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An assessment of the methods of codes ACI 318 and Eurocode 2 is performed to establish a minimum slenderness for
reinforced concrete slabs, which is a simplified method for controlling the deflection of slabs. This assessment is
performed by comparing these methods with each other and with two further methods that have inspired, among
others, the Australian standard for concrete structures. The variables evaluated include those that most influence
deflection control (span, load and allowable deflection). The study cases include spans that range from 6 m (20 ft) to
12 m (40 ft) and loads that range from 5 kN/m2 (104 lb/ft2) to 15 kN/m2 (313 lb/ft2). The results of the study reveal
some of the key advantages and shortcomings of the ACI 318 and Eurocode 2 provisions. Suggestions are provided to
improve the current provisions of the codes. Methods that are not too complicated but more refined can help the
code provisions to become more versatile. The aim of this work is to minimise potential problems caused by designing
excessively thick slabs (heavy and pollutant) or excessively slender slabs (too deformable).

Notation
b breadth of the rectangular section
d dead load
Ec elastic modulus of concrete
fck characteristic cylinder compressive

strength (MPa)
fr modulus of rupture
h depth of slab
Ie effective moment of inertia
K boundary condition factor
kAR, kDP, kSS coefficients applying to two-way slabs
L, l span
L/h span/depth ratio
l/d span/effective depth ratio
ln net span
ln/h net span/depth ratio
M* factored moment
Ma largest moment in the load history
Mcr cracking moment
Mk characteristic moment
Wl(var) variable portion of the live load
Ws sustained load
α stiffness coefficient
αm modified stiffness coefficient
α0 initial stiffness coefficient
βES ratio applying to two-way slabs
γc partial factor for concrete
γs partial factor for steel
Δinc incremental deflection
(Δinc/l )allow allowable incremental deflection ratio
κ boundary condition coefficient

λ multiplier for long-term deflections under
sustained loads

ρ reinforcement ratio
ρ0 reference reinforcement ratio (one-way)

1. Introduction
In recent decades, several authors have questioned the advan-
tages of the simplified deflection-control methods that are
currently provided in some codes for the design of reinforced
concrete members (Beal, 2009; Bondy, 2005; Eren and
Dancygier, 2020; Pecić and Marinković, 2011; Scanlon and
Lee, 2006; Vollum, 2009). Some of these authors have stated
that simplified deflection-control methods, such as the ACI
318 method, lack transparency and scarcely define the ranges
for proper application. Others have pointed out several short-
comings of Eurocode 2. Besides, some of the authors of the
current provisions of Eurocode 2 have proposed a way to
increase the flexibility and transparency of its provisions (Pérez
et al., 2017; Pérez and Corres, 2014). In parallel, a new
approach to the problem has been pioneered by the Australian
codes (SA, 2001), which is based on deflection-control
methods that are similar to the methods discussed in this
study: methods that are independent of the reinforcement ratio
of a slab.

1.1 Motivation for this study
When designing a reinforced concrete member under flexure,
establishing an initial geometry of the cross-section of the
member is usually required in the early stages of design; this is
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different from what happens when designing a steel member or
a timber member under flexure. This difference is due to the
fact that reinforced concrete is a composite material that
cracks under the tension caused by flexure and its design is not
as linear as that of a steel member or a timber member. In the
case of concrete, the required amount of steel reinforcement
can only be determined based on a pre-established geometry of
the concrete cross-section. In addition, deflections can only be
calculated when the amount of steel reinforcement is known.
Thus, deflection calculations are typically performed at the
end of the design process. However, deflection checks typically
govern the design of most reinforced concrete members under
flexure. Given the importance of deflections, they should be
considered from the earliest design stages even if they cannot
be actually calculated at that time, as the amount reinforce-
ment of the member is an unknown. This paradox is solved by
establishing an initial geometry of the cross-section of the
member that implicitly considers allowable deflection require-
ments. For this reason, picking a correct initial geometry for
the cross-section can be considered a deflection-control
method.

The selection of an initial geometry in the early stages of the
design of a slab is currently achieved by establishing its depth
(h). Expressing the depth (h) as a function of span (L) by the
concept of slenderness of the slab (L/h) is a common
approach.

The codes ACI 318 (ACI, 2014) and Eurocode 2, EN 1992-1-1
(CEN, 2004) currently have provisions to establish a minimum
slenderness of the slab and state that following these provisions
may be sufficient to guarantee that the required deflection
limits of the same codes are satisfied. This approach of codes
is very helpful because it allows a designer to establish the
depth of a slab in the early stages of design and solve the
previously mentioned paradox.

However, in some cases in current practice, these provisions
of codes may cause inappropriate use, which may happen
when designers disregard the results of detailed deflection
calculations in the case where they contradict the depths
given by the minimum slenderness provisions provided in the
codes.

For example, in countries such as Spain, some insurance
companies ask designers to use the minimum slenderness
provisions of Eurocode 2, even if thinner slabs that satisfy the
deflection limits allowed by the code can be employed. Selecting
slabs that are thicker than those strictly necessary means that
floors are more expensive, heavier and more polluting than
strictly necessary; which may, in turn, cause unnecessarily large,
expensive and pollutant-generating foundations.

The opposite situation may also occur, such as designing exces-
sively slender and deformable slabs, as Bondy (2005)

demonstrated when following minimum slenderness provisions
for slabs, as established in the ACI 318 code.

2. Design of the study
To assess the performance of the simplified deflection-control
methods for one-way and two-way slabs, as outlined in ACI
318 (ACI, 2014) and in Eurocode 2 (CEN, 2004), this
study compares these methods to two other methods that are
based on analytical simplified computation of deflections.
The latter methods are based on research initiated by Andrew
Scanlon in the early 1980s (Scanlon and Murray, 1982).
In contrast, the deflection-control method, which is referred to
in this study as the ‘long Rangan–Scanlon method’, was
proposed by Scanlon in 1999 (Scanlon and Choi, 1999) based
on previous studies by Rangan (1982) and Gilbert (1985).
Furthermore, a method developed by Scanlon and Lee (2006)
is referred to in the present study as the ‘short method of
Rangan–Scanlon’.

3. Description of the deflection-control
methods studied

3.1 Method of ACI 318
The ACI 318 method (ACI, 2014) was developed by the
American Concrete Institute (ACI) in the mid-1900s and has
not undergone many changes since that time. This method is
primarily based on experience (ACI, 2014; Bondy, 2005). The
method proposes to determine the depth (h) of a member
based on a simple constant ratio:

1: L=h ¼ n or Ln=h ¼ nð Þ

where n takes different values depending on the boundary con-
ditions, the type of structural member, the density of concrete
and the strength of steel.

This method and similar methods will be termed ‘constant
slenderness methods’ (CS methods) in this study.

In the code, one-way slabs and two-way slabs are treated separ-
ately. For one-way slabs, the code provisions are given in
section 7.3 and table 7.3.1.1, only for those slabs that are ‘not
supporting or attached to partitions or other construction
likely to be damaged by large deflections’ (ACI, 2014: p. 83).
These slabs are referred to in this study as slabs that are ‘not
supporting non-structural damageable elements’. For two-way
slabs, provisions are given in section 8.3 and table 8.3.1.1, both
for slabs that may and for slabs that may not ‘support or be
attached to non-structural elements likely to be damaged by
large deflections’ (ACI, 2014).

According to the ACI 318 provisions, the slenderness of slabs
thus obtained serves as an alternative method to control
deflections as opposed to the detailed calculations of deflec-
tions. By way of detailed deflection computation examples,
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Bondy (2005) showed that the L/h ratios offered by the ACI
may produce excessive slenderness of slabs, which do not
conform to the ACI allowable deflection requirements.

Thus, although this ‘CS’ method has the advantage of being
simple and has been validated by extensive experience with
reasonably good results, it is not applicable in all cases.
This situation may be linked to the fact that the results of this
simplified deflection-control method do not consider the
influence of several factors that do have a significant influence
on deflection (refer to Table 1).

3.2 Methods of Eurocode 2 (CEN, 2004)
In section 7.4.2 of Eurocode 2 (CEN, 2004), which is referred
to as ‘Cases where calculations may be omitted’, provisions are
established to control deflections and avoid actual deflection
computations. In this study, these provisions are regarded as
two distinct methods, even if the code presents them as one
sole consistent method. On the one hand, the main method of
Eurocode 2, is classified as a ‘reinforcement-dependent slender-
ness method’ (RDS) in this study. On the other hand, there is
a ‘CS method’, which is similar to that of ACI 318. The
Eurocode 2 presents this latter method only as a design aid of
the main method.

The Eurocode 2 main method, which is based on Corres and
others (Corres et al., 2003), is designed to control deflection by
establishing the slenderness of members and considers a larger
number of factors than the ACI method (refer to Table 1).
Thus, a better degree of accuracy in the results is expected.

The formula to calculate the slenderness (l/d ) for members
with low reinforcement ratios, such as slabs, is described in
section 7.4.2 of the Eurocode 2, where it is numbered 7.16.a,
but numbered as Equation 2 here.

2:

l
d
¼ K 11þ 1:5

ffiffiffiffiffiffiffi
fck

p ρ0
ρ
þ 3:2

ffiffiffiffiffiffiffi
fck

p ρ0
ρ
� 1

� �3=2
" #

if ρ � ρ0

with ρ0 ¼
ffiffiffiffiffiffiffi
fck

p
� 10�3

where l/d is the span/effective depth ratio; K is the boundary
condition factor (refer to table 7.4N for details) (CEN, 2004);
ρ0 (defined above) is the reference reinforcement ratio (one-
way); ρ is the one-way required tension reinforcement ratio at
mid-span to withstand service loads; and fck is the character-
istic cylinder compressive strength (MPa).

The method appears to be simple: use the closed-form
Equation 2. However, this method requires previous knowledge
of the actual steel reinforcement ratio of the member, which is
typically unknown in the early stages of design, when depth is
also an unknown. Therefore, the iterative nature of the calcu-
lation for reinforced concrete, as previously mentioned, cannot
be solved unless the code has provided reference values for
reinforcement ratios. The only reference to reinforcement ratio
that has been found by the authors is included in the Spanish
code EHE (CPH, 2008), which is consistent with Eurocode 2.
The EHE code does not explicitly suggest reinforcement ratios
that should be applied in Equation 2, but suggests that the
reinforcement ratio ρ=0.50% can be used for slabs when using
table 50.2.2.1 of EHE, which is said to be consistent with the
results of Equation 2 of the Eurocode 2. This study tests the

Table 1. Factors that influence the establishment of the depth of slabs in the early stages of design that are considered in several
deflection-control methods

Factors ACI (2014) CEN (2004)a
‘Short method
of Rangan–Scanlon’ (2006)

‘Long method of
Rangan–Scanlon’ (1999–2014)

Span Yes Yes Yes Yes
Boundary conditions Yes Yes Yes Yes
Total loads — Indirectly Yes Yes
Sustained loads — Indirectly Yes Yes
Load history — Indirectly Indirectly Indirectly
Allowable deflection — — Yes Yes
Yield strength of steel Indirectly Yes Indirectly Yes
Required amount of reinf. (M+) — Yes Indirectly Yes
Actual amount of reinf. (M+) — Yes — —

Required amount of reinf. (M−) — Only cantilevers Indirectly Yes
Actual amount of reinf. (M−) — Only cantilevers — —

Density of concrete Indirectly — Yes Yes
Elastic modulus of concrete Indirectly Indirectly Yes Yes
Concrete compressive strength — Yes Indirectly Yes
Tensile strength of concrete — — Indirectly Yes
Moment redistribution — — — —

Safety introduction method — — Indirectly Yes

aThe support document Corres et al. (2003) is considered to obtain the column of data for Eurocode 2
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reinforcement ratio ρ=0.50% as a possible constant ratio to
avoid iterative computations when using Equation 2.

In addition to this main method of Eurocode 2, a second
method exists: the ‘CS method’ described in table 7.4.N of the
code. In general terms, this method is similar to that of the
ACI code but the slenderness values obtained when using each
method differ in most cases.

The Eurocode 2 presents this second method as a design aid
for the main method. However, the present study could not
find consistency between the two methods. Thus, they were
analysed separately.

It must be pointed out that some of the main authors of the
current provisions of Eurocode 2 have proposed an evolved
version (Pérez et al., 2017) of the formulas currently included
in Eurocode 2 that can certainly increase the consistency
between the formula and the table. The evolved formula is
designed to include a larger number of factors influencing
deflection control, including several of the factors that this
study considers. Therefore, there is currently an interest in opti-
mising the deflection control provisions and thereby improving
future codes and structures.

3.3 ‘Short method of Rangan–Scanlon’ (1999–2006)
This method considers an extensive range of factors that influ-
ence deflection computation (refer to Table 1). The ‘short
method of Rangan–Scanlon’ is classified in this study as a
‘reinforcement-independent slenderness method’, which is also
termed the RIS method. The independence of the amount of
reinforcement is a relevant advantage of this method, given
that the reinforcement ratio is unknown in the early stages of
design.

One of Scanlon’s last works on this subject (Scanlon and Lee,
2006) describes the method as derived from an earlier work of
Rangan (1982). Among its primary advantages is the ration-
ality of the method. The slenderness of slabs is obtained by
using a formula derived from classical formulas of deflection
of one-way members.

The method focuses on computing incremental deflection,
which is considered to be the governing factor in the design of
slabs:

3: Δinc ¼ κl4

384EcIe
λWs þWl varð Þ
� �

where Δinc is the incremental deflection; κ is the boundary
condition coefficient (= 5 for simply supported, = 1,4 for
continuous members, = 2 for one continuous end, and = 48 for
cantilevers); l is the span; Ec is the elastic modulus of concrete;
Ie is the effective moment of inertia (after Branson); λ is the

multiplier for long-term deflections under sustained loads; Ws

is the sustained load; and Wl(var) is the variable portion of the
live load.

Scanlon’s proposal in 2006 (Scanlon and Lee, 2006) is a gener-
alisation, for a variety of one- and two-way floors, of a method
that he developed in 1999 (Scanlon and Choi, 1999) for one-
way slabs (described as the ‘long method of Rangan–
Scanlon’). To transform the original one-way formulation of
1999 into the more general two-way formula of 2006, Scanlon
incorporated the crossing beam method (ACI, 1995; Scanlon
and Murray, 1982) and works by Timoshenko (Timoshenko
and Woinowsky-Krieger, 1959), Branson (1963), Rangan
(1982) and Gilbert (1985).

Equation 4 is obtained by transforming Ie of Equation 3 into
αIb( = αbh3/12), dividing Equation 3 by l and setting the right-
hand side of the resulting equation as equal to (Δinc/l )allow.
Finally, l3/h3 is isolated, and both sides of the equation are
cube-rooted.

4:
ln
h
¼ βESf g Δinc

l

� �
allow

32αEcb
κ λWS þWL varð Þ
� � kDPf g

kARkSSf g

" #1=3

where Δinc, l, Ec, Ie, λ, Ws and Wl(var) have the same meaning
defined for Equation 3; ln/h is the net span/depth ratio;
(Δinc/l )allow is the allowable incremental deflection divided by
the span; α is the stiffness coefficient (typically between 0
and 1); and b is the breadth of the rectangular section.

The ratio {βES} and the coefficients enclosed in curly braces
{kAR, kDP, kSS} apply only to two-way slabs as they convert an
equation for one-way deflection into an equation that considers
two-way deflection (refer to section A1.4.2 of the Appendix
and Scanlon and Lee (2006) for more detail).

According to Scanlon, α can be taken as a constant, which is
one of his major contributions to Rangan’s formulations.
Scanlon proposed a value of 0.4 in 1999 (Scanlon and Choi,
1999) and later proposed a value of 0.52 in 2006 (Scanlon and
Lee, 2006) based on a new parametric study. The latter value
is used in the present study, since it is the value recommended
by Scanlon in his latest study.

For simplicity, given the extensive experience of Scanlon in this
field, in the present study, the values of all coefficients of
Equations 3 and 4 are considered adequate (more details
provided in A1.4 of the Appendix).

Despite its advantages, this method has a disadvantage: it
requires iteration because the weight of the slab (which is a
part of the sustained load Ws) influences the determination of
depth. However, iterations typically converge very quickly. For
example, when the depth obtained by the CS method of ACI
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318 is considered for the first iteration, more than three
iterations in total are rarely necessary (Scanlon and Lee, 2006).

3.4 ‘Long method of Rangan–Scanlon’
In this study the ‘long method of Rangan–Scanlon’ refers to a
method that was developed by Scanlon earlier than the ‘short
method’, as described in the previous section. This method can
either be used for the same purpose as the methods mentioned
above (as is done throughout this study), or as a method
complementary to the ‘short method’ in order to improve it
and prepare it to be fully operational, as clarified next.

Scanlon investigated the value of the coefficient α in detail
in his 1999 paper (Scanlon and Choi, 1999), in which he
performed an extensive parametric study. This study did not
consider α as a constant but instead included the calculation of
the effective moment of inertia (Ie) in the iteration process.
Subsequently, the value of α was calculated based on
Ie:α= Ie/Ig. As a result of the systematic use of this ‘long
method’, in 2006 Scanlon (Scanlon and Lee, 2006) proposed
the use of a constant value of α and developed what in this
study is termed the ‘short method of Rangan–Scanlon’.

However, an analysis of the ‘long method of Rangan–Scanlon’
(Scanlon and Choi, 1999) shows that the value of α is not con-
stant but has small variations that fundamentally depend on
the reinforcement ratio and the tensile strength of the concrete.
Consequently, the ‘long method’ cannot be strictly considered
a ‘RIS method’. In this study, however, the ‘long method’ is
grouped with the ‘short method’ because it is considered a
complement to it that will facilitate the future development of
a more definitive version of the ‘short method’.

In this study, the ‘long method’ of 1999 (Scanlon and Choi,
1999) has been slightly modified, because the values of α and
Ln/h are formulated as a function of the main variables that
affect α. This modification has been performed using the
following iterative process.

(a) Compute the slenderness of the slab using the ‘short
method’ and the initial stiffness coefficient, α0 = 0.52.

(b) Compute the required reinforcement ratio for a unit
width of the one-way slab (or a unit with of the support
band of the two-way slab).

(c) Compute the effective moment of inertia (Ie) and the
corresponding stiffness coefficient, which is referred to as
the modified stiffness coefficient αm= Ie/Ib.

(d ) Compare the value of αm that is obtained in step (c) with
the value of α0 that is obtained in step (a). If α0 = αm, the
slenderness can be considered adequate, and α0 is
considered valid. Otherwise, the process is repeated until
convergence with α0 equal to the αm computed in step (c).

Despite the work-intensive nature of this version of the ‘long
method’, it is useful in this study because it provides

slenderness values that are more accurate than would be
obtained by the ‘short method’.

A considerable number of values of α have been obtained
using this method for the slabs included in this study.
Although they are not listed here, the values vary between 0.25
and 0.45, with most of the results concentrated between 0.30
and 0.40. This interval is slightly different from the value 0.52
that was proposed by Scanlon in 2006 (Scanlon and Lee,
2006). Although applying α as a constant is very useful
because it enables the use of the ‘short method of Rangan–
Scanlon’, the value of α in the ‘short method’ should not
always take the same value for all members and situations. The
values of this coefficient α should be further evaluated and
tabulated as a function of some key variables that control
deflection (Sanabra Loewe and Scanlon, 2014).

Improvements to the classical equations to calculate deflections
are permanently being studied to consider, among other
factors, the behaviour of non-rectangular cross-sections
(Shaaban and Mustafa, 2019) and the behaviour of new
reinforcement solutions (Ge et al., 2020), or to perfect the
calculation of the effective moment of inertia (Nguyen et al.,
2020).

Thanks to the rationality of the method of Rangan–Scanlon, it
may be adapted to these advances or to future needs, basically
by finding proper values of coefficient α (and potentially of
other parameters of the equation).

4. Comparative study of the deflection-
control methods

A comparative study has been performed to understand
better the four deflection-control methods described above
and their sensitivities to different parameters. The study is
divided into two parts. In the first part, the depths obtained
with the different methods are compared considering different
typical boundary conditions (simply supported and continu-
ous). In the second part, the sensitivity of the methods is
assessed with reference to several key parameters that influence
the deflection control (magnitude and duration of super-
imposed loads, allowable deflection limit and moment
redistribution).

The methods analysed were developed for different codes that
are not directly comparable. Consequently, in this study,
materials (concrete and steel) and deflection-control limits are
selected to make comparisons possible while maintaining com-
patibility with the corresponding codes. (Details are provided
in Sections A1.1, A1.2 and A1.3 of the Appendix.)

4.1 First part of the study
In total, eight variants of the previously discussed methods are
examined, as listed below.
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& Method 1: the ACI method, which is a CS method.
& Method 2: four variants of the Eurocode 2 methods, as

listed next.
□ Method 2a: the CS method, following Table 7.4N of

the Eurocode.
□ Method 2b: Equation 2, which is a ‘RDS method.’ The

required tensile reinforcement ratio at mid-span (ρ),
which is employed in Equation 2, is based on
computing moments considering an elastic behaviour
(no moment redistribution). A different ρ is obtained
for each case, depending on the corresponding diagram
of moments.

□ Method 2c: equivalent to method 2b, but considering a
moment redistribution of 15% of the elastic negative
moments on bearings.

□ Method 2d: Equation 2 with a constant tensile
reinforcement ratio: ρ=0.50%.

& Method 3: the ‘short method of Rangan–Scanlon’ with
α=0.52 (‘RIS method’).

& Method 4: two variants of the ‘long method of Rangan–
Scanlon’, which is considered a RIS method even if it is
not, in the strictest sense.
□ Method 4a: the required amount of tensile reinforcement

is based on computing moments considering an elastic
behaviour (no moment redistribution).

□ Method 4b: the same as method 4a considering a
limited moment redistribution of 15% of the negative
elastic moments.

Results of the first part of the study are displayed in Figures 1
and 2. Figure 1 shows the results for simply supported one-
way slabs. Figure 2 shows the results for the interior panels
of two-way slabs. Some differences exist in the design and
behaviour of one-way and two-way slabs.

4.2 Analysis of results of the first part of the study
Regarding the two CS methods 1 and 2a, a certain level of
agreement is obtained for simply supported one-way slabs
(Figure 1), where Eurocode 2 depths are only 12% smaller
than ACI depths. For the interior panels of slabs (Figure 2),
the depths of Eurocode 2 are 31% larger than those of ACI.
This difference is relevant considering that both codes establish
that these depths entitle a designer to avoid actual deflection
computations. While actual reinforced concrete deflection com-
putations are not too controversial, such a difference in the
two methods, which claim to ‘replace’ actual deflection calcu-
lations, can only mean that both codes are taking different
choices, even if these choices are not explicitly acknowledged.
These choices will be further explained in the analysis of the
second part of the study.

Concerning the sets of data that correspond to Eurocode 2
methods, numerous revealing observations are noted, as shown
in Figures 1 and 2. The three sets of data based on the RDS
method (methods 2b, 2c and 2d) consistently yield very differ-
ent results when compared. In both figures, methods 2b
and 2d yield the most different depths. The depths of
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Figure 1. Depth (h) plotted against span (L) for simply supported one-way slabs that are ‘not supporting non-structural damageable
elements’ (100 mm=3.94 in; 2 m=6.56 ft. Note on annotation in key: ACI refers to ACI 318; EC refers to Eurocode 2; short R–S refers
to short Rangan–Scanlon method; long R–S refers to long Rangan–Scanlon method; {5.4} is the load case where total superimposed load
is 5 kN/m2, where sustained loads are 40% of superimposed loads; [Ln/…] indicates the allowable incremental deflection of a series;
‘elastic’ indicates moment diagrams without moments redistribution; (ρ=…%) indicates reinforcement ratio or range of reinforcement
ratios of a series)
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method 2d, on average, are more than 50% larger than those
of method 2b, while the ratios of reinforcement of method 2d
are only approximately 25% larger than those of method 2b.
This finding raises questions regarding the applicability of the
method based on Equation 2 without some guidance about
the amount of reinforcement, given the considerable influence
of this variable. For example, watching the results of series
under method 2d for the constant ratio ρ=0.50%, the large
depths that are yielded indicate that the ratio ρ=0.50% can be
considered an upper limit instead of a mean value of ρ for
slabs. So, the ratio ρ=0.50% seems too conservative to be
utilised on a general basis to obtain the initial dimension of
the depth of slabs. Thus, the series of method 2d with a
constant reinforcement ratio of ρ=0.50% is disregarded for the
second part of the study.

A notable difference in the results between the sets of data for
method 2b and the sets of data for method 2c is observed
(Figure 2), particularly for larger spans (10 m (33 ft) or more).
A 15% moment redistribution, which is the difference between
method 2b and method 2c, causes an increase of 40% in posi-
tive reinforcement and an increase of almost 80% in the depth
of the slab. This finding shows the enormous influence of an
accurate computation of the actual redistribution of moments,
which is surprising for a method that establishes the depth of a
slab in the early stages of its design. To avoid the high influ-
ence of the redistribution of moments on the prediction of
depth, one possible approach is suggested: Equation 2 could
include the amount of negative moment reinforcement at the

bearings, not focusing the formula exclusively on the amount
of positive moment reinforcement at the midspan.

Considering the four sets of data of Eurocode 2 as a whole,
methods 2a, 2b, 2c and 2d in Figures 1 and 2, none of the
three sets of data based on the RDS method (methods 2b, 2c
and 2d) shows a clear relation with the depths yielded by the
CS method (method 2a) of the same Eurocode 2. These results
could raise questions regarding the consistency of the two
methods (RDS and CS), which are presented as a sole method
in this code.

Additional observations of the sets of data of the ‘long
method of Rangan–Scanlon’ (methods 4a and 4b) are feasible.
For example, no significant difference is observed between the
results of the ‘long method’ for elastic diagrams of moments
(method 4a) and the results of the ‘long method’ for diagrams
with a moments redistribution of 15% of the elastic negative
moment (method 4b). The results obtained in the two cases
are similar. In Figure 2, method 4a cannot be distinguished
from method 4b because they are overlapped. Although this
situation might be considered a shortcoming of the method,
the results are consistent with the fact that Scanlon does not
describe the effect of the moments redistribution in the
method.

Beyond this limitation, the series of the ‘long method’
(methods 4a and 4b) are the series that show better agreement
with the results of the two CS methods (methods 1 and 2a), as
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Figure 2. Depth (h) plotted against span (L) for interior panels of two-way slabs that are ‘supporting non-structural damageable elements.’
(100 mm=3.94 in; 2 m=6.56 ft. Note on annotation in key: ACI refers to ACI 318; EC refers to Eurocode 2; short R–S refers to short
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consider a 15% of negative moment redistribution; (ρ=…%) indicates reinforcement ratio or range of reinforcement ratios of a series)
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shown in both figures (Figures 1 and 2), especially for short
spans. This situation may be a certain proof of its right guess,
given the vast experience of the CS methods. Additional
details in this are provided in the second part of the study.

The results of the ‘short method of Rangan–Scanlon’
(method 3) consistently yield depths that are smaller than
those of the ‘long method’ (method 4a). For simply supported
one-way slabs (Figure 1), approximately 30% smaller depths
are obtained; for interior panels of two-way slabs (Figure 2),
approximately 10% smaller depths are obtained. This finding
may suggest that the value of alpha (α=0.52) proposed by
Scanlon in 2006 (Scanlon and Lee, 2006) and applied in this
study in the ‘short method of Rangan–Scanlon’ is slightly
unconservative. Further investigation may be needed to obtain
proper values of α depending on the main variables that influ-
ence deflection calculation and deflection control (Sanabra
Loewe and Scanlon, 2014). Considering that the value of α
selected for the ‘short method’ in this study does not seem to
be perfectly tuned, the ‘short method’ is not employed in the
second part of the study.

4.3 Second part of the study
In this part of the study, an assessment is made of the sensi-
tivity of the RDS method of the Eurocode 2 (methods 2b
and 2c) and the sensitivity of the ‘long method of Rangan–
Scanlon’ (method 4a), which is considered an RIS method, to

certain key variables: the magnitude and duration of the super-
imposed loads, the allowable deflection limit and the moment
redistribution. As a background the data of series from
methods 2b, 2c and 4a are displayed, which are the depths
yielded by the CS methods of ACI (method 1) and Eurocode 2
(method 2a). To avoid surcharging the figures with infor-
mation, the focus has been the ‘long method of Rangan–
Scanlon’ (method 4a), while series of data of method 2b and
method 2c, of Eurocode 2, have been limited to the most repre-
sentative cases.

4.4 Analysis of results of the second part of the study
In Figure 3, devoted to studying the influence of the magni-
tude of the superimposed loads in the interior panels of two-
way slabs, it can be observed how the ‘long method of
Rangan–Scanlon’ – two curves (method 4a) – regardless of the
span, provides an increase in the depths of the slabs of + 20%
to + 25% as the superimposed loads are increased 200%, from
5 kN/m2 to 15 kN/m2. Similar increases are observed for the
RDS method of Eurocode 2 (methods 2b and 2c). For super-
imposed loads of 15 kN/m2, the curves for method 2b and
method 2c of Eurocode 2 in Figure 3 are above and below the
curve (method 4a) of the ‘long method of Rangan–Scanlon’.
Curves for method 2b and method 2c of Eurocode 2 show
similar results for superimposed loads of 5 kN/m2. However,
the results of the Eurocode 2 for 5 kN/m2 are not displayed in
Figure 3 to avoid excess of data in the figure.
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Figure 3. Depth (h) plotted against span (L) of interior panels of two-way slabs ‘supporting non-structural damageable elements’; to
assess the variation in depths yielded by method 2b, method 2c and method 4a to changes in the magnitude of superimposed loads and
to changes in the moments redistribution. (100 mm=3.94 in; 2 m=6.56 ft. Note on annotation in key: ACI refers to ACI 318; EC refers
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sustained loads are 40% of superimposed loads; {15.4} is the load case where total superimposed load is 15 kN/m2, where sustained
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negative moment redistribution; (ρ=…%) indicates reinforcement ratio or range of reinforcement ratios of a series)
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In Figure 3, the method of Eurocode 2 (methods 2b and 2c) is
dependent on knowing in advance the amount of moment
redistribution, which is consistent with the findings in the first
part of the study. A 15% moment redistribution increases the
positive reinforcement by 50%, and causes an increase in the
depth of floors of 30%.

Beyond the particular issue with the moment redistribution
that the method of Eurocode 2 has, both methods (Eurocode 2
and the ‘long method of Rangan–Scanlon’) yield reasonable
increases in depth when the loads are increased. This result
contrasts with constant depth methods of the ACI (method 1)
and Eurocode 2 (method 2a), which have no criteria or poor
criteria for addressing the magnitude of the load.

Comparing the results of the CS methods of the ACI
(method 1) and Eurocode 2 (method 2a) with those of the
other two more refined methods, in particular with the ‘long
Rangan–Scanlon method’, several observations are noted.
First, the depths of the ACI method (method 1) seem slightly
unconservative or tuned only for short spans (around 6 m) and
light loads (less than 5 kN/m2). This result is consistent with
the findings of Bondy1 and the comment in section R8.3.1 of
the ACI code, which acknowledges that the constant slender-
ness given in the code may not be suitable in the case of
‘unusually heavy’ loads. However, ‘usual’ or ‘unusual’ loads
are not defined. Second, the depths of Eurocode 2 (method 2a)
seem well tuned for moderate spans ( just under 10 m) with
superimposed loads of 5 kN/m2, similar to those in the lower
bound curve of the ‘long Rangan–Scanlon method’
(method 4a) in Figure 3. In the same figure, for short spans
(6 m), Eurocode 2 seems to be tuned for higher loads (nearer
10 kN/m2). This result is consistent with note 1 in table 7.4N
of Eurocode 2, which is the table that defines method 2a.
Note 1 acknowledges that the values in table 7.4N ‘have been
chosen to be generally conservative and calculation may fre-
quently show that thinner members are possible’.

The two short comments in the previously mentioned codes, in
addition to the comparison with the results of the refined
methods, would put forward the very different choices taken
by the two codes (31% in difference of depths) to address the
same problem: the poor capacity of CS methods to adjust the
results to an increase in the superimposed loads.

In both codes, the constant depth ratios (methods 1 and 2a) are
primarily tuned for short or moderate spans (less than 10 m).
These ratios seem to disregard the fact that the increase in span
exponentially affects the deflection and should cause increases
in depth accordingly, just as more refined methods are able to
do: the RDS method of Eurocode 2 (methods 2b and 2c) and
the ‘long method of Rangan–Scanlon’ (method 4a).

The ACI seems to be tuned for short spans (around 6 m) and
light loads, while Eurocode 2 seems to be tuned for moderate

spans (around 8 m) and moderately high loads. Thus, follow-
ing the ACI provisions without calculating deflections may
produce economic floors for domestic spans and loads, while
following the Eurocode 2 provisions may produce uneconomic
floors for domestic spans and loads. However, possibly the
ACI does not clearly warn of potential excessive deflection for
larger spans or larger loads, and Eurocode 2 does not clearly
warn of potentially expensive and unnecessarily polluting
floors for domestic loads and spans.

Figure 4 shows that an increase in the proportion of sustained
superimposed load without varying the total load has a negli-
gible influence on the depths of slabs that are obtained
with the ‘long method’ (method 4a). The RDS method of
Eurocode 2 (methods 2b and 2c) continues yielding very differ-
ent depths depending on the redistribution of moments. The
results of the RDS method of Eurocode 2 (methods 2b and 2c)
are approximately above and below the results of the ‘long
method of Rangan–Scanlon’ (method 4a).

Figure 5 shows that a less restrictive deflection limitation
(e.g. Ln/250 for roofs) reduces the depths obtained with the
‘long method of Rangan–Scanlon’ (method 4a). Allowing a
double deflection causes a 20% reduction in the depth of the
slab, which seems reasonable. In contrast, the RDS method of
Eurocode 2 (methods 2b and 2c) does not adequately address
this situation. This is explained because a relaxation of the
allowable deflection typically causes a reduction in depth,
while superimposed loads are kept constant. As a result, the
amount of reinforcement is increased. In the RDS method of
Eurocode 2, additional reinforcement causes an increase in
depth (refer to Figure 5), which is not the desired result.

5. Conclusions and recommendations
for codes provisions

Establishing the depth of a slab as the first step of its design is
a common practice as a means to control its deflection. This
decision in the early stages of design has a major importance
from both the economic point of view and the environmental
point of view, as well as from the serviceability point of view.
Thus, improvements in this simple early phase of design can
have a relevant influence and should be regarded by code
developers as a way to improve the efficiency and sustainability
of structures. Improving this part of the codes should not be
too labour intensive from the scientific point of view, but could
be highly influential on general practice.

This study compares three families of simplified deflection-
control methods for the design of one-way and two-way
reinforced concrete slabs, including the provisions of the
ACI 318 code and the Eurocode 2 code for minimum depth
provisions. In these codes, the depth (h) of the slab is
established as related to the span (L) using the concept of
slenderness (L/h).
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Figure 5. Depth (h) plotted against span (L) of interior panels of two-way slabs ‘not supporting non-structural damageable elements’; to
assess the variation in depths yielded by (2b}, (2c} and (4a} to changes in the moments redistribution and different limits imposed on
incremental deflection. (100 mm=3.94 in; 2 m= 6.56 ft. Note on annotation in key: ACI refers to ACI 318; EC refers to Eurocode 2; long
R–S refers to long Rangan–Scanlon method; {5.4} is the load case where total superimposed load is 5 kN/m2, where sustained loads are
40% of superimposed loads; [Ln/240], [Ln/250] and [Ln/480] indicate the allowable incremental deflection of a series; ‘elastic’ indicates
moment diagrams without moments redistribution; (15% moment redistribution) indicates moments diagrams that consider 15% of
negative moment redistribution; (ρ=…%) indicates reinforcement ratio or range of reinforcement ratios of a series)
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The following three families of deflection-control methods are
examined

(a) two CS methods, which are detailed in standard codes:
ACI 318 and Eurocode 2

(b) one ‘RDS method’, which is included in Eurocode 2
(c) two variants of a ‘RIS method’, which is based on the

work of Rangan, Scanlon and others and termed in this
study ‘methods of Rangan–Scanlon’.

Constant slenderness methods have been shown to be reason-
ably satisfactory for half a century. One of their main assets is
extreme simplicity. In contrast, this study shows their limited
capacity to address changes in some of the main variables that
influence deflection control: load intensity, span and allowable
deflection limits. Some of these shortcomings are implicitly
acknowledged in brief comments in the codes. These limit-
ations of CS methods force each code to take a ‘choice’. Thus,
each code tunes its CS method to particular cases, which are
considered to be more relevant by that particular code. An
example of the ‘choice’ of codes when using the CS method is
demonstrated by the fact that the Eurocode 2 depths for
interior panels of two-way slabs are 31% larger than those of
the ACI. This is because the ACI specifies a constant slender-
ness that is tuned for very short spans (around 6 m) and very
light loads (domestic loads), while Eurocode 2 specifies a slen-
derness value that is tuned for moderate spans (around 8 m)
and moderate loads (around 5 kN/m2).

A first step to improving code provisions could be to replace
vague sentences on the intensity of loads by clear statements
establishing what load or range of loads each provision is valid
for. As a complement, some easy rule could be used to adjust
the set of slenderness values provided in the code to the inten-
sity of loads, such as ‘given an increase of loads of x%, the
slenderness provided should be reduced by y%’. In addition, a
range of spans could be established for the use of the code pro-
visions and, eventually, the constant slenderness (L/h) could be
modified by some expression of the shape h= ct+L/h, where
ct is a constant used to allow the increase of the slope of the
slenderness plot, to adapt it better to the exponential influence
of span. As an example of the possibilities to increase the flexi-
bility of CS methods in the codes, the ACI code shows how
addressing the variation of allowable deflection can be done
by offering two sets of constant slenderness, one for slabs
‘supporting damageable elements,’ and one for slabs ‘not
supporting damageable elements.’

Instead of trying to amend their too simple code provisions by
adding correction factors to CS methods, some codes
(Australian standard and Eurocode 2) are starting to incorpor-
ate methods that consider at the same time a larger number of
factors that influence deflection control. For example,
Eurocode 2 includes a ‘RDS method’ and the Australian
standard uses a ‘RIS method’ that is related to the two

‘methods of Rangan–Scanlon’ discussed in this study. Several
of these more refined methods reviewed in this study show
promising results. These more refined methods (RDS and RIS)
have shown consistent variations in depth that are associated
with variations in span and load.

The ‘RDS method’ ofEurocode 2 has a particularly high sensi-
tivity to the variations in the amount of reinforcement at
midspan. Also, the RDS is revealed to be too sensitive to the
variations in the percentage of moments redistribution. Both
problems cause difficulties in the use of the method in practice.
To address these two problems, the amount of negative
reinforcement could be included in the Eurocode 2 formulas
and the designer should be given sufficient criteria to deter-
mine the amount of reinforcement to use as a function of the
main variables that influence deflection. Finally, the ‘RDS
method’ of Eurocode 2 is only tuned for a certain allowable
deflection and cannot address the changes in this variable. In
conclusion, it is found that this method of the Eurocode still
needs a considerable amount of study to make it useable in
real practice. Moreover, its equations are basically empirical
and are not easy to modify rationally. That is why the authors
of the current study suggest that Eurocode 2 could consider
abandoning the effort of amending this method, and undertake
a change to adopt a more rational ‘RIS method’ derived from
the ‘methods of Rangan–Scanlon’.

The ‘methods of Rangan–Scanlon’ are based on classical
equations for deflection, and are thus supported by decades of
tests and scientific literature. Consequently, they could be
rationally amended to adapt the results of future research on
the formulations of deflection, including for example new
cross-sections, or new reinforcing solutions. Moreover, these
methods are designed to be almost insensitive to the actual
amount of reinforcement in slabs because they address this
variable using a stiffness coefficient α ( = Ie/Ig) that is almost a
constant for most slabs. This approach is very convenient
because the reinforcement ratio is typically an unknown in the
early stages of design. This study has revealed that these
methods provide reasonable depths for variations in the main
variables: span, intensity of load and allowable deflection.
However, the value (or range of values) of the α coefficient to
be used in the ‘methods of Rangan–Scanlon’ are not yet com-
pletely established, and will require additional investigation.
Once appropriate values of α are determined, criteria that
enable a designer to select α as a function of the main variables
that influence deflection will be needed.

6. Recommendations for practice
As a result of this study some recommendations are yielded
that can be used by practitioners.

& In general terms, given that currently it is general practice
to use computers to design structures and deflection
calculations can be easily performed, one of the main
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applications of minimum slenderness provisions in the
codes is to take a depth to start the computer-aided design.
While a code provision recommending an unconservative
depth should easily be detected when deflection is checked
using computers, an excessively conservative depth will not
be detected. For this reason, those code provisions that
have been found to yield excessive depths are those that the
practitioner should consider more seriously in order to
increase the economy and sustainability of future designs.

& Regarding the use of the ACI-318 provisions:
□ For one-way simply supported slabs ‘not supporting

damageable elements’ and for interior panels of two-
way slabs ‘not supporting damageable elements’ the
code provisions for slabs should give economical slabs
that perform well, as long as the slabs are not loaded
beyond 5 kN/m2. For larger loads, it is recommended
not to establish the depth of slabs with the CS method
of the code as a replacement for proper calculation of
deflections. For two-way slabs ‘supporting damageable
elements’ the code provisions were found to be
unconservative even for 5 kN/m2 loads. Proper
calculation of deflections is also recommended in these
cases to establish the depth of slabs.

& Regarding the Eurocode 2 provisions:
□ Despite the fact that the code presents the two methods

(table 7.4.N and equation 7.16.a) as one sole method,
no basis was found to consider these two methods as
two parts of the same method.

□ The constant-slenderness method (table 7.4.N) should
be preferred over the ‘RIS method’ (formula 7.16.a),
given that the latter is found not to be operational
unless the code is modified to give more guidance on
how to use it.

□ When using the CS method for slabs ‘not supporting
damageable elements’, the slenderness for one-way
simply supported slabs may give good results for low
loads (under 5 kN/m2), but for larger loads, proper
deflection calculation should not be avoided.
Contrastingly, for interior panels of two-way slabs, the
code provisions are found to be excessively conservative
for low loads (equal or under 5 kN/m2). They yield
uneconomical and unnecessarily heavy slabs.

□ When using the CS method for interior panels of
two-way slabs ‘supporting damageable elements’,
the code provisions yield excessively conservative
depths for spans under or equal to 8 m and loads
under or equal to 5 kN/m2. These spans and loads are
very common, so large amounts of uneconomical and
not sustainable floors could the outcome of following
this provision. It is recommended in this case to take
slabs at least 30% shallower than the code provision,
and based on that initial assumption compute the
deflections properly. For loads around 10 kN/m2 and
spans under or equal to 8 m, the code provisions can
be used.

& In general, to deal with depths of slabs with loads larger
than those mentioned above, the following approximate
rule can be used: as the load grows 100%, the depth should
grow around 25%.

& Proper deflection calculations using computers are always
recommended in any case.

7. Research significance
Construction of concrete floors is currently one major source
of concrete consumption. The depth of a slab is the key par-
ameter to control the material consumption in the slab and its
weight. Selecting the depth of a slab is a precondition to com-
mence its design and deeply influences its final performance as
well as the volume of material used in its construction.

This paper includes information that may lead to improve-
ments in the current methods used to establish the depth of
slabs in the early phases of the design, to facilitate designing
slabs with the correct depth – not thinner or thicker than
strictly necessary. It is demonstrated how the two main families
of methods included in ACI 318 and Eurocode 2 can be super-
seded by a simple but rational method, termed here the ‘short
method of Rangan–Scanlon’. In contrast with the Eurocode 2
method, it is shown that one key advantage of the method pre-
sented is its independence of the reinforcement ratio of the
slab. It is also demonstrated that, unlike the CS methods of
ACI 318 and Eurocode 2, the rationality of the method pre-
sented allows consideration of a large number of factors that
influence the depth of the slab, including span, load, allowable
deflection, incremental deflection and modulus of elasticity of
the concrete. Despite the potential of the method, the present
paper also suggests that some additional investigation is still
needed before it can be used in general practice.

Appendix
This Appendix presents the general criteria used in calculations
in this study to obtain the depths represented in the plots dis-
played in Figures 1–5.

After the general calculation criteria, the criteria used to deter-
mine the depths of slabs following the method of the ACI, the
method of Eurocode 2 and the ‘long method of Rangan–
Scanlon’ are provided.

A1.1 General criteria for calculations

A1.1.1 Geometric definition

& To convert L to Ln (ACI 318), which is referred to as Leff

in Eurocode 2, the supports are assumed to have a width of
300 mm (11.8 in) (parallel to the span).

& In two-way slabs, spans in each of the two directions are
considered equal. Spans that differed in two directions were
not studied in any case.
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& To relate depth (h) to effective depth (d ), an effective cover
of 30 mm, measured from the centre of gravity of the
reinforcement to the exterior face of the concrete, is
assumed.

A1.1.2 Materials properties

& fck = 30 MPa ( f ′c = 4350 psi) for concrete; fy = 500 MPa
(72.5 ksi) for steel.

& The density of concrete is considered equal to 2548 kg/m3,
which corresponds to a specific weight of 25 kN/m3

(160 lb/ft3).

A1.1.3 Deflection calculation and allowable deflection

& Throughout this study, the term ‘incremental deflection’ is
used for the part of the total deflection that occurs ‘after
attachment of non-structural elements’ to the structure
(after the ACI 318 text).

& The contribution of compression reinforcement is not
considered, which tends to be very low for members with a
low amount of compressed reinforcement, such as slabs.

& To simplify calculations, the amount of reinforcement (ρ)
obtained in all calculations does not consider the actual
diameters of the available reinforcement bars. Considering
a whole number of actual diameters or reinforcement bars
would typically cause rounding up of the amount of
reinforcement of slabs in an uneven way.

& Calculation of the time-dependent deflections assumes that
λ=2.

& To control the deflections of the members that are ‘not
supporting non-structural damageable elements’, the
total deflection is limited to Ln/250 for the Eurocode 2
method (after section 7.4.1 [4]). For the Rangan–Scanlon
methods, table 24.2.2 of the ACI is followed with a
maximum incremental deflection of Ln/240. These two
criteria are not strictly comparable. For example, the
results that are produced by the ‘long method of
Rangan–Scanlon’ have been verified for load case 5.4
(refer to its definition below), and the deflection control
for the Eurocode 2 method is significantly more
demanding than the deflection control for the ACI
method. The Eurocode 2 method requires depths that are
10–20% larger.

& For the deflection control of members that support
‘non-structural damageable elements’, the time-dependent
deflection under sustained loads is limited to Ln/500 for
the Eurocode 2 method (after section 7.4.1[5]), while the
ACI requirements are followed for the Rangan–Scanlon
methods, with a maximum incremental deflection of
Ln/480 (after section 24.2). In this case, almost no
difference exists between the requirements of the two codes.
For example, the results that are produced by the ‘long
method of Rangan–Scanlon’ for load case 5.4 show that,
in all cases, the difference between the depth requirements
of the two codes is less than 3%.

A1.1.4 Description of load cases

& The following load cases are utilised in this study.
(a) Load case 5.4. The total superimposed load

(SDL+LL) is 5 kN/m2 (104 lb/in2), and 40% of the
load (2.00 kN/m2 (41.8 lb/in2)) is a sustained load
(SDL+LLs). This load case corresponds to light
loads with a small proportion of sustained loads,
which is quite common in actual practice. This case is
the most common load case in this study.

SW=25 kN/m3 h (160 lb/ft3 h); SDL=0.71 kN/m2

(14.8 lb/in2); LL=4.29 kN/m2 (89.6 lb/in2) with ψ2 = 0.3
(30% of LL is a sustained load: LLs = 1.29 kN/m2

(26.9 lb/in2)).
(b) Load case 5.8. The total superimposed load

(SDL+LL) is 5 kN/m2 (104 lb/in2), and 80% of this
load (4.00 kN/m2 (83.5 lb/in2)) is a sustained load
(SDL+LLs). This load case corresponds to light
loads with a large proportion (80%) of the sustained
load.

SW=25 kN/m3 h (160 lb/ft3 h); SDL=2.50 kN/m2

(52.2 lb/in2); LL=2.50 kN/m2 (52.2 lb/in2) with ψ2 = 0.6
(60% of LL is a sustained load: LLs = 1.50 kN/m2

(31.3 lb/in2)).
(c) Load case 15.4. The total superimposed load

(SDL+LL) is 15 kN/m2 (313 lb/in2), and 40% of the
load (6.00 kN/m2 (125 lb/in2)) is a sustained load
(SDL+LLs). This load case corresponds to intensive
loads with a low proportion of the sustained load.

SW=25 kN/m3 h (160 lb/ft3 h); SDL=2.13 kN/m2

(44.4 lb/in2); LL=12.87 kN/m2 (269 lb/in2) with ψ2 = 0.3
(30% of LL is a sustained load: LLs = 3.87 kN/m2

(80.8 lb/in2)).

A1.2 Depths according to the ACI 318 method

& The ratios L/n and Ln/n that are used for the slenderness in
the ACI 318 method in this study are not directly provided
in tables of the code because steel grades used in the USA
differ from those in Europe. Thus, small adjustments to the
slenderness values provided by the ACI 318 tables were
necessary. For simply supported slabs, the ACI 318 method
establishes a slenderness of L/20 for G60 steel
( fy = 60 000 psi). For other steels, the slenderness can be
multiplied by (0.4 + fy/100 000) (where fy is in psi). For
two-way slabs on isolated supports, the values in table
8.3.1.1 are interpolated, after footnote [2] of the table.

A1.3 Depths according to the Eurocode 2 method

& In the text of the study only formula 7.16.a is shown, here
named Equation 2, which is to be used for members with a
low reinforcement ratio (ρ≤ ( fck)

1/2/1000= 0.50%, for
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fck = 25 MPa (3625 psi)), such as most common slabs. This
formula is employed in the present study to compute the
depth of most slabs with Eurocode 2 on variants (method
2b and method 2c). For cases with a high ratio
reinforcement (ρ>0.50%), formula 7.16.b of Eurocode 2
has been employed. The results obtained by either of these
formulas have been adjusted, after paragraph 7.4.2,
considering the span and the type of structural member.

& Before the Eurocode 2 method is utilised for variants
method 2b and method 2c, the reinforcement ratio (ρ) must
be determined to use expression 7.16.a (2) or 7.16.b. To
obtain the reinforcement ratio ρ, the geometry of the
slab has to be established. The slenderness that is used to
find ρ has been determined using the ‘long method of
Rangan–Scanlon’.

To compute the cracking moment (Mcr) instead of the
modulus of rupture ( fr), as applied by Scanlon after the ACI
318 standard, the flexural tensile strength of concrete is utilised
following Eurocode 2:

5: fctm;fl ¼ 1:6� hð Þ0:3
ffiffiffiffiffiffi
f 2ck

3
q

� 0:3
ffiffiffiffiffiffi
f 2ck

3
q

with h in mð Þ

A1.4 Depths according to the ‘Long method
of Rangan–Scanlon’

A1.4.1 Criteria relative to computing the reinforcement
ratio (ρ) and the effective moment of inertia (Ie)

& For the ultimate limit state calculations, the coefficients
of security are γc = 1.5 and γs = 1.15; the factored moment
is M*= 1.5Mk; and the span is taken as the clear
span (Ln).

& To compute the cracked moment of inertia (Icr), Ma is
taken equal to Mk. (For additional details, refer to the
following comments about the load history.)

& To determine the reinforcement ratio in slabs, the
typical distribution of the direct method is used to
calculate the stresses in two-way slabs on isolated supports,
which can be divided into equivalent frames. These
reinforcement ratios are only relevant at the support strips
because the method of Rangan–Scanlon only considers the
deflections at these strips. The negative moment is
considered equal to 1.5� (2/3)�M0, where M0 is half of
the total moment of the equivalent frame. For consistency,
the positive moment is considered equal to
1.2� (1/3)�M0.

& The method of Branson (1963) is used to compute the
effective moment of inertia at critical sections (Ie

+, Ie
−).

Bischoff and Scanlon demonstrated that, in general
terms, the Branson expression should only be applied for
heavily reinforced members (ρ>1%) (Bischoff and Scanlon,
2007). However, Scanlon and Bischoff suggested that the

Branson method may be used in combination with the
‘methods of Rangan–Scanlon’ if the tensile strength of
concrete recommended by the authors is employed
(Sanabra Loewe and Scanlon, 2014).16 Following these
recommendations, when using the ‘long method of
Rangan–Scanlon’ in this study – method 4a and method
4b – a constant tensile strength of concrete ( fr), which is
equal to 0.33( f ′c)

1/2, is employed.

A1.4.2 Criteria related to Equation 4 of Scanlon and Lee
for two-way slabs

& The transparency and relative simplicity of the ‘long
method of Rangan–Scanlon’, makes it possible in this
study to introduce minor adjustments to the method,
which was originally proposed by Scanlon in 1999
(Scanlon and Choi, 1999). These adjustments have been
performed to include the advances of Scanlon in his 2006
work (Scanlon and Lee, 2006).

& The modulus of elasticity of concrete Ec is computed
according to the ACI code (4700·( f′c)

1/2 = 23 500 N/mm2

(3408 ksi)), because this value is the value employed
by Scanlon in his studies. Using this value instead
of the value of the Eurocode 2 code produces similar
depths that are slightly larger (never exceeding an extra
5% depth). Using the modulus of elasticity in the
Eurocode 2 code yields slightly higher reinforcement
ratios (ρ) and slightly lower values of the coefficient
of stiffness (α).

& In his studies, Scanlon typically utilises a default load
history in which he assumes that concrete at an early age
is subjected to the most critical loads that it will ever
have to undergo because each slab will have to support the
self-weight of two floors shored on the slab during the
erection of the structure. Although this criterion or similar
ones (Vollum and Hossain, 2002) may be realistic in some
cases, it was not applied in this study because it produces
excessively conservative results.

& In Equation 4, coefficient kSS ( = 1.35) increases the stresses
in the support strips of two-way slabs on isolated supports.
Coefficient kDP (= 1.35) is utilised when dropping capitals
exist (which is not the case in this study). βES is the ratio of
the longer span to the shorter span when spans in the two
directions differ (which is not the case in this study). kAR is
a coefficient complementary to βES, as defined in Scanlon
and Lee (2006). For this study, kAR is taken as equal to 0.6
in all cases.

& The values of the coefficients kSS, kDP and kAR of
Equation 4 are justified in Scanlon and Lee (2006).
Adjustments of these values may be provided by future
studies. However, additional refinement of the values of
these coefficients may have a very limited influence on the
results because these coefficients are cube-rooted in
Equation 4.
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