposition 3.1) and to show that in the long term queueing vanishes on fluid
level for a sufficiently high update frequency δ (Proposition 3.2).

3.3.1 Fluid-limit dynamics

The fluid limit y(t ) (in between successive update moments) satisfies the system
of differential equations

dyi , j (t )

dt
= yi+1, j (t )1{i < j }−yi , j (t )1{i > 0}+λpi−1, j−1(t )1{i > 0}−λpi , j (t ), (3.1)

where

pi , j (t ) = yi , j (t )

w j (t )
1{m(t ) = j }

denotes the fraction of jobs assigned to a server with queue length i and queue
estimate j in fluid state y at time t , with w j (t ) =∑ j

k=0 yk, j (t ) denoting the frac-
tion of servers with queue estimate j and m(t ) = min( j |w j (t ) > 0) the minimum
queue estimate in fluid state y at time t . At an update moment τ, the fluid limit
shows discontinuous behavior, with yi ,i (τ) = vi (τ−) and yi , j (τ) = 0 for all i < j ,
with vi (t ) = ∑∞

l=i yi ,l (t ) denoting the fraction of servers with queue length i in
fluid state y at time t .

Informal outline of the derivation

We now provide an informal outline of the derivation of the fluid limit for syn-
chronized updates as stated in (3.1). Let Ai , j (t ) and Si , j (t ) denote unit-rate
Poisson processes, j ≥ i ≥ 0, all independent.
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The system dynamics (in between successive update moments) may then be
represented as (see for instance [HK94; PTW07])

Y N
i , j (t ) = Y N

i , j (t0)+Si+1, j

(∫ t

t0

Y N
i+1, j (s)ds

)
1
{
i < j

}−Si , j

(∫ t

t0

Y N
i , j (s)ds

)
1{i > 0}

+ Ai−1, j−1

(
λN

∫ t

t0

pi−1, j−1(Y N (s))ds

)
1{i > 0}− Ai , j

(
λN

∫ t

t0

pi , j (Y N (s))ds

)
,

with pi , j (Y ) = Yi , j∑ j
k=0 Yk, j

1
{

j = m(Y )
}
.

Dividing by N and rewriting in terms of the fluid-scaled variables y N
i , j (t ) =

1
N Y N

i , j (t ), we obtain

y N
i , j (t ) = y N

i , j (t0)

+ 1

N
Si+1, j

(
N

∫ t

t0

y N
i+1, j (s)ds

)
1
{
i < j

}− 1

N
Si , j

(
N

∫ t

t0

y N
i , j (s)ds

)
1{i > 0}

+ 1

N
Ai−1, j−1

(
λN

∫ t

t0

pi−1, j−1(Y N (s))ds

)
1{i > 0}

− 1

N
Ai , j

(
λN

∫ t

t0

pi , j (Y N (s))ds

)
.

(3.2)

Now introduce

S̃k,l (u) := Sk,l (u)−u, Ãk,l (u) := Ak,l (u)−u,

and observe that S̃k,l (·) and Ãk,l (·) are martingales. By standard arguments
it can be shown that both 1

N S̃k,l (N
∫ t

t0
y N

k,l (s)ds) and 1
N Ãk,l (λN

∫ t
t0

pk,l (Y N (s))ds)

converge to zero as N →∞ almost surely.
Exploiting the fact that the minimum queue estimate m(Y N (t )) cannot de-

crease in between successive update moments, it can also be established that∫ t

t0

pk,l (Y N (s))ds →
∫ t

0
pk,l (s)ds,

as N →∞, with pk,l (y) = yk,l
wl (y)1

{
m(y) = l

}
as defined earlier.

Taking the limit for N → ∞ in (3.2), we conclude that any (weak) limit
{yi , j (t )}t≥0 of the sequence

(
{y N

i , j (t )}t≥0

)
N≥1

in between successive update mo-
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ments must satisfy

yi , j (t ) = yi , j (t0)+
∫ t

t0

yi+1, j (s)ds1
{
i < j

}−∫ t

t0

yi , j (s)ds1{i > 0}

+λ
∫ t

t0

pi−1, j−1(y(s))ds1{i > 0}−λ
∫ t

t0

pi , j (y(s))ds,

with yi , j (0) = y∞
i , j .

Rewriting the latter integral equation in differential form yields (3.1).

Interpretation

The above system of differential equations may be heuristically explained as
follows. The first two terms correspond to service completions at servers with
i+1 and i jobs, which result in an increase and decrease in the fraction of servers
with i jobs, respectively. The third and fourth terms reflect the job assignments
to servers with the minimum queue estimate m(t ). The third term captures the
resulting increase in the fraction of servers with queue estimate m(t )+1, while
the fourth term captures the corresponding decrease in the fraction of servers
with queue estimate m(t ).

Summing the equations (3.1) over i = 0,1, . . . , j yields

dw j (t )

dt
=λ[1{m(t ) = j −1}−1{m(t ) = j }] =


−λ j = m(t ),
λ j = m(t )+1,
0 j 6= m(t ),m(t )+1,

(3.3)

reflecting that servers with the minimum queue estimate m(t ) are assigned jobs,
and flipped into servers with queue estimate m(t )+1, at rate λ, and that m(t ) can
only increase between successive update moments. Also note that the derivative
of yi , j is continuous in t , except at those times t where m(t ) increases, and that
yi , j (t ) is continuous in between updates since dyi , j (t )/dt is bounded.

Numerical illustration and comparison with simulation

Figures 3.2a, 3.2b, 3.3a and 3.3b show the fluid-limit trajectories y(t ) as gov-
erned by the differential equations in (3.1) for SUJSQdet(δ), along with (fluid-
scaled) variables y N

i , j (t ) obtained through stochastic simulation for a system with
N = 1000 servers and averaged over 10 runs. Observe that the simulation re-
sults are nearly indistinguishable from the fluid-limit trajectories, which is in
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Figure 3.2: Numerical emulation of the fluid limit for SUJSQdet(0.85) and λ= 0.7, accom-
panied by simulation results for N = 1000, averaged over 10 runs.
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Figure 3.3: Numerical emulation of the fluid limit for SUJSQdet(2.5) and λ= 0.7, accom-
panied by simulation results for N = 1000, averaged over 10 runs.

line with broader findings concerning the accuracy of fluid and mean-field lim-
its [Gas17; Yin16].

Update moments at times 1/δ,2/δ, . . . are marked by vertical dotted lines.
These time points can also be easily recognized by the jumps in the fraction
of servers w j (t ) that have queue estimate j . Moreover, the fraction of servers
vi (t ) with queue length i is not differentiable in these points as well as other
moments when the minimum queue estimate changes.

In Figures 3.2a and 3.2b, δ = 0.85 < λ/(1−λ) = 7/3, while δ = 2.5 > 7/3 in
Figures 3.3a and 3.3b. In the first scenario there are moments at which w0(t )
is zero and some jobs are sent to servers with one job in queue already. This
results in servers sometimes having two jobs, which means that queueing does
not vanish as N →∞. In contrast, in the second scenario, w0(t ) is strictly positive
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Figure 3.4: Simulation results for SUJSQexp(0.85).
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Figure 3.5: Simulation results for SUJSQexp(2.5).

at all times and no servers appear with two or more jobs, which implies that no
queueing occurs at fluid level as N → ∞. We will return to this dichotomy in
Proposition 3.2.

Qualitatively similar results are observed for SUJSQexp(δ), where the up-
dates occur at irregular moments. The paths still follow similar saw-tooth pat-
terns, and the dynamics between updates are identical, as reflected in the dif-
ferential equations in (3.1). In particular, the fraction of servers with minimum
queue estimate decreases linearly between updates, and the estimate drasti-
cally changes at update moments. The results are displayed in Figures 3.4a,
3.4b, 3.5a and 3.5b, for a system with N = 1000 servers and λ = 0.7. Note that
a large value of δ does not guarantee vanishing queueing anymore as there is a
positive probability that the time between two updates is too long.
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3.3.2 Performance in the fluid limit

We will now use the fluid limit (3.1) to gain some insight in the performance of
the SUJSQdet(δ) scheme. Equation (3.3) shows that no fixed point can exist as
w j (t ) has a non-zero constant derivative. We will establish however in Proposi-
tion 3.1 that for any positive update frequency the queue lengths on fluid scale
are essentially bounded by a finite constant. Furthermore, in Proposition 3.2
we demonstrate that when the update frequency is above a specific threshold,
queueing basically vanishes on fluid level in the long term.

Consider the average queue length on fluid scale, denoted and defined by

Q(t ) =
∞∑

i=0
i vi (t ) =

∞∑
i=0

i
∞∑

j=i
yi , j (t ).

Further define zk (t ) =∑∞
i=k vi (t ) as the fraction of servers with queue length k

or larger at time t on fluid scale, and note that Q(t ) = ∑∞
k=1 zk (t ). We will also

refer to Q(t ) as the total queue ‘mass’ on fluid scale at time t , and introduce

Q≤K (t ) =
K∑

k=1
zk (t ) =

K∑
k=1

∞∑
i=k

vi (t ) =
K∑

i=1

i∑
k=1

vi (t )+
∞∑

i=K+1

K∑
k=1

vi (t )

=
K∑

i=1
i vi (t )+

∞∑
i=K+1

K vi (t ) =
∞∑

i=1
min{i ,K }vi (t ),

and

Q>K (t ) =Q(t )−Q≤K (t ) =
∞∑

k=K+1
zk (t ) =

∞∑
k=K+1

∞∑
i=k

vi (t )

=
∞∑

i=K+1

i∑
k=K+1

vi (t ) =
∞∑

i=K+1
(i −K )vi (t )

as the queue mass (weakly) below and (strictly) above level K , respectively.

We first focus on the evolution of the fluid limit in between updates and con-
sider t to lie inside the interval [0,τ] with τ= 1/δ. The fluid-limit equation (3.1)
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yields the following expression for the derivative of zk (t ),

dzk (t )

dt
= d

dt

∞∑
i=k

vi (t ) = d

dt

∞∑
i=k

∞∑
j=i

yi , j (t ) =
∞∑

i=k

∞∑
j=i

d yi , j (t )

d t

=
∞∑

i=k

∞∑
j=i

[
yi+1, j (t )1{i < j }− yi , j (t )1{i > 0}+λpi−1, j−1(t )1{i > 0}−λpi , j (t )

]
=

∞∑
i=k

[
vi+1(t )− vi (t )1{i > 0}+λ

∞∑
j=i

pi−1, j−1(t )1{i > 0}−λ
∞∑

j=i
pi , j (t )

]
=− vk (t )1{k > 0}+λ

∞∑
j=k−1

pk−1, j (t )1{k > 0},

and

dQ>K (t )

dt
= d

dt

∞∑
k=K+1

zk (t ) =
∞∑

k=K+1

dzk (t )

dt

=−
∞∑

k=K+1
vk (t )1{k > 0}+λ

∞∑
k=K+1

∞∑
j=k−1

pk−1, j (t )1{k > 0}

=− zK+1(t )+λ
∞∑

k=K

∞∑
j=k

yk, j (t )

w j (t )
1{m(t ) = j }.

(3.4)

This may be interpreted by noting that the queue mass above level K increases
due to arriving jobs being assigned to servers with queue length K or larger and
decreases due to jobs being completed by servers with queue length K + 1 or
larger. In particular, we find that

dQ>K (t )

dt
=−zK+1(t ) (3.5)

for all K ≥ m(t )+1.
Taking K = 0 and noting that Q>0(t ) ≡Q(t ), we obtain

dQ(t )

dt
=λ− z1(t ) =λ− [1− v0(t )],

and thus

Q(t ) =Q(0)+λt −
∫ t

0
[1− v0(s)]ds. (3.6)
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This reflects that the average queue length on fluid scale at time t is obtained
by adding the number of arrivals λt during [0, t ] and subtracting the number
of service completions, which corresponds to the cumulative fraction of busy
servers 1− v0(s).

The next lemma follows directly from (3.5), and shows that the queue mass
above level K decreases when the minimum queue estimate on fluid scale is
strictly below K , so that there are no arrivals to servers with queue length K or
larger.

Lemma 3.1. If m(s) ≤ K −1 for all s ∈ [0, t ), then Q>K (t ) ≤Q>K (0).

We now proceed to derive a specific characterization of the decline in the
queue mass above level K when the minimum queue estimate on fluid scale is
strictly below K .

For conciseness, denote

A(L, t ) =
L∑

l=0
(L− l )αl (t )

and

B(L, t ) :=
L∑

l=0
lαl (t )+L

∞∑
l=L+1

αl (t )

with αl (t ) = t l

l ! e−t , and let G be a Poisson random variable with parameter t .
Note that A(L, t ) = E[max{L −G ,0}] and B(L, t ) = E[min{G ,L}] so that A(L, t )+
B(L, t ) = L, and in particular B(L, t ) ≤ L. Observe that A(L, t ) may be interpreted
as the expected queue length after a time interval of length t at a single server
with initial queue length L, unit-exponential service times and no arrivals, while
B(L, t ) may be interpreted as the expected number of service completions during
that time period.

Lemma 3.2. For any K ≥ 0, L ≥ 1, t ≥ 0,∫ t

0
zK+1(s)ds ≥ [

Q≤K+L(0)−Q≤K (0)
][

1− A(L, t )

L

]
= 1

L

[
Q≤K+L(0)−Q≤K (0)

]
B(L, t ).

The proof of Lemma 3.2 involves a detailed analysis of zK+1(t ). In the
lemma special attention goes to the mass of jobs that are queued in positions
K +1 up to K +L, represented by Q≤K+L(0)−Q≤K (0). The decline in this mass
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is no less than the decline in a situation where the same total number of jobs
reside with servers that have either 0 jobs or exactly L jobs (so a fraction
[Q≤K+L(0)−Q≤K (0)]/L of the servers will have L jobs). Finally, A(L, t ) represents
the expected number of jobs that remain at time t at each of the servers with
L jobs, while B(L, t ) represents the expected number of jobs that have been
completed at time t by each of these servers. These observations will be made
rigorous in the proof in Section 3.A.1.

The next lemma follows directly from (3.4) and (3.5) in conjunction with
Lemma 3.2.

Lemma 3.3. For any K ≥ 0, L ≥ 1, t ≥ 0,

Q>K (t ) ≤λt +Q>K+L(0)+ 1

L

[
Q≤K+L(0)−Q≤K (0)

]
A(L, t ),

or equivalently,

Q>K (t )−Q>K (0) ≤λt − 1

L

[
Q≤K+L(0)−Q≤K (0)

]
B(L, t ).

If m(y(s)) ≤ K −1 for all s ∈ [0, t ), then for any L ≥ 1

Q>K (t ) ≤Q>K+L(0)+ 1

L

[
Q≤K+L(0)−Q≤K (0)

]
A(L, t ),

or equivalently,

Q>K (t )−Q>K (0) ≤− 1

L

[
Q≤K+L(0)−Q≤K (0)

]
B(L, t ).

In particular, taking L = 1,

Q>K (t ) ≤Q>K+1(0)+ [
Q≤K+1(0)−Q≤K (0)

]
e−t =Q>K+1(0)+ zK+1(0)e−t ,

yielding

Q>K (t ) ≤ e−t Q>K (0)+ [1−e−t ]Q>K+1(0). (3.7)

The next lemma provides a simple condition for the minimum queue esti-
mate on fluid scale to remain strictly below K throughout the interval [0, t ) in
terms of Q(0).

Lemma 3.4. If Q(0) ≤ K −λt , then m(s) ≤ K −1 for all s ∈ [0, t ).



64 Hyper-scalable load balancing with scheduled updates

Proof. We have m(t ) = 0, d
dt w0(t ) = − d

dt w1(t ) = −λ for t ∈ 1
λ [0, v0(0)], m(t ) =

1, d
dt w1(t ) = − d

dt w2(t ) = −λ for t ∈ 1
λ [v0(0),2v0(0) + v1(0)], m(t ) = 2, d

dt w2(t )

= − d
dt w3(t ) = −λ for t ∈ 1

λ [2v0(0) + v1(0),3v0(0) + 2v1(0) + v2(0)], . . . , m(t ) = j ,
d

dt w j (t ) = − d
dt w j+1(t ) = −λ for t ∈ 1

λ

[∑ j−1
i=0 ( j − i )vi (0),

∑ j
i=0( j + 1− i )vi (0)

]
, as-

suming 1
λ

∑ j
i=0( j + 1− i )vi (0) ≤ t . In particular m(s) ≤ K − 1 for all s ∈ [0, t ) if

λt ≤∑K−1
i=0 (K − i )vi (0). The latter inequality holds since

K−1∑
i=0

(K − i )vi (0) = K
K−1∑
i=0

vi (0)−
K−1∑
i=0

i vi (0) = K

(
1−

∞∑
i=K

vi (0)

)
−

K−1∑
i=0

i vi (0)

= K −Q≤K (0) ≥ K −Q(0) ≥λt .

We will henceforth say that L is large enough if

λτ<σ(L;λ,τ) =
(
1− λτ+1

L

)
B(L,τ), (3.8)

and define s(λ,τ) = min{L : λτ < σ(L;λ,τ)}, which may be loosely thought of as
the maximum queue length on fluid scale in the sense of the next proposition.
Note that σ(L;λ,τ) ↑ τ as L →∞, ensuring that s(λ,τ) is finite for any λ< 1.

Proposition 3.1 (Bounded queue length for SUJSQdet(δ)). For any initial state
y(0) with finite queue mass Q(0) <∞, the fraction of servers on fluid scale with a
queue length larger than s(λ,τ) vanishes over time. Additionally, if the initial queue
mass Q(0) is sufficiently small and the initial fraction of servers with a queue length
larger than s(λ,τ) is zero, then that fraction will remain zero forever.

The proof of Proposition 3.1 leverages Lemma 3.2 and is organized as fol-
lows. For any initial state, we can show that either the mass in the tail, or the
total mass is decreasing. Once one of the two is below a certain level, we show
that the other decreases as well. We show this in two lemmas. From that point
on, it is a back and forth between decreasing mass in the tail and decreasing
total mass, which is described in the final lemma. The mass in the tail will
decrease, such that the mass strictly above level L∗ = s(λ,τ) will vanish.

Define

∆=
(
1− λτ+1

L∗

)
B(L∗,τ)−λτ. (3.9)

We now state two corollaries, which provide upper bounds for the total queue
mass at time τ. The proofs are based on Lemmas 3.2 and 3.3.
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Corollary 3.1. If L is large enough and Q(0) ≥ L−1−λτ, then

Q(τ) ≤Q(0)−∆+ Q>L(0)

L
B(L,τ) <Q(0)−∆+Q>L(0).

Proof. Taking K = 0 in Lemma 3.3, we obtain

Q(τ) ≤Q(0)+λτ− Q≤L(0)

L
B(L,τ)

≤Q(0)+λτ− L−1−λτ−Q(0)+Q≤L(0)

L
B(L,τ)

=Q(0)−∆L + Q>L(0)

L
B(L,τ) ≤Q(0)−∆+ Q>L(0)

L
B(L,τ)

with

∆L =
(
1− λτ+1

L

)
B(L,τ)−λτ (3.10)

increasing in L, ∆=∆L∗ and L∗ = s(λ,τ) the smallest value that is large enough,
note that ∆> 0 because of (3.8).

Corollary 3.2. If L is large enough and Q(0) ≤ L−1−λτ, then

Q(τ) ≤ L−1−λτ−∆+ Q>L(0)

L
B(L,τ) < L−1−λτ−∆+Q>L(0).

Proof. Taking K = 0 in Lemma 3.3 and noting that 1− 1
L B(L,τ) ≥ 0 since B(L,τ) ≤

L, we obtain

Q(τ) ≤Q(0)+λτ− Q≤L(0)

L
B(L,τ)

=Q(0)

(
1− 1

L
B(L,τ)

)
+ Q(0)−Q≤L(0)

L
B(L,τ)+λτ

≤ (L−1−λτ)

(
1− 1

L
B(L,τ)

)
+ Q(0)−Q≤L(0)

L
B(L,τ)+λτ

= L−1−λτ−∆L + Q>L(0)

L
B(L,τ) ≤ L−1−λτ−∆+ Q>L(0)

L
B(L,τ),

because of (3.8).
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We now present Lemmas 3.5 and 3.6, which use Corollaries 3.1 and 3.2 and
Lemmas 3.1, 3.3 and 3.4 to show that under certain conditions, the total queue
mass as well as the mass above level L strictly decrease.

Lemma 3.5. If L is large enough, L−1−λτ≤Q(0) ≤ L−λτ and Q>L(0) <∆, then

• Q(τ) <Q(0)−D, where D > 0, so Q is strictly smaller at the next update,

• Q>L(τ) ≤Q>L(0), so Q>L remains strictly smaller than ∆.

Proof. The first statement follows from Corollary 3.1, with D = ∆/2−Q>L(0)/2.
The second assertion follows from Lemmas 3.1 and 3.4.

Lemma 3.6. If L is large enough, Q(0) ≤ L−1−λτ and Q>L(0) <∆ then

• Q(τ) < L − 1−λτ, so Q remains strictly smaller than L − 1−λτ at the next
update,

• Q>L(τ) ≤Q>L(0), so Q>L remains strictly smaller than ∆,

• Q>L−1(τ) ≤ cQ>L−1(0) if Q>L−1(0) ≥ ∆, where c < 1, so Q>L−1 is strictly de-
creasing by a constant factor over each update interval.

Proof. The first statement follows from Corollary 3.2. The second assertion
follows from Lemmas 3.1 and 3.4. The third statement holds for

c = e−τ+ (1−e−τ)
Q>L(0)

∆
< 1

since the final portion of Lemma 3.3 in conjunction with Lemma 3.4 gives

Q>L−1(τ)

Q>L−1(0)
≤ e−τ+ (1−e−τ)

Q>L(0)

Q>L−1(0)
≤ e−τ+ (1−e−τ)

Q>L(0)

∆
.

Lemma 3.7. If L is large enough, Q(0) ≤ L−λτ and Q>L(0) <∆, then there exists a
finite time τ∗L such that Q(τ∗L ) ≤ L−1−λτ and Q>L−1(τ∗L ) <∆ (as defined in (3.9)).

Proof. The proof is constructed by applying Lemmas 3.5 and 3.6 in succession.
Since Q(0) ≤ L −λτ and Q>L(0) < ∆, Lemma 3.5 can be applied, so that Q is
strictly decreasing and eventually becomes smaller than L − 1−λτ while Q>L

remains smaller than ∆. Note that D does not decrease after any iteration since
Q>L(0) can only decrease. At that moment, Lemma 3.6 can be applied which
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shows that Q>L−1 decreases by a constant factor over each update interval as
long as Q>L−1 is larger than ∆. The constant factor c does not increase after any
iteration, and in fact only becomes smaller as Q>L(0) decreases. In other words,
Q>L−1 becomes smaller than ∆ after finitely many updates, while Q remains
smaller than L−1−λτ and Q>L smaller than ∆.

Proof of Proposition 3.1. The procedure in the proof of Lemma 3.7 can be
performed as long as L is large enough. The left-hand side of (3.8) is increasing
in L (as both factors are increasing in L), which shows that the condition (3.8)
becomes tighter for smaller values of L. In fact, the mass above level L∗ will
vanish, where L∗ is the lowest value of L which is sufficiently large for (3.8)
to hold, yielding the first statement of Proposition 3.1. The latter part follows
directly from Lemma 3.5.

Finally, we stress that the lemma can also be applied when the maximum
initial queue length is infinite, but the mass Q(0) = ∑∞

i=0 zi (0) < ∞ is finite. In
that case, one can find a value for L̄ such that Q>L̄(0) =∑∞

i=L̄
zi (0) <∆ (as the tail

of a convergent series tends to zero) and Q(0) ≤ L̄ −λτ. In that case, the lemma
can be successively applied, starting from L̄, which proves Proposition 3.1.

We now proceed to state the second main result in this section. Denote by
y∗ the fluid state with y∗

0,0 = 1−λ, y∗
0,1 = 0, y∗

1,1 =λ, and y∗
i , j = 0 for all j ≥ i ≥ 2.

Proposition 3.2 (No-queueing threshold for δ in SUJSQdet(δ)). Suppose δ >
λ/(1−λ), or equivalently, τ= 1/δ< (1−λ)/λ= 1/λ−1. Then y∗ is a fixed point of
the fluid-limit process at update moments in the following sense:

(a) If y(0) = y∗, then y(kτ) = y∗ for all k ≥ 0;

(b) For any initial state y(0) with Q(0) <∞, y(kτ) → y∗ as k →∞.

Moreover, in case (a), y0,0(kτ+ t ) = 1−λ−λt , y0,1(kτ+ t ) = λt , y1,1(kτ+ t ) = λ for
all k ≥ 0, t ∈ [0,τ), and yi , j (t ) = 0 for all j ≥ i ≥ 2, t ≥ 0.
In case (b), y0,0(kτ+ t ) → 1−λ−λt , y0,1(kτ+ t ) →λt , y1,1(kτ+ t ) →λ for all k ≥ 0,
t ∈ [0,τ), and yi , j (t ) → 0 for all j ≥ i ≥ 2, t ≥ 0.

Loosely speaking, Proposition 3.2 implies that for δ ≥ λ/(1−λ), in the long
term the fraction of jobs that incur a non-zero waiting time vanishes. We note
that in this regime, jobs are only sent to idle servers, which means that servers
only need to send feedback whenever they are idle at an update moment. Since
the fraction of idle servers in the fixed point is 1−λ, a sparsified version of
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SUJSQdet(δ) will have a communication overhead of λ per time unit or 1 mes-
sage per job.

The next lemma, whose proof is presented in Section 3.A.2, provides lower
and upper bounds for the number of service completions on fluid level and
the total queue mass, which play an instrumental role in the proof of Propo-
sition 3.2. The bounds and proof arguments are similar in spirit to those of
Lemma 3.2 with K = 0, but involve crucial refinements by additionally account-
ing for service completions of arriving jobs.

Lemma 3.8. If v0(0) ≤ 1−λ, then (i) v0(τ) ≤ 1−λ.
If v0(0) ≥λτ, then

∫ τ
0 [1− v0(s)]ds is bounded from below by

λ[τ−1+e−τ]+ z1(0)[1−e−τ]+ z2(0)[1−e−τ−τe−τ]

=λτ+ [z1(0)−λ][1−e−τ]+ z2(0)[1−e−τ−τe−τ],

so that in view of (3.6) (ii)

Q(τ) ≤Q(0)− [z1(0)−λ][1−e−τ]− z2(0)[1−e−τ−τe−τ],

and

Q(τ) ≥Q(0)− [z1(0)−λ][1−e−τ]− z2(0)τ,

so that in view of (3.6) (iii),∫ τ

0
[1− v0(s)]ds ≤λ[τ−1+e−τ]+ z1(0)[1−e−τ]+ z2(0)τ

=λτ+ [z1(0)−λ][1−e−τ]+ z2(0)τ.

If v0(0) <λτ, then
∫ τ

0 [1− v0(s)]ds is bounded from below by

λ[τ−1+e−τ]+ ẑ1(0)[1−e−τ]+ ẑ2(0)[1−e−τ−τe−τ]

=λτ+ [ẑ1(0)−λ][1−e−τ]+ ẑ2(0)[1−e−τ−τe−τ],

so that in view of (3.6) (iv)

Q(τ) ≤Q(0)− [ẑ1(0)−λ][1−e−τ]− ẑ2(0)[1−e−τ−τe−τ],

with ẑi (0) = min{zi (0),1−λτ}, i = 1,2.
We deduce that (v)

Q(τ) ≤Q(0)−min{1− v0(0)−λ,1−λτ−λ}[1−e−τ]

−min{z2(0),1−λτ}[1−e−τ−τe−τ],

with 1−λτ−λ> 0.
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Proof of Proposition 3.2. We first consider case (a) with y(0) = y∗. The fluid-limit
equations can then be explicitly solved to obtain y0,0(t ) = 1−λ−λt , y0,1(t ) = λt ,
y1,1(t ) =λ, and yi , j (t ) = 0 for all j ≥ i ≥ 2 for t ∈ [0,τ).

Since at an update moment y0,0(τ) = y0,0(τ−)+y0,1(τ−) = 1−λ, y1,1(τ) = y1,1(τ−)
=λ, and yi , j (τ) = yi , j (τ−) = 0 for all j ≥ i ≥ 2, we obtain a strictly cyclic evolution
pattern with y(kτ) = y∗ for all k ≥ 0, as well as y0,0(kτ+t ) = 1−λ−λt , y0,1(kτ+t ) =
λt , y1,1(kτ+ t ) =λ for all k ≥ 0 t ∈ [0,τ), and yi , j (t ) = 0 for all j ≥ i ≥ 2, t ≥ 0.

We now turn to case (b). First suppose that there exists a k0 <∞ such that
v0(k0τ) ≤ 1−λ. It then follows from statement (i) in Lemma 3.8 that v0(kτ) ≤ 1−λ
for all k ≥ k0. Moreover, in view of statement (v) in Lemma 3.8 we have Q((k +
1)τ) ≤Q(kτ)−c min{ε,∆}−d min{z2(kτ),1−λτ}, with c > 0 and d > 0 when v0(kτ) ≤
1−λ−ε for any ε> 0. Thus, for any ε> 0 it can only occur finitely many times that
v0(kτ) ≤ 1−λ− ε, and additionally for any δ> 0, it can only occur finitely many
times that z2(kτ) ≥ δ, because otherwise Q(kτ) would eventually fall to zero,
which would contradict v0(kτ) ≤ 1−λ. Thus we conclude that v0(kτ) → 1−λ and
z2(kτ) → 0, which implies that y(kτ) → y∗ as k →∞ as stated.

Now suppose that there exists no k0 <∞ such that v0(k0τ) ≤ 1−λ, i.e, v0(kτ) >
1−λ for all k ≥ 1. Solving (3.1) then gives d

dt w0(t ) =− d
dt w1(t ) =−λ and m(t ) = 0

for t ∈ [kτ,kτ+v0(kτ)/λ], where v0(kτ)/λ> τ. Lemma 3.3 with K = 1, L = 1 yields

Q>1((k +1)τ) ≤Q>1(kτ)− z2(kτ)[1−e−τ].

Thus we must have z2(kτ) → 0 as k → ∞, because otherwise Q>1(kτ) would
eventually drop below zero, which would contradict the fact that it must always
be positive. Hence, for any ε> 0, there exists kε such that z2(kτ) ≤ ε(1−e−τ)/(2τ)
for all k ≥ kε. Statement (iii) in Lemma 3.8 may then be invoked to obtain that
for any ε> 0 and k ≥ kε if v0(kτ) ≥ 1−λ+ε≥λτ, then

Q((k +1)τ) ≥Q(kτ)+ ε

2

1−e−τ

τ
.

It follows that for any ε > 0, it can only occur finitely many times that v0(kτ) ≥
1−λ+ε, as Q(kτ) is bounded since Q>1(kτ) is decreasing (Lemma 3.1). Thus we
conclude v0(kτ) → 1−λ and z2(kτ) → 0 as k →∞, implying that y(kτ) → y∗ as
k →∞ as stated.
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3.4 Asynchronous updates

In this section we turn to the fluid limit for asynchronous updates. We will fo-
cus on the fluid limit for exponential update intervals, which is more tractable
because all transitions are memoryless, including those involving updates. In
Section 3.4.1 we provide a characterization of the fluid-limit trajectory, along
with a heuristic explanation, numerical illustration and comparison with simu-
lation. In Section 3.4.2 the fixed point of the fluid limit is determined (Propo-
sition 3.3), which immediately shows that in stationarity queueing vanishes at
fluid level for sufficiently high δ (Corollary 3.3) and also provides an upper
bound for the queue length at fluid level for any given δ> 0 (Corollary 3.4).

3.4.1 Fluid-limit dynamics

In the case of synchronized updates, the minimum queue estimate m(y N (t ))
could never decrease between successive update moments. As a result, the
amount of time

∫ t
t0
1{m(Y N (s)) = j }ds that the minimum queue length equals j

in between successive update moments converges to
∫ t

t0
α j (s)ds, as N →∞, with

α j (t ) = 1{m(y(t )) = j } and can be directly expressed in terms of the minimum
queue estimate on fluid scale.

In contrast, with asynchronous updates, the minimum queue estimate may
drop at any time when an individual server with a queue length i < m(y N (t ))
sends an update at time t , and becomes the only server with a queue estimate
below m(y N (t )). Consequently, the amount of time

∫ t
t0
1{m(Y N (s)) = j }ds that

the minimum queue length equals j no longer tends to
∫ t

t0
α j (s)ds as N → ∞,

and may even have a positive derivative for j < m(y(t )), i.e., for queue values
strictly smaller than the minimum queue estimate on fluid scale.

The fact that even in the limit the system may spend a non-negligible amount
of time in states that are not directly visible on fluid scale severely compli-
cates the characterization of the fluid limit. In order to handle this compli-
cation and describe the evolution of the fluid limit, it is convenient to define
uk (t ) = δ∑k−1

i=0 (k − i )vi (t ) as the fluid-scaled rate at which the dispatcher can as-
sign jobs to servers with queue estimates below k as a result of updates, with
vi (t ) = ∑∞

l=i yi ,l (t ) representing the fraction of servers with queue length i in
fluid state y at time t as before.

We distinguish two cases, depending on whether um(t )(t ) ≤ λ or not, and
additionally introduce n(t ), defined as n(t ) = m(t ) in case um(t )(t ) ≤ λ, or n(t ) =
min{n : un(t ) > λ} ≤ m(t )−1 otherwise. Then servers with a true queue length
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i ≤ n(t )−1 will be assigned n(t )− i jobs almost immediately after an update at
time t , and then have both queue length and queue estimate n(t ). Incoming jobs
will be assigned to servers with a queue estimate at most n(t )−1 at rate un(t )(t )
and to servers with queue estimate exactly equal to n(t ) at rate ζ(t ) =λ−un(t )(t ).

Then the fluid limit y(t ) satisfies the system of differential equations

dyi , j (t )

dt
= yi+1, j (t )1{i < j }− yi , j (t )1{i > 0}+ζ(t )qi−1, j−1(t )1{i > 0}−ζ(t )qi , j (t )

+δ
n(t )−1∑

k=0
vk (t )1{i = j = n(t )}+δvi (t )1{i = j ≥ n(t )}−δyi j (t ),

(3.11)

for all i = 0,1, . . . , j ≥ n(t ), where

qi , j (t ) = yi , j (t )

w j (t )
1{n(t ) = j }

denotes the fraction of jobs assigned to a server with queue length i and queue
estimate j in fluid state y among the ones that are assigned to a server with
queue estimate at least n(t ), defined as function of the fluid state y at time t as
above.

It can be checked that when n(t ) < m(t ), the derivative of
∑m(t )

j=0 w j (t ) is
strictly positive, i.e., the fraction of servers with a queue estimate below m(t )
becomes positive, and the value of m(t ) instantly becomes equal to n(t ).

Informal outline of the derivation

We now provide an informal outline of the derivation of the fluid limit as stated
in (3.11). Let Ai , j (t ), Bi , j (t ) and Si , j (t ) denote unit-rate Poisson processes, j ≥
i ≥ 0, all independent. The system dynamics may then be represented (see
[HK94; PTW07]) as

Y N
i , j (t ) = Y N

i , j (0)+Si+1, j

(∫ t

0
Y N

i+1, j (s)ds

)
1
{
i < j

}−Si , j

(∫ t

0
Y N

i , j (s)ds

)
1{i > 0}

+ Ai−1, j−1

(
λN

∫ t

0
pi−1, j−1(Y N (s))ds

)
1{i > 0}− Ai , j

(
λN

∫ t

0
pi , j (Y N (s))ds

)
+

∞∑
k= j

Bi ,k

(
δ

∫ t

0
Y N

i ,k (s)ds

)
1
{
i = j

}−Bi , j

(
δ

∫ t

0
Y N

i , j (s)ds

)
,
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with pi , j (Y ) as before. Dividing by N and rewriting in terms of the fluid-scaled
variables y N

i , j (t ) = 1
N Y N

i , j (t ), we obtain

y N
i , j (t ) = y N

i , j (0)+ 1

N
Si+1, j

(
N

∫ t

0
y N

i+1, j (s)ds

)
1
{
i < j

}
− 1

N
Si , j

(
N

∫ t

0
y N

i , j (s)ds

)
1{i > 0}

+ 1

N
Ai−1, j−1

(
λN

∫ t

0
pN

i−1, j−1(Y N (s))

)
1{i > 0}− 1

N
Ai , j

(
λN

∫ t

0
pN

i , j (Y N (s))ds

)
+ 1

N

∞∑
k= j

Bi ,k

(
δN

∫ t

0
y N

i ,k (s)ds

)
1
{
i = j

}− 1

N
Bi , j

(
δN

∫ t

0
y N

i , j (s)ds

)
.

(3.12)

Now introduce

S̃k,l (u) := Sk,l (u)−u, Ãk,l (u) := Ak,l (u)−u, B̃k,l (u) := Bk,l (u)−u,

and observe that S̃k,l (·), Ãk,l (·) and B̃k,l (·) are martingales. By standard argu-
ments it can be shown that

1

N
S̃k,l

(
N

∫ t

0
y N

k,l (s)ds

)
,

1

N
Ãk,l

(
λN

∫ t

0
pk,l (Y N (s))ds

)
,

1

N
B̃k,l

(
δN

∫ t

0
y N

k,l (s)ds

)
each converge to zero as N →∞.

Adopting time-scale separation arguments [HK94; PTW07], it can be estab-
lished that

λ

∫ t

0
pi , j (Y N (s))ds →

∫ t

0
αi , j (s)ds

as N →∞, where the coefficients αi , j (·) satisfy

αi , j (t ) =


0 i < j < n(t ),
λπ j (t ) i = j < n(t ),

λ
yi , j (t )

w j (y(t ))πn(t )(t ) i ≤ j = n(t ),

0 i ≤ j > n(t ).

The coefficients π j (t ) may be interpreted as the fraction of time that the pre-
limit minimum queue estimate equals j ≤ n(t ) when the minimum queue esti-
mate at fluid level is n(t ), and satisfy the relationship

λπ j (t ) =λπ j−1(t )+δv j (y(t ))
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for all j = 1, . . . ,n(t )−1, along with the normalization condition
∑n(t )

j=0 π j (t ) = 1.
Thus, we obtain

λπ j (t ) = δ
j∑

k=0
vk (y(t )),

for all j = 0, . . . ,n(t )−1, and

λπn(t )(t ) =λ(1−
n(t )−1∑

j=0
π j (t )) =λ−δ

n(t )−1∑
j=0

j∑
k=0

vk (y(t ))

=λ−δ
n(t )−1∑

i=0
(n(t )− i )vi (y(t )) = ζ(y(t )).

We deduce that

αi , j (t ) =1{
i = j

}
δ

j∑
k=0

vk (y(t ))1
{

j < n(t )
}+qi , j (y(t )ζ(y(t )),

with qi , j (y) = yi , j
w j (y)1

{
n(y) = j

}
as before, yielding

∫ t

0
αi−1, j−1(s)ds −

∫ t

0
αi , j (s)ds

=
∫ t

0
qi−1, j−1(y(s))ζ(y(s))ds −

∫ t

0
qi , j (y(s))ζ(y(s))ds

+1{
i = j

}
δ

j−1∑
k=0

vk (y(s))1
{

j = n(s)
}
ds −1{

i = j
}
δ

∫ t

0
v j (y(s))1

{
j < n(s)

}
ds.

We obtain

λ

∫ t

0
pi−1, j−1(Y N (s))ds1{i > 0}−λ

∫ t

0
pi , j (Y N (s))ds →∫ t

0
qi−1, j−1(y(s))ζ(y(s))ds1{i > 0}−

∫ t

0
qi , j (y(s))ζ(y(s))ds

+1{
i = j

}
δ

j−1∑
k=0

vk (y(s))1
{

j = n(y(s))
}
ds −1{

i = j
}
δ

∫ t

0
v j (y(s))1

{
j < n(y(s))

}
ds,

(3.13)
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as N →∞, with ζ(y) = λ−δ∑n(y)
l=0 (n(y)− l )vl (y) and qi , j (y) = yi , j

w j (y)1
{
n(y) = j

}
as

defined earlier.
Taking the limit for N →∞ in (3.12), and noting that

1
{
i = j

}
δ

∫ t

0
vi (y(s))ds −1{

i = j
}
δ

∫ t

0
v j (y(s))1

{
j < n(y(s))

}
ds

= δ
∫ t

0
vi (y(s))1

{
i = j ≥ n(y(s))

}
ds,

we conclude that any (weak) limit {yi , j (t )}t≥0 of the sequence ({y N
i , j (t )}t≥0)N≥1

must satisfy

yi , j (t ) = yi , j (0)+
∫ t

0
yi+1, j (s)ds1

{
i < j

}−∫ t

0
yi , j (s)ds1{i > 0}

+λ
∫ t

0
qi−1, j−1(y(s))ζ j−1(y(s))ds1{i > 0}

−λ
∫ t

0
qi , j (y(s))ζ j (y(s))ds +δ

i−1∑
k=0

∫ t

0
vk (y(s))1

{
i = j = n(y)

}
ds

+δ
∫ t

0
vi (y(s))1

{
i = j ≥ n(y(s))

}
ds −δ

∫ t

0
yi , j (s)ds,

with yi , j (0) = y∞
i , j . Rewriting the latter integral equation in differential form

yields (3.11).

Interpretation

The above system of differential equations may be intuitively interpreted as
follows. The first two terms correspond to service completions at servers with
i +1 and i jobs, just like in (3.1). The third and fourth terms account for job
assignments to servers with a queue estimate m(t ). The third term captures the
resulting increase in the fraction of servers with queue estimate m(t )+1, while
the fourth term captures the corresponding decrease in the fraction of servers
with queue estimate m(t ).

The final three terms in (3.11) correspond to the updates from servers re-
ceived at a rate δ. The fifth term represents the increase in the fraction of
servers with queue estimate n(t ) due to updates from servers with a queue
length k ≤ n(t )− 1 which are almost immediately being assigned n(t )− k jobs
and then have both queue length i = n(t ) and queue estimate j = n(t ). The sixth
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term represents the increase in the fraction of servers with a queue estimate
j = n(t ) or larger due to updates from servers with a queue length i = j . The
final term represents the decrease in the number of servers with queue length i
and queue estimate j due to updates.

Even though a non-zero fraction of the jobs are assigned to servers with a
queue estimate below n(t ), these events are not directly visible at fluid level,
and only implicitly enter the fluid limit through the thinned arrival rate ζ(t ).

Summing the equations (3.11) over i = 0,1, . . . , j yields

dw j (t )

dt
= ζ(t )[1{n(t ) = j −1}−1{n(t ) = j }]+δ[v j (t )−w j (t )]1{ j ≥ n(t )},

reflecting that servers with queue estimate n(t ) are assigned jobs, and thus
flipped into servers with queue estimate n(t )+1, at rate ζ(t ), and that servers
with a queue estimate j ≥ n(t ) are created at an effective rate δ[v j (t )−w j (t )] as
a result of updates.

Numerical illustration and comparison with simulation

Figures 3.6a-3.7b show the fluid-limit trajectories y(t ) as governed by the dif-
ferential equations in (3.11) for AUJSQexp(δ), through stochastic simulation for
a system with N = 1000 servers and averaged over 10 runs. Once again, the
simulation results are nearly indistinguishable from the fluid-limit trajectories.

In contrast to the synchronized variants in Figures 3.2a, 3.2b, 3.3a and 3.3b,
the trajectories do not oscillate, but approach stable values, corresponding to
the fixed point of the fluid-limit equations (3.11) which we will analytically de-
termine in Proposition 3.3. In Figures 3.6a and 3.6b where δ= 0.85 is relatively
low, we observe once again that w2(y(t )) = w2(t ) and v2(y(t )) = v2(t ) become
strictly positive. In Figures 3.7a and 3.7b where δ= 2.5 is sufficiently large, all
servers have either zero or one jobs in the limit, indicating that no queueing
occurs.

Qualitatively similar results are observed for AUJSQdet(δ), where the updates
occur at strictly regular moments. The results are displayed in Figures 3.8a,
3.8b, 3.9a and 3.9b, for a system with N = 400 servers and λ= 0.7.
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Figure 3.6: Numerical emulation of the fluid limit for AUJSQexp(0.85) and λ = 0.7, ac-
companied by simulation results with N = 1000, averaged over 10 runs.
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Figure 3.7: Numerical emulation of the fluid limit for AUJSQexp(2.5) and λ= 0.7, accom-
panied by simulation results with N = 1000, averaged over 10 runs.

3.4.2 Fixed-point analysis

The next proposition identifies the fixed point of the fluid-limit equations (3.11)
in terms of m∗, defined as

m∗ = m(λ,δ) = min

{
m :λ< 1−

(
1

1+δ
)m+1}

= max

{
m :λ≥ 1−

(
1

1+δ
)m}

=
⌊
− log(1−λ)

log(1+δ)

⌋
,

(3.14)

which may be interpreted as the minimum queue estimate at fluid level in sta-
tionarity. For compactness, define a = 1

1+δ and b = 1
1+δ+ν .

Proposition 3.3 (Fixed point for AUJSQexp(δ)). The fixed point of the fluid limit
(3.11) is given by
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Figure 3.8: Simulation results for AUJSQdet(0.85).
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Figure 3.9: Simulation results for AUJSQdet(2.5).

y∗
0,m∗ = abm∗−1δ

(1+ν)(δ+ν)
,

y∗
i ,m∗ = abm∗−iδ

1+ν , i = 1, . . . ,m∗,

y∗
0,m∗+1 = am∗+1 − a2bm∗−1δ

(1+ν)(δ+ν)
,

y∗
1,m∗+1 = δ

(
am∗+1 − a2bm∗−1δ

(1+ν)(δ+ν)

)
,

y∗
i ,m∗+1 = δ

(
am∗+2−i − abm∗+1−i

1+ν

)
, i = 2, . . . ,m∗+1,
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and y∗
i , j = 0 when j 6= m∗,m∗+1, where ν≥ 0 is the unique solution of the equation

y0,m∗ + y0,m∗+1 = 1−λ, i.e.,

h(ν) = am∗+1 + a2bm∗−1δ2

(1+ν)(δ+ν)
= 1−λ. (3.15)

In particular, if λ= 1− (1+δ)−m∗
, i.e.,

m∗ =− log(1−λ)

log(1+δ)
, (3.16)

then ν= 0, so

y∗
0,m∗ =

(
1

1+δ
)m∗

= 1−λ,

y∗
i ,m∗ = δ

(
1

1+δ
)m∗+1−i

=
(
1− (1−λ)1/m∗)

(1−λ)
m∗−i

m∗ , i = 1, . . . ,m∗,

and y∗
i ,m∗+1 = 0 for all i = 0, . . . ,m∗+1.

Note that h(u) is strictly decreasing in ν, with limν↓0 h(ν) = ( 1
1+δ )m∗ ≤ 1−λ,

and limν→∞ h(ν) = ( 1
1+δ )m∗+1 < 1−λ, ensuring that ν≥ 0 exists and is unique.

The result of Proposition 3.3 is obtained by setting the derivatives in (3.11)
equal to zero, observing that w j (y∗) = 0 for all j 6= m∗,m∗+1, and then solving
the resulting equations. The detailed proof arguments are presented in Sec-
tion 3.B.

Corollary 3.3 (No-queueing threshold for δ in AUJSQexp(δ)). If the update fre-
quency δ≥λ/(1−λ), then y∗

i , j = 0 for all j ≥ 2, implying that queueing vanishes at
fluid level in stationarity.

Corollary 3.3 immediately follows from (3.14) and Proposition 3.3, in which
m∗ = 0 in case δ≥λ/(1−λ) so that only y∗

0,0, y∗
0,1 and y∗

1,1 are strictly positive. In
case of equality we have the scenario described in the last part of Proposition 3.3
where y∗

i ,2 = 0 for all i . The arguments for interchanging the many-server (N →
∞) and stationary (t → ∞) limits are beyond the scope of the manuscript, as
mentioned in Section 1.3.2. Corollary 3.3 implies that for δ ≥ λ/(1−λ), the
mean stationary waiting time under AUJSQexp(δ) vanishes as N →∞.

Proposition 3.3 also yields an upper bound for the queue length at fluid level
as stated in the next corollary.
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Corollary 3.4 (Bounded queue length for AUJSQexp(δ)). The queue length at
fluid level in stationarity has bounded support on {0, . . . , m(λ,δ)+1} for any λ< 1
and δ> 0.

First of all, note that in order for queueing to vanish, it is required that
m(λ,δ) = 0 or m(λ,δ) = 1 and ν = 0, i.e., δ ≥ λ/(1−λ), which coincides with
the threshold for δ in SUJSQdet(δ) as identified in Proposition 3.2. Also, the
upper bound m(λ,δ)+ 1 tends to infinity as δ approaches zero, reflecting that
for any fixed arrival rate λ, even arbitrarily low, the maximum queue length
grows without bound as the update frequency vanishes.

At the same time, for any positive δ> 0, m(λ,δ) is finite for any fixed λ< 1,
and only grows as log(1/(1−λ)) as λ ↑ 1 rather than 1/(1−λ) as in the absence
of any queue feedback. Thus, even an arbitrarily low update frequency ensures
that the queue length has bounded support and behaves far more benignly in a
high-load regime at fluid level. This powerful property resembles an observation
in [TX12; TX13] in the context of a dynamic scheduling problem where even a
minuscule degree of resource pooling yields a fundamentally different behavior
on fluid scale.

Number of jobs in the system

The average queue length in the fixed point q̃ is

q̃ =
m∗∑
i=1

i y∗
i ,m∗ +

m∗+1∑
i=1

i y∗
i ,m∗+1 =

δ+am∗+1 +δm∗−1

δ
+

a2δ
(
−δ+bm∗ −1

)
b(1+ν)(δ+ v)

(3.15)= m∗+1+ am∗+1 −1

δ
+ 1−λ−am∗+1

δ
− a(1+δ+ν)δ

(1+ν)(δ+ν)

= m∗+1−λ/δ− (1+δ+ν)δ

(1+δ)(1+ν)(δ+ν)
≥ m∗−λ/δ.

(3.17)

In case of (3.16), the average queue length is simply q̃ = m∗ + 1−λ/δ− 1 =
m(λ,δ)−λ/δ, reflecting that the average number of job arrivals equals the aver-
age number of job completions over the course of an update interval, starting
with m∗ = m(λ,δ) jobs.

Figure 3.10 plots the average queue length in the fixed point given by (3.17)
as function of the update frequency δ for λ = 0.8. We observe that the average
queue length monotonically decreases with the update frequency, as expected,
and is indeed contained between m∗−λ/δ and m∗+1−λ/δ.
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It then follows from the definition of m∗ = m(λ,δ) that q̃ → ∞ as δ ↓ 0 for
any λ < 1, which indicates that AUJSQdet(δ) may perform arbitrarily badly in
the ultra-low feedback regime, confirming the observations in Section 3.2.1.

Bound on the queue length for AUJSQdet(δ)

As noted earlier, the fluid-limit trajectory for AUJSQdet(δ) involves a measure-
valued process and is difficult to describe. However, in a similar spirit as for
AUJSQexp(δ), the value of m∗ can be characterized as the largest integer for
which(

m∑
i=1

i
(1/δ)i

i !
e−1/δ+m

∞∑
i=m+1

(1/δ)i

i !
e−1/δ

)
≤λ/δ,

expressing that the average number of job arrivals should be larger than or equal
to the average number of job completions over the course of an update interval,
starting with m∗ jobs. While the above equation cannot easily be solved in
closed form, it is not difficult to show that the inequality is weaker than (3.14),
i.e., the value of m∗ is lower than for AUJSQexp(δ), confirming the superiority
of AUJSQdet(δ) observed in the simulation results in Section 3.2.1. It is further
worth observing the strong similarity of the above inequality with Proposition
3.1 governing the queue length upper bound for SUJSQdet(δ).
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Figure 3.10: Values of q̃ for λ= 0.7 and different values of δ.
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3.5 Conclusion

We have introduced and analyzed a novel class of hyper-scalable load balancing
algorithms that only involve minimal communication overhead and yet deliver
excellent performance. In the proposed schemes, the various servers provide
occasional queue status notifications to guide the dispatcher in directing incom-
ing jobs to relatively short queues. There are more hyper-scalable schemes that
could be of interest. Another hyper-scalable scheme will be introduced in Chap-
ter 4, in which the timer that governs the updates only starts when a server
becomes ‘full’. Another interesting class of schemes would be one where the
queue estimate is not an upper-bound but mimics the expected value of the
queue length. These schemes are left as interesting topics for further research.

We have demonstrated that the schemes markedly outperform JSQ(d) poli-
cies with a comparable overhead, and can drive the waiting time to zero in the
many-server limit with just one message per job. The proposed schemes show
their core strength and outperform sparsified JIQ versions in the sparse feed-
back regime with less than one message per job, which is particularly pertinent
from a scalability viewpoint.

[AD20] presents the SQ(d , N ) algorithm, which is similar to the JSQ(d) al-
gorithm, and also similar to our hyper-scalable algorithms. Instead of periodic
updates as we have seen in this chapter, d randomly selected queues are probed
when a job arrives in SQ(d , N ). AUJSQexp(δ) is the closest to this algorithm,
since in SQ(d , N ) the arrival process basically acts as a timer. The no-queueing
threshold δ ≥ λ/(1−λ) in Corollary 3.3 matches with the threshold λ < 1−1/d
that SQ(d , N ) has, since the communication overhead of SQ(d , N ) equals δ=λd .
The same comparison holds for the support of the queue lengths.

In order to further explore the performance in the many-server limit, we
investigated fluid limits for synchronized as well as asynchronous exponential
update intervals. We used the fluid limits to obtain upper bounds for the station-
ary queue length as function of the load and update frequency. We also revealed
a striking dichotomy in the ultra-low feedback regime where the mean waiting
time tends to a constant in the synchronized case, but grows without bound
in the asynchronous case. Extensive simulation experiments are conducted to
support the analytical results, and indicate that the fluid-limit asymptotics are
remarkable accurate.

We have adopted common Markovian assumptions, and it could be interest-
ing to extend the results to non-exponential and possibly heavy-tailed distribu-
tions. In Chapter 5 we will decrease the communication overhead even further,
by pursuing schemes that may dynamically suppress updates or selectively re-
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frain from updates at pre-scheduled epochs to convey implicit information.

3.A Proofs of Section 3.3.2

3.A.1 Proof of Lemma 3.2

Let ỹi , j (t ), i = 0,1, . . . , j , j ≥ 0, be the solution to the fluid-limit equation (3.1)
with λ= 0, i.e.,

dỹi , j (t )

dt
= ỹi+1, j (t )1{i < j }− ỹi , j (t )1{i > 0},

with initial conditions ỹi ,i (0) = vi (0) and ỹi , j (0) = 0 for all j ≥ i +1, i ≥ 0. The so-
lution ỹi , j (t ) may be interpreted as the fluid limit in the absence of any arrivals,
and it is easily verified that

ỹi , j (t ) = v j (0)
t j−i

( j − i )!
e−t ,

for all i = 1,2, . . . , j , and

ỹ0, j (t ) = v j (0)
∞∑

k= j

t k

k !
e−t ,

j ≥ 0. Further introduce

ṽi (t ) =
∞∑

j=i
ỹi , j (t ), z̃k (t ) =

∞∑
i=k

ṽi (t ), Q̃>K (t ) =
∞∑

k=K+1
z̃k (t ),

and note from (3.4) that

dQ̃>K (t )

dt
=−z̃K+1(t ). (3.18)

We will first establish that z̃k (t ) ≤ zk (t ) for all k ≥ 0, t ∈ [0,τ), reflecting that
the fraction of servers with queue length k or larger on fluid scale is no less
than what it would be in the absence of any arrivals. Suppose that were not
the case, and let t0 ∈ [0,τ) be the first time when that inequality is about to be
violated for some k0 > 0. Then we must have zk0 (t0) = z̃k0 (t0), implying vk0 (t0) =
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zk0 (t0)− zk0+1(t0) ≤ z̃k0 (t0)− z̃k0+1(t0) = ṽk0 (t0), since z̃k0+1(t0) ≤ zk0+1(t0). Now
observe that

dzk0 (t )

dt
|t=t0=−vk0 (t0)+λ

∞∑
j=k0−1

pk0−1, j (t0) ≥−vk0 (t0),

while

dz̃k0 (t )

dt
|t=t0=−ṽk0 (t0) ≤−vk0 (t0) ≤ dzk0 (t )

dt
.

Hence zk0 (t ) cannot fall below z̃k0 (t ) at (just after) t0, contradicting the initial
supposition in which t0 would be the first time that the inequality is about to be
violated.

Invoking (3.18), we obtain

∫ t

s=0
zK+1(s)ds ≥

∫ t

s=0
z̃K+1(s)ds =Q>K (0)−Q̃>K (t )

=Q>K (0)−
∞∑

k=K+1
(k −K )ṽk (t )

=Q>K (0)−
∞∑

k=K+1
(k −K )

∞∑
l=k

ỹk,l (t )

=Q>K (0)−
∞∑

k=K+1
(k −K )

∞∑
l=k

vl (0)
t l−k

(l −k)!
e−t

=Q>K (0)−
∞∑

l=K+1
vl (0)

l∑
k=K+1

(k −K )
t l−k

(l −k)!
e−t

=Q>K (0)−
∞∑

l=K+1
vl (0)

l−K−1∑
m=0

(l −K −m)
t m

m!
e−t

=Q>K (0)−
∞∑

l=K+1
vl (0)A(l −K , t )

=Q>K (0)−
∞∑

l=1
vK+l (0)A(l , t ).
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Now observe that

et A(L, t ) =
L∑

l=0
(L− l )

t l

l !
=

L∑
l=0

L− l

L+1− l
(L+1− l )

t l

l !

≤
L∑

l=0

L

L+1
(L+1− l )

t l

l !
= L

L+1

L∑
l=0

(L+1− l )
t l

l !

= L

L+1

L+1∑
l=0

(L+1− l )
t l

l !
= L

L+1
et A(L+1, t ),

or equivalently,

A(L, t )

L
≤ A(L+1, t )

L+1
,

which may be interpreted from the fact that the expected fraction of jobs that
remain after a period of length t is smaller with an initial queue of size L than
L+1. Thus, A(l , t ) ≤ l

L A(L, t ) for all l ≤ L. Also,

A(L, t ) =
L∑

l=0
(L− l )

t l

l !
e−t =

L−1∑
l=0

(L−1− l )
t l

l !
e−t +

L−1∑
l=0

t l

l !
e−t ≤ A(L−1, t )+1,

so that A(l , t ) ≤ l −L+ A(L, t ) for all l ≥ L+1. We obtain

∞∑
l=1

vK+l (0)A(l , t ) =
L∑

l=1
vK+l (0)A(l , t )+

∞∑
l=L+1

vK+l (0)A(l , t )

≤
L∑

l=1
vK+l (0)

l

L
A(L, t )+

∞∑
l=L+1

vK+l (0)[l −L+ A(L, t )]

= 1

L

[
L∑

l=1
l vK+l (0)+

∞∑
l=L+1

vK+l (0)

]
A(L, t )+

∞∑
l=L+1

(l −L)vK+l (0)

=Q>K+L(0)+ 1

L

[
Q≤K+L(0)−Q≤K (0)

]
A(L, t ),

yielding

Q>K (0)−
∞∑

l=1
vK+l (0)A(l , t ) ≥Q>K (0)−Q>K+L(0)− 1

L

[
Q≤K+L(0)−Q≤K (0)

]
A(L, t )

=Q≤K+L(0)−Q≤K (0)− 1

L

[
Q≤K+L(0)−Q≤K (0)

]
A(L, t )

= [
Q≤K+L(0)−Q≤K (0)

][
1− A(L, t )

L

]
.
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3.A.2 Proof of Lemma 3.8

Just like in the proof of Lemma 3.2, let ỹi , j (t ), i = 0,1, . . . , j , j ≥ 0, be the solution
to the fluid-limit equation (3.1) with λ= 0, i.e.,

d̃y i , j (t )

dt
= ỹi+1, j (t )1{i < j }− ỹi , j (t )1{i > 0},

but now with initial conditions such that z̃i (0) ≤ zi (0) for all i ≥ 1, with z̃i (t ) =∑∞
k=i ṽk (t ) and ṽk (0) = ỹk,k (0), and ỹi , j (0) = 0 for all j ≥ i + 1, i ≥ 0. As before,

ỹi , j (t ) may be interpreted as the fluid limit in the absence of any arrivals, and it
is easily verified that

ỹi , j (t ) = ṽ j (0)
t j−i

( j − i )!
e−t ,

for all i = 1,2, . . . , j , and

ỹ0, j (t ) = ṽ j (0)
∞∑

k= j

t k

k !
e−t ,

j ≥ 0. Further let y0
0,1(t ), y0

1,1(t ) be solutions to the system of differential equa-
tions

dy0
0,1(t )

dt
= y0

1,1(t )

dy0
1,1(t )

dt
=λ1{t ≤ t0}− y0

1,1(t ),

with t0 = min{ṽ0(0)/λ,T } and initial conditions y0
0,1(0) = y0

1,1(0) = 0.
It is easily verified that

y0
0,1(t ) =

{
λ[t −1+e−t ] t ∈ [0, t0],
λ[t0 −e−(t−t0) +e−t ] t ∈ [t0,τ],

y0
1,1(t ) =

{
λ[1−e−t ] t ∈ [0, t0],
λ[e−(t−t0) −e−t ] t ∈ [t0,τ].

The variable y0
0,1(t ) may be interpreted as the fraction of servers with queue

length 0 at time 0, queue length 0 at time t and queue estimate 1 at time t , i.e.,
which have been assigned an arriving job and completed that job by time t . Like-
wise, y0

1,1(t ) may be interpreted as the fraction of servers with queue length 0 at
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time 0, queue length 1 at time t and queue estimate 1 at time t , i.e., which have
been assigned an arriving job that remains to completed by time t .

In a similar fashion as in the proof of Lemma 3.2, it can be established that
z̃1(t )+ y0

1,1(t ) ≤ z1(t ) and z̃i (t ) ≤ zi (t ) for all i ≥ 2 and t ∈ [0,T ].
To prove statement (i), consider z̃1(0) = min{z1(0),1−λτ} ≥ min{1− v0(0),1−

λτ} ≥ min{λ,1−λτ} = λ, and z̃k (0) = 0 for all k ≥ 2. Noting that ṽ0(0) = 1− z̃1(0) ≥
λτ yields t0 = τ, and thus y0

1,1(τ) = λ(1− e−τ). Also, z̃1(τ) = ỹ1,1(τ) = ṽ1(0)e−τ =
z̃1(0)e−τ ≥λe−τ. We obtain that

z1(τ) ≥ z̃1(τ)+ y0
1,1(τ) ≥λ,

yielding v0(t ) = 1− z1(τ) ≤ 1−λ.
To establish assertion (ii), consider z̃k (0) = zk (0) for all k ≥ 1. Then just like

in the proof of Lemma 3.3, noting that A(l ,τ) ≤ A(2,τ)+ l −2 for all l ≥ 2,∫ τ

s=0
z̃1(s)ds = Q̃(0)−

∞∑
l=1

vl (0)A(l ,τ)

=
∞∑

l=1
l vl (0)−

∞∑
l=1

vl (0)A(l ,τ) =
∞∑

l=1
vl (0)[l − A(l ,τ)]

=
∞∑

l=1
vl (0)[1− A(1,τ)]+

∞∑
l=2

vl (0)[l −1+ A(1,τ)− A(l ,τ)]

≥ z1(0)[1− A(1,τ)]+
∞∑

l=2
vl (0)[1+ A(1,τ)− A(2,τ)]

= z1(0)[1−e−τ]+ z2(0)[1−e−τ−τe−τ].

Also, t0 = τ, and thus∫ τ

s=0
y0

1,1(s)ds = y0
0,1(τ) =λ[τ−1+e−τ].

We obtain that∫ T

s=0
[1− v0(s)]ds =

∫ τ

s=0
z1(s)ds ≥

∫ τ

s=0
[y0

1,1(s)+ z̃1(s)]ds

≥λ[τ−1+e−τ]+ z1(0)[1−e−τ]+ z2(0)[1−e−τ−τe−τ]

=λτ+ [z1(0)−λ][1−e−τ]+ z2(0)[1−e−τ−τe−τ].

To prove statement (iii), consider as before z̃k (0) = zk (0) for all k ≥ 1. Further
observe that

A(l ,τ) ≥ A(l −1,τ)+ A(1,τ),
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and

A(k,τ)−k =−B(k,τ) ≥−τ.

Then just like in the proof of Lemma 3.3, noting that A(l ,τ) ≤ A(2,τ)+ l −2 for
all l ≥ 2,

Q̃(τ) =
∞∑

l=1
vl (0)A(l ,τ) =

∞∑
l=1

vl (0)l +
∞∑

l=1
vl (0)[A(l ,τ)− l ]

=Q(0)+
∞∑

l=1
vl (0)[A(1,τ)−1]+

∞∑
l=2

vl (0)[A(l ,τ)− l − A(1,τ)+1]

≥Q(0)+ z1(0)[A(1,τ)−1]+
∞∑

l=2
vl (0)[A(l −1,τ)− l +1]

≥z1(0)[1−e−τ]− z2(0)τ.

Also, t0 = τ, and thus

y0
0,1(τ) =λ[τ−1+e−τ].

We obtain

Q(τ) ≥ y0
0,1(τ)+Q̃(τ) ≥λ[τ−1+e−τ]+ z1(0)[1−e−τ]− z2(0)τ

=λτ+ [z1(0)−λ][1−e−τ]− z2(0)τ.

To establish assertion (iv), consider z̃k (0) = min{zk (0),1−λτ} for all k ≥ 1.
Then, just like in the proof of statement (ii),∫ τ

s=0
z̃1(s)ds = Q̃(0)−

∞∑
l=1

ṽl (0)A(l ,τ)

=
∞∑

l=1
l ṽl (0)−

∞∑
l=1

ṽl (0)A(l ,τ) =
∞∑

l=1
ṽl (0)[l − A(l ,τ)]

=
∞∑

l=1
ṽl (0)[1− A(1,τ)]+

∞∑
l=2

ṽl (0)[l −1+ A(1,τ)− A(l ,τ)]

≥ z̃1(0)[1− A(1,τ)]+
∞∑

l=2
ṽl (0)[1+ A(1,τ)− A(2,τ)]

= z̃1(0)[1−e−τ]+ z̃2(0)[1−e−τ−τe−τ].

Also, noting that ṽ0(0) = 1− z̃1(0) ≥ λτ yields t0 = τ, and thus y0
1,1(τ) = λ(1−

e−τ).
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We obtain that∫ τ

s=0
[1− v0(s)]ds =

∫ τ

s=0
z1(s)ds ≥

∫ τ

s=0
[y0

1,1(s)+ z̃1(s)]ds

≥λ[τ−1+e−τ]+ z̃1(0)[1−e−τ]+ z̃2(0)[1−e−τ−τe−τ]

=λτ+ [z̃1(0)−λ][1−e−τ]+ z̃2(0)[1−e−τ−τe−τ].

Statement (v) follows from statements (ii) and (iv).

3.B Derivation of the fixed point

For convenience, denote by m∗ = min( j |w∗
j > 0) the minimum queue estimate

associated with the fixed point. Further denote n∗ = m∗ if u∗
m∗−1 ≤ λ, or n∗ =

min{n : u∗
n >λ} otherwise.

Setting the derivatives in (3.11) equal to zero and denoting ν = ζ/wn∗ , we
deduce

0 = y∗
i+1, j1{i +1 ≤ j }− y∗

i , j1{i > 0}

+νy∗
i−1, j−11{n∗ = j −1}−νy∗

i , j1{n∗ = j }

+δ
i∑

k=0
v∗

k1{i = j = n∗}+δv∗
i 1{i = j ≥ n∗+1}−δy∗

i , j

(3.19)

for all i = 0,1, . . . , j ≥ n∗. Similarly, we have for j0 ≥ n∗+2,

0 = d

d t

∞∑
j= j0

w j (t ) = δ
∞∑

j= j0

[v∗
j −w∗

j ] =−δ
j0−1∑
i=0

∞∑
j= j0

y∗
i , j (3.20)

which yields y∗
i , j = 0 for all j ≥ n∗+2 and i < j . Additionally, applying (3.19)

with i = k +1 and j = k +2, gives

0 = y∗
k+2,k+2 − y∗

k+1,k+2 −δy∗
k+1,k+2 = y∗

k+2,k+2

for all k ≥ n. In conclusion, it is readily seen that w∗
j = 0 for all j ≥ n∗+2. This

implies m∗ = n∗, and yields

y∗
i+1,m∗1{i 6= m∗}− (1{i 6= 0}+ν+δ)y∗

i ,m∗ +δ
m∗∑
k=0

v∗
k1{i = m∗} = 0,
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for all i = 0,1, . . . ,m∗, and

y∗
i+1,m∗+11{i 6= m∗+1}− (1{i 6= 0}+δ)y∗

i ,m∗+1

+νyi−1,m∗1{i 6= 0}+δy∗
m∗+1,m∗+11{i = m∗+1} = 0,

for all i = 0,1, . . . ,m∗+1.
We obtain (with µ≡ 1)

(ν+δ)y∗
0,m∗ =µy∗

1,m∗

(µ+ν+δ)y∗
i ,m∗ =µy∗

i+1,m∗ , i = 1, . . . ,m∗−1

(µ+ν)y∗
m∗,m∗ = δ

[
m∗−1∑

i=0
y∗

i ,m∗ +
m∗∑
i=0

y∗
i ,m∗+1

]
,

or equivalently,

(µ+ν+δ)y∗
m∗,m∗ = δ

m∗∑
i=0

[y∗
i ,m∗ + y∗

i ,m∗+1] = δ[1− y∗
m∗+1,m∗+1], (3.21)

and

δy∗
0,m∗+1 =µy∗

1,m∗+1

(µ+δ)y∗
i ,m+1 =µy∗

i+1,m∗+1 +νy∗
i−1,m∗ , i = 1, . . . ,m∗

µy∗
m∗+1,m∗+1 = νy∗

m∗,m∗ ,

(3.22)

or equivalently,

(µ+δ)y∗
m∗+1,m∗+1 = νy∗

m∗,m∗ +δy∗
m∗+1,m∗+1,

along with

m∗∑
i=0

y∗
i ,m∗ +

m∗+1∑
i=0

y∗
i ,m∗+1 = 1.

Note that Equations (3.21) and (3.22) determine y∗
m,m and y∗

m+1,m+1:

y∗
m,m = δ

(1+ν)(1+δ)
,

y∗
m+1,m+1 =

νδ

(1+ν)(1+δ)
.
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It follows from the above equations (flux up equals flux down) that

δ
m∗−1∑

i=0
(m∗− i )[y∗

i ,m∗ + y∗
i ,m∗+1]+νw∗

m∗ =µ
[

m∗∑
i=1

y∗
i ,m∗ +

m∗+1∑
i=1

y∗
i ,m∗+1

]
,

which implies that

ν= λ−∆
w∗

m
,

with

∆= δ
m∗−1∑

i=0
(m∗− i )[y∗

i ,m∗ + y∗
i ,m∗+1],

is equivalent with

y∗
0,m∗ + y∗

0,m∗+1 = 1− λ

µ
,

reflecting that each server is idle a fraction of the time 1−λ/µ.
Recall that a = 1

1+δ and b = 1
1+δ+ν . We can use the above equations to express

ym∗− j ,m∗ in y∗
m∗− j+1,m∗+1 for all j = 1, . . . ,m∗, and recursively obtain

y∗
m∗− j ,m∗ = b j y∗

m∗,m∗ , j = 0, . . . ,m∗−1

y∗
i ,m∗ = bm∗−i ym∗,m∗ , i = 1, . . . ,m∗

y∗
0,m∗ = y∗

m∗,m∗ = bm∗−1

ν+δ ym∗,m∗ .

Next, we express y∗
m∗− j ,m∗+1 in terms of y∗

m∗− j+1,m∗+1 and y∗
m∗− j−1,m∗ , and

recursively derive

ym∗+1,m∗+1 =νym∗,m∗

y∗
m∗− j ,m∗+1 =a j+1 y∗

m∗+1,m∗+1 +νab
j∑

k=0
a j−k bk y∗

m∗,m∗

=a j+1 y∗
m∗+1,m∗+1 + [a j+1 −b j+1]y∗

m∗,m∗

for j =−1, . . . ,m∗−2,

y∗
m∗+1− j ,m∗+1 =a j y∗

m∗+1,m∗+1 +νab
j−1∑
k=0

a j−k bk y∗
m∗,m∗

=a j y∗
m∗+1,m∗+1 + [a j −b j ]y∗

m∗,m∗
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for j = 0, . . . ,m∗−1,

y∗
i ,m∗+1 =am∗+1−i y∗

m∗+1,m∗+1 +νab
m∗−i∑
k=0

am∗−i−k bk y∗
m∗,m∗

=am∗+1−i y∗
m∗+1,m∗+1 + [am∗−i+1 −bm∗−i+1]y∗

m∗,m∗

for i = 2, . . . ,m∗+1,

y∗
1,m∗+1 =am∗

y∗
m∗+1,m∗+1 +νab

[
m∗−2∑

k=0
am∗−1−k bk + 1

ν+δbm∗−2

]
y∗

m∗,m∗

=am∗
y∗

m∗+1,m∗+1 +a

[
am∗−1 − δ

ν+δbm∗−1
]

y∗
m∗,m∗

and y∗
0,m∗+1 = 1

δ y∗
1,m∗+1.

It only remains to be shown that Equation (3.15) has a unique solution ν≥ 0,
which then further implies that

ν= λ−∆
w∗

m∗
,

as noted earlier.
In order to establish that a solution ν≥ 0 exists, note that y∗

0,m∗+1 ↓ 0, and

y0,m∗ →
(

1

1+δ
)m∗

≤ 1−λ,

as ν ↓ 0, while y0,m∗ ↓ 0 and

y0,m∗+1 →
(

1

1+δ
)m∗+1

> 1−λ

as ν→∞.
It may further be shown that y0,m∗ + y0,m∗+1 is in fact (strictly) decreasing

in ν, ensuring that the value of ν is also unique.
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Chapter 4
Optimal hyper-scalable load
balancing with a strict queue
limit

Based on:

[BBL20] M. van der Boor, S. C. Borst, and J. S. H. van Leeuwaarden. “Op-
timal Hyper-Scalable Load Balancing with a Strict Queue Limit”.
In: Preprint (2020)

4.1 Introduction

Just as in Chapter 3, we are interested in hyper-scalable load balancing algo-
rithms that are able to achieve great performance while having low communi-
cation overhead. In this chapter, we focus on the optimal performance for a
potentially scarce communication budget, and our perspective is fundamentally
different compared to Chapter 3 in two respects. First of all, we only consider
dispatcher-driven schemes that have a communication overhead of no more than
δ. When δ < 1, we need to resort to hyper-scalable algorithms. Second, jobs
may only be admitted when a strict limit K on the queue position of the job
can be guaranteed. This queue limit K can have any value and is offered in
systems of any size, as opposed to a zero queue length that is only ensured with
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high probability in a many-server regime. The combination of a low communi-
cation budget per job and a strict admission condition is particularly pertinent
for high-volume packet processing applications, where zero delay may not be
feasible given the admissible message rate, but where an explicit queue limit is
crucial.

As the cornerstone of our analysis, we establish a universal upper bound
for the achievable throughput of any dispatcher-driven algorithm as function
of δ and K , thus capturing the trade-off between performance and communica-
tion overhead. We also introduce and analyze a specific hyper-scalable scheme
which approaches the latter bound in a many-server regime, demonstrating that
the bound is sharp and that the proposed scheme is asymptotically throughput-
optimal given the communication and queue limit constraints.

Organization of the chapter. In Section 4.2 we introduce the model and dis-
cuss our key findings and contributions. In Section 4.3 we introduce the upper
bound for the throughput. The analysis of the hyper-scalable scheme, using a
closed queueing network, is presented in Section 4.4. In Section 4.5 we pro-
vide simulation results to further illustrate the behavior of the hyper-scalable
scheme. An extension of the hyper-scalable scheme that also aims to minimize
queue lengths is introduced in Section 4.6. In Section 4.7 we establish product-
form distributions for a general closed queueing network scenario which covers
both the hyper-scalable scheme and the extension as special cases. We conclude
with some remarks and suggestions for further research in Section 4.8.

4.2 Model description and key results

We consider a system with N identical servers of unit exponential rate and a
single dispatcher where jobs arrive as a Poisson process of rate Nλ. The dis-
patcher is unaware of the service requirements of jobs and cannot buffer them,
but must immediately forward them to one of the servers or block them. The
throughput of the system is defined as the rate of admitted jobs per server.

The blocking option is relevant since the dispatcher must enforce an explicit
queue limit K , and is only allowed to admit a job and assign it to a server if
it can guarantee that the queue position encountered by that job is at most K .
Note that it is not enough for a job to end up in such a position thanks to a
lucky guess, but that the dispatcher must have absolute certainty in advance
that this is the case, and that a job must be discarded otherwise. Discarding
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may be the preferred option in packet processing applications when handling
a packet beyond a certain tolerance window serves no useful purpose. In that
case, processing an obsolete packet results in an unnecessary resource wastage
and needlessly contributes to further congestion, and is thus worse than simply
dropping the packet upfront.

As mentioned above, the dispatcher is oblivious of the service requirements,
which are exponentially distributed and thus have unbounded support. Hence,
the dispatcher critically relies on information provided by the servers in order
to enforce the queue limit K , and is allowed to send probes for this purpose,
requesting queue length reports at a rate Nδ. In addition, the dispatcher is
endowed with unlimited memory capacity, which it may use to determine which
server to probe and when or to which server it will dispatch an arriving job.
Servers return instantaneous queue length reports in response to probes from
the dispatcher, but are not able to initiate messages or send unsolicited updates
when reaching a certain status.

With the above framework in place, we will construct a specific hyper-
scalable scheme which is guaranteed to enforce the queue limit K and operate
within the communication budget δ. The scheme toggles each individual server
between two modes of operation, labeled open and closed. An open period
starts when the dispatcher requests a queue length update from the server and
the reported queue length is below K ; during that period the server is not work-
ing, and waits for incoming jobs from the dispatcher, seeing its queue only grow.
Once the queue length reaches the limit K , a closed period starts, ending when
the dispatcher requests the next update after τ time units; during that period the
server is continuously working as long as jobs are available, without receiving
any further jobs, thus draining its queue. When the queue length reported at an
update is exactly K , the open period has length zero, and the next closed period
starts immediately. By construction, the above-described mechanism maintains
a queue limit of K at all times and induces a message rate of at most 1/τ per
server, which makes τ= 1/δ the obvious choice.

The scheme is similar to AUJSQdet(δ) from Chapter 3. The most important
difference is that in AUJSQdet(δ), every server is updated exactly every τ = 1/δ
time units based on a timer, while the current scheme only starts the timer
when the queue length of a server has reached K . Thus the AUJSQ(δ) scheme
might update servers even when they are known to have strictly less than K
jobs in queue. This difference however typically vanishes when the number of
servers increases and the load approaches the critical value λ∗(δ,K ). A more
detailed comparison accompanied with simulation results will be provided in
Section 4.5.4.
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Main results. We now discuss the main results, which can be summarized as
follows. There is a function λ∗ of δ and K , such that subject to a message rate δ
and queue limit K ,

• the throughput of any dispatcher-driven algorithm is bounded from above
by min{λ∗(δ,K ),λ},

• the throughput of our hyper-scalable scheme approaches min{λ∗(δ,K ),λ}
as N →∞.

These two results are covered in Sections 4.3 and 4.4, respectively.

4.3 Universal upper bound

We establish the upper bound for a slightly more general scenario with hetero-
geneous server speeds. Denote the speed of the n-th server by µn for n = 1, . . . , N .
The next theorem shows that the achievable throughput of any dispatcher-
driven algorithm subject to the message rate δ and queue limit K is bounded
from above by

λ∗(δ,K ) = δB(K , µ̄/δ), (4.1)

with

B(K ,τ) =
K−1∑
k=0

(
1−e−τ

k∑
i=0

τi

i !

)
, (4.2)

and µ̄ = 1
N

∑N
n=1µn denoting the system-wide average server speed. Note that

B(K ,τ) may be equivalently written as

B(K ,τ) = K −
K−1∑
k=0

(K −k)e−τ
τk

k !
,

and may be interpreted as the expected value of the minimum of K and a Pois-
son distributed random variable with mean τ, just as in Section 3.3.2.

Theorem 4.1. The expected number of jobs that any dispatcher-driven algorithm
can admit subject to the queue limit K during a period of length T0 with at most
δN T0 message exchanges cannot exceed 2K N+λ∗(δ,K )×N T0, for any δ> 0. In par-
ticular, the achievable throughput with a message rate of at most δ> 0 is bounded
from above by λ∗(δ,K ).
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Recall that we defined throughput as the rate of admitted jobs per server, and
note that the throughput is naturally bounded from above by the normalized
arrival rate λ.

Proof. As noted earlier, since the execution times are exponentially distributed
and thus have unbounded support, the dispatcher relies on information pro-
vided by the servers in order to enforce the queue limit K . Specifically, the dis-
patcher earns ‘passes’ for admitting k jobs when a server reports k = 0, . . . ,K ser-
vice completions since the previous update, and cannot admit any job without
relinquishing a pass. Thus, the number of jobs that the dispatcher can admit
during a particular time period cannot exceed the sum of (i) the maximum pos-
sible number of K N passes initially available; (ii) the maximum possible num-
ber of K N passes earned at the first update from each server during that period,
if any; and (iii) the number of additional passes obtained at further updates
over intervals that fell entirely during that period, if any. Now suppose that the
dispatcher requests Ln queue length reports from the n-th server during a pe-
riod of length T0, one after each of the update intervals of lengths Tn,1, . . . ,Tn,Ln ,
with

∑Ln
l=1 Tn,l ≤ T0 for all n = 1, . . . , N and L =∑N

n=1 Ln ≤ δN T0. Then the number
of passes earned at the l -th update equals the number of service completions
during the time interval Tn,l , which depends on the queue length at the start
of that interval. However, this random variable is stochastically bounded from
above by when the queue was full with K jobs at the start of the interval. In
the latter case the number of passes earned is given by the minimum of K and a
Poisson distributed random variable with parameter µnTn,l . We deduce that the
expected total number of passes obtained at all these updates is bounded from
above by

N∑
n=1

Ln∑
l=1

B(K ,µnTn,l ), (4.3)

and to prove the first statement of the theorem it thus remains to be shown that
this quantity is no larger than λ∗(δ,K )×N T0. It is easily verified that

∂2B(K , t )

∂t 2 =−e−t t K−1

(K −1)!
< 0,

implying that B(K , t ) is concave as function of t . As an aside, the above expres-
sion may be intuitively explained from the fact that the first derivative ∂B(K ,t )

∂t
equals the probability that exactly K −1 unit-rate Poisson events occur during
a period of length t , while the (negative) derivative of the latter probability
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equals that very same probability by virtue of the Kolmogorov equations for a
pure birth process. Because of concavity, we obtain that (4.3) is no larger than
L×B(K ,τ), with

τ= 1

L

N∑
n=1

µn

Ln∑
l=1

Tn,l ≤
1

L

N∑
n=1

µnT0 = µ̄N T0

L
. (4.4)

Invoking the fact that ∂B(K ,t )
∂t > 0, i.e., B(K , t ) is increasing in t , we may write

L×B(K ,τ) ≤ L×B(K , µ̄N T0/L) =λ∗(γ,K )×N T0, (4.5)

with γ= L
N T0

≤ δ. It is easily verified that

∂λ∗(x,K )

∂x
= K −K e−1/x

K∑
k=0

(1/x)k

k !
> 0, (4.6)

i.e., λ∗(x,K ) is increasing in x, and hence λ∗(γ,K ) ≤ λ∗(δ,K ), which completes
the proof of the first statement of the theorem.

Finally, to prove the second statement, we consider the long-term scenario
T0 → ∞. The number of jobs that are admitted per time-unit per server then
equals (2K N +λ∗(δ,K )×N T0)/(N T0) →λ∗(δ,K ) and the message rate per server
equals at most δN T0/(N T0) = δ.

Properties of λ∗. We now state some properties of λ∗(δ,K ) and discuss their
consequences, where we assume without loss of generality that µ̄ = 1. In the
next subsection we will introduce a hyper-scalable scheme which is able to
achieve this throughput in the many-server regime. For now, we will reflect
the properties in light of the maximum throughput that is possible for any
dispatcher-driven load balancing algorithm given a message rate δ.

Proposition 4.1. λ∗(δ,K ) has the following properties:

(i) λ∗(δ,K ) is strictly increasing in both δ and K ,

(ii) λ∗(δ,K ) ↑ 1 as δ→∞,

(iii) λ∗(δ,K ) ↓ 0 and λ∗(δ,K )/δ→ K as δ ↓ 0,

(iv) for a ≤ 1, λ∗(a/K ,K ) → a as K →∞.
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Proof. λ∗(δ,K ) is strictly increasing in δ because of (4.6) and is strictly increas-
ing in K since 1−e−τ

∑k
i=0

τi

i ! > 0 in (4.2). For Properties (ii) to (iv), note that

δ[K −K e−1/δ−e−1/δ((K −1)/δ+ (K −2)(1/δ)y(δ))]

≤ δ(K −e−1/δ
K−1∑
i=0

(K − i )
(1/δ)i

i !
) =λ∗(δ,K ) ≤ min(δK ,1),

with y(δ) = 2 when δ ≥ 1 and y(δ) = K −1 when δ < 1. All limiting statements
are true for the LHS and RHS of the previous equation, therefore proving these
properties for λ∗(δ,K ) too.
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Figure 4.1: Visualization of the throughput bound λ∗(δ,K ) for various values of K as
function of δ. For the fourth and fifth graph, only values of δ are evaluated for which the
second argument is integer-valued.

The properties in Proposition 4.1 are visualized in Figure 4.1. They can be
interpreted intuitively and practically too. For Property (i), when the commu-
nication budget is expanded, i.e. δ is increased, more jobs can be dispatched to
queues that are guaranteed to be short. Similarly, more jobs can be admitted
into the system if the queue limit is raised, i.e., K is increased. Property (i),
in conjunction with Theorem 4.1, implies that a throughput λ∗(δ,K ) cannot be
achieved with a message rate strictly below δ, or a queue limit strictly below K .

Property (ii) shows that as the message rate grows large, full server utiliza-
tion can be achieved. With an unlimited message rate, the dispatcher is able to
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find idle servers immediately, a necessary requirement for achieving full server
utilization irrespective of the queue limit K .

Property (iii) shows that, first, when no communication is allowed, no jobs
can be sent to queues that are guaranteed to be short. The further specification
of the limit indicates that K jobs are admitted into the system per message.
This in turn reveals that when the communication is extremely infrequent, all
messages result into finding an idle server, and thus provide the dispatcher with
K passes to admit jobs.

Finally, Property (iv) is somewhat similar to Property (iii). When the queue
limit K increases, one needs fewer messages in order to achieve a server uti-
lization level a. With a = 1, Property (iv) shows that one message per K jobs is
needed in order to achieve full server utilization, which is a somewhat similar
conclusion as the one from Property (iii).

4.4 The hyper-scalable scheme

We now introduce the hyper-scalable scheme in full detail for the case of homo-
geneous servers.

At all times, the dispatcher remembers the most recent queue length that
was reported by every server. Furthermore, the dispatcher records the number
of jobs that have been sent to every server since the last update from that server.
When the sum of these two numbers is strictly less than the queue limit K , a
server is labeled open, and otherwise closed.

Whenever a job arrives to the dispatcher, it is assigned to an open server, if
possible. There are two options for how to select an open server. Either an open
server is selected uniformly at random (random case), or the open server that
was interacted with (i.e. updated or received job) the longest ago is selected
(FCFS case). The job is dropped when no open servers exist.

Exactly τ time units after a server was labeled closed, the dispatcher will
request a queue length update of the server. The server becomes open when this
queue length is strictly less than K , and the server remains closed for another
τ time units if the queue length equals K , in which case the dispatcher will
request the next queue length update after another τ time units. The hyper-
scalable scheme is a dispatcher-driven algorithm, since only the dispatcher
initiates messages and every server can track itself when it is labeled open by
the dispatcher: exactly when the sum of the queue length during the latest
update and the number of jobs received since then is strictly below K .
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Note that by construction the hyper-scalable scheme respects the queue limit
K at all times and involves a message rate of at most 1/τ. In addition, the
scheme has been specifically designed to allow explicit analysis and derivation
of provable capacity benchmarks. As it turns out, a crucial feature in that re-
gard is for the servers to refrain from executing jobs while being marked open.
This feature ensures that the queue length is exactly K at the moment a server
becomes closed. The average number of job completions in an interval of length
τ then equals B(K ,τ), so one message leads to B(K ,τ) admitted jobs on average,
immediately yielding the following result.

Corollary 4.1. The average number of messages per admitted job equals 1/B(K ,τ),
regardless of λ and N .

While the forced idling of servers during open periods may seem ineffi-
cient, the next theorem shows that the proposed hyper-scalable scheme is in
fact throughput-optimal in large-scale systems, given the message rate δ and
queue limit K , with the choice τ= 1/δ.

Theorem 4.2. For any δ> 0, the throughput that is achieved by the hyper-scalable
scheme with τ= 1/δ approaches min{λ∗(δ,K ),λ} as N →∞.

Since the hyper-scalable scheme obeys the queue limit K and involves a
message rate of at most δ, Theorems 4.1 and 4.2 combined imply that it is
throughput-optimal as N →∞.

According to Theorem 4.1 and Property (i) of Proposition 4.1, one would
require a message rate of at least δ to achieve a throughput of λ∗(δ,K ). The-
orem 4.2 shows that the throughput of the hyper-scalable scheme approaches
λ∗(δ,K ) as N →∞ when λ≥ λ∗(δ,K ). A combination of these two observations
(and the fact that λ∗(δ,K ) is continuous in δ) indicates that the message rate
of the hyper-scalable scheme must approach δ as N → ∞ when λ ≥ λ∗(δ,K ).
This in turn implies that the expected duration of an open period must become
negligible, compare to the length τ of a closed period, i.e. the fraction of time
that a server is marked open vanishes.

We now proceed with an outline of the proof of Theorem 2.

Analysis. For brevity, a server is said to be in state k when the sum of the
queue length at its latest update epoch and the number of jobs the server has
received since, equals k. This means that all servers in state k < K are labeled
open and servers in state K are labeled closed. In view of the homogeneity of the
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servers, it is useful to further introduce N (t ) = (N0(t ), N1(t ), . . . , NK−1(t ), NK (t )),
with

∑
k Nk (t ) = N , where Nk (t ) stands for the number of servers in state k at

time t . While the vector N (t ) provides a convenient representation, it is worth
emphasizing that it does not provide a Markovian state description.

We now explain how individual servers transition between various states.
When a job arrives to the system, the state of an open server will change from
k < K to k +1. An update of a server may cause the server to change state too.
The new state of the server equals the number of jobs that are left in queue
after the update interval of τ time units. The number of jobs that were served
follows a truncated Poisson distribution, so the probability pk that exactly k jobs
remain, equals pk := e−τ τK−k

(K−k)! for k > 0 and p0 := 1− e−τ
∑K−1

i=0
τi

i ! . When k < K
jobs are left, the state of the server becomes k. When there are K jobs left, the
state of the server does not change and remains K .

It is important to observe that service completions of jobs do not cause direct
transitions in server states. The reason is twofold. When a server is open, it
stops working on jobs, so there are no such completions at open servers. For
closed servers, all servers are aggregated; the number of jobs in queue is not
taken into account. Only after the period of length τ, the number of jobs left in
queue is determined indirectly by using the transition probabilities as specified
above.

Although the vector N (t ) does not provide a Markovian state description as
noted above, its evolution can be described in terms of a closed queueing net-
work, in which the servers act as customers in the network, traversing various
nodes corresponding to their states. Specifically, the closed queueing network
consists of one multi-class “single-server” node with service rate λN in which
the customers can be of classes 0,1, . . . ,K −1, and one “infinite-server” node with
deterministic service time τ that holds all class-K customers. A service com-
pletion at the single-server node makes one customer transition. The class of
the customer changes from k to k + 1 if k < K − 1, or the customer transitions
to the infinite-server node if its class was K −1. When multiple customers are
present at the single-server node, the customer that transitions is either selected
uniformly at random (random case), or the customer that has been in the single-
server node for the longest time is selected (FCFS case). Finally, upon a service
completion at the infinite-server node a customer moves to the single-server
node as class k < K with probability pk , or directly re-enters the infinite-server
node with probability pK .

A schematic representation is shown in Figure 4.2. We define γk as the
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relative throughput value of class-k customers. With γK = 1, it follows that
γk = p0 + . . .+pk = 1−e−τ

∑K−1−k
i=0

τi

i ! for k < K .

0 1 2 ... K−1

Open

Closed

p0 p1 p2

p
K−1

pK

Figure 4.2: Schematic representation of the circulation of an individual customer in the
closed queueing network.

By virtue of the above-described equivalence, the process N (t ) represent-
ing the server states under the hyper-scalable scheme inherits the product-form
equilibrium distribution of the closed network as stated in the next proposition.

Proposition 4.2. The equilibrium distribution of the system with N servers is

π(n0,n1, . . . ,nK−1,nK ) =G−1
N

(n0 + . . .+nK−1)!

n0! . . .nK−1!

(
K−1∏
i=0

( γi

λN

)ni

)
τnK

nK !
(4.7)

if n0 + . . .+nK = N , with normalization constant

GN = ∑
v0+...+vK−1+w=N

(v0 + . . .+ vK−1)!

v0! . . . vK−1!

(
K−1∏
i=0

( γi

λN

)vi

)
τw

w !
.

A proof of Proposition 4.2 can be found in Section 4.7, and the product-form
equilibrium distribution may be informally understood as follows. The infinite-
server node allows a product-form distribution even for deterministic service
times. While traditionally exponentially distributed service times are consid-
ered, the equilibrium distribution is insensitive to the service time distribution
at the infinite-server node and only depends on its mean, see Section 4.7 for de-
tails. As mentioned above, the service discipline at the single-server node with
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exponentially distributed service times may either be FCFS or random order of
service. In the case of the FCFS discipline, albeit not being reversible [Kel11],
the single-server node with multiple classes can be represented as an order-
independent queue [BKK95; Krz11]. According to Theorem 2.2 in [Krz11], the
queue is quasi-reversible, which is sufficient for a product-form distribution.
For random order of service, which is a symmetric service discipline, the single-
server node is reversible, yielding a product-form as well.

The equilibrium distribution (4.7) can be simplified when only the number
of open and closed servers matters. This immediately yields an expression for
the blocking probability LN as provided in the next corollary.

Corollary 4.2. The equilibrium probability of there being n open servers and N−n
closed servers under the hyper-scalable scheme equals

π(n, N −n) = ∑
n0+...+nK−1=n

π(n0, . . . ,nK−1, N −n) =
(

B(K ,τ)
λN

)n
τN−n

(N−n)!∑N
w=0

(
B(K ,τ)
λN

)w
τN−w

(N−w)!

. (4.8)

In particular, because of the PASTA property, the blocking probability is given by

LN =π(0, N ) =
(xN )N

N !∑N
w=0

(xN )w

w !

, (4.9)

with x =λτ/B(K ,τ) =λ/λ∗(1/τ,K ). Finally,

LN
N→∞→ max{0,1−λ∗(1/τ,K )/λ}.

Specifically, LN ↓ 0 as N →∞ when λ≤λ∗(1/τ,K ).

Suppose that the allowed message rate is δ as stated in Theorem 4.2, then
put τ= 1/δ. When λ≤λ∗(1/τ,K ), the blocking probability vanishes in the many-
server regime according to Corollary 4.2, and thus the throughput approaches
λ. When λ > λ∗(1/τ,K ), the acceptance probability tends to λ∗(1/τ,K )/λ and
the throughput approaches λ×λ∗(1/τ,K )/λ= λ∗(1/τ,K ). These two statements
combined yield Theorem 4.2.

Theorem 4.2 allows us to equivalently view λ∗(δ,K ) as the throughput that
is achieved by the hyper-scalable scheme as N →∞ when λ≥λ∗(δ,K ). We now
revisit properties (ii) and (iii) as stated in Proposition 4.1 from that perspective.
In the limiting scenario δ→∞, τ ↓ 0, servers are updated after an infinitesimally
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small time, which in turn alerts the dispatcher immediately when even a single
job has been served. This ensures that all servers can work at full capacity.

In the scenario δ ↓ 0, τ→∞, update periods become extremely long. Every
update that does happen, will definitely find an idle server and allow for K
admitted jobs, explaining why λ∗(δ,K ) ≈ Kδ for small δ.

Remark. Note that with the queue limit K in force we may assume each server to
have a finite buffer of size K . In case of a finite buffer, the queue limit K would
automatically be enforced, even if the dispatcher were allowed to forward jobs
without any advance guarantee. With the option of "(semi)-blind guesses", the
throughput bound would trivially become 1 (the average server speed), and
Property (iii) indicates that the achievable throughput λ∗(δ,K ) without lucky
guesses could be (substantially) lower when δ is (significantly) smaller than
1/K . However the throughput of 1 can only be approached for a high arrival
rate, at the expense of severe blocking, whereas the hyper-scalable scheme can
deliver the throughput λ∗(δ,K ) with negligible blocking asymptotically.

4.5 Simulation experiments and optimality bench-
marks

In this section we conduct various simulation experiments to further bench-
mark the properties of the hyper-scalable scheme and make several compar-
isons. Throughout we often set the queue limit K = 2, yielding the throughput
bound λ∗(δ,2) = 2δ−2δe−1/δ−e−1/δ as function of the message rate δ. Further-
more, all simulation results emulate the random case, i.e. a job is sent to an
open server selected uniformly at random.

4.5.1 Baseline version of the hyper-scalable scheme

First, we evaluate the hyper-scalable scheme itself in Figures 4.3a and 4.3b for
K = 2 and K = 3 respectively. We note that the message rate stays below the
line y = 1/τ, confirming that it never exceeds 1/τ. The throughput and blocking
probability achieved by the hyper-scalable scheme are nearly indistinguishable
from the respective asymptotic values (upper and lower bounds, respectively),
especially at lower and medium values of the communication budget 1/τ. For
higher values of the communication budget, the throughput and blocking prob-
ability slightly diverge from the asymptotic values but remain remarkably close
nevertheless. This demonstrates that the asymptotic optimality properties of
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(a) K = 2.
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(b) K = 3.

Figure 4.3: Simulation results for the hyper-scalable scheme for λ = 1.2 and N = 100.
Numerical values of the throughput bound λ∗(1/τ,K ), the associated blocking probability
bound 1−λ∗(1/τ,K )/λ, the average number of messages per admitted job 1/B(K ,τ) and
1/τ are also shown with thin black lines.

the hyper-scalable scheme as stated in Theorems 4.1 and 4.2 already manifest
themselves in moderately large systems.

In order to provide further insight in the asymptotic optimality, we compare
the baseline version of the hyper-scalable scheme with several variants and
alternative scenarios that are not analytically tractable.

Specifically, in the next two subsections, we examine the following variants
through simulations:

• “non-idling”; open servers continue working, but will convey their queue
length as if they had not been working while being open,

• “work-conserving”; open servers continue working and convey their actual
queue lengths at update epochs.

At first sight, one might suspect that these variants achieve a possibly larger
throughput. As we will see however, the differences are small and are only
observable at low load or in systems with few servers.

In Section 4.5.4 we make a comparison with the AUJSQdet(δ) scheme con-
sidered in Chapter 3, which is not analytically tractable either but seems to be
asymptotically throughput-optimal as well.
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4.5.2 Non-idling variant

Open servers do not work on jobs in the baseline version of the hyper-scalable
scheme. While Theorem 4.2 showed that the forced idling does not affect the
achieved throughput in large-scale systems, it is still interesting to investigate
the consequences of this design. In the non-idling variant, open servers do work
on jobs, but they convey their queue length to the dispatcher as if they had not
been working on jobs while being labeled open. While this variant may seem
fundamentally different, the information that the dispatcher has is exactly the
same as in the baseline version: the sets of open servers and their respective
states coincide in both scenarios, as long as jobs are sent to the same open
server.

In particular, the equilibrium distribution of the server states as provided in
Proposition 4.2 applies to the non-idling variant as well, and the throughput
and the number of messages exchanged per admitted job are identical in both
scenarios. The only difference arises in the expected queue lengths encountered
by admitted jobs: they are somewhat smaller in the non-idling scenario, as
illustrated by the simulation results presented in Figure 4.4a.

At low load values, there are instants where there is time for servers to
execute jobs when they are open. This causes a distinction between the two
variants, since in the non-idling variant jobs join shorter queues. In Section
4.6, we will consider a tractable extension of the hyper-scalable scheme that
aims to reduce the queue lengths. As the number of servers grows however, an
overflow of arrivals will cause open servers to have less time to execute jobs,
which causes the queue lengths to be similar in both scenarios. This viewpoint
provides further intuition why the hyper-scalable scheme is still asymptotically
optimal.

4.5.3 Work-conserving variant

We now turn to a work-conserving variant of the hyper-scalable scheme, in
which open servers also work on jobs, and in fact convey their actual queue
length at an update epoch. In this case the evolution of the server states is
different, and the equilibrium distribution provided in Proposition 4.2 no longer
applies.

The throughput and blocking probability are similar in both scenarios. This
may be intuitively explained as follows. When λ≥λ∗(1/2,2), Theorem 4.2 shows
that there are hardly ever any open servers, and hence there should not be any
substantial difference between the two variants, which is corroborated by Figure



108 Optimal hyper-scalable load balancing with a strict queue limit

Throughput

Messages per adm. job

Q. len. at admission epoch

Q. len. at adm. ep. (non-idl.)

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Non-idling variant.
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(b) Work-conserving variant.

Figure 4.4: Simulation results: comparison between two variants (thick lines) and the
baseline scenario (thin lines), for K = 2, τ= 2 and N = 500, yielding a throughput bound
λ∗(1/2,2) ≈ 0.73.

4.4b.
When λ<λ∗(1/2,2), there can be a significant number of open servers. Theo-

rem 4.2 however implies that the hyper-scalable scheme approaches zero block-
ing and throughput λ in this case. While it is plausible that the work-conserving
variant achieves that as well, as attested by Figure 4.4b, it is simply not feasible
to achieve lower blocking or higher throughput. The only room for improve-
ment is thus in the number of message exchanges per admitted job, and Figure
4.4b demonstrates that the work-conserving variant indeed provides some gain
compared to the hyper-scalable scheme in that regard. To put that observation
in perspective, consider Corollary 4.1. As one can see, the communication over-
head is strictly decreasing in τ. For such a low arrival rate, the hyper-scalable
scheme permits to choose the update interval τ much larger. Figure 4.5 con-
firms that the choice τ = 5 largely eliminates the difference in communication
overhead between the work-conserving variant and the baseline version.

4.5.4 Comparison with the AUJSQdet(δ) scheme

We now compare the hyper-scalable scheme with the AUJSQdet(δ) scheme from
Chapter 3, which is somewhat similar, except that every server is updated exactly
every τ= 1/δ time units based on a timer. Thus the AUJSQdet(δ) scheme might
update servers even when they are known to have strictly less than K = 2 jobs in
queue. There are further minor differences: in AUJSQdet(δ) jobs are assigned to
the server with the lowest state (so giving preference to servers that are more
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Figure 4.5: Simulation results: comparison
between the baseline scenario (thin lines)
and the work-conserving variant (thick
lines) for K = 2, τ = 5 and N = 500, so that
λ∗(1/5,2) ≈ 0.39.
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Figure 4.6: Simulation results: compar-
ison between the baseline scenario (thin
lines) and the AUJSQdet(δ) scheme (thick
lines) for K = 2, τ = 1 and N = 500, so that
λ∗(1,2) ≈ 0.90.

likely to be empty) and open servers do work on jobs. In contrast to Chapter 3,
we now consider a variant of the AUJSQdet(δ) scheme in which jobs are blocked
when the dispatcher is not aware of any servers that are guaranteed to have
strictly less than K = 2 jobs in queue. The comparison is shown in Figure 4.6.

It is important to note that in the hyper-scalable scheme the expected num-
ber of messages per admitted job is independent of λ, while in the AUJSQdet(δ)
scheme the expected number of messages per time unit is independent of λ. We
observe that the average number of messages per admitted job coincides when
λ> λ∗(1/τ,K ). While it is natural to expect that the AUJSQdet(δ) scheme offers
similar asymptotic optimality properties, it lacks the mathematical tractability
of the hyper-scalable scheme to facilitate a rigorous proof argument.

4.5.5 Non-exponential service times

Finally, we analyze the hyper-scalable scheme for non-exponential service time
distributions. In Figure 4.7a, the service times are Gamma(2,2) distributed.
The throughput of the hyper-scalable algorithm slightly exceeds the value of
λ∗(1/τ,K ), the maximum throughput when job sizes are exponential. The num-
ber of messages per admitted job is also lower than 1/B(K ,τ). This is all ex-
plained by the fact that the tail of the Gamma(2,2) distribution is smaller than
the tail of the exponential distribution. This means that more jobs are completed
in a fixed time interval, which increases the effectiveness of the messages sent.
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(a) Decreasing hazard rate Gamma(2,2).
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(b) Increasing hazard rate Gamma(1/2,1/2).

Figure 4.7: Simulation results for the hyper-scalable scheme for K = 2, λ = 1.2 and
N = 100, and non-exponential service times. Numerical values of the throughput bound
λ∗(1/τ,K ), the associated blocking probability bound 1−λ∗(1/τ,K )/λ, the average num-
ber of messages per admitted job 1/B(K ,τ) and 1/τ are also shown with thin black lines.

The service time distribution in Figure 4.7b is Gamma(1/2,1/2). The opposite
effect is observed: the throughput is lower compared to the exponential case
(Figure 4.3a) and the message rate is larger, because of the heavier tail.

4.6 Extension aimed at minimizing queue lengths

While the hyper-scalable scheme is asymptotically throughput-optimal given the
message rate δ and queue limit K , it does not make any explicit effort beyond
that to minimize queue lengths or delays experienced by jobs. Motivated by that
observation, we now consider an extension of the hyper-scalable scheme aimed
at minimizing waiting times. In this extension, a server that receives its i -th job
after an update at which its queue length was k, becomes closed for τk,k+i time
units. After this time, it becomes open if k + i < K and it is updated if k + i = K .
Thus, servers are not only closed when they become full, but are closed for a
while after every job they receive.

Henceforth, we focus on the case K = 2 for the ease of exposition, and we
set τ0,0 = 0, τ0,1 = τ1,1 = τ1, τ0,2 = τ1,2 = τ2 and τ2,2 = τ3. We can put τ0,0 to zero
without loss of generality as it makes no sense to have a cool-down period for
an empty server. As a consequence there is no difference between servers that
had zero jobs or one job at the previous update epoch, so we can set τ0,1 = τ1,1,
and τ0,2 = τ1,2 as well. Let p2 j be the probability that j jobs remain after an
update, when there were zero or one jobs just after the latest update epoch.
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This means that the server had τ0,1 time units to work on the first job and
another τ0,2 time units after both jobs were dispatched to it. This gives p20 =
e−τ1 (1−τ2e−τ2 −e−τ2 )+ (1−e−τ1 )(1−e−τ2 ), p22 = e−τ1 e−τ2 and p21 = 1−p20 −p22.
Let q2 j be the probability that j jobs remain after an update, when there were
two jobs just after the latest update epoch. This gives q20 = 1− e−τ3 − τ3e−τ3 ,
q22 = e−τ3 and q21 = 1−q20 −q22.

Servers can be in either of the five following states.

A1 The server is idle and open.

B1 The server had zero jobs during the previous update moment and received
one job since, or the server had one job during the previous update mo-
ment and received no jobs since. The server is now marked closed for τ1

time units.

A2 The server had zero jobs during the previous update moment and received
one job since, or the server had one job during the previous update mo-
ment and received no jobs since. The server was marked closed for τ1 but
is now open.

B2 The server had zero jobs during the previous update moment and received
two jobs since, or the server had one job during the previous update mo-
ment and received one job since. The server is now marked closed for τ2

time units.

B3 The server had two jobs during the previous update moment and is now
marked closed for τ3 time units.

The transitions are schematically represented in Figure 4.8, with the transi-
tion probabilities as defined earlier.

The system dynamics under this extension of the hyper-scalable scheme can
also be represented in terms of a closed queueing network with one single-
server node that holds two classes of customers and three infinite-server nodes.
The states A1 and A2 correspond to the two classes that customers can be of
when they are present at the single-server node. The states B1, B2 and B3 each
correspond to one of the three infinite-server nodes in the network, with deter-
ministic service times τ1, τ2 and τ3, respectively.

Proposition 4.3. The equilibrium distribution of the system with N servers is

π(n1,n2,m1,m2,m3) = H−1
N

(n1 +n2)!

n1!n2!

( γ1

λN

)n1 ( γ2

λN

)n2 (κ1τ1)m1

m1!

(κ2τ2)m2

m2!

(κ3τ3)m3

m3!
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Figure 4.8: Schematic representation of the server states and transitions when K = 2.

(4.10)

if n1+n2+m1+m2+m3 = N , with (γ1,γ2,κ1,κ2,κ3) = (p20+ p22q20
1−q22

,1,1,1, p22
1−q22

) and
normalization constant

HN = ∑
v1+v2+w1+w2+w3=N

(v1 + v2)!

v1!v2!

( γ1

λN

)v1 ( γ2

λN

)v2 (κ1τ1)w1

w1!

(κ2τ2)w2

w2!

(κ3τ3)w3

w3!
,

where ni is the number of open servers in state Ai and mi the number of closed
servers in state Bi .

The proof of Proposition 4.3 is provided in Section 4.7.
The equilibrium distribution (4.10) can be simplified when only the number

of open and closed servers are counted, as shown in the next corollary.

Corollary 4.3.

• The equilibrium probability of there being n open servers and N −n closed
servers under the extension equals

π(n, N −n) =
(γ1+γ2

λN

)n (κ1τ1+κ2τ2+κ3τ3)N−n

(N−n)!∑N
w=0

(γ1+γ2
λN

)w (κ1τ1+κ2τ2+κ3τ3)N−w

(N−w)!

.

In particular, because of the PASTA property, the blocking probability is given
by

π(0, N ) =
(xN )N

N !∑N
w=0

(xN )w

w !

,
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Figure 4.9: Maximum throughput λ∗, average number of updates per admitted job u
and average queue position of admitted jobs q as a function of τ1.

with x = λ× κ1τ1+κ2τ2+κ3τ3
γ1+γ2

, and π(0, N ) → max{0,1−λ∗(τ1,τ2,τ3)/λ} as N →
∞, which equals zero when λ≤λ∗(τ1,τ2,τ3) := γ1+γ2

κ1τ1+κ2τ2+κ3τ3
.

• The average number of messages per admitted job equals

u(τ1,τ2,τ3) := κ2 +κ3

γ1 +γ2
.

• The average queue position of an admitted job equals

q(τ1,τ2,τ3) := e−τ1

γ1 +γ2
.

The last two statements follow directly from the relative throughput values.
These exact expressions for the maximum throughput λ∗, the average number
of updates per admitted job u and the average queue position q of admitted
jobs, allow us to evaluate the performance of this extension.

In Figure 4.9a, the value of τ1 is varied while the values of τ2 and τ3 are
kept constant. Since τ1 represents the time that a server is closed when it has
one job in queue, the result is that the second job that is sent to the server
experiences a shorter queue in expectation. Indeed, for larger values of τ1,
the mean experienced queue length q decreases. As a further benefit, the mean
number of updates decreases as well, since an idle server will take at least τ1+τ2

time units to be updated. The penalty incurred for these advantages is that the
maximum throughput, λ∗, drops below the value of λ∗(δ,K ) as asymptotically
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achieved by the baseline version of the hyper-scalable scheme, since servers may
become idle during the τ1 time in which they will not receive any more jobs.

Finally, in Figure 4.9b we show that a trade-off between the parameters is
possible. τ1 is increased while τ2 is decreased, and this leads to interesting
behavior. Around the point τ1 = 0, the values of λ∗ and u do not change when
the parameters are altered, but the value of q does change. Such a trade-off
might be worth it in scenarios where mean queue lengths play an important
role.

4.7 Closed queueing network and further proofs

In this section we establish product-form distributions for a more general closed
queueing network scenario which captures the network representations of the
hyper-scalable scheme and the extension considered in the previous section as
special cases. This provides the proofs of Propositions 4.2 and 4.3.

The closed queueing network consists of N customers circulating among one
single-server node and B infinite-server nodes. Customers can be of A classes
while at the single-server node, denoted by A1, . . . , A A. Denote the infinite-server
nodes by B1, . . . ,BB . The routing probabilities are denoted by px→y ; this is the
probability that a customer transitions from x to y (x and y may correspond to
either a class or an infinite-server node).

Service completions at the multi-class single-server node occur at an expo-
nential rate λN . The customer that completes service is either selected uni-
formly at random, or in a FCFS manner, where the next customer is the one
that transitioned last. If the selected customer is of class i , then it immediately
returns to the single-server node as a class- j customer with probability p Ai→A j

or it moves to node B j with probability p Ai→B j . The service times at the infinite-
server node Bi are deterministic and equal to τi . Upon completing service at
node Bi , a customer moves to the single-server node as a class- j customer with
probability pBi→A j , or to node B j with probability pBi→B j .

The relative throughput values may be calculated from the traffic equations,{
γi =∑A

j=1 p A j →Ai ×γ j +∑B
j=1 pB j →Ai ×κ j ,

κi =∑A
j=1 p A j →Bi ×γ j +∑B

j=1 pB j →Bi ×κ j ,

where γi stands for the relative throughput of class Ai at the single-server node
and κi for the relative throughput at node Bi . We assume a “single-chain net-
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work”, where the routing probability matrix is irreducible, meaning that all
customers can reach all classes and nodes.

Proposition 4.4.

(a) The equilibrium distribution of the system with N customers is

π(n1,n2, . . . ,nA ,m1,m2, . . . ,mB ) = F−1
N

(n1 + . . .+nA)!

n1! · · ·nA !

A∏
i=1

( γi

λN

)ni B∏
j=1

(κ jτ j )m j

m j !

(4.11)

if n1 + . . .+nA +m1 + . . .+mB = N , with normalization constant

FN = ∑
v1+...+v A+w1+...+wB=N

(v1 + . . .+ v A)!

v1! · · ·v A !

A∏
i=1

( γi

λN

)vi B∏
j=1

(κ jτ j )w j

w j !
,

where ni is the number of customers of class Ai at the single-server node and
m j the number of customers at infinite-server node B j .

(b) The equilibrium probability of there being n customers at the single-server
node and N −n customers in total at all the infinite-server nodes equals

π(n, N −n) = ∑
n1+...+nA=n

m1+...+mB=N−n

π(n1, . . . ,nA ,m1, . . . ,mB )

=

(∑A
i=1γi

λN

)n
(∑B

j=1κ j τ j

)N−n

(N−n)!

∑N
w=0

(∑A
i=1γi

λN

)w
(∑B

j=1κ j τ j

)N−w

(N−w)!

.

(4.12)

In particular, with R = γ1+...+γA
κ1τ1+...+κBτB

and x =λ/R, because of the PASTA prop-
erty, the probability that no customer resides at the single-server node is

π(0, N ) =
(xN )N

N !∑N
w=0

(xN )w

w !

,

and π(0, N ) → max{0,1−R/λ} as N →∞ which equals zero when λ≤ R.

In order to prove Proposition 4.4, we will verify that the equilibrium distri-
bution (4.11) satisfies the balance equations of the closed queueing network.
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4.7.1 Proof of Proposition 4.4

In order to verify the balance equations, we may assume that the service times
of the infinite-server nodes are exponentially distributed even though in our
closed queueing network, the service times are deterministic. This is because
the equilibrium distribution (4.11) is insensitive to the service time distribution
of nodes and only depends on the means of them (see Chapter 3 of [Krz11] for
a further discussion on this).

To see this, consider one infinite-server node D with exponential service rate
µD and throughput value κD . This node adds the term

(κD /µD )d

d !
(4.13)

to the product-form equilibrium distribution, representing the presence of d
customers in the infinite-server node. We now replace this infinite-server node
by a series of infinite-server nodes, denoted by D1, . . . ,DM , each with an expo-
nential service rate MµD . The transition probabilities are altered in such a way
that every transition previously to node D, now transitions to node D1 instead.
Customers then transition from node Di to Di+1 for i = 1, . . . ,D −1 with proba-
bility one. Finally, any transition previously from node D, will now transition
from node DM . This construction makes every customer stay in this collection
of nodes for M exponentially distributed phases, which is an Erlang(M , Mµ) dis-
tributed random variable. All other throughput values in the network remain
equal.

The throughput values of all these nodes will be equal to κD (since they are
in series). Finally, similarly to the simplification of (4.11) to (4.12), all nodes
D1, . . . ,DM may be aggregated, which would lead to a term

(
∑M

i=1κD /(MµD ))d

d !
= (κD /µD )d

d !

in the equilibrium probability, representing the presence of d customers in total
in the infinite-server nodes D1, . . . ,DM . Note that the term in the RHS exactly
matches the term (4.13), that appears when the node D has an exponentially
distributed service time. This shows that the equilibrium distribution does not
change when an exponential node is replaced by an Erlang(M , Mµ) node, for any
integer M , which can also be verified by substitution in the balance equations.
Of course, each infinite-server node Bi with µi = 1/τi can be replaced by such
an Erlang distribution using this construction.
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Because an Erlang(M , Mµ) random variable converges to a deterministic
quantity 1/µ as M tends to infinity, this indicates that the equilibrium dis-
tribution also holds with infinite-server nodes that have deterministic service
times. In fact, the node D may be replaced by any phase-type distribution,
and every distribution may be approximated arbitrarily closely by phase-type
distributions, implying that the equilibrium distribution in (4.11) in fact holds
for generally distributed service times with mean τi at the infinite-server node
Bi as well, although that is not directly relevant for our purposes.

We will now verify that (4.11) indeed solves the balance equations for the
random order of service case, and we will use µi = 1/τi , representing the rates
of the infinite-server nodes. The proof for the FCFS case is quite similar, but
involves a more detailed state representation.

Proof of part (a) - ROS. We denote by (a,b) the vector (a1, . . . , aA ,b1, . . . ,bB ) and
by ei the i -th unit vector.

Note that (4.11) is a proper distribution by definition. Since the equilibrium
distribution is unique, it suffices to verify that (4.11) satisfies the following set
of balance equations:(

1{a1 + . . .+aA > 0}λN +b1µ1 + . . .+bBµB
)
π(a,b)

=
A∑

i=1

A∑
j=1
1
{

a j > 0
}

p Ai→A j

ai +1
{
i 6= j

}
a1 + . . .+aA

λNπ(a +ei −e j ,b)

+
A∑

i=1

B∑
j=1
1
{
b j > 0

}
p Ai→B j

ai +1

a1 + . . .+aA +1
λNπ(a +ei ,b −e j )

+
B∑

i=1

A∑
j=1
1
{

a j > 0
}

pBi→A j (bi +1)µiπ(a −e j ,b +ei )

+
B∑

i=1

B∑
j=1
1
{
b j > 0

}
pBi→B j (bi +1

{
i 6= j

}
)µiπ(a,b +ei −e j ).

The first line of the RHS refers to transitions where a customer at the single-
server node transitions to the same node and may change class. The second
line refers to transitions from the single-server node to one of the infinite-server
nodes. Lines three and four correspond to transitions from an infinite-server
node, to the single-server node or to another infinite-server node, respectively.

We will show that (4.11) satisfies the balance equations. By using the defi-
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nition of (4.11) in the RHS, we obtain

A∑
i=1

A∑
j=1
1
{

a j > 0
}

p Ai→A j

ai +1

a1 + . . .+aA
λNπ(a,b)

a j

ai +1

γi

λN

λN

γ j

+
A∑

i=1

B∑
j=1
1
{
b j > 0

}
p Ai→B j

ai +1

a1 + . . .+aA +1
λNπ(a,b)

a1 + . . .+aA +1

ai +1

γi

λN

b j

κ j T j

+
B∑

i=1

A∑
j=1
1
{

a j > 0
}

pBi→A j (bi +1)µiπ(a,b)
a j

a1 + . . .+aA

λN

γ j

κiτi

bi +1

+
B∑

i=1

B∑
j=1
1
{
b j > 0

}
pBi→B j (bi +1)µiπ(a,b)

κi /µi

bi +1

b j

κ j /µ j
.

Next, we combine the inside sums, resulting in

A∑
j=1
1
{

a j > 0
} a j

a1 + . . .+aA

λN

γ j

[
A∑

i=1
p A1→A j γi +

B∑
i=1

pBi→A j κi

]
π(a,b)

+
B∑

j=1
1
{
b j > 0

} b j

κ j /µ j

[
A∑

i=1
p Ai→B j γi +

B∑
i=1

pBi→B j κi

]
π(a,b)

=
[

A∑
j=1
1
{

a j > 0
} a j

a1 + . . .+aA
λN +

B∑
j=1

b jµ j

]
π(a,b)

=
(
1{a1 + . . .+aA > 0}λN +

B∑
j=1

b jµ j

)
π(a,b).

Proof of part (a) - FCFS. The proof for the FCFS case consists of multiple steps.
First we define a more detailed state space.

Extended state space. A state is represented by (c,b) = ((c1, . . . ,cm), (b1, . . . ,bB )),
which represents the situation where m customers are at the single-server node,
and the order of the classes of customers is saved as well: the kth customer at
the single-server node has class ck . We will sometimes refer to the number of
customers of a specific class with ai =∑

j 1
{
c j = Ai

}
. Furthermore, bi customers

are at the infinite-server node Bi .
Equilibrium distribution for the extended state space. We will show that the

equilibrium distribution (modulo normalization constant) of state (c,b) equals

π̃(c,b) =
( γ1

λN

)a1 · · ·
( γA

λN

)aA (κ1/µ1)b1

b1!
· · · (κB /µB )bB

bB !
(4.14)
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with ak the number of customers of class Ak .

We assume FCFS arrivals of customers at the single-server node: customers
arrive at the end of the line at the single-server node and only the customer first
in line is able to transition.

Balance equations. First, we introduce the balance equations, in which the
symbol m is used to denote the length of vector c,

(
1{m > 0}λN +b1µ1 + . . .+bBµB

)
π̃(c,b)

=
A∑

i=1
1{m > 0}p Ai→cmλN π̃((Ai ,c1, . . . ,cm−1),b)

+
A∑

i=1

B∑
j=1
1
{
b j > 0

}
p Ai→B jλN π̃((Ai ,c1, . . . ,cm),b −e j )

+
B∑

i=1
1{m > 0}pBi→cm (bi +1)µi π̃((c1, . . . ,cm−1),b +ei )

+
B∑

i=1

B∑
j=1
1
{
b j > 0

}
pBi→B j (bi +1

{
i 6= j

}
)µi π̃(c,b +ei −e j ).

(4.15)

The term before π(c,b) on the LHS represents the outgoing rate of state (c,b),
which equals a rate of λN for the single-server node (if at least one customer is
present there) plus a rate of b jµ j , for each infinite-server node B j .

On the RHS, four possible transitions to state (c,b) are shown preceded by
the rate of the transitions. First, a transition from the non-empty single-server
node makes the then first customer change its class from cm−1 to class cm . If
the previous class order at the single-server node is cm − 1,c1, . . . ,cm−1, then a
transition to that node will make the class order exactly c. Second, if the pre-
vious class order at the single-server node is K − 1,c1, . . . ,cm , then a transition
from that node to an infinite-server node will make the class order exactly c.
Additionally, if the number of customers at infinite-server node B j was b j −1,
then it will become b j as the infinite-server node receives an extra customer.
Third, any of the customers at the infinite-server nodes might transition to the
single-server node. Finally, customers might transition from and to one of the
infinite-server nodes.

We will show that π̃ satisfies the balance equations. By using the definition
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of π̃ in the RHS, we obtain

A∑
i=1
1{m > 0}p Ai→cmλN π̃(c,b)

γi

λN

λN

γcm

+
A∑

i=1

B∑
j=1
1
{
b j > 0

}
p Ai→B jλN π̃(c,b)

γi

λN

b j

κ jτ j

+
B∑

i=1
1{m > 0}pBi→cm (bi +1)µi π̃(c,b)

λN

γcm

κi /µi

bi +1

+
B∑

i=1

B∑
j=1
1
{
b j > 0

}
pBi→B j (bi +1)µi π̃(c,b)

κi /µi

bi +1

b j

κ j /µ j
.

(4.16)

Next, we reorganize terms, yielding

1{m > 0}
λN

γcm

π̃(c,b)

[
A∑

i=1
p Ai→cmγi +

B∑
i=1

pBi→cmκi

]

+
B∑

j=1
1
{
b j > 0

} b j

κ j /µ j
π̃(c,b)

[
A∑

i=1
p Ai→B j γi +

B∑
i=1

pBi→B j κi

]

=
[
1{m > 0}λN +

B∑
j=1

b jµ j

]
π̃(c,b),

(4.17)

which shows that π̃ is the equilibrium distribution of the extended state space.
Finally, note that in the original state space, only the number of customers

of certain classes is tracked. Thus, π(a,b) is an enumeration of π̃(c,b) over all
possible orders with the correct number of customers of a certain class. The
number of possible orders is

(a1+...+aA
a1...aA

)
, which leads to π(a,b) = (a1+...+aA

a1...aA

)
π(c,b);

the description of π as presented in the statement of the proposition.

4.8 Conclusion

We established a universal upper bound for the achievable throughput of any
dispatcher-driven algorithm for a given communication budget and queue limit.
We also introduced a specific hyper-scalable scheme which can operate at any
given message rate and enforce any given queue limit, while allowing the sys-
tem dynamics to be captured via a closed product-form network. We leveraged
the product-form distribution to show that the bound is tight, and that the pro-
posed hyper-scalable scheme provides asymptotic optimality in the three-way
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trade-off among performance, communication and throughput. Extensive sim-
ulation experiments were presented to illustrate the results and make compar-
isons with various alternative design options.

The work-conserving variant covered in Section 4.5.3 is especially worth
discussing further. Intuitively, letting servers work all the time seems better than
pausing the servers when they become open, but this remains to be rigorously
proven. It also seems straightforward to prove this, possibly by coupling the two
systems in a specific way. However, we were not able to do so, and moreover, we
discovered some sample paths in which it is seemingly better to stop the servers
from working once in a while, to avoid placing jobs in unfortunate positions.
To prove that the work-conserving discipline outperforms the standard one, it
seems that a one-to-one coupling is not possible, and one would need to look
at the average behavior of both systems, which seems tedious. Note that this
variant only outperforms the baseline scenario in finite systems, as the hyper-
scalable scheme remains asymptotically optimal.

The extension aimed at minimizing waiting times that was introduced in
Section 4.6 warrants further attention as well. For the baseline scenario, we
were able to prove a strict relationship between the amount of communication
and the throughput. Likewise, there might exist a result, similar in spirit to The-
orem 4.1, which provides an upper bound for the throughput and the average
queue position of admitted jobs, given a certain communication budget. The
main point of concern in this regard is that the concavity argument no longer
seems to hold.

Finally, it could be worth investigating whether the current framework could
be broadened further. It may be possible for example to extend the category of
algorithms considered, specifically allowing for pull-based schemes. While the
results in Chapter 5 will imply that Theorem 4.1 does not hold for pull-based
schemes, there might be a larger upper bound covering such algorithms as well.
For further extensions, other performance metrics might be considered too, such
as the mean waiting time as opposed to the throughput subject to a queue limit.
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Chapter 5
Load balancing with negative
acknowledgments

Based on:

[BZB20] M. van der Boor, M. Zubeldia, and S. C. Borst. “Zero-wait load
balancing with sparse messaging”. In: Operations Research Letters
48.3 (2020), pp. 368–375

5.1 Introduction

In this chapter we introduce a hyper-scalable server-driven scheme, called Join-
the-Open-Queue (JOQ), which allows for vanishing queueing delays, while us-
ing minimal communication overhead. The JOQ scheme exploits the crucial
insight that an idle state need not be explicitly signaled by using a message, but
can also be implicitly inferred by the dispatcher when not receiving a message
from a server at a pre-arranged time instant. The basic principle is somewhat
similar in spirit to negative acknowledgments in end-to-end transport protocols,
but to the best of our knowledge has not been adopted in a load balancing con-
text so far. This paradigm allows for an even lower communication overhead
than the schemes in Chapters 3 and 4. The differences between schemes from
these chapters and the JOQ scheme may seem quite large at first sight, but there
are in fact striking similarities, which we will discuss after we explain the JOQ
scheme in greater detail in Section 5.3.
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In the JOQ scheme, servers send busy alerts to the dispatcher at pre-arranged
time instants as long as they have uncompleted jobs. The status of a server is
closed or open, depending on whether or not the dispatcher received a busy
alert from the server at the most recent pre-arranged time instant, respectively,
implying that an open server is guaranteed to be idle. The dispatcher assigns
incoming jobs to an open server whenever there are any, or to a uniformly at
random selected server otherwise.

For convenience, we focus on the case where the pre-arranged time instants
are set at fixed intervals of length τ after an open server receives a job from the
dispatcher. In that case, the system dynamics under the JOQ scheme evolve in
a similar manner as under the JIQ scheme with service requirements inflated to
be multiples of τ. In particular, the waiting probability under the JOQ scheme
is upper bounded by that under the JIQ scheme with the inflated service re-
quirements. Moreover, for any load below a certain threshold λ∗ < 1, vanishing
queueing delay is also achieved by the JOQ scheme for a suitable choice of τ
with strictly less than one message per job. It turns out that there is a range of
values for τ, depending on the arrival rate, for which the message rate, proba-
bility of queueing and the mean delays are small simultaneously. The number
of messages per job in fact even tends to zero when the load approaches zero.
Moreover, we show how a combination of the JIQ and JOQ schemes provides a
way to achieve a vanishing queueing delay with strictly less than one message
per job for any subcritical load.

The remainder of this chapter is organized as follows. In Section 5.2 we
present a detailed model description and algorithm specification, and we sum-
marize the main contribution of this chapter. In Section 5.3 we analyze the
JOQ scheme and state for what parameter values it achieves a vanishing queue-
ing delay and uses less than one message per job on average. In Section 5.4
we introduce the system design where jobs are distributed over servers execut-
ing JOQ and servers using JIQ. In Section 5.5 we provide numerical simulations
(see Section 1.3.3) and discuss various broader issues and observations. Section
5.6 concludes and mentions several future research avenues.

5.2 Model description and key results

We consider a system that consists of N identical servers, each with an infinite-
buffer FIFO queue. Jobs arrive according to a Poisson process with rate λN
(λ< 1) to a central dispatcher, and need to be forwarded to one of the N servers
immediately upon arrival. The job sizes are independent and generally dis-
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tributed with unit mean. Moreover, we assume that the job sizes are not known
to the dispatcher and servers, and that both dispatcher and servers can make
use of unlimited memory to store information.

We now introduce the Join-the-Open-Queue (JOQ) algorithm, and discuss
its behavior and implementation. In the JOQ algorithm, servers periodically
communicate their status to the dispatcher at predetermined times, also re-
ferred to as update epochs. Normally, servers would send a message to the
dispatcher to advertise their idleness, but in the JOQ algorithm, servers send
messages to the dispatcher when they are not idle. If the dispatcher receives
no message from a server at one of the server’s update epochs, then its idleness
implicitly becomes known to the dispatcher, without requiring any explicit mes-
saging. In particular, a server is said to be open when the dispatcher knows that
it is idle, and closed otherwise.

We now provide a more detailed description of the JOQ algorithm, speci-
fying how the dispatcher communicates with the servers, and how dispatching
decisions are made.

Communication with update epochs: When a server is open and receives a
job, it becomes closed and an “update epoch” for the server is scheduled at τ time
units in the future. Moreover, each server maintains a virtual queue with the
same arrivals as its real queue, but where a job of size x in its real queue has
size τdx/τe ≥ x in its virtual one. At the next update epoch of a server, if its vir-
tual queue is not empty, then it sends a message to the dispatcher to advertise its
closedness, and a new update epoch for the server is scheduled at τ time units in
the future. Otherwise, if its virtual queue is empty, then no message is sent and the
server becomes open.

Dispatching rule: If a job arrives and there are open servers, then the job is sent
to an open server chosen uniformly at random. Otherwise, the job is sent to any of
the servers chosen uniformly at random.

Note that the JOQ algorithm is emulating the JIQ algorithm but using open
and closed servers instead of idle and busy servers. However, while open servers
are surely idle, closed servers are not necessarily busy, so there might be idle
servers when there are no open servers. This discrepancy stems from the fact
that there is a delay between the time a server becomes idle, and the moment
the dispatcher becomes aware that the server is idle, due to the use of predeter-
mined update epochs.

A further discussion on design choices for the JOQ algorithm can be found
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in Section 5.5, where we use simulation results to put some of the choices into
perspective.

The main results may be summarized as follows.

1. For the JOQ algorithm, when the arrival rate is below a certain threshold,
the steady-state queueing delay of a typical job vanishes in the many-
server limit.

2. For the JOQ algorithm, when the arrival rate is below a certain threshold,
the expected number of messages per job is less than one for all N large
enough, and tends to zero when the arrival rate approaches zero.

3. For a mixture of the JOQ and JIQ algorithms, when λ < 1/2 (or λ < 1
and the job sizes have decreasing hazard rate), the steady-state queueing
delay of a typical job vanishes in the many-server limit and the expected
number of messages per job is less than one for all N large enough.

5.3 Performance of the JOQ algorithm

In this section we present our main results regarding the stability, delay per-
formance and message rate of the JOQ algorithm introduced in the previous
section.

First, we formalize some important concepts. We say that a dispatching
algorithm has vanishing queueing delay if the queue state process is stable for all
N large enough, and if the probability of having positive queueing delay and the
expected queueing delay both converge to zero, as N →∞. Moreover, as a mea-
sure of the communication overhead, we use the expected number of messages
per job. While for algorithms such as JSQ(d) and JIQ it is straightforward to tie
messages to jobs, for our JOQ algorithm this is not as immediate. We consider
a message to be tied to a job if it is sent while the corresponding virtual job is
in service in the virtual queue. Then, we define the expected number of messages
per job as the steady-state expectation of this random integer, for a typical job.

The following theorem states for what values of τ the JOQ algorithm has
vanishing queueing delay, and provides an expression for the limit of the ex-
pected number of messages per job.

Theorem 5.1. For every τ such that λE[τdX /τe] < 1/2, the following properties
hold for the JOQ algorithm with that value of τ:
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i) it has vanishing queueing delay,

ii) the expected number of messages per job converges to E[bX /τc], as N →∞.

When λ < 1/2, a value of τ > 0 exists such that λE[τdX /τe] < 1/2 regardless
of the job size distribution, since λE[τdX /τe] →E[X ] as τ ↓ 0.

Proof of Theorem 5.1.

i) First note that the real queues are stochastically dominated by the virtual
queues, as arrivals happen simultaneously to each real and corresponding vir-
tual queue, and jobs require strictly more service in the virtual queues. Thus, it
is enough to establish vanishing queueing delay in the virtual queues.

We now focus on the virtual queues. Since all jobs in the virtual queues have
sizes multiple of τ, a virtual queue can only become empty at an update epoch.
When the virtual queue becomes empty, no message is sent, implicitly letting
the dispatcher know immediately that it is empty, as it would have received
a message otherwise. As a result, the dispatcher is aware at all times which
virtual queues are empty (i.e., which servers are open) and which ones are
not. Combining this with the fact that the dispatching decisions of the JOQ
algorithm mimic the ones of the JIQ algorithm but using open/closed status of
servers instead of idle/busy, we see that the virtual queues behave exactly as
the queues of a system running the JIQ algorithm with job sizes distributed as
τdX /τe. Since the expected size of a job in the virtual queues is E[τdX /τe], their
load is λE[τdX /τe] < 1/2. Thus, Theorem 2 in [FS17] and the PASTA property
imply that the queue state process of the virtual queues is stable for all N large
enough, and that the probability of a typical virtual job having positive queue-
ing delay vanishes as N → ∞. Combining this with Lemma 4 in [FS17], we
conclude that the expected queueing delay of a typical virtual job vanishes as
well.

ii) For the expected number of messages per job, we distinguish between
jobs sent to open servers and jobs sent to closed servers. If a job of size x
arrives at time 0 to an open server (which is always an idle server), then this
job will be in service during the interval of time [0, τdx/τe). During this interval
of time, messages are sent every τ time units (excluding 0), which results in
bx/τc messages. On the other hand, suppose that a job of size x is assigned to
a closed server (i.e., a server with a non-empty virtual queue). Since the server
was closed when the job was assigned to it, the server will send a message to the
dispatcher at the time that the virtual job started its service in the virtual queue.
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After this, exactly one message is sent every τ time units while the virtual server
is busy, similarly to when jobs are sent to open servers. In total, this results in
1+bx/τc messages.

Denote by po(N ) the steady-state probability that there is at least one open
server in the N -server system (which is known to exist by Theorem 2 in [FS17]).
Moreover, note that the PASTA property implies that po(N ) is also the probabil-
ity that a typical virtual job is sent to an open server. It follows that the expected
number of messages per job is po(N )E[bX /τc]+ [1−po(N )](1+E[bX /τc]). Since
Theorem 2 in [FS17] also implies that po(N ) → 1 as N →∞, the expected num-
ber of messages per job converges to E[bX /τc], as N →∞.

In light of Theorem 5.1, we would require λE[τdX /τe] < 1/2 and E[bX /τc] <
1 for vanishing queueing delay while using less than one message per job in
expectation. This notion is used in the next corollary, which shows for what
values of τ this is accomplished when λ< 1/4.

Corollary 5.1. Suppose that λ< 1/4. For all τ such that 1 < τ< 1/(2λ)−1, the JOQ
algorithm has vanishing queueing delay, and the expected number of messages per
job is less than one, as N →∞.

Note that such a value of τ always exists, since 1 < 1/(2λ)−1 when λ< 1/4.

Proof. Corollary 5.1 follows from Theorem 5.1 since λE[τdX /τe] ≤λ(τ+E[X ]) =
λ(τ+1) <λ(1/(2λ)−1+1) = 1/2 and E[bX /τc] ≤E[X ]/τ= 1/τ< 1.

The JOQ algorithm has additional desirable properties, for example that the
expected number of messages per job in the many-server limit can be driven
to zero as λ ↓ 0. To accomplish this, the value of τ = τ(λ) needs to be adjusted
appropriately given the load λ.

Corollary 5.2. When the value of τ in the JOQ algorithm is chosen depending
on λ such that τ(λ) < 1/(2λ)− 1 and τ(λ) → ∞ as λ ↓ 0, the JOQ algorithm has
vanishing queueing delay, and the expected number of messages per job in the
many-server limit tends to zero as λ ↓ 0.

Note that the convergence of the expected number of messages per job to
zero refers to first taking the limit as N →∞, and then the limit as λ ↓ 0.

Proof. Note that Corollary 5.1 guarantees a vanishing queueing delay since
τ(λ) < 1/(2λ)− 1 for any λ, so also more specifically for the limit when λ ↓ 0.
Moreover, Theorem 5.1 states that the expected number of messages per job
in the many-server limit converges to E[bX /τc], with E[bX /τ(λ)c] ≤E[X ]/τ(λ) =
1/τ(λ) ↓ 0 as λ ↓ 0.
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Another desirable property of the JOQ algorithm is that, although Corollary
5.1 requires λ< 1/4 in order to guarantee a vanishing queueing delay with less
than one message per job in expectation, this can be achieved for higher values
of λ for some job size distributions. In particular, for job size distributions with
decreasing hazard rate, we have the following.

Corollary 5.3. Suppose that the job sizes X have a decreasing hazard rate and
that P(X > 1/(4λ)) < 1/2. Then, the JOQ algorithm with τ= 1/(4λ) has vanishing
queueing delay, and the expected number of messages per job is less than one in the
many-server limit.

Proof. When X has a well-defined and decreasing hazard rate, its density func-
tion f (t ) is decreasing since f (t + u) < f (t ) 1−F (t+u)

1−F (t ) < f (t ). This implies that
the distribution function F (t ) is concave and 1 − F (t ) is convex, which gives
1−F ((k+1)τ)

1−F (kτ) ≤ 1−F (kτ)
1−F ((k−1)τ) . Successively applying this inequality gives 1−F ((k+1)τ)

1−F (kτ) ≤
1−F (τ) for any integer k. This leads to the inequality

P(X > kτ) = 1−F (kτ) =
k−1∏
i=0

1−F ((i +1)τ)

1−F (iτ)
≤ (1−F (τ))k = (P(X > τ))k . (5.1)

Using this inequality, it follows that

E[τdX /τe] = τ
∞∑

k=0
P(X > kτ) ≤ τ

∞∑
k=0

(P(X > τ))k = τ

1−P(X > τ)
< 1

2λ
, (5.2)

where in the last inequality we used that τ= 1/(4λ) and that P(X > 1/(4λ)) < 1/2.
This allows us to use Theorem 5.1 showing that the queueing delay vanishes.
Furthermore, the expected number of messages per job is

E[bX /τc] =
∞∑

k=1
P(X > kτ) ≤

∞∑
k=1

(P(X > τ))k = P(X > τ)

1−P(X > τ)
< 1, (5.3)

where in the last inequality we once again used that τ = 1/(4λ) and that P(X >
1/(4λ)) < 1/2. This concludes the proof.

For the special case of exponential job sizes, a vanishing queueing delay
and less than one message per job in expectation can be obtained when λ <
1/ln(16) ≈ 0.36. This is shown in the following result.

Corollary 5.4. Suppose that the job size X is exponentially distributed and that
λ < 1/ln(16). Then, there exists some τ such that the JOQ algorithm with that
value of τ has vanishing queueing delay, and the expected number of messages per
job is less than one in the many-server limit.
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Proof. First note that, for exponential job sizes, (5.1) holds with equality. Thus,
Theorem 5.1 implies that a vanishing queueing delay and less than one message
per job in expectation in the many-server limit is obtained as long asE[τdX /τe] =

τ
1−P(X>τ) = τ

1−e−τ < 1
2λ and E[bX /τc] = P(X>τ)

1−P(X>τ) = e−τ
1−e−τ < 1. It can be checked that

there exists a τ > 0 such that these two inequalities are satisfied as long as
λ< 1/ln(16).

Remark. When the job size distribution is exponential, it is optimal to take the
update epochs equidistant, see Section 5.A.

Remark. In [FS17] the authors show that the JIQ algorithm with general job
size distribution has vanishing queueing delay as long as λ < 1/2. If it also has
vanishing queueing delay whenever λ< 1, which is conjectured, then Theorem
5.1 would hold for all λ< 1 and for all τ such that λE[τdX /τe] < 1. This decreases
the communication overhead since τ can be chosen larger. Moreover, such a
stronger result would also improve the conditions stated in Corollaries 5.1 and
5.3. For example, Corollary 5.1 would hold for all λ< 1/2 and for all τ such that
1 < τ< 1/λ−1.

We will briefly compare the JOQ algorithm with the hyper-scalable scheme
from Chapter 4. Of course, one of the most significant differences is the use of
implicit messaging in the JOQ algorithm. Nonetheless, the hyper-scalable algo-
rithm for K = 1 behaves the same as the JOQ algorithm for exponentially dis-
tributed job sizes, except for when a job arrives to a busy server in the JOQ algo-
rithm, as both algorithms will wait τ time units before ‘updating’ the server. This
equivalence can also be seen in the analyses of the algorithms. The throughput
of the hyper-scalable algorithm λ∗(1/τ,K ) in (4.1) for K = 1 and the service rate
of the system with the JOQ algorithm, 1/E[τdX /τe], both equal (1−e−τ)/τ.

5.4 Hybrid system using the JOQ and JIQ algo-
rithms

In this section we introduce a system design that uses a mixture of the JOQ and
JIQ algorithms in order to show that a vanishing queueing delay and less than
one message per job in expectation can be achieved for any load < 1/2 (or for
any load < 1 when the job sizes have a decreasing hazard rate).
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5.4.1 System design

In particular, we propose the following system design.

Hybrid JOQ/JIQ: The N -server system is divided into two subsystems, one with
a fixed fraction f of the servers running the JOQ algorithm with some value of τ

(JOQ-subsystem), and one with a fixed fraction 1− f of the servers running the JIQ
algorithm (JIQ-subsystem) (numbers may be rounded to obtain integers). When
a job arrives, it is routed to the JOQ-subsystem with probability p, and to the
JIQ-subsystem with probability 1−p.

Denote by ρ the maximum load for which the JIQ-subsystem is guaranteed
to achieve a vanishing queueing delay, which is either 1 if the job size distri-
bution has decreasing hazard rate (case 1; [Sto15]), or 1/2 otherwise (case 2;
[FS17]).

Theorem 5.2. Suppose that either X has decreasing hazard rate and λ< 1 (case
1), or that λ < 1/2 (case 2). Then the hybrid JOQ/JIQ system design has a van-
ishing queueing delay, and its expected number of messages per job is less than
one in the many-server limit, when f , p, and τ are chosen such that p > 0, (a)
λ(1−p)/(1− f ) < ρ, (b) λp/ f < 1/4 and (c) 1 < τ< f /(2λp)−1. Such values for f ,
p and τ always exist.

Proof of Theorem 5.2. Note that both subsystems can be analyzed separately,
as the Poisson arrivals are split randomly. First, since the relative arrival rate
to the JIQ-subsystem equals λ(1 − p)/(1 − f ), which is assumed to be strictly
less than ρ by Equation (a), the JIQ-subsystem has a vanishing queueing delay.
Furthermore, the JIQ-subsystem uses at most one message per job for all N by
construction.

We now turn to the JOQ-subsystem. Since the relative arrival rate to this
subsystem equals λ̄ = λp/ f , which is assumed to be less than 1/4 by Equa-
tion (b), and since Equation (c) is assumed to hold, Corollary 5.1 (applied with
λ̄) implies that the JOQ-subsystem has a vanishing queueing delay, and that it
uses strictly less than one message per job in expectation in the many-server
limit. Combining this with the assumption that p > 0, and the fact that the JIQ-
subsystem also achieves a vanishing queueing delay with at most one message
per job, we conclude that the whole system achieves a vanishing queueing de-
lay, and that it uses strictly less than one message per job in expectation, in the
many-server limit.

Finally, it remains to be checked that there exist parameters f , p, and τ that
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fulfill the requirements. Indeed, if we choose f = 1−λ for case 1 and f = 1−2λ
for case 2, thus fulfilling (a), then for every λ < 1 or for every λ < 1/2, we can
pick p > 0 small enough so that (b) is satisfied. Moreover, since the upper bound
for τ in (c) is larger than 1 for all p small enough and becomes arbitrarily large
for small p > 0, condition (c) can also be satisfied for all λ< 1 or λ< 1/2.

5.4.2 Choosing the system parameters

Since the parameters f , p, and τ to implement the Hybrid JOQ/JIQ algorithm
are not uniquely determined by the parameters of the system, a natural choice
for them is one that minimizes the expected number of messages per job. Al-
though this quantity is unknown for any finite N , we can use its limiting values
as N →∞ as a proxy. In particular, the parameters that minimize this limit are
given by the solution to the following optimization problem.

inf
p, f ,τ

1−p +pE [bX /τc]

s.t. λpτE[dX /τe] < f /2, λ(1−p) < ρ(1− f ),

0 ≤ f ≤ 1, 0 ≤ p ≤ 1, τ≥ 0,

(5.4)

where ρ = 1 if X has decreasing hazard rate, and ρ = 1/2 otherwise. Unfor-
tunately, in general there are no solutions for this problem due to the strict
inequalities. Moreover, since these strict inequalities correspond to stability con-
ditions for the JIQ-subsystem and for the virtual queues in the JOQ-subsystem,
a relaxation with non-strict inequalities is not appropriate. Thus, a way to ob-
tain numerical values for the parameters is to introduce some small slack ε in
the constraints with strict inequalities, so that they become

λpτE[dX /τe] ≤ f /2−ε and λ(1−p) ≤ ρ(1− f )−ε.

Furthermore, our simulations (Section 5.5) support the conjecture that the JIQ
algorithm is stable for all subcritical arrival rates, regardless of the job size
distributions. In that case, the first two constraints (i.e., the stability constraints)
in the problem given by (5.4) would need to be

λpτE[dX /τe] < f and λ(1−p) < (1− f ). (5.5)

For exponential job sizes, we will show that the infimum of the problem
given by (5.4) is attained when the parameters are selected as{

(i) τ such that 1−e−τ = 2λτ, p = 1, f = 1,

(ii) τ s.t. 2eτ−4τ= 3, p = (1−λ)(eτ−1)
λ(1−eτ+2τeτ) , f = 1−λ(1−p),

(5.6)
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when (i) λ ≤ λ∗ or (ii) λ > λ∗, where λ∗ solves (1−λ)(eτ−1)
λ(1−eτ+2τeτ) = 1 when 2eτ−4τ =

3. These parameters cause equality in some of the equations where a strict
inequality is needed. The solution value is shown in Figure 5.1, as a function of
λ. In this figure, we distinguish the cases where JIQ is stable and has vanishing
queueing delay for a general job size distribution when λ< 1/2 (see (5.6)), and
where this also holds true for all λ< 1 (which is widely believed but remains to
be proven).

Solution of the minimization problem. The minimization problem (5.4)
when job sizes are exponentially distributed looks as follows.

inf
p, f ,τ

1−p +p
e−τ

1−e−τ

s.t. λpτ/(1−e−τ) < f /2, λ(1−p) < 1− f ,

0 ≤ f ≤ 1, 0 ≤ p ≤ 1, τ≥ 0.

(5.7)

Note that the objective function is decreasing in τ, so τ should be as large
as possible. The first condition then shows that, in order to choose τ large, p
should be minimized, after which the second condition gives that f should be
chosen as close as possible to but less than 1− (1−p)λ. This transforms the first
inequality into

τ/(1−e−τ) < 1− (1−p)λ

2λp
, (5.8)

where the right-hand side is decreasing in p. As we want to maximize τ, we
seek equality which gives

p(λ,τ) = (1−λ)(eτ−1)

λ(1−eτ+2τeτ)
, (5.9)

where we note that this value may exceed 1, in which case we preserve the
equality as much as possible and set p(λ,τ) = 1. Suppose p(λ,τ) < 1, in that case
we choose τ such that 2eτ−4τ = 3 in order to minimize the objective function
(this follows from differentiating the objective function and equating it to zero,
after substituting (5.9)). However, with this value of τ, p(λ,τ) may be larger
than one. Denote this critical value of λ by λ∗, so λ∗ is defined as the smallest
value of λ∗ for which p(λ,τ) is strictly smaller than one, when τ is chosen such
that 2eτ−4τ= 3. When λ is smaller than this λ∗, we choose p = 1 after which the
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objective function is minimized by putting τ such that (5.8) is met with equality
which is the case when 1−e−τ = 2λτ.

Remark. If the stability result proved in [FS17] applies even when λ < 1, then
(5.8), which corresponds to the first constraint in (5.7), becomes λpτ/(1−e−τ) <
f . The optimal parameters for this problem are{

(i) τ such that 1−e−τ =λτ, p = 1, f = 1,

(ii) τ such that eτ−2τ= 1, p = (1−λ)(eτ−1)
λ(1−eτ+τeτ) , f = 1−λ(1−p)

when (i) λ≤λ∗ or (ii) λ>λ∗, where λ∗ solves 1−eτ+λτeτ

(1−eτ+τeτ)λ = 0 when eτ−2τ= 1.
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Figure 5.1: Numerical computation: the average number of messages per job as a func-
tion of the arrival rate.

5.5 Numerical simulations and discussions

In this section, we performed stochastic simulations of a system with 1000
servers, first with exponential job sizes and later with other job size distribu-
tions.
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(a) λ= 0.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

(b) λ= 0.5.

Figure 5.2: Average number of messages per job (left axis) and the probability of queue-
ing (right axis) as a function of τ. The thin blue line represents the number of messages
JIQ uses, and the thin red line represents the probability of queueing for the random
dispatching policy. The dashed lines represent the performance of the system without
virtual queues.

5.5.1 The choice of τ

We investigate the performance of the JOQ algorithm. We therefore plot the
probability of queueing as a function of τ for λ = 0.3 and λ = 0.5 in Figures
Figures 5.2a and 5.2b and the mean delay as a function of τ in Figures 5.3a
and 5.3b. We will mainly focus on the probability of queueing, as the obser-
vations for the mean delay are almost identical. The dashed lines will become
relevant in the next subsection.

In the figures, it is clear that the probability of queueing and the message
rate are both extremely low when τ is chosen to be somewhere between 2 and
3. As expected, when τ gets smaller we observe that the average number of
messages per job grows, while the probability of queueing is almost zero. This
reflects the fact that, as the time between update epochs decreases, the average
number of messages increases and the dispatcher has enough open servers to
send almost every incoming job to one of them.

Recall that in Section 5.4.2 we described a method to determine the optimal
value of τ, as part of the solution of the optimization problem given in (5.4). In
particular, for λ= 0.3 this would lead to τ≈ 1.51. However, in Figure 5.2a, one
clearly observes that larger values of τ would give rise to a smaller number of
messages, while still yielding essentially zero queueing delay. If we assume that
the JIQ algorithm is always stable for any load ρ < 1, and use the constraints
given in (5.5), then the optimal value of τ would be approximately 3.20 for
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(b) λ= 0.5.

Figure 5.3: Average number of messages per job and the mean delay as a function of
τ. The thin blue line represents the number of messages JIQ uses, and the thin red line
represents the probability of queueing for the random dispatching policy. The dashed
lines represent the performance of the system without virtual queues.

λ= 0.3 and 1.59 for λ= 0.5. This matches with the phase transition in the per-
formance observed at this value of τ, where the probability of queueing quickly
increases up to the arrival rate λ, and where the average number of messages
per job rapidly increases to a local maximum. These sharp increases in both
the probability of queueing and the average number of messages per job reflect
that when τ is chosen to be too large, the virtual queues become unstable and
all servers remain closed. In that case, the dispatcher is forced to send jobs to
servers chosen uniformly at random, and servers send messages non-stop every
τ time units.

5.5.2 Virtual queues or not

The JOQ algorithm is tractable because we rely on the equivalence with the
JIQ algorithm. This is the reason why we use virtual queues instead of the real
queues in order to decide for the servers when to stop sending messages.

We compare the JOQ algorithm with the variant without virtual queues,
where at an update epoch the server would send a message that it is busy,
exactly when it is actually busy. Results are shown in Figures 5.2a, 5.2b, 5.3a
and 5.3b, in which the dashed lines represent the results for the JOQ algorithm
without virtual queues. As can be seen from these figures, there seems to be
no difference for small values of τ. This is because the virtual queues are stable
in both cases, as their load is less than one. However, when τ is close to the
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(a) Decreasing hazard rate Gamma(2,2).
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(b) Increasing hazard rate Gamma(1/2,1/2).

Figure 5.4: Average number of messages per job and the probability of queueing as a
function of τ (λ = 0.5) with non-exponential service times. The dashed lines represent
the performance of the system without virtual queues.

crossover point, the difference between having virtual queues or not becomes
apparent. The virtual queues become overloaded and no open servers become
available anymore, while there are still idle and thus open servers when no
virtual queues are used. We do note however that even in the system with no
virtual queues, queueing does not seem to vanish if τ is chosen larger than its
optimal value.

5.5.3 Non-exponential job size distributions

We chose the update epochs to be equidistant in time for the sake of simplicity
of implementation and analysis. While irregular update intervals may reduce
the message rate in general, for exponentially distributed job sizes, equidistant
update epochs in fact minimize the expected number of messages per job, as
will be described further and proven in Section 5.A.

For non-exponential job sizes, the behavior of the mean delay and probabil-
ity of queueing is quite different, as can be observed in Figures 5.4a, 5.4b, 5.5a
and 5.5b. When the hazard rate is decreasing, larger values of τ are acceptable
for vanishing delays, which could be explained by observing that (5.2) is an
upper bound for the relative load when the job size distribution has decreasing
hazard rate, because of (5.1). The mean delay turns out to be smaller in this
case as well. On the other hand, when the job size distribution has increasing
hazard rate, the mean delay increases and is non-zero already for smaller values
of τ. The expected number of messages per job also seems to be larger.
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Figure 5.5: Average number of messages per job and the mean delay as a function of τ
(λ= 0.5) with non-exponential service times. The dashed lines represent the performance
of the system without virtual queues.

5.6 Conclusion

The JOQ algorithm greatly reduces the number of messages exchanged in order
to make the probability of queueing and the expected queueing delay vanish,
compared to existing algorithms in the literature. In particular, to the best of
our knowledge, this is the first algorithm that achieves vanishing queueing delay
with less than one message per job in expectation, without advance knowledge
of job sizes. Moreover, by mixing JOQ with JIQ, we showed that vanishing
queueing delay can be achieved for all systems where JIQ has vanishing queue-
ing delay, but with strictly fewer messages per job on average, compared to JIQ.
In fact, for all λ < 1/2 or any λ < 1 if the job size distribution has decreasing
hazard rate, we use strictly less than one message per job in expectation while
achieving a vanishing queueing delay.

It could be worth further investigating how message loss may impact the
performance of the JOQ scheme. We believe our scheme does not require any
strict timings and can be extended so that it receives messages during specific
time windows, instead of at predetermined time epochs. Whenever a message
is lost, the dispatcher would only send one message to a potentially busy server.
This is better than if a message would get lost in the JIQ scheme, after which
one of the servers would be eliminated as option to dispatch to.

An open question is whether the system design ‘hybrid JOQ/JIQ’ in Section
5.4 minimizes the expected number of messages per job in the limit, for expo-
nentially distributed job sizes. That is, does there exist a system design that also
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has a vanishing queueing delay, but uses even fewer messages per job in the
limit?

A further challenging problem would be to investigate what the optimal
scheme looks like for generally distributed job sizes. It seems that a combination
of implicit and explicit messaging is necessary.

5.A Optimality of equidistant updates

We will show that equidistant updates are optimal when the service times are
exponentially distributed. Let us relax the assumption that, under the JOQ
algorithm, the time between update epochs is always the same τ. For i ≥ 1,
let si be the time between the (i − 1)-th and the i -th update epochs, with the
convention that the 0-th update epoch is at time 0. Assuming that the probability
of queueing converges to 0 as N →∞, the expected number of messages per job
converges to

∞∑
i=1

P

(
X >

i∑
j=1

s j

)
.

Moreover, the expected size of the blown up jobs is

∞∑
i=0

si+1P

(
X >

i∑
j=1

s j

)
.

Assuming that the load of the system is at most ρ, the messaging sequence s∗
that minimizes the limit of the expected number of messages per job is the one
that solves the following problem.

inf
s≥0

∞∑
i=1

P

(
X >

i∑
j=1

s j

)

s.t . λ
∞∑

i=0
si+1P

(
X >

i∑
j=1

s j

)
≤ ρ.

(5.10)

Note that, as long as λ< ρ, this problem is always feasible. For the special case
of exponentially distributed job sizes, we have the following.

Theorem 5.3. Suppose that the job sizes are exponentially distributed. If s∗ at-
tains the infimum in (5.10), then there exists some τ > 0 such that s∗k = τ, for all
k ≥ 1.
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Proof. We first obtain a sequence of implicit equations for s∗.

Lemma 5.1. Suppose that P(X > x) is convex and differentiable, with f (x) =− d
d x

P(X > x) > 0, for all x ≥ 0. Then, there exists a constant C > 0 such that

C =

∞∑
i=k

s∗i+1 f

(
i∑

j=1
s∗j

)
−P

(
X >

k−1∑
j=1

s∗j

)
∞∑

i=k
f

(
i∑

j=1
s∗j

) (5.11)

for all k ≥ 1, and

C = s∗k+1 −
P

(
k−1∑
j=1

s∗j < X ≤
k∑

j=1
s∗j

)

f

(
k∑

j=1
s∗j

) , (5.12)

for all k ≥ 2.

Proof. Since P(X > x) is convex, (5.10) is an infinite-dimensional convex opti-
mization problem in s. Now consider the Lagrangian

L (s, y) =
∞∑

i=1
P

(
X >

i∑
j=1

s j

)
− y

[
λ

∞∑
i=0

si+1P

(
X >

i∑
j=1

s j

)
−ρ

]
.

Let
(
s∗, y∗)

be an optimal solution. For every k ≥ 1, since s∗k = 0 cannot be
optimal, we must have

∂L (s∗, y∗)

∂s∗k
=−

∞∑
i=k

f

(
i∑

j=1
s∗j

)

− y∗λ

[
−

∞∑
i=k

s∗i+1 f

(
i∑

j=1
s∗j

)
+P

(
X >

k−1∑
j=1

s∗j

)]
= 0.

Since f (x) > 0 for all x ≥ 0, we have y∗ > 0. Thus, rearranging terms we obtain
Equation (5.11) with C = 1/(y∗λ) > 0. Moreover, using that

∂L (s∗, y∗)

∂s∗k
− ∂L (s∗, y∗)

∂s∗k−1

= 0

for all k ≥ 2, and rearranging terms, we obtain (5.12).
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Combining (5.12) with the fact that the jobs are exponentially distributed,
we obtain

s∗k+1 =C +1−e s∗k ,

for all k ≥ 2. Combining this with the fact that s∗k ≥ 0 for all k ≥ 1, it can be
checked that we must have s∗k = τ for all k ≥ 2, where τ is the unique solution of
τ=C +1−eτ.

On the other hand, combining (5.11) for the case k = 2, with the fact that
the job sizes are exponentially distributed and that s∗k = τ for all k ≥ 2, we obtain

τ=C + (
1−eτ

)
eτ−s∗1 .

Thus, we have s∗1 = τ.
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Summary

Scalable load balancing algorithms (LBAs) achieve excellent delay performance
in large-scale systems and yet only involve low implementation overhead. LBAs
play a critical role in distributing service requests or tasks (e.g. compute jobs,
data base lookups, file transfers) among servers or distributed resources in
parallel-processing systems. The analysis and design of LBAs has attracted
strong attention in recent years, mainly spurred by crucial scalability challenges
arising in cloud networks and data centers with massive numbers of servers han-
dling a huge influx of service requests. The use of state information naturally
allows dynamic LBAs to achieve better delay performance, but also involves
higher implementation complexity and a substantial communication burden.

Motivated by these issues, we introduce and analyze novel scalable LBAs
which strike an optimal trade-off between performance and communication
overhead. Specifically, LBAs are referred to as ‘hyper-scalable’ when they op-
erate below the minimum requirement for vanishing delay in a many-server
regime, referred to as the hyper-scalable operating region. Mathematical tech-
niques such as queueing networks and fluid limits will be used for the analysis
of these LBAs, and extensive simulation experiments are conducted to illustrate
the results.

In Chapter 2, we consider a multiple-dispatcher scenario where the loads
may differ among dispatchers. We leverage product-form representations and
fluid limits to establish that the blocking and wait then no longer vanish when
applying JIQ, even for arbitrarily low overall load. Remarkably, it is the least-
loaded dispatcher that throttles tokens and leaves idle servers stranded, thus
acting as bottleneck. We introduce two enhancements of the ordinary JIQ
scheme where tokens are either distributed non-uniformly or occasionally ex-
changed among the various dispatchers. We prove that these extensions can
achieve zero blocking and wait in the many-server limit, for any subcritical over-
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all load and arbitrarily skewed load profiles.
In Chapter 3, we consider a hyper-scalable scheme where the various servers

provide occasional queue updates to guide the load assignment. We show that
the proposed schemes can achieve a vanishing delay in the many-server limit
with just one message per job, just like the popular Join-the-Idle-Queue (JIQ)
scheme. We investigate fluid limits for synchronous updates as well as asyn-
chronous exponential update intervals. The fixed point of the fluid limit is
identified in the latter case and used to derive the queue length distribution.
We also demonstrate that in the ultra-low feedback regime the mean stationary
delay tends to a constant in the synchronous case, but grows without bound in
the asynchronous case.

In Chapter 4, we analyze a scenario in which jobs may only be admit-
ted when a specific limit on the queue position of the job can be guaranteed.
The centerpiece of our analysis is a universal upper bound for the achievable
throughput of any dispatcher-driven algorithm for a given communication bud-
get and queue limit. We also propose a specific hyper-scalable scheme which
can operate at any given message rate and enforce any given queue limit, while
allowing the server states to be captured via a closed product-form network,
in which servers act as customers traversing various nodes. The bound is tight
and the proposed hyper-scalable scheme is throughput-optimal in a many-server
regime given the communication and queue limit constraints.

Finally, in Chapter 5, we introduce a novel hyper-scalable scheme in which
the dispatcher becomes aware of idle servers without any explicit communica-
tion from either side, using absence of messages at predefined time instants.
The proposed scheme achieves provably vanishing queueing delays while using
strictly less than one message per job on average.
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