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Summary

Numerical Methods for Dynamics of Particles in Magnetized Liquids

The ever-increasing mass-production of plastics over the past 60 years has raised ma-
jor environmental, economic, and societal concerns. The sustainability of the plastic
industry is closely connected to the efficiency of sorting and separation technologies.
Magnetic density separation (MDS) is an effective high-resolution method for sorting
end-of-life plastic based on plastic type. MDS uses a magnetized fluid to fractionate a
mixture by exploiting the Archimedes principle. Optimizing MDS processes requires
a fundamental understanding of the collective motion of millimetre-sized particles in
flows of magnetically responsive fluids. This dissertation considers the development of
an efficient computational framework for the simulation of particle-laden flows com-
monly occurring in MDS systems.

When particles are introduced to a laminar or turbulent flow of a non-magnetic liq-
uid, they usually undergo inertial effects stemming from the mass of the particles, the
added mass of the fluid, and gravity. In magnetized liquids, however, the magnetically-
modified pressure distribution inside the fluid introduces an additional force that influ-
ences the motion of immersed particles. The magnetic buoyancy force stemming from
the polarisation force on fluid elements pushes the immersed particles to equilibrium
points that are unique to their mass density. MDS systems exploit this principle to sort
mixtures. As particles in MDS are generally produced through a shredding process,
their shape can significantly deviate from a sphere. While spherical particles generally
tend to move in the direction of the resultant force stemming from local fluid velocity
and buoyancy, the motion of non-spherical particles is more complicated. The rota-
tion of non-spherical particles influences their transitional motion even in the absence
of inertial effects, making the particle shape an important parameter in MDS pro-
cesses. Moreover, at appreciable particle volume fractions, inter-particle interactions
can strongly influence the collective motion of particles and cannot be disregarded.

The two main approaches to simulating particle-laden flows are point-particle meth-
ods (PP-DNS) and particle-resolved methods (PR-DNS). Generally considered as a
more accurate approach, PR-DNS methods resolve the flow field around each parti-
cle. PP methods, on the other hand, treat particles as points and incorporate force
models to couple the fluid and particle momenta. Despite the considerable increase in
computational capacities, modelling large particulate systems using particle-resolved
methods is extremely expensive. PP-DNS methods, in contrast, offer a computation-
ally efficient framework to simulate particle-laden flows and have been extensively
applied to model the collective motion of small particles in laminar and turbulent
flows. However, when the particle size increases or when its shape deviates from a
sphere, PP-methods require careful adaptions. In this dissertation, we adopt a PP-
DNS approach to study the underlying mechanisms in the buoyancy-driven motion of
particles in magnetically responsive liquids.

In our first step towards obtaining a fundamental understanding of dynamics of par-
ticles in magnetized fluids, we represent the particles by spheres. A four-way coupled
point-particle method is presented where all relevant interactions between an exter-
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nal magnetic field, a magnetic liquid, and spherical particles are taken into account.
Particle-particle interaction is modelled by a hard-sphere collision model which takes
the interstitial fluid effects into account. First, the motion of particles in a param-
agnetic liquid is studied in single- and two-particle systems. We observe very good
agreements between our numerical results and experiments performed in single- and
two-particle magnetofluidic systems. Next, we investigate the magneto-Archimedes
separation of particles with different mass densities in many-particle systems interact-
ing with the fluid. Our results reveal that history effects and inter-particle interactions
significantly influence the levitation dynamics of particles and have a detrimental im-
pact on the separation performance. We also investigate the effects of particle size, and
initial distribution on the separation performance. The presented method is shown to
be a robust and efficient computational framework for the investigation of flows of
magnetically responsive fluids laden with spherical particles.

The next step towards a more realistic simulation of MDS processes is to investigate
the effects of particle non-sphericity. We do this by considering ellipsoidal particles.
Most of the existing models for fluid-particle interactions of ellipsoidal particles disre-
gard inertial effects. Although such so-called Stoksian models can be applied in the
vicinity of particle equilibrium positions, in regions far from the equilibrium positions,
or in cases where a background flow is present, such models break down, and both are
relevant in the MDS application. To predict the dependencies of steady hydrodynamic
interactions of thin oblate spheroidal particles on particle orientation and Reynolds
number, we present a novel approach. The conventional empirical correlations that
approximate such dependencies are replaced by a neural-network-based correlation
to provide accurate predictions for high-dimensional input spaces occurring in flows
with non-spherical particles. By performing PR-DNS simulations a database consisting
of Reynolds number- and orientation-dependent drag, lift and pitching torque acting
on a 1:10 spheroid is collected. A feed-forward neural network is trained and val-
idated with the generated database. The presented statistical approach outperforms
existing empirical correlations in terms of accuracy. Moreover, the agreement between
the numerical results and experimental observations prove the potential of this new
method.

Finally, we present a PP-DNS framework for the investigation of flows laden with non-
spherical particles. The particle tracking algorithm is adapted to capture the posi-
tion and orientation of ellipsoidal particles in a magnetized liquid. A new strategy
for two-way force and torque coupling between fluid and particles is presented, and
efficient collision detection and response models are employed to describe the colli-
sions of ellipsoidal particles. The results substantiate that at a fixed particle volume,
the single-particle levitation time increases with the particle aspect ratio. It is shown
that binary collisions have a smaller hampering effect on the levitation motion of 1:2
spheroids than of spheres. Experimental validations reveal that precise prediction of
the particle orientation during collisions, requires more accurate models for rotational
interactions of ellipsoidal particles with other particles and the carrier liquid. Results
of many-particle simulations substantiate the importance of two-way coupling for non-
spherical particles. Decreasing the particle aspect ratio from 1 to 0.1 is shown to yield
a significant increase in the separation time even when collisions are disregarded. Fi-
nally, conclusions drawn from this thesis and possible perspectives of future research
are discussed.
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About the cover

The circular assembly half of which is visible on
the front cover of this book is an artwork cre-
ated by Mandy Barker, an award-winning inter-
national photographer. Through her work, she
aims to raise awareness about plastic pollution in
the oceans by highlighting the harmful impact of
plastic pollution on marine life. This assembly
represents a compact arrangement of more than
500 pieces of plastic debris that are found in the
digestive system of an albatross chick in the North
Pacific Gyre (see the image on the right [31]). The artwork belongs to the series SOUP
which is a description given to plastic debris suspended in the sea, with particular ref-
erence to the mass accumulation in an area of the North Pacific Ocean known as the
Garbage Patch [16].
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1. Introduction

1.1. Background

1.1.1. An overview of plastic imprint

A decade ago, the level of the physical and chemical human imprint on planet earth
has reached a comparable level to that of natural geophysical processes [137]. A
characteristic marker of human activities is the widespread presence of plastics both
on land and in the oceans [50]. The first synthetic plastic was produced in 1907,
marking the beginning of the global plastics industry. However, the rapid growth of
global plastic production only started in the 1950s. Due to their malleability, durability
and low costs, over 65 years, annual production of plastics increased almost 200-fold
to reach 381 million tonnes in 2015. The cumulative production until 2015 reaches
8300 million tons [54].

Figure 1.1 summarizes the global plastic production to final fate over the time span
1950-2015. Merely 30% of the total amount of produced plastics was still in use in 2015.
About 55% of this total amount was land-filled or discarded, and 8% was incinerated.
The share of recycled plastics is only 9%. This indicates that at the global level, plastic
is being handled in a highly unsustainable manner yielding a rapid increase in global
plastic pollution.

Figure 1.1.: Global plastic production and its fate from 1950 to 2015. The unit of the
numbers is billion metric tonne. Retrieved from [54].

The environmental and economic consequences of plastic waste have become visible in
the wake of the rapid increase in plastic pollution. The time it takes for the plastics to
biodegrade entirely is not clear. Estimated times range from 450 years to never. Plastic
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leakage to the environment in the form of macroscopic litter or microplastics damages
biodiversity and exhausts the ecosystem services that are vital for life [49]. In 2015,
Jambeck et al. [69] estimated that annually between 5.3 million and 14 million tons of
plastic enter the oceans just from the coastal areas. Oceans plastic pollution is directly
related to the death of millions of marine animals annually. Furthermore, mismanaged
plastic waste contributes to climate change through greenhouse gas emissions both
from manufacturing new plastic and from waste management.

At a regional level, there is a large gap in the sustainability of plastic management
strategies in high-income developed countries and in developing countries. Plastic
management in non-EU countries, for example, is differently regulated, and many
non-EU countries have less strict regulations regarding plastic waste management.
The study of Geyer et al. [54] showed that there is a strong geographical clustering in
the mismanaged plastic waste and that Asia is a significant contributor to the world’s
plastic pollution in the oceans. According to their study, in 2010, China and Indonesia
had the highest share of mismanaged plastic waste with approximately 28% and 10%
of the global total, respectively. In 2017, China banned all import of non-industrial
plastic waste to improve domestic recycling infrastructure and generate internal mar-
kets [22].

Although many countries in Europe and North America have high rates of plastic gen-
eration per capita, the contribution of most of these counties to mismanaged waste at
risk of ocean pollution is relatively low. In 2012, 25.2 Mt of post-consumer plastic was
collected in the EU, out of which around 60% was recovered and about 26% was recy-
cled. The remainder of the recovered plastic was likely used as refuse-derived fuel or
incinerated [126]. The share of recycled plastic in the EU, the world leader in plastic
recycling, is much lower than that of other materials such as paper or metals [126].
The EU has recently taken measures to improve plastic production and waste man-
agement. These measures include the European strategy to obtain a circular economy
concerning plastics and ambitious goals for the plastic recycling industry [44]. How-
ever, economic incentives have led to a lack of transparency about the plastic import
to and export from the EU [105]. Traded plastic waste could end up in the oceans,
land-filled or be incinerated through inadequate waste management systems.

Throughout the years, the emphasis has been on pre-consumer optimization of plastics
while the attention to the post-consumer aspect of plastic products has been much
less. Two main ways to change this trend is to either design new plastic products
such that they are biodegradable or to increase the recycling rate of end of life plastic.
Considering the current momentum of the plastic industry and the amount of piled up
plastic waste on earth, the latter solution is deemed to be more effective. Developing
efficient plastic recycling systems plays a pivotal role in this transition.

1.1.2. Plastic recycling industry and separation strategies

As can be seen in figure 1.2, there is a huge variety of plastics with a wide range
of applications. Some plastic types are predominantly used in specific applications.
For example, the use of polyvinylchloride (PVC) in packaging has been reduced in
many countries, but PVC, together with polyurethane (PUR) and polystyrene (PS),

2



Figure 1.2.: Typical applications of key plastic types worldwide and their contribution
to the global plastic waste [111]. Ease of recycling varies per region:
North America shown here.

is one of the key plastic types used in the building and construction sector. In the
packaging markets, the polyolefins (i.e. polypropylene (PP) and polyethylene (PE)),
polyethylene terephthalate (PET) and PS dominate. A major challenge in recycling
plastic wastes is the separation of different plastic types. Due to their inherent molec-
ular immiscibility and differences in processing requirements, most plastic types are
incompatible. Impurities in recovered plastic deteriorate the quality of the product
leading to the so-called “plastic down-cycling”. For example, PP and PE are present
as a mixture in end-of-life polyolefin fractions. The grade of the PP and PE should be
better than 97% to be reused as a high-quality product [14, 125]. Therefore, a fast
and efficient method for sorting that ensures a very low, ideally zero, level of impurity
of the processed plastic is needed.

Among different recycling methods, mechanical recycling represents the major plas-
tic recovery approach. A typical post-consumer recycling procedure consists of several
steps: collection, sorting, cleaning, size reduction and separation. While compounding
and cleaning technologies for polymer solid waste have significantly been improved,
the development of efficient sorting and separation technologies still lags behind. Sev-
eral promising methods have been investigated and applied. See, for example, Singh
et al. [135] for an extensive review. To increase the recycling rate over a broad range
of polymeric materials, efficient and economical separation technologies are required
which are capable of targeting polymers by type and colour.

1.2. Magnetic density separation

The separation of mixtures of plastics based on their mass density is one of the most
effective, high-capacity methods in industrial separation technologies for recycling
plastic waste [53]. Due to the simplicity, automatability and flexibly of mass-density-
based separation methods in operation, density-based separation is globally the most
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widely used material separation process. A sink-float process can give an effective
mass-density-based separation with both high grade and high recovery, provided the
differences in mass density between the sub-populations is sufficiently large. Sink-float
methods are used to separate polyolefins from PET in bottle recycling [37]. Extracting
high-grade PP and PE fractions from typical shredder residue requires multi-step pre-
separation [14]. A one-step continuous separation by multiple "cut mass densities"
can be achieved by the magnetic density separation (MDS) technique [14, 88].

MDS is similar to the conventional sink-float methods as both exploit the Archimedes
principle to separate materials based on mass density. MDS, however, incorporates
magnetically responsive liquids and engineered magnetic fields to create a gradient
of effective/apparent mass density within the liquid, which enables the continuous
segregation of a mixture in one go [114, 124]. Exposure to a non-uniform magnetic
field leads to a non-uniform pressure field within the liquid which, in turn, makes the
buoyancy force acting on an immersed body position-dependent. A vertical gradient
of the magnetic field makes the buoyancy force on a particle dependent on its verti-
cal position inside the liquid, resulting in stable equilibrium heights which are unique
to the mass density of the particles. Provided the residence time is sufficient and
particles are free of air bubbles, particles released in the liquid travel to the position
corresponding to their mass density and can subsequently be separated from the mix-
ture. This high-resolution technique is capable of separating particles characterized
by very close mass density values, such as polypropylene (PP) and polyethylen (PE)
or PVC and rubber [88, 125]. A schematic representation of an MDS system is shown
in figure 1.3.

Figure 1.3.: Schematic representation of a magnetic density separation system for
polypropylene (PP) and polyethylene (PE) (retrieved from Serranti and
Bonifazi [124]).

The MDS approach makes use of only a single property of the particles, namely their
mass density and is not dependent on the shape or size of the particles. The low viscos-
ity and surface tension of the sorting medium in MDS systems enables the segregation
of millimetre-sized mixtures in the separation zone. Sorted fractions are collected
downstream of the separation zone in the so-called collection zone. Next to end of
life plastic, MDS has been applied to separate nonferrous minerals, seeds, toxic wastes
and electronic waste [14, 35, 75, 88, 100, 103, 114, 129, 136, 148, 156].

The performance of an MDS system relies on multiple elements in the system: mag-
nets, magnetic liquid, level of turbulence in the separation zone and particle proper-
ties. That is why the optimization of magnetic density separators, requires in-depth
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multidisciplinary knowledge of magnetostatics, chemistry, fluid mechanics and parti-
cle dynamics. In the following sections, we introduce different elements of a typical
industrial MDS system.

1.2.1. Design of magnet systems

Magnets as one of the most important elements of MDS systems must satisfy multiple
important criteria. First, the maximum magnetic field strength and its local gradient
should be such that the resulting "apparent density" field is compatible with the mass
densities of the particles to be separated, magnetic properties of the magnetic liquids,
and the geometry of the separation channel. The magnitude of the magnetic field
gradient and its direction directly determine the equilibrium positions of the parti-
cles, as well as their motion towards these positions. A high-intensity magnetic field
enables the application of more dilute magnetic liquids which are less viscous and
more economical. Furthermore, the induced magnetic field should have negligible
transverse non-uniformities to avoid the “wiggling” motion of particles and the re-
sulting reduction in the separation accuracy in the separation zone. A high-strength
magnetic field can be generated by incorporating superconducting magnets such as
niobium-titanium (NbTi) magnet systems. In non-ideal finite-length magnets, a not
perfectly vertical magnetic field gradient is inevitable, which can hamper the motion
of particles. Therefore, to prevent particle clogging, a certain minimum streamwise
flow velocity should be sustained in the separation zone. This requirement, in turn,
influences the minimum length of the magnet system to achieve an acceptable sepa-
ration performance given the time required for the particles to reach their equilibrium
positions.

1.2.2. Process liquid

The separation medium in industrial MDS systems is a synthetic colloidal magnetic
fluid called ferrofluid. Ferrofluids which were first introduced by Papell [110] have
much higher magnetic susceptibility than natural paramagnetic salt solutions or liq-
uid oxygen, a property referred to as “superparamagnetism” [19, 118]. These col-
loidal ferromagnetic liquids contain nanometer-sized ferrous particles which are sta-
bilized using surfactants which prevent the particles from approaching each other too
closely.

In practical MDS systems, a large vertical distance is required over which a stable mag-
netic pressure is generated within the ferrofluid. This implies that the incorporated
magnetic liquid should sustain its stability under the influence of strong magnetic
fields over a long time interval. The feasibility of an industrial MDS system requires
that such stable process liquids are cheap. Furthermore, its magnetic, physical and
chemical properties should satisfy the magnetostatic and fluid-dynamic MDS design
constraints. The chemical properties and colloidal stability of ferrofluids in MDS ap-
plications are subject to research [145, 146] with the aim to understand the nano-scale
behaviour of ferrofluids, and therefore obtain optimal macroscopic properties.
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1.2.3. Fluid-dynamical aspects

From the fluid mechanics viewpoint, the performance of MDS systems is closely re-
lated to the dynamics of dispersed particles in the flow of a magnetized liquid. The
motion of particles, in turn, is influenced by any disturbance in the flow. To reach the
necessary separation accuracy to obtain high-quality secondary products in one step,
MDS needs to be sensitive to very small differences in the mass densities of the input
materials. For example, for household packaging and car components, a separation
inaccuracy in mass density as low as 1% (10 kg/m3) is required [66]. This makes pre-
venting any phenomenon which disturbs the motion of particles in the separation zone
of great importance. Therefore, the turbulence level in the separation zone is a crucial
aspect of MDS systems. Moreover, the motion of particles generates particle-induced
disturbances which can negatively affect the separation performance.

1.2.3.1. Turbulence

For optimal performance of MDS systems, the turbulence level in the separation zone
should be kept as low as possible. In new-generation MDS systems multiple measures
are taken to maintain an ultra-low turbulence level [66] in the separation zone. First,
flow laminator structures such as grids and honeycombs are mounted upstream of the
separation zone to break up the large vortical structures and annihilate the transverse
velocity in the flow [86]. Second, by incorporating moving walls at the top and bottom
of the channel, the formation of boundary layers and transition to turbulence in the
vicinity of the walls is circumvented [114].

Although design and usage of honeycomb flow straighteners have been very well es-
tablished in the context of turbulence reduction in wind- and water-tunnels, their ap-
plication to achieve the ultra-low turbulence required in MDS needs further research.
The break-up of individual velocity profiles and vortex shedding behind such flow lam-
inator elements can give rise to honeycomb-induced turbulence with an appreciable
intensity which is detrimental to the performance of MDS systems.

1.2.3.2. Particle-fluid-particle interactions

It is well-known that flow field in the particle-laden flows can be substantially modified
by the presence of the particles if the size of the particles is larger than the Kolmogorov
length scale [42, 150]. This effect is further enhanced at higher particle volume frac-
tions. At appreciable volume fractions, inter-particle interactions become important,
making the particle-fluid-particle interactions more complex. Moreover, particle-fluid-
particle interactions are shown to be considerably different for non-spherical particles
leading to a substantial difference in the collective motion of particles [149]. Small
non-spherical particles tend to react to small scales of the flow, and exhibit a rotational
motion which has contributions from the fluid vorticity as well as its strain rate. Non-
spherical particles in turbulent flows are shown to give rise to preferential orientation
which is highly dependent on their shape.

The dynamics of particles in MDS is influenced by the coupled hydrodynamic and
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magnetic interactions between an external magnetic field, a magnetic fluid, and mil-
lions of immersed poly-dispersed particles generated through a shredding process.
In the absence of an external magnetic field, particles in MDS of end-of-life plastic
behave like tracers as they have particle-to-fluid mass density ratios in the order of
one. Once the magnetic field is turned on, the magnetically induced buoyancy-driven
motion of a particle towards its equilibrium position provides a new and interesting
type of particle motion. This dissertation addresses the design and application of a
computational framework for the simulation of the collective motion of spherical and
non-spherical particles in flows of magnetically responsive liquids. The following sec-
tions provide the preliminary theoretical background for studying particle-laden flows
of magnetized fluids and introduces the scope of this work.

1.3. Preliminaries

1.3.1. Ferrohydrodynamic theory

Ferrohydrodynamics (FHD) is a branch of mechanics which addresses the motion of a
magnetic fluid under the influence of forces of magnetic polarisation in the absence of
electric currents. The development of ferrohydrodynamics theory started in the 1960s
with the production of synthesized magnetic fluids (ferrofluids). Ever since magnetic
liquids have been employed for several applications such as instrumentation, lubrica-
tion, printing, vibration damping, drug targeting, and material separation. In FHD
free electric charges are normally absent, and the body force is due to the polarisation
force which requires fluid magnetization in the presence of magnetic field gradients
or discontinuities [118].

Neuringer and Rosensweig [101] were the first to propose a model for the motion of a
magnetized fluid. This model is an extension to the Navier-Stokes equation where next
to viscous and inertial effects the effect of magnetic forces is also taken into account. In
flows where the orientation of the magnetic field slowly shifts relative to translating
and rotating fluid elements, magnetization relaxation processes can be disregarded
and the magnetization and the magnetic field can be assumed to be collinear (M ||H).
Under this condition the so-called quasi-equilibrium ferrohydrodynamics model reads
[118, 131]

ρ

(
du

dt
+∇ · (u⊗ u)

)
= −∇p+ µ∆u+ ρg + µ0M∇H; divu = 0, (1.1)

where ⊗ indicates tensor product, u, p and µ are the fluid velocity, pressure and
dynamic viscosity respectively, g is the gravitational acceleration, µ0 the magnetic per-
meability in vacuum, M = ‖M‖ the magnitude of fluid magnetization and H = ‖H‖
is the magnetic field strength which is related to the magnetic induction B through
B = µ0H +M . The magnetic field strength and magnetic induction are determined
by Maxwell’s equations of magnetostatics in the absence of a current density and elec-
tric field:

divB = 0; rotH = 0. (1.2)
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1.3.1.1. Bernoulli equation and pressure in magnetized fluids

Under the assumption of a stationary incompressible potential flow of an ideal (homo-
geneous) magnetic fluid, and with gravity acting in the y- direction, (1.1) is simplified
to the ferrohydrodynamics Bernoulli equation:

p+ ρu2/2 + ρfgy −
∫ H

0

MdH = const. (1.3)

In the absence of an external magnetic field, the magnetic contribution to the static
pressure is zero and (1.3) reduces to the conventional Bernoulli equation. For a fluid
at rest writing the Bernoulli equation for two points inside the liquids gives:

p1 + ρfgy1 −
∫ H1

0

M1dH = p2 + ρfgy2 −
∫ H2

0

M2dH (1.4)

It follows directly from (1.4) that the hydrostatic pressure gradient inside the liquid
has two contributions, namely a gravitational contribution and a magnetic contribu-
tion. MDS exploits this principle to create the desired pressure field by incorporating
the right combination of magnetic field and liquid magnetization. The steady-state
FHD Bernoulli equation describes the working principle of MDS devices. Rosensweig
discovered in (1966a) that “a stable levitation is possible if a non-magnetic object is
immersed in a magnetic liquid and is brought into the presence of an appropriate
non-uniform magnetic field”.

By combining the gravitational and magnetic contributions to the static pressure inside
the liquid one can express the static pressure as

pstatic = −ρfgy + µ0

∫ H

0

MdH = −ρf,a(y)gy, (1.5)

where

ρf,a(y) = ρf −
µ0

gy

∫ y

0

M
dH

dy
dy (1.6)

can be interpreted as the “apparent mass density” of a magnetized liquid. Once a
container filled with a magnetic liquid is exposed to a vertical magnetic field gradient,
the fluid-magnetic pressure changes such that particles with well-chosen mass densi-
ties stably levitate at heights corresponding uniquely to their mass densities. At these
stable positions the apparent mass density of the fluid is equal to that of the particle.
This phenomenon which we refer to as magneto-Archimedes levitation is illustrated
in Figure 1.4.

1.3.1.2. A note on fluid magnetization behaviour: paramagnetism vs
superparamagnetism

As shown in section 1.3.1.1, the fluid-magnetic pressure inside a quiescent magne-
tized liquid depends on the gradient of the magnetic field and on the magnetization
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Figure 1.4.: Magneto-Archimedes levitation of a four-component plastic mixture in a
magnetized liquid. The magnetic liquid is a saturated solution of MnCl2
salt with ρf = 1402 kg/m3 (Photograph courtesy R. Dellaert).

of the liquid. When studying magnetic liquids, one should distinguish between two
major types of magnetization behaviour: paramagnetism and superparamagnetism. A
Ferrofluid, as the principal magnetic fluid in FHD, is a suspension of nanometer-sized
particles in a continuous medium. Stable ferrofluids do not settle out. Such ferroflu-
ids are composed of small (3-15 nm), magnetic, single-domain particles coated with
a molecular layer of dispersant and suspended in a liquid carrier. A typical ferrofluid
consists of about 1023 particles per cubic meter and is opaque to visible light. In the ab-
sence of a magnetic field, these particles are randomly oriented. As the magnetic field
strength increases, more and more particles align with the magnetic field direction and
the fluid magnetization increases. At a sufficiently high magnetic field strength, once
the particles are completely aligned with the magnetic field, the fluid magnetization
saturates. Under the assumption of quasi-equilibrium FHD, this so-called superpara-
magnetic behaviour can be approximated by the adapted classical theory of Langevin
[118, 131]:

M

Msat
= cothα− 1

α
= L(α), (1.7)

where M is the magnetization magnitude of the liquid which is collinear with the
applied magnetic field H, Msat is the saturation magnetization of the fluid, α =
µ0mH/(kBT ) is the Langevin argument with kB denoting the Boltzmann constant,
T the temperature and m the average dipole moment of magnetic nanoparticles. The
magnitude of the fluid saturation magnetization is the sum of the magnetic moments
of the suspended magnetic particles in a unit volume of the suspension:

Msat = φmMsat,p, (1.8)

where φm is the volume fraction of the nanoparticles, and Msat,p is their saturation
magnetization.

In paramagnetic salt solutions where all moment directions are equally probable [19],
or at low magnetic field strengths where α << 1, so that L(α) ≈ α/3 a magnetic
liquid exhibits paramagnetic behaviour. Figure 1.5 (a) compares the magnetization
behaviour of a ferrofluid typically used in MDS systems with Msat = 650A/m (m =
3.46 × 10−19 A/m2), with a saturated solution of MnCl2. It can be seen that the
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ferrofluid exhibits paramagnetic behaviour only at very low magnetic field strengths.
The influence of the magnetization behaviour in the MDS context is illustrated in
figure 1.5 (b) where the apparent mass densities of the two liquids exposed to an
external magnetic field gradient are plotted as functions of the vertical distance from
the magnet surface. Due to its stronger magnetization, the range of apparent mass
density within a ferrofluid (0.5 < ρp/ρf < 1) is larger than that of a paramagnetic
salt solution (0.85 < ρp/ρf < 1). Moreover, the height over which the gradient of
apparent mass density is nonzero is around a factor of two larger in a ferrofluid.

(a) (b)

Figure 1.5.: (a) Magnetization behaviour of a ferrofluid with Msat = 650 A/m (m =
3.46× 10−19 A/m2) and of a saturated MnCl2 solution with χ = M/H =
7 × 10−4. (b) Apparent mass density of the two liquid when exposed to
a magnetic field described by H = H0e

−π(L+y)/p with H0 = 422 kA/m,
p = 0.118 m, and L = 0.4 m. The mass density of the ferrofluid is ρf,ferr =
1010 kg/m3 and that of the MnCl2 solution is ρf,MnCl2 = 1400 kg/m3.

1.3.2. Magneto-fluidic systems considered in this dissertation

1.3.2.1. Magnetic liquid

In this work, we chose to consider a paramagnetic MnCl2 solution as the separa-
tion medium. The major drawback of paramagnetic salt solutions is their higher
viscosity compared to diluted ferrofluids. Due to the low magnetic susceptibility of
paramagnetic liquids, achieving high magnitudes of magnetization requires a high-
concentration of salt. The dynamic viscosity of such saturated solutions is about four
times larger than that of a diluted ferrofluid with a comparable magnitude of magne-
tization. The high viscosity of the fluid increases the resistance against the levitation
motion of the particles and is therefore not favourable in practical MDS applications.
Our choice is, however, founded on the following reasons:

1. The most important reason is the transparency of this liquid which enables opti-
cal measuring methods such as particle tracking velocimetry.

2. The more simple linear dependency of the magnetization behaviour of param-
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agnetic liquids reduces the number of influence parameters in the mathematical
model for the fluid behaviour.

3. The validity of quasi-equilibrium FHD theory for such paramagnetic liquids sim-
plifies the model which describes the motion of the fluid by circumventing the
need to solve a separate equation for the fluid magnetization [130]. Moreover,
we can get around magnetoviscous and other dynamical effects which can be-
come important in colloidal ferrofluids.

We should note that the framework presented in this dissertation is used for extensive
studies on MDS in ferrofluids under the quasi-equilibrium FHD assumption. However,
due to proprietary reasons, these are not included in this thesis.

1.3.2.2. Magnetic field

To further reduce the number of influence parameters in our study, we consider 1D
magnetic fields which decay exponentially with the vertical distance from the surface
of the magnet. This type of magnetic field can be generated by a specific assembly of
alternating magnets called Halbach array [59]. The idea behind Halbach arrays is to
create a wavelike magnetization pattern inside the array which results in an amplified
magnetic field strength on one side (strong side) of the array, while on the other side
(weak side), the magnetic fluxes of individual magnets cancel each other. A schematic
representation of a Halbach array is shown in figure 1.6.

strong side

weak side

M

+

p

=

Figure 1.6.: A schematic of a discrete Halbach array with the pole size p, and the
corresponding magnetic field lines. The magnetization of each magnet in
the array is rotated 90◦ relative to that of the neighbouring magnets.

For an ideal infinite Halbach array where the magnetization inside the array is con-
tinuous and periodic, the magnetization vector can be written as M = (Mr cos kx)i−
(Mr sin kx)j, where Mr is the remnant magnetization and k is the spatial wave num-
ber. In the absence of an electric current, the Maxwell equation can be solved to
obtain the magnetic induction on the strong side of the array [90]. The magnitude of
the magnetic field on the strong side of the array reads Hstrong = Mr

(
1− e−π2

)
e−

2πy
λ ,

where λ = 2π/k is the magnetization wave length. The reader is referred the paper of
Mallinson [90] for the derivation.
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1.4. Objective and Outline

The opacity of the carrier liquid in industrial MDS systems on the one hand, and the
large number of particles in these systems, on the other hand, make the application
of experimental techniques to industrial MDS systems very challenging, if not impos-
sible. Developing predictive models for capturing the collective motion of particles
is, therefore of high practical importance in optimizing MDS systems. These models
can be employed to quantify the spatial and temporal characteristics of the motion of
particles in magnetized liquids and provide insights into the influences of parameters
such as the particle shape and size, the magnetic field design, and flow disturbances
on the performance of MDS systems. This dissertation aims at developing an accurate
and efficient numerical framework for the buoyancy-driven motion of particles in the
flow of a magnetized liquid.

As the starting point of our study, we make the assumption of spherical particle shape.
This simplifying assumption paves the ground for obtaining a fundamental under-
standing of the motion of almost neutrally buoyant particles in a magnetized fluid
and provides a stepping stone towards studying more complex non-spherical parti-
cles. Chapter 2 of this thesis addresses the magneto-Archimedes separation of spher-
ical particles. A point-particle Euler-Lagrange (PP-DNS) model is presented which
captures all the relevant fluid-particle and particle-particles interactions for spherical
particles in MDS systems. We parameterize the motion of a single particle in a magne-
tized liquid and introduce the relevant particle-fluid-particle interaction mechanisms
in the MDS of spherical particles. The performance of the numerical model is ex-
perimentally validated, and the influences of unsteady fluid-particle interactions and
collisions on the motion of particles in MDS systems is illustrated.

The next step in achieving a more realistic model for the MDS process is to include the
effect of particle non-sphericity. Particles in practical MDS applications are rigid flakes
which can be mathematically approximated by low-aspect-ratio oblate spheroids. In
PP-DNS simulations momentum transfer between particles and fluid is achieved via
the point-force approximation [15, 33, 81]. PP-DNS models for hydrodynamic inter-
actions of inertial spherical particles within and beyond the Stokes regime have been
derived and are widely used. For non-spherical particles, however, models for these
interactions are scarce. The complexity of these interactions for non-spherical parti-
cles is due to the increase in the number of influence parameters; challenges in cap-
turing these shape-specific interactions increase as the particles anisotropy increases.
Chapter 3 addresses the derivation of shape-specific correlations for steady hydro-
dynamic interactions of thin oblate spheroids at low to moderate Reynolds numbers.
We present a novel approach for deriving a model for force and torque coefficients
of a 1:10 spheroid immersed in a viscous fluid. A data set consisting of orientation-
and Reynolds number-dependent steady forces and torques on a 1:10 oblate spheroid
is generated using resolved simulations. Next, a machine-learning technique is em-
ployed to derive models for coefficients of steady drag, lift and pitching torque on the
particle.

In Chapter 4 we extend the numerical framework presented in Chapter 2 to develop
a model for magneto-Archimedes levitation of non-spherical particles. This extended
numerical framework employs appropriate force and torque models for ellipsoidal par-
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ticles to capture the rotational and translational motion of non-spherical particles in a
magnetized fluid. New collision detection and response models are incorporated for
particle-particle interactions of ellipsoids, and a new simple strategy for the two-way
fluid-particle momentum exchange is presented. First, the model is tested against ex-
perimental observations and afterwards, it is applied to large MDS systems to quantify
the effects of particle aspect ratio and collisions in MDS of non-spherical particles.

Finally, in Chapter 5, we summarize the concluding remarks and discuss recommen-
dations for future research.
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2. Buoyancy-driven motion of
spherical particles in paramagnetic
fluids

This chapter1 presents an Euler-Lagrange approach for simulating magneto-Archimedes
separation of almost neutrally buoyant spherical particles in the flow of a magnetized
liquid.

2.1. Introduction

With the recent proliferation of single-life-cycle plastic products, efficient plastic re-
cycling technologies play a crucial role in environmental and economic sustainability
plans [54]. Most of the commonly used recycling methods include shredding mixtures
of different types of plastics followed by a melting and pelletizing process that trans-
forms the plastic waste into new lower value plastic products. To steer away from
plastic downcycling, high-resolution plastic sorting systems are required which are
capable of segregation of plastic waste into fractions, which are homogeneous with
respect to type and colour. Mass-density-based mechanical separation methods such
as the sink-float technique have been shown to be efficient for the separation of poly-
olefins from a plastic waste stream [128]. However, continuous one-step separation
of multiple types of polymers can not be achieved by the conventional sink-float tech-
niques. In contrast, magnetic density separation (MDS) is a promising high-resolution
mass density-based separation technique which incorporates a magnetically respon-
sive liquid and magnets to separate particles by means of magneto-Archimedes levita-
tion [14, 88, 114, 156]. Besides end-of-life plastics, MDS has also successfully been
applied to separate ores, non-magnetic metals [75, 129, 136] and toxic wastes [103].
The present work aims at modelling particle-laden flows in magnetic density separa-
tors to separate plastic particles of different mass densities.

Since the invention of ferrofluids in the 1960s [110], the feasibility of the application
of magnetically responsive liquids in technology and medicine has raised the interest
in magnetic liquids. A ferrofluid is a stable colloidal suspension of ferri- or ferromag-
netic nanoparticles in a carrier liquid. Due to their magnetic properties, these liquids
react to an external magnetic field. An external magnetic field gradient generates an
additional body force that alters the pressure inside the liquid. Saturated molecular
solutions of salts such as manganese(II) chloride have magnetic properties similar to
ferrofluids. The Langevin paramagnetic susceptibility of such paramagnetic solutions
is about five orders of magnitude lower than that of synthetic colloidal ferrofluids [19].
Therefore, to generate forces of the same order of magnitude, stronger magnetic fields
are required. However, the advantageous property of such solutions compared to a

1This chapter is based on the article: "Direct numerical simulation of Magneto-Archimedes levitation of
spherical particles". S. Tajfirooz, J.G. Meijer, R.A. Dellaert, A.M. Meulenbroek, J.C.H. Zeegers, & J.G.M.
Kuerten (2021). Journal of Fluid Mechanics, 910, A52.
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ferrofluid is their transparency, which allows optical measurement techniques such as
particle tracking velocimetry. Liquid oxygen also exhibits magnetic behaviour similar
paramagnetic to salt solutions. However, its application is limited as sustaining oxygen
in liquid phase requires cryogenic temperatures [25].

Neuringer and Rosensweig were the firsts to establish the theory for the motion of
magnetically polarizable fluids, ferrohydrodynamics [101]. The theory was initially
based on the assumption of a single-phase magnetizable medium with the magnetiza-
tion in equilibrium (quasi-equilibrium ferrohydrodynamics). Later, the effects of the
non-equilibrium process of magnetic relaxation and the moment of ponderomotive
forces were also included [118, 130]. In his book, Rosensweig addressed magnetic
levitation of non-magnetic particles in a ferrofluid, a phenomenon he referred to as
magnetic levitation of the first kind. Under the assumption of quasi-equilibrium fluid
magnetization, he derived an expression for the magnetic buoyancy force acting on a
small non-magnetic spherical particle immersed in a magnetic liquid [117].

Rosensweig’s observation of magnetic levitation of a solid object inside a ferrofluid
triggered the idea of mass density-based separation of materials through magneto-
Archimedes levitation. Since then, papers have been published on magneto-Archimedes
levitation of particles in paramagnetic and superparamagnetic liquids [3, 38, 39, 52,
74, 85, 96, 97, 157]. When a non-magnetic body immersed in a magnetic fluid is
exposed to a non-uniform magnetic field, due to the non-linear pressure distribution
inside the liquid, the buoyancy force acting on the body is dependent on the posi-
tion of the particle. An immersed body tends to travel to the point where the vertical
component of the total buoyancy force cancels the particle weight, making the ver-
tical position of this equilibrium point dependent on the mass density of the body
only. MDS exploits this principle to characterize subpopulations with different mass
densities and separate them from mixtures.

MDS of end-of-life plastic is carried out by immersing a mixture of shredded plas-
tic waste in a magnetically responsive liquid exposed to a magnetic field generated
by properly designed magnets [14, 66, 88, 125]. A continuous separation process is
achieved by generating a flow of magnetic liquid through the magnetic field. Magnets
used in MDS are designed such that the magnitude of the induced magnetic field has
a gradient perpendicular to the flow direction and parallel to the gravitational force.
This will cause the immersed particles to be sorted in different mass density frac-
tions which are levitated at different heights. Once a mixture of particles is injected
into the flow at the upstream end of the channel, sorted fractions can be recovered
by employing separator plates mounted at different heights at the downstream end.
Incorporating two magnets located at the top and bottom of the system enables sep-
aration of particles both lighter and heavier than the carrier liquid. A schematic of a
typical MDS system for separation of waste plastic is shown in figure 2.1.

Odenbach [103] addressed the possibilities and challenges in the commercial use of
MDS. In the design of an MDS system, one has to consider not only the properties of
the magnetic field and the magnetic liquid, but also the interaction of the dispersed
particles with the magneto-fluidic system, and the inter-particle interactions. The par-
ticle separation time, defined as the time required for all particles to reach their cor-
responding equilibrium positions is an important MDS design parameter. The shorter
the particle separation time, the shorter will be the time required for the particles to
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Figure 2.1.: A schematic of a magnetic density separator. Different markers (colours)
represent different mass densities.

be exposed to the magnetic field. Decreasing the particle separation time can lead
to an increase in the throughput of particles and therefore, an increase in the effi-
ciency of an MDS system. The particle separation time is in turn dependent on several
parameters such as the particle size and shape, the magnetic fluid viscosity and its
magnetization, and the external magnetic field. At appreciable volume fractions, the
particle separation time can be increased due to the inter-particle collisions.

The turbulence level in the separation channel is another crucial parameter in MDS
[66]. Maintaining a low turbulence level in the separation channel is highly favourable,
as turbulence level and mixing are intimately connected. A high turbulence level leads
to an enhanced mixing, which can hamper the separation process. In new generations
of MDS systems, measures have been taken to reduce the turbulence level in the sep-
aration chamber. These measures include the use of flow laminators such as honey-
combs and screens at the upstream end of the separation channel and incorporation
of moving walls [125]. The former decreases the upstream flow velocity fluctuations
and vortices, and the latter aims to prevent the formation of boundary layers.

Design optimization of magnetic density separators requires a fundamental under-
standing of the collective motion of particles in a magnetic liquid. This requires the
solution of many-particle problems that are coupled to a flow problem which is influ-
enced by an external magnetic field. In this work, we present and employ a carefully
chosen Euler-Lagrange approach to simulate the motion of particles in paramagnetic
liquids.

Euler-Lagrange simulations are usually categorized into two families, which are particle-
resolved simulations and point-particle simulations. Due to the prohibitively large
computational resources required for particle-resolved simulations, we use a point-
particle method, by incorporating appropriate models for forces and torques acting on
the particles [80]. The feedback forces and torques from particle to fluid are treated
by introducing local source terms to the time-dependent incompressible Navier-Stokes
equation of the fluid, which is solved with a pseudo-spectral method. We combine the
point-particle approach with experimental observations to investigate the particle dy-
namics in paramagnetic liquids. The dynamics of a single particle as it moves towards
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its equilibrium position in a magnetic liquid is the basis for the behaviour of many-
particle systems. A fundamental understanding of the motion of a single particle in a
magnetic liquid is therefore crucial to understand the collective motion of particles in
larger magneto-fluidic systems. Furthermore, the existence and stability of an equilib-
rium at which a particle is eventually levitated provides a useful framework for the in-
vestigation of particle motion in liquids within the Stokes regime (near the equilibrium
point) and beyond it (further from the equilibrium) where advective inertial forces are
important. The motion of spherical and non-spherical particles in non-magnetic flu-
ids has been the subject of several numerical and experimental investigations, see for
instance Jenny et al. [71], Horowitz and Williamson [65], Elghobashi and Truesdell
[42], Ern et al. [43], but only a limited number of studies have addressed the dynam-
ics of particles (drops) in magnetic liquids [55, 79, 143]. When a particle is allowed
to move freely under the combined effect of the magnetic buoyancy force and gravity,
new features can occur in the particle motion. Singh et al. [134] used a one-fluid
numerical model to explore the centre of mass and interface dynamics of an almost
neutrally buoyant droplet (mass density ratio of 1.15) levitating in a ferrofluid. By
approximating the vertical motion of the droplet by a simple dynamical model, the
authors showed that depending on the parameters of the considered magneto-fluidic
setup, the behaviour of vertical droplet motion can be monotonic or oscillating.

In the present work, we combine experimental observations with numerical simula-
tions to investigate the motion of rigid non-magnetic spherical particles within the
particle-to-fluid mass density ratio range [0.7, 1.3] in a paramagnetic liquid. Our nu-
merical model employs a four-way coupled point-particle approach to represent both
the fluid flow and the motion of the inertial particles. The aim of this paper is three-
fold. First, the 1D dynamics of a single spherical particle moving in a paramagnetic
liquid exposed to a magnetic field gradient is addressed. Through a priori mathemat-
ical analysis, the nature of the motion of a single spherical particle in a paramagnetic
liquid is parameterized. Solutions of the governing equation of the translational mo-
tion of a spherical particle in a paramagnetic liquid are compared to experimental
observations. Second, the effect of collisions in two-particle systems is investigated.
We validate our numerical model by comparison with results of particle tracking ve-
locimetry (PTV) experiments in one- and two-particle systems. Finally, many-particle
systems are numerically studied. Parametric studies are performed to investigate the
effect of the incorporation of the Basset history force, two-way coupling and collisions
in a practical MDS case. Next, the effect of particle size and initial particle distribution
on the separation efficiency is investigated.

The rest of the paper is organized as follows. We introduce the mathematical model for
the problem in section 2.2. With an introduction to the hydrodynamics of magnetically
responsive liquids in section 2.3, we address the concept of apparent mass density and
buoyancy force in magnetic liquids. Different elements of the model, including the
magnetic field, magnetic liquid and the immersed particles are discussed. The numer-
ical solution approach and the experimental setup are described in sections 2.3 and
2.4 respectively. In section 2.5 first, the vertical motion of an individual spherical par-
ticle in a magnetic liquid is parameterized. Next, the numerical results are validated
against experimental observations in single- and two-particle systems. Finally, the sep-
aration performance of many-particle systems is investigated numerically. Concluding
remarks and future directions are addressed in section 2.6.
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2.2. Mathematical description

In this section, we present the mathematical model for the incompressible isothermal
channel flow of a magnetically responsive fluid laden with spherical particles. The
considered system consists of three elements: A magnetic liquid considered as a con-
tinuous phase which is described by an Eulerian approach, discrete particles which are
described in a Lagrangian way, and a steady external magnetic field.

For the equation of motion of the magnetic liquid, we follow the quasi-equilibrium
theory of Rosensweig [118], where fluid magnetization is assumed to be in local equi-
librium with the magnetic field and M × H = 0, where H is the magnetic field
vector and M is the fluid magnetization vector. The particles are assumed to be rigid
spheres which interact with each other through collisions. The discrete particles and
the continuous phase are coupled by means of two-way momentum transfer. We first
introduce the governing equations of motion of a paramagnetic liquid exposed to a
magnetic field gradient in section 2.2.1. In section 2.2.2 the magnetic fields con-
sidered in this study are presented. Section 2.2.3 addresses the buoyancy force in
magnetic liquids and introduces the concept of apparent mass density. The equations
describing the motion of particles in a paramagnetic liquid are presented in section
2.2.4.

2.2.1. Continuous phase

The motion of a magnetically responsive fluid in a magnetic field is influenced by a
Kelvin body force which arises from the interaction between the local magnetic field
and the molecular magnetic moments characterized by the fluid magnetization. This
force is in addition to the gravitational body force acting on the fluid. Under the as-
sumption of equilibrium magnetization, the governing equations of the incompressible
flow of a Newtonian magnetically responsive fluid can be written as [118]

ρf

(
∂u

∂t
+ (u · ∇)u

)
= −∇p∗ + µ∇2u+ Finter, (2.1)

∇ · u = 0, (2.2)

where u denotes the fluid velocity, µ is the dynamic viscosity of the fluid, and ρf is
the mass density of the fluid. p∗ represents a reduced pressure which accounts for the
effects of the gravitational and the magnetic body forces. With gravity acting in the
direction of −ey, this reduced pressure is defined as

p∗ = p− pstatic = p+ ρfgy − µ0

∫ H

0

MdH, (2.3)

where M = |M | is the magnitude of the fluid magnetization, H = |H| is the magnetic
field strength, and µ0 denotes the permeability of vacuum. The term Finter in equation
(2.1) is the fluid-particle coupling term which takes care of the momentum transfer
from the discrete particles to the fluid.
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The flow field is obtained by solving (2.1) and (2.2) in a cubic domain with dimensions
Lx ×Ly ×Lz , where x, y, and z denote the stream-wise, wall-normal, and span-wise
directions respectively.

The magnetic liquid considered in this study is an aqueous paramagnetic fluid (MnCl2
salt solution) with a linear magnetization behavior. If we let χ denote the magnetic
susceptibility of the liquid, the magnetization vector field is defined as

M = χH. (2.4)

Both magnetic susceptibility and dynamic viscosity of paramagnetic salt solutions are
dependent on concentration of the solution [9].

2.2.2. Magnetic field

In this work, we consider one-dimensional magnetic fields which are uniform in planes
parallel to the surface of the magnet (∂H∂x = ∂H

∂z = 0), and decay exponentially with
the vertical distance from the magnet surface. Such magnetic fields can be gener-
ated by incorporating a specially designed array of alternately rotating magnetic poles
[113] [46] [132]. In the regions sufficiently far from the magnet edges, the generated
magnetic field by such configurations closely follows

H = H(y)ey. (2.5)

For a magnet located at the bottom of the computational domain such that its upper
surface is located at y = −L, the magnetic field strength reads

H(y) = H0e
−π(L+y)/p, y ∈ [−L,∞], (2.6)

where H0 is the magnetic field strength at the surface of the magnet, and p denotes
the pole size. Expression (2.6) is the solution of the Maxwell equation on the strong
side of an infinitely long Halbach array with continuously varying magnetization [59].
The reader is referred to Mallinson [90] for the derivation. If the magnet is located at
the top of the computational domain with its lower (strong) surface at y = +L, the
magnetic field strength follows

H(y) = H0e
−π(L−y)/p, y ∈ [−∞, L]. (2.7)

In case two identical magnets are located at the top and bottom of the computational
domain with their strong sides facing each other, the magnitude of the magnetic field
is assumed to be a linear superposition of the magnetic fields corresponding to each
magnet:

H(y) = H0

(
e−π(L+y)/p + e−π(L−y)/p

)
, y ∈ [−L,L]. (2.8)

For the sake of simplicity, in section 3 we consider a one-magnet configuration with
a magnetic field strength following (2.6). For simulations of many-particle systems
discussed in Section 4, a two-magnet configuration with a magnetic field strength
given by (4.26) is considered.
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|H| = constant

Figure 2.2.: A particle immersed in a magnetic liquid exposed to a magnetic field
gradient.

2.2.3. Buoyancy in magnetic liquids

Let us now consider a situation when a non-magnetic body with volume Vi is immersed
in a magnetic liquid exposed to an arbitrary magnetic field as shown in figure 2.2. The
buoyancy force acting on the body can be calculated by applying the Gauss divergence
theorem to the surface integral of the statice pressure at the interface s:

FB = −
∫
s

pstaticnds = −
∫
Vi

∇pstaticdV

=

∫
Vi

(ρfgey − µ0M∇H)dV.

(2.9)

Under the assumption of a constant magnetic force within the volume of the immersed
body (small body), the term M∇H can be assumed to be constant within the volume
Vi, and the buoyancy force can be approximated by:

FB,i ≈ ρfVigey − µ0ViM∇H. (2.10)

The first term in (2.10) is the conventional gravitational buoyancy force (also known
as the Archimedes force) which is constant throughout the liquid. The second term is
the magnetic contribution to the buoyancy force we refer to as “magnetic buoyancy
force”. If the magnets are designed such that the magnetic field gradient is parallel to
the gravitational force, the total buoyancy force reads

FB,i ≈ (ρfg − µ0M
dH

dy
)Viey. (2.11)

The magnitude of the total buoyancy force acting on a body immersed in a magnetic
liquid is dependent on the local gradient of the magnetic field and the magnetization
of the liquid. We can combine the magnetic and the gravitational contributions and
rewrite the buoyancy force in the form of the gravitational buoyancy force:

FB,i =ρf,aVigey, (2.12)
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where

ρf,a ≈ ρf −
(
µ0

g

)
M
dH

dy
(2.13)

is denoted as the “apparent fluid mass density”.

If it exists, the equilibrium position of an immersed body, is the position where the
magnitude of the buoyancy force is equal to the magnitude of the opposing gravita-
tional body force acting on the body:

FB,i + FG,i = ρf,aVigey − ρpVigey = 0. (2.14)

At this position, the local apparent mass density of the fluid is equal to the mass density
of the body. For a fixed magnetofluidic system, the equilibrium position of a body is
only dependent on the mass density of the body. Therefore, by a careful adjustment
of the magnetic field and the magnetic fluid properties, a gradient of apparent mass
density can be generated wherein particles in a specific mass density range can be
separated.

It should be noted that approximation (2.13) is based on the assumption that the term
M dH

dy is constant within the volume of a particle, which is only valid for a small particle
size, or a small gradient of the magnetic field. An accurate expression for the apparent
mass density of the magnetic liquid can directly be derived from the definition of the
static pressure in (4.18):

pstatic = −ρfgy + µ0

∫ H

0

MdH = −ρf,a(y)gy, (2.15)

which gives

ρf,a(y) = ρf −
µ0

gy

∫ y

0

M
dH

dy
dy. (2.16)

If the integral is taken over a small interval y ≈ dp, (3.18) reduces to the approxima-
tion (2.13).

The apparent mass density profile of a paramagnetic liquid exposed to a magnetic field
of a bottom-magnet system given by (2.6) reads

ρf,a = ρf +
πµ0χH

2
0

pg
e
−2π(L+y)

p . (2.17)

For a top-magnet configuration where the magnetic field follows (2.7) apparent fluid
mass density is

ρf,a = ρf −
πµ0χH

2
0

pg
e
−2π(L−y)

p , (2.18)

and for a two-magnet configuration with a magnetic field given by (4.26), the appar-
ent mass density of the liquid reads

ρf,a = ρf −
2πµ0χH

2
0

pg
e−

2πL
p sinh(

2πy

p
). (2.19)
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It follows directly from (2.17) and (2.18) that the maximum change in the apparent
mass density of the fluid for a one-magnet system is

|∆ρf,a|max = |ρf,a − ρf |max =
πµ0χH

2
0

pg
, (2.20)

and from (2.19), for a two-magnet configuration

|∆ρf,a|max = |ρf,a − ρf |max =
πµ0χH

2
0

pg
|1− e

−4πL
p |. (2.21)

The local gradient of the apparent mass density in the magnetic liquid is an indication
of the separation resolution in an MDS system, as it determines the local separation
distance of two consecutive mass density groups. The maximum gradient of apparent
mass density for a one-magnet system is

max

(
dρf,a

dy

)
=

2π2µ0χH
2
0

p2g
. (2.22)

For a two-magnet configuration, the maximum gradient of apparent mass density is

max

(
dρf,a

dy

)
=

4π2µ0χH
2
0

p2g

(
1 + e

−4πL
p

)
. (2.23)

2.2.4. Particle phase

2.2.4.1. Equation of motion

The motion of rigid spherical particles immersed in a magnetically responsive liquid
is described by solving the translational and rotational equations of motion for each
particle where contributions from various fluid-solid interaction mechanisms are taken
into account.

The translational motion of particles is based on an extension of the equation of mo-
tion derived by Maxey and Riley [94]. It is well known that for almost neutrally
buoyant particles the contributions of the Basset history force, the added mass force,
and the force due to the undisturbed velocity field to the motion of the particle cannot
be neglected [80]. The included forces in the Maxey-Riley equation are the force due
to the undisturbed velocity field, FU,i, steady viscous drag force, FD,i, added mass
force, FAM,i, history force, FH,i, gravitational body force, FG,i, and the buoyancy
force, FB,i.

For the drag coefficient, we consider the widely used correlation of Schiller and Nau-
mann [123] for a non-creeping flow. The history force correction to the drag is based
on the classic Basset kernel. Although, correlations for history force for non-creeping
flows are derived [76], in this work we neglect the finite Reynolds number effects on
the history kernel. The Faxén corrections for non-uniform flows and the lift force are
not considered here as the background flow is assumed to be uniform.
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The trajectory of each particle is obtained by solving the following set of differential
equations:

dxi
dt

= vi, (2.24)

dvi
dt

=
1

mi

(∑
Fi + F

(c)
i

)
, (2.25)

with ∑
Fi = ρfVi

Dui
Dt︸ ︷︷ ︸

FU,i

+ ρp,iVi
(ui − vi)
τt,i

(
1 + 0.15Re0.687

t,i

)
︸ ︷︷ ︸

FD,i

+
3

2
(πρfµ)

1/2
d2

p

[∫ t

−∞

d
dτ (ui − vi)
(t− τ)1/2

dτ

]
︸ ︷︷ ︸

FH,i

+
1

2
ρfVi

(
Dui
Dt
− dvi

dt

)
︸ ︷︷ ︸

FAM,i

− ρp,iVigey︸ ︷︷ ︸
FG,i

+ ρf,aVigey︸ ︷︷ ︸
FB,i

,

(2.26)

where Ret,i = dp|ui − vi|/ν denotes the particle translational Reynolds number, vi
is the particle translational velocity, and ui is the undisturbed fluid velocity at the
position of the particle. τt,i = ρpd

2
p/18µ is the particle translational relaxation time.

F
(c)
i represents the force on a particle due to a collision with another particle or a

wall.

Special care must be taken in evaluating the Basset history term when the relative
particle-fluid velocity undergoes a step change. The derivation of the Basset history
force is based on the assumption that the particle is present in the fluid at all times.
The case where the particle initial velocity is not equal to the initial fluid velocity at
the position of the particle is equivalent to the case where the particle is in a stagnant
fluid for t ∈ (−∞, 0) and the fluid velocity undergoes a step change at t = 0 [76].
Under such circumstance the Basset integral can be written as

∫ t

−∞

d
dτ (ui − vi)
(t− τ)1/2

dτ =

∫ t

t+s

d
dτ (ui − vi)
(t− τ)1/2

dτ +
ui(t

+
s )− vi(t+s )− ui(t−s ) + vi(t

−
s )

(t− ts)1/2
,

(2.27)
where ts = max{0, tc} is the time at which the step change occurs. A step change
can occur in simulations with non-zero velocity difference between the particle and
the fluid at t = 0, or during a particle-particle or particle-wall collision at t = tc.
The second term on the RHS of (2.27) is associated with such step changes in the
particle-fluid relative velocity.

At a collision instance, tc, the post-collision history integral can be written as∫ t

−∞

d
dτ (ui − vi)
(t− τ)1/2

dτ =

∫ t

t+c

d
dτ (ui − vi)
(t− τ)1/2

dτ +
ui(t

+
c )− vi(t+c )− ui(t−c ) + vi(t

−
c )

(t− tc)1/2
.

(2.28)
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Under the assumption of an infinitesimally small collision duration, the fluid veloc-
ity remains constant; ui(t−c ) = ui(t

+
c ). After each collision, the Basset integral (the

pre-collision history) can be set to zero and the post-collision Basset history can be
calculated as

Fh =
3

2
(πρfµ)

1/2
d2
i

[∫ t

tc

d
dτ (ui − vi)
(t− τ)1/2

dτ +
vi(t

−
c ))− vi(t+c )

(t− tc)1/2

]
. (2.29)

Inclusion of the Basset history force in (2.26) presents a numerical difficulty which
mainly arises from the need to store the relative particle acceleration over the entire
history of particle motion. Section 2.3 addresses the employed numerical approxima-
tion to overcome this difficulty.

The rotational motion of the dispersed phase is based on the theoretical equation of
Dennis et al. [36] for the steady viscous torque against particle rotation. The angular
velocity of the particles is obtained by solving

dΩi

dt
=

1

Ii

(
Ti + T

(c)
i

)
, (2.30)

where

Ti =− CT
1

2
ρp

(
dp

2

)5 ∣∣∣∣12ωi −Ωi

∣∣∣∣ (1

2
ωi −Ωi

)
, (2.31)

with

CT =

{
64π

Rer,i
if Rer,i ≤ 32,

12.9√
Rer,i

+ 128.4
Rer,i

if 32 < Rer,i < 1000, (2.32)

where Rer,i = d2
p

∣∣ 1
2ωi −Ωi

∣∣ /ν is the rotational Reynolds number, Ωi represents the
particle angular velocity, ωi is the undisturbed fluid vorticity at the position of the
particle, and Ii = 2

5mi(dp/2)2 is the moment of inertia. T (c)
i is the torque on a particle

due to a collision with a particle or a wall. It should be noted that in this chapter the
torque coupling between the particles and the liquid is assumed to be one-way, i.e no
feedback torque is imposed on the liquid.

2.2.4.2. Collisions

The inter-particle and particle-wall interactions are treated by a hard-sphere collision
model which closely follows the method of Hoomans et al. [64]. The collision time
is assumed to be infinitesimally small, and the pre- and post-collision translational
and angular velocities are explicitly related through normal and tangential restitution
coefficients and a dynamic friction factor. Consider two colliding particles with center
position vectors xa and xb, and contact point c. The normal unit vector at the contact
point c is n = (xa − xb) /|xa − xb|. If we let the superscripts + and − represent
the post- and pre- collision properties respectively, the tangential unit vector at the
contact point is t =

(
v−ab − n(v−ab · n)

)
/|v−ab − n(v−ab · n)| , where vab = va,c − vb,c is

the particle relative velocity at the contact point. The post-collision translational and
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rotational velocities can be derived according to the following equations:

ma

(
v+
a − v−a

)
= −mb

(
v−b − v

+
b

)
= J ,

Ia
Ra

(
ω+
a − ω−a

)
=

Ib
Rb

(
ω+
b − ω

−
b

)
= −n× J ,

(2.33)

where R = dp/2 is the particle radius, m is the particle mass, and J is the impulse
vector. The normal component of the impulse vector is given by

Jn = −(1 + en,eff)mabv
−
ab · n, (2.34)

where en,eff = −v−ab · n/v
+
ab · n denotes the effective coefficient of normal restitution,

and mab is the reduced mass defined as mab = mamb/(ma +mb).

For the tangential component of the impulse vector a distinction can be made based
on the type of collision being either “sticking” or “sliding”:

Jt =

{
− 2

7 (1 + et,eff)mabvab,0 · t if µfJn ≥ 2
7 (1 + et,eff)mabvab,0 · t (stick),

−µfJn otherwise (slide),
(2.35)

where et,eff = −v−ab · t/v
+
ab · t is the effective coefficient of tangential restitution, and

µfric is the coefficient of dynamic friction.

From the modeling viewpoint, appropriate values for the coefficients of restitution
and friction coefficient are of great importance in the prediction of the post-collision
dynamics. When inter-particle or particle-wall collisions occur in the absence of a vis-
cous fluid (dry collisions), the kinetic energy of the particles is dissipated purely due to
the contact mechanism. In a viscous fluid however, the collision process is influenced
by the viscous and inertial interactions of the particle with the fluid. To account for
the hydrodynamic effects of the surrounding fluid on the normal component of mo-
tion during a collision, an effective coefficient of normal restitution is introduced [34]
[56]. The normal component of post-collision velocity of particles during a non-head-
on collision follows the behavior of a head-on collision [153]. Regardless of the type
of collision (oblique or head-on), the effective (wet) normal coefficient of restitution
increases with the binary normal Stokes number defined as

Stn =
2

9

ρ∗p
ρf

Rerel,

where ρ∗p = (1/ρp,1 + 1/ρp,2)−1 is a reduced particle mass density, and Rerel =
dpup,n,rel/ν denotes the relative Reynolds number based on the normal component
of the particle relative velocity up,n,rel. Izard et al. [67] proposed a model which can
capture the experimentally observed effective coefficient of normal restitution for the
range of Stokes number 0 < Stn < 106. This correlation relates the effective normal
coefficient of restitution to the corresponding dry coefficient, the Stokes number, and
the effective particle roughness height. For a particle-particle collision this correlation
reads

en,eff

en,dry
=

(
1 +

1

Stn
ln

(
2ηe
dp

))
exp

− π/2√
Stn + ln

(
2ηe
dp

)
 , (2.36)
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where ηe is an effective average particle surface roughness height.

The qualitative behavior of immersed oblique collisions is similar to that of dry col-
lisions. The effective values for coefficients of dynamic friction and tangential resti-
tution depend on the considered fluid-particle system and the relative velocity of the
particles [73]. According to Walton’s hard-sphere model [151], the dynamic friction
coefficient and the tangential coefficient of restitution can be obtained by plotting
the tangent of rebound angle as a function of tangent of incidence angle. These two
tangents are given by

Ψafter =

(
v+
ab · t

)(
v−ab · n

) ,
Ψbefore =

(
v−ab · t

)(
v−ab · n

) . (2.37)

For the sticking collisions Ψafter = −et,effΨbefore, and for sliding collisions Ψafter =
Ψbefore− 7

2µeff(1 + en,eff). In a similar manner, in section 2.5.2.2 we will determine the
effective (lubricated) dynamic friction coefficient µeff and effective coefficient of tan-
gential restitution, et,eff by performing several particle-particle collision experiments
at different incidence angles.

2.3. Numerical approach

2.3.1. Fluid phase

The flow field is obtained by reducing (2.1) and (2.2) to a fourth-order equation
for wall-normal velocity component and a second-order equation for the wall-normal
component of vorticity. The equations are discretized in space by using a pseudo-
spectral method. Our method incorporates a Fourier-Galerkin approach in the periodic
directions, x and z, and a Chebyshev-tau method in the wall-normal direction, y. The
temporal discretization of the linear terms is carried out by a three-stage Runge Kutta
scheme, and the non-linear terms are advanced in time by the Crank-Nicolson method.
For details of the numerical approach, the reader is referred to Kuerten et al. [81].

2.3.2. Particle phase

2.3.2.1. Time integration

The equations of translational and rotational motion of spherical particles (2.24, 3.20,
2.30) are discretized in time using a forward Euler method. Our explicit scheme
takes the partial time step of each stage of the Runge-Kutta scheme used for the fluid
solver as a time step. In the numerical solution of system (2.26), integration of the
Basset history term is the most time-consuming. To decrease the numerical costs of
the evaluation of the Basset history contribution, we use the method of Van Hinsberg
et al. [144] where a “window” is applied to the Basset kernel. The history kernel
is split into a window kernel and a tail kernel. The window kernel (recent history)
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is approximated by an ordinary trapezoidal rule over the interval [t − twin, t] that
consists of the Nw previous time steps. The tail kernel (old history) over the time
interval (−∞, t− twin) is approximated by a sum of exponential functions, leading to
a considerable reduction in computational time as well as memory requirements.

2.3.3. Two-way coupling: Fluid-particle momentum transfer

The presence of particles in the fluid is represented by a local feedback force from the
particles on the fluid defined as

F inter (x) ≡ −
Np∑
n=1

P
(
x− x(n)

p

)
F

(n)
2w (2.38)

where Np is the total number of particles and F (n)
2w is the feedback force from the nth

particle modeled as

F
(n)
2w = FU + FD + FH + FAM. (2.39)

In point-particle Euler-Lagrange simulations the term P
(
x− x(n)

p

)
is usually a nu-

merical projection of the Dirac delta function from the particle center x(n)
p to the

Eulerian grid point x. A common approach to numerical projection P is to distribute
the feedback force over the eight grid points surrounding the particle center using the
same weights as for the interpolation of fluid properties to the position of the parti-
cle (point-force approach). In the limit of particles which are much smaller than the
size of the Eulerian grid spacing, this approach is theoretically valid. However, as the
particle size approaches the size of the grid spacing, the feedback force to the fluid mo-
mentum equation is spread over a volume. Since in our simulations the grid size can
be smaller than the particle diameter dp, we choose to distribute the particle feedback
force over a volume approximately equal to the volume of the particle. A top-hat filter
is implemented to distribute the feedback force from the Lagrangian particle position
to the Eulerian grid points:

P(x− xp) =


1

σ1σ2σ3
, if |xk − xp,k| < σk/2 (k = 1, 2, 3),

0, otherwise.
(2.40)

The width of the filter σk, k = 1, 2, 3 is closest to the width of the particle encompass-
ing cube in each direction. This means that the particle feedback force is distributed
over a rectangular block with a volume closest to the volume of the smallest bound-
ing box around the particle. This allows us to keep the feedback force distribution
volume constant under mesh refinement. Furthermore, considering the fact that the
grid spacing is not uniform in the wall-normal direction, the distribution volume is
independent of the local grid spacing. Figure 2.3 shows a schematic of the applied
filter for several particle positions.
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Figure 2.3.: A 2D schematic of the top-hat filter used to distribute the feedback force
from the Eulerian particle position to the Eulerian grid points. σ1 and σ2

are widths of the filter in x- and y- directions respectively.

2.4. Experimental setup

We validate the results of our numerical approach with experimentally obtained parti-
cle tracks in single- and two-particle systems. For this purpose, an experimental setup
is designed which enables the investigation of levitation motion of single spherical
particles, as well as binary collision dynamics in a paramagnetic liquid subject to a
magnetic field gradient. The paramagnetic liquid is synthesized by dissolving solid
MnCl2 salt in distilled water up to the saturation point. The solution is afterwards fil-
tered twice with filters of pore sizes 3 µm and 1 µm, and is stabilized by hydrochloric
acid. The molality of the final aqueous solution is 4.62 mol/kg.

Measurements are performed in a 15 × 15 × 15 cm3 cubic tank. The particles can be
inserted either at the top or through a hole at the bottom of the tank. A magnet is lo-
cated underneath the tank to generate the desired magnetic field in the form of (2.6).
The magnet is designed such that the induced magnetic field has a vertical gradient
at the centre of the tank, where the measurements are performed. Two cameras are
used to record the particle trajectories through two perpendicular sidewalls of the tank
by means of 3D PTV. A schematic of the experimental setup is shown in figure 3.15
(a). The particles considered for the experiments are spherical unplasticized poly-
tetrafluorethylene (PVC-U) and polyoxymethylene (POM) beads with mass densities
ρp,1 = 1434 kg/m3, and ρp,2 = 1406 kg/m3, respectively. Some of the experimental
parameters are summarized in table 3.2. Figure 3.15 (b) depicts the magnetic field
strength on the vertical line passing through the centre of the tank, which is measured
using a Gauss-meter. An exponential function of the form of (2.6) is fitted to the mea-
sured magnetic field strength profile to find the values of p and H0, which are given
in table 3.2.
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z

y

x

Bottom magnet

Release mechanism

Camera 1

Camera 2

(a) Experimental setup

(b) Magnetic field strength and apparent
mass density on a vertical line passing
through the center of the tank

Figure 2.4.: (a) A sketch of the experimental setup. A tank filled with manganese(II)
chloride solution is placed on top of a magnet. The particles are released
by a rotating release mechanism. Two cameras record the motion of
released particles. (b) Magnetic field strength on the vertical line at the
centre of the tank (black symbols). The measured magnetic field strength
is fitted to an exponential function of the form H = H0e

−π(L+y)/p with
H0 = 422 kA/m and p = 0.118 m. The apparent mass density of the
magnetic fluid with χ = 7 × 10−4 is indicated by the blue dashed line.
The corresponding vertical axes are indicated by the arrows. The mag-
netic susceptibility is calculated by measuring the magnetization of the
liquid using a vibrating sample magnetometer (EZ-9 from Microsense),
and computing the slope of the H-M curve. During the measurement,
the magnetic liquid showed no hysteresis, which indicates the paramag-
netic behaviour of the liquid.
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ρp,1 [kg/m3] 1.434× 103

ρp,2 [kg/m3] 1.406× 103

ρf [kg/m3] 1.403× 103

µf [kg/m/s] 5.54× 10−3

χf 7× 10−4

L [m] 0.075
p [m] 0.1181
H0[kA/m] 422

Table 2.1.: Properties of the experimental setup. The particles used for the experi-
ments are spherical PVC-U (p1) and POM (p2) beads. The paramagnetic
liquid is a saturated aqueous solution of MnCl2 salt. The molal concen-
tration of the synthesized solution is 4.62 mol/kg. The susceptibility of
the paramagnetic liquid is calculated by measuring the magnetization of
the solution, and the dynamic viscosity of the liquid is measured using a
rheometer.

2.5. Results and discussion

In this section, we first present and discuss our results for single- and two-particle
systems. In these systems, the particle-induced flow is neglected, and the equations
of motion of the fluid are not solved, which is valid at the very low particle volume
fraction of these simulations. In subsection 2.5.3, we address many-particle systems in
which we do solve the fluid equations and also consider two-way momentum coupling
between the fluid and particles.

2.5.1. The motion of a single particle immersed in a quiescent
paramagnetic liquid

The buoyancy-driven motion of spherical particles in Newtonian fluids has been exten-
sively studied. It is shown experimentally [65] and numerically [71] that the motion
of a freely falling or ascending sphere under the action of gravity in a Newtonian
fluid is fully characterized by two dimensionless numbers namely the particle rela-
tive mass density ρp/ρf , and the Galileo number Ga =

√
|1− ρp/ρf | gd3

p/ν. For a

particle settling in a magnetic liquid an “apparent Galileo number” can be defined as
Gaa =

√
|1− ρp/ρf,a|gd3

p/ν. Unlike the settling of a particle in a non-magnetic liquid,

for a particle traveling inside a magnetically responsive liquid in a direction paral-
lel to the magnetic field gradient, the apparent Galileo number is not constant. This
number is dependent on the local apparent mass density of the liquid and therefore
on the position of the particle. The further away the position of the particle from
its equilibrium point, the larger will be the apparent Galileo number. As the particle
approaches its equilibrium position, the apparent Galileo number goes to zero. For
the magnetofluidic systems considered in this study, the range of the apparent Galileo
number is 0 ≤ Garma ≤ 150. Within this range, it is known that, regardless of the
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particle mass density ratio, the particle trajectory is vertical and quasi-steady [71].
Therefore, we can assume that the motion of a single particle in a quiescent magnetic
fluid exposed to a magnetic field with negligible horizontal gradients is in y-direction.
Based on this assumption, the governing equation of motion of the particle can be
reduced to a two-dimensional scalar non-linear system. In the following section we
will investigate the solution behavior of such non-linear systems through a dynamical
analysis.

2.5.1.1. Equilibrium position and nature of particle motion

In our analysis we make the following simplifying assumptions: Considering the fact
that the fluid is at rest (U0 = 0), we neglect the effect of fluid motion on the particle.
Based on our earlier discussion, considering the range of apparent Galileo number and
the 1D magnetic field, we can further assume that the particle does not undergo any
rotational or lateral movement. Under these assumptions, (2.24) and (3.20) can be
simplified to the following system of scalar equations:

dy

dt
=v,

dv

dt
=

ρp

ρp + 0.5ρf

[
−
(
1 + 0.15Re0.687

p

)
τt,i

v − 3

2
(πρfµ)

1/2
d2
i

∫ t

0

1

(t− τ)1/2

dv

dτ
dτ

+

(
ρf,a

ρp
− 1

)
g

]
.

(2.41)

System (2.41) is a non-autonomous system of two first-order nonlinear differential
equations. The time-dependency stems from the Basset history contribution.

For brevity we present our analysis for a bottom-magnet configuration where the fluid
apparent mass density follows (2.6). For such a configuration System (2.41) can be
written in matrix notation as

Ẏ =
dY

dt
= F (Y , t), (2.42)

where

Y =

(
y
v

)
(2.43)

and

F (Y , t) =

(
v

αξv + ηξ + βξeθy + αεξv|v|0.687 + ζξ
∫ t

0
1

(t−τ)1/2
dv
dτ dτ

)
(2.44)

with

α =− 1

τt
, η =

(
ρf

ρp
− 1

)
g, β =

2πµ0χH
2
0

pgρp
e−2πL/p, θ = −2π

p
,

ε =− 0.15(
dp

ν
)0.687, ζ = −1.5 (πρfµ)

1/2
d2

p, ξ =
ρp

ρp + 0.5ρf
.
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By setting Ẏ = (0, 0)T and t → ∞, the history integral term tends to zero as t → ∞
and the equilibrium point of the system reads

Ye =

(
ye
0

)
=

(
1
θ ln(−ηβ )

0

)
, (2.45)

where ye corresponds to the equilibrium position of the particle in the magnetic liquid.
Considering the fact that β > 0, an equilibrium point exists only if η < 0 i.e. ρf

ρp
≤ 1.

This implies that a bottom-magnet configuration is only capable of levitating particles
which are heavier than the magnetic liquid. Particles which are lighter will eventually
float on top of the liquid.

Given the initial position and velocity of the particle, a numerical approximation of
system (2.42) can be solved to find the vertical position and velocity of the particle
as functions of time. It is, however, useful to obtain a qualitative understanding of
the behavior of a particle near its equilibrium point, before solving the system. If we
assume that the history force is negligible compared to the other forces acting on the
particle, system (2.42) can be converted to an autonomous system of the form

Ẏ =
dY

dt
= G(Y ), (2.46)

where

G(Y ) =

(
v

αξv + ηξ + βξeθy + αεξv|v|0.687

)
. (2.47)

Without losing generality we can shift the equilibrium point of the system to the origin
by making the substitution Ỹ = Y − Ye. Near the equilibrium point, Ỹ → (0, 0)T .
Therefore, system (2.47) can be approximated by the linear system

˙̃Y = JỸ , (2.48)

where the Jacobian matrix J is

J =

(
0 1

βθξeθye αξ

)
=

(
0 1
−ηθξ αξ

)
. (2.49)

The stability and type of the critical point of the system (2.48) are determined by
eigenvalues of the matrix J, λ1,2 = αξ/2 ±

(
α2ξ2/4− ηθξ

)0.5
. It can be shown that

except for the special case where α2/4 = ηθ, the stability and type of the critical point
are not affected by the non-linear terms in the system (2.46). Therefore the behavior
of the solution of non-linear system (2.46) can be determined by studying the much
simpler linear system (2.48). In case of an existing equilibrium point, considering
the fact that αξ < 0 and ηθξ > 0, the eigenvalues are either negative real numbers
or complex numbers with a negative real part. Therefore the solution of the system
is always asymptotically stable. The behavior of the solutions is dependent on the
sign of (α2ξ2/4 − ηθξ). If αξ/2 >

√
ηθξ, the eigenvalues are real and the equilibrium

point is an asymptotically stable node. The particle, in this case, monotonically moves
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Configuration ye dp,crit

Top-magnet p
2π ln

(
(ρf−ρp)pg

2πµ0χH2
0

) [
81µ2p

π(ρp−ρf )(2ρp+ρf )g

]0.25

Bottom-magnet − p
2π ln

(
(ρp−ρf )pg

2πµ0χH2
0

) [
81µ2p

π(ρf−ρp)(2ρp+ρf )g

]0.25

Two-magnet − p
2π sinh−1

(
(ρp−ρf )pg

4πµ0χH2
0

)  162gµ2p2e
2πL
p

π

√
16π2µ2

0M
2
0H

2
0+g4p2(ρf−ρp)2e

4πL
p (ρf+2ρp)

0.25

Table 2.2.: Particle equilibrium position and critical particle diameter for top-, bottom-
, and two-magnet configurations with magnetic fields following (2.7),
(2.6), and (4.26) respectively.

towards its equilibrium point. On the other hand, for αξ/2 <
√
ηθξ the eigenvalues

are complex numbers. The equilibrium point, in this case, is a spiral point; The par-
ticle exhibits an oscillatory motion around the equilibrium point while it approaches
it. For a fixed magnetofluidic configuration a critical particle diameter can be found
above which oscillatory behavior occurs. This critical diameter for a single-magnet
configuration, regardless of the magnet position is

dp,crit =

[
81µ2p

π (ρp − ρf) (2ρp + ρf) g

]0.25

(2.50)

A similar analysis can be performed for top-magnet and two-magnet configurations
with magnetic fields described by (2.7) and (4.26), respectively. The results are sum-
marized in table 2.2. It is notable that for one-magnet configurations the particle
behavior is dependent on three parameters only, namely α, η, and θ. For two-magnet
systems the nature of particle motion is also dependent on the parameter β which
contains the magnetic field strength, H0.

To illustrate the dependency of particle dynamics on its diameter, we consider the
bottom-magnet configuration presented in section 2.4 with parameters given in table
3.2. In such configuration, the equilibrium position of a particle with a mass density
ρp = 1.434 × 103 kg/m3 is ye = −0.35L. The corresponding critical diameter is
dp,crit = 3.2 mm. To obtain the particle vertical position as a function of time, system
(2.46) is solved by an explicit Euler method.

Figure 2.5 compares the time evolution of the vertical position of four particles with
diameters of 1, 2, 4, and 6 mm obtained by solving system (2.46) with the same initial
condition, Y0 = (−0.9L, 0)T . The transition from monotonic to oscillatory motion can
be observed by comparing the results of the 2- and 4-mm particles.

The effect of particle size on the nature of particle motion can be further illustrated by
exploring the phase portraits and direction fields associated with solutions of system
(2.46). Figure 2.6 compares the direction fields and phase portraits of solutions of
this system obtained with combinations of three different initial positions, and three
different initial velocities for d = 2 mm (a) and d = 6 mm (b). Regardless of the
initial condition, a 2-mm particle moves monotonically towards its equilibrium posi-
tion, whereas a 6-mm particle exhibits a spiraling behavior. Due to the larger magnetic
buoyancy force, a 6-mm particle gains larger velocity and overshoots the equilibrium
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(a) Vertical position versus time (b) Levitation time versus particle diame-
ter

Figure 2.5.: Effect of particle size on levitation dynamics. (a) Time plots of particle
vertical position for 1-, 2-, 4-, and 6-mm particles. (b) Particle levitation
time as a function of particle diameter. The particle critical diamter is
dp,crit = 3.2.

point.

We study the effect of particle size on the temporal evolution of particle position
by comparing the time it takes for particles with different sizes to reach to their
equilibrium position. If we let {tl,i} denote a set containing roots of the equation
|y(t) − yeq| = tol, with tol denoting a considered tolerance, a particle levitation time
can be defined as tl = max{tl,i}. The effect of particle diameter on levitation time
is illustrated in 2.5 (b), where particle levitation time tl is plotted versus the particle
diameter. All the reported levitation times are computed with a tolerance of tol = 0.5
mm. In figure 2.5 (b) particle levitation time is plotted against the particle diameter.
It can be clearly seen that increasing the particle size leads to an initial rapid decrease
in the levitation time. The levitation time reaches a minimum at around dp,= 0.0045
m, and starts to increase afterward. This behavior is due to the increased amplitude
of oscillations around the equilibrium height at higher particle diameters.

2.5.1.2. History Effects

In the previous analysis effects stemming from the Basset history force are neglected.
However, it is known that the history force can be large at high particle acceleration
rates. Therefore, in this section we investigate the effect of Basset history force on
particle motion. Figure 2.7 compares the temporal evolution of position and velocity
of a particle with dp = 2 mm and ρp = 1.434 × 103 kg/m3 with initial condition
Y0 = (−0.9L, 0)T over time interval [0, tmax = 13.11] s with and without Basset history
force. A window size of tw = 0.1tmax is considered for the computation of the history
kernel.

For the 2-mm particle, the history force leads to a slight decrease in the initial accel-
eration followed by a decrease in the deceleration of the particle as it approaches its
equilibrium position. Initially the history force slows down the particle as it introduces
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(a) dp = 2 mm (b) dp = 6 mm

Figure 2.6.: Direction field and phase portraits for the solutions of system (2.46) with
nine different initial conditions (black circles). The critical point of the
system is Ye = (0,−0.35L)T (red circle). The critical diameter for the
considered parameters is dp,crit = 3.2 mm. (a) dp = 2 mm: The critical
point is a node. (b) dp = 6 mm: The critical point is a spiral point.

(a) Vertical position (b) Vertical velocity

Figure 2.7.: Comparison of the solutions of autonomous system (2.46) and non-
autonomous system (2.42) with initial condition Y0 = (−0.9L, 0)T . The
particle diameter is dp = 2 mm.
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(a) Vertical position (b) Vertical velocity

Figure 2.8.: Comparison of the solutions of the autonomous system (2.46) and the
non-autonomous system (2.42) with initial condition Y0 = (−0.9L, 0)T .
The particle diameter is dp = 6 mm.

extra damping to the system. As the particle gets closer to the equilibrium point the
moving fluid drags the particle and reduces deceleration.

The effect of Basset history force on the motion of a larger particle is shown in figure
2.8 where the particle diameter is increased to 6 mm. Although the history effects
do not alter the oscillatory nature of the particle motion, it can be observed that the
history force leads to an amplified overshoot near the equilibrium point. This can
be interpreted as follows. As the particle approaches its equilibrium position, due to
history effects the moving fluid pushes the particle further away from the equilibrium
point leading to a larger overshoot. However, the damping introduced by history
effects decreases the particle oscillations.

The contribution of the Basset history force to the motion of a particle is further il-
lustrated in figure 2.9, where different hydrodynamic forces acting on the particle are
compared for dp = 2 and 6 mm. Note that the forces are normalized by the gravi-
tational force. We observe that for both particle sizes, the added mass force has the
smallest relative contribution to the particle motion. For the larger particle, the maxi-
mum absolute values for normalized steady drag and Basset history forces are smaller
and are attained later. This explains the higher acceleration of the 6-mm particle.
Thanks to particle’s higher inertia, for the 6-mm particle the relative contribution of
the Basset history force is larger compared to the steady drag force. Moreover, for a
larger particle, the history force has an appreciable contribution over a larger fraction
of the levitation time.

2.5.2. Experimental validation of the mathematical model

In this section, we compare the solutions of systems (2.42) and (2.46) with exper-
imental observations. First, we test our mathematical model against single-particle
levitation experiments. Next, we consider two-particle systems where the effect of
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(a) dp = 2 mm (b) dp = 6 mm

Figure 2.9.: Temporal evolution of the added mass, static drag, Basset history, and
buoyancy force normalized by the gravitational force during the motion
of a spherical particle with (a) dp = 2 mm and (b) dp = 6 mm

collisions is investigated.

2.5.2.1. Single particle systems

For the singe-particle measurements, we consider two PVC-U spherical particles with
diameters dp = 3 and dp = 5 mm, and mass density ρp,1. The other problem parame-
ters are kept identical to those given in table 3.2. It was shown numerically in section
2.5.1.2 that neglecting the history effects introduces an error which increases at larger
particle sizes. In order to validate this, we compare the experimental recordings of
particle vertical position with the results of the numerical simulations obtained with
the same initial conditions.

For each particle two sets of experiments are performed, a sinking and a rising exper-
iment. The equilibrium height of the considered PVC-U particles is ye = −0.35L. For
the sinking case the particle is released at the top, and for the rising case the particle
is released at the bottom of the tank. Figure 2.10 compares the numerical solution of
system (2.42) which includes the Basset history force, to that of reduced autonomous
system (2.46), and the experimental vertical position of the particles. Each experiment
is repeated six times and the results are averaged. The error bars correspond to the
standard deviation of these six measurements. The considered history window size
for the simulations is twin = 0.2 s. The larger error bars in the experimental results
of the 3-mm particle are due to the fact that the slower motion of smaller particles
is relatively more sensitive to small disturbances in the flow. A very good agreement
is observed between the numerical results with Basset history force and the experi-
mental recordings. The larger contribution of history force to particle motion at larger
diameters can be observed by comparing the plots of the 3- and 5-mm particles. It can
clearly be seen from figure 2.10 (c) that exclusion of Basset history force leads a to
35% underestimation of the settling time for the falling 5-mm particle (6.22 s versus
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(a) Falling 3-mm particle (b) Rising 3-mm particle

(c) Falling 5-mm particle (d) Rising 5-mm particle

Figure 2.10.: Vertical position of 3- and 5-mm PVC-U particles. The dashed curves
correspond to numerical solutions of system (2.42). The dotted lines in-
dicate the particle position obtained form solving reduced system (2.46)
and the solid curve corresponds to the experiments.

4.00 s). For the rising 5-mm particle (figure 2.10 (d)) an underestimation as high as
47% is observed (4.98 s versus 2.65 s). These observations prove that system (2.42)
can very well describe the vertical motion of a single spherical particle, and that the
contribution of Basset history force is crucial for accurate prediction of the motion of
single particles in a paramagnetic liquid at larger diameters. The numerical results
presented in the rest of the paper are obtained by the numerical model which includes
the Basset history force, unless stated otherwise.

2.5.2.2. Effect of collisions: two-particle systems

In a many-particle MDS system, a particle can undergo multiple collisions as it moves
towards its equilibrium position. Collisions are expected to hamper the motion of the
particle and therefore delay the separation. In this Section, we first present the ex-
perimental procedure for obtaining the effective coefficients of friction and tangential
restitution. Next, we test our hard-sphere model by comparing the results of numerical
simulations with experimental observations in two-particle systems.
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Figure 2.11.: The tangent of rebound angle as a function of the tangent of incident
angle for a 5-mm PVC particle colliding with a 5-mm POM particle. Each
point represents one collision experiment.

Experimentally, collisions are obtained by releasing two properly selected particles
simultaneously from the top and bottom of the tank. The considered particles for the
experiments are a 5-mm PVC-U particle with mass density ρp,1 (the sinking particle),
and a 5-mm POM particle with mass density ρp,2 (the rising particle). Depending
on the offset between the center of the particles, the lateral center distance (LCD),
collisions can range from “head-on” to “grazing”. We define an impact factor as I =
LCD
dp

, where for I = 0 a collision is head-on and I = 1 corresponds to a grazing
collision.

Yang and Hunt [153] found that lubricated contact during collisions with low binary
Stokes numbers reduces the dependence of rebound motion on the tangential particle-
particle interactions. The dominating hydrodynamic effects of the interstitial fluid on
the tangential component of motion during a collision can be captured by incorporat-
ing an effective (lubricated) friction coefficient. The two remaining effective collision
parameters are obtained by investigating the tangents of incident and rebound at var-
ious particle-particle collisions. The binary normal Stokes number for the considered
collisions are in the range 0 < Stn ≤ 14. Considering the zero pre-collision angular
velocity and the small particle rotational relaxation time, the angular velocities remain
almost zero after the collision. The tangent of rebound is therefore purely based on the
translational particle velocity. In figure 2.11 the tangent of rebound angle for 40 dif-
ferent collisions is plotted against the tangent of incident angle. The positive values of
ψout indicate the absence of the sticking regime. This reduces the number of required
collision parameters to two, as the tangential restitution coefficient is only needed for
capturing sticking collisions. The lubricated friction coefficient, µeff is found by fitting
the line ψout = ψin − 7

2 (1 + en,eff)µeff to the data, where en,eff is calculated by (2.36)
with en,dry = 0.86 and ηe = 1.5 µm. Depending on the value of en,eff , the lubricated
friction coefficient ranges from µeff = 0.004 to µeff = 0.008. We use an average value
of µeff = 0.005 in our collision model.

Figure 2.12 compares the vertical position of the particles versus time, obtained from
numerical simulations and experimental recordings for three collisions with impact
factors I = 0.02, I = 0.41, and I = 0.78. The numerical results are performed with a
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Table 2.3.: Parameters used for the many-particle simulations
ρf [kg/m3] 1.4× 103

µf [kg/m/s] 5.54× 10−3

χf 7× 10−4

L [m] 0.075
p [m] 0.2

H0[kA/m] 637

one-way coupled model using the same initial positions and velocities as in the exper-
iments. To facilitate the comparison, the numerical results are slightly shifted in time
to match the numerically and experimentally obtained collision times. A remarkably
good agreement is observed between the numerically and experimentally obtained
vertical positions of the particles as functions of time. The maximum increase in the
levitation time is caused by the collision with I = 0.02. This collision leads to about
15% and 45% increase in the levitation time of the sinking and rising particle respec-
tively (based on experiments).

The horizontal motion of the particles can be seen in movies 1, 2 and 3, which can
be found in the online version of the manuscript. In contrast to the vertical direc-
tion, some discrepancies are observed between the numerically and experimentally
obtained results. These discrepancies are due to the magnetic field non-uniformities
in off-centre regions of the experimental setup. The gradient of the magnetic field
strength is vertical only in the central region of the tank. Hence, the assumption of
vertical magnetic buoyancy force is only valid in this central region. Once particles un-
dergo a collision, they enter regions where the magnetic buoyancy force is not vertical.
In these regions, the horizontal gradient in the magnetic field strength pushes the par-
ticles back to the centre of the tank. This results in deviations from the numerically
obtained post-collision horizontal motion of the particles.

2.5.3. Many-particle systems

In section 2.5.2, we validated our numerical model by comparison with experimental
measurements of single- and two-particle systems. In this section, we present the re-
sults of the application of this numerical model to many-particle systems. We assume
a uniform initial flow field with no disturbances. Particle-induced flow disturbances
are taken into account by considering two-way momentum transfer between the fluid
and the discrete spherical particles as described in section 2.3.3. A two-magnet con-
figuration is considered where levitation of particles both lighter and heavier than the
carrier liquid is possible. The magnetic field is described by (4.26). The computational
domain has dimensions Lx = 4πL/3, Ly = 2L, and Lz = 4πL/3 as depicted in figure
2.13. The properties of the configuration are summarized in table 4.2.

As mentioned in section 2.1, in most recent MDS systems conveyor belts are installed
at the top and bottom of the channel. These conveyor belts move with the same speed
as the mean streamwise velocity U0. This circumvents the formation of boundary
layers and transition to turbulence near the walls. For such flow configurations, it is
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(a) I = 0.02 (b) I = 0.41

(c) I = 0.78

Figure 2.12.: Temporal evolutions of vertical positions of particles during binary col-
lisions between a rising PVC-U particle and a falling POM particle with
three different impact factors. The size of the particles are indicated by
the vertical bars. Movies of the binary collision experiments and simu-
lations are found at: Link to movie 1, Link to movie 2, Link to movie 3.
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Figure 2.13.: A schematic of the computational domain for the many-particle simula-
tions. In a frame moving with the same velocity as the conveyor belts,
U0i, the mean streamwise velocity of the fully-developed flow is zero.
In this frame, the walls at y = ±L are at rest.

convenient to solve the governing equations in a frame moving in x-direction with
the mean streamwise flow velocity U0. In this frame, the mean velocity of the fully-
developed flow is zero, and the top and bottom walls are at rest. Therefore we impose
no slip and no penetration velocity boundary conditions at y/L = ±1, where the
surfaces of the two magnets are located. In x- and z-directions periodic boundary
conditions are imposed.

Figure 2.14 (a) depicts the magnitude of the magnetic field, and the corresponding
effective mass density of the magnetic fluid as functions of y. According to (2.21) and
(2.23), this configuration is capable of sorting a mixture ρp/ρf ∈ [0.6, 1.4] (|∆ρf,a|max =

0.4ρf), with max(
dρf,a
dy ) = 0.97ρf/L at the surface of the magnets. Particles with mass

densities in the range of ρp,k/ρf ∈ [0.7, 1.3] are uniformly distributed over ten mass
density groups. These mass densities and their corresponding equilibrium heights are
indicated by dashed lines in figure 2.14 (a). Particles are initially randomly distributed
in two injection zones at the bottom, (−1 < y/L < −0.75) and top (0.75 < y/L < 1)
of the channel. The injected particles are pre-separated into two groups of light and
heavy particles. Particles heavier than the carrier liquid (ρp,h/ρf ∈ (1, 1.3]) are in-
jected at the bottom, and particles lighter than the liquid (ρp,l/ρf ∈ [0.7, 1]) are in-
jected at the top of the domain. For a more realistic initial condition, a particle
impurity is considered in each injection zone. The particle impurity is defined as
Imp =

Np,h

Np,top
=

Np,l

Np,bottom
, where Np,top and Np,bottom are the total numbers of par-

ticles injected in the top and bottom injection zones. Np,l and Np,h are the number
of light and heavy particles, respectively. In case of a perfect pre-separation Imp = 0,
whereas Imp = 0.5 indicates no pre-separation (fully random particle distribution).
For not pre-separated particles, during a short time interval, the apparent Galileo
number can be in the range Ga ∈ [150, 218]. We ignore deviations from the steady
vertical motion, caused by the transition in the wake of these particles.

The critical particle diameter as a function of particle mass density derived in section
2.5.1.1, is plotted in figure 2.14 (b). The maximum critical particle diameter corre-
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(a) (b)

Figure 2.14.: (a) Magnetic field strength profile and the corresponding profile of the
effective mass density of the magnetic fluid. The dotted lines indicate
mass densities of the particles. The dashed lines correspond to the con-
sidered cut mass densities. The corresponding vertical axes are indi-
cated by the horizontal arrows (b) Critical particle diameter as a func-
tion of mass density.

sponding to neutrally buoyant particles (ρp/ρf = 1) is about 5.3 mm. It is noteworthy
that although the magnetic configuration is fully symmetric, the critical particle di-
ameter profile is asymmetric: particles lighter than the magnetic liquid have a larger
critical diameter than heavier particles with the same mass density difference.

The time step size is 0.0009 s. The numbers of grid points in stream-wise and span-wise
directions are 256, and the wall-normal direction consists of 129 grid points. A window
size of 0.01tmax, with tmax = 35 s is considered for the calculation of the Basset history
force. The initial particle to fluid relative velocity is assumed to be zero.

In order to investigate the effect of different parameters on the separation perfor-
mance, we study seven different test cases. Case 1A is considered as the base case. We
study the effects of neglecting history force, two-way coupling, and particle-particle
interactions on the collective motion of particles in cases 1B, 1C and 1D respectively.
In case 2 the effect of the particle size is studied by decreasing the particle size from 4
to 2 mm. Case 3 investigates the effect of a higher particle volume fraction (Φ = 0.04).
Finally, case 4 addresses the effect of the initial particle impurity. The parameters of
the test cases are summarized in table 2.4.

Inter-particle and wall-particle collisions are treated by the hard-sphere model ad-
dressed in Section 2.2.4.2. Based on the results of section 2.5.2.2, we consider an
average value of 0.85 for the dry coefficient of normal restitution. The average lubri-
cated friction coefficient is assumed to be 0.005.

We quantify the separation performance by the root mean square of the distances of
the particles from their theoretical equilibrium point given in table 2.2. We define the
non-dimensional separation error as::
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Case Φ dp[mm] No. particles Imp History Two-way coupl. Collisions
1A 0.02 4 8835 0.1 yes yes yes
1B 0.02 4 8835 0.1 no yes yes
1C 0.02 4 8835 0.1 yes no yes
1D 0.02 4 8835 0.1 yes yes no
2 0.02 2 70685 0.1 yes yes yes
3 0.04 4 17671 0.1 yes yes yes
4 0.02 4 8835 0.5 yes yes yes

Table 2.4.: Summary of test cases.

em(t) =
1

L

√√√√ 1

Np

Np∑
i=1

(yp,i(t)− ye,i)2, (2.51)

where Np is the number of particles, yp,i(t) is the position of a particle at time t, and
ye,i denotes its equilibrium height. The mean separation error defined by (4.27) can
be evaluated for all particles to assess the overall temporal performance of the system,
but also for each individual mass density group. In the former, Np is the total number
of particles, whereas for the latter Np is the number of particles in the mass density
group.

2.5.3.1. Case 1: Effects of history force, collisions, and two-way coupling

Figure 2.15 shows a cross-section of the velocity field and front view of the particle
distribution in the moving frame at t = 0.01 s, t = 0.5 s, t = 1.0 s, t = 1.5, t = 2 s,
and t = 2.5 s for case 1A where history effects, two-way coupling and collisions are
taken into account. The horizontal colour bar shows the wall-normal component of
the fluid velocity. The vertical colour bar corresponds to the particle mass density ratio
ρp/ρf . It can be seen that after 2.5 s most of the particles have almost reached their
equilibrium positions. A higher level of particle dispersion is observed in the central
region of the channel than in the vicinity of the walls. First, particles with equilibrium
positions in the central region interact more with other particles as they move to their
equilibrium height. Second, the lower magnetic field gradient in the central region
leads to a slower vertical motion of these particles and therefore a longer separation
time.

The effects of history force, two-way coupling and collisions on the system overall
separation performance are illustrated in figure 2.16 (a) where the mean separation
errors for cases 1A-1D are plotted as functions of time. When history, two-way cou-
pling and collision effects are taken into account the time required to obtain a mean
separation error of 0.02 is about 3 s. This effectively means that achieving this separa-
tion accuracy at a mean streamwise velocity U0 requires the length of the separation
channel to be at least 3U0.

The decay behaviour of the mean separation error is almost identical for cases 1A-1D
until t = 1 s. After this time, the decay rates for the cases without history force and
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Figure 2.15.: Cross-sections of the velocity field in the moving frame at the plane
where z = Lz

2 , and projections of the particles in the section of the do-
main where |z − Lz

2 | < 3dp (Case 1A). The particles are coloured based
on their relative mass density ρp/ρf (vertical colour bar). The horizon-
tal colour bar corresponds to the streamwise component of the particle-
induced fluid velocity. A movie corresponding to this figure (movie 4),
and a 3D animation of the particle separation (movie 5) are found at:
Link to movie 4, Link to movie 5.

46

https://youtu.be/d_hlo-VOVdQ
https://youtu.be/TsmfPletIFA


(a) (b)

Figure 2.16.: (a) Average separation error versus time for cases 1A, 1B, 1C and 1D.
(b) Average separation error per mass density as a function of time for
case 1A.

collisions begin to deviate. Two-way coupling appears to have a negligible effect on
the overall separation performance. Collisions increase the time required to achieve an
average separation error of 0.02 by about 0.5 seconds. The effect of the history force is
more drastic. Neglecting the history force leads to an underestimation of about 1.5 s in
achieving em = 0.02. When history effects are neglected, the average separation error
decreases monotonically, whereas, with history force included, the mean separation
error reaches a plateau at t ≈ 1.5 s. History effects introduce additional resistance to
particle levitation. Moreover, when a particle reaches its equilibrium point, the history
force drags the particle away from it. Both effects lead to a decrease in the decay rate
of the average separation error of the system.

Temporal evolutions of average separation errors per mass density group for case 1A
are compared in figure 2.16 (b). Until t ≈ 1 s, all mass density groups show a similar
decay behaviour. At a given time t > 1.3 s, the larger the absolute fluid-particle mass
density difference of a group, the smaller is the average separation error of that group.
The distinguishing behaviour of mass density groups with |1−ρp/ρf | = 0.03 is interest-
ing. On average, particles in these mass density groups travel the longest distance to
reach their equilibrium positions. Due to history effects, these particles overshoot their
equilibrium positions. Moreover, compared to other particles, the “restoring” magnetic
buoyancy force acting on particles in these groups is smaller in the central region of
the channel where the gradient of the magnetic field is low. These two effects lead to
a period of increase in the separation error between t ≈ 1.3 s and t ≈ 1.7 s. A similar
behaviour is observed for groups with |1− ρp/ρf | = 0.3 and |1− ρp/ρf | = 0.23 during
the interval t ∈ [1.25, 2] when the particles which were in the “wrong” injection zone
reach their equilibrium positions.

To illustrate the effect of collisions and history force on the temporal evolution of the
local distribution of particles, in figure 2.17 the probability density function of the
vertical position of particles for cases 1A, 1B and 1C are compared. After only 0.96
s, a clear difference is observed in the distributions of the particles when history ef-
fects are neglected. The history force enhances particle dispersion and causes a larger
variance in particle positions. The effect of history force becomes more prominent at
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Figure 2.17.: Evolution of probability density function of particle position for cases
1A, 1C, and 1D. The corresponding animation, movie 6 is available at:
Link to movie 6 (The movie on the right corresponds to the case 1A).

t = 2 s. Without history effects, the distribution of particle positions in the central re-
gion deviates both in variance and average value. Collisions, on the other hand, only
influence the variance of the particle position. The effect of collisions is stronger for
particles with equilibrium positions in the central region, since these particles travel
over a larger vertical distance and collide more often.

The results presented in the following subsections include the history force, collisions,
and two-way coupling.
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Figure 2.18.: Effects of particle size, initial separation and volume fraction on the
mean separation error.

2.5.3.2. Cases 2, 3 and 4: Effects of particle size, pre-separation and volume
fraction

We investigate the effect of particle size on the separation performance by changing
the particle size from 4 mm to 2 mm while the total volume fraction of particles is kept
constant. Figure 2.18 compares the temporal evolution of average separation errors
for the two considered particle sizes. The average separation error for 2-mm particles
after 5 seconds is 0.3 while this value for 4-mm particles is as low as 0.01. The superior
separation performance of case 1A is in line with the findings of section 2.5.1.1. The
difference between the decay behaviour stems from the higher magnetic force on the
larger particles. Moreover, with a constant volume fraction, smaller particles collide
more frequently with other particles which leads to a lower separation performance.
As can be seen in figure 2.14, dp = 2 mm is smaller than the smallest critical particle
diameter. Therefore, a 2-mm particle exhibits a non-oscillatory motion towards its
equilibrium point, leading to a monotonic decay of the average separation error.

The dash-dotted line in figure 2.18 shows the temporal evolution of the mean sepa-
ration error for an initial impurity of 0.5. This corresponds to a case where particles
are not initially separated into two mass density groups of heavy and light particles
but are randomly distributed over both injection regions. This has a negative effect on
the separation performance since particles have to travel further to reach their equi-
librium position, which also results in a larger number of collisions. Pre-separation
decreases the time required to obtain an average separation error of 0.02 by about
33% (3 s versus 4 s).

Increasing the particle volume fraction from 2 to 4 percent slightly increases the sep-
aration error. This small increase can be attributed to the larger effect of two-way
coupling and the large number of particle collisions, which both increase mixing.

49



2.6. Conclusions and outlook

In this work, we presented a point-particle Euler-Lagrange approach which can accu-
rately capture the collective motion of almost neutrally buoyant particles in the flow
of magnetically responsive liquids. Numerical simulations are performed on single
and multi-particle systems over the range of apparent Galileo number 0 ≤ Gaa < 220.
This has relevant applications in magnetic density separation systems, which are used
for the separation of different types of plastic. The numerical results of single- and
two-particle simulations are in good agreement with detailed experimental results on
particle position.

It is shown that when history force is neglected, a maximum of five parameters can
characterize the buoyancy-driven vertical motion of a spherical particle towards its
equilibrium point. We compared the contributions of different hydrodynamic forces to
the motion of a single particle and showed that the Basset history force is important
for large particles. Is is found that neglecting history force at large particle diameters
can lead to a significant underestimation of the levitation time.

We presented a hard-sphere collision modelling strategy which can accurately cap-
ture inter-particle interactions in a magnetized paramagnetic liquid. Numerical and
experimental investigations of binary collisions considered in this study show that
depending on the impact factor a single particle-particle collision can lead to up to ap-
proximately 45% increase in the particle levitation time. The separation performance
of large MDS systems where up to about 18000 particles are levitated is quantified
by evaluating the mean separation error. Particularly, the effects of particle size and
particle pre-separation have been studied. The investigations revealed that the effects
of history force and collisions are important even at particle volume fractions as low
as 2%. Neglecting history force and collisions lead to an erroneously reduced particle
dispersion, especially for particles with mass density ratio close to one. Our numerical
results showed that a decrease in the particle size from 4 to 2 mm increases the time
required to achieve an average separation error of 0.02 by around 40%, indicating the
importance of particle size distribution in MDS applications. The method described in
this paper is a firm basis for the development of useful design rules for optimization
of future magnetic separation technologies.

As a natural starting point for most studies on particle-laden flows, this work was
based on the assumption of spherical particle shape. However, it is well known that
particle non-sphericity has a significant influence on fluid-particle interactions, and
therefore on the dynamics of particles. Furthermore, this work did not consider the
effect of background flow disturbances on the motion of particles. Background turbu-
lence can remarkably delay the levitation time as particles in MDS typically have mass
density ratios close to one. Such particles have small relaxation times, and their mo-
tion is therefore sensitive to a background flow. These two aspects are open to future
research.
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3. Hydrodynamic forces and torques
on low-aspect-ratio spheroidal
particles

In the previous chapter, we presented a numerical framework for simulating flows
of magnetized liquids laden with spherical particles. In order to extend the applica-
bility of the proposed framework to low-aspect-ratio non-spherical particles, accurate
models for hydrodynamic interactions of these particles should be derived. In this
chapter1, a statistical learning approach is presented to derive models for Reynolds-
number- and orientation-dependent steady hydrodynamic forces and torques on thin
spheroidal particles.

3.1. Introduction

The motion of non-spherical solid particles in viscous fluids has been the subject of
research for several decades. Atmospheric particle transport, sediment transport in
river beds, material processing and separation, and blood flow are just some examples
of flows laden with non-spherical particles. Although the simplifying assumption of
a spherical shape is often made, it has been shown that particle non-sphericity can
have a significant influence on fluid-particle interactions and thus on particle transport
[7, 13, 30, 150].

Accurate knowledge of hydrodynamics forces and torques acting on particles is of
great importance in the numerical study of particle-laden flows. Non-spherical par-
ticles are often modelled as fibres, cylinders or ellipsoids. The smoothness and sym-
metry properties of spheroids have made them attractive subjects of analytical and
numerical studies.

Two general approaches to model fluid-particle interactions in Euler-Lagrange simula-
tions are particle-resolved and point-particle methods. Particle-resolved methods aim
at resolving the flow field around the particle and obtaining the hydrodynamic forces
and torques through numerical integration of fluid stresses over the surface of the par-
ticle. Particle-resolved methods require a grid resolution high enough to capture the
single-particle hydrodynamics. This limits the applicability of such techniques to small
fluid-particle systems. Point-particle methods, on the other hand, use empirical or the-
oretical models for the hydrodynamic interactions between the particle and the fluid.
Due to their lower computational costs, point-particle methods have been extensively
applied to investigate particle-laden flows [40, 41, 80, 153].

The success of point-particle simulations is directly dependent on the accuracy of the

1This chapter is based on the article: "Statistical learning method for predicting hydrodynamical drag, lift
and pitching torque on spheroidal particles". S. Tajfirooz, M. Hausmann, J.G. Meijer, J.G.M. Kuerten,
J.C.H. Zeegers, and J. Fröhlich (2021). Physical Review E Journal

53



incorporated force and torque models. Clift et al. [30] provided a comprehensive
review of drag laws for various particle shapes and flow regimes. In the limit of
spherical particles, at moderate rotational Reynolds numbers, the coupling between
the translational and rotational motion is small. Analytical and empirical expressions
have been derived which describe the hydrodynamic interactions of rigid spherical
particles within and beyond the creeping flow limit [17]. Such expressions include
several fluid-particle interaction mechanisms such as steady-state drag, virtual mass,
force due to the undisturbed velocity field, and history effects.

The complexity of the motion of non-spherical particles stems from the strong cou-
pling between the translational and rotational motions at high particle anisotropies.
Moreover, unlike for spheres, the non-dimensional numbers cannot be based on a
single length scale, making the motion of a non-spherical particle dependent on a
larger number of influence parameters [30]. In the Stokes regime, analytical force
and torque models for non-spherical particles exist. Oberbeck [102] was among the
firsts to investigate the drag force on a low-aspect-ratio spheroidal particle moving
along its principal axis in a viscous fluid. Jeffery [70] explored the low-Reynolds
number motion of ellipsoidal particles in shear flows and derived expressions for the
shear-induced torque on ellipsoids. Under the assumption of creeping (Stokes) flow,
Happel and Brenner [60] analytically derived drag and lift coefficients for ellipsoidal
particles at different orientations. Their correlation describes the drag coefficient at a
given incidence angle by values of drag coefficient at extrema of the incidence angle
and a sine-squared function of the incidence angle.

The expressions for force and torque coefficients in creeping flows have been incorpo-
rated in Euler-Lagrange simulations of non-spherical particles in laminar and turbu-
lent flows. In such studies it is assumed that the fluid inertial effects are insignificant
[45, 92, 150, 155]. However, it has been observed that such correlations can lead to
significant errors at high particle Reynolds numbers [2, 6].

Many authors have collected several numerical and experimental data for Reynolds-
and orientation-dependent drag, lift and torque coefficients of non-spherical particles
at finite Reynolds numbers [47, 51, 62, 63, 72, 87, 107, 108, 112, 116, 120, 121, 154].
In 2008, Loth [87] collected the existing correlations for regular and irregular shapes
in the Stokes and Newton regimes and addressed the applicability of combined cor-
relations for intermediate regimes. He found that the sphericity can not be used as
the only input parameter for the prediction of drag force outside the Stokes regime
and that these correlations lose their accuracy as deviations from a sphere become
large. Later Hölzer and Sommerfeld proposed new correlations based on a broad set
of numerical and experimental data that involves different projected areas to account
for particle orientation [62, 63]. Zastawny et al. [154] used the immersed boundary
method (IBM) to investigate different non-spherical particles at different incident an-
gles and Reynolds numbers in the steady flow regime. Based on the work of Rosendahl
[116], Zastawny provided shape-specific correlations for drag, lift, and torque on two
ellipsoidal particles and a fibre-shaped particle. Due to the limitations of the IBM
method, Zastawny et al. [154] used relatively small computational domains for simu-
lations at low Reynolds numbers (Re ≤ 1), which led to a considerable reduction in
the accuracy of their correlations in this regime [108, 120].

Jiang et al. [72] numerically studied a 6:1 prolate spheroid at 45◦ incidence angle
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and compared their results with the correlation of Zastawny for a fibre with the same
aspect ratio and that of Hölzer and Sommerfeld [63], obtaining very good agreement
at low Reynolds numbers. At higher Reynolds numbers deviations up to 29% were
observed. More recently, Sanjeevi et al. [120] performed extensive Lattice Boltzmann
simulations of the flow around a 2:5 oblate ellipsoid, a 5:2 prolate ellipsoid and a 4:1
fibre up to Re = 2000 to extract force and torque coefficients and also derived separate
correlations for these three shapes. Due to the wide range of Reynolds number con-
sidered by these authors, they were not able to fit their computed data to the original
correlations of Zastawny. They instead used a modified version of the sine-squared
type correlation. Sanjeevi et al. showed that for prolate spheroids of aspect ratio up to
32, the sine-square behaviour of the drag coefficient derived by Happel and Brenner,
can be extended to the high-Reynolds number regime. They also observed that due to
the stronger wake contribution to the drag force, the drag coefficient of low-aspect-
ratio oblate spheroids does not follow the sine-square law. Andersson and Jiang [6]
investigated the flow around an inclined 1:6 oblate ellipsoid at low but finite Reynolds
numbers and addressed the challenges in simulating flow over bluff bodies at small
Reynolds numbers. Their findings also questioned the reliability of finite Reynolds
number correlations at Reynolds numbers of order 1.

The shaped-specific force and torque correlations can serve as useful models for point-
particle simulations of non-spherical particles. However, it has been shown that the
applicability of a correlation to other particle shapes is limited. Furthermore, force
or torque correlations for non-spherical particles that cover a broad range of particle
Reynolds number or different particle shapes are scarce. A single correlation is not
capable of predicting hydrodynamic loads over a wide range of Reynolds numbers,
aspect ratios, and incidence angles. Different correlations are commonly considered
for multiple distinct ranges of one or more input parameter(s). The main reason for
this is the difficulty in finding a proper fitting approach that considers the large input
space in the right way and does not introduce unsatisfactory high biases.

In this work, we propose a different approach for predicting the hydrodynamic inter-
actions between non-spherical particles and surrounding fluid. Instead of the conven-
tional curve fitting approach, we use an artificial neural network to correlate the force
and torque data generated by resolved numerical simulations to a set of input param-
eters. Artificial neural networks have been applied in various areas from data classifi-
cation and image processing to motion prediction, and pattern recognition. Recently,
statistical learning has also been used in fluid dynamics and multi-phase flows [23].
For example, Sarghini et al. [122] applied a neural network to predict the Smagorin-
sky constant in large-eddy simulations, Ling et al. [84] derived a neural network-based
Reynolds stress closure for Reynolds averaged Navier-Stokes equations. He and Tafti
[61] used a neural network to predict the effect of particle volume fraction and dis-
tance to neighbouring cells on drag force on spheres. Lui and Wolf [89] combined
NN-based regression with flow modal decomposition to construct reduced order mod-
els for fluid flow over bluff bodies, and Buzzicotti et al. [24] studied the application of
convolutional neural networks to the reconstruction of fluid turbulence data.

Neural networks, being stochastic tools, are generally difficult to reproduce. Still,
the significant advantage of a neural network is the theoretical ability to approximate
every Borel measurable input-output relation [57]. However, in the context of pre-
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diction of hydrodynamic interactions, NN-based trend prediction has three distinct
advantages over conventional curve-fitting approaches.

First, to obtain a conventional curve-fitting-based correlation from simulation data, a
functional approach is necessary. The choice of a fitting analytical function (linear,
quadratic, sine-square, etc.) can oversimplify an actual complex dependency which
might not be captured due to a low number density of data points, inaccuracy of the
computational model, or a limited range of data. The forced behaviour of the consid-
ered function can lead to high deviations, especially for values lying between or out-
side the fitting points where interpolation or extrapolation is required. If trained prop-
erly, a neural network can predict any dependency without a prior assumption—this
way, the difficult task of finding an appropriate fitting function is circumvented.

Second, fitting an analytical function to a partially erroneous dataset can deteriorate
the quality of the prediction over a broader input domain. Correlations inherit the
errors in the data as intrinsic biases. Such biases generated by conventional curve-
fitting approaches can lead to large temporally accumulated errors in results of time-
dependent point-particle simulations incorporating such models. In contrast, the vari-
ance error typically generated by DNN predictions is averaged out in time, and there-
fore leads to smaller accumulated errors.

Third, several authors have used different computational methods to derive corre-
lations for hydrodynamic forces and torques. Due to the same reasons mentioned
above, for a given problem, the results are usually not identical. This leads to a vari-
ety of functional approaches for the same relation. The results of the simulations from
different authors can not be used because they are incompatible with the respective
correlation approaches. Thus, a large number of valuable data can not be used. A
neural network, instead, can process the data of all authors and minimize the effect of
the individual errors of every data set.

A few studies have addressed the steady axisymmetric flow over thin oblate ellipsoids
[30, 93, 104, 112, 115]. But to the best of the authors’ knowledge, orientation- and
Reynolds-number-dependent force or torque correlations for low-aspect-ratio spheroids
or disks do not exist, so far. We take the incidence angle and the particle Reynolds
number as input parameters and employ a statistical approach to predict the coeffi-
cients of drag, lift and pitching torque of a 1:10 oblate spheroid.

The considered range of Reynolds number in this work is 1 ≤ Re ≤ 120. It is known
that in the buoyancy-driven motion of a particle within this regime, the particle has
a vertical trajectory and exhibits no appreciable secondary motion [28]. This allows
to extract hydrodynamic loads from steady-state body-fixed simulations. We perform
a set of resolved simulations to obtain force and torque data. A well-designed feed-
forward NN is then trained with a subset of the collected data. We show that the NN-
based predictions are at least as accurate as predictions of empirical and theoretical
correlations. We test the performance of our model by incorporating it in a point-
particle simulation of the buoyancy-driven motion of an oblate spheroid in a liquid
with a nonlinear hydrostatic pressure gradient.

The mathematical model and the numerical method employed for the resolved simu-
lations are presented in section 3.2.1. The considered feed-forward network and the
training and validation procedures are addressed in section 3.2.2. In section 3.3 the
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results are presented and discussed, and the performance of the new model is tested in
a point-particle simulation of a particle settling in a magnetic liquid. The concluding
remarks and future directions are presented in section 3.4.

3.2. Methodology

In this section, we first introduce the mathematical model and the numerical approach
for the resolved simulations. Next, the training and a validation procedure of the
considered neural network-based correlations are addressed.

3.2.1. Resolved simulations

3.2.1.1. Mathematical description of the flow

We solve the flow around a spheroidal particle with length b along the axis of symme-
try and maximum diameter normal to this axis equal to a. The aspect ratio is defined
as w = b/a and fixed to w = 0.1 in the present case to yield an oblate spheroid. The
particle is located in the centre of the coordinate system, with x the streamwise, y the
pitchwise and z the spanwise coordinate. Indeed, the particle is mounted symmetri-
cally to the x-y plane and Φ denotes the pitching angle, i.e. the angle of incidence
to the flow. The steady Navier-Stokes equations are solved in a cubic computational
domain, as shown in figure 3.1. The fluid motion is described by the system

∇ · (u⊗ u) =
1

ρf
∇ · τ in Ωf , (3.1)

∇ · u = 0 in Ωf , (3.2)

where the hydrodynamic stress tensor is

τ = −pI + µf

(
∇u + (∇u)T

)
. (3.3)

Here, u, p, and ρf are the fluid velocity, pressure, fluid mass density respectively.
The dimensions of the computational domain in stream-wise and the two span-wise
directions are Lx and Lz = Ly. The distance of the particle centre from the inlet, and
the span-wise distances from the walls are Lx/2, and Lz/2 = Ly/2, respectively.

At the inlet boundary, Γin, a uniform Dirichlet boundary condition is applied that sets
the velocity vector to u = (u0, 0, 0)T with u0 = 1 m

s . At the outlet boundary, Γout, the
stress on the outlet boundary is set to zero. In case of a backflow, the outlet pressure is
adjusted to prevent fluid from entering the domain through the outlet boundary [32].
A slip condition with zero normal velocity and zero tangential shear stress is imposed
at the side boundaries, Γwall, where

u · n = 0,
(
−pI + µ

(
∇u + (∇u)T

))
n = 0. (3.4)

At the surface of the spheroid, Γp, a no-slip boundary condition is imposed i.e. u =
(0, 0, 0)T .
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Figure 3.1.: Sketch of the computational domain, Ωf and the particle mounted inside
the domain.

The equatorial diameter of the spheroid d = 2a is taken as the length scale for eval-
uation of the particle Reynolds number Re = u0ρfd

µf
. Different Reynolds numbers are

achieved by varying the fluids dynamic viscosity µf . The particle incidence angle Φ
is changed by rotating the spheroid around the z−axis. Forces and torques acting on
the particle are obtained by integration of the total stress and its moment around the
surface of the particle:

F =

∫
Γp

τ · n dA, (3.5)

T =

∫
Γp

r × τ · n dA, (3.6)

with r the distance vector from the centre of mass of the particle to a point on the
surface Γp

3.2.1.2. Numerical discretization

The stabilized Galerkin finite element method in COMSOL Multipysics is used to solve
(3.1) and (3.2) in the weak form. Linear basis functions (P1P1) are used for the veloc-
ity and pressure approximations. To ensure numerical stability, the finite element for-
mulation is stabilized by streamline diffusion and crosswind diffusion methods [32].
The weak formulation of (3.1) is linearized by a “damped” Newton method. The sys-
tem of linear equations resulting from discretization is solved using the generalized
minimal residual (GMRES) method [32].
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rs

Figure 3.2.: Example of the mesh in the region close to the spheroid. To accurately
resolve the flow in the vicinity of the particle, a spherical swept region
with radius rs is considered around the particle.

The surface of the spheroid is discretized using triangular surface elements with a
maximum size of δmax. The volume mesh consists of a combination of tetrahedra and
prisms. To accurately capture the boundary layer near the surface of the spheroid
and the downstream wake, a swept mesh is considered within the spherical region
x2 + y2 + z2 ≤ r2

s , where rs denotes the radius of the swept region. This swept region
is discretized by ns layers of elements. Their maximum-to-minimum element size in
radial direction is γs. Using a swept region which is fixed to the spheroid, keeps the
mesh skewness at different incidence angles constant. An example of the mesh is
shown in figure 3.2.

3.2.2. Correlation procedure

3.2.2.1. Data acquisition

A database is collected from 266 simulations performed with 14 different Reynolds
numbers and 19 different angles of incidence. The two independent input variables
are the Reynolds number, Re, and angle of incidence, Φ. The output parameters are
the coefficients of drag, lift and pitching torque defined as

cD =
|FD|

1
2ρfu2

0A
, (3.7)

cL =
|FL|

1
2ρfu2

0A
, (3.8)

cT =
|Tp|

1
4ρfu2

0Ad
, (3.9)

respectively, where A = πd2/4 is the cross sectional area of the spheroid, and FD =
F · i, Fl = F · j and Tp = T · k with i, j and k denoting the unit vector in x-, y-
and z-direction respectively. Note that since the upstream flow is uniform and the
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computational domain is symmetric in the z-direction, the total torque acting on the
particle has only one contribution, being the pitching torque.

The parametric study of Chrust et al. [27] on wake transition scenarios of oblate
spheroids at Φ = 90◦ showed that the transition behaviour for a thin oblate spheroid
is very similar to that of a disk (w = 0). The authors observed a similar seven-stage
transition scenario in the wake of thin oblate spheroids as in that of disks. In the thin-
disk-like scenario, for a given aspect ratio, as the Reynolds number increases from
zero, the first (primary) bifurcation at the first critical Reynolds number, Rec,1 leads to
a steady non-axisymmetric wake. At this state, i.e Rec,1 ≤ Re ≤ Rec,2, the planar sym-
metry remains sustained and a steady lift force acts in the wake symmetry plane. As
the Reynolds number further increases to the second critical Reynolds number, Rec,2,
under a Hopf-type bifurcation the wake transits to a periodic state, and the planar
symmetry vanishes.

A decrease in the aspect ratio of an oblate spheroid leads to an increase in both the first
and the second critical Reynolds numbers. For a disk (w = 0) Chrust et al. [27] found
the Reynolds number range 117 ≤ Re ≤ 125.2 for the stability interval of the steady
non-axisymmetric state with planar symmetry. This range for a 1:6 spheroid was found
to be 130 ≤ Re ≤ 137.2. By interpolating the values for a disk and a 1:6 spheroid,
for the steady planar-symmetric wake of a 1:10 spheroid, Chrust et al. estimated
the first critical Reynolds number to be Rec,1 ≈ 130. Shenoy and Kleinstreuer [127]
observed a value of Rec,1 = 135 for the first critical Reynolds number of a 1:10 circular
disk. Based on these observations, the particle wake is expected to remain steady at
all incidence angles within the considered range of Reynolds numbers in this study
(Re ≤ 120). This legitimates the choice of steady-state simulation.

Figure 3.3 illustrates the two-dimensional space of input parameters. Due to the sym-
metry of the considered geometry, it suffices to consider the incidence angle range
0◦ ≤ Φ ≤ 90◦. The number density of data points at lower Reynolds numbers is in-
creased to make sure that the observed strong input-output dependency in this region
mentioned by Clift et al. [30] is accurately captured.

It is well known that the drag, lift and pitching torque coefficients in the Stokes regime
depend linearly on Re−1 [30]. To reduce the non-linearity of the input-output rela-
tion, we choose the output variables to be coefficients of drag, lift, and pitching torque
multiplied by the Reynolds number. This way, at least in the Stokes regime, the de-
pendency to be predicted reduces to a constant function.

3.2.2.2. Correlation via neural network

After all resolved simulations have been performed, an input-output correlation has to
be found, in the form

y = Θ(x,θ), (3.10)

where x and y are the arrays of input and output, respectively, θ is the array of
unknown parameters (weights and biases). Conventional regression (curve fitting)
methods make an assumption for the function Θ and find the unknown parameters
through a minimization procedure. Finding a proper function (or a combination of
functions) which captures all relevant features of the actual input-output relation can
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Figure 3.3.: An illustration of the Re-Φ space on which the resolved simulations are
performed. Each dot represents one simulation.

be cumbersome. Instead, we use deep learning to find an appropriate function as well
as the vector θ.

The basic idea of deep learning is to replicate an unknown complex function from
known input and the corresponding output. A complex function is approximated by
a combination of simpler functions which results in a so-called deep neural network
(DNN). Through a deep learning process, the optimal parameters are found by mini-
mizing (or maximizing) a target function. An example of such a target function is the
difference between the output predicted by the neural network and the target value.
This is the basic principle of one of the most applied neural network optimization
approaches, the gradient descent method.

A DNN consists of multiple layers with several neurons. Every neuron is associated
with one piece of information, its activation value. In each layer of a DNN, an input
vector undergoes an element-wise nonlinear transformation which consists of a linear
transformation through weights and biases followed by a nonlinear activation through
the so-called “activation function”. The activation values of the neurons in the first
layer (input layer) are defined by the input data set. In the output layer, activation
values are based on network connections. Neurons belonging to interior layers, or
the so-called hidden layers, are connected to the neighbouring layers via the weights
and biases corresponding to each neuron. One famous representative of deep learning
is the feed-forward DNN, also known as a multilayer perceptron. In a feed-forward
DNN, the information propagates from the input layer through the hidden layers to
the output layer. The basic architecture of a feed-forward DNN is depicted in figure
3.4. For a network with l hidden layers the activation values of the kth hidden layer
read

h
(1)
j = f (1)

(
nk∑
i=1

ω
(1)
ij xi + b

(1)
j

)
, (3.11)
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Figure 3.4.: Graphical representation of the architecture of a typical feed forward neu-
ral network with ni inputs, no outputs and k hidden layers each consisting
of nk neurons.

for k = 1 and

h
(k)
j = f (k)

(
nk∑
i=1

ω
(k)
ij h

(k−1)
i + b

(k)
j

)
, (3.12)

for 2 ≤ k ≤ l − 1, where f (k)(x) is the activation function, and ω
(k)
ij and b

(k)
j are the

weights and biases of the kth layer. nk is the number of neurons in the kth layer.

The weights and biases are found through a “training” procedure. During the train-
ing process, the weights and biases are changed to achieve an arbitrarily minimal
difference between training data and network predictions and thus also a preferably
accurate estimation of unknown weight and bias values. A loss function, j, is de-
fined to quantify the quality of the predictions. One possibility for a loss function is
the mean squared error between the predictions and the actual output values. The
most common ways to minimize this loss are based on the iterative gradient-based
optimization algorithm, “Gradient Descent”. A vector θ, which represents weights or
biases, is updated as follows:

θt+1 = θt − η∇θj (x,yd,θt) , (3.13)

where ∇θj denotes the gradient of the loss function with respect to θ. The gradient
itself depends on the input values x, the desired outputs yd and the other parameters
θt.

The parameter η controls the learning rate by changing the step sizes of the updates.
its value should be chosen such that the iterative procedure finds small local minima
of the loss function. Too small learning rates yield too slow optimization and the risk
of getting stuck in large local minima. Too large learning rates may cause oscillations
around a minimum. To avoid this, optimizers are derived that dynamically determine
the learning rate [119]. The so-called Adam-Optimizer has been shown to provide
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beneficial convergence properties. This algorithm converges faster, and to a lower
minimum than competitors like AdaGrad or AdaFom [26]. The Adam optimizer varies
the step size based on the history of the gradients and the squared gradients by means
of an exponential moving average. A detailed description of the algorithm can be
found in the original publication of Kingma and Ba [78].

Besides the optimizer some additional aspects of a DNN have to be considered. First,
the weights and biases have to be initialized in a certain way. In the present neural
network the weights are initialized as small random values and the biases as zero. A
common problem in the training process is so-called overfitting, which occurs when
the neural network predicts the training values precisely but loses its accuracy with
a new dataset. To avoid this, regularizers are implemented. The initialization, the
effect of overfitting and different ways of regularization are described in detail by
Goodfellow et al. [57].

Additionally, the activation function, the number of hidden layers and the number of
neurons in every hidden layer are application-specific parameters (hyper-parameters),
which influence the performance of the network. Especially finding the appropriate
activation function without testing it is almost impossible, since its influence is not
fully understood yet [57].

In order to validate the trained DNN, out of the total data acquired from 266 simu-
lations, 30 randomly selected simulation data points are excluded from the training
data and are reserved for the validation. This way, the neural network is validated
with data it has not seen before. The random sampling of the data for validation is
repeated to make sure that the network prediction performance is not dependent on
the random choice of the training data sample.

The considered neural network in the present study consists of three hidden layers
with 300 neurons. That means there are approximately 4 × 105 floating point op-
erations per prediction. This number can be reduced by decreasing the number of
neurons. With more experience, this is probably possible without a significant loss
of accuracy by careful variation of the hyper-parameters. The neurons of the hidden
layers are activated by the so-called rectified linear (ReLU) activation functions. The
outputs of the ReLU function are zero for negative inputs and equal the input for
positive inputs [57]. Input and output layers have a linear activation function. The
mean absolute error between predicted outputs and simulation data is minimized by
an Adam optimizer. An L2 parameter norm penalty is used for the regularization. The
network is trained 500 epochs with the 236 training data points in mini-batches of size
32. This means that an update is applied after 32 data points until every data point is
used 500 times. The training of the DNN is performed by Keras, an extension of the
open-source machine learning library Tensorflow [1].
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3.3. Results and discussions

3.3.1. Validation of resolved simulations

First, several simulations have been performed to investigate the sensitivity of the
numerical results to different simulation parameters. In particular, the effects of the
domain size and the grid resolution on the force and torque coefficients have been
studied.

Resolving the flow field at Φ = 90◦ requires the highest spatial resolution [120]. To
ensure that the computational grid can capture all the required details of the flow
field, we performed the grid sensitivity analysis at this incidence angle. Furthermore,
it is known that the effect of domain size becomes more important when the Reynolds
number is decreased [6, 112, 120]. To ensure that confinement effects do not in-
fluence the numerical results at low Reynolds numbers, we consider a computational
domain with L = 80d for cases withRe < 20. For cases with higher Reynolds numbers,
a domain size of L = 40d is used. This choice is based on the findings of Andersson
and Jiang [6].

We validate the numerical results by comparing the results of the present study with
literature data for thin oblate spheroids and disks at Φ = 90◦. As mentioned earlier,
the number of studies on thin oblate spheroids is limited. Masliyah and Epstein [93]
and Pitter et al. [112] performed axisymmetric simulations to investigate the steady
axial flow around spheroids with 0.05 ≤ w ≤ 5 for Reynolds numbers up to Re = 100.
Within this range of Reynolds numbers, the assumption of an axisymmetric wake is
valid even for infinitely thin disks [27]. Based on the results of Pitter et al. [112], Clift
et al. [30] suggested the following correlations for the steady drag coefficient of disks
and low-aspect ratio oblate spheroids (w ≤ 0.05) in the range 0.01 < Re ≤ 133:

CD =


64

πRe
[1 + 10x] , if 0.01 < Re ≤ 1.5,

64

πRe

[
1 + 0.138Re0.792

]
, if 1.5 < Re ≤ 133,

(3.14)

where x = −0.883 + 0.906 log10Re − 0.025 (log10Re)
2. For lower Re, the expression

of Oseen can be used:

CD =
64

πRe

[
1 +

Re

2π

]
if Re ≤ 0.01. (3.15)

In 2006, O’Donnell and Helenbrook [104] performed axisymmetric finite element sim-
ulations to extract the drag coefficient of crosswind oblate spheroids within the aspect
ratio range 0.1 ≤ w ≤ 1 at 0 ≤ Re ≤ 200 and derived aspect-ratio-dependent cor-
relations for the drag coefficient. The drag coefficients obtained from the correlation
of O’Donnell and Helenbrook [104] for disks are within 2.7% of drag coefficients pre-
dicted by Pitter et al. [112].

To compare the results of different authors, we define the normalized deviation from
the drag coefficient of a sphere with the same cross-sectional area as δCD = 1− CD,w

CD,1
,

where CD,w is the drag coefficient of an oblate spheroid of aspect ratio w and CD,1 is
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Case L δmax rs ns γs ne,t

Re < 20 80d 0.02d 4d 100 80 2.31e+6
Re ≥ 20 40d 0.02d 4d 100 160 3.68e+6

Table 3.1.: Parameter values of the computational domains and grids.

the drag coefficient of a sphere. The latter is given by [30] :

CD,1 =


24

Re
[1 + 0.1315Rea] , if 0 < Re ≤ 20,

24

Re

[
1 + 0.1935Re0.6305

]
, if 20 < Re ≤ 260,

(3.16)

with a = 0.82 − 0.05 log10Re. Consecutive grid refinements are performed up to the
point where the maximum drag coefficient deviation from the results of O’Donnell
and Helenbrook [104] is below 2%. TABLE 3.1 summarizes the chosen computational
settings of the simulations. Figure 3.5 compares the dependency of δCD on Reynolds
number for spheroids with w ≤ 0.1 based on correlations from literature [30, 104],
and the results of our simulations in the range 1 ≤ Re ≤ 120. Note that the Reynolds
number at which the drag coefficient of a sphere equals that of a thin oblate spheroid
is Re ≈ 37. As the Reynolds number increases the relative difference between the
drag coefficient of a disk and that of a 1:10 spheroid increases. The lumped force and

Figure 3.5.: Deviations of drag coefficients of a 1:10 spheroid and a thin disk at Φ =
90◦ from the drag coefficient of a sphere. The results of the present study
for a 1:10 spheroid are compared with the correlation of O’Donnell and
Helenbrook [104] for a 1:10 spheroid and correlation of Clift et al. [30]
for thin disks.

torque coefficients collected from the resolved simulations can be found in appendix
A.
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3.3.2. Aspect-ratio-specific features

Next, we illustrate the effect of the aspect ratio on the incidence-angle- and Reynolds-
number-dependency of drag, lift and torque coefficients of oblate spheroids. The re-
sults of our resolved simulations for a 1:10 spheroid are compared with existing corre-
lations for 1:5 and 2:5 spheroids. For the latter two aspect ratios, we use correlations
of Zastawny et al. [154] and Sanjeevi et al. [120], respectively. In our comparison, we
keep the particle volume constant and therefore define a Reynolds number based on
the diameter of a volume-equivalent sphere as Ree = U0de

νf
, where de = w1/3d denotes

the diameter of a sphere with the same volume, and νf is the fluid kinematic viscosity.
The volume-equivalent sphere Reynolds number, Ree is related to the Reynolds num-
ber based on the equatorial diameter through Ree = w1/3Re. The obtained equivalent
drag coefficient based on the cross-sectional area of the volume-equivalent sphere is
cD,e = cDw

−2/3. The same relation holds for the coefficients of lift and pitching
torque.

3.3.2.1. Incidence-angle dependency

In figure 3.6 the incidence-angle-dependency of the drag coefficient is compared for
the three different aspect ratios. We observe that at a fixed Reynolds number within
the considered range, regardless of the particle orientation, a 1:10 spheroid always
has a larger drag coefficient compared to 1:5 and 2:5 spheroids. The contributions
of viscous stress and pressure to the drag force on the 1:10 spheroid are compared
in figure 3.7. At low incidence angles, the viscous drag is the dominant contributor
to the total drag force. As the incidence angle increases the contribution of pressure
increases, and at sufficiently high incidence angles pressure force has the main contri-
bution to the total drag force. The incidence angle at which the viscous and pressure
drags are equal decreases from approximately Φ ≈ 40 to Φ ≈ 20 by increasing the
Reynolds number from Ree = 0.5 to Ree = 55.7. The larger surface area of a 1:10
spheroid compared to the one of 1:5 and 2:5 spheroids leads to a higher viscous drag
at low incidence angles. At higher incidence angles the larger re-circulation region
behind the 1:10 spheroid leads to a more significant pressure drop and therefore, a
relatively larger pressure drag resulting in a larger total drag force.

Another issue which distinguishes the behaviour of drag coefficient for the 1:10 spheroid
from that of the high-aspect-ratio spheroids is the maximum value of the drag coef-
ficient at Ree = 55.7. For a 1:10 spheroid, the maximum drag coefficient occurs at
Φ ≈ 80◦. This yields two local maxima for the drag coefficient during a 180◦ par-
ticle rotation, one at Φ ≈ 80◦, and one at Φ ≈ 110◦. This behaviour which is also
observed for 1:4 and 2:5 spheroids at Ree = 100 [120, 121], is not observed for the
higher-aspect-ratio spheroids.

The effect of aspect ratio on lift and pitching torque coefficients is illustrated in figure
3.8 and figure 3.9, respectively. Both coefficients increase with decreasing the aspect
ratio. It can be observed that although at low Reynolds numbers (Re1 = 1) the lift
coefficient of a 1:10 spheroid behaves similarly to those of 1:5 and 2:5 spheroids, at
larger Reynolds numbers the incidence-angle-dependency of the lift coefficient of a
1:10 spheroid significantly deviates from those of larger aspect ratio spheroids. At

66



(a) (b)

(c)

Figure 3.6.: Drag coefficient as a function of incidence angle at (a) Ree = 0.5, (b)
Ree = 27.8, and (c) Ree = 55.7.

Ree ≈ 46 the lift coefficient profile for a 1:10 spheroid is asymmetric with respect to
Φ = 45◦. This is due to the fact that the onset of symmetry breaking of the wake
occurs at high incidence angles for the 1:10 spheroid when the Reynolds number is
lower. In contrast, for 1:5 and 2:5 spheroids, the symmetry seems to be sustained for
up to Ree = 55.7. A similar behaviour is observed for the pitching torque coefficient
in figure 3.9.

3.3.2.2. Reynolds-number dependency

The Reynolds-number-dependency of drag, lift and torque coefficients at moderate
and high incidence angles are compared in figure 3.10. Although the drag coefficient
behaviour remains similar, the lift and torque coefficients of a 1:10 spheroid behave
differently with Re at high incidence angles. At Φ / 80◦ the lift and torque coefficients
of all three spheroids decrease monotonically with increasing Reynolds numbers. At
higher incidence angles, however, lift and torque coefficients of a 1:10 spheroid have
a local minimum at Ree ≈ 40. The two higher-aspect-ratio spheroids do not exhibit
this behaviour.
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(a) (b)

(c)

Figure 3.7.: Contributions of pressure and viscous stress to the drag coefficient at (a)
Ree = 0.5, (b) Ree = 27.8, and (c) Ree = 55.7.

To illustrate the reason behind this different behaviour at lower aspect ratios, in figure
3.11, we compare the contributions of viscous stress and pressure to the lift force and
the pitching torque on a 1:10 spheroid at Φ = 85◦. The contribution from the pressure
is dominant for both lift and pitching torque. Regardless of the incidence angle and
particle Reynolds number, the viscous contribution to the pitching torque remains
below 15%. The pressure force is, therefore, the dominant contributor to the pitching
torque. Concerning the lift force, at low and moderate incidence angles (Φ < 80),
the pressure and viscous stress contributions have counteracting effects. Regardless
of the incidence angle, the relative contribution of the pressure force is dominant. At
Ree = 0.5, for example, |FL,pressure| ≈ 1.7|FL,viscous|, for all Φ. Furthermore, its
contribution increases with Reynolds number up to Ree ≈ 40. At Ree ≈ 40 the viscous
contribution to the lift force changes sign at Φ = 85◦. When the Reynolds number is
increased further to Ree = 55.7, at Φ = 85◦ the relative contribution of the pressure
to the lift force is about 80%. These observations imply that the different behaviour
of lift and torque coefficients for the 1:10 spheroid mostly stems from the pressure
distribution at the surface of the particle.

Figure 3.12 compares the pressure field and the streamlines constructed based on the
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(a) (b)

(c)

Figure 3.8.: Lift coefficient as a function of incidence angle at three different Reynolds
numbers.

x− and y− components of velocity field at z/d = 0 for four different combinations
of incidence angle and Reynolds number. By comparing figure 3.12 (c) and (d) cor-
responding to (Ree,Φ) = (37.1, 85◦) and (Ree,Φ) = (55.7, 85◦) respectively, one can
observe that for these two Reynolds numbers the upstream pressure profiles at the
surface of the particle at are very similar and almost symmetric in y, while for the
downstream high-pressure regions this is not the case. At Ree = 37.1 the recirculation
region is smaller and is located closer to the particle centre. Due to the larger asymme-
try of the flow field at Ree = 55.7, the recirculation area is shifted in y direction farther
away from the particle centre. Furthermore, the velocity in the wake just behind the
particle is dominantly oriented in positive y-direction, leading to a positive viscous
force in this direction. These observations explain the existence of local minima for
pitching torque and lift coefficients at Φ = 85◦.

The different behaviors of drag, lift and pitching torque coefficients of the 1:10 spheroid
observed confirm the necessity to derive shape-specific correlations for low-aspect-
ratio spheroids. The dependencies for the 1:10 spheroid cannot be easily modeled by
the symmetric sine-squared correlations often used in literature at higher aspect ratios.
To achieve an accurate analytical correlation, the fitting procedure can be very cum-
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(a) (b)

(c)

Figure 3.9.: Pitching torque coefficient as a function of incidence angle at (a) Ree =
0.5, (b) Ree = 27.8, and (c) Ree = 55.7.

bersome as it requires introducing several additional coefficients to a correlation (as,
for example, [121]). A neural network-based prediction, on the other hand, does not
require such a priori information as it intrinsically recognizes and learns the different
behaviour.

3.3.3. NN validation

The performance of the network in predicting drag, lift and pitching torque coefficients
using the validation data set is illustrated in figure 3.13. The overall mean absolute
error for the lift force and the pitching torque is Lmae = 0.0034. The mean error
for the coefficients of lift and pitching torque is below 3%. The mean error for the
drag force is as low as 1.5%. Further optimization of the network may reduce these
errors even more, but our results are comparable with Sanjeevi et al. who reported
mean deviations of 1.66%, 3.50%, and 3.43% for their empirical correlations derived
for drag, lift and torque coefficient of a 2:5 spheroid, respectively.
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3.3.4. Testing the drag coefficient

The weights and biases obtained through the training process can be found in the
supplementary material. These weights and biases are used to construct a DNN corre-
lation according to (3.12). In this section, we test the interpolation and extrapolation
performance of the DNN correlation for drag coefficient at Φ = 90◦ by comparing the
DNN predictions with the correlation of Clift et al. [30] for thin disks. In figure 3.14
we compare our results with correlation (3.14) within the Reynolds number range of
Re ∈ [0, 133]. Although the lowest Reynolds number used for the training is Re = 1, it
can be seen that the DNN model can very well capture the Stokes regime (Re << 1)
behaviour of the drag coefficient described by (3.15).

3.3.5. Application to a settling problem

In this section, we employ the DNN-based drag correlation in a point-particle sim-
ulation of the buoyancy-driven motion of a 1:10 disk in a quiescent paramagnetic
liquid in a non-uniform magnetic field. The buoyancy-driven motion of disks and el-
lipsoidal particles in viscous liquids has extensively been explored [12, 43, 152]. It
is well known that the buoyancy-driven motion of disk-shaped particles can be fully
described by three parameters, namely the mass density ratio ρp/ρf , the aspect ratio

w and the Galileo number Ga =
√
|1− ρp/ρf | gd3

p/νf , where ρf and ρp denote the

mass densities of the fluid and particle respectively, νf is the fluid kinematic viscosity,
and g is the magnitude of gravitational acceleration [12, 30, 152]. Depending on the
combination of these three non-dimensional parameters, four main regimes for the
settling motion of a disk are identified. At low Ga numbers, where viscous effects are
large enough, a disk falls broadside along a straight vertical path. As inertial effects
increase, a disk can display a fluttering motion, and as the inertia further increases,
tumbling and even full rotations may occur.

By incorporating a magnetically responsive liquid and a vertical magnetic field gradi-
ent, a non-linear pressure is generated inside the liquid. Once released in the liquid at
Φ = 90◦, a disk with an adequately chosen mass density, stably levitates at the height
where the gravity force cancels the net buoyancy force acting on the particle. The
existence of a stable equilibrium point in such a configuration, makes the prediction
of the time-dependent trajectory of a particle a good benchmark case for testing the
DNN correlation within the Reynolds number range of Re ∈ [0, 10].

The magnetically-induced non-linear pressure field inside the liquid leads to a position-
dependent net buoyancy force on an immersed particle. The magnitude of this buoy-
ancy force is dependent on the local gradient of the magnetic field, ∇H, and the
magnetization of the liquid, M . In the experiment, the gradient of the generated mag-
netic field is vertical, ∂H∂x = ∂H

∂z = 0, so that the combined gravitational and buoyancy
force is

FBG = (ρf,a − ρp)Vig. (3.17)

Here, ρf,a is the so-called “apparent mass density” of the magnetic liquid fluid defined
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as

ρf,a(y) = ρf −
µ0

gy

∫ y

0

M
dH

dy
dy, (3.18)

where µ0 is the permeability of vacuum, and g is the magnitude of gravitational ac-
celeration. For a paramagnetic liquid at relatively low magnetic field strengths, the
magnitude of the magnetization is a linear function of the magnitude of the magnetic
field strength, M = χH, where χ denotes the magnetic susceptibility of the liquid. For
small particles, the integral in (3.18) can be approximated by

ρf,a(y) ≈ ρf −
(
µ0

g

)
M
dH

dy
. (3.19)

Once a particle with mass density ρp is released in the fluid at initial height y0, it
travels to a height at which ρf,a(y) = ρp.

We employ a one-way coupled point-particle model where the effect of the particle mo-
tion on the fluid is assumed to be negligible. The motion of a the particle is described
by solving the translational equation of motion of the particle. An angular momentum
equation is not solved for the following reason: In the considered magneto-fluidic sys-
tem an apparent Galileo number can be defined as Gaa =

√
|1− ρp/ρf,a|gd3

p/νf . In the

present configuration with ρp = 1.434 × 103 kg/m3, the maximum apparent Galileo
number of a particle remains below 70. The motion of a 1:10 disk with ρp/ρf ≈ 1
and Gaa ≤ 70 falling at Φ = 90◦ is steady and follows a straight vertical path and the
particle does not undergo any rotational motion. Hence, the governing equations of
the particle motion reduces to a scalar system of the form

dy

dt
= v,

dv

dt
=

1

mp

∑
F,

(3.20)

where
∑
F is the sum of all forces stemming from different fluid-particle hydrody-

namic interactions and the gravity force. The relevant forces in the motion of almost
neutrally buoyant particles in viscous liquids are the steady drag force FD, the com-
bined buoyancy and gravity force FBG, the history force, FH and the added mass force,
FA, so that ∑

F = FD + FBG + FH + FA. (3.21)

The steady drag force is given by

FD =
1

2
CDρpv

2Ap, (3.22)

where CD is the steady drag coefficient, and Ap = πd2/4 is the cross sectional area of
the particle with equatorial diameter d.

For history force and added mass force, we follow the expressions derived by Lai and
Mockros [83] for a spheroid moving parallel to its symmetry axis. If we neglect the
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finite Reynolds number effects on the history kernel, the history force reads

FH = −6∆H (πρfµ)
1/2

a2

∫ t

−∞

dv
dτ

(t− τ)1/2
dτ, (3.23)

where the history force coefficient, ∆H, for a particle with aspect ratio w reads

∆H =

[
4(1− w2)

3
([

(1− 2w2) arccos (w/
√

1− w2)
]

+ w
)]2

. (3.24)

The added mass force is given by

FAM = −1

2
∆AρfV

dv

dt
, (3.25)

where ∆A is the added mass coefficient given by

∆A =
2
[
w cos−1 w −

√
1− w2

]
w2
√

1− w2 − w cos−1 w
. (3.26)

For a spheroid with w = 0.1, equations (3.25) and (3.26) yield, respectively, ∆A =
12.4 and ∆H = 0.7.

To obtain the temporal evolution of the vertical particle position, system (3.20) is
discretized using an explicit Euler scheme. For numerical integration of the Basset
history term, we use the method of Van Hinsberg et al. [144], where the history kernel
is split into a “window” kernel and a “tail” kernel. The window kernel is approximated
by a trapezoidal rule, and the tail kernel is approximated by a sum of exponential
functions. We test the NN-based drag model by comparing the particle trajectory based
on the DNN-based drag model, CD(Re,Φ = 90◦) with the experimentally obtained
trajectory. An experimental setup was designed which enables the investigation of
levitation motion of single non-spherical particles in a paramagnetic liquid subject to
a vertical magnetic field gradient. The vertical position of the particle is recorded
by a 3D particle tracking velocimetry technique. Measurements are performed in a
15 × 15 × 15 cm3 cubic container filled with a stable aqueous solution of MnCl2. The
container is located on a magnet that generates the desired magnetic field in the form
of (3.27). Two cameras record the particle trajectories through two perpendicular
sidewalls of the tank. The particle considered for the experiments is a disk made of
unplasticized polytetrafluorethylene (PVC-U) ρp = 1434 kg/m3. A schematic of the
experimental setup is shown in figure 3.15.

The considered magnet generates a magnetic field that has a magnitude decaying
exponentially with the vertical distance from the magnet surface, y:

H(y) = H0e
−πy/p, (3.27)

with H0 = 422 kA/m and pole size p = 0.118 m. The magnetic field strength and the
apparent mass density of the liquid according to (3.19) are plotted as functions of y
in figure 3.16. TABLE 3.2 summarizes the parameters of the considered configuration.
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Table 3.2.: Physical parameters of the magnetic levitation setup.

ρp [kg/m3] 1.434× 103

d [mm] 5
b [mm] 0.5
ρf [kg/m3] 1.403× 103

µf [kgm/s] 5.54× 10−3

χf 7× 10−4

L [m] 0.15
p [m] 0.1181
H0[kA/m] 422

A particle with mass density ρp = 1.02ρf stably levitates at y = 48.7 mm. Figure
3.17 compares the numerically and experimentally obtained trajectories of the parti-
cle released at y0 = 104.2 mm. The experimental trajectory is obtained by averaging
the results of three independent experiments. The error bars correspond to the stan-
dard deviation of these three measurements. The maximum particle Reynolds number
during the levitation motion is Re = 7.6. Very good agreement is observed between
the experimental trajectory and the one obtained with the point-particle simulation
based on the DNN-based drag correlation. This observation shows the promising per-
formance of the DDN model in predicting the drag coefficient of a 1:10 disk.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10.: Coefficients of (a), (b) drag, (c), (d) lift and (c), (d) pitching torque as
a functions of Reynolds number at moderate (top) and high (bottom)
incidence angles.
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(a) (b)

Figure 3.11.: Viscous and pressure contributions to the lift force (a) and pitching
torque (b) on a 1:10 spheroid at (top) Φ = 5◦, (middle) Φ = 30◦ and
(bottom) Φ = 85◦.
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(a) (Ree,Φ) = (37.1, 45◦) (b) (Ree,Φ) = (55.7, 45◦)

(c) (Ree,Φ) = (37.1, 85◦) (d) (Ree,Φ) = (55.7, 85◦)

Figure 3.12.: Pressure field and streamline pattern in the centre plane z = 0 for
the flow around a 1:10 spheroid at different orientations and Reynolds
numbers.
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(a) Drag (b) Lift

(c) Torque

Figure 3.13.: Validation of the neural network prediction for drag, lift and torque
coefficients.

Figure 3.14.: Reynolds-number-dependency of the steady drag coefficient of 1:10
spheroid at Φ = 90◦ predicted by the DNN model is compared to corre-
lation (3.14). The dashed line represents the correlation of Clift et al.
[30] and � indicates the training data points.
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Figure 3.15.: (a) A sketch of the experimental setup. A tank filled with manganese(II)
chloride solution is placed on top of a magnet. The particle is released
from the top by a rotating release mechanism. Two cameras record the
motion of the released particle. (b) Schematic side view.
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Figure 3.16.: Magnetic field strength and effective mass density on a vertical line pass-
ing through the center of the tank. A particle with ρp/ρf = 1.02 stably
levitates at y = 48.7 mm.

Figure 3.17.: The vertical position of a 1:10 disk in a magnetized paramagnetic liquid
as a function time. The dashed line corresponds to the numerical solu-
tion of (3.20) with the DNN-based drag coefficient. The experimentally
obtained trajectory is indicated by the dotted line.
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3.4. Conclusions

Predicting steady hydrodynamic interactions of non-spherical particles becomes more
challenging as the particle non-sphericity increases. The complexity of the input-
output relations on the one hand and the increased number of input parameters, on
the other hand, make the development of empirical force and torque models very
difficult. In this study, we showed how statistical learning can serve as a versatile
and robust tool for predicting hydrodynamic interactions of non-spherical particles
with a viscous liquid. A machine learning approach is proposed to create models for
the Reynolds-number- and incidence-angle-dependent steady drag, lift and pitching
torque coefficient of a 1:10 oblate spheroid. A feed-forward deep neural network is
trained and validated using a data set generated by resolved simulations at 261 differ-
ent combinations of particle Reynolds number and incidence angle.

The effect of aspect ratio on the dependency of drag, lift and pitching torque on the
particle Reynolds number and incidence angle is illustrated, and advantages of a DNN-
based correlation method compared to conventional curve-fitting methods are pointed
out. It is shown that although the effect of aspect ratio on the behaviour of the drag
force is small, the lift and torque coefficient at low aspect ratios behave very differ-
ently than at higher aspect ratios. The proposed DNN model automatically “learns” the
input-output dependencies and can serve as an accurate meta-model in point-particle
simulations. The main advantage of DDN-based models is that the correlation proce-
dure does not require a priori information about the dependency of an output variable
on an input variable, a necessary condition for curve fitting methods. Furthermore,
DNN models are applicable in cases of large parameter space without introducing un-
satisfactory high biases.

We tested the performance of the constructed DNN model in a point-particle simula-
tion of a settling problem. The agreement between the numerical and experimental
data proved the capability of the DNN model in interpolating and extrapolating a
learned relationship.

In this work, we considered a single aspect ratio at 0 ≤ Re ≤ 120. Data for other aspect
ratio or Reynolds number ranges can be used as input in a straightforward manner
to extend the model to other aspect ratios and Reynolds numbers. The DDN-based
correlation procedure presented in this study can be used to predict other fluid-particle
hydrodynamic interactions such as velocity-gradient induced lift, and transient effects
such as history and added mass forces. Once a new database is generated, a model
can be extended by just adding additional input neurons and training the network
with the new data set.
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3.A. Tabulated data

The collected lumped data for steady drag, lift and pitching torque coefficients are
given in TABLE 3.3, 3.4 and 3.5 respectively. The coefficients are based on the cross
sectional area of the volume-equivalent sphere.

Drag 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7
0.000 74.660 18.130 10.460 6.250 4.710 3.880 3.350 2.980 2.700 2.480 2.300 2.160 2.040 1.930
5.000 74.920 18.210 10.510 6.300 4.750 3.910 3.380 3.010 2.730 2.510 2.340 2.190 2.070 1.960

10.000 75.730 18.470 10.690 6.430 4.870 4.030 3.490 3.110 2.830 2.610 2.430 2.290 2.170 2.060
15.000 77.020 18.870 10.980 6.640 5.060 4.210 3.660 3.280 3.000 2.780 2.600 2.450 2.330 2.220
20.000 78.760 19.420 11.360 6.940 5.330 4.460 3.910 3.520 3.240 3.010 2.830 2.690 2.560 2.460
25.000 80.850 20.080 11.830 7.300 5.660 4.770 4.210 3.820 3.530 3.310 3.130 2.980 2.860 2.750
30.000 83.340 20.860 12.370 7.720 6.030 5.130 4.560 4.170 3.880 3.650 3.470 3.320 3.200 3.090
35.000 86.080 21.710 12.970 8.180 6.450 5.530 4.950 4.550 4.250 4.020 3.840 3.690 3.560 3.460
40.000 88.920 22.600 13.600 8.670 6.890 5.950 5.360 4.950 4.640 4.410 4.220 4.060 3.920 3.810
45.000 91.850 23.500 14.230 9.170 7.340 6.370 5.760 5.340 5.020 4.780 4.580 4.410 4.260 4.130
50.000 94.840 24.420 14.870 9.660 7.780 6.780 6.150 5.710 5.380 5.120 4.900 4.720 4.570 4.430
55.000 97.620 25.280 15.480 10.130 8.200 7.170 6.510 6.050 5.700 5.430 5.200 5.010 4.850 4.720
60.000 100.240 26.080 16.040 10.560 8.580 7.520 6.840 6.350 5.990 5.700 5.470 5.270 5.110 4.970
65.000 102.660 26.810 16.550 10.940 8.910 7.820 7.110 6.610 6.230 5.930 5.690 5.490 5.330 5.200
70.000 104.780 27.450 16.990 11.270 9.200 8.070 7.350 6.830 6.430 6.120 5.870 5.670 5.510 5.380
75.000 106.400 27.940 17.340 11.530 9.410 8.260 7.520 6.990 6.580 6.250 6.000 5.790 5.630 5.500
80.000 107.630 28.310 17.590 11.720 9.580 8.410 7.650 7.100 6.680 6.340 6.070 5.860 5.700 5.580
85.000 108.330 28.520 17.740 11.840 9.680 8.500 7.730 7.170 6.730 6.390 6.100 5.860 5.690 5.580
90.000 108.530 28.590 17.790 11.870 9.700 8.520 7.750 7.190 6.750 6.390 6.100 5.840 5.620 5.420

Table 3.3.: Coefficient of drag CD,e. Left most column: incidence angle, top row:
Reynolds number, Ree, center: values of CD,e.
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Lift 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7
0.000 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 3.160 1.100 0.810 0.660 0.610 0.580 0.570 0.560 0.560 0.550 0.550 0.550 0.540 0.540

10.000 6.200 2.150 1.600 1.290 1.200 1.150 1.130 1.110 1.100 1.090 1.090 1.090 1.080 1.080
15.000 9.090 3.150 2.330 1.890 1.760 1.690 1.660 1.640 1.630 1.620 1.620 1.610 1.610 1.610
20.000 11.690 4.050 3.000 2.440 2.270 2.190 2.150 2.130 2.120 2.110 2.110 2.110 2.110 2.120
25.000 13.890 4.800 3.560 2.910 2.720 2.630 2.590 2.570 2.560 2.550 2.550 2.560 2.560 2.560
30.000 15.660 5.410 4.020 3.290 3.070 2.980 2.940 2.920 2.910 2.900 2.900 2.900 2.910 2.910
35.000 16.930 5.840 4.340 3.560 3.340 3.240 3.200 3.170 3.160 3.140 3.140 3.130 3.120 3.100
40.000 17.710 6.100 4.530 3.730 3.500 3.390 3.340 3.310 3.280 3.250 3.220 3.190 3.160 3.130
45.000 17.950 6.170 4.590 3.780 3.540 3.430 3.360 3.310 3.270 3.220 3.170 3.110 3.050 2.990
50.000 17.670 6.060 4.500 3.710 3.470 3.350 3.270 3.200 3.130 3.060 2.990 2.920 2.850 2.790
55.000 16.810 5.750 4.280 3.520 3.290 3.160 3.070 2.980 2.900 2.820 2.740 2.670 2.610 2.550
60.000 15.440 5.280 3.920 3.230 3.000 2.870 2.770 2.680 2.590 2.510 2.440 2.380 2.330 2.280
65.000 13.630 4.650 3.460 2.840 2.630 2.510 2.410 2.320 2.240 2.170 2.110 2.060 2.020 1.980
70.000 11.460 3.900 2.900 2.370 2.190 2.080 1.990 1.910 1.840 1.780 1.740 1.710 1.690 1.660
75.000 8.900 3.030 2.250 1.840 1.690 1.600 1.530 1.460 1.410 1.380 1.350 1.340 1.330 1.320
80.000 6.070 2.060 1.530 1.250 1.150 1.090 1.030 0.990 0.960 0.940 0.930 0.940 0.950 0.960
85.000 3.070 1.040 0.780 0.630 0.580 0.550 0.520 0.500 0.480 0.480 0.480 0.500 0.550 0.580
90.000 1·10−2 0.000 0.000 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.4.: Coefficient of lift CL,e. Left most column: incidence angle, top row:
Reynolds number, Ree, center: values of CL,e.

Torque 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7
0.000 3·10−2 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 1.140 0.980 0.890 0.810 0.780 0.760 0.740 0.740 0.730 0.720 0.720 0.720 0.720 0.710

10.000 2.330 1.940 1.760 1.600 1.530 1.490 1.460 1.440 1.430 1.420 1.410 1.410 1.400 1.400
15.000 3.370 2.830 2.570 2.330 2.220 2.160 2.120 2.090 2.070 2.060 2.050 2.040 2.030 2.030
20.000 4.360 3.640 3.300 2.990 2.850 2.760 2.710 2.670 2.640 2.620 2.600 2.590 2.580 2.570
25.000 5.170 4.330 3.920 3.550 3.370 3.270 3.190 3.140 3.100 3.070 3.050 3.030 3.010 2.990
30.000 5.820 4.890 4.420 3.980 3.770 3.640 3.550 3.490 3.430 3.390 3.350 3.320 3.290 3.270
35.000 6.310 5.290 4.780 4.290 4.050 3.900 3.790 3.700 3.630 3.560 3.510 3.460 3.410 3.360
40.000 6.630 5.550 5.000 4.460 4.200 4.020 3.880 3.770 3.680 3.590 3.500 3.420 3.350 3.270
45.000 6.690 5.620 5.060 4.500 4.210 4.000 3.840 3.710 3.580 3.460 3.350 3.250 3.140 3.040
50.000 6.570 5.520 4.970 4.400 4.090 3.870 3.680 3.520 3.370 3.230 3.100 2.980 2.870 2.770
55.000 6.320 5.280 4.730 4.160 3.850 3.610 3.410 3.240 3.070 2.930 2.800 2.680 2.580 2.490
60.000 5.820 4.860 4.340 3.810 3.500 3.260 3.060 2.880 2.720 2.590 2.470 2.370 2.280 2.210
65.000 5.150 4.290 3.830 3.350 3.060 2.830 2.640 2.480 2.340 2.220 2.130 2.050 1.980 1.910
70.000 4.320 3.600 3.210 2.790 2.540 2.340 2.180 2.040 1.930 1.840 1.770 1.710 1.660 1.610
75.000 3.310 2.790 2.490 2.160 1.960 1.800 1.670 1.560 1.490 1.430 1.390 1.360 1.330 1.290
80.000 2.270 1.910 1.700 1.470 1.330 1.220 1.130 1.060 1.010 0.990 0.980 0.980 0.980 0.970
85.000 1.080 0.950 0.850 0.750 0.670 0.620 0.570 0.540 0.520 0.510 0.520 0.550 0.600 0.630
90.000 8·10−2 2·10−2 1·10−2 2·10−2 2·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2

Table 3.5.: Coefficient of torque CT,e. Left most column: incidence angle, top row:
Reynolds number, Ree, center: values of CT,e.
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4. Dynamics of spheroidal particles in
paramagnetic liquids

In this chapter, we present a PP-DNS approach for modelling the dynamics of ellip-
soidal particles in flows of magnetic fluids exposed to a non-uniform magnetic field.
The numerical model discussed in this chapter is based on the framework presented
in chapter 2.

4.1. Introduction

The buoyancy-driven motion of particles in magnetized liquids is of practical impor-
tance in magnetic density separation (MDS) systems. MDS uses a magnetic fluid mag-
netized by a specifically designed magnetic field to separate a mixture of particles
based on the mass densities of its sub-populations. The MDS technique has been suc-
cessfully applied to separate diamond from gangue minerals [148], and to sort non-
magnetic metals [75, 129, 136], toxic wastes [103], and vegetable seeds [35]. More
recently, MDS is used as an efficient technique for separating end-of-life electronic and
plastic waste [14, 88, 100, 114, 156].

Design optimization of MDS systems requires a thorough understanding of the inter-
action between a magnetic field and particle-laden flow of an opaque magnetic liquid.
Numerical simulations of particle-laden flows of magnetic liquids can serve as versatile
tools to optimize of MDS processes. The development of accurate and efficient numer-
ical algorithms for modelling particle-laden flows of magnetically responsive fluids is
therefore of great industrial interest. In the numerical investigation of the collective
motion of particles in magnetized liquids, one should consider the combination of
fluid-magnetic field, fluid-particle, and particle-particle interaction mechanisms, that
makes the problem at hand complicated, and the required models complex. In chap-
ter 3, we presented a numerical framework for investigating the magneto-Archimedes
separation of spherical particles in paramagnetic liquids. We showed that the incorpo-
ration of history effects is important for the prediction of the motion of particles. More-
over, application of the numerical model to large MDS systems showed that particle-
particle interactions have a negative effect on the separation performance and cannot
be disregarded even at volume fractions as low as 0.02. Two-way coupling effects,
on the other hand, were shown to have a small impact on the dynamics of spherical
particles.

The assumption of spherical particle shape is a common practice in order to reduce
the complexity of the mathematical models to study particle-laden flows. In most of
the industrial applications involving non-spherical particles, however, this assumption
might result in large errors. It is well-known that particle shape can significantly influ-
ence the dynamical behaviour of particles in a flow [11, 29, 99, 149, 150]. The MDS
process is not an exception in this respect. In most of the practical MDS applications,
particles are not spheres. In MDS of end-of-life plastic, for example, input particles
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are produced through a shredding process which results in highly anisotropic, flake-
shaped particles [14]. This necessitates the development of a more complex numerical
framework to model the motion of non-spherical particles in MDS systems.

The treatment of non-spherical particles is mathematically much more complicated
because of multiple reasons. First, as shown in Chapter 2, particle non-sphericity
complicates the interactions between the particles and the surrounding fluid and in-
troduces new influence parameters in models for these interactions. As the particle
nonsphericity increases, the coupling between the linear and angular motions of parti-
cles becomes stronger. Second, the particle-particle collision response and its influence
on the post-collision motion of a particle is strongly influenced by the particle shape.
Moreover, compared to spheres, detection of contact points and the time of impact of
non-spherical particles is much more computationally demanding [10, 68, 98, 142].
Therefore, efficient and accurate models should be incorporated for collision detection
as well as for the collision response of non-spherical particles in many-particle systems.
Third, in studying the motion of particles in magnetized liquids, particle non-sphericity
can introduce new magnetically induced fluid-particle interactions which are absent
in case of spherical particles, since the moment of the magnetic buoyancy force can be
nonzero for immersed non-spherical particles. This further complicates the coupled
rotational and translational motion of non-spherical particles in MDS systems.

Jeffery [70] and Brenner [20, 21] derived expressions for drag forces and torques
on ellipsoidal particles under the creeping flow condition. Later Gallily and Cohen
[48] studied the effect of particle rotation on sedimentation of ellipsoidal particles in
a gravitational field. Most of the point-particle simulations of non-spherical particles
in laminar and turbulent flows use such creeping flow force and torque models to
describe the motion of the particles (see, for example, [5, 99, 133, 155]). The small
size of the particles compared to the smallest flow scales justifies the incorporation of
such models. For larger particle sizes or larger Reynolds numbers, incorporation of
such models introduces large errors due to the significance of inertial effects. More
recently shape-specific correlations are derived for Reynolds-number- and orientation-
dependent force and torque coefficients of nonspherical particles beyond the Stokes
regime [47, 106, 109, 121, 154]. These correlations are used in simulations where the
creeping flow assumption does not hold [2, 140, 147]. These studies, however, mostly
address gas-solid flows where unsteady interactions and rotational resistance torques
are disregarded. In fluid-solid flows in MDS applications, such interactions can be are
generally more important [91].

In this chapter, we present an Euler-Lagrange framework to model flows of magne-
tized liquids laden with non-spherical particles. Our numerical framework is based on
the point-particle approach of Tajfirooz et al. [139] for spherical particles presented
in chapter 2. The kinematics and dynamics of the motion of ellipsoidal particles in
magnetically responsive liquids are described in a Lagrangian manner, and new col-
lision detection and response models are incorporated to capture the inter-particle
and particle-wall interactions of ellipsoidal particles. Force and torque models derived
for spheroidal particles are incorporated to describe the steady hydrodynamic inter-
actions of the particles [121, 138, 154]. Unsteady particle–fluid hydrodynamic forces
are approximated by models derived for volume-equivalent spheres [94], as models
for non-spherical particles do not yet exist. The magnetically induced torque is com-
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puted through the surface integration of the hydrostatic pressure over the surface of
the particles [117]. Furthermore, we present a new momentum coupling strategy for
taking into account both the linear and angular momentum transfer between the fluid
and the dispersed non-spherical particles. First, the proposed model is experimentally
validated in single- and two-particle systems. Next, many-particle MDS systems are
simulated where mono-dispersed mixtures of spheroidal particles are separated. We
investigate the effects of particle shape and collisions on the separation efficiency of
the MDS system by considering different aspect ratios and switching the collisions off,
respectively.

The rest of the chapter is organized as follows. In section 4.2, we introduce the math-
ematical model for the kinematics and dynamics of the motion of ellipsoidal particles
in a magnetized liquid. The governing equations of fluid and particles, and the mo-
mentum coupling strategy are presented. Numerical discretization methods and the
experimental setup are discussed in sections 4.3 and 4.4, respectively. In section 4.5,
we first experimentally validate the numerical model in single and two-particle sys-
tems and investigate the effect of particle shape on single-particle levitation dynamics.
Next results of simulations of many-particle MDS systems are presented and discussed.
Concluding remarks are made, and future research directions are addressed in section
4.6.

4.2. Mathematical description

In this section, we present the mathematical model for the motion of dispersed parti-
cles and the magnetic fluid. First, the motion of spheroidal particles in a magnetised
fluid is described. Next, the governing equations of the fluid motion are presented.
The third subsection addresses the fluid-particle momentum coupling strategy.

4.2.1. Particles

4.2.1.1. Kinematics

To describe the translational and rotational motion of spheroidal particles, three coor-
dinate systems are introduced. A global inertial frame, a co-rotating frame attached
to the particle, and a co-moving, non-rotating frame attached to the center of the
particle. A vector indicated by x in the inertial global frame (xyz) is indicated by
x′ in the particle-fixed frame, (x′y′z′), and in the non-rotating frame attached to the
particle center of mass (x′′y′′z′′), this vector is denoted as x′′. The three considered
frames are illustrated in figure 4.1 (a). The orientation of an axisymmetric particle
with symmetry axis denoted by the unit vector ey′ can be described by the Euler angle
representation, which consists of three angles each about a particular coordinate axis
[141] (see figure 4.1 (b)). We can specify the Euler angles and the axes of sequential
rotations using the convention (ψ)3, (θ)1, (φ)3, which denotes a rotation of (x′′y′′z′′ )
through angle ψ about the z′′ axis, resulting in the intermediate orientation, (x̂ŷẑ ),
followed by a rotation through angle θ about the x̂ axis, resulting in (ˆ̂xˆ̂y ˆ̂z), and a final
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Figure 4.1.: (a) The three coordinates systems defined to describe the motion of an
ellipsoidal particle. ey′ is the particle orientation vector and Γ denotes the
surface of the particle. r is a vector that connects the centre of the particle
to a point on the particle surface. (b) The Euler angle representation of
the particle frame using the convention (ψ)3, (θ)1, (φ)3.

rotation through angle φ about the ˆ̂z axis, to produce the new orientation (x′y′z′).
One should note that the rotations in the Euler angle representation are not commu-
tative. The Euler angle representation of particle orientation using the convention
(ψ)3, (θ)1, (φ)3 is shown in figure 4.1 (b).

To avoid the so-called gibmal lock effect stemming form the singular representation of
Euler angles [82, 141], instead of Euler angle representation, we describe the particle
orientation by the unit quaternion qi = (q1, q2, q3, q4)T ∈ S3, where S3 is the space
of unit quaternioins. The quaternion components are related to the angle of rotation
Φ and its axis e through (q1, q2, q3)T = e sin (Φ/2) and q4 = cos (Φ/2). The transfor-
mation form the global frame to the particle frame (x′y′z′) is achieved through the
orthogonal rotation matrix, C:

x′ = C(q) · x′′. (4.1)

The rotation matrix can be expressed in terms of quaternions as

C(q) =

 q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (4.2)

The time-derivative of the particle quaternion is related to the angular velocity in the
particle frame Ω′ through

dq1/dt
dq2/dt
dq3/dt
dq4/dt

 =
1

2


q4ω
′
x − q3ω

′
y + q2ω

′
z

q3ω
′
x + q4ω

′
y − q1ω

′
z

−q2ω
′
x + q1ω

′
y + q4ωz

−q1ω
′
ẋ − q2ω

′
y − q3ω

′
z

 , (4.3)
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where t is the time, and ω′x, ω′y and ω′z are the three components of the particle angular
velocity in the particle-fixed frame. Using the (zyx) convention, the Euler angles read

((ψ)3, (θ)1, (φ)3) =
(

tan−1 c23
c33
,− sin−1 c13, tan−1 c12

c11

)
, where cij are the elements of

particle rotation matrix C.

The translational displacement of the particle follows

dxi
dt

= vi, (4.4)

where vi and xi denote the translational velocity and position of the particle centre of
mass respectively.

4.2.1.2. Dynamics

For an ellipsoidal particle moving in a uniform flow, the translational motion in the
global inertial frame is described by

dvi
dt

=
1

mi

(∑
Fi + F

(c)
i

)
, (4.5)

where
∑
Fi is the summation of forces due to hydrodynamic fluid-particle interac-

tions, and F (c)
i is the force acting on a particle because of collisions with other par-

ticles or walls. Similar to the equation of motion of spherical particles discussed in
chapter 2, we include the force due to the undisturbed flow field FU,i, the steady
drag FD,i, the buoyancy FB,i, the gravity FG,i, the added mass FAM,i and the Basset
history force FH,i as the relevant hydrodynamic forces in the equation of motion of
spheroidal particles. Additionally, since depending on the orientation of the particle
relative to the direction of fluid-particle relative velocity, a non-zero lift force can act
on a non-spherical particle, the pitching lift force FPL,i is also included in the model.
Considering the above mentioned fluid-particle interaction mechanisms, the summa-
tion

∑
Fi reads

∑
Fi = ρfVi

Dui
Dt︸ ︷︷ ︸

FU,i

+
1

8
CDρp,id

2
p||ui − vi|| (ui − vi)︸ ︷︷ ︸

FD,i

+
3

2
∆H (πρfµ)

1/2
d2

p,e

[∫ t

−∞

d
dτ (ui − vi)
(t− τ)1/2

dτ

]
︸ ︷︷ ︸

FH,i

+
1

2
∆AρfVi

(
Dui
Dt
− dvi

dt

)
︸ ︷︷ ︸

FAM,i

− ρp,iVigey︸ ︷︷ ︸
FG,i

+ ρf,aVigey︸ ︷︷ ︸
FB,i

+
1

8
CLρp,id

2
p||ui − vi||2ePL︸ ︷︷ ︸
FPL,i

,

(4.6)
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where ui is the undisturbed fluid velocity at the position of the particle, ρp and Vi
are the particle mass density and volume, and µ is the fluid dynamics viscosity. Coef-
ficients ∆H and ∆A are the history and added mass coefficients. To the best knowl-
edge of the authors, orientation-dependent correlations for these coefficients for non-
spherical particles do not exist yet. In the present work, we take the diameter of the
volume-equivalent sphere as the length scale for evaluating the added mass force and
the Basset history force. In this case, ∆A = ∆H = 1. For coefficients of steady drag
and pitching lift, depending on the particle shape, we follow shape-specific correla-
tions of Sanjeevi and Padding [121] for a 2:5 oblate spheroid and the neural network
correlation of Tajfirooz et al. [138] for 1:10 spheroids in chapter 3. In the last term in
(4.6), ePL is the lift force orientation unit vector given by [95]

ePL =
ey′ · (ui − vi)
‖ey′ · (ui − vi)‖

(ey′ × (ui − vi))× (ui − vi)
‖(ey′ × (ui − vi))× (ui − vi)‖

, (4.7)

where ey′ is the particle orientation vector parallel to the particle symmetry axis as
shown in figure 4.1. When the relative particle-fluid velocity undergoes a step change
(e.g. during collisions) a special treatment of the Basset history term is required. For
details of this treatment, the reader is referred to chapter 2 [76, 139].

The angular motion of the particle is described in the particle frame. In this frame, the
angular velocity of the particle follows

I ′i ·
dΩ′i
dt

+ Ω′i × I ′i ·Ω′i =
∑

T ′i + T ′
(c)
i , (4.8)

where I ′i = diag(I1, I2, I3) is the particle tensor of inertia about the particle principal
axis (x′, y′, z′).

∑
T ′i denotes the summation of torques due to the fluid-particle in-

teractions and T ′(c)i is the torque due to the collisions with other particles or walls.
For the angular fluid-particle interactions in a uniform flow of a magnetised fluid, we
consider three torque contributions. These contributions are the pitching torque TP,
the rotational resistant torque TR, and the torque due to the magnetic buoyancy TMB.
The last contribution stems from the non-linear pressure distribution on the surface
of a particle immersed in a magnetised fluid [117]. The sum of these contributions in
the global frame reads

∑
Ti =

1

2
CT,pρf

π

8
d3

p ‖ui − vi‖
2
ePT︸ ︷︷ ︸

TP,i

+

∫
Γ

r × (pstatic,MI ·N)dS︸ ︷︷ ︸
TMB,i

+
1

64
ρCR

(
1

2
ωi −Ωi

)∥∥∥∥1

2
ωi −Ωi

∥∥∥∥ d5
p︸ ︷︷ ︸

TR,i

(4.9)

where r denotes the outward pointing surface vector in the particle frame (see figure
4.1), and pstatic,M is the magnetic contribution to the hydrostatic pressure given by

pstatic,M = µ0

∫ H

0

MdH. (4.10)
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Note that the gravitational contribution to the static pressure does not induce any
torque on the particle. ePT is the orientation unit vector of the pitching torque given
by [95]

ePT =
ey′ · (ui − vi)
|ey′ · (ui − vi)|

(ey′ × (ui − vi))× (ui − vi)
‖(ey′ × (ui − vi))× (ui − vi)‖

. (4.11)

The pitching torque coefficient is described by the shape-specific correlations of Za-
stawny et al. [154] and Sanjeevi and Padding [121] and the neural network correla-
tion of Tajfirooz et al. [138] derived in chapter 3. Moreover, we neglect the rotation
of particles around the particle symmetry axis, y′.

In the motion of ellipsoidal particles in viscous liquids, the rotational resistance torque
can have a significant contribution to the particle motion. To the best knowledge of the
authors, except for the expression of Jeffery [70] for ellipsoids in the Stokes regime,
and shape-specific correlations of Zastawny et al. [154], correlations for rotational
torque coefficient of ellipsoidal particles beyond the Stokes regime have not yet been
derived. Hence, for 1:2 oblate spheroids considered in this chapter, we use the cor-
relation of Zastawny et al. [154] for a 5:2 prolate spheroid to describe the rotational
resistance torque. For 1:10 spheroids the correlation of Zastawny et al. [154] for
1:5 oblate spheroids is used . All the incorporated models for the force and torque
coefficients are summarised in Appendix 4.A.

4.2.1.3. Collisions

For the inter-particle and particle-wall collisions we follow the constraint-based method
of Mirtich and Canny [98], Guendelman et al. [58] and Bender and Schmitt [18].
Tschisgale et al. [142] used the same strategy to model collisions of Cosserat-type
rods. Similar to the collision model presented for spherical particles in chapter 2, the
method proposed in this section consists of two main steps: First, possible contacts
between particle pairs are detected and sorted based on their collision time. Next, the
collision response is calculated for the colliding pairs in a consecutive manner. Inter-
particle and particle-wall contacts are detected by computing the minimum distance
between particle pairs. To compute the minimum distance, we follow the iterative
approach of Jain et al. [68], which exploits the principle that the shortest line con-
necting the surfaces of two ellipsoids lies along the common normal line of the two
ellipsoids. A collision is detected when the minimum distance between two particles
is less than a threshold ε, i.e. ‖d‖ < ε, with d denoting the minimum distance vector
connecting particle a to particle b as shown in figure 4.2 (a). We consider a threshold
of ε = 0.01dmajor where dmajor is the equatorial diameter of a spheroid.

To minimise the number of particles that have to be searched for a collision, the neigh-
bour list strategy of Hoomans et al. [64] is employed in which the computational do-
main is split into several “collision blocks”. When searching for a collision partner of a
particle, only the particles in the same and neighbouring collision blocks are scanned.
Multiple contact instances are treated as sequences of single binary collisions between
pairs of two particles. Within a collision block, for each particle, the possible collision
pairs are sorted based on their time of impact (TOI). The collisions with the shortest
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Figure 4.2.: (a) The minimum distance vector d between two approaching particles.
(b) A binary collision between two particles a and b. The orientation
of the collision impulse is defined by the normal vector n pointing from
particle a to particle b. The vector r points from the particle centre to
the contact point. The motion of each particle is defined by the particle
inertia matrix M , the particle twist z, and the particle wrench w.

TOI are treated first. Calculating TOI for spherical particles is straightforward: If a
collision occurs, the distance between the two centres of the particles is equal to the
sum of the two radii, and the time of impact can be found analytically by solving a
quadratic equation [4, 64]. For ellipsoidal particles, however, TOI depends on the ori-
entation of the particles as well as their angular velocity. For systems involving many
particles, calculating TOI is very time-consuming. In this work, TOI is approximated
by using a bisection method in combination with the minimum distance algorithm of
Jain et al. [68]. Similar to the algorithm used for the detection of collisions between
spheres, within a time step dt, the linear and angular velocities of the particles are
assumed to change only due to collisions. For each relevant particle pair, a pseudo
time step dtsni = min(dt,TOIn) is taken, and the minimum distance between the two
particles within this pseudo time step is calculated. Here TOIn is the time of impact
of a particle at the beginning of the nth actual solver time step dt, and i denotes a bi-
section step. If a contact is detected, the pseudo time step is halved and over the half
time interval where the impact occurs, the procedure is repeated with dtsi+1 = dts

i/2
until a certain accuracy for the collision time is achieved, i.e. |TOIi+1 − TOIi| < εt
with εt the threshold for the bisection method. We consider a value of 0.001dt for this
threshold.

The collision response model is based on three assumptions [142]:

1. Infinitesimal collision time: The time scale of the collisions between the particles
is assumed to be much smaller than the time scale of the motion of the particles.
Based on this assumption, the position and orientation of the particles remain
constant, and the collision forces are impulsive in nature (sustained contacts are
treated by sequences of collisions).

2. Poisson’s hypothesis: The behaviour of particles during a collision is described
by a compression phase and a restitution phase. The normal relative velocity
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at the contact point before and after a binary collision are related through the
restitution coefficient, e.

3. Coulomb friction model: The motion of particles in the tangential direction dur-
ing the collision is described by static and dynamic coefficients of friction. The
friction force in the tangential direction is proportional to the normal contact
force.

To describe the dynamics of a binary collision between particle a and b, as shown in
figure 4.2, for each particle a twist is defined as z = [v,Ω]>, where v and Ω are the
particle linear and angular velocities respectively. The post- and pre-collision linear
and angular particle velocities are related through

z+
a = z−a −M−1

a C>a J ,
z+
b = z−b +M−1

b C>b J ,
(4.12)

where + and − indicate the post- and pre-collision particle quantities. M is the parti-
cle inertia matrix defined asM = mI⊕I, where I is the tensor of inertia in the inertial
frame. Matrix C is defined as C = (I,−[r]×) , where r is the vector pointing from the
particle centre to the contact point, and [r]× is the cross-product matrix corresponding
to r. J denotes the impulse vector. If we let vab,n = Cz ·n denote the normal relative
velocity at the contact point, Poisson’s hypothesis states

v+
ab,n = −eeffv

−
ab,n, (4.13)

where eeff ∈ [0, 1] is the effective coefficient of restitution for an immersed collision.
The normal unit vector at the contact point n is the unit vector normal to both particles
at the contact point and pointing to particle b (see figure 4.2 (b)). A collision is
distinguished as being either “sticking” or “sliding”. According to Coulomb’s friction
model, a collision is sticking if Jt ≤ µfricJn and it is sliding otherwise, where Jt = J · t
and Jn = J · n are the tangential and normal components of the impulse vector
and µfric is the friction coefficient. The tangential vector at the contact point is t =
−vab,t/|vab,t| with the tangential relative velocity at the contact point given by vab,t =
vab−vab,n. We assume that the effect of external loads during a collision is negligible.
The algorithm initially assumes a sticking collision and calculates the collision impulse
according to

J = −K−1∆vab (4.14)

whereK = CbM−1
b CTb +CaM−1

a CTa and ∆vab = v−ab−v
+
ab = v−ab+eeff(v−ab ·n)n. Next,

the criterion for a sliding collision is checked and the impulse vector is overwritten if
the collision turns out to be sliding, i.e.:

J =

{
J if ‖J − J · n‖ ≤ µfricJ · n (sticking),

KJ·n
K(n+µkt)·n (n+ µfrict) otherwise (sliding), (4.15)

In this work, we do not distinguish between the static and dynamic coefficients of
friction. For a spherical particle, this collision model reduces to the hard-sphere model
presented in chapter 2.
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4.2.2. Continuous phase

The motion of the fluid phase is described in the same way as presented in chapter
2. The governing equations of the incompressible flow of a Newtonian magnetically
responsive fluid are described in the global frame as [118]

ρf

(
∂u

∂t
+ (u · ∇)u

)
= −∇p∗ + µ∇2u+ Finter, (4.16)

∇ · u = 0, (4.17)

where u is the fluid velocity, µ and ρf are the fluid dynamic viscosity and mass density
respectively. p∗ is the reduced pressure. If we assume that the gravity acts in the
direction of −ey:

p∗ = p− pstatic = p+ ρfgy − µ0

∫ H

0

MdH, (4.18)

where M = |M | is the magnitude of the fluid magnetization, H = |H| is the magnetic
field strength, and µ0 denotes the vacuum permeability. The term Finter in (4.16) is the
fluid-particle momentum coupling term. Equations (4.16) and (4.17) are solved in a
cubic domain with dimensions Lx×Ly×Lz, where x, y, and z denote the stream-wise,
wall-normal, and span-wise directions respectively.

In this study, we consider an aqueous paramagnetic fluid (MnCl2 salt solution) with a
linear magnetization behavior [9, 118]:

M = χH. (4.19)

where χ is the magnetic susceptibility of the liquid.

4.2.3. Momentum coupling

In this section, we present a momentum coupling strategy that takes into account both
linear and angular momentum transfer between the continuous fluid and nonspherical
particles. For linear momentum coupling we employ an approach similar to the one
presented in chapter 2. The local particle feedback force is defined as

F inter (x) ≡ −
Np∑
n=1

P
(
x− x(n)

p

)
F

(n)
2w (4.20)

where Np denotes the total number of particles and F (n)
2w is the particle feedback force

defined as F (n)
2w = FU + FD + FH + FAM, and P

(
x− x(n)

p

)
is a top-hat filter that

uniformly distributes the feedback force to the Eulerian grid points according to

P(x− xp) =


1

σ1σ2σ3
, if |xk − xp,k| < σk/2 (k = 1, 2, 3),

0, otherwise.
(4.21)
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Figure 4.3.: The volume considered for the linear momentum transfer between the
fluid and the particle is an encompassing rectangular block around each
particle. The size and shape of this block is dynamically adjusted during
the motion of the particle.

σk, k = 1, 2, 3 is the width of the coupling volume in each direction. The coupling
algorithm is extended to take into account the effects of particle shape and orientation
on the volume over which the two-way coupling force is distributed. This coupling
volume is a rectangular block with a volume closest to the volume of the smallest
encompassing box around the particle. The shape of this block changes dynamically
according to the particle orientation and position. A 2D schematic of the filter used
for the linear momentum transfer is shown in figure 4.3.

Furthermore, as the particle nonsphericity increases, the rotational momentum trans-
fer between the particles and the continuous phase becomes more important [150].
Andersson et al. [8] introduced a procedure for implementing the two-way angu-
lar momentum coupling in point-particle simulations of small non-spherical particles.
Their proposed strategy is based on the concept of “particle stress tensor” which was
earlier introduced for micro-polar fluids [Eringen 1966]; The angular momentum cou-
pling is achieved by locally imposing the contribution of the anti-symmetric particle
stress tensor to the fluid equation of motion. The application of this strategy is feasible
for particles that are much smaller than the Eulerian grid spacing. When the particle
size is in the same order as the grid spacing, which is the case in this study, this point-
torque approach loses its justification. Therefore, in this work, the two-way angular
momentum transfer is achieved by introducing point-forces to the fluid momentum
equation: First, the particle feedback torque is modelled as

T2w = TP,i + TR,i, (4.22)

where TP,i and TR,i are the pitching and rotational resistance torques respectively.
Next, the coupling torque T2w is transformed to a set of point forces that act on the
Eulerian grid points which surround the particle centre (see figure 4.4 (a)). These
point-forces should satisfy three conditions:

1. The sum of the forces should not contribute to the linear momentum of the fluid.

2. The moment of the forces should be equal to the particle feedback torque T2w.

3. To be consistent with the linear momentum coupling approach, the moment
should preferably be uniformly distributed over the torque coupling volume.
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Figure 4.4.: A schematic illustration of the particle-to-fluid torque coupling strategy.
(a) A torque T2w acting on the fluid from the particle in positive z- di-
rection is uniformly distributed over the Eulerian grid cell in which the
particle center is located. (b) The angular momentum coupling strategy:
A feedback torque T2w acting in positive z- direction is transformed to
point-forces acting on the eight grid points surrounding the particle cen-
tre. Note that only point-forces in x- and y- directions can contribute to
a torque in z- direction.

For each particle, we impose eight point-forces, each on one surrounding grid point of
the particle centre. If we let F ijk denote the point force on grid point ijk as shown in
Figure 4.4 (b). It can be shown that the mapping

F ijkTC = L(T2w) =
1

8VTC

(−1)j+1T2w,z/δy + (−1)kT2w,y/δz
(−1)k+1T2w,x/δz + (−1)iT2w,z/δx
(−1)i+1T2w,y/δx + (−1)jT2w,x/δy

·
ij
k

, i, j, k ∈ {0, 1}

(4.23)

results in a force set that satisfies the above three conditions. Here, VTC is the volume
of the grid cell in which the particle centre is located, and δx, δy and δz are the cell
sizes in x-, y-, and z- directions, respectively. For the sake of clarity, this torque-to-force
transformation is schematically illustrated in figure 4.4 (b) for a case where T2w is in
the positive z- direction. One should note that in this work, one grid cell is considered
as the volume over which angular momentum transfer is distributed for each particle.
This approach can be extended to coupling volumes larger than one grid cell, in a
similar way as for the transfer of linear momentum.
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4.3. Numerical discretization

To obtain the particle trajectories, equations (4.3) to (4.5), and (4.8) are solved using
a forward Euler scheme. The incorporated Euler scheme uses each stage of the Runge-
Kutta discretisation scheme for the fluid as a time step. To avoid the amplification
of discretisation errors in predicting the particle orientation according to (4.3), the
particle quaternion is normalised according to

q̂ =
q√

q2
0 + q2

1 + q2
2 + q2

3

, (4.24)

where q̂ is the normalised quaternion at the end of each time step taken by the particle
solver.

The numerical cost of the evaluation of the Basset history contribution to (4.5) is
reduced by using the windowing method of Van Hinsberg et al. [144], where the
history kernel is split into a window kernel and a tail kernel. The window kernel
(recent history) is approximated by an ordinary trapezoidal rule over the interval [t−
twin, t] that consists of Nw previous time steps. The tail kernel (old history) over the
time interval (−∞, t − twin) is approximated by a sum of exponential functions. The
integral corresponding to the magnetic torque in (4.9) is computed numerically using
a first-order integration scheme.

The governing equations of the continuous phase, (4.16) and (4.17) are first reduced
to a fourth-order equation for the wall-normal velocity component and a second-order
equation for the wall-normal component of vorticity. Next, the equations are spatially
discretised by a pseudo-spectral method. For details of the numerical discretisation
method, the reader is referred to Kim et al. [77], Kuerten et al. [81].

4.4. Experimental setup

To validate the numerical framework presented in section 4.2, the experimental setup
introduced in chapter 2 (see figure 4.5) is used to perform single-particle levitation
experiments using non-spherical particles. The particle tracking velocimetry method
is extended to capture both position and orientation of non-spherical particles. We
consider three particle shapes for the levitation experiments: 1:2 oblate spheroids, a
1:5 disk, and a 1:10 disk, as shown in Figure 4.6. The particles are made of either
unplasticized polytetrafluorethylene (PVC-U) or polyoxymethylene (POM) with mass
densities ρp = 1434 kg/m3, and ρp = 1407 kg/m3, respectively. The mass density of
the paramagnetic liquid is ρp = 1403 kg/m3 The relevant properties of the particles
used in the experiments are summarized in Table 4.1.
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Figure 4.5.: (a) A sketch of the experimental setup used for single- and two-particle
levitation experiments. (b) Magnetic field strength on the vertical line at
the centre of the tank (black circles): H = H0e

−π(L+y)/p where H0 =
422 kA/m and p = 0.118 m. The blue dashed line indicates the apparent
mass density of the magnetic fluid with χ = 7 × 10−4 is indicated by
the blue dashed line. (The horizontal arrows indicate the corresponding
axes).

Figure 4.6.: Particles used for single-particle levitation experiments. From left to right
a 1:2 oblate spheroid (p1), a 1:5 disk (p2), and a 1:10 disk (p3). All three
particles are made of PVC-U.

dmajor [mm] dminor [mm] w V
[
mm3

]
ρp [kg/m3]

Oblate Spheroid (p1) 5 2.5 0.5 32.73 1434
Disc 1 (p2) 5 1 0.2 19.63 1434
Disc 2 (p3) 5 0.5 0.1 9.82 1434
Oblate Spheroid (p4) 5 2.5 0.5 32.73 1407

Table 4.1.: Physical properties of the particles considered in the experiments.
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4.5. Results and discussions

4.5.1. Single particle dynamics

4.5.1.1. Experimental validation of the model

In this section, we investigate the levitation dynamics of single non-spherical par-
ticles. It is well known that in the settling motion of an oblate spheroidal parti-
cle immersed in a quiescent nonmagnetic fluid, the stable particle orientation is at
φ = arccos ((v − u) · ey′) = 90◦ [30]. This stable orientation can be influenced by the
magnetic buoyancy torque once a particle is immersed in a magnetized liquid. How-
ever, in the magneto-fluidic configurations considered in this work ∂H

∂x = ∂H
∂z = 0, i.e.

the magnetic buoyancy and gravity forces are collinear. Hence, the stable broadside
orientation is not influenced by the presence of the magnetic field. In single-particle
systems where particle-particle interactions are absent, the dominant particle orienta-
tion is, therefore, φ = 90◦. At this orientation, at sufficiently low Reynolds numbers
a particle does not undergo a pitching lift. Similar to the analysis for single spheri-
cal particles, also in this section we neglect the influence of the particle on the fluid
(one-way coupling assumption) in the numerical simulation method. Under these
assumptions, the governing equation of the motion reduces to the scalar system

dy

dt
=v,

dv

dt
=

ρp

ρp + 0.5ρf

[
−1

8
CDρp,id

2
p|v|v −

3

2
(πρfµ)

1/2
d2
e

∫ t

0

1

(t− τ)1/2

dv

dτ
dτ

+

(
ρf,a

ρp
− 1

)
g

]
.

(4.25)

We compare the experimental trajectories of sinking and rising particles with solutions
of (4.25) obtained with the same initial conditions. Sinking and rising levitation ex-
periments are performed using particles p1, p2 and p3. For the disk-shaped particle,
p2 with w = 0.2, the steady drag correlation of Zastawny et al. [154] is used. For the
spheroid p1 with aspect ratio w = 0.5, we use the correlation of Sanjeevi and Padding
[121] which is derived for 2:5 oblate spheroids. The steady drag coefficient for the
1:10 disk, p3 is based on the correlation of Tajfirooz et al. [138] derived for 1:10
spheroids in Chapter 4. All the particles are released with the broadside orientation
with zero initial angular and linear velocities.

Figure 4.7 compares the experimentally obtained vertical particle positions versus time
with the numerical results corresponding to solutions of system (4.25). An excellent
agreement is observed between the numerical and experimental results for both the
rising and falling particles. The particle levitation time of the 1:2 spheroid, p1 is about
70% and 30% smaller than those of the 1:5 disk, p2 and the 1:10 disk, p3 respectively.
Note that the differences in the particle levitation times are due to the differences
both in the size and in shape of the particles. To explore the effect of particle shape on
the levitation dynamics, in the following section, the numerically obtained levitation
dynamics of particles with identical volumes at different aspect ratios are compared.
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(a) (b)

Figure 4.7.: Vertical positions of particles p1, p2 and p3 as functions of time during
the (a) falling and (b) rising motions. The curves without markers cor-
respond to numerical results and those with markers indicate the experi-
mental data. Properties of the particles are summarized in Table 4.1

4.5.1.2. Effect of non-sphericity on single-particle levitation dynamics

The effect of aspect ratio on the particle levitation motion is investigated by compar-
ing the levitation motion of oblate spheroids of the same volume and different aspect
ratios. In figure 4.8, the temporal evolutions of vertical position and velocity of four
particles with w = 1, 0.4, 0.2 and 0.1 are plotted. The particle volume and initial
position and orientation is kept identical for all particles. The volume-equivalent di-
ameter of all particles is dp,e = 4 mm. The initial condition for all the particles is
(y0, v0) = (L/3, 0)T , and the mass density is fixed at ρp = 1434 kg/m3. It can be ob-
served that as the aspect ratio decreases form w = 1 to w = 0.1, the particle levitation
time increases, due to the increase in steady particle drag. Compared to the levita-
tion time of a sphere, the levitation time of an oblate spheroid with the same volume
increases by approximately 53%, 90% and 146% for w = 0.4, w = 0.2 and w = 0.1,
respectively.

The relative contributions of the different forces to the motion of the particles with
w = 1 and w = 0.1 are compared in figure 4.9. Note that the forces are made non-
dimensional by ((ρp − ρf)Vpg). As the particle aspect ratio decreases from 1 to 0.1,
the relative contribution of the history force to the total force acting on the particle
becomes smaller. However, the history force remains an important contributor to the
particle motion even at w = 0.1.

4.5.2. Two-particle systems

To investigate the effect of a binary collision on the levitation dynamics of spheroidal
particles, we consider particles with aspect ratio w = 0.5. Collisions are obtained
by simultaneously releasing a heavy sinking particle at the top of the tank, and a
light rising particle at the bottom: Particle p1 with ρp,1 = 1436 kg/m3 is released
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(a) (b)

Figure 4.8.: Effect of aspect ratio on the temporal evolution of a spheroidal particle
(a) position and (b) velocity. All particles have an equivalent diameter of
dp,e = 4 mm and mass density ρp = 1434 [kg/m3].

(a) w = 1 (b) w = 0.1

Figure 4.9.: Temporal evolution of non-dimensional added mass, static drag, Basset
history, and combined gravity and buoyancy force during the sinking mo-
tion of a spheroidal particle with (a) w = 1 (sphere) and (b) w = 0.1.
Forces are normalized according to F ∗ = F/ ((ρp − ρf)Vpg).
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at the top of the tank, and particle p4 with ρp,4 = 1407 kg/m3 is released at the
bottom. To characterize the collisions, we define the impact factor as I = LCD

dmajor
, where

LCD = ‖x14−x14 ·ey‖ is the lateral distance between the centres of the two particles,
where x14 = x1 − x4 is the distance vector between the two particles and dmajor

is the equatorial diameter of the particles. Due to the low particle volume fraction,
the two-way momentum coupling in the numerical model is switched off. Moreover,
considering the fact that the binary normal Stokes number during immersed collisions
in the MnCl2 solution remains below 10 (see Chapter 2), the effective coefficient of
normal restitution for 1:2 particles is set to a constant value of eeff = 0.1 [67, 68].
Simulations are performed with three values of the lubricated friction coefficient of
µfric = 0.005, µfric = 0.05 and µfric = 0.2. The best agreement with the experimental
results is obtained if µfric = 0.05. Several collision experiments are performed to
obtain collisions with different impact factors in the range 0 < I < 1. For visualization
purposes, three collision scenarios with initial particle distance vectors in x− direction
are presented here. In figure 4.10, the numerically-obtained vertical particle positions
obtained with µfric = 0.05 are compared with the experimental results. We observe
that the numerical model can predict the experimentally observed particle trajectories
in these three collision scenarios. The experimentally-obtained post-collision particle
velocities are, however, slightly lower than those in the experiments. The reason for
these differences can be explained from the particle snapshots for the case with For
I = 0.06 shown in figures 4.11 and 4.12.

As can be seen in the experimental snapshots in figure 4.11, in the scenario with
I = 0.06, once the particles reach each other, for a short while (3.46 < t < 3.81), they
tend to stick and rotate together around the z-axis. The rotational motion of the rising
particle is more pronounced than of the sinking particle. At t = 4.53, the rising particle
has undergone a rotation of more than 90◦, whereas the sinking particle has started to
recover its initial broadside orientation. In the numerical predictions, the rotation of
the particles due to the collisions is less strong. Especially for the rising POM particle,
the difference in the dynamics of the rotational motion can be clearly seen. The rota-
tion of the rising particle around the z- axis remains below 90◦, and at t ≈ 4.90 the two
particles leave each other with almost the same orientations. The differences in the ro-
tational motion of the particles between the numerical and experimental results lead
to differences in the post-collision linear motions. The numerically-obtained results for
the collision scenario with I = 0.32 are shown in figure 4.12. For this scenario, we ob-
serve a better agreement between the numerical and experimental results, indicating
the better performance of the numerical model at smaller impact factors. The discrep-
ancies between the numerically and experimentally-obtained rotational motions can
be attributed to multiple reasons. First, as observed in the binary collision experiments
of spherical particles, the non-uniformity of the magnetic field in the off-centre region
of the tank leads to magnetically-induced lateral forces and torques (for non-spherical
particles) which are not captured in the numerical model. Second, any small distur-
bance in the fluid affects the fluid-particle interactions, and therefore the motion of
particles in the experiments (especially in regions with low magnetic field gradient),
making control and reproduction of the collision experiments very difficult. Third, the
discrepancy in the results can also be due to the inaccuracy of the rotational resistance
torque model. The model is derived for 5:2 prolate spheroids which are expected to
have a larger average rotational resistance than 1:2 particles [154]. This leads to a
less pronounced rotation of the particles in the numerical results. Application of more

102



(a) I = 0.06 (b) I = 0.32 (c) I = 0.57

Figure 4.10.: Temporal evolutions of vertical positions of 1:2 spheroids during binary
collisions between a rising PVC-U particle and a falling POM particle
with three different impact factors. Experimentally and numerically-
obtained snapshots of the particles for cases (a) and (b) are shown in
figures 4.11 and 4.12 respectively.

accurate shape-specific correlations for 1:2 spheroids is expected to improve the nu-
merical predictions, but presently they are not available and need to be derived. Last
but not least, our numerical model neglects lubrication effects, which are important
during the contact time of two non-spherical particles [68].

Comparing the experimental results of binary collisions between 1:2 spheroids to
those of spheres addressed in Chapter 2 reveals that compared to spherical particles,
the delay time due to a collision between 1:2 spheroids behaves differently with the
impact factor. On average, the hampering effect of collisions on the levitation mo-
tion of spheroidal particles is less severe. Binary collisions between two spheres with
I ∈ [0, 1], yield an average increase of about 15% in the levitation time of the sink-
ing particle. For the rising particle, this average increase is as high as approximately
33%. For 1:2 spheroids, the average experimentally observed delays for I ∈ [0, 1] are
roughly −7% and 33% for the sinking and rising particle, respectively. This indicates
that Binary collisions of 1:2 spheroidal particles can even yield a net reduction in the
levitation time. At high impact factors, i.e. I ∈ [0.6, 1] the delay time of both sinking
and rising particles is positive and decreases with the impact factor. At low impact fac-
tors, i.e. I ∈ [0, 0.6), the same behaviour is observed for the rising particle. However,
for the sinking particle, the average delay time is negative. The drag reduction due
to particle rotation is responsible for the net acceleration at low impact factors for the
sinking particle.

4.5.3. Many-particle systems

In this section, we apply the numerical model to study many-particle systems in which
mixtures of spheroidal particles are separated. We consider a two-magnet magnetoflu-
idic configuration similar to the one presented in Chapter 4 for studying the separation
of spherical particles: A rectangular channel with height 2L and two walls at y/L = ±1
which move with mean streamwise flow velocity U0i (see figure 4.13 (a)). Two equal
ideal Halbach arrays are mounted at the top and the bottom of the channel with their
strong sides facing each other. The magnetic field for this configuration is described
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(a) (b) (c) (d)
t = 3.10 s

(e)

t = 3.46 s

(f)

t = 3.81 s

(g)

t = 4.17 s

(h)

(i) (j) (k) (l)
t = 4.53 s

(m)

t = 4.89 s

(n)

t = 5.24 s

(o)

t = 5.60 s

(p)

Figure 4.11.: Experimentally and numerically-obtained snapshots of two colliding
spheroidal particles with I = 0.06 (initial offset is in x-direction). The
sinking PVC-U (grey) particle has mass density ρp,1 = 1436 kg/m3 and
the mass density of the rising POM (black) particle is ρp,1 = 1407kg/m3.
Once the two spheroidal particles touch each other, they rotate around
one another in −k direction. The rotation of the rising particle is more
pronounced. This particle has rotated over 180◦ at t ≈ 4.3 s. The
changes in orientation lead to a reduced drag force and therefore higher
acceleration in y- direction after the collision, a phenomenon which
does not occur for spherical particles.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.12.: Experimentally and numerically-obtained snapshots of two colliding
spheroidal particles with I = 0.32 (x14/dmajor = −0.1ex − 0.3ez).
At this impact parameter, discrepancies between the the numerically
and experimentally-obtained particle orientations are smaller due to the
weaker particle-particle interaction.
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ρf [kg/m3] 1.4× 103

µf [kg/m/s] 5.54× 10−3

χf 7× 10−4

L [m] 0.075
p [m] 0.2

H0[kA/m] 637
eeff 0.1

Table 4.2.: Parameters used for the many-particle simulations

by

H(y) = H0

(
e−π(L+y)/p + e−π(L−y)/p

)
, y ∈ [−L,L], (4.26)

where p is the pole size of the magnets, and H0 is magnetic field strength at the
surface of the strong side of a single magnet. The physical parameters of the system
are summarized in table 4.2. The profiles of the induced magnetic field strength and
the corresponding apparent mass density of the fluid are shown in figure 4.13 (b).

We assume a uniform initial flow field without any disturbance. The linear and an-
gular momentum transfer between the particles and the fluid are taken into account
by considering the two-way momentum coupling strategy described in section 4.2.3.
The equations of motion of the fluid and the particles are solved in a frame moving
with constant velocity Uframe = U0i. In this frame, the walls are at rest, and the
mean streamwise flow velocity is zero. No-slip boundary conditions are imposed at
y/L = ±1, and in the streamwise and spanwise directions periodic boundary condi-
tions are considered. For a more realistic initial particle distribution, similar to the
cases considered in Chapter 2, particles are initially split into two groups of light and
heavy particles. Particles lighter than the fluid are injected at 0.75 < y/L < 1 and
particles heavier than the fluid are injected at −1 < y/L < −0.75. In addition, an
initial impurity of 10% is considered in each particle group. This means that 10% of
the particles in the “light” group are heavy and vice versa. All particles are initially
released with broadside orientation with zero initial linear and angular velocities.

The volumetric particle concentration is fixed at 1%, which results in a total of 1104
particles in the considered computational domain. Based on the results of the section
4.5.2, the average effective coefficient of normal restitution is set to eeff = 0.1, and
the average lubricated friction coefficient to µfric = 0.05. We investigate the effect of
non-sphericity on the time-dependent behaviour of particle distribution by considering
monodispersed spheroidal particles with three different aspect ratios i.e. w = 1, w =
0.5, and w = 0.1. To isolate the effects of particle shape and collisions, we keep the
volume of a single particle and the volumetric particle concentration in the domain
equal. The diameter of the volume-equivalent spherical particle is de = 4 mm. This
yields equatorial diameters of dmajor = 5.04 mm and dmajor = 8.61 mm for the 1:2 and
1:10 spheroids respectively.

Five cases are considered in total. In case 1, particles are spheres. In cases 3 the par-
ticle aspect ratio is reduced to w = 0.5. To investigate the effect of collisions on the
separation performance, in cases 2 and 4 we perform the simulations without particle-
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Figure 4.13.: (a) A schematic of the computational domain for the many-particle sim-
ulations. In a frame moving with the same velocity as the conveyor
belts, U0i, the mean streamwise velocity of the fully-developed flow is
zero. In this frame, the walls at y = ±L are at rest. (b) Magnetic field
strength profile and the corresponding profile of the effective mass den-
sity of the magnetic fluid. The dotted lines indicate mass densities of
the particles. The dashed lines correspond to the considered cut mass
densities.

Case Φ de[mm] dmajor[mm] No. of particles w Im collisions
1 0.01 4 4.00 1104 1.0 0.1 yes
2 0.01 4 5.04 1104 1.0 0.1 no
3 0.01 4 5.04 1104 0.5 0.1 yes
4 0.01 4 5.04 1104 0.5 0.1 no
5 0.01 4 8.61 1104 0.1 0.1 no

Table 4.3.: Summary of physical parameters for all test cases.

particle collisions. As the particle aspect ratio decreases, resolving particle-particle
collisions becomes more challenging, because the collision detection and collision se-
quence algorithms presented in section 4.2.1.3 not always converge for some specific
collision scenarios. Non-converged solutions of the collision detection algorithm in
many-particle systems can lead to nonphysical particle properties and eventually, a
simulation crash. To avoid such problems for the case with w = 0.1, we performed
only one simulation without inter-particle interactions. Improvements to the binary
collision detection and TOI algorithms will be studied in future to make them appli-
cable to such highly anisotropic particles. The physical quantities of the considered
cases are summarized in table 4.3.

4.5.3.1. Particle distribution

Figure 4.14 shows the front views of particles at t ∈ {0.01, 0.5, 1, 1.5, 2, 2.5} for case
3. The vertical colour bars indicate the particle mass density ratio, ρp/ρf . As the
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particles travel to their equilibrium positions, they rotate due to interactions with the
surrounding fluid and other particles. Changes in the orientation of particles, in turn,
influence their interactions with the fluid and their levitation dynamics.

To gain more quantitative insight into the differences in the local particle distribu-
tions, in Figure 4.15 the probability density function of vertical particle position for
the considered five cases are compared at different times. As the particle aspect ra-
tio decreases the particle dispersion in y- direction increases. This effect is stronger
in the central region of the channel where the magnetic buoyancy force is weaker.
After 2 seconds, only mass density groups with equilibrium positions located closest
to the walls (|1 − ρp/ρf | = 0.3) have a similar separation performance for different
aspect ratio. This is to be expected, as first, the initial vertical position of particles in
theses groups are closest to their equilibrium positions. Second, the stabilizing mag-
netic buoyancy force in the vicinity of the walls is stronger. Therefore, theses particle
groups have the shortest separation time scale. For particles in mass density range
|1 − ρp/ρf | = 0.7 only after 1 second a clear difference is observed in both the av-
erage vertical position and its variance for 1:1 and 1:2 particles. This difference is
much larger for 1:10 particles which indicates the inferior separation performance of
low-aspect-ratio particles. One should note that this holds even though collisions are
neglected in case 5. Including the effects of collisions is expected to deteriorate the
separation performance further. As due to the larger contact areas, such flat particles
tend to stick to each other during the collisions causing larger hindrance. Based on
these observations, one can conclude that injecting the particles in the central region
of the channel instead of in the vicinity of walls can lead to more uniform separation
time scales among different mass density groups and particle shapes.

The influence of two-way coupling on particle rotational dynamics can clearly be ob-
served in case 5, where particle-particle interactions are neglected. Figure 4.16 (a)
shows the particle-induced velocity field in a cross-section of the domain in case 5 at
t ∈ {1.5, 2.5, 5.99}. Although the particles do not directly “feel” each other through
collisions, they indirectly influence each other through the particle-induced velocity
disturbances. The flow-induced rotation of the particles can seen in figure 4.16 (b).

4.5.3.2. System separation performance

We evaluate the overall separation performance of a system by computing a mean
separation error defined as

em(t) =
1

L

√√√√ 1

Np

Np∑
i=1

(yp,i(t)− ye,i)2, (4.27)

whereNp is the total number of particles, yp,i(t) the position of particle i at time t, and
ye,i is its equilibrium height. The temporal evolution of the mean separation errors are
compared in figure 4.17.

At a given time, the smaller the aspect ratio, the larger is the mean separation error.
Because of the larger average drag force acting on non-spherical particles in broadside
orientation, decreasing the aspect ratio from 1 to 0.1 decreases the reduction rate of
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Figure 4.14.: Projections of the particles in the region |z − Lz
2 | < 3dp,e (Case 3). The

vertical colour bars indicate to the particle mass density ratio ρp,e/ρf .
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Figure 4.15.: Evolution of probability density function of particle position for cases 1,
2, 3, 4 and 5 at various time instances.
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(a) (b)

Figure 4.16.: (a) Cross-sections of the velocity field in the moving frame at z = Lz
2 .

The horizontal colour bar corresponds to the wall-normal component
of the particle-induced fluid velocity.b Projections of the particles in the
region |z − Lz

2 | < dp,e for case 5.
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Figure 4.17.: The effects of collisions and particle aspect ratio on the temporal be-
haviour of the mean separation error.

the average separation error during the time interval 0 ≤ t ≤ 1 s. After t = 1 s the
reduction rate of the separation error decreases for spheres, due to the stronger over-
shoot of the particle equilibrium position by the history force for spherical particles.
This leads to a similar separation performance during the interval 1.5 ≤ t ≤ 2. At
later times, i.e. t > 3, as the particles approach their equilibrium positions, the decay
behaviour of the average separation error for 1:1 and 1:2 spheroids is similar. This is
due to the reduction of the sensitivity of average drag coefficient to the particle aspect
ratio at low Reynolds numbers (see chapter 3).

When collisions are neglected, the mean separation error for 1:1, 1:2 and 1:10 parti-
cles are respectively 0.006, 0.018 and 0.193 at t ≈ 3. Furthermore, we observe that the
influence of collisions on the system separation performance is more pronounced for
spherical particles. After 3 s, neglecting inter-particle interactions yields 51% under-
estimation of the average separation error for spherical particles, but this underesti-
mation reduces to 26% for 1:2 spheroids. We attribute this difference to two reasons;
firstly, the collisions have a larger hampering effect on the faster spherical particles.
Second, as observed in binary collisions presented in section 4.5.2, changes in the ori-
entation of non-spherical particles due to the collisions can lead to a reduction in the
average drag force on a particle. This effect reduces the hindering effect of collisions
for non-spherical particles.

4.6. Conclusions and outlook

In this chapter, we presented and employed a numerical framework for modelling
flows of magnetized liquids laden with ellipsoidal particles. The presented point-
particle Euler-Lagrange approach incorporates the relevant force and torque models
for interactions of ellipsoidal particles with a magnetized paramagnetic liquid. The
model considers two-way angular and linear momentum transfer between the parti-
cles and the fluid. Moreover, a hard-sphere collision model is incorporated to capture
the inter-particle interactions between ellipsoidal particles. We validated our numeri-
cal model by particle tracking experiments performed in a magnetized paramagnetic
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fluid. The good agreement between the numerical and experimental results of the par-
ticle tranlational motion proves the promising capability of the presented numerical
framework in modelling the dynamics of non-spherical particles in magnetic density
separator systems. However, to accurately capture the rotation of particles, this frame-
work should be equipped with more accurate torque models.

The effect of nonsphericity on particle levitation dynamics in single-, two- and many-
particle is investigated. In the single-particle systems, it is shown that decreasing the
particle aspect ratio from 1 to 10 can lead to up to 146% increase in the levitation time
of a spheroid moving at the broadside orientation. The effect of particle nonsphericity
on particle-particle interactions is studied by comparing the numerical results of binary
collisions between 1:2 spheroids with experimental observations.

Because of the changes in the orientation of 1:2 spheroids during collisions, it is found
that compared to spheres, the hampering effect of a binary collision with the same
impact factor is smaller for 1:2 spheroids. Due to the challenges in experimentally ob-
taining controlled collision scenarios, however, one-to-one comparison of the numer-
ical and experimental results turned out to be very challenging. The collision model
has shown to be capable of reproducing the experimentally observed translational mo-
tion of 1:2 spheroids during binary collisions. Differences are, nevertheless, observed
in the experimentally and numerically obtained rotational motion of particles during
and after the collisions.

Results of the many-particle simulations revealed that the separation efficiency of
spheroidal particles decreases as the particle anisotropy increases. Moreover, the sep-
aration performance of 1:2 spheroids was shown to be less affected by inter-particle
interactions.

Results of the present chapter shows that particle nonsphericity further complicates
the magneto-hydrodynamic interactions between the particles and the magnetized
fluid. As the isotropy of the particles decreases, the coupling between the linear
and angular motions of the particle increases. Hence, accurately predicting the ro-
tational motion of particles is of great importance at low aspect ratios. In improving
the numerical predictions for the rotational motion of particles deriving more accurate
shape-specific models for rotational resistance torque is recommended as a direction
for future research. Furthermore, incorporation of the model presented in this work in
non-uniform time-dependent flows may require considering the effects of local veloc-
ity gradients, and time-dependent rotational effects (e.g. rotational history and added
mass) in the numerical model. Models for shear-induced or transient hydrodynamic
interactions of anisotropic particles are very scarce. Besides, the applicability of the
existing models is limit ted to creeping-flow regimes. Developing new models for such
interactions can be considered as another direction of future research.

4.A. Force and torque correlations

In this appendix, shape-specific correlations for force and torque coefficients used in
the numerical model are presented.

113



w = 0.4 w = 0.2 w = 2.5 w = 0.2
Drag Lift Pitch. torque Drag Lift Pitch. torque Rot. torque Rot. torque
(4.29)(4.30) (4.31) (4.32) (4.34)(4.35) (4.36) (4.37) (4.38) (4.38)
a1 = 24.66 b1 = 5.28 c1 = 3.643 a0 = 1.96 b1 = 12.11 c1 = 3.872 Mode 1 Mode 1
a2 = 4.059 b2 = 8.96 c2 = 0.178 a1 = 5.82 b2 = 1.036 c2 = 0.237 r1 = 0.23 r1 = 3.82
a3 = 0.349 b3 = 0.2348 c3 = −1.252 a2 = 0.44 b3 = 3.887 c3 = 2.351 r2 = −0.116 r2 = −0.13
a4 = 0.0007 b4 = −8.095 c4 = 0.319 a3 = 15.56 b4 = 0.109 c4 = 0.236 r3 = 96.378 r3 = 283.3
a5 = 0.278 b5 = 0.325 c5 = −0.018 a4 = 1.068 b5 = 0.812 c5 = −0.394 r4 = 1.0 r4 = 1.0
a6 = 30.18 b6 = −0.004 c6 = 0.387 a5 = 35.41 b6 = 0.249 c6 = 1.615 Mode 2 Mode 2
a7 = 4.396 b7 = 0.352 c7 = 0.004 a6 = 0.96 b7 = −0.198 c7 = −0.044 r1 = 71.03 r1 = 13.31
a8 = 0.156 b8 = −0.002 c8 = 0.349 a7 = 3.63 b8 = 5.821 c8 = −0.537 r2 = 0.069 r2 = 0.189
a9 = 0.0073 b9 = 0.273 - a8 = 0.05 b9 = −4.717 c9 = 1.805 r3 = 773.04 r3 = 783.05
a9 = 1.469 - - - b10 = 0.007 c10 = −0.037 r4 = 0.67 r4 = 0.628

Table 4.4.: Coefficients in correlations of Zastawny et al. [154] and Sanjeevi et al.
[120] for force and torque coefficients.

Drag, lift and pitching torque coefficients of 1:2 and 2:5 oblate spheroids follow the
correlation proposed by Sanjeevi et al. [120] for 2:5 spheroids. The drag coefficient
reads:

CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin2(φ), (4.28)

where

CD,φ=0◦ =
( a1

Re
+

a2

Rea3

)
e−a4Re + a5

(
1− e−a4Re

)
, (4.29)

CD,φ=90◦ =
( a6

Re
+

a7

Rea8

)
e−a9Re + a10

(
1− e−a9Re

)
. (4.30)

The lift coefficient follows

CL,φ =

(
b1
Re

+
b2

Reb2
+

b4

Reb5

)
sin(φ)(1+b5Re

b7) cos(φ)(1+b8Re
b9), (4.31)

and the pitching torque coefficient follows

CT,φ =
( c1
Rec2

+
c3
Rec4

)
sin(φ)(1+c5Re

c5 ) cos(φ)(1+c7Re
c8 ). (4.32)

Coefficients a1-a5, b1-b9 and c1-c8 are provided in table 4.4.

The drag, lift and pitching torque coefficients of 1:5 oblate spheroids follow the corre-
lations of Zastawny et al. [154]. The drag coefficient reads

CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sina0 φ, (4.33)

where

CD,φ=0◦ =
( a1

Rea1
+

a3

Rea4

)
, (4.34)

CD,φ=90◦ =
( a5

Rea6
+

a7

Rea8

)
. (4.35)

The lift coefficient reads:

CL,φ =

(
b1
Re

+
b2

Reb2
+

b4

Reb5

)
sin(φ)(1+b5Re

b7) cos(φ)(1+b8Re
b9), (4.36)
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and the torque coefficient reads:

CT,φ =
( c1
Rec2

+
c3
Rec4

)
sin(φ)(C5+c6Re

c7 ) cos(φ)(c8+c9Re
c10 ). (4.37)

The rotation resistance torque coefficients of 1:2 and 1:10 oblate spheroids follow the
correlations of Zastawny et al. [154] for 5:2 prolate spheroids 2:10 oblate spheroids
respectively. These correlations read:

CR = r1Re
r2
r +

r3

Rer4r
, (4.38)

where Rer is the rotational Reynolds number defined in section 4.2, and coefficients
r1-r4 are provided in Table 4.4. Zastawny et al. [154] identified two different modes
for the rotational torque. In mode 1, the rotation takes place around the spheroids
major axis, and in the second mode, rotation occurs around an axis perpendicular to
the particle axis of symmetry. Rotations in mode 1, i.e. rotations around the symmetry-
axis are not considered in this study.

For steady drag, lift, and pitching torque on 1:10 spheroids the DNN-based correlation
of Tajfirooz et al. [138] is used.
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5. Conclusions and recommendations

Mechanical recycling is the representative approach to recover plastics. Obtaining a
high-quality single polymer stream from plastic waste is predominantly dependent on
the performance of separation techniques. Magnetic density separation is a high-
resolution mass-density-based sorting process which is realised by incorporating a
combination of a magnetic liquid and a properly designed magnetic field. MDS ex-
ploits the magneto-Archimedes principle in magnetised fluids to fractionate a mixture
of material based on minimal differences in the mass density of sub-populations. In
adapting the MDS strategy, special care should be taken to interactions of dispersed
particles with each other as well as with the background flow. Optimisation of MDS
processes, therefore, requires a fundamental understanding of such interactions. This
work aimed at the development and application of an efficient numerical framework
for studying the buoyancy-driven motion of particles in a flow of magnetised liquid, a
phenomenon common in industrial MDS systems. We combined point-particle Euler-
Lagrange (PP-DNS) numerical simulations with experimental observations to obtain a
fundamental understanding of the collective motion of particles in flows of magnetic
fluids exposed to a steady non-uniform magnetic field. This chapter summarises the
most important conclusions that are drawn in this dissertation.

5.1. Conclusions

First and foremost, this dissertation provides a profound understanding of the under-
lying fluid-structure mechanisms to describe the motion of almost neutrally-buoyant
particles in magnetised fluids. We demonstrated that the buoyancy-driven motion of a
particle in magnetic liquid can be described by a non-autonomous system, the critical
point of which corresponds to the equilibrium position of the particle. Through an
eigenvalue analysis, we parameterised the motion of a single spherical particle in the
absence of history effects. We showed how a single particle can exhibit either a mono-
tonic or oscillating behaviour as it travels toward its equilibrium point. By comparing
the numerical and experimental results, we determined that the Basset history force
plays an essential role in the motion of almost neutrally buoyant spherical particles at
large diameters. We quantified the effect of binary collisions on levitation dynamics of
spheres and illustrated that disregarding collisions can lead to a spuriously low par-
ticle dispersion in the numerical results of large MDS systems. Disregarding history
force was shown to result in a significant under-prediction of the time to achieve a
certain level of separation. Moreover, the numerical results showed that at the volume
fractions considered in this work, particle-induced flow disturbances do not have a
remarkable effect on the separation performance of spherical particles.

The fidelity of the point-particle Euler-Lagrange (PP-DNS) simulations is highly de-
pendent on the accuracy of incorporated models for the hydrodynamic interaction of
particles with the surrounding fluid. Due to the complexity and non-linearity of these
interactions for non-spherical particles at high Reynolds numbers, models for these
interactions are scarce. Especially at high particle anisotropies, predicting forces and
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torques acting on a particle during the arbitrary motion in a viscouse fluid becomes
more challenging. In Chapter 3, we employed a statistical learning approach to de-
velop for the first time, correlations for the steady hydrodynamic interaction of 1:10
oblate spheroids. Not only is the proposed methodology not prone to undesired biases
introduced by using conventional curve-fitting approaches, but it also does not require
a priori knowledge of the type of correlating functions. Our results prove the capability
of a well-trained deep neural network (DNN) architecture in predicting hydrodynamic
interactions of anisotropic particles.

Extending the applicability of the PP-DNS framework to MDS of non-spherical parti-
cles is discussed in Chapter 4. We presented a new strategy for the two-way torque-
coupling between ellipsoidal particles and the continuous phase where the particle
size and the Eulerian grid size are in the same order. Inspired by the immersed bound-
ary approach, the proposed method converts the particle torque on the fluid to a set of
point forces which act on the grid points in the neighbourhood of the particle centre.
Furthermore, we combined a hard-ellipsoid collision model with an iterative contact
detection algorithm to capture the immersed particle-particle interactions. Our PP-
DNS framework uses the DNN correlations derived in Chapter 3 and other existing
shape-specific models to capture the hydrodynamic interactions of spheroidal parti-
cles. Results of the application of the model to oblate spheroids with different aspect
ratios showed that the levitation time of single particles is inversely proportional to the
aspect ratio. The history force is shown to remain an essential contributor to the mo-
tion of oblate spheroids. However, due to the smaller acceleration of oblate spheroids,
compared to spheres of the same volume, the relative contribution of history force is
smaller for spheroidal particles.

The experimental results revealed that compared to spheres, particle-particle interac-
tions are much more complicated for 1:2 spheroidal particles. At low impact factors,
spheroidal particles undergo strong rotational motions during a binary collision which
can lead to rotations of more than 180◦. The rotational interactions of spheroids were
shown to decrease with the impact factor. Changes in the orientation of particles
during collisions decrease the effective cross-sectional area of the particles and there-
fore leads to a net drag reduction. This mechanism which reduces the hampering
effect of binary collisions for spheroids is absent for spheres. The proposed numerical
framework successfully predicts the experimentally observed translational motion of
spheroids in single and two-particle systems. However, our comparisons revealed that
capturing the rotational motion of spheroids more accurately requires the incorpora-
tion of more accurate shape-specific models for rotational interactions of non-spherical
particles.

The stronger fluid-particle interaction is another distinguishing phenomenon in magneto-
Archimedes levitation of spheroidal particles. The substantial influence of particle-
induced flow disturbances on the neighbouring particles is due to the high sensitivity
of the rotational motion of oblate spheroids to small flow disturbances, an effect which
increases with decreasing particle aspect ratio.

Major findings of this dissertation that are of direct relevance to the design optimiza-
tion of MDS systems are summarized below:

• In chapter 2 we observed that decreasing the size of a particle from 4 to 1 mm can
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reduce the levitation time of single spherical particles from about 2.5 seconds to
approximately 32 seconds. This observation indicates the importance of particle
size in MDS processes. Therefore, an accurate estimate of separation time in
an MDS system requires prior knowledge about the size distribution of input
particles.

• Particle shape is shown to be another critical influence parameter in MDS sys-
tems. Results on levitation time of single spheroidal particles (chapter 3) re-
vealed that lowering the particle aspect ratio from 1 (sphere) to 0.1 (disk) yields
approximately 150% percent increase in the single-particle levitation time.

• Particle-particles interactions are shown to lead to up to 45% increase in the levi-
tation time of spherical particles during binary collisions. However, in chapter 3,
we showed that the delaying effect of binary collisions between 1:2 ellipsoidal
particles is weaker. The reason for this is attributed to the change in the ori-
entation of non-spherical particles during collisions. In many-particle systems,
collisions are responsible for increasing particle dispersion especially in the cen-
tral region of the channel.

• DNS results of large MDS systems revealed that the separation performance of
almost neutrally buoyant particles with |1 − ρp/ρf | < 0.05 is lower than that of
the heavier and lighter particles that levitate closer to the channel walls. This
difference can be attributed to the low gradient of the magnetic field in the
centre of the channel and a higher possibility of collisions with other particles
for almost neutrally buoyant particles.

5.2. Recommendations for future research

The understanding gained through numerical analysis of particle-laden flows in MDS
processes has provided valuable insights into the important mechanisms that influ-
ence the collective motion of particles in magnetic density separation systems and has
laid a foundation for several interesting future research directions. In this section,
we address some of the most important topics which have not been explored in this
dissertation, but they are recommended for further investigations. First, we discuss
our recommendations in the more general context of PP-DNS simulations. Next, we
address recommendations which are more specific to the MDS application.

5.2.1. General recommendations

• In this work, we proposed new methods to model the momentum transfer be-
tween particles and the continuous phase in the PP-DNS framework. The pro-
posed strategies are mathematically well-founded. However, experimental val-
idation of the physical accuracy of these models is very challenging. In this
regard, particle-resolved simulations can be performed to test, and further im-
prove the accuracy of these models, especially for non-spherical particles.

• The two-way angular momentum coupling strategy presented for non-spherical

119



particles in Chapter 4 takes a single Eulerian grid cell as the coupling volume.
Considering the sensitivity of the motion of non-spherical particles to local flow
disturbances, the extension of the method to distribute the coupling force over
the volume occupied by the particle would better account for the shape and
orientation of the particles.

• In this dissertation, we did not address the effect of initial background turbu-
lence on the levitation dynamics of particles. The presented framework can be
straightforwardly equipped with suitable initial conditions that describe the flow
at the exit of the laminator to study the impact of background turbulence on the
particle dynamics.

• The importance of time-dependent interactions such as history force in the mo-
tion of almost neutrally buoyant particles in viscous flows is illustrated in detail
in Chapter 2 of this dissertation. Moreover, in Chapter 4, it was shown that cap-
turing the experimentally observed rotational motion of particles requires more
accurate shape-specific models for the particle rotational resistance. Neverthe-
less, accurate shape-specific models for time-dependent hydrodynamic interac-
tions and the rotational resistance torque do not exist yet. In addition, in cases
where the background flow has strong non-uniformities over the volume of par-
ticles, the momentum coupling models should be extended to take the effect
of flow non-uniformities into account. Models for the quantitative prediction
of shear-induced momentum transfer are also scarce. Using statistical methods
similar to the one presented in Chapter 3, data from resolved simulations can
be used to create models for these complex interactions. In view of currently
available computer capacity, a large amount of data can be generated by particle
resolved simulations. Incorporating statistical techniques can transform this PR-
DNS data to models which can be efficiently employed in PP-DNS simulations.

• In immersed particle-particle interactions during the phase where the distance
between the surfaces of the particles is very small, lubrication forces dominate.
We disregarded lubrication effects in this dissertation. Therefore, incorpora-
tion of lubrication effects is recommended especially for non-spherical particles
where a collision can have a significant influence on the rotational motion of
particles.

5.2.2. MDS-specific recommendations

• The simulations performed in this work considered simple 1D magnetic fields.
More complex 3D magnetic fields can be straightforwardly incorporated in the
model to investigate the effect of more realistic magnetic fields in practical MDS
systems.

• Due to the reasons addressed in Chapter 1, the carrier liquid considered in this
work is a paramagnetic solution. The effects of the low viscosity and the su-
perparamagnetic behaviour of ferrofluids in industrial MDS systems can be in-
cluded in the present model. However, one should note that accurate simulations
of MDS in a ferrofluid might require introducing models for time-dependent
changes in the concentration of nano-particles, and non-equilibrium effects in
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the magnetisation behaviour of ferrofluids in turbulent or transient conditions.

• In this study, we measured the magnetic field in the central region of the exper-
imental setup. Extending the information on the profile of the magnetic field
strength to a larger area can provide more insight into magneto-hydrodynamic
interactions between the particles and the magnetic liquid. This can be achieved
by performing additional field measurements or numerical simulations.
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