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Chapter 1
Introduction

The exploration of thermally driven turbulent convection dates back to 1900,
when Bénard [1-3] experimented with very thin layers of fluid sitting on top of a
hot metallic plate. He observed the development of flow motion that organized
itself into a regular pattern of convective cells. Some years later, inspired by
Bénard’s experiment, Rayleigh [4] presented the theoretical analysis of the
convective instability of such fluid layers bounded by two infinite horizontal
planes. The thermally driven flow confined between a hot bottom plate and
a cooler top plate is therefore known as Rayleigh-Bénard convection (RBC).
A variant to this classical setup was considered by Chandrasekhar [5], who
theoretically investigated, quite thoroughly, the stability of the fluid layer in
presence of Coriolis forces [5]. Through linear stability analysis, he provided
explicit expressions for the critical Rayleigh numbers (defined below) necessary
for the onset of convection. The experimental verification of Chandrasekhar’s
predictions was given by Nakagawa & Frenzen [6]. Later studies by Rossby [7]
showed that sufficiently large Rayleigh numbers lead to transitions from near-
onset stable rotating cells to a time-dependent three-dimensional flow and to
turbulence. These studies have shown that the stability of the fluid is mainly
dependent on three parameters: the Rayleigh number Ra that characterises
the strength of the thermal forcing, the Ekman number Ek that measures the
strength of rotation (although Rossby used the Taylor number Ta = Ek~?;
note that small Fk indicates rapid rotation), and the Prandtl number Pr that
parametrises the diffusive properties of the fluid.

Rotating Rayleigh-Bénard convection (RRBC) turns out to be incredibly rel-
evant for the fundamental study of numerous geo- and astrophysical flows and
for many technological applications. Large-scale motions in Earth’s interior,
oceans and atmosphere are primarily driven by temperature-induced buoyancy,
and develop over length scales that are large enough to make them susceptible
to the Earth’s rotation. For example, in the liquid-metal outer core, rotating
convection is believed to be the energy source of its self-sustained dynamo
action [8-11]. Open-ocean deep convection, an integral part of the global ther-
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mohaline circulation, is driven by cold sinking fluid from the air-water surface
of the seas [12-15]. In the atmosphere, the combined effects of buoyancy and
rotation lead to the formation of so-called Hadley cells [16], which are respon-
sible for trade winds near the Earth’s surface. Hadley cells at low latitudes,
Ferrel cells at mid-latitudes and polar cells at high latitudes are the backbone
of the large-scale dynamics of the atmosphere. The effects of rotation and
convection can also be evidenced in the interior and atmosphere of the gaseous
planets in the solar system: Jupiter, Saturn, Uranus and Neptune exhibit deep
convection in their interior [17,18] and zonal flows in their atmosphere [19-22]).
In stars, like our Sun, convective currents of plasma in the convection zone
are also affected by rotation [23-25]. Finally, rotating convection can also be
present in technological applications, such as the convective cooling in rotating
turbomachinery blades [26,27], chemical vapour deposition on rotating heated
substrates [28], and centrifugal gas separation [29,30].

Hence, rotating Rayleigh—Bénard convection offers a relatively simple, but
highly relevant framework to investigate many complex flows in nature and
industry. Because of this, RRBC has been extensively studied by means of
numerical simulations (e.g. Refs. [31-59]), laboratory experiments (see e.g.
Refs. [7,34,35,38,40,43,54,55,60-77]) and theoretical analysis (e.g. Refs. [78—
83]). One of the main goals of many RRBC studies is to approximate the typical
conditions of thermal forcing, rotation and fluid properties of geophysical and
astrophysical settings. These large-scale flows are characterized by extreme
values of the governing parameters, combining very large Rayleigh numbers
Ra > 10" and very small Ekman numbers Ek < 10719; in Table 1.1 we provide
two examples: the Earth’s outer core and Jupiter’s atmosphere. The Prandtl
number can attain quite different values depending on the application: for liquid
metals Pr ~ O(1072), for most gases under normal atmospheric conditions
0.7 < Pr < 0.8, for water at various operating temperatures 3 < Pr < 8, and
for highly viscous liquids Pr may take on even larger values. Table 1.1 also
provides the range of parameters covered by most direct numerical simulations
and by experiments. As we can see, there is a massive separation of several
orders of magnitude between simulation/experimental conditions and large-
scale natural flows.

While geophysical and astrophysical flow conditions are certainly unfeasible
for present-day simulations, in this thesis we investigate RRBC at quite extreme
parameter values compared to those explored in previous studies. We perform
optimised direct numerical simulations at Rayleigh numbers up to Ra ~ 102
and Ekman numbers Ek ~ 10~7. We consider Prandtl number Pr = 0.1,
relevant to liquid metals as in the Earth’s outer core, Pr = 5, that corresponds



Earth’s outer Jupiter’s

Parameter core [84-86] atmosphere [87] Simulations  Experiments
Thermal forcing Ra  ~ 10%° —10%°  ~ 10%* ~10% — 10"  ~10° —10%°
Rotation Ek ~ 107" ~ 107" ~107"—00 ~107%—o00
Fluid properties Pr ~ 1072 —-10"" ~1 ~1072 -10> ~1072-102

Table 1.1.: Comparison of estimated parameters for the Earth’s outer core and Jupiter’s
atmosphere with the most extreme parameter values achieved in numerical simulations and
laboratory experiments of RRBC.

to water that is commonly used in experiments and is applicable to oceanic
processes, and Pr = 100, representative of highly viscous fluids. The parameter
space of RRBC is partitioned into several regimes where the flow manifests as:
steady cells [81], convective Taylor columns (only at Pr 2 2) [33,40,41,63,72,
77,88-91], plumes [33,41,72,88], large-scale vortices [33,41,44-46, 50,58, 92],
rotation-affected convection [50, 70] or non-rotating convection [93-96]. We
explore a wide range of parameter values that allows the observation of most
of these structures. We provide their detailed description in Chapter 4. In this
thesis, we characterise the flow regimes according to their specific force balance
and flow statistics.

Besides large parameter values, another challenge for RRBC simulations is
that under rapid rotation Ekman-type kinetic boundary layers develop at the
no-slip top and bottom wall [97]. These Ekman layers are very thin (character-
istic thickness O(E/?)), which means that the numerical resolution near the
boundaries must be significantly increased in order to resolve these thin layers.
This challenge has inhibited direct numerical simulations of the incompressible
Navier—Stokes equations from an exhaustive analysis of the flow at large rota-
tion rates. Many studies have then adopted an alternative approach where the
flow is simulated in presence of stress-free boundaries, thereby preventing the
flow from “sticking” to the walls, and so hindering the development of Ekman
layers. Another approach consists of studying the flow in the limit of rapid rota-
tion (Ek — 00), such that the specific boundary conditions become irrelevant.
Under these assumptions a set of asymptotically reduced equations can be
derived to describe the rotation-dominated flow. Most of our understanding of
RRBC relies on simulations of these asymptotic equations [33,41,51,59]. Labo-
ratory experiments inherently deal with no-slip boundaries, nevertheless, direct
flow measurements in the boundary layers remain beyond reach for present-day
experiments. This problem is caused by the fact that the Ekman boundary
layer is very thin; of the order of one millimetre in typical water-based experi-
ments (at v ~ 1075 m? s and rotation rate Q ~ 1 rad s™!) regardless of the
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container’s height. Therefore, research on the dynamics of the flow close to no-
slip boundaries has been limited to direct numerical simulations. From these,
we know that kinetic boundary layers in rapidly rotating Rayleigh—Bénard
convection are indeed of Ekman-type, and that they can markedly influence
the bulk dynamics and heat transfer across the fluid layer, unlike those formed
in the non-rotating case [45, 52,63, 64, 88,97, 98]. However, some questions
remain: how does their specific dynamics connect to the above-mentioned bulk
regimes? And, does this dynamics change from one regime to another? In the
interest of shedding light on these matters, most of the numerical simulations
presented in this thesis do employ no-slip walls.

An interesting regime of RRBC manifests when the flow is rotationally
constrained and yet it remains turbulent due to strong thermal forcing. The
resulting dynamics may lead to the development of long-lived, large-scale vor-
tices (LSVs) in the flow [41,44,46,51,92]. A customary decomposition of this
flow consists of a so-called barotropic component that represents the dominant
2D (depth-averaged) dynamics of the flow, and a baroclinic component to de-
note the 3D (depth-dependent) convective motion. These coherent structures
are most clearly observed in the stress-free case, whereas their formation is
inhibited in simulations with no-slip boundaries [45,50,51]. In the latter case,
the premise is that vertical disturbances due to Ekman pumping from the
boundary layers disrupt the development of large scales in the flow. It is be-
lieved that this adverse role of the Ekman layers weakens at very large rotation
rates [41,99,100]. The question is whether the increased rotation can suppress
vertical disturbances to a degree where the condition for LSV formation are
effectively met. Addressing this issue is challenging, because the thermal forc-
ing must then be increased too in order to ensure turbulence. In this thesis we
evaluate the formation of large-scale vortices for our rather extreme suite of
explored parameter values.

Up until now, the effect of lateral boundaries has been mostly ignored. This
configuration is of course appropriate for certain natural phenomena where, for
example, the lateral dimensions of the system are much larger than the vertical,
as in oceans, planetary atmospheres and the solar convection zone. Because
this thesis is inspired by these large-scale geophysical and astrophysical flows,
most of our simulations consider a Cartesian domain with periodic lateral
boundaries. However, this setup is impossible to achieve experimentally. Most
experiments are carried out in cylindrical vessels sitting on a rotating table.
It is therefore paramount to establish connections between experiments on a
confined cylindrical domain and simulations on a laterally unconfined periodic
domain [53,55,56,101]. To bridge this gap, we also perform direct numerical



simulations on a cylindrical domain.

Thesis outline

This work is structured as follows. Chapter 2 introduces the theoretical foun-
dations of rotating Rayleigh—Bénard convection needed for the present inves-
tigation. Chapter 3 presents a brief review of the methodology of the direct
numerical simulations, as well as details on the validation of the numerical
results. A list of the simulation cases explored is included. In Chapter 4 we
analyse the interplay between the forces acting on the fluid in RRBC. We do so
for the various observed flow states, and compare the force balance in the bulk
with that near the no-slip plates. We also present a discussion on the nature
of the transitions among flow regimes. In Chapter 5 we examine the statistical
properties of the bulk and near-wall flow and their transitional behaviours
between flow regimes in laterally unconfined RRBC. In Chapter 6 we focus
on the regime of large-scale vortices, as their formation in presence of no-slip
boundaries is a novel result. We investigate their structure, conditions for de-
velopment, energy transfer properties and near-wall dynamics. In Chapter 7
we study turbulent convection in a confined domain, i.e. in a cylindrical vessel
as in laboratory experiments, where the development of a so-called sidewall
circulation is observed. We characterise its size, dynamics and, especially, its
contribution to the convective heat transfer. We also discuss how this sidewall
circulation interacts with the bulk, and its implications on the development of
bulk structures such as those found in laterally unconfined domains, discussed
in the previous chapters. Finally, in Chapter 8 we provide an overall conclu-
sion to the thesis and an outlook to further research on turbulent rotating
convection.






Chapter 2
Theoretical Background

This chapter provides a brief summary of the theoretical background necessary
for the following chapters. We present the equations of motion of rotating
Rayleigh—Bénard convection, the related dimensionless parameters, and discuss
the effects of rotation on the flow in the fluid bulk and near solid boundaries.

2.1. Preliminary remarks

In this section we set the stage for this chapter, where we motivate the concepts
to be discussed. We start off by deriving the governing equations of RRBC in
Section 2.2. For the task, we first introduce the equations of motion of thermal
convection, then we employ the Oberbeck—Boussinesq approximation, and fi-
nally we derive these equations in a rotating frame of reference. In Section 2.3,
we nondimensionalise the governing equations and present the relevant dimen-
sionless parameters. These parameters dictate the convective state of the flow.
In Section 2.4, we present the critical values of these parameters that lead to
the onset of convection. The response of the system to these convective motions
is measured by the Nusselt number Nu. We introduce this output parameter
in Section 2.5. As mentioned in Chapter 1, planetary-scale flows are greatly
influence by the rotation of the celestial body. As a result, their dynamics is
directed by the so-called geostrophic balance. In Section 2.6, we derive and dis-
cuss this balance as well as the Taylor—Proudman theorem. These concepts are
needed later on in Chapters 4 and 5, where we discuss the rotation-dominated
regimes of RRBC. In these two chapters we also investigate the flow dynamics
close to no-slip top and bottom boundaries, where Ekman-type viscous bound-
ary layers develop. We thus dedicate Section 2.7 to introduce the fundamental
properties of these layers. In this section we also discuss the boundary layers
that develop along the sidewalls in confined domains: the Stewartson boundary
layers. The role of lateral confinement is investigated in Chapter 7. Finally, in
Section 2.8, we address the presence of turbulence in RRBC by introducing
useful definitions of convective turbulence.
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2.2. Equations of motion

In the Rayleigh—Bénard convection setup, a fluid layer between two parallel
horizontal plates is heated from below and cooled from above in order to
induce a buoyancy-driven flow. The incompressible flow of a Newtonian fluid
is described by the Navier—Stokes equations

ou .
p<at+(u-V)u>——Vp+V-T—pgz (2.1)
and temperature by the advection-diffusion equation
T
pCp (%t +u- VT> = kV?T, (2.2)

subject to the incompressibility constraint

V.ou=0. (2.3)

In these equations, p is the density of the fluid, u = (u,v,w) is the fluid
velocity, t is time, p is pressure, 7T is the viscous stress tensor, g is gravitational
acceleration, z is the unit vector in the vertical direction, 7" is temperature, ¢,
is the specific heat at constant pressure, and k is the thermal conductivity of
the fluid. Moreover, the viscous stress tensor for a Newtonian fluid is given by

T =2ue (2.4)

where

€= % (Vu + Vu') (2.5)

is the rate-of-strain tensor and p is the dynamic viscosity of the fluid. Equa-
tions (2.1) to (2.3) express respectively the conservation of momentum, energy
and mass [102].

Oberbeck—Boussinesq approximation

Rayleigh-Bénard convection is often studied in the Oberbeck-Boussinesq (OB)
approximation [103, 104], where fluid properties are assumed constant (i.e.
independent of temperature) and density variations are only important in the
buoyancy term. The assumption is that density differences do not lead to
significant changes in inertia, yet the gravitational acceleration g is sufficiently
strong to drive the convective flow. Furthermore, density variations p’ are
assumed to be linearly dependent on the temperature variations 7" as
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/
Lo ot (2.6)
Po
where « is the thermal expansion coefficient of the fluid. Here, density and
temperature fluctuations are relative to, and much smaller, than their cor-
responding static constant equilibrium values pg and Ty. That is, the total
density is p = po + p’ with p/ < pg, and the total temperature is T'= Ty + T’
with T" < Tp. Similarly, the total pressure can be written as p = pg + p’ with
P < po.

Based on these approximations, the term —Vp — pgz in Eq. (2.1) can be
simply written as —Vp'—p’gz (because Vpy = —ppg2 is the hydrostatic balance)
and the divergence of the viscous stress tensor in Eq. (2.4) is V-1 = puVu
(because p is constant due to the OB approximation). Therefore, dropping the
primes, the set of governing equations are [81]

1
Ou + (- -V)u=——Vp+vViu+gaTz (2.7)
ot Po
or 9

V.u=0 (2.9)

where v = p1/py and £ = k/(cppo) are the kinematic viscosity and thermal
diffusivity of the fluid, respectively.

The OB approximation is reasonably valid for small temperature differences,
such that aT” < 1. In practice, a rule of thumb for their validity, often applied
in convection, is that a AT < 0.2 [105,106], where AT = Thottom — Ttop > 0 is
the temperature difference between bottom and top plates.

Background rotation

Equations (2.7) to (2.9) describe Rayleigh-Bénard convection in an inertial
frame of reference. In a rotating reference frame, like on our Earth, for example,
the equations need to be adjusted. For details of this derivation we refer the
reader to references [107] and [108]. Concretely, the acceleration a = du/dt in
the inertial frame is related to the acceleration in the rotating frame ay by the
expression

a=ap+20 xuy — 0%r, (2.10)

where Q is the constant angular velocity of the rotating coordinate system
and ug the velocity vector in this frame. The position in the rotating frame
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is given by r, and r| denotes its projection on the plane perpendicular to
Q = Q2. The last term, O%r |, can also be written in the form of a gradient as
v (%Q%i) This allows, without loss of generality, to incorporate this term in
the pressure gradient, such that Vp becomes V (p — %QQTi), where the latter
term is commonly referred to as the reduced pressure. Therefore, dropping the
subscripts, the momentum equation that describes rotating Rayleigh-Bénard
convection is

0 1

6—1:+(u-V)u+29xu:——Vp+1/V2u+gozT2 (2.11)
Po

where the Coriolis acceleration is represented by the third term on the left-hand

side.

2.3. Dimensionless parameters

Equations (2.8), (2.9) and (2.11) involve a large number of dimensional quan-
tities: parameters (2, po, v, kK, «, g), dependent variables (u, p, T') and inde-
pendent variables (z, t). A reduction of the parameter space can be attained
through nondimensionalisation. For the task, we normalise length by the do-
main height H (distance between bottom and top walls), velocity by the char-
acteristic velocity scale U, time by H/U, temperature fluctuations by AT and
pressure by poU? (typical for inertia-dominated flows). The result is

ou 20H v goaATH |
oT
Syt V)T = ULHVQT, (2.13)
Vou=0. (2.14)

In RRBC, it is reasonable to assume the leading role of the buoyancy force
by setting goaATH/U? ~ O(1), which leads to a relevant and convenient ve-
locity scale: the so-called “free-fall” convective velocity Uy = /gaATH [109].
This velocity scale serves as an upper bound for buoyancy-generated velocity,
as it evaluates the limit case where all the heating power goes towards fluid
motions [31,110,111]. We now introduce the “traditional” dimensionless pa-
rameters in rotating Rayleigh-Bénard convection: the Rayleigh number, the
Prandtl number and the Rossby number [81]

10
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ATH?
pr=", (2.16)
K
U

respectively. The Rayleigh number measures the strength of the thermal forcing
as the ratio between buoyancy and dissipation, the Prandtl number involves
the diffusive properties of the fluid, and the Rossby number parametrises the
strength of rotation as the ratio between inertial force and Coriolis force. We
immediately see that, in Eq. (2.12),

2QH7L v ﬁ nd Ko 1
U ~Ro UH VR ™" UH ™ VRabr

which yields the desired reduction of the parameter space. That is, the original
number of parameters is reduced to three dimensionless parameters: Ra, Pr
and Ro.

Note that we assumed that the characteristic velocity scale U is equal to the
free-fall convective velocity Ug. Under this assumption, a convective Rossby
number can be defined as

Ro = YIOAT/H (2.18)

2Q

Such that buoyancy is dominant for Roc > 1, whereas Coriolis forces are
stronger for Roc < 1.
Alternatively, the strength of rotation can be parametrised by means of the

Ekman number y

~ 20H?
which provides the ratio of viscous to Coriolis force. A convenient relation
between the various dimensionless parameters is Roc = Ek+/Ra/Pr.

Ek (2.19)

2.4. Parameter values for onset of convection

Rotation, contrary to convection, has a stabilizing effect on the flow. Therefore,
at low values of the Rayleigh number and sufficiently strong rotation (low
Ek and Roc), no convective motions take place, and the heat transfer from
bottom to top boundary is exclusively due to conduction. In an infinite fluid

11
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layer subject to rapid rotation (Ek < 1073), the critical Rayleigh number Ra.
for the onset of convection is given by [74,81]

Ra, = (2.20)

17.4(Ek/Pr)~**  for Pr < 0.68
8.7Ek™*/3 for Pr > 0.68

Passed this threshold, bulk convection starts in the form of oscillatory structures
for Pr < 0.68 and steady cells for Pr 2 0.68. Based on this critical value
we define supercriticality as Ra/Ra., where Ra. takes either definition in
Eq. (2.20) depending on the Prandtl number of a given study case. Our results
are presented as a function of Ra/Ra. throughout this work.

The characteristic horizontal length scale ¢, of the onset structures is given
by [81,112,113]

c =

{2.4 (Ek/Pr)'®  for Pr < 0.68 (2.21)

2.4k for Pr>0.68"

again, valid for an infinite layer of fluid and rapid rotation (Ek < 1073).

2.5. Convective heat transfer

Upon the onset of convection, one of the primary results of many investigations
of Rayleigh—Bénard convection is the convective heat transport from the bot-
tom to the top wall. A convenient way to express this convective heat transport
in dimensionless form consists of scaling the total heat transfer (convection and
conduction) with the heat transfer by conduction alone. This ratio is known
as the Nusselt number

_(9H
Nu= . (2.22)

where (g) is the mean total heat-current density, which is equal to the sum of
the vertical contributions of the mean local convective flux (geonv) = pep(WT) =
(k/k) (wT) and its conductive counterpart (geona) = —k(07'/0%). Therefore,
making velocity, temperature and length dimensionless as above, we arrive at
the fully dimensionless formulation

Dz
In practice, two forms of this equation are very useful for the calculation of
Nu in numerical simulations. The first one considers the estimation of Nu at

Nu = VRaPr (wT) — <8T> : (2.23)
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2.6. Geostrophic flow

the horizontal plates, where convection is zero (because w = 0) and the entire
heat flux is solely provided by conduction:

or

Nu:—<> at z=0,1, (2.24)
02 [ 44

with (-) 4+ indicating averaging over the area of the (bottom or top) plate and

in time. The second form involves the averaging of Eq. (2.23) over the entire

volume, such that the conductive part is —(07/0z)y+ = 1, and thus

Nu =1+ VRaPr(wT)y,. (2.25)

where (-)y; denotes averaging over the entire fluid volume and in time.

In the absence of rotation, the Nusselt number can be related to the thickness
of the thermal boundary layer, dp, which develops near the top/bottom wall.
That is, without rotation, turbulent convection tends to mix the fluid in the
bulk very well. As a consequence, the temperature in this region is constant. In
turn, the temperature drop across the fluid layer, AT, is accomplished almost
entirely within the thermal boundary layers [114,115]. Within these layers, each
one of thickness dy, the transfer of heat is nearly entirely conductive. Therefore,
(@) =~ (geond) = k|AT|/(2d9), where the total heat flux (g) relates to the Nusselt
number Nu through Eq. (2.22). Hence, a very appropriate approximation for
the thermal boundary layer thickness dy is found:

- (2.26)

2.6. Geostrophic flow

The dynamics of large-scale flows in geophysics and astrophysics is predom-
inantly controlled by the Coriolis force and the pressure-gradient force. The
equilibrium between these two forces is known as the geostrophic balance [116].
Thus, regimes of RRBC that exhibit such leading contribution of Coriolis force
and the pressure-gradient force are of particular importance to these natural
flows. In Chapter 4 we investigate, thoroughly, the force balance of the distinct
flow regimes observed in our explored parameter space. In this section, we
discuss the fundamental aspects of geostrophic flows.

We start off by considering the quasi-steady flow of a homogeneous fluid
(i.e. density variation p’ = 0) subject to rapid rotation (i.e. Ro < 1 and
Ek < 1). In such a case, inertial and viscous forces are negligible compared to
the Coriolis force. Several terms in Eq. (2.11) can then be discarded, leading
to the following force balance per component

13
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1 Op
200 =——— 2.2
1 0p
20u = —— 2.28
po Oy (2.28)
1 0p
=_—2£ 2.2
! po 0z (2:29)

The horizontal balance between the Coriolis and pressure-gradient forces es-
tablishes the geostrophic balance [116]. This states that fluid particles move
along isobars, and thus that isobars are streamlines.

Using Egs. (2.27) to (2.29), it can be shown that du/0z = dv/dz = 0.
Furthermore, from Eqs. (2.27) and (2.28), and the incompressibility condition
V -4 =0, it can be shown that dw/0dz = 0. Therefore,

Ou
9 0. (2.30)
This result is known as the Taylor—Proudman theorem [117,118], and states
that the horizontal velocity field has no vertical shear and that all particles on
the same vertical move in concert. It also establishes that the vertical velocity,
too, is independent of height. Thus, if the fluid is limited in the vertical by an
impenetrable boundary, such that the vertical velocity w is zero there, then
w is zero everywhere. As a consequence, the flow is strictly two-dimensional.
In reality, geostrophic flows in nature do exhibit non-zero vertical velocities as
well. The existence of these flows, so called ageostrophic, entails a relaxation
of the idealised Taylor—Proudman constraint.

2.7. Boundary layers

Until now, we have introduced theoretical concepts that pertain solely to the
flow far from any boundaries. Yet, in realistic settings, flows are heavily affected
by the bounding surfaces. In Chapters 4 to 6 we investigate the flow dynamics
near the vertical boundaries, where Ekman layers develop. In Chapter 7 we
study RRBC in a domain with lateral boundaries, where a recently observed
sidewall circulation is established, along with the Stewartson boundary layers.
In this section, we present the fundamental aspects of Ekman and Stewartson
boundary layers.
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2.7. Boundary layers

Ekman boundary layer

We begin by considering the quasi-steady, rapidly rotating flow (Ro < 1) of a
homogeneous fluid (p’ = 0) near a solid wall at z = 0. Here, the angular velocity
vector £ is perpendicular to the wall. In this scenario the velocity is geostrophic
in the bulk, i.e. u = u; at z — oo, but it rapidly reduces tou =0 at z = 0 as
the no-slip condition must be met at the wall. This reduction is carried out by
viscous forces within a thin region adjacent to the wall, the so-called Ekman
boundary layer [97]. It is then assumed that wall-normal derivatives are much
larger than derivatives along the wall [116]. Thus, for example, Ou/0xr < du/0z
and Ov/dy < Ov/0z. Applying these approximations on Eq. (2.11), the near-
wall flow is described by [116]

20 = —plog]; + V?;;QL, (2.31)
2Qu = _plogz + 1/22;2}, (2.32)
0= _plo gz, (2.33)
whereas in the bulk
20, = _/)10?9};;)7 (2.34)
2Quyp, = _Pl()%};b, (2.35)
0= —ploaaib. (2.36)

From Eq. (2.33) we notice that 9(dp/0x)/0z = 0(0p/dz)/0x = 0 (likewise
in the y-direction). This indicates that the horizontal pressure gradient is
independent of z near the wall. The same conclusion can be drawn in the bulk
by means of Eq. (2.36). Therefore, the horizontal pressure gradient near the
wall is actually equal to that in the bulk. The horizontal pressure gradient
is therefore determined entirely by the geostrophic velocity u; far from the
boundary:

1o = 1 9m = 2Qu, and 1o = 19 = —2Quy,
podx  po Ox pody  po Oy
and Egs. (2.31) and (2.32) can now be written as
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2
—2Q0u = —2Quy, + ngz’ (2.37)
62
20 = 2Quy + ua—zg. (2.38)

The exact solutions to Egs. (2.37) and (2.38), that satisfy the boundary
conditions: u =u, at z — oo and u =0 at z =0, are

u = up — [upcos (z/dy,) + vpsin (2/0y)] exp (—2/0y,) , (2.39)
v = + [upsin (z/0y) — vpcos (z/0y)] exp (—z/du) (2.40)

where 6, = /v/Q is a length scale that characterizes the thickness of the
Ekman boundary layer. Note that

Ou 1/2
o ~ Bk / (2.41)
according to Eq. (2.19).

The vertical velocity w can be determined by using Egs. (2.39) and (2.40) in
the incompressibility condition dw/0z = —(0u/0x + dv/dy). After integration
(and noting that u =0 at z = 0), we obtain:

wb;u {1 —exp(—2z/dy) [sin (2/6y) + cos (2/64)]}, (2.42)

where wy, = dvy/0x — duy /0y is the vertical vorticity in the bulk. At z — oo,
where u = uy:

w =

wbéu

5
That is, the Ekman boundary layer is able to actively influence the bulk flow
through vertical motion, which is known as Ekman pumping. For wy, < 0, the
flux is from the bulk into the boundary layer; this is referred to as Ekman
suction. Eq. (2.43) is valid near the bottom wall. Near the top wall, a minus
sign needs to be added in Eq. (2.43).

To illustrate the dynamics of the Ekman boundary layer, let us assume v, = 0
for simplicity, so that Egs. (2.39) and (2.40) become

Wy = (2.43)

u=wuy [l —cos(z/0,)exp(—z/0,)], (2.44)
v = upsin (z/d0y,) exp (—z/dy) . (2.45)
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Figure 2.1.: Vertical profile of the z- and y-component of the flow velocity scaled by the
geostrophic velocity uy, i.e. u/uy and v/uy, respectively. The vertical coordinate z is scaled
by the Ekman-layer thickness 0.,.

Figure 2.1 shows the profiles of the velocity components v and v. Far from the
wall the velocity is equal to the geostrophic velocity, i.e. (u,v) = (up,0), and
so it is entirely in the z-direction. The pressure gradient in the y-direction,
independent of z, is balanced at infinity by the y-component of the Coriolis
force (see Eq. (2.35)). As the wall is approached, friction decreases u, weakening
the Coriolis force. As a consequence, the now unbalanced pressure force in the
y-direction produces a velocity v in that direction, which is reduced by friction
alone. Therefore, in the presence of the wall, the effect of friction is to break
the constraint of exact geostrophic balance (as represented by Eqs. (2.31)
and (2.32)) and produce a flow across the isobars from high to low pressure.
This implies that work is being done on the fluid in the Ekman layer by the
pressure force of the geostrophic flow. This work supplies the necessary energy
to maintain the Ekman layer in the presence of frictional dissipation.

Stewartson boundary layer

In confined domains, the bottom/top Ekman layers can drive a secondary
circulation, of magnitude O(EkY?) (see Eq. (2.41)), which must be somehow
compensated. It turns out that this inward or outward flux is typically balanced
by the boundary layer on the sidewall. Such boundary layers are known as
Stewartson layers [107,119,120].

Consider an upright cylindrical vessel bounded by no-slip walls (simulations
in this geometry are considered much later in Chapter 7). The cylinder height
and diameter are both H. As before, the bulk is geostrophic, and Ekman layers
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Chapter 2. Theoretical Background

are found next to the top and bottom plates. Let us assume that the geostrophic
flow has a negative constant vorticity wp. Because of the Ekman suction, there
is a net O(Ek'/?) radial outward flux found in each of the Ekman layers. These
fluxes flow into the Stewartson layer on the sidewall, which hence must contain
an O(EkY?) vertical flux.

In Refs. [119-121], it is shown that a layer of thickness

S51/a ~ HEKY* (2.46)

can carry the O(Ek'/?) vertical flux and, moreover, match the O(1) bulk flow.
However, this layer cannot subsequently connect to the sidewall where v = 0.
Instead, an additional layer is found within the EkY/4 layer. The extra layer
has a thickness

8513 ~ HEE'Y? (2.47)

from the sidewall. The flows inside these two layers close the circulation set
up by the Ekman layers.

2.8. Convective turbulence

In Section 2.6 we discussed RRBC in the limit of high rotation rates, which led
to a simplified description of the flow where its temporal and spatial variations
were neglected. Nevertheless, large-scale geostrophic flows in nature can exhibit
turbulent behaviour at smaller scales. In this section, we introduce some useful
definitions of convective turbulence.

In rotating Rayleigh-Bénard convection, the flow becomes turbulent when
the temperature difference between the bottom/top plates is sufficiently large.
The energy introduced into the system, in the form of buoyant production, is
transferred to ever smaller length scales up until it is dissipated by viscosity at
the Kolmogorov length scale (defined below). Thus, in equilibrium, a continuous
input of energy is matched by dissipation. The rate of dissipation of kinetic
energy €, and of thermal variance €y are [122], in dimensionless form:

€w = \/Pr/Ra |Vu|? (2.48)

1 2
€p = vT|”, 2.49
’ VPrRa VT ( )

respectively. The corresponding smallest, active length scales for energy and
thermal dissipation are given by the (nondimensionalised) Kolmogorov and
Batchelor length scales [122]
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2.8. Convective turbulence

Pr\%/® 1
nK (Ra) €y ) ( 50)
ng = nxPr—1/2 (2.51)

In direct numerical simulations, as those performed in this study, these length
scales determine the grid resolution. Namely, the grid spacings should be small
enough so that these lengths are still resolved (see Section 3.5).

The local dissipation rates, €, and ¢y, are a function of the vertical posi-
tion (and the radial position, in cylindrical geometries). In particular, near
the boundaries they may attain considerably larger values than in the bulk.
Exact relations for their global (volume-averaged) values can be derived for
(non)rotating Rayleigh-Bénard convection as [123,124]

Nu-—1

(€w)vi = VPria (2.52)
(o) = (2.53)
0) Vi \/m .

where (-)v, as before, denotes averaging over the entire fluid volume and in
time.

Equations (2.52) and (2.53) provide two estimates for the convective heat
transport Nu, which can be compared to those given by Egs. (2.24) and (2.25).
The agreement of these estimates provides further validation of the accuracy
of the simulations, as it is discussed in Section 3.5.
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Chapter 3
Numerical methods

In this chapter we introduce the numerical methodology used in this thesis. First,
we present the governing equations of rotating Rayleigh—Bénard convection in
dimensionless form, which are solved by means of direct numerical simulations.
We motivate the use of three codes for the simulations: a single-grid Carte-
sian code, a multiple-grid Cartesian code, and a (single-grid) cylinder code. A
detailed description of these codes, as well as details on their performance, is
provided. We then discuss the domain aspect-ratio, boundary conditions and
wnitial conditions, and describe the validation process of the numerical results.
In the last section, we present a complete list of the explored simulation cases.

3.1. Direct numerical simulations

The set of equations of motion, in dimensionless form, to be solved numerically
are

ou 1 B Pr_, .
E—I—(U-V)u—i—ROczxu——Vp—l—\/EV u+ Tz, (3.1)
orT 1
— 4 (u- V)T = ——V?T, 3.2
ot ( ) RaPr (3:2)

V.u=0. (3.3)

where the parameters Ra, Pr and Rog are given by Eqgs. (2.15), (2.16) and (2.18),
respectively. The direct numerical simulations (DNSs) are performed using
three codes, all of them based on the principal setup of the Verzicco code [125,
126], well-known in the convection community. Two of them solve Egs. (3.1)
to (3.3) in a Cartesian domain with periodic lateral boundaries. This setup is
relevant to natural settings where the horizontal dimensions are much larger
than the vertical. The last code simulates the flow confined in a cylinder. This
geometry is widely used in laboratory experiments of rotating Rayleigh—Bénard
convection.
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The difference between the two Cartesian codes lies in their approach to
resolve the temperature field: one of them resolves both velocity and tempera-
ture on a single grid, whereas the other resolves velocity on a coarse grid and
temperature on a finer grid. This distinction is closely related to the diffusive
properties of the fluid, parametrised by the Prandtl number. More specifically,
Egs. (2.50) and (2.51) provide the smallest active length scales for velocity and
temperature fluctuations, i.e. the Kolmogorov length scale nx and the Batch-
elor length scale np, respectively. Equation (2.51) reveals that ng < np for
fluids with low Prandtl number Pr < 1, whereas np is smaller for high Pr > 1.
In other words, fluids with relatively lower momentum diffusion (i.e. v < k)
exhibit smaller flow features, whilst relatively larger momentum diffusion in-
stead leads to smaller temperature features. The latter property is exploited by
the multiple-grid code mentioned above, which uses a fine grid to resolve the
smaller temperature features, and a coarser grid to resolve the velocity field
(i.e. all three velocity components). In conclusion, we use the single-grid code
to simulate low-Pr fluid flows, and the multiple-grid code for cases at high Pr;
both of them, again, for a Cartesian geometry with periodic lateral boundaries.

3.2. DNS codes

Single-grid Cartesian code

For cases at low Prandtl number (Pr < 1), we use a version of the original
Verzicco cylinder convection code [125,127] adapted to a Cartesian domain.
Most of the numerical approaches remain the same. Equations (3.1) to (3.3)
are discretised by second-order finite-differences on a staggered grid. For the
time advancement of the discretized system, the time-step size is computed
dynamically by maintaining the stability limit CFL < /3, required by the
third-order Runge-Kutta scheme. The non-linear terms are treated explicitly
in time, and the viscous/diffusive terms implicitly. The Poisson equation for
pressure is solved with a 2D Fast Fourier Transform in the periodic directions
and a direct tridiagonal solver in the vertical direction.

Multiple-grid Cartesian code

For simulation cases at high Prandtl number (Pr > 1), we use the same
code described before with an extension, the multiple-grid strategy detailed
in Ref. [126]. The numerical scheme stays the same, but now the temperature
field is evaluated on a grid with high spatial resolution, whilst the velocity
field is resolved on a coarser grid. In this way, the unnecessary computational
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overhead produced by integrating both fields on a single grid tailored to the
most demanding variable is avoided. In particular, the multiple-grid Cartesian
code allows to refine the grid for temperature in the z-, y- and z-direction
independently, through the refinement factors m;, m, and m.. In this research
we consider Cartesian domains with lateral sides of equal length, thus m, = m,.
The refinement factors for temperature, relative to the grid for velocity, can then
be selected based on the reference value provided by the ratio nx /np = Pri/?
(see Eq. (2.51)) and making sure to allocate an appropriate number of grid
points within the thermal boundary layers (discussed in detail in Section 3.5).
A multiple resolution strategy is also used in the time integration in order to
maintain the stability of the temperature field on the finer grid. The optimal
refinement factor for time coincides with max(mg, my, m.). The multiple-grid
method becomes more advantageous as the thermal diffusivity x decreases with
respect to the kinematic viscosity v, therefore it is particularly well suited for
high- Pr fluid flows (see Eq. (2.16)).

Cylinder code

The cylinder code is an updated version of the original Verzicco code [125] with
extensions for better parallel performance. The finite-difference discretisation
of the governing equations is done in cylindrical coordinates as further detailed
in [125,127]. This numerical setup is aimed to replicate the conditions of the
laboratory experiment TROCONVEX [76,128]. The comparison of simulation
results with those from the experimental setup are presented in Chapter 7.

3.3. Performance

The simulations are performed on the Dutch national supercomputer: Cartesius,
which consists of 47,776 Intel® Xeon® CPU cores (processor frequency of 2.4-
2.6 GHz) [129]. To determine the optimum number of CPU cores to use per
run, we evaluate the real-time performance (iterations per minute) and CPU-
time performance (iterations per CPU-hour) of the codes as a function of
the number of cores. The results of this performance assessment are shown
in Fig. 3.1. We use 384 cores (or 16 so-called thin nodes) on Cartesius for
simulations using the single-grid Cartesian code, 192 cores (or 6 so-called fat
nodes) for cases using the multiple-grid Cartesian code, and 192 cores (or 8
thin nodes) for cases using the cylinder code. It can be observed in Fig. 3.1
that these numbers of CPU cores provide an appropriate trade-off between
real-time and CPU-time performance. For reference, the example case shown
in Fig. 3.1(a), which, recall, is carried out at low Pr (specifically at Pr = 0.1),
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Figure 3.1.: Real-time performance (iterations per minute) and CPU-time performance
(iterations per CPU-hour) of the numerical codes as a function of the numbers of CPU cores.
The tests are carried out using (a) the single-grid Cartesian code with 640 x 640 x 1280 grid
points, (b) the multiple-grid Cartesian code with 384 x 384 x 768 grid points for velocity and
refinement factor of 2 (i.e. 768 x 768 x 1536 points) for temperature (refinement factor for
time is also 2), and (c) the cylinder code with 769 x 351 x 1025 grid points in the azimuthal,
radial and vertical direction.

requires about 430,000 CPU-hours to simulate the flow over 500 convective
time units (approximately 600,000 iterations). This is about 1.5 months on
384 CPU cores. This low-Pr case is amongst the ones with lowest resolution
(see Table 3.1 at the end of the chapter for a complete list of the simulation cases
at Pr = 0.1). In general, the computational resources for one of our simulation
cases ranges between 150,000 and 650,000 CPU-hours to be completed.

3.4. Numerical setup, transient state and statistical
equilibrium

For all simulations the domain aspect ratio I' = W/H is selected to permit a
sufficiently large sampling of convective structures, whose characteristic length
scale £, is given by Eq. (2.21). This procedure ensures the convergence of
spatially averaged statistics. At low Pr, we use domains of size 10/, x 10, x 1
(normalised by the domain height H). As discussed in Sections 3.1 and 3.2,
the multiple-grid strategy allows to simulate high-Pr fluid flows much more
efficiently compared to the single-grid Cartesian code. This facilitates the
exploration of wider domains of size 20¢, x 20f. x 1 at high Pr. Equivalent
low- Pr simulations using the single-grid code would demand four times more
computational resources than in their current setup. For instance, the case in
Fig. 3.1(a) would require a minimum of 1.7 million CPU-hours to be completed
instead of 430,000 (i.e. a minimum of 6 months instead of 1.5 months on 384
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cores). Whilst such expensive lasting runs are certainly possible, we divert
our limited computational resources (~ 8 million CPU-hours per year) to
the exploration of a wider range of parameter values. Finally, in a cylindrical
geometry, I' = D/H, where D is the diameter of the cylinder. The simulations in
this geometry are aimed to replicate the operating conditions of the laboratory
experiment TROCONVEX in our group, for which I' = 0.2. We thus use this
aspect ratio instead of I' = 20/, = 0.224 (at Fk = 1077).

At the top and bottom walls of both Cartesian and cylindrical domains, we
consider the following impenetrable, no-slip boundary conditions:

u=0at z=0,1. (3.4)

Nonetheless, for comparison, we do simulate some selected Cartesian cases with
stress-free boundary conditions

ou v

0z 0Oz
On the other hand, for all cases (no-slip and stress-free), we consider the
constant-temperature boundary conditions

=0andw=0atz=0,1. (3.5)

T=1latz=0andT=0at z=1. (3.6)
For simulations in a cylinder, the sidewalls are also no-slip, and adiabatic:

gT = 0 at the sidewalls, (3.7)
,

where r represents the radial coordinate in the cylinder.

The simulations are started either from the fluid at rest (and a linearly
unstable temperature profile perturbed by small-amplitude random noise) or
from an already developed turbulent flow from a previous simulation. In either
case, the flow exhibits an initial transient state, albeit shorter when the latter
approach is used, allowing savings in computation time. Figure 3.2 shows an
example where the fluid is started at rest. Figure 3.2(a) plots the root-mean-
square (RMS) of all three velocity components as a function of time, where, for
instance, upys = v/ (u?)y with (-)y denoting volume averaging; a similar pro-
cedure yields vgys and wgrys. Figure 3.2(b) shows the convective heat transfer
measured through five different methods (discussed in Section 3.5 in detail)
also as a function of time. From the initial stagnant state, the system takes a
few time units before convection starts. Once the flow is established, a large
overshoot peak is observed. In the following time units, the system describes a

25



Chapter 3. Numerical methods

period of adjustment where the distinct measurements start to converge, statis-
tically, towards a common value. Notice that the time advancement is carried
out with respect to the convective time unit 74 = H/Ug. As the system evolves
in time, the velocity fluctuations and heat transport converge to a statistical
equilibrium state, at approximately 100 convective time units in Figs. 3.2(a)
and 3.2(b). From this point on, the time averaging of several physically relevant
quantities starts. The flow is simulated for long enough to ensure statistical
converge of these quantities. It is observed (in the literature and in our re-
search) that relevant statistical quantities (such as mean, variance, skewness
and kurtosis of several physical quantities) converge over simulation times of
the order of 10% convective time units. The quality of the convergence of the
heat transport measurements, for example, is discussed in the next section.
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Figure 3.2.: (a) Root-mean-square of all velocity components and (b) heat transport mea-
surements through five different methods (discussed in Section 3.5) as a function of time. The
initial transient behaviour displayed by the time series converges to a statistically stationary
state after approximately 100 convective time units. The data is shown for a case at Pr = 0.1,
Ra = 10'° and Roc = 0.253, nonetheless similar curves are observed for the rest of the
simulation cases.

3.5. Validation

The Cartesian codes described above in Section 3.2 consider a grid with uniform
horizontal spacing and non-uniform vertical distribution. In this way, a larger
density of grid points can be attained near the walls in order to resolve the
thin boundary layers. We verify, a posteriori, that a minimum of 11 grid points
is allocated within the thinner (Ekman or thermal) boundary layer, which is
enough to appropriately resolve it.

To validate the bulk resolution, we compare the grid spacing with the Kol-
mogorov and Batchelor length scales, nx and ng. The range of scales that need
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to be accurately represented is dictated by the physics. In turbulent flows, it
is well-known that reliable statistics are achieved for resolutions of the order
of Mk, as they accurately capture most of the energy dissipation [130, 131].
We estimate height-dependent values of ng and np by computing the time-
and plane-average of the energy dissipation rate €, (given by Eq. (2.48)) and
employing Egs. (2.50) and (2.51), respectively. We find that for low-Pr runs
the bulk resolution is Az, /nx < 3 and Azg/np < 1, where Az, and Azy are
the vertical grid spacing for the velocity and temperature field, respectively.
For simulations at high Pr, we find Az,/nx < 3 and Azg/np < 3.7. For all
cases the horizontal grid spacing is smaller than the vertical one.

In the cylinder code the points are evenly spaced along the azimuthal di-
rection. In the radial and axial directions the grids become finer near the
sidewalls, more so in the axial direction given that the Ekman boundary layers
forming near bottom and top plates are significantly thinner than the sidewall
boundary layer. We find that there are 15 grid points within the Ekman layers.
For the bulk resolution we find that Az, /nx < 3.5 and Azyp/np < 4. We see
that the largest grid-point separation never exceeds four times the local npg, as
deemed adequate in [127], but for the largest- Ra simulation where the maximal
grid-point separation always remains below five times the local np.

The time-step size for the time integration is also subject to physical con-
straints. It can be shown that at Roc < 1 (and at any Pr), the shortest time
scale is the rotational time scale 7q = 1/(2€2). We must therefore ensure that
Tq = RocTg is resolved. We do so by setting the maximum time-step size to be
smaller than Roc. For runs where Roc > 1, the smallest time scale is 7, which
is immediately resolved as this is the time unit over which the time integration
of the governing equations is carried out.

To further confirm the adequacy of the grid, we compute the time-averaged
convective heat transfer Nu in five different ways:

e Two of the them at the walls: as the plane-averaged wall-normal temper-
ature gradient at the bottom and at the top wall, given by Eq. (2.24).

e As the volume-averaged convective flux, as in Eq. (2.25).

e And the last two from the dissipation rates of kinetic energy, as in
Eq. (2.52), and of thermal variance, as in Eq. (2.53) [123].

These estimates are susceptible to insufficient resolution. Specifically, the Nus-
selt numbers calculated near the walls are susceptible to under-resolution of
the boundary layers, whereas Nu computed using velocity and temperature
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gradients (as in the last two methods) are greatly affected by inadequate res-
olution of the velocity and temperature field, respectively. For most of our
cases (about two-thirds of them) the maximum difference between a given Nu
and the mean of all Nu’s converges to better than 2% (see, e.g., Fig. 3.3), the
others converge to better than 5%. The relatively larger discrepancy is caused
by slow convergence of the heat transfer measurements. Two causes for this
are identified. First, for near-onset cases the flow is quasi steady, and thus its
time evolution is rather slow. Specifically, the Nusselt number measurements
converge for simulation times of the order of 10 convective time units, instead
of 102 as seen for the turbulent case in Fig. 3.3. Second, for turbulent flows
the increased temporal- and spatial-resolution requirements lead to very de-
manding computations. The statistical equilibrium state of these cases is then
simulated for about 100 convective times units, which requires about 600,000
CPU-hours. We refer the reader to the discussion presented in Section 3.3.

Finally, our results in cylindrical domains are moreover validated by the
excellent agreement with the experimental measurements. We present these
results in Chapter 7.

= Volume average
= Wall low

65 Wall high J
= Viscous dissipation
= Thermal dissipation

Cumulative moving average of Nu

100 150 200 250 300
Convective time

Figure 3.3.: Cumulative moving average of the various Nusselt numbers in Fig. 3.2(b). The
averaging is done in the statistically stationary state, i.e. for times larger than 100 convective
time units. The horizontal dashed lines serve as a reference of £2% of the average of all
Nusselt numbers.
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3.6. Summary of simulation cases

Our RRBC survey spans over a wide range of parameter values that jointly
resolve over three decades of supercriticality Ra/Ra.. This allows us to identify
distinct flow states: from quasi-steady cellular convection to more turbulent
states. Specifically, we identify rotating convection regimes displaying cells (C),
convective Taylor columns (T), plumes (P), large-scale vortices (LSVs) and
rotation-affected (RA) convection. These flow structures will be described in
more detail in Chapter 5. A complete list of the cases investigated can be found
in Table 3.1 for simulations in a horizontally periodic layer, and in Table 3.2
for cases confined in a cylinder. The tables also list the domain aspect ratio,
numerical resolution and flow type.
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Pr FEk Ra Roc Ra/Ra. T N, N, mge m, Flow
0.1 2.00x10-7 1.00x 10 0.063 14.48 0.302 1024 1408 - - LSV
0.1 224x10°7 1.00x 109 0.071 16.84 0.314 1024 1408 - - LSV
0.1 250x10~7 1.00x 1019 0.079 19.50 0.326 768 1280 - - LSV*
0.1 3.00x10~7 1.00x 1019 0.095 24.87 0.346 768 1280 - - LSV
0.1 4.00x10~7 1.00x 1019 0.126 36.49 0.381 640 1280 - - LSV
0.1 8.00x10~7 1.00x 1010 0.253 91.95 0.480 640 1280 - - RA
0.1 1.05x107% 1.00x 1010 0.332 132.14 0.526 768 1280 - - RA
0.1 2.80x10=% 1.00x 100 0.885 488.65 0.729 1088 1280 - - RA
0.1 6.00x10=% 1.00x 100 1.897 1349.95 0.940 1408 1280 - - RA
55 3.00x10°7 5.50x10° 0.009 1.27 0.323 256 640 2 1 C
5.5 3.00x 10”7 8.00x 109 0.011 1.85 0.323 256 640 2 1 ¢
55 3.00x 107 1.00 x 1019 0.013 2.31 0.323 384 640 2 1 T
55 3.00x10~7 1.50x 1019 0.016 3.46 0.323 384 640 2 1 T
55 3.00x 1077 2.00x 1019 0.018 4.62 0.323 384 640 2 1 T
52 1.00 x 107 1.40 x 10'* 0.016 7.47 0.224 384 640 2 2 p*
52 1.00 x 107 2.10 x 101*  0.020 11.20 0.224 384 640 2 2 P
52 1.00 x 107 3.20 x 101* 0.025 17.07 0.224 512 640 2 2 p*
52 1.00x 107 6.00 x 1011 0.034 32.01 0.224 512 640 2 2 pl
52 1.00x 107 9.50 x 101! 0.043 50.68 0.224 640 896 2 2 LSV
52 1.00 x 107 1.50 x 1012 0.054 80.03 0.224 768 1024 2 2 LSV
100 3.00 x 10-7 1.30 x 10'*  0.011 30.01 0.323 384 512 3 3 P
100 3.00 x 10~7 2.10 x 1011 0.014 48.48 0.323 384 512 3 3 P
100 3.00 x 10~7 3.40 x 1011 0.017 78.49 0.323 512 512 3 3 P
100 3.00 x 10-7  6.00 x 10 0.023 138.50 0.323 512 768 3 3 P
100 3.00 x 10~7  9.50 x 101 0.029 219.30 0.323 512 768 3 3 P
100 3.00 x 10~7 1.50 x 1012 0.037 346.26 0.323 512 768 3 3 P
100 3.00 x 10-7 2.50 x 10’2 0.047 577.10 0.323 384 768 4 4 P

*Also independently simulated with stress-free boundaries.

JrEven though there is evidence of upscale energy transfer, no LSVs develop.

Table 3.1.: Parameters for the simulations: Prandt] number Pr, Ekman number Ek, Rayleigh
number Ra, convective Rossby number Roc and supercriticality Ra/Ra.. The slight difference
in Pr between the Pr ~ 5 simulation series is for comparison with (ongoing) experiments in
our group [76,128]. Also included, the domain aspect-ratio I, number of grid points N, Ny, =
N, and N, used to resolve the velocity field, and refinement factors ms, my = mg, and m,
used for temperature. For instance, at Pr = 100, Ek = 3x 10~ and Ra = 2.5 x 10'2, a coarse
grid with 384 x 384 x 768 points resolves velocity, whereas a finer grid with 1536 x 1536 x 3072 is
used for temperature. The last column indicates the flow morphology in each case: convective
cells (C), convective Taylor columns (T), plumes (P), large-scale vortices (LSVs) or rotation-
affected convection (RA). All cases are simulated with no-slip top/bottom boundaries. Some
cases, denoted with the superscript “k”, are also independently simulated with stress-free
boundaries.
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Pr FEk Ra Rog Ra/Rac. T Ng X Ny X N,

5.2 1.00x 107 5.00 x 10'° 0.010 2.67 0.200 769 x 351 x 1025
5.2 1.00x 10~7 7.00 x 10'° 0.012 3.73 0.200 769 x 351 x 1025
5.2 1.00x 107 1.40 x 101 0.016 7.47 0.200 769 x 351 x 1025

52 1.00x 107 3.20 x 1011 0.025 17.07 0.200 769 x 351 x 1025
52 1.00x 107 4.30 x 1011 0.029 22.94 0.200 769 x 351 x 1025

Table 3.2.: Parameters for simulations in cylindrical domains: Pr, Ek, Ra,Roc, Ra/Ra. and
I' are as in Table 3.1. The last column displays the number of grid points Ny, N, and N in
the azimuthal, radial and vertical direction, respectively.
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Chapter 4
Force balances

In this chapter we investigate the interplay between the governing forces of
RRBC as a function of the supercriticality Ra/Ra. of the flow. We analyse
the force balance, and changes therein between flow regimes, in the bulk and
near the no-slip walls. We find that geostrophy is indeed the primary force
balance in the so-called geostrophic regime, but that this rotational constraint
is lost at larger values of Ra/Ra.. As a result, the flow displays a transition
to a rotation-affected state of convection. Near the no-slip walls, the flow is
also found to be dominated by geostrophy in the geostrophic regime. Although,
remarkably, inertia becomes increasingly more important near the boundaries
compared to the bulk.

4.1. Introduction

In Chapter 1 (also in Tables 3.1 and 3.2) we anticipated the observation of
several different flow states for the explored parameter values. In general, the
parameter space can be divided into three main regimes: “rotation-dominated”,
“rotation-affected” and “non-rotating” regime. As their names suggest, the
partition is based on the importance of rotational forces in the flow dynamics.
In particular, in the rotation-dominated regime, Coriolis forces exert a dominant
role on the flow, that is primarily balanced by pressure-gradient forces. As
a result, the flow is prominently geostrophic [33, 41,51, 132]. This regime,
which is therefore also known as the “geostrophic” regime, can be moreover
subdivided into several other regimes. They display cells, convective Taylor
columns, plumes and geostrophic turbulence (where large-scale vortices may
develop). In Fig. 4.1 we present visualisations of the temperature fluctuations in
these regimes (from Ref. [45]). The cellular regime (in Fig. 4.1(a)) is typically
found in the range 1 < Ra/Ra. < 2 and consists of quasi-steady cells
with horizontal size £. given by Eq. (2.21) [81]. Convective Taylor columns
(Fig. 4.1(b)) manifest at larger values of Ra/Ra., and consist of vortical columns
surrounded by “shields” of opposite vertical vorticity and opposite temperature
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(a)

=
<0.0075 0 0.0075

Figure 4.1.: Temperature fluctuations in direct numerical simulations at Ek = 1077 with
no-slip boundary conditions. (a) Cells at Ra/Ra. ~ 1.1 and Pr = 1, (b) convective Taylor
columns at Ra/Ra. ~ 2.9 and Pr =7, (c) plumes at Ra/Ra. ~ 8 and Pr =7, (d) geostrophic
turbulence at Ra/Ra. =~ 10.3 and Pr = 1. The domains are stretched horizontally by a factor
of 4.5 for better visibility. Source: [45].

(stronger near the walls) [33,40,41,63,72,77,88-91]. With increasing Ra/Rac,
the shields are weaker and the vortical columns interact with each other. As
a consequence, their vertical coherence is affected, leading to the development
of plumes (Fig. 4.1(c)) [33,41,72,88]. In the geostrophic turbulence regime
(Fig. 4.1(d)), the flow becomes turbulent, albeit it does remain rotationally
constrained. The combination leads to a quasi-two-dimensional dynamics that
enables the transfer of kinetic energy from small to large spatial scales. This
upscale energy transfer can lead to the development of large-scale vortices
(LSVs) in the flow [33,41,44-46,50,58,92]. We will discuss several aspects of
this phenomenon in Chapter 6.

To identify flow regimes in our simulation cases we consider the force bal-
ance of the flow (to be discussed in Section 4.3) and its statistical properties
(addressed in Chapter 5). In our set of simulations at Pr ~ 5, we also observe
the regimes of cells, convective Taylor columns, plumes and large-scale vortices.
We present visualisations of the temperature fluctuations in these regimes in
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Figs. 4.2(a) to 4.2(d), respectively. The large-scale vortices in Fig. 4.2(d) are
better visualised in terms of the horizontal kinetic energy of the flow, as we
show in Fig. 6.3(c). All of our simulation cases at Pr = 100 lie within the
plumes regime; we show two example cases in Figs. 4.2(e) and 4.2(f). For the
exploration of highly supercritical regimes we make use of a lower Prandt]l num-
ber, Pr = 0.1. The reason is that sufficiently small values of Pr (i.e. smaller
than 0.68, see Eq. (2.20)) act to decrease the critical Rayleigh number for onset
of convection Ra.. Thus, for a given value of Ra and Ek, low-Pr fluid flows
can achieve a larger degree of supercriticality than those at high Pr. In other
words, inertial effects are amplified in low-Pr fluids [41,74]. At Pr = 0.1 we also
observe large-scale vortices and, at larger Ra/Ra., we identify rotation-affected
convection; see Figs. 4.2(g) and 4.2(h), respectively. Just like at Pr ~ 5, LSVs
are more clearly visualised in terms of the horizontal kinetic energy of the flow;
we show this in Fig. 6.3(a). In the rotation-affected regime, rotation no longer
exerts a dominant role, and thus convection becomes more three-dimensional.
In the particular case displayed in Fig. 4.2(h), the large parcel of hot fluid (red
patch at the top) and large parcel of cold fluid (blue patch) resemble a large
overturning cell similar to that observed in non-rotating convection. However,
the magnitude of the Coriolis force is still appreciable as we shall discuss in
Section 4.3. Finally, in order to discuss the observed flow regimes with increas-
ing supercriticality, we present our results starting from simulations at Pr ~ 5
and 100, and then at Pr = 0.1.

Numerous investigations on the interplay amongst the forces governing
RRBC are primarily focussed on the determination of the relevant forces in
geophysical and astrophysical settings. These studies aim to determine the
dominant force balance of the large-scale flows in order to estimate the charac-
teristic flow velocity and length scale of convection [42,133-139]. However, the
role of subdominant forces has not been addressed extensively. In particular,
a complete view of the interplay between all forces is required to effectively
characterise the flow and the transitions between regimes. In this chapter, we
focus on fully understanding the force balance, from the leading contributors
to the subdominant forces. Previous efforts have been made in this direction
in the field of rotating magneto-convection [140-145]. Self-sustained convective
dynamos in planetary systems operate in a rotationally constrained regime.
There, a balance is thought to hold between the Coriolis, pressure-gradient,
buoyancy and Lorentz forces, also known as magneto-Archimedean-Coriolis
(MAC) balance. Hence, many studies seck to determine the specific parameter
values and length scales at which the contribution of viscous and inertial forces
becomes negligible, and therefore a MAC balance is possible. In our simulations
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4.2. Magnitudes of the governing forces

of non-magnetic, rotating convection in a horizontal plane fluid layer, we access
both low-supercriticality flow regimes, where viscous effects are expected to
be significant, and highly-supercritical regimes, where we foresee an increased
importance of inertial forces. Similar low- and high-supercriticality RRBC
flows have been studied by means of asymptotically reduced equations [33,41,
51,59], valid at Ek, Ro — 0. In these studies the geostrophic regime (where
cells, columns, plumes and large-scale vortices manifest) is charted. Here, we
assess the force balance of the full Navier—-Stokes equations in the geostrophic
regime, but also at larger Ra/Ra. beyond this regime. A particular aspect
of the asymptotic studies is the intrinsic consideration of stress-free top and
bottom boundaries. Here, we consider the case of no-slip walls. This type of
boundary condition is specially relevant to realistic settings such as laboratory
experiments and large-scale flows in nature. Yet we do consider some stress-free
cases for comparison (simulation cases denoted with the superscript “x” in
Table 3.1).

This chapter is structured as follows. In Section 4.2 we briefly introduce the
equations used to calculate the magnitude of the governing forces. In Section 4.3
we discuss the estimated values of the forces at mid-height plotted as a function
of the supercriticality Ra/Ra.. Moreover, we identify the characteristic force
balance of the distinct flow regimes. In Section 4.4 we investigate the interplay
amongst the forces close to the walls, where the no-slip boundary condition is
imposed. Finally, in Section 4.5 we present our conclusions.

4.2. Magnitudes of the governing forces

We begin our analysis by explicitly calculating the various forces governing
rotating convection. From Eq. (3.1), in dimensionless form, the inertial, Coriolis,
pressure-gradient, viscous, and buoyancy forces are

F;=(u-V)u, (4.1)
1
Fo= Z X 4.2
C = Roa? X (4.2)
Pr
Fy =/ —V?u, 4.4
v = v (1.4
Fp=Tz, (4.5)
respectively. Thus, the geostrophic balance Roc~'2 x u = —Vp, discussed in
Section 2.6, can be written as F'¢ = —F p. Concretely, we compare the plane-
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averaged root-mean-square (RMS) value of these forces. That is, for a given
force F(z) with z-, y- and z-components F,(z), F,(z) and F(z), the RMS
value is here defined as

F(z) = \/ ((Fe = (F)) + (Fy = (R + (F. = (R.))°),  (46)

where (-) denotes averaging along the horizontal directions and, therefore, F' is
a function of the vertical coordinate z only. In practice, the force components
are calculated at each grid position on a horizontal cross-section. For that, we
consider one single-time volume snapshot well within the statistically stationary
state; for other snapshots within this state the results agree within 5% in
average. The underlying consideration behind the plane-averaging process
is that the flow is statistically homogeneous in the horizontal directions. In
other words, it is assumed that the average flow dynamics does not depend
on the horizontal coordinate. This is a valid assumption in our horizontally
periodic domains. Hence, we are able to evaluate the spatial dependence of
the force balance solely in terms of the vertical coordinate. Note that we use
the deviations from the mean force components, e.g. F, — (F,), in order to
disregard the underlying mean vertical profiles of pressure and temperature

({p) (z) and (T') (2); e.g., see Fig. 5.1(a)).

4.3. Force balance in the bulk

In Figs. 4.3(a), 4.3(c) and 4.3(¢) we plot the magnitudes of the governing forces
as a function of Ra/Ra.. The plots correspond to our results from simulations
at Prandtl numbers Pr =~ 5, 100 and 0.1, respectively. The forces are calcu-
lated at half the domain height; we find that these results are representative
of the bulk dynamics. Figure 4.3(a) shows the forces at Pr ~ 5, where we
observe cells (C), convective Taylor columns (T), plumes (P) and large-scale
vortices (LSVs). The figure shows that in these regimes not only the Coriolis
and pressure-gradient forces are larger than the other forces in the flow, but
they also are in close balance with each other. Thus, the flows are indeed
in geostrophic balance at leading order. This is also observed for plumes at
Pr =100, in Fig. 4.3(¢), and LSVs at Pr = 0.1, in Fig. 4.3(e). The simulation
cases with stress-free boundary conditions at Pr =~ 5 and 0.1 are also directed
by the geostrophic balance, as seen in Figs. 4.3(a) and 4.3(e), respectively.
The presence of a leading-order geostrophy balance in rotationally constrained
convection is exploited in quasi-geostrophic models [8,33,41,92,113,146-153]
to simplify the governing equations in the limit of rapid rotation. To further
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Figure 4.3.: Force balance (left column) and local Rossby number Roy (right column), both
at mid-height, as a function of supercriticality Ra/Ra. for simulations at (a,b) Pr = 5, (c,d)
100 and (e,f) 0.1. Filled and open symbols correspond to simulations with no-slip and stress-
free boundary conditions, respectively. Vertical dotted lines denote our estimated transition
between cells (C) and convective Taylor columns (T). Vertical dash-dotted and dashed lines
are the predicted transitions between convective Taylor columns (T) and plumes (P) in
Ref. [71] and [132], respectively. Vertical solid lines are our estimated transitions between
plumes and large-scale vortices (LSVs; at Pr ~ 5), and between LSVs and rotation-affected
(RA) convection (at Pr = 0.1). Horizontal dashed lines indicate Ro¢ = 1, the red dotted line
is the predicted scaling in Ref. [42], and the blue dotted line is the least-squares fit of cases
with plumes at Pr =~ 5.
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illustrate the dominant role of rotation, we directly compute the Rossby number
as the ratio of inertial to Coriolis forces Ro = Fy/F¢ as a function of Ra/Ra.
Notice that this Rossby number is different from the convective Rossby number
Roc in Eq. (3.1). Because F; and F¢ represent local estimates of the inertial
and Coriolis forces, we henceforth refer to Ro as the local Rossby number Roy.
Figure 4.3(b) shows that Roy < 1 for all cases in the geostrophic regime (i.e.
cellular, columnar, plumes and LSVs regimes), which is a clear sign of rotational
constraint. Figures 4.3(d) and 4.3(f) reveal the same for plumes at Pr = 100
and LSVs at Pr = 0.1, respectively. Nevertheless, in Fig. 4.3(f) for Pr = 0.1
cases, we see that Roy becomes larger than 1 for values of supercriticality larger
than 60. This is due to the decrease in strength of the Coriolis force and the
increase in inertial force at Ra/Ra. > 60, as evidenced in Fig. 4.3(e). This
indicates that the flow transitions to a state where rotation affects the flow,
but no longer dominates it. In this so-called regime of rotation-affected (RA)
convection, geostrophy does not constitute the primary force balance in the
flow. Instead, pressure-gradient and inertial forces are dominant. The green
symbols in Fig. 4.3(e) represent the quantity |F¢ + Fp|, which is only com-
parable to Fp in this regime because F¢ is much smaller; we shall discuss
this quantity below. In Fig. 4.3(b), the local Rossby number Roy for cells and
columns is fitted by the predicted scaling Ra? for rotationally constrained
convection in Ref. [42] with a root-mean-square error of 3.7%. This scaling is
suggested for RaEk*? < 10, or Ra/Ra. < 14 at Ek = 3 x 1077, as in our
simulations (see Table 3.1). Moreover, the predicted scaling is for a flow in
visco-Archimedean-Coriolis (VAC) balance, i.e. the triple balance between vis-
cous, buoyancy and rotational forces. Below we confirm that these regimes do
exhibit this force balance, and show that it is subdominant in our simulations
(see, e.g., Table 4.1). Also in Fig. 4.3(b), a least-squares fit of the Ro, values
for plumes at Pr ~ 5 yields a scaling (Ra/Ra.)%®. This scaling fits the Roy
data of plumes at Pr = 100, too, with an RMS error of about 10%.

Whilst the force balances for cells, columns, plumes and LSVs are led by Cori-
olis and pressure-gradient forces, Figs. 4.3(a), 4.3(c) and 4.3(e) reveal that other
forces (buoyancy, viscous and inertial) also participate in the force balance. The
deviations from geostrophic balance, denoted by the difference between Coriolis
and pressure-gradient forces |F + Fp|, are caused by the presence of these
forces. This indicates that these geostrophic flows are actually ageostrophic
at higher order. Namely, a relaxation of the Taylor—Proudman constraint (see
Eq. (2.30) in Section 2.6) is permitted at higher order. Figure 4.3(a) shows
that for cells and columns, at Ra/Ra. < 6, |Fc + Fp| mostly originates from
buoyancy with some contribution of the viscous force, whereas the inertial
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force remains relatively small. The absence of inertial forces, and thus the
presence of a VAC balance in rotationally constrained convection is leveraged
in single-mode theories in Refs. [89, 154] to provide an analytical model for
the convective Taylor columns. Nonetheless, inertia does increase rapidly with
Ra/Rac. In fact, at Ra/Ra. 2 6, inertia becomes part of the subdominant force
balance. The participation of inertial forces in this subdominant balance affects
the vertical coherence of the flow, which results in its transition from vertically
aligned columns to plumes with weaker vertical coherence. For the Pr = 100
cases shown in Fig. 4.3(c), the magnitude of the inertial force is smaller due the
larger kinematic viscosity of the fluid (relative to its thermal diffusivity). How-
ever, inertia becomes increasingly important with Ra/Ra,., leading to plumes
with an ever greater degree of vertical incoherence, as displayed in Figs. 4.2(e)
and 4.2(f). In the LSV regime at Pr ~ 5 and Ra/Ra, 2 37, inertia becomes
larger than |F + Fpl, although it does remain smaller than F and Fp. This
is also observed at Pr = 0.1, see Fig. 4.3(e). Whilst inertial forces are the main
source of ageostrophy for plumes and LSVs, buoyancy also participates in the
force balance. This is more clearly evidenced in Fig. 4.4, where the force balance
of cases at Pr ~ 5 is decomposed into its horizontal and vertical component
(similar results are obtained at Pr = 0.1 and 100; combination of the horizontal
and vertical components according to Eq. (4.6) results in the full force balance
displayed in Fig. 4.3(a)). In Fig. 4.4(a), as expected, the geostrophic balance
in all cases is seen to dominate the horizontal force balance, whereas the role
of inertia as the primary cause of ageostrophy in the plumes and LSV regimes
is also observed. On the other hand, Fig. 4.4(b) reveals that for all cases there
is an approximate balance between the buoyancy force and vertical pressure-
gradient force. The presence of this so-called hydrostatic balance highlights the
importance of buoyancy. It is therefore reasonable to assume that the dynamics
of plumes and LSVs results from the balance between the Coriolis, inertial
and buoyancy forces, also known as Coriolis-Inertia-Archimedean (CIA) bal-
ance, with some contribution of the viscous force in the plumes regime. These
observations are consistent with results from asymptotic simulations [41]. In
Fig. 4.3(e), we see that at Ra/Ra. 2 60 the inertial force becomes part of the
dominant force balance, and the flow transitions to the rota